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Abstract— Soft robotic manipulators are on the verge to
their first real applications. In most cases they are actuated
by fluidic pressure or tendons and molded of highly elastic
material, which performs large deformation if put under stress.
Performing tasks e.g. in inspection of narrow machines or
endoscopy requires the actuator to be tactile and controllable.
Due to their highly nonlinear behavior, model-based approaches
are investigated to combine and utilize sensor information to
estimate the system states of the manipulator. In this paper,
equations of motion (EoM) for the well-known piecewise con-
stant curvature (PCC) approach are extended by a floating base
as it is often used in kinematic chains for legged robots and their
contact with the ground. Base reaction forces and moments,
which are easily measurable quantities, become visible in the
EoM, if the six spatial degrees of freedom at the base of the
manipulator are considered. Thereby, additional information
on the system’s states is obtained and used in the proposed
identification scheme. Essentially, the floating base, a center-
of-gravity approach and a state-of-the-art parametrization of
the PCC kinematics are combined to derive and validate a
Lagrangian dynamics model. On a best-case set of validation
step responses, the identified inverse dynamics model performs
with an accuracy of 5% to 7.6% of max. actuation torque.

I. INTRODUCTION

In the recent decade, the intrinsic safety in human-

machine-interaction of soft-material robots (SMR) and their

dexterity in manipulation have often been claimed as major

potential. For applications like medicine or industrial ma-

chine inspection, process time is one major influence for

practicability. When it comes to dexterous and quick motion

of soft-material continuum robots, a key challenge is the

control of the system in a dynamic state.

Different modeling approaches have been applied in soft

robotic manipulation and control. More complex models

are discrete Cosserat-rod models [1], [2] or finite element

models of the three-dimensional continuum like the soft

robotics extension of the SOFA framework [3] as well as

spline-based approaches [4]. In [5], Cosserat rod theory

is applied in a rigid-flexible multi-body model describing

tentacles of a swimming bio-inspired soft robot in simulation.

A generalizing framework based on Lie groups and their

algebra has been proposed that is capable of deriving equa-

tion of motions for flexible-rigid multi-body systems with a

floating base [6]. These models mimic the general dynamic

behavior of soft robotic systems, enabling controller design
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Fig. 1. Visualization of the actuator and approaches combined within this
paper. The outer radius rout = 50mm and inner radius are illustrated for
the reader’s understanding of conducted experiments.

and research on control concepts. However, most models

capable of describing slender, flexible structure with high

precision are computationally expensive and thereby difficult

to apply in feedback control.

Due to these circumstances, the kinematic assumption of

a piecewise constant curvature has been a popular approach

to derive rigid-body dynamics models, which are easily

implemented in feedback control. It has been shown that

in combination with a feedback controller design, these

models increase the accuracy in free motion [7]. A well-

known disadvantage of the classic parameterization of PCC

kinematics is the singularity in the straight configuration of

the actuator. Recent advances made in [8] solve this problem

and leverage the potential of this modeling approach.

For control, robust information on the system’s state is

critical. Gathering this information is a task of increasing

reliable sensing capability and pairing it with accurate and

efficient system models. The best model can hardly compen-

sate poor sensor information.

For instance, in [9], [10] skin-like soft sensors are utilized
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to increase information on the robots state. Since soft sensors

capable of large deformation are still subject to on-going

research, their characteristics are hardly modeled, but can be

combined with data-based algorithms like long-short-term

memory networks or deep-learning methods. These data-

based approaches generalizes their characteristics well, but

no analytical studies for e.g. sensor placement are possible

and a slow response time of the sensor prevent its direct use

in highly dynamic applications [10].

To overcome these limits, more conventional sensors may

be applied and combined with models. Inertial measurement

units (IMU) have been used and paired with pressure sensing

to estimate system states by application of constant-curvature

dynamics and models of pneumatic components [11]. In [12],

a sophisticated design of bending actuators, enabling direct

measurement of curvature combined with an improved state

representation of the piecewise constant curvature kinematics

with an augmented serial-link model from [13] are presented.

It is also used to estimate the actuator’s tip contact state, but

still shows high deviations in quantity of the estimated load.

Less focus has been put on force-torque sensors. Some

models capable of using their information by deriving the

equation of motion with a floating base exist [6], [14], [15],

[16], but neither of these works apply a dynamics model in

combination with force-torque sensing at the robot’s base.

In classical rigid robotics, well-identified dynamics models

are key to model-based active compliance control [17].

Identification schemes using ground reaction forces like [18]

have not been pursued further, presumably due to the high

load on force/torque sensors mounted below the base. For

soft robots however, this presents a promising approach

regarding their much lower mass.

This publication contributes to recent advances on SMR

modeling by deriving the equation of motion (EoM) of a

soft pneumatic actuator (SPA) with a floating base using im-

proved state parameters of [7]. Thereby, forces and moments

at the actuator’s base become visible in the EoM, which

is an easily measurable physical quantity. The additional

information is used to identify parameters within the physical

model and to validate the effectiveness of the center of

gravity (CoG) approach. To summarize, the contributions of

this paper are

• a concept to include additional and robust information

for control application,

• the derivation of the equation of motion with constant-

curvature assumption and floating-base approach,

• an identification routine for system parameters based on

experimental data using the systems regressor form.

The remainder of this paper is structured as follows. First,

the kinematics of the soft robotic manipulator are revised,

following the ideas in [8] and extending them by the floating

base. Thereafter, in Sec. III the center of gravity (CoG)

approach introduced in [19] is combined with nonlinear con-

stitutive equations for elasticity and linear damping to form

the EoM. To simulate the physical system, a hybrid model,

which outputs are the acceleration of constant curvature

states and forces as well as moments of the base, is required,

as described in Sec. III-D. The experimental setup is briefly

explained in Sec. IV. The adaptable identification scheme

is explained in details, and validated with collected data of

highly dynamic step responses of the actuator in Sec. V to

Sec. 4.

II. KINEMATICS

The kinematics of the SPA are described by coordinate

frames i using homogeneous transformation matrices

iT i+1 =

[

iRi+1 ti+1

0 1

]

∈ SE(3). (1)

To build these matrices, parameters for configuration de-

scription are needed.

A. (Piecewise) Constant-Curvature Kinematics (PCC)

PCC-kinematics uses the assumption that the SPA bends

in a way that can be described by n segments of circular arcs.

Each arc can be described by a set of three parameters. There

exists several possibilities of parametrization. In this paper

the parametrization from [8] is used. The arc is described

by three length differences. Two of them, ∆x,i and ∆y,i,

describe the length of arcs attached to the x- and y-axis

of frame i and i + 1. ∆x,i describes the length difference

of two arcs attached on the positive and negative x-axis

in a distance di from the coordinate origin in frame i and

i + 1. The parameter di can be chosen arbitrarily, but it

changes the sensitivity of the kinematics. ∆y,i is described

analogously using the y-axis. The third length difference

δLi describes the change in length of the center line of the

segment compared to the length L0,i of the non-actuated

segment. In this way, ∆x,i and ∆y,i describe the bending

of the segment, while δLi describes the elongation. These

parameters are used building the rotation matrix

iRi+1 =








1 +
∆2

x,i

∆2

i

(c∆−1)
∆x,i∆y,i

∆2

i

(c∆−1)
∆x,i

∆i
s∆

∆x,i∆y,i

∆2

i

(c∆−1) 1 +
∆2

y,i

∆2

i

(c∆−1)
∆y,i

∆i
s∆

−∆x,i

∆i
s∆

−∆y,i

∆i
s∆ c∆









(2)

and the translation vector

ti+1 =
di(L0,i + δLi)

∆2
i





∆x,i(1− c∆)
∆y,i(1− c∆)

∆is∆



 (3)

for one constant-curvature segment. The abbreviations

∆i =
√

∆2
x,i +∆2

y,i, (4)

s∆ = sin

(

∆i

di

)

and c∆ = cos

(

∆i

di

)

(5)

are used.
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B. Floating-Base Kinematics

For modeling, the SPA is regarded as freely moving in

space. Therefore the robot’s base is attached by a virtual

six-DoF joint to the environment represented by a world

frame. The rotation is expressed by three intrinsic elementary

rotations using Cardan angles α, β and γ. The resulting

rotation matrix yields

0R1 = Rx(α)Ry(β)Rz(γ). (6)

The SPA’s base translation relative to the inertial frame is

described by

t1 =
[

x0 y0 z0
]T

. (7)

Putting the constant-curvature- and floating-base kinematics

together yields a set of 6+3n parameters q = [qT
0 , . . . , q

T
n ]

T

describing the system. The parameters consist of six-element

q0 = [tT1 , α, β, γ]
T describing the floating base and 3n-

elements q1, . . . , qn describing the SPA configuration.

III. DYNAMICS

For parameter identification, a description of the dynamic

behavior of the system is needed. To build a dynamics

model, the constant-curvature segments of the SPA are

treated as point masses. For minimizing the error induced

by this assumption, the point mass is located at the center

of gravity of the segment [19], [13]. The behavior of the

hyper-elastic material is modeled by introducing a material

model consisting of a nonlinear spring and a linear damping

element.

A. Center of Gravity

To get the location of the center of gravity of the ith
segment in frame i, (i)rCoG,i, an integration over all points

of the center line with material coordinate ξ is performed,

so that

(i)rCoG,i =

1
∫

0

(i)pi(ξ, q)dξ, (8)

with the vector from coordinate origin of frame i to a point

along the center line

(i)pi(ξ, q) =
di(L0,i + δLi)

∆2
i











∆x,i(1− cos
(

ξ∆i

di

)

∆y,i(1− cos
(

ξ∆i

di

)

∆i sin
(

ξ∆i

di

)











. (9)

The preceding subscript (i) denotes the reference coordinate

frame of a quantity, if necessary.

B. Equation of Motion

To derive the rigid-body part of the EoM, the kinetic en-

ergy Ekin and the potential energy Epot of the CC segments’

point masses are given as

Ekin =
1

2

n
∑

i=1

mi (0)ṙ
T
CoG,i (0)ṙCoG,i (10)

Epot = −
n
∑

i=1

mi (0)g
T

(0)rCoG,i (11)

using mi as the mass of segment i and the gravitational ac-

celeration vector (0)g. The base link’s mass m0 is neglected

since only a ground-reaction force model is derived and the

base does not actually move. Using the Lagrangian equations

of the second kind, the mass matrix M(q), the vector of

Coriolis forces c(q, q̇) and the vector of gravitational forces

g(q) are derived using the computer algebra system MAPLE.

To introduce the material model, a vector for spring forces

and a vector for damping forces are introduced. The vector

ki(qi) =





kθi,3∆
3
x,i + kθi,1∆x,i

kθi,3∆
3
y,i + kθi,1∆y,i

kδLi,3
δL3

i + kδLi,1
δLi



 (12)

for spring forces of one segment consists of a cubic part

and a linear part, using the stiffness constants for bending

(kθi,3 , kθi,1 ) and elongation (kδLi,3
, kδLi,1

). The full vector

k(q) =
[

0 kT
1 . . . kT

n

]T
(13)

is formed by putting together k1(q1) to kn(qn), with the

first six entries of k(q) being 0 due to the floating base.

In contrast to the spring-forces vector of one segment, the

damping-forces vector of one segment

di(q̇i) =
[

dθi∆̇x,i dθi∆̇y,i dδLi
˙δLi

]T
(14)

consists of only linear parts, using the damping coefficients

for bending dθi and elongation dδLi
. The damping force

vector d(q̇) is put together in a similar way to the spring

forces vector:

d(q̇) =
[

0 dT
1 . . . dT

n

]T
. (15)

Collecting the rigid-body part and the material model, the

EoM for the case of a floating base is formed as

M(q) q̈ + c(q, q̇) + g(q) + d(q̇) + k(q) = τ . (16)

The vector of generalized driving forces

τ = τ base + τCC,1 + . . . + τCC,n (17)

consists of different parts, where τ base are the driving forces

for the floating-base parameters with the last 3n entries being

0 and τCC,i the driving forces resulting from pneumatic

actuation of the segments. The base part of the model

corresponds to the ground-reaction force model of [18] for

rigid robots, which was derived in [18] using Lagrangian

equations of the first kind with ground reaction forces as

Lagrange multipliers. By setting the base motion to zero,

as in [18], both approaches are equal and the Euler-angle

transformation for τ base does not have to be regarded.

C. Actuation

The SPA is actuated pneumatically through pressure in

three chambers inside the robot, see Fig. 1 and [20]. The

pressure dynamics in a chamber is modeled by a discrete
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first-order lag element (PT1), with time constant TPT1
.

Through the pressure in the chambers, a wrench

(i)F =
[

0 0 (i)fz (i)mx (i)my 0
]T

(18)

at the tip and the base of a segment is generated, noted as

(i+1)F i,tip = −(i)F i,base (19)

with (i+1)F i,tip =

[

i+1Ri 0

0
i+1Ri

]

F i,tip. (20)

The entries (i)fz, (i)mx, (i)my are the force/moments in

frame i. The wrenches (i+1)F i,tip (wrench at the segments

tip expressed in frame (i+1) at the tip of the segment) and

(i)F i,base (wrench at segments base expressed in frame (i)
at the base of the segment) are of the same magnitude but

opposite direction. The computation of the force/moments

from the input pressure pi from the chambers is performed

by the relation




fz
mx

my



 =





A A A
A r1y A r2y A r3y
A r1x A r2x A r3x









p1
p2
p3



 . (21)

Here the positions of the pressure chambers in the tip

frame r1, r2, r3 are inserted as

r1 =
[

−rch − xm −ym
]T

(22)

r2 =
[

rch cos (π + φ)− xm rch sin (π + φ)− ym
]T

(23)

r3 =
[

rch cos (π + 2φ)− xm rch sin (π + 2φ)− ym
]T

(24)

with the geometrical properties of the distance from the

pressure chambers to the original center point rch and the

angle between two chambers φ. Due to geometrical uncer-

tainties, a movement of the center point is considered, with

the coordinates xm, ym [21]. The wrench is mapped to the

driving force by the matrix relation

τCC,i = Ai (i+1)F i, with (25)

Ai =JT
g,i+1(q)

[

0Ri+1 0

0
0Ri+1

]

− JT
g,i(q)

[

0Ri 0

0
0Ri

]

. (26)

The geometric Jacobian Jg,i from the origin of the inertial

frame to the origin of frame i is used.

D. Hybrid Dynamics

For the purpose of deriving the model, the robot’s base is

regarded as moving freely in space, while the considered real

system has a base at a fixed point. Therefore, the base is kept

at its place by the unknown base reaction forces (τ 0), while

the position, velocity and acceleration of the base are known.

The boundary conditions for the robot are complimentary.

The configuration is unknown, while the driving forces (τC)

are known (through actuation). Because of these boundary

conditions, for simulation tasks hybrid-dynamics are used.

That means, at certain DoFs forward, at the others inverse

dynamic simulations are performed. The following deduction

is based on the inverse dynamics equation (16) and the

reference [22]. To form an equation for simulation, the matrix

product of mass matrix and acceleration is written as

M q̈ =

[

M0,0 q̈0 +M0,C q̈C

MC,0 q̈0 +MC,C q̈C

]

. (27)

By this, the mass matrix is separated into parts corre-

sponding either to acceleration of base or robot. Here, index

0 refers to base DoFs and index C refers to the DoFs of

the constant-curvature segment. Then the EoM is sorted into

known and unknown quantities, leaving an equation that can

be evaluated by a numeric integration:

[

τ 0

q̈C

]

=

[

−1 M0,C

0 MC,C

]

−1

([

M0,0 0

MC,0 1

] [

q̈0

τC

]

− c− g − k − d

)

. (28)

By the boundary conditions, q̈0 is given as 0, which leads to

M0,0 having no effect and has therefore not to be calculated.

IV. EXPERIMENTAL SETUP

To deploy the introduced optimization scheme, experi-

mental data is required. The fiber-reinforced soft pneumatic

actuator (SPA) depicted in Fig. 1 possesses three individually

controllable air chambers. In this setup, the three respective

proportional valves are operated to switch between two

states. Either they are fully opened to the environment, or

to the source pressure of approx. 75 kPa relative pressure.

This excites highly dynamic responses of the SPA, which are

shown in the attached video content of this contribution. The

single pneumatic chambers as well as the full SPA are oper-

ated in an open control loop, without feedback of pressure or

external sensors. The experiments can therefore be performed

without prior controller tuning and present a first step for

identifying the robot’s characteristics, which can then be

used for model-based controller design and parameterization.

Physical quantities measured during the experiment are the

segment’s tip position in space (camera system, Prime 17W,

OptiTrack), pressure (142BC30A-PCB, First Sensors) in the

pneumatic lines right before the actuator’s air chambers as

well as the base reaction forces and moments (six-axis force-

torque-sensor, Nano17, ATI Industrial Automation). Except

for position data, which is acquired asynchronously, all

signals are recorded at 1 kHz at real-time. More details on

software and hardware of the test bench may be found in

[20].

As velocities and accelerations are required, a zero-phase

moving average filter is applied to process recorded signals of

the end effector position. Thereby, smooth data is acquired,

which may then be differentiated numerically without ampli-

fication of large noise. The same filter is again applied to the

newly gained velocity time series, to once again differentiate

numerically. Thereafter, differential kinematics are used to

map Cartesian data to curvilinear position, velocity and
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Fig. 2. Steps performed for identification.

acceleration. Any data close to straight configuration is

excluded from the optimization, described next.

V. PARAMETER IDENTIFICATION

The parameter for reference length L0, the kinematic

parameter d and the distance from centerline to chamber

center point are defined from CAD data beforehand. The

kinematic parameter d is set to the outer radius of the SPA,

which is also defined from CAD data.

For future control tasks, the remaining unknown pa-

rameters present in the model have to be estimated from

measurements. For the identification in this paper, a model

consisting of one constant-curvature segment with linear

bending stiffness and cubic elongation stiffness is considered.

The parameters chosen for identification are:

• The geometric parameters chamber area A and coordi-

nates of the corrected center point of levers xm, ym to

compensate manufacturing tolerances.

• The time constant of the PT1, TPT1
.

• The dynamic parameters mass m, damping and stiff-

ness coefficients for bending dθ, kθ and elongation

dδL, kδL1
, kδL3

.

Two optimization techniques are used. For the parameters

linearly present in the model (A,m, dθ, kθ, dδL, kδL1
, kδL3

)

the least-squares problem (LS) considering the driving forces

coming from the model evaluation (τmodel) and the mea-

sured driving forces (τmeasured) with error

e = ‖τmodel − τmeasured‖
2
2 (29)

has to be solved. For this the EoM (16) is rearranged into

τmodel = Ψ(q, q̇, q̈)β. (30)

TABLE I

IDENTIFIED PARAMETERS.

xm/mm ym/mm TPT1
/ms A/mm2 m/ kg

−0.4 −1.5 7 31 0.1806

dθ/
kg
s

dδL/
kg
s

kθ/
N
m

kδL1
/ N

m
kδL3

/ N
m3

0.2301 1.8384 183.5195 251.7274 −4.2e4

The parameters not linearly present (xm, ym, TPT1
) are

identified using an overlying particle-swarm optimization

(PSO). The identification process consists of three steps,

which are shown in figure 2. First, the mass is estimated

by (29), using the base reaction force in z-direction (fz),

setting τmodel = fz and β = m in (30). The identified

mass is given to a cascaded optimization algorithm. In the

outer cascade the PSO is performed, using the result of the

inner cascade as cost function. To the inner cascade the

current estimation of the nonlinear parameters as well as the

identified mass is handed over. With this input, (29) is solved

for the remaining linear parameters, using the actuation of

the constant-curvature parameters, thus setting

τmodel =
[

τ∆x
τ∆y

τ δL

]T
. (31)

The already identified mass is incorporated by multiplica-

tion of the first column of Ψ with the mass and reshaping

the equation. The resulting linearly present parameters in the

model are

β =
1

A

[

1 dθ dδL kθ kδL1
kδL3

]T
. (32)

The approach of chosing combined parameters like dθ/A is

similar to the transfer from barycentric to inertial parameters

in the dynamics identification of rigid-body robots [17].

The identified parameters are given back to the outer

cascade, as well as the remaining error between model and

measurement. The remaining error is used as the costs for the

outer cascade. If a set of physically infeasible parameters is

estimated (A, dθ, kθ, dδL or kδL1
negative) a constant penalty

term, which is of a higher magnitude than the expected costs

from the remaining error, is added to the costs. The PSO is

performed until a minimum is reached and the estimated

parameters are returned. The identified parameters consist

of the physical parameters multiplied by the first parameter

1/A. Due to the prior identification of mass, 1/A is identified

separately as it can be seen in (32). This way identified

parameters can be calculated back to physical properties. The

resulting parameters are used for validating the model.

For identification and validation, the experimental results

are separated into two data sets. The identification data set

consisting of 30 step responses, and the validation data set

consisting of 6 step responses. The identification results are

shown in Table I.

VI. VALIDATION

In the first step of validation, the error remaining on

the identification data set and the validation data set is

considered. The resulting mean squared error (MSE) for the
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Inv. dynamic model on identification data

Best case

Worst case

Mod.

Exp.

Mod.

Exp.

Fig. 3. Experimental results (Exp.) vs inv. dynamic model (Mod.) on the step response with best and worst average MSE.

data is computed. The results are shown in Table II. The

column titled MSE shows the MSE of a DoF over the whole

data set, while the columns titled MSEbest and MSEworst

show the best and worst MSE achieved of a DoF at any step

response in the data set.

As examples, four step responses are considered further

— the steps from the identification data set with the lowest

average MSE considering the SPA DoFs, and the one with

the highest. The steps are shown in Fig. 3. The driving forces

used for identification are shown. For mass identification,

only the base reaction force in z direction is used. Regarding

the worst predicted step response, a bias between model

prediction and measured data is observed, while this bias

is not present in the best predicted step response. The

material model is estimated by the driving forces acting

on the constant-curvature parameters. The best prediction is

achieved, when bending around one axis is induced, although

a bias in the main driving force for this step is observed. In

the worst predicted step response, elongation is excited, by

inserting pressure in all three chambers. The driving force

for elongation, τδL, can be predicted without a bias. The

driving forces concerning bending show a bias, additionally

TABLE II

MSE IN BASE REACTION FORCES/MOMENTS AND DRIVING FORCES

DoF MSE MSEbest MSEworst

Identification data

fz /N2 0.1506 0.0028 1.1834
τ∆x

/N2 0.2466 0.0141 0.8754
τ∆y

/N2 0.3980 0.0030 1.3076

τδL /N2 0.0739 0.0046 0.2683
Validation data

fx /N2 0.0130 0.0036 0.0545
fy /N2 0.0107 0.0023 0.0145
fz /N2 0.0333 0.0064 0.0640

mx / (Nmm)2 284.5705 19.1702 411.1973

my / (Nmm)2 167.2892 54.3337 399.5674

mz / (Nmm)2 29.2494 0.2950 77.0389
τ∆x

/N2 0.1852 0.0257 0.4211
τ∆y

/N2 0.3146 0.0495 0.9014

τδL /N2 0.1707 0.0138 0.5757

the amplitude of the oscillations are underestimated. By

actuating with pressure in all three chambers, fragments of

the pressure could be visible in the measurement data of the

force torque sensor, explaining the bias in fz in the worst

predicted step response. The step with the lowest average

MSE from the validation data set is considered, as well as

the step with the highest.

The driving forces of the best approximated step are shown

in Fig. 4, the ones from the worst in Fig. 5. The base reaction

forces are predicted without visible bias for both steps.

The base reaction moments show a difference in amplitudes

between prediction and measurements. The results of the

best and worst approximated step show good agreement,

hinting possibly to a good generalizing model. Base reaction

moments are not considered in the identification routine, so

the parameters are not optimized for predicting the base

reaction moments. Also the markers for measuring the tip

position are not considered in the model, which could lead

to errors regarding the base reaction moments.

In the shown step, bending through actuation of τ∆x

and τ∆y
is performed. The mean of oscillation in bending

direction matches in prediction the measurements, with an

underestimated amplitude in τ∆y
. For elongation a bias is

visible. For further validation, a hybrid dynamics simulation

with the pressure input from the step response with the lowest

mean MSE from the identification data set is performed.

The results are shown in Fig. 6. The trajectory is shown

by the evolution of the constant-curvature parameters. An

overestimation of frequency in the bending parameters is

visible, possibly hinting to an overestimation of stiffness

parameters or underestimation of mass.

VII. CONCLUSIONS

In this work the governing equations of well-established

models are extended by a floating base to make base reaction

forces visible. Additionally, an optimization routine to ex-

perimentally determine model parameters is introduced. The

underlying experiments, shown in the supplemented video

material to this publication, are highly dynamic and used to

identify parameters and validate the proposed method.
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Best results of inverse dynamics on validation data 

Forces

Moments

Actuation

Mod.

Exp.

Fig. 4. Experimental results (Exp.) vs. inv. dynamic model (Mod.) for step response from validation set with best average MSE. MSE forces in N2:

0.0055 (x), 0.0095 (y), 0.0191 (z). MSE moments in (Nmm)2: 266.0423 (x) 54.3337 (y) 14.7790 (z). MSE actuation in N2: 0.0378 (∆x) 0.0495
(∆y) 0.0999 (δL)

Worst results of inverse dynamics on validation data 

Actuation

Mod.

Exp.

Forces

Moments

Fig. 5. Experimental results (Exp.) vs. inv. dynamic model (Mod.) for step response from validation set with worst average MSE. MSE forces in N2:

0.0545 (x), 0.0023 (y), 0.0064 (z). MSE moments in (Nmm)2: 19.1702 (x) 399.5674 (y) 56.6032 (z). MSE actuation in N2: 0.4144 (∆x) 0.9014
(∆y) 0.0417 (δL)

Fig. 6. Experimental (Exp.) vs. hybrid dynamics simulation (Sim.). This
shows, that the model simulates the general dynamic behavior of the
actuator. MSE in mm2: 9.72 (∆x), 0.28 (∆y), 1.33 (δL)

A tuple of physically plausible values is found for kine-

matic parameters to account for asymmetry, caused by

manufacturing uncertainties. Mass is a priori identified with

measurements from the base reaction force. Thereby, the

parameters successfully found by using the linear regression

model of the dynamics are still interpretable, as explained

in Sec. V. The approach may be extended e.g. contain more

parameters within the outer optimization cascade.

The results in validation show good accordance of the

inverse dynamics model and experiments in actuation space

regarding the MSE of 0.0378N2 to 0.0999N2. This equals

5% to 7.64% of the maximum measured value. Measured

moments at the base deviate from the calculated ones for

all DoF and thus show limitations of our approach. Further

investigation will consider refinement of the model and its

application in multiple control scenarios.
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