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Abstract—This work presents an extension of graph-based
SLAM methods to exploit the potential of 3D laser scans for loop
detection. Every high-dimensional point cloud is replaced by a
compact global descriptor, whereby a trained detector decides
whether a loop exists. Searching for loops is performed locally
in a variable space to consider the odometry drift. Since closing
a wrong loop has fatal consequences, an extensive verification is
performed before acceptance. The proposed algorithm is imple-
mented as an extension of the widely used state-of-the-art library
RTAB-Map, and several experiments show the improvement:
During SLAM with a mobile service robot in changing indoor and
outdoor campus environments, our approach improves RTAB-
Map regarding total number of closed loops. Especially in the
presence of significant environmental changes, which typically
lead to failure, localization becomes possible by our extension.
Experiments with a car in traffic (KITTI benchmark) show
the general applicability of our approach. These results are
comparable to the state-of-the-art LiDAR method LOAM. The
developed ROS package is freely available.

I. INTRODUCTION

One key challenge in developing autonomous mobile robots
is the SLAM (Simultaneous Localization And Mapping) prob-
lem [1]. Graph-based solutions are often based on a static
environment, which is unrealistic: objects move, seasons in-
fluence the appearance of the surroundings and – depending on
the lighting – images of the same scene differ. For long-term
autonomy in dynamic environments two main requirements
must be met. First, the computational complexity of graph
optimization, the back-end, must be limited. Second, the pro-
cess has to be robust against changes in the environment. The
processing of sensor data, the front-end, must be developed
in such a way that, despite changes, already visited places are
recognized again. Answering the question Have I been here
before? belongs to the most important tasks during SLAM,
since in presence of a loop closure, the odometry drift can be
corrected retrospectively and the map quality can be improved.

Loop detection approaches can be classified according to the
sensor technology used. Due to the high information density
in an image and the multitude of effective techniques, visual
methods are widely used. Where such methods are stable for
static environments, the illumination change can already lead
to failure within a few hours. Actively illuminated sensors such
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Fig. 1. Loops with discrete nodes (blue points) are searched for in a variable
radius of the current position (orange arrow). The search space depends on
the position uncertainty. Due to the use of different memories not all nodes
in the radius are used as loop candidates.

as LiDAR (Light Detection And Ranging) scanners are robust
in such situations, as generated point clouds are illumination-
invariant. This work deals with the combination of the two
approaches to realize robust mapping and localization. The
basis for this is the widespread library RTAB-Map (Real-Time
Appearance-Based Mapping) [2]. Although the method can be
used with a LiDAR, the data is only marginally utilized due to
the simplified method of loop search within a constant radius
using 2D Iterative Closest Point (ICP), making an extension
suitable. Fig. 1 illustrates our approach. Loops are searched
based on scan descriptors, and within a variable radius r
depending on the largest eigenvalue λmax of the position
covariance matrix to take the odometry drift into account. If a
loop exists, the respective scans are registered and the graph
is optimized with the calculated transformation T .

The paper is structured as follows. Sec. II presents related
work. Based on this, Sec. III describes our contributions:
• further development of a loop detection method to enable

the necessary scan registration,
• introduction of several loop verification steps to reject

false positives,
• elaboration of a robust, open-source ROS package1 to

close loops with LiDAR data during graph-based SLAM.
This is followed by various validations in Sec. IV and conclu-
sions in Sec. V.

II. RELATED WORK

Approaches to mapping changing environments are man-
ifold. Examples are filtering moving objects and assuming a

1https://github.com/MarvinStuede/cmr lidarloop
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static environment [3], modeling the dynamics in the frequency
domain [4] and integrating new data to adapt the map [5].
The continuous adaptation to changes is also possible by
removing old nodes at loop closure [6] or by representing
the environment in several time frames simultaneously [7].

RTAB-Map [2] is suitable for large-scale and long-term
online SLAM in changing environments due to its memory
management [8]: The bounded Working Memory (WM) en-
sures a bounded demand on computing which is realized by
transferring nodes to a database. A buffer of constant size
ensures that recently created nodes are not considered for
loop detection, since the odometry drift cannot be significantly
corrected. Whereas most state-of-the-art methods are either
visual or LiDAR-based, RTAB-Map supports both. This key
advantage enables the use of many sensor configurations, com-
parison of results and easy integration into different systems.
The availability in the ROS framework, multi-session opera-
tion and a high accuracy [2] further promote its deployment.

RTAB-Map’s LiDAR-based proximity detection module was
developed for challenging situations, such as a significant
illumination change, in which the visual loop detection is not
promising. However, the used 2D ICP algorithm is a simplified
method for loop detection. The high amount of data within
the three-dimensional point cloud is not used and a fast loop
search with several hundred potential pairs is not possible.
Beyond that, this module only searches within a constant
radius for loops which is problematic, since the error of the
estimated position increases due to odometry drift. The search
space should thus be permanently adjusted. Further, a local
search is useless at the beginning of multi-session operation,
because the position in the old map is unknown. Instead, a
global search must be performed here so that a link can be
established between the two sessions, and the robot can locate
itself in the old map. The potential of scans to close loops is
thus not exploited, making an extension necessary.

To detect loops with LiDAR data, there are a variety of
methods which are based on histograms to reduce the scan
dimension. Representing a scanning area as a piecewise con-
tinuous function using Normal Distribution Transform (NDT)
and detecting loops by matching feature histograms realizes a
high accuracy [9]. The time to create such histograms is an
important property which is a disadvantage of NDT. Instead,
by using simpler histrogram types such as the range or height
of each point, a fast histogram generation [10] is possible
with results comparable to NDT. The azimuthal and radial
division of the scan into bins and use of the maximum height
of the points in each bin also allows a fast computation of a
global descriptor called Scan Context [11]. However, besides
height and range, there is further information in the raw
scan, which can be obtained with low computational effort.
In [12], each point cloud is described with 41 rotationally
invariant geometric features, so that a trained classifier decides
whether a loop exists. The extensive scan description with
small, rapidly computed features and fast prediction make
this approach suitable for efficient loop search. However, the
method does neither consider the scan registration nor the

important loop verification to reject false positives. We thus
extend the method of Granström and Schön [12] with these
essential elements and integrate it into RTAB-Map, so that a
robust loop search with laser scans is realized.

III. SLAM WITH LEARNED LIDAR LOOP DETECTOR

The developed LiDAR extension is presented in Fig. 2 and
described in this section.

A. Loop Classification

Loop detection is a binary problem: either the robot has
already visited the current location in the past or not. To solve
this problem based on LiDAR data, a classifier is trained. A
point cloud P i = {pk

i }Nk=1 from node i in the graph contains
N points pk

i ∈ R3 representing the environment. The rotation
invariant classifier presented in [12] is used in our work and
is briefly introduced in the following.

Depending on the LiDAR, the number of points differs.
For example, the scanner of the mobile robot Sobi used
for evaluation (see Sec. IV) generates N≈ 45,000 points per
cloud, requiring a dimensionality reduction for comparison.
For this, each cloud is described by global features [12]

f i = (f I
i , f

II
i )

T. (1)

Features f I
i of type I map the point cloud to a real number,

e.g. simple geometric quantities such as the mean range
or the range’s standard deviation. More complex geometric
quantities, such as the center and radius of a sphere fitted to
the point cloud, are also calculated. A total of 32 features
of type I are computed. In addition, there are nine features
f II
i of type II. These are range histograms with nine different

container sizes b1, . . . , b9. For each histogram, starting at the
sensor origin, the scan is divided into annular container of
constant width and the points lying in each container are
counted. Each feature is a vector whose dimension depends
on the container size. Before feature computation, every scan
is processed in a way that all points with range rk greater
than a maximum range rmax are moved in the direction of the
sensor origin so that rk ≤ rmax applies for all points. This
limitation allows range histograms of one container size to
have the same dimension in any case. A total of 41 features
are calculated consisting of 843 real numbers during SLAM
with Sobi (see Sec. IV). Thus, the dimension of any scan is
significantly reduced.

If during mapping and localization the features are cal-
culated and stored for each node, the descriptor f c of the
current position can be efficiently compared to descriptors of
map nodes f i with respect to a possible loop closure. An
AdaBoost Classifier [13] [14] predicts if a loop is present and
the entity ipc indicates the probability that the corresponding
scans are from the same location. The input of the classifier
is generated from the respective feature vectors by comparing
them appropriately [12]. Type I features are compared via the
absolute difference and histogram comparison for features of
type II is done using Pearson’s correlation coefficient.
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Fig. 2. LiDAR extension of RTAB-Map. Loops are permanently searched for using the scan descriptors. In case of a detected loop, the registration of the
scans takes place in a parallel thread. After the point clouds have been pre-processed, first a rough registration and then a refinement takes place.

AdaBoost classification [15] belongs to the class of boosting
algorithms and uses T weak learners, which together form a
strong classifier. In each learning round, the data is reweighted
depending on the current prediction error. Incorrectly classified
and thus difficult cases are prioritized higher, so that the num-
ber of training rounds T significantly influences the accuracy.
For T ≥ 50 weak classifiers, the error was observed to stop
decreasing for the used LiDAR descriptors [12]. Accordingly,
in the present work T = 50 rounds are performed for learning.

B. Scan Registration

In case of a detection, a further step is necessary to close
a loop: the scan registration. This aims at determining the
homogeneous transformation T between the current point
cloud P c and the point cloud P ∗, with which a loop was
detected. The transformation is then used to add a link between
the two nodes in the map in order to take the loop into account.
The entire registration process is illustrated in Fig. 2 and is
implemented with the point cloud library [16].

Registering raw point clouds is computationally expensive
and the scans also contain regions that prevent successful
registration. Examples are points on the ground or regions
generated by reflection of the laser beam on glass fronts. To
encounter this, the following filters are executed consecutively:
• voxel grid filter with voxel side length l,
• height filter to remove points with height lower than zlim,
• intensity filter to remove points with intensity lower than
ilim and therefore points which laser beams were reflected,

• range filter to remove points with range larger than rlim
and therefore to remove scan regions which are far away
and do not describe the environment in sufficient detail,

• random downsampling filter to randomly remove points
until the point cloud consists of np,max points.

The pre-processed scans P̃ c, P̃ ∗ used for registration can
have a large translational and rotational offset. Using a local
method like ICP [17] would not be expedient due to a conver-
gence into a local optimum. Consequently, a rough registration
to compute an initial alignment takes place first according to
[18]. Thereby, Fast Point Feature Histograms (FPFH) [19]
are used as robust multidimensional features that describe
local geometry around a point and only persistent features
are used [20]. The latter increases robustness, since only
unique regions are taken into account. With these keypoints,
the correspondences can then be estimated by performing a
nearest neighbor search in the feature space.

Because of a partial overlap, not every keypoint has a match
and a large number of incorrect correspondences would be

possible. These outliers negatively influence the registration
and must be rejected. By means of outlier rejection based
on RANdom SAmple Consensus (RANSAC) [21] a trans-
formation is computed over a multiplicity of iterations with
different subsets of correspondences. Only those correspon-
dences are classified as correct whose Euclidean distance, after
application of the respective transformation, is smaller than
a defined threshold. The outliers that are present during the
transformation with the most inliers are rejected.

With the filtered correspondences the initial alignment can
be completed using Singular Value Decomposition (SVD)
[22]. The transformation T IA of this global method is the ini-
tial guess for subsequent refinement, so that the output of the
ICP registration T is used to correct the odometry drift. Since
adding a wrong transformation has drastic consequences for
the SLAM procedure, some verification criteria must be met.
First, both processed scans must consist of at least np,min points
so that enough data is included. Second, a transformation is
only accepted if at least ninliers correspondences after outlier
rejection are present which ensures that enough matching areas
are found. Third, the transformation has a translational offset
of at most tmax. This condition increases the robustness since
a larger translational offset leads to a smaller scan overlap,
and thus the registration can become less accurate.

C. Extending the RTAB-Map Framework

The presented loop detection and scan registration are
integrated as an extension into RTAB-Map which is illustrated
in Fig. 2. For each scan, the corresponding descriptor is
calculated and sent to RTAB-Map. Saving the scans with
associated features enables compatibility with multi-session
operation. The extension is continuously supplied with current
map data which contains required information of the graph
such as the position xc of the current node. Further, the
extension receives the positions X = {xi |∀i} of all map
nodes and associated descriptors F = {f i |∀i}, which is the
basis for the actual task to detect loops.

When receiving new map data, a loop search is done with
the trained detector. Similar to proximity detection, the current
node is compared with other WM nodes within a certain radius
only. For example, if the robot is located in a corridor and
the entire WM is checked, a loop detection with a node in
a similar corridor at a completely different location in the
building would be possible due to similar scans. Adding such
a loop would be fatal for the SLAM process, so the local
restriction is useful for increasing robustness.
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In determining the search space, the present work dif-
fers from RTAB-Map’s approach. For large loops, a large
odometry drift is present and therefore, a large uncertainty
in the estimated position. The search carried out in proximity
detection in a constant radius is problematic here because the
estimated position is highly inaccurate and loops are searched
for in the wrong map area. Accordingly, we follow a different
philosophy: the use of a variable search space depending on
the position inaccuracy. The search radius

r(λmax) = rmin + βgmax(λmax) (2)

consists of two parts. In the constant radius rmin, loops are
searched for if the current position can be assumed to be with-
out errors. This is the case at the start of the process as well
as at loop closures, where the inaccuracy is corrected. In all
other cases, the estimated position is subject to error, whereby
we assume the odometry error to be steadily increasing. This
property is taken into account by the second component of
(2). Thereby, gmax(λmax) = 2

√
5.991λmax is the length of the

longest major axis of the 95% confidence ellipse of the two-
dimensional position. This quantity can be obtained from the
largest eigenvalue λmax of the covariance matrix, for which the
odometry data is processed by the extension. The parameter β
serves as a scaling factor. Fig. 3 visualizes the variable search
space. The approach enables to include nodes close to the exact
position in the loop search despite a large position inaccuracy.

As already mentioned, adding a wrong loop is fatal for the
integrity of the map. Hence, further precautions are taken to
reduce the number of false positives. Only when ipc > pmin

applies to the predicted loop probability ipc, the pair is treated
as a potential loop pair. Further information on the adjustment
of the threshold pmin, i.e. the fine tuning of precision and
recall, is presented in Sec. IV-A.

If the search was successful, a final verification is performed
with the node of highest loop probability ∗pc at the location
i∗. The current node is compared with the surrounding nodes
of the potential loop candidate. If at least one loop with
the current node is detected in the immediate neighborhood
consisting of 2nv verification nodes, this candidate is accepted.

gmax

r

t

rmin

loop closures

rmin

Fig. 3. Despite the difference between the actual (green arrow) and estimated
position (orange arrow), the search space (orange circle) contains the desired
circular area with the radius rmin around the actual position. The schematic
course shows the increase of the radius with increasing time t due to odometry
error. If a loop closure occurs, the uncertainty is reset.

In each case nv nodes with i < i∗ and nv nodes with i > i∗

are considered. For the strictest variant (nv = 1) there must be
either another loop with the node created before or after the
loop candidate. Otherwise, the loop is rejected and the search
starts again when new map data is received. If the verification
is successful, the scan registration takes place in a parallel
thread and the link between the involved nodes is added with
the accepted transformation T . After further verification in
RTAB-Map, the loop can be closed by graph optimization.

Two final adjustments remain to be made: First, loops must
be searched robustly even in multi-session operation, which
is impossible with the previous approach of a local search
if the position is unknown. Especially at the beginning of a
new session the relative position in the old map is in general
not given – the initial state problem. A position-independent
search must be carried out here, so that nodes of the entire WM
are examined. As alternative local restriction during multi-
session, the size nms is introduced which is the number of
consecutive loop candidates that must lie within a radius rms.
Only one loop is accepted if several loop pairs are from the
same place. This type of loop search is done in multi-session
mode for the first nstart accepted loops, after which it has to
be checked if the localization in the old map was successful.
The criterion for this is the ratio α = nlocal

nWM
, where nlocal is the

number of nodes in the local map and nWM is the number of
all WM nodes. If this ratio is smaller than a defined threshold
αmin, there are few nodes in the local map, so the relative
positions of many WM nodes to the robot are unknown. In
this case, the entire WM should continue to be searched for
loops, since localization is not yet satisfactory. Otherwise, the
relative position of many WM nodes with regard to the robot
is known and the local search in the variable radius can be
started. To meet online requirements, the second adjustment is
to limit the number of nodes used in the search. For this, nn,max
nodes are randomly selected from the possible candidates. Due
to the fast detector, hundreds of nodes can be used.

IV. EXPERIMENTAL VALIDATION

The evaluation is divided into three parts: First, a loop
detector is trained and tested in an independent environment
(see Sec. IV-A). Second, multi-session experiments were per-
formed with this detector under challenging conditions (see
Sec. IV-B). The mobile service robot Sobi [23] is used for both
validations, which is a ROS-based information and guidance
system equipped with a differential drive base (Neobotix MP-
500), two RGBD cameras (Intel Realsense D435, front and
back) and a 3D LiDAR (Velodyne VLP-16). An extended
Kalman filter [24] is used to fuse the wheel odometry with the
IMU data (XSens MTi-30). Third, the general applicability of
our approach is shown with the widely used KITTI [25] dataset
in Sec. IV-C.

A. Detector Performance

To train the detector, indoor and outdoor data consisting
of descriptors with corresponding coordinates was collected
on an university campus. There are large distances between
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objects in outdoor areas of the campus, so rmax = 40m is
chosen. With the container sizes b1, . . . , b9 suggested in [12],
each feature vector consists of 843 entries. There is no ground
truth position, so the optimized poses were obtained from
RTAB-Map to generate the most accurate positions of the 1248
nodes with a path length of 697m.

Comparing each node with itself and with all others gives
779,376 pairs. As the distance at which the detector should
treat a pair as positive, we choose 3m. With this distinction,
the set is divided into 11,458 positive and 767,918 negative
pairs. Training with this set would not be expedient, as the
number of pairs for the classes is clearly unbalanced. As in
[12], a random subset of negative pairs is used, where we
select 11,458 pairs to obtain the same amount of data for
both classes. However, it is noticeable that the performance
varies considerably depending on the subset, since half of the
data is randomly taken from a large set. Thus, an optimization
was carried out, whereby 50 detectors were trained with
different subsets. For comparison, common criteria consisting
of detection rate D and false alarm rate FA are used:

D =
# Positive data pairs classified as positive

# Positive data pairs
, (3)

FA =
# Negative data pairs classified as positive

# Negative data pairs
. (4)

An ideal detector would detect every loop (D = 100%)
and would also not detect any loop incorrectly (FA = 0%).
Since our extension still verifies every possible loop pair,
FA < 1% is set as target. The decisive parameter for this
is the introduced threshold pmin, which is fine tuned with
a training-independent test dataset consisting of 181 nodes.
The path of length 72m is a loop in an indoor hall, which is
illustrated in Fig. 4a). For each of the 50 detectors, pmin was
incrementally increased so that the requirement FA < 1%
is met. This process can be visualized with the ROC (Robot
Operating Curve) of the best performing detector in Fig. 4b).
Increasing the threshold results in a more restrictive detector,
which is less erroneous but also detects fewer loops. The best
classifier (D = 47.3%, FA = 0.8%, pmin = 52.4%) detects
approximately half of all loops with only few false positives
in the unknown environment.

The test results can be illustrated in the form of two
matrices. The classification matrix Fig. 4c), in which each
node pair is examined by the detector for a loop, is compared
with the distance matrix Fig. 4d). The latter represents the
underlying ground truth, since all pairs with a distance less
than 3m are treated as loop and the rest as negative pairs. The
orange area on the diagonal represents the successive nodes
that are close enough together. The off-diagonal orange area
is the loop that is driven, since the robot returned to an old
position at a later point in time and the nodes concerned are
a short distance apart. For the trained detector, these matrices
are roughly similar and all detected loops are located in areas
where the pairs are not far away from each other. However,
pairs with a distance minimally greater than the selected 3m

are classified as positive as well. This does not pose a problem,
as these loop closures are also desirable.

B. SLAM under Challenging Conditions

The presented method is furthermore validated in an ex-
periment under challenging conditions. Since the introduced
extension shall support the loop detection, we compare RTAB-
Map extended with our work against the default operation.
The extension is termed LL (LiDAR Loop). First, all required
sensor data was recorded while driving. The evaluation was
performed afterwards on a 2.60GHz Intel Core i7-4720HQ
CPU with 8 GB of RAM running Linux, so that both methods
had the same data available. Predicting with the detector takes
on average 2ms and RTAB-Map’s time threshold was set to
0.75s. Depending on the cloud sizes, registration of a loop pair
takes 2s–10s. Due to the use of parallel threads, the longer
time of registration is unproblematic. The parameters of our
extension must be adjusted depending on the environment and
robot and were chosen as follows:
• rmin = tmax = 3m→ loop distance during training,
• np,max = 10, 000, np,min = 7, 000, ninliers = 1, 000,
ilim = 5, zlim = 0.3m, rlim = 30m, l = 0.03m→ fast
and robust scan registration,

• nn,max = 200→many nodes during loop search and
computation time less than RTAB-Map’s time threshold,

• β = 0.25→ reduces the increase of the search radius,
• nv = 1→ strict verification,
• αmin = 0.5, nms = 2, rms = 5m, nstart = 3→ global loop

search until localization is satisfactory.
According to odometry, the path for the outdoor map has

a length of 423m and consists of 769 nodes. When mapping
with RTAB-Map, there were 6 visual loop closures, compared
to 15 loops closed with the extended method. The potential of
the extension is already apparent in single session operation,
as significantly more loops were detected. However, there are
no major differences in terms of map quality. The main reason
is the precise odometry used, which means that with such a
path, a few loops are sufficient for an acceptable map quality.
Due to similar maps, Fig. 5 presents only the map generated
by RTAB-Map+LL with the corresponding nodes in orange.

The added value becomes evident when taking the usual
task of a mobile robot into account: map the environment
and extend the map on another day. The central requirement
for such a multi-session operation is a successful localization
in the old map. For this, the paths shown in Fig. 5 in light
and dark blue were driven on another day at a different time.
It was checked individually whether a localization succeeded
or failed in the map generated with the respective method.
Due to the dynamic environment, RTAB-Map did not detect
any loops and, therefore, a localization for all of the five
paths failed, preventing to extend the map. In contrast, with
RTAB-Map+LL, a localization in the map of the old session
was possible in four out of five paths, and the mapping
could be continued. Loops were detected in the third path,
but localization failed due to a wrong transformation matrix.
The participating scans are from a location on the campus
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Fig. 5. Outdoor map with associated nodes (orange circles), five paths (light
and dark blue) that were driven on another day and images of three exemplary
loop pairs detected by RTAB-Map+LL.

which has few descriptive elements except for a multitude of
repetitive pillars. Due to the repetitiveness, pillars of one scan
were registered with different pillars of the other scan, so that
a translational error led to a mapping failure.

To illustrate the environmental dynamics, Fig. 5 shows
pictures of loop pairs successfully added in RTAB-Map+LL
operation. A change in sunlight, switched on lights, a person
in the picture and a different field of view are the reasons why
the visual loop search of RTAB-Map failed. Only by observing
the three-dimensional surrounding structure, a localization is
still possible. Even if the robot travels to an already visited
location with a different orientation and therefore the image
comparison returns no match, loop detection succeeds due to
the 360° view and the rotation invariant features used.

Similar experiments were conducted in two challenging
indoor environments: an entrance hall with many glass fronts
and an office environment with corridors. According to odom-
etry, the mapping paths have a length of 196m and 299m
respectively. Analogous to the outdoor experiment, three paths
were driven at a different time in each environment. RTAB-

Map operation realizes successful localization in two out of
six paths, whereby in the respective areas, a change in sunlight
has a small influence due to a large amount of artificial light.
Using RTAB-Map+LL, a successful localization is present in
all six cases. Combining the results of the indoor and outdoor
validation, RTAB-Map realizes a successful localization in
two out of eleven cases. In contrast to that, with the LiDAR
extension it was possible to localize in ten out of eleven paths.

C. KITTI Dataset

Finally, our extension was evaluated with the widely used
KITTI [25] odometry benchmark. We continued to use the
detector trained in Sec. IV-A, so that the training data recorded
in indoor and outdoor environments on our campus differs
significantly from the test data acquired in road traffic. The
sequences containing loops are mapped with our proposed
extension using the RTAB-Map parameters for KITTI [2].
Odometry is calculated with the front stereo camera image se-
quences Frame-To-Map (F2M) wise. The following parameters
of our package have been adjusted for the car and road traffic:
rmin = 7.5m, rmax = 50m, nv = 3, zlim = 1m, l = 0.2m,
tmax = 10m. Since the intensities of the point clouds were not
given, we set ilim = 0.

Our extended version of RTAB-Map is compared to the
LiDAR-based approach LOAM [26] which is currently ranked
#2 on KITTI’s odometry leaderboard. Table I shows the
results of the two methods using the average translational
error as the performance metric. The number of visual and the
number of additional LiDAR-based loop closures in RTAB-
Map+LL operation are also included. The results show that
the performance of our extension is comparable to LOAM.
In four out of seven sequences, the error is lower with our
method than with LOAM. For sequence 09, RTAB-Map+LL
performs significantly worse. This can be explained by the
small number of loop closures. Moreover, the potential of
the LiDAR extension can be seen in sequence 08. Since the
camera is oriented in the opposite direction when traversing
back, preventing the detection of visual loops. By using
LiDAR data, 30 loops can still be closed in this case.
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Table I
RESULTS FOR THE KITTI ODOMETRY DATASET. AVERAGE

TRANSLATIONAL ERROR IN %.

Sequence 00 02 05 06 07 08 09
RTAB-Map+LL 0.70 0.99 0.39 0.60 0.58 1.18 1.39
# visual loops 156 51 88 54 18 0 3
# LiDAR loops 126 5 72 38 18 30 1
LOAM [26] 0.78 0.92 0.57 0.65 0.63 1.12 0.77

This experiment demonstrates the general applicability of
our method. Despite large deviation between training and test
environment, loops are still detected successfully. To improve
loop detection in road traffic, training could be carried out
directly with part of the KITTI data. In this case, the loop
distance of 3m defined during training could also be increased,
since detection is desired at greater distances on the road.

V. CONCLUSIONS

We presented a module to close loops based on laser scans
to extend graph-based SLAM methods. By global description
of a point cloud with rotation invariant features and a trained
classifier, the question Have I been here before? can be
answered under challenging conditions, which is essential for
the long-term autonomy of mobile robots. Experiments show
that the classifier detects 47.3% of loops with a small number
of false positives which can be filtered out by verification.
In dynamic environments, localization with RTAB-Map suc-
ceeded only in two out of eleven cases. A connection between
all different sessions could be established using our extension.
Except for a registration error, in ten out of eleven experiments,
the localization succeeded. The potential of our module was
also demonstrated by a validation on the KITTI dataset.

Despite all the positive results, new tasks arise: Since regis-
tration can fail with many repeating elements, the acceptance
of a calculated transformation should be further restricted, e.g.
by considering the percentage of overlapping regions. Further,
we will integrate the extension into a map management ap-
proach [23]. With different SLAM configurations, it would be
possible to use a different classifier and registration parameters
for a short range than for a long range environment. The
main potential for improvement lies in the use of absolute
positions using WiFi and GPS data. When starting multi-
session operation instead of a loop search in the entire map,
loops could be searched for directly in the local environment.
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