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Abstract. What is the nature of tunnelling? This yet unanswered question is as pertinent today as it was
at the dawn of quantum mechanics. This article presents a cross section of current perspectives on the
interpretation, computational modelling, and numerical investigation of tunnelling processes in attosecond
physics as debated in the Quantum Battles in Attoscience virtual workshop 2020.

1 Introduction

The discovery of the quantum tunnelling phenomenon
almost 100 years ago has not only opened up many
new avenues and applications. It has also kept quantum
physics researchers busy since then, trying to define the
temporal resolution of the process [1,2]. Early exper-
iments were focused on photons tunnelling through
potential barriers, such as Ref. [3] for example. But
with the advent of attosecond science [4] the question
“Does tunnelling take time, and if yes, how much?” has
gained a lot of new interest, since electron dynamics
often include quantum tunnelling portions, be that in
biological processes such as photosynthesis [5] or charge
transport in semiconductors [6], tunnelling ionisation
as the first step for high-order harmonic generation
(HHG) spectroscopy [7], photoelectron holography [8],
laser induced electron diffraction (LIED) [9] or many
more.

The temporal resolution of quantum tunnelling is still
heavily debated [10–13] and thus presented an inter-
esting topic for a debate at the Quantum Battles in
Attoscience virtual workshop 2020 [14]. The aim of the
Battle sessions was “an open debate on a contentious
topic involving several early career researchers (‘com-
batants’) and the entire audience of attendees” [15]. To
that effect, the combatants prepared a scaffolding struc-
ture of the debate on “tunnelling”, defining three main
topics: (a) Physical observables and typical experiments
(presented in Sect. 2 of this article), (b) Nature of Tun-
nelling (see Sect. 3), and (c) Theoretical approaches to
quantum tunnelling time (in Sect. 4). Each topic was
introduced with an overview presentation, followed by a
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free debate among all combatants, moderated by Prof.
Jonathan Tennyson, UCL, and included both questions
among the combatants as well as live audience ques-
tions. The result was a highly interactive and lively
debate [16].

This perspective article offers a text-form of the live
debate [17], supplemented with additional references
and explanations.

2 Physical observables and typical
experiments

The guiding questions for this first topic are:

What are physical observables, typical measure-
ments, and what are the characteristic physical sys-
tems under investigation?
What other aspects of these particular systems
influence the interpretation of tunnelling time stud-
ies?

2.1 Overview

When it comes to experiments investigating the tem-
poral resolution of a quantum tunnelling particle, there
are typically two kinds of experiments: (a) Bose–
Einstein-Condensates (BEC) of atoms trapped in opti-
cal lattices, with various manipulations on them to
measure tunnelling from one lattice site to the next
[13,18]. Since the particles in question are entire atoms,
their temporal resolution for the dynamics is in the
range of microseconds. And (b) attosecond angular
streaking (also known as attoclock) type [19–21] exper-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjd/s10053-021-00224-2&domain=pdf
http://orcid.org/0000-0001-7183-5564
http://orcid.org/0000-0002-3780-3312
http://orcid.org/0000-0003-4924-0921
http://orcid.org/0000-0002-8825-9302
mailto:c.hofmann@ucl.ac.uk


208 Page 2 of 13 Eur. Phys. J. D (2021) 75 :208

Fig. 1 Idealised sketch of a wave packet hitting and par-
tially tunnelling through a potential barrier

iments, a technique developed in strong-field attosec-
ond physics, where electrons tunnel ionise from a bound
state through the potential barrier which is created by
the interaction of the strong laser field with the binding
Coulomb potential of atoms. These are on the attosec-
ond regime since electrons are tunnelling, and the main
focus of the here following debate.

On a fundamental level, what we are interested in
is the temporal resolution of a wave packet hitting a
potential barrier, and then a part of that wave packet
tunnelling through, such as schematically illustrated in
Fig. 1. However, this exactly creates several challenges
in trying to time this process compared to other timings
of wave packets, such as for example group delay in pho-
tonics. The peak of the wave packet is not conserved,
since the incoming (or bound state) wave packet is split
into a reflected and a transmitted part. The potential
barrier essentially acts as an energy-dependent filter,
such that the spectra of the two resulting wave pack-
ets are significantly different [10]. A wave packet also
always corresponds to a probability distribution, and in
consequence it is difficult to define a clear starting and
ending (or entrance and exit) point, more on that in
Sect. 3. Furthermore, in strong-field attoscience scenar-
ios we are tunnel ionising from a bound state, where of
course parts of the wave function even in its field-free
ground state always are “under” the barrier, without
any tunnelling occurring. Additionally, approaches such
as Wigner-like, scattering and resonance phase times
[22] which are commonly applied to single-photon ion-
isation [23] are not applicable either, again because of
the chirped propagation of the electron wave packet and
the energy filtering of the potential barrier. While we
are on the topic of potential barriers, it is also worth-
while noting that this classical picture of the potential
barrier only emerges if the laser field is treated in the
length gauge [24–27].

The physical observable for measurements (and cal-
culations often, too) of strong-field tunnel ionisation are
momentum distributions of photoelectrons [20,21,28]
or momenta of atoms [13,18]. Momentum is of course
a standard quantum mechanical observable correspond-
ing to a unitary operator, whereas time itself is a param-
eter of the Schrödinger equation and thus not an observ-
able as such. Therefore, a relation between measured
(or calculated) momenta and the timing of the tun-
nelling process needs to be established through theoret-
ical understanding of the quantum tunnelling process.

In the experiment by Fortun and co-workers a rubid-
ium BEC is oscillating in an optical lattice. In a pump-
probe-type approach, the lattice is turned off at differ-
ent intervals after the initiation of the oscillation and
the instantaneous momentum of the atoms carried them
flying towards a position-sensitive detector. The tun-
nelled wave packets appeared delayed with respect to
the reflected wave packets [18]. In the experiment by
Ramos and co-workers, a quantum simulation of the
Larmor clock [29–31], one of the well-known theoreti-
cal approaches to predicting the tunnelling time [32],
was realised causing precession of the spin of the rubid-
ium atoms while traversing a potential barrier. This
spin precession was then mapped onto different states
according to the angle of rotation and separated by a
Stern–Gerlach measurement [13].

In attoscience experiments utilising the attoclock
method [33,34], the rotation of the nearly circularly
polarised vector potential A mimics the hand of a clock.
The path of a photoelectron after tunnel ionisation is
dominated by the interaction with the laser field [35],
and thus neglecting all other corrections and perturba-
tions, the final asymptotic momentum pf is determined
by the vector potential at the time when it first exits the
potential barrier and enters the continuum t0, through
the conservation of canonical momentum

pf = p0 − A(t0), (1)

where p0 denotes a possible initial momentum. Hence,
the final momentum angle acts as a clock for the exit
moment in time. However, this angle to time map-
ping is subject to several corrections, some easy to
describe and include in calculations, others more elusive
to quantify and thus the topic of ongoing research. A
non-exhaustive list of corrections, approximations, and
other issues include: the Coulomb force of the parent ion
induces an angular shift [11,21,36,37]; the ellipticity,
pulse envelope, pulse duration, and carrier-envelope-
offset phase are wave form parameters which affect
the photoelectron trajectories; and depletion mixes in
with pulse duration and the intensity of the applied
field [38,39] for topics which mostly have been dealt
with in great detail and comparable results; the exper-
iment does not have access to any “start” signal of
the tunnelling process, only the exit point [10,28]; non-
adiabatic effects influence the ionisation rate, energy at
tunnel exit, initial momentum p0 distribution, and the
location of said tunnel exit itself [39–43]; multi-electron-
effects are ignored in most calculations [44–48]; models
including non-classical characteristics of the trajectory
which can be compared against experimental data are
still being developed [20,38,49]; and the orbital angu-
lar momentum of the bound state has an effect on the
strong-field ionisation [50–53] for issues which are more
elusive (although this categorisation is not definite).

There is still a lot of work necessary to properly disen-
tangle the different contributions which lead to various
angular shifts, sketched in Fig. 2 of the measured Photo-
electron Momentum Distribution (PMD), until we can
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Fig. 2 Illustration of photoelectron momentum distribu-
tion for ellipticity 0.87, clockwise helicity, projected to the
plane of polarisation. Single Classical Trajectory (SCT)
models assuming instantaneous tunnelling predict an angle
offset away from the pure −A(tmax), but the measured angle
offset might be even larger than that. Adapted from [10]

Fig. 3 Time-dependent Schrödinger equation (TDSE) cal-
culation of photoelectron momentum distributions for
hydrogen ionisation. Left: idealised attoclock with a sin-
gle cycle pulse and circular polarisation leads to a unique
final momentum probability distribution peak. Pulse dura-
tion ≈ 1.6 fs FWHM, peak intensity 0.86 × 1014 W/cm2,
wavelength 800 nm, with clockwise helicity. Right: A multi-
cycle pulse yields two main blobs with Above Threshold Ion-
isation (ATI) rings from the inter-cycle-interference. Pulse
duration ≈ 6 fs FWHM, peak intensity 1.5 × 1014 W/cm2,
wavelength 770 nm, with clockwise helicity. Adapted from
[11,54]

be sure of the remaining angle offset and it’s relation
to tunnelling time.

2.2 Debate

– Figure 3 exemplifies the pulse duration and wave
form dependence, as well as an energy dependence
between the different ATI rings in the long pulse
case, which show different angular maxima [55–

57]. This raises concerns about the validity of one
single time (rather than a distribution of times)
extracted typically from data, thus averaging over
the energy dependence. In attoclock experiments,
the carrier-envelope-offset phase (CEP) was not sta-
bilised [20,21,28]. Additionally, the orientation of
the polarisation ellipse in the lab frame was cho-
sen such that the observable of interest (angular
shift mostly parallel to the major axis of polari-
sation) was orthogonal to the direction with the
biggest experimental noise (along the gas jet direc-
tion, thus chosen for the minor axis of polarisation)
[58]. Both of these effects wash out ATI interfer-
ence. For the CEP influence in particular, the inter-
play between ellipticity and pulse duration is crit-
ical. For the largest field strength to be following
the polarisation ellipse (desired in attoclock experi-
ments [10]) rather than the CEP [33,34], the pulse
envelope must be long enough relative to the ellip-
ticity reducing the field strength within a quarter
cycle. Furthermore, ATI rings result from interfer-
ence created by many laser optical cycles, highlight-
ing the difficulty of defining a “single time”, or even
relative time intervals with respect to local maxima
of the field strength or other possible references.

– Most often, tunnelling time calculations tend to use
only a single peak point in the momentum distribu-
tion [12,38,59]. However, based on this discussion
it would seem more appropriate to extract the tun-
nelling time from the full momentum distribution,
which contains much more information regarding
the tunnelling process [32,39]. We note that such
work has been carried out in a recent publication
[60], which assesses the whole momentum distribu-
tion instead of just a single offset angle.

– An audience question is brought in: How is the peak
of the PMD determined precisely, since the maxi-
mum in a 2D distribution is not the same as the
maximum in the 1D angular distribution? Of course
the strictly linear angle-time relationship is only
exact for circular polarisation. For any other polari-
sation, the elliptical geometry introduces corrections
and needs to be taken into consideration [61]. These
effects as well as the influence of integrating over
the radial component in the 2D distribution were
double-checked against. The resulting shifts in the
extracted values were smaller than or of the order of
the reported error bars for experimental data. Nev-
ertheless, it is important to keep in mind that dif-
ferent coordinate system transforms and peak angle
extraction methods lead to significant shifts in the
extracted angle and thus the interpreted delay time
[62]. Regarding the third component, the laser prop-
agation direction, so far no significant difference has
been found between a projection to or a cut along
the polarisation plane. Of course this requires that
no extra physics becomes important along this third
component, for example the influence of the mag-
netic field must be negligible [26,63].
Of course, an energy-resolved angular distribution
would avoid the integration over at least one of
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Fig. 4 A central conundrum of quantum tunnelling: Wave
functions tunnel naturally but have no clear tunnel entry
or exit. Real valued trajectories allow for a clearly defined
tunnel entry and exit criterion but can not tunnel without
excursions into the complex plane. Which of the two per-
spectives is the better choice?

the components and thus make the peak search less
dependent on geometry and coordinate choices.

3 Nature of tunnelling

The guiding questions for the second topic are:

What is the nature of tunnelling at the classi-
cal/quantum intersection?
What is the “beginning” and “end” of tunnelling,
and how do we define it?
What are classical or quantum trajectories?

3.1 Overview

Quantum tunnelling is a wave phenomenon, and the
time-dependent Schrödinger equation (TDSE) is an
equation for the probability amplitude wave (wave func-
tion). But this description makes it difficult to define
where and when tunnelling exactly starts. Tunnelling
itself is natural in quantum mechanics, it is only when
we look at it from a classical perspective that there
is a “forbidden” region in the potential barrier. In the
classical domain, trajectories are well defined in space
and time, but can they tunnel? The semiclassical mod-
els typically use classical trajectories to describe the
motion of an electron after it has been released from an
atom, usually by tunnelling ionisation.

Is a synthesis of these two worlds like the sketch in
Fig. 4, aiming to retain the quantum physics behaviour
with the clarity of trajectories, possible? It is clear that
such a synthesis is not a simple task. Indeed, in order
to calculate the classical trajectory, i.e., to integrate
Newton’s equation of motion, both starting point and
the initial velocity are needed. However, Heisenberg’s
uncertainty principle imposes a fundamental limit to
the accuracy with which the values of the position and
momentum, as well as of any other canonically conju-
gate variables, can be simultaneously determined. Nev-

ertheless, the application of the quasiprobability dis-
tribution allows to obtain information about both the
position and momentum from the wave function. The
most widely known examples of quasiprobability dis-
tributions are the Wigner function and Husimi distri-
bution. We note that the Wigner function has already
been used for description of strong-field processes, see,
e.g., Refs. [64–66]. However, to the best of our knowl-
edge, the Wigner function has not yet been applied to
the combination of the quantum and trajectory-based
description in strong-field tunnel ionisation, although
a similar method has been proposed for the case of
attosecond pulse single-photon ionisation with subse-
quent streaking of the photoelectron wave function [67].
A recent and successful attempt of such combination
was made in Ref. [49] using Gabor transform.

Doing so still begs the question, which quantity best
characterises the onset of tunnelling?

3.2 Debate

– Quantum particle description is necessary for tun-
nelling to occur in the first place, but the potential
barrier defines local properties which are significant
for classical systems. So we need a combination of
both, quantum tunnelling feature with the classi-
cal flavour of understanding if we aim for any kind
of temporal resolution of a tunnelling process. The
challenge is then to find one single picture for the
entire process. Instead of relying on real-space tra-
jectories, including complex space and time enables
the tunnelling phenomenon, resulting in a quantum
trajectory with clearly defined entry and exit to the
barrier [68], as well as corresponding times (more on
this method in Sect. 4).
On the other hand, measurements can always only
find real observables, thus fully complex calcula-
tions must find their way to the real axis some-
how, where the propagation of a photoelectron wave
packet is very well described by classical methods
[69]. But since the experimental observables typi-
cally are momenta, purely quantum models which
operate in complex space and time can still be used
for the purpose of comparison, as long as they can
predict a final momentum distribution.

– One huge assumption in experimental approaches
based on the “attoclock” principle is the “starting
time”, relative to which the tunnelling delay is cal-
culated. This is typically chosen to be the maxi-
mum of the electric field, since that moment corre-
sponds to the highest probability of tunnelling [10].
However, this assumption might be missing out on
half of the effect [41], and the tunnelling process in
strong-field ionisation might be a symmetric prob-
lem relative to the (local) field maximum [70]. Publi-
cations which attempted to identify a physical start-
ing point have found other values, typically before
the maximum is reached [41,42,71,72].

– If we consider fully quantum models which describe
both the tunnelling transition from bound to ionised

123



Eur. Phys. J. D (2021) 75 :208 Page 5 of 13 208

state and the propagation afterwards in one, it
becomes important to distinguish tunnelling from
over-the-barrier (OBI) ionisation. In experimen-
tal approaches it is generally not possible to a-
posteriori separate these two contributions to the
total momentum distribution, and the same limita-
tion is also true for numerical solutions of the TDSE
[73].
However, in theoretical calculations based on trajec-
tories, these two processes can easily be differenti-
ated. The semiclassical models naturally distinguish
between the tunnelling through a potential barrier
and the over-barrier-ionisation. Indeed, when the
field strength is so high that the potential barrier
formed by the laser field and the ionic potential is
suppressed, it is impossible to find the starting point
of the electron trajectory using field direction model
(see, e.g., Refs. [74–77]) or the separation of the
static tunnelling problem in parabolic coordinates
[78]. In this case it is usually assumed that the elec-
tron starts at the top of the suppressed potential
barrier, and the difference between the ionisation
potential and the energy at the top of the barrier
ΔE = −Ip −Vmax is transferred to the initial longi-
tudinal velocity of the departing electron:

v0,‖ =
√

2ΔE. (2)

Non-adiabatic effects, i.e. effects beyond the qua-
sistatic approximation which are due to the time-
dependent changes in the strong field, also play into
these definitions. For example, at which energy or
distance can a photoelectron exit the potential bar-
rier [43,79] or when does the onset of OBI occur?
The so-called backpropagation method [39,42,43] is
one hybrid approach which utilises the full quantum
power of the TDSE for the tunnel ionisation but
then retroactively adds the power of classical tra-
jectories to also distinguish between OBI and tun-
nelling (more on this method in Sect. 4).

– An audience member suggests that localised posi-
tion measurements would be able to distinguish
tunnelling and OBI, since only OBI would be
detectable.
This gedanken experiment however would require
a detector positioned at the atomic potential bar-
rier, which is unfeasible in any kind of experimen-
tal setup since detectors require some time-of-flight
information and are placed a significant distance
away from the interaction region, of the order of sev-
eral centimetres at least [58,80]. There have been
some theoretical studies using virtual detectors in
combination with TDSE solutions [71,72], but those
again can not distinguish of course. This is because
both under-the-barrier and over-the-barrier trans-
mission causes a probability flux of the wave func-
tion, which a hypothetical detector would be able to
pick up without being able to distinguish between
those two types of transmission. This remains the
case also in different tunnelling scenarios such as in

a tunnelling junction where a macroscopic, position
resolving detector might be feasible.

– The last point for this topic is concerning represen-
tation of a quantum wave function by using tra-
jectories. Fundamentally, we are trying to study the
behaviour of a wave function doing something inter-
esting. In the most simple trajectory approach, the
entire wave function is represented by a single sim-
plified wave packet (i.e. a Gaussian) with the associ-
ated trajectory of its wave packet peak mapping the
motion of the expectation value of the wave function
(similar to a group velocity approach) [81]. How-
ever, this approach can not describe a wave packet
being split into a reflected and a transmitted part,
and thus would either always remain bound or the
bound state is fully depleted. Trajectories represent-
ing a skewed wave packet [82] would present a more
generalised version.
Even more accurate are descriptions that employ a
large ensemble of trajectories following the proba-
bility distribution of the underlying wave function
[83].
The question is then: Will an ensemble of (classi-
cal or quantum) trajectories not only represent an
instantaneous probability distribution derived from
a wave function, but also its dynamics over time?
This question was addressed in Ref. [84] that stud-
ies the validity of the two-step semiclassical model
disregarding quantum interference but accounting
for the Coulomb field for strong-field ionisation.
The Ehrenfest theorem [69] (see, e.g., Ref. [85] for
a textbook treatment), which establishes quantum
mechanical analogues of classical Hamiltonian equa-
tions, was applied in Ref. [84]. Furthermore, the
analysis of Ref. [84] is based on a quantitative
comparison of the electron momentum distributions
obtained within the two-step model and by numeri-
cal solution of the TDSE. Reference [84] introduces
the measure for the deviation of the dynamics of an
ensemble of classical trajectories from the Ehren-
fest’s theorem. This measure is the relative devia-
tion between the force at the average position of the
ensemble of trajectories and the average of the forces
on the ensemble. A correlation was found between
the invalidity of the two-step model and the devia-
tion of the dynamics from the Ehrenfest’s theorem.
The general trends for the applicability of the two-
step model in terms of laser intensity, wavelength,
ellipticity, as well as in terms of the potential prop-
erties are identified in [84]. However, this study is
done in the two-dimensional (2D) case and needs to
be extended to the 3D one.

4 Theoretical approaches to quantum
tunnelling time

The guiding questions for the third and last topic are:
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What are theoretical approaches used to investigate
quantum tunnelling times?
What are their various characteristics, advantages
and disadvantages?

4.1 Overview

For the overview, a brief and non-exhaustive list of dif-
ferent calculation approaches to the tunnelling time are
given. They are categorised with regards to their theo-
retical foundation.

4.1.1 Quantum methods based on time-dependent
Schrödinger equation

First are numerical solutions to TDSE. A common
advantage of all these methods is that they are fully
quantum calculations for the entire process. Further
individual characteristics, advantages and disadvan-
tages can be summarised as follows.

TDSE calculations which employ Coulomb vs Yukawa
potentials [21,38] found that attoclock signal shows a
prominent offset angle with Coulomb binding potential,
while the offset angle vanishes for a Yukawa potential.
This comparison offered an indirect proof of instanta-
neous tunnelling by comparing the results depending
on the two different binding potential of the parent ion.

The numerical saddle-point method [62] uses a
trajectory-free language and establishes a connection
between the final momentum of the photoelectron and
the numerical saddle-point time for the full Hamilto-
nian including the Coulomb potential. It supports the
conclusion of instantaneous tunnelling. However, this
method is gauge dependent.

The functional derivative method [70] investigates
the instantaneous ionisation probability as a functional
derivative of the total ionisation with respect to the
wave form of the ionising field, but does not map
directly to any experimental observables. It is gauge
independent, and found vanishing delay (or vanishing
delay asymmetry with respect to the local peak in the
field).

Bohmian mechanics [86] present a mapping from the
quantum world to the trajectory language. However,
the calculation is guided by a pilot wave not pertain-
ing solely to the (eventually) ionised part of the wave
packet near the tunnel exit, thus potentially giving false
tunnelling information. A separation of the (eventually)
ionised part and bound part of the wave packet near the
tunnel exit is, unfortunately, impossible, due to quan-
tum nonlocality.

4.1.2 Quantum methods based on strong-field
approximation

Strong-field-approximation (SFA) [87–89] based quan-
tum methods describe ionisation as a transition from
an initial state unaffected by the laser field to a Volkov
state, i.e., the free electron wave function in an elec-
tromagnetic field. Therefore, the SFA disregards the

Fig. 5 Separation of space into inner (close to parent ion)
and outer (far away) regions of space. Adapted from [36]

Fig. 6 Illustration of rescattering and transmitting quan-
tum trajectories under the potential barrier. Adapted from
[90]

intermediate bound states and the ionic potential (e.g.,
Coulomb interaction) in the final state. Presently, sev-
eral SFA-based quantum approaches are developed.
Typically, these approaches decide which force domi-
nates the trajectory of a photoelectron based on its
position in space and use the corresponding approxima-
tions. This separation and reduction of the acting forces
allows for analytic calculations. The imaginary part of
the saddle-point time in SFA calculations relates to the
inverse tunnelling rate, while the real part in these mod-
els is often taken as the tunnel exit time.

The analytic R-Matrix (ARM) method [36,38] sep-
arates space into an inner region (Coulomb & Laser
field considered) and an outer region (Coulomb field
neglected, eikonal-Volkov approximation), as illustrated
in Fig. 5. The disadvantage of this method is the chal-
lenge of choosing proper integration contours for each
trajectory.

The under-barrier recollision theory [90] specifically
includes interference between under-barrier rescattered
and direct trajectories, as shown in Fig. 6. This leads to
a shift in the momentum wave packet peak, which can
be interpreted as a delay. However, this method ignores
Coulomb corrections.

4.1.3 Hybrid quantum-classical method

The backpropagation method [39,42,43] is a hybrid
quantum-classical approach offering a unique perspec-
tive on the tunnelling process. It combines a fully
quantum calculation of the ionisation process with for-
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Fig. 7 Concept of the backpropagation method

ward propagation utilising TDSE solution, followed
by a transcription of the resulting ionised quantum
wave packet into classical trajectories, and a subsequent
propagation of the trajectories backward in time, see
Fig. 7 for a sketch. Another variant of the backpropaga-
tion method would be putting a sphere of virtual detec-
tors [91–96] around the target, where the flux is con-
verted into classical trajectories during the laser pulse
on the fly [53,97].

Why backpropagation? Firstly, as everyone agrees,
tunnelling is a purely quantum process. Introducing a
tunnelling barrier into the description of tunnelling ion-
isation, however, brings in clearly classical elements into
the picture. Namely, tunnelling is now depicted with
local tunnelling exit positions and momenta, which calls
for a classical formulation. Secondly, due to quantum
nonlocality, the portion of the wave packet that would
eventually be freed and the portion that would finally
remain bound can not be separated during the tun-
nelling process. A separation is only possible in the far
field, when these two portions are spatially detached.
These are exactly the design philosophy of the back-
propagation method, a hybridisation of quantum for-
ward and classical backward propagation. It combines
the advantages of the quantum and classical methods
by offering the capability to include the full Hamilto-
nian and quantum tunnelling dynamics while retaining
the local information from the classical trajectories. It
also naturally includes nonadiabatic tunnelling effects,
automatically remove the offset angle from Coulomb
effects, and retrieves the electron characteristics at the
tunnel exit.

The classical backpropagating trajectories may be
stopped whenever a certain condition is met, which
defines the tunnel exit, yielding highly differential infor-
mation of the tunnel exit. In this manner, the back-
propagation method may act as a common ground to
compare different definitions of tunnelling. It was found
that a vanishing tunnelling time results if the tunnel
exit is defined in the momentum space when the veloc-
ity of the trajectory vanishes in the instantaneous field
direction (the velocity criterion), while defining the tun-
nel exit as a certain position in the coordinate space
(the position criterion) gives rise to a finite tunnelling
time [39,43]. Different definitions of the tunnel exit were
thus believed to be the origin of the tunnelling time
debate. It was further argued that the position crite-
rion leads to inconsistencies and difficulties and thus
the velocity criterion is favoured as the definition of
the tunnel exit, and the tunnelling time delay should
thus vanish [39,43].

The backpropagation method has further enabled a
study of the tunnelling time delay induced by orbital
deformation [53] and a subcycle time resolution of
the linear laser momentum transfer, where a cou-
pling between the nondipole and nonadibatic tunnelling
effects was found [97].

4.1.4 Semiclassical methods

Semiclassical methods apply classical trajectories to
describe the motion of an electron after it has been
released from an atom or molecule by the laser pulse.
The two-step [98–100] and the three-step [101,102]
models are the most widely known examples of the
semiclassical approaches. These models do not account
for the effect of the ionic potential on the electron
motion in the continuum. Presently there are many
trajectory-based models that do account for the ionic
potential in the classical equations of motion. Among
these are: Trajectory-based Coulomb SFA (TCSFA)
[103,104], Quantum trajectory Monte-Carlo method
(QTMC) [105], Coulomb quantum orbit strong-field
approximation (CQSFA) [106–111], semiclassical two-
step model (SCTS) [112], Quasistatic Wigner method
[20], etc. The three-step model using complex classical
trajectories [68] and the classical Keldysh-Rutherford
model [37] are closely related to this group of models.

Using a purely classical description of the electron
motion it is not possible to describe the quantum inter-
ference effect in the photoelectron momentum distribu-
tions and energy spectra. Recently substantial progress
has been achieved along these lines. Along with some
other approaches, the TCSFA, QTMC, CQSFA, and
SCTS models account for interference effects. In these
approaches every classical trajectory is assigned to a
certain phase, and the contributions of different trajec-
tories leading to a given final electron momentum are
added coherently.

The TCSFA extends the well-known Coulomb-
corrected strong-field approximation (CCSFA) [113,
114] by treating the laser field and the Coulomb force
acting on the electron from the ion on an equal foot-
ing. The TCSFA accounts for the Coulomb potential
in the phase of every trajectory within the semiclassi-
cal perturbation theory. The same approach is used in
the QTMC model. In contrast to this, the SCTS and
the CQSFA models account for the Coulomb potential
beyond the semiclassical perturbation theory.

The quasistatic Wigner method [20] employs the con-
cept of the dominant quantum path. Using the space-
time propagator, the quasistatic Wigner method con-
siders the propagation of the electron wave function
that originates from the initial bound state in the clas-
sically forbidden domain. The quasistatic description
of the laser field is used in Ref. [20]. The phase of the
quantum mechanical propagator determines the most
dominant path along the tunnel channel, and therefore,
determines the Wigner trajectory. The Wigner trajec-
tory is merged with the corresponding classical trajec-
tory in the continuum, see Ref. [20]. In this way the
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Fig. 8 Schematic depiction of trajectories in complex
space surrounding the singularity of the 1D radial Coulomb
potential. Note the repulsive nature of the potential in the
negative half of the plane. Orbiting trajectories result from
propagation in complex time prior to ionisation [68]

quasistatic Wigner method determines the initial con-
ditions for the classical trajectory. It should be empha-
sised that the initial conditions include not only an ini-
tial momentum, but also a time delay. However, this
method reduces the wave packet to a single trajectory.
It should also be noted that the Wigner time is ill-
defined in the tunnelling process [10].

Since real-valued trajectories are not able to describe
tunnel ionisation, the complex-time-and-space model
[68] employs complex trajectories, as illustrated in
Fig. 8. This approach was applied to the HHG process
in Ref. [68]. All components of the three-step model
are described in Ref. [68] within a single consistent tra-
jectory framework. The trajectories are sampled from
an initial Coulomb eigenstate, and the time propaga-
tion is performed using the final value coherent state
propagator (see Ref. [115]). As a result, the model pro-
vides a unified and seamless trajectory description of
the ground state, tunnelling, and collision process. The
model shows quantitative agreement with fully quan-
tum results. However, the contour in the plane of com-
plex time, which is necessary to implement the model,
has to be chosen manually.

4.1.5 Classical methods

And finally, purely classical models are still also devel-
oped and used often. The Keldysh-Rutherford model
[37] applies the famous Rutherford scattering formula
taking the vector potential of the laser pulse as the
asymptotic electron velocity and the Keldysh tunnelling
width as the impact parameter. The model was tested
by comparison of its predictions with the numerical
solution of the TDSE using the hydrogenic potential
and the screened (Yukawa) potential. In the latter case
the action of the Coulomb field was gradually switched
off. The striking similarity between the attoclock offset
angle and the Rutherford scattering angle was revealed
in Ref. [37]. The Keldysh-Rutherford model suggests
that the offset angle has a largely Coulombic origin
[37]. Therefore, the model is questioning the inter-
pretation of this angle in terms of a finite tunnelling

time. However, the Keldysh-Rutherford model com-
pletely neglects nonadiabatic effects, and is also limited
in its validity to short pulse durations and (relatively)
weak intensities which are outside the typical parameter
range of experiments to date. Therefore, some further
work along this direction is needed.

Classical trajectory Monte Carlo (CTMC) methods
[28,45] are the classical cousin of QTMC, and often
employed where interference effects are not of any
key interest. Since the calculations are computationally
cheap compared to TDSE solutions and fewer trajecto-
ries are needed than in QTMC to reach similar statisti-
cal quality, these methods are able to fully include the
ion Coulomb potential together with the laser field dur-
ing the propagation after the tunnel exit, as well as var-
ious non-adiabatic effects [116], certain multi-electron
effects [47] including Stark shift and an induced dipole
in the parent ion [45].

4.2 Debate

– Regarding the complex-time-and-space method [68],
the question is raised how exactly the integration
contour is chosen manually. Every time a trajec-
tory orbits the singularity at the nucleus, there is
a possibility for the quantum trajectory to be emit-
ted from the bound wave packet and leave as part
of the ionisation wave packet. The exact choice for
after how many orbits an ionisation event happens
is done by comparing to the full quantum result, for
sections of initial coordinate space. Observables are
then computed from the resulting trajectories. The
number of loops is a discrete choice and not a fully
tunable parameter. While there is a choice to match
the quantum result, each discrete choice yields sig-
nificantly different results, so the agreement with
TDSE calculations is not entirely by construction.
The interpretation of this choice is not clear yet from
a physical point of view.
When it comes to separating the eventually bound
from the eventually ionised part of the wave packet,
trajectories far from the core in the long time
limit are considered ionised. Searching for condi-
tions (zero momentum for example) along those
eventually ionised trajectories yields two complex
times, labelled as tunnel entry and exit, where the
difference can be interpreted as tunnelling time, see
Fig. 9a. Alternatively, the difference to the field
maximum can be computed, as shown in Fig. 9b.
This may be required to compare the results to
experiments where tunnel entry times may not be
accessible but it does ignore a significant contribu-
tion to the total tunnelling time. As Fig. 9 shows,
the time required for tunnelling is nonzero in both
real and imaginary components. Furthermore, a sin-
gle averaged result may be insufficient to charac-
terise the tunnelling process as the distribution of
times is wide and asymmetric.
Two distinct classical processes are found, and the
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Fig. 9 Tunnelling time distribution extracted from the
complex-time-and-space method for a half cycle pulse, with
wavelength λ = 1033 nm, ionisation potential Ip = 13.6 eV
(hydrogen), intensity I = 1.9 × 1014 W/cm2, resulting in a
Keldysh parameter of γ = 0.6. Brightness encodes probabil-
ity magnitude and colour encodes phase of the trajectory.
Two distinct distributions belonging to two separate classi-
cal processes in the trajectory ensemble are visible in both
plots

two references (entry point or field maximum) for
the tunnelling delay time differ significantly.

– An audience member asks what the effect of excited
states on an attoclock measurement is. This was
dealt with in the [21] study since molecular hydro-
gen had to be split into atomic hydrogen. In their
extended data figures & tables, it is shown how
initial bound states 1s or 2s result in completely
different final momentum distributions. Photoelec-
trons ionised from 2s have much smaller absolute
momenta, their distribution shows a different struc-
ture, and the event is less likely to happen. There-
fore, contributions from different initial states can
be separated.

– Already in Sect. 3, combined approaches which offer
quantum behaviour with trajectory insight have
been identified as beneficial for many strong-field
(tunnelling) phenomena models.
Typically, the SCTS model requires large ensembles

of classical trajectories to resolve fine interference
details. These trajectories are propagated, and their
final momenta are binned in cells in momentum
space. This is often referred to as “shooting method’
[103], although this approach has nothing to do with
the shooting method for solving a boundary value
problem. In contrast to the TCSFA, QTMC, and
SCTS, the CQSFA method finds all the trajectories
corresponding to the given final momentum. This
approach is often called the solution of the “inverse
problem” and it allows to bypass the necessity of
large ensembles of trajectories. However, the solu-
tion of the inverse problem is a non-trivial task,
and, furthermore, is generally less versatile than the
“shooting method”.
Any trajectory-based model requires specification of
initial conditions, i.e., the initial electron velocity
and the starting point of the classical trajectory.
Indeed, these initial conditions are needed to inte-
grate the Newton’s equations of motion. The start-
ing point, i.e., the tunnel exit, is found using the sep-
aration of the tunnelling problem in parabolic coor-
dinates [78]. The Stark shift of the energy level that
has an effect on both the tunnel exit and ionisation
probability was also taken into account in the SCTS.
It is generally considered in the semiclassical models
that the electron departs with zero initial velocity
along the laser polarisation direction v0,‖ = 0 and
an arbitrary initial velocity v0,⊥ in the perpendic-
ular direction. The ionisation times and the initial
transverse velocities are distributed in accord with
the static ionisation rate:

w (t0, v0,⊥) ∼ exp
(

− 2κ3

3F (t0)

)
exp

(
− κv2

0,⊥
F (t0)

)
(3)

with κ =
√

2Ip. The quasistatic approximation is
used in Eq. (3), i.e., the static field strength F is
replaced by the instantaneous value F (t0). The qua-
sistatic approximation is used in both QTMC and
the SCTS.
We note that many trajectory-based models use the
SFA formulas instead of Eq. (3) to distribute the
initial conditions of classical trajectories, see, e.g.,
Refs. [103,116–119]. This allows to investigate nona-
diabatic effects in above-threshold ionisation and
often leads to a better agreement with the numeri-
cal solution of the TDSE.
Recently, the SFA-based formulas as distributions
of the initial conditions have been validated in a
systematic way [60]. It is found that a combination
of SFA initial conditions with complex weight and
a trajectory model of SCTS provides the best solu-
tion for obtaining the most accurate attoclock sig-
nal [60]. The SCTS model has not been extended to
the over-the-barrier ionisation (barrier-suppression
regime) yet. Such an extension can be easily done
as discussed above, see Eq. (2).
Recently an efficient extension and modification of
the SCTS model was proposed [119]. In its orig-
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inal formulation the SCTS model uses the phase
of the semiclassical matrix element [120–122] (see
Refs. [123,124] for a textbook treatment), but com-
pletely disregards the pre-exponential factor of the
bound-continuum transition matrix element. The
influence of this pre-exponential factor was for the
first time studied in Ref. [119]. The modulus of
the pre-exponential factor corresponds to the map-
ping from initial conditions for electron trajecto-
ries to the components of the final momentum.
It affects the weights of classical trajectories. The
phase of the pre-exponential factor modifies the
interference structures. This phase is known as a
Maslov phase and can be viewed as a case of Gouy’s
phase anomaly, see Ref. [119]. Furthermore, a novel
approach to the inverse problem applying a cluster-
ing algorithm was proposed in [119]. The modified
version of the SCTS demonstrates excellent agree-
ment with numerical solution of the TDSE for both
photoelectron momentum distributions and energy
spectra. It was found that the account for the pre-
exponential factor is crucial for the quantitative
agreement with the TDSE. This novel version of the
SCTS can be applied not only to linearly polarised
laser fields, but also to non-cylindrically-symmetric
ones, e.g., bicircular laser pulses [119].
The recent semiclassical two-step model with quan-
tum input (SCTSQI) [49] is a mixed quantum-
classical approach that combines the SCTS with the
numerical solution of the TDSE. To perform the
synthesis of the trajectory-based approach with the
TDSE, the Gabor transformation of the wave func-
tion Ψ (x, t)

G (x0, px, t) =
1√
2π

∫ ∞

−∞
Ψ (x′, t) exp

[
− (x′ − x0)

2

2δ20

]

× exp (−ipxx′) dx′, (4)

was used in the SCTSQI [49]. Here x0 is the point in
the vicinity of which the Gabor transform is calcu-

lated and exp
[
− (x′−x0)2

2δ2
0

]
is a Gaussian window of

the width δ0. The quantity |G (x0, px, t)|2 describes
the momentum distribution of the electron near the
point x0 at time t. This is nothing just the Husimi
distribution, which can be also obtained by Gaus-
sian smoothing of the Wigner function.
In Ref. [49] the Gabor transform (4) was used in
combination with the absorbing boundaries that
prevent the unphysical reflections of the wave func-
tion from the grid boundary. More specifically, the
Gabor transform was applied to the part of the wave
function that is absorbed at every time step of the
solution of the TDSE. Figure 10 shows an exam-
ple of the corresponding Husimi distribution cal-
culated at the end of a few-cycle laser pulse. This
absorbed part is transformed in the ensemble of clas-
sical trajectories that is propagated using classical
equations of motion. Therefore, initial positions and

x (a.u.)

p x (
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)

 

 

−300 −200 −100 0 100 200 300
−2

−1

0

1

2

−10

−8

−6

−4

−2

0

Fig. 10 The Husimi distribution |G (x,px, t)|2 in the
absorbing mask regions calculated for ionisation of 1D
model atom at the end of the laser pulse with a duration of
4 optical cycles, intensity of 2.0 × 1014 W/cm2, and a wave-
length of 800 nm. A logarithmic colour scale is used. The
three main maxima of the Husimi distribution are shown by
white circles

momenta of classical trajectories used to simulate an
electron wave packet are extracted from the exact
quantum dynamics. It is clear that the convergence
with respect to the position of the absorbing bound-
aries and the number of trajectories launched at
every time step should be checked in this approach.
The absorbing boundaries must be far enough to
not affect the bound part of the wave function. The
SCTSQI yields quantitative agreement with quan-
tum results [49]. What is even more important, it
corrects the inaccuracies of the standard trajectory-
based approaches in description of the ionisation
step and circumvents the complicated problem of
choosing the initial conditions.
However, future work is needed to turn the SCT-
SQI model in a powerful tool for studies of tun-
nelling. First, the model formulated for the one-
dimensional (1D) model atom should be generalised
to the three-dimensional case (3D). To describe fine
details of interference patterns accurately enough,
large numbers of classical trajectories are needed
in the SCTSQI. In addition to this, the ensembles
of trajectories are launched at every step of the
time propagation. As the result, the SCTSQI model
includes all possible trajectories, and it is not always
easy to distinguish between them. This hampers the
understanding of the strong-field phenomena that
is expected to be provided by the SCTSQI model
and its future extensions. Therefore, the number
of trajectories has to be reduced in the SCTSQI
approach, e.g., by using more sophisticated sam-
pling techniques.

– A mask function which is absorbing the wave func-
tion over a spatial extension, such as in the SCTSQI
method for example, will lead to a decreasing total
probability of the wave packet. This must be mon-
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itored over the course of the calculation to ensure
it does not introduce unwanted artefacts through
the choice of position or steepness of the absorb-
ing mask. The efficiency of this also depends on the
ionisation probability which determines how much
of the wave function is going to hit the absorbing
boundary.

5 Outlook

It is evident that much remains to be done to further
improve our general understanding of the tunnelling
process as well as the interaction between the strong
laser light and the target atom (or molecule, surface,
liquid, . . . ) in order to tackle the underlying reasons for
why so many approaches reach opposing conclusions.
Given the lack of a clear, agreed upon definition of the
onset and conclusion of tunnelling, it is perhaps unsur-
prising that there is also not a clear pattern between
classical or quantum methods in their various predic-
tions regarding instantaneous or finite tunnelling time,
let alone numerical values. More than anything, this
debate has demonstrated the need to find a common
ground on which to compare the vast range of theo-
retical approaches and experimental setups. One of the
few prevailing themes of this debate that most everyone
could agree on is that a combination of classical and
quantum theory is required for describing tunnelling
processes in order to be able to interpret the experi-
mental evidence.
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