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Abstract

Using the properties of the local Boltzmann weights of integrable interaction-round-a-
face (IRF or face) models we express local operators in terms of generalized transfer
matrices. This allows for the derivation of discrete functional equations for the reduced
density matrices in inhomogeneous generalizations of these models. We apply these
equations to study the density matrices for IRF models of various solid-on-solid type and
quantum chains of non-Abelian su() or Fibonacci anyons. Similar as in the six vertex
model we find that reduced density matrices for a sequence of consecutive sites can be
’factorized’, i.e. expressed in terms of nearest-neighbour correlators with coefficients
which are independent of the model parameters. Explicit expressions are provided for
correlation functions on up to three neighbouring sites.
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1 Introduction

Exact Bethe ansatz solutions of integrable lattice models provide valuable insights into proper-
ties which can be related to their spectrum such as thermodynamic properties and the nature
of low energy excitations. The computation of general correlation functions in this framework
is much more involved. For certain integrable vertex models and in particular the spin-1/2
Heisenberg model, however, manageable expressions for correlation functions have been ob-
tained using methods based on the representation theory of quantum algebras, functional
equations of q-Knizhnik-Zamolodchikov (qKZ) type, or the algebraic Bethe ansatz [1–5].

Considering inhomogeneous generalizations of these models a remarkable property of the
corresponding reduced density matrices has been established: in Refs. [6–8] it was found that
correlation functions of spins on N consecutive sites in the ground state of the infinite length
antiferromagnetic Heisenberg chain are solutions of the qKZ equation (or a reduced version
thereof) and can be expressed as sums of terms factorizing into products of nearest neighbour
(two-point) functions of the generalized models. Their coefficients are recursively defined
elementary functions of N spectral parameters and do not depend on model parameters such as
the system size or choice of inhomogeneities. While this approach based on the qKZ equations
is limited to infinite chains the factorization was also observed in studies of the three-site
reduced density matrix for isotropic chains of finite length (or at finite temperature) [9, 10].
Later, using the fermionic structure in the space of operators of the XXZ model [11, 12], this
property has been proven to hold for arbitrary correlation functions of the XXZ Heisenberg
chain in an external magnetic field and at finite temperature [13].

In another approach to the computation of correlation functions of the Heisenberg chain
discrete functional equations of reduced qKZ-type have been derived starting from the local
properties of the six vertex model [14,15]. These equations can be shown to characterize the
generalized N -site reduced density matrix DN of the model uniquely when complemented with
an asymptotic reduction relating the latter to DN−1 when one of the spectral parameters is sent
to infinity [15]. Taking the factorized form of the reduced density matrix from Ref. [7] as an
ansatz it is found that the latter does indeed satisfy these relations. Therefore, this approach
provides an alternative, though not constructive proof of the factorization property.

Less is known for integrable interaction-round-a-face (IRF) models. For an important class
of IRF models, the Andrews-Baxter-Forrester (ABF) series of solid-on-solid (SOS) models, Bax-
ter’s corner transfer matrix [16] has been used to compute local height probabilities in the
infinite lattice [17]. Vertex operators for the ABF models introduced in this approach can be
related to representations of quantum group symmetries present in the infinite system and
their correlation functions satisfy qKZ equations [18] and the algebra formed by the vertex
operators has been bosonized to obtain integral representations for multi-point local height
probabilities in restricted SOS (or RSOS) models in the thermodynamic limit [19]. As for the
vertex models the integrability of IRF models is based on a Yang-Baxter equation satisfied by
the Boltzmann weights. For the SOS models these weights can be arranged in an R-matrix
depending on an additional dynamical parameter. Due to this formulation certain aspects of
the Quantum Inverse Scattering Method can be employed for the analysis of these models: the
corresponding modified (dynamical) Yang-Baxter algebra allows for the solution of the spec-
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tral problem by means of an algebraic Bethe ansatz [20] or an adaption [21] of the framework
of Sklyanin’s Separation of Variables [22]. Similarly, the inverse problem relating local spin
operators to elements of the Yang-Baxter algebra [23, 24] has been solved for the dynamical
vertex models and also allows to express local heights in this context [25–27]. A remaining
difficulty for the application of the algebraic Bethe ansatz approach to the calculation of local
height probabilities arises from the expressions of matrix elements of local height operators.
Even for the simple case of the cyclic SOS model with rational crossing parameter these appear
to be more complicated than in the (non-dynamical) six-vertex model [26, 27]. Factorization
properties of the reduced density matrices in integrable face models have, to our knowledge,
not been studied so far.

In this paper we address some of the issues appearing in the calculation of correlation
functions in generic face models in particular on finite lattices without refering to a possible
formulation as a dynamical vertex model. In the following section we specify the possible con-
figurations of an IRF model and the Hilbert space of the related quantum chains of non-Abelian
anyons. The Boltzmann weights of local configurations for these models are used to define a
family of transfer matrices with generalized boundary conditions. In Section 3 the solution
of the inverse problem is presented for a class of local operators for an inhomogeneous IRF
model with certain local properties of the Boltzmann weights, in particular unitarity, together
with an initial condition for their dependence on the spectral parameter. Expectation values of
these operators in eigenstates of the transfer matrix are encoded in generalized N -point den-
sity matrices DN (λ1, . . . ,λN ) with independently chosen spectral parameters λn. In Section 4
we derive a set of linear functional equations of reduced qKZ-type for DN which holds for a
discrete set of values of the spectral parameter λN .

In a final section we consider several SOS models and the related chain of Fibonacci anyons
where we find that these functional equations together with the analytical properties of the
density matrices derived from those of the local Boltzmann weights do in fact uniquely deter-
mine the DN in these models. Assuming that the factorization property for the N -point density
matrices mentioned above also holds for integrable IRF models we propose an algorithm for
the efficient computation of the structure coefficients.

2 Integrable face models

Interaction-round-a-face (IRF or face) models are classical statistical models defined on a
square lattice with a spin (or height) a` assigned to each site `. The heights take values from
a set S possibly subject to adjacency rules constraining their values on neighbouring vertices.
These rules are conveniently presented in the form of a graph with nodes a ∈S and adjacency
matrix

Aab ≡

{
1, spins a and b are allowed to be adjacent

0, spins a and b are not allowed to be adjacent
. (1)

The energy of the face model for a given height configuration is determined by local Boltz-
mann weights depending on the spins on the vertices surrounding an elementary face [17].
These weights are allowed to depend on an arbitrary (spectral) parameter u and are depicted
graphically as

W
(

d c
a b

∣∣∣∣u)=
d

a

c

b

u = a

d

c

b

u . (2)
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Related quantum models describing interacting non-Abelian anyons in one spatial dimen-
sion can be obtained from face models in their Hamiltonian limit, see e.g. [28–31]. Mathe-
matically these anyon models can be described by braided tensor categories [32] consisting
of a collection of objects {ψa} (including an identity). They are equipped with a set of fusion
rules

ψa ⊗ψb =
⊕

c

N c
abψc . (3)

This rule for the fusion of objects ψa and ψb into ψc can be represented graphically, where
the vertex (to be read from top-left to bottom-right)

b

a c ,

is allowed provided that N c
ab 6= 0.

The fusion rules allow to construct the Hilbert space of a chain of L interacting anyons with
topological charge ψa∗ and their possible local interactions. In this paper we consider tensor
categories which are free of multiplicities, i.e. N c

ab ∈ {0,1}, and starting with an auxiliary
anyonψa0

an orthogonal basis of ’fusion path’ states is constructed by fusingψa` andψa∗ into
ψa`+1

resulting in
|a0 a1 . . . aL〉 with N a`+1

a`a∗
= 1 for `= 0 . . . L − 1 (4)

or, using the graphical representation of these consecutive fusion processes,

. . .
a0 a1 aL

a∗ a∗ a∗

.

Note that the sequence {a} = (a0 a1 . . . aL) coincides with a possible height configuration
along a horizontal line of vertices in the face model on a lattice with L×N faces provided that
the possible topological charges are labelled by the elements of S and N a`+1

a`a∗
= Aa`a`+1

.
Clearly the Hilbert space HL spanned by these fusion paths can be decomposed into sectors

HL
αβ labeled by the auxiliary spins α= a0 and β = aL . Below we consider anyon chains (face

models) with periodic boundary conditions (in the horizontal direction). Therefore we have
to identify a0 and aL which allows to remove the label a0 from the basis states (4). As a result
the model is defined on the Hilbert space (’quantum space’)

HL
per =

⊕
α∈S

HL
αα . (5)

Note that states in HL
per correspond to periodic paths of length L on the adjacency graph.

Similarly, the sequences {α} = (α0α1 . . . αN ) with Nαn+1
αna∗

= Aαnαn+1
= 1 of heights on

vertical lines can be identified with fusion paths spanning an ’auxiliary’ Hilbert space VN of
anyons. Here and below we use greek indices for the auxiliary height variables on vertical
lines and latin indices to label the height variables corresponding to an anyonic quantum state
on horizontal lines.

4

https://scipost.org
https://scipost.org/SciPostPhys.11.3.057


SciPost Phys. 11, 057 (2021)

We represent the matrix elements of generic linear operators B on the space VN ⊗̂HL as 1

(
〈a|⊗̂〈α|

)
B
(
|β〉⊗̂|b〉

)
= B

α0 = a0 . . .

. . .

α1

...

αN−1

αN = b0

β0 = aL

β1

βN−1

βN = bL

...
.

(6)
The matrix elements of B in VN are linear operators on HL (and vice versa):

B{α}{β} = 〈α|B|β〉 , B{a}{b} = 〈a|B|b〉 . (7)

As an example, we define an operator T (u) on V1⊗̂HL from a single row of the the Boltz-
mann weights (2):(

〈a|⊗̂〈α|
)

T (u)
(
|β〉⊗̂|b〉

)
= 〈a|Tα0β0

α1β1
(u)|b〉

= u− u1 u− uL. . .

α0 = a0

α1 = b0

a1

b1

aL−1

bL−1

aL = β0

bL = β1

=
L∏

i=1

W
(

ai−1 ai
bi−1 bi

∣∣∣∣u− ui

)
δa0,α0

δaL ,β0
δb0,α1

δbL ,β1
.

(8)

Here, the complex numbers {ui}Li=1 parameterize local variations in the interactions around a
face. Taking the trace in V1 this gives the transfer matrix of the inhomogeneous face model
with periodic boundary conditions in the horizontal direction

t(u) = trV1 T (u) =
∑
α,β

Tααββ (u) ,

〈a|t(u)|b〉= u− u1 u− uL. . .

a0

b0

a1

b1

aL−1

bL−1

a0 = aL

b0 = bL

.
(9)

For later use we also define the following generalized transfer operators

Tαβ(u) =
∑
γδ

Tγδαβ (u) , Tαβ(u) =
∑
γδ

Tαβγδ (u) , (10)

mapping HL
αβ →HL and vice versa. Note that Tαβ(u)Tαβ(v) is a linear operator on HL which

leaves HL
per invariant.

1The symbol ⊗̂ indicates that the index of the joint vertex of the two factors coincides.
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Degenerations of this construction are the elementary operators (Eαβ )n and E
αn1

...αn2
βn1

...βn2
on HL

〈a|
(

Eαβ

)
n
|b〉= δan,α δbn,β

∏
j 6=n

δa j b j

=
an−1 an+1

α= an

β = bn

〈a|E
αn1

...αn2
βn1

...βn2
|b〉=

n2∏
k=n1

δak ,αk
δbk ,βk

∏
j /∈{n1...n2}

δa j b j

=
an1−1 an2+1

αn1
= an1

βn1
= bn1

αn2
= an2

βn2
= bn2

· · ·

· · ·

(11)

acting locally on a single site n or on sequences of n2 − n1 + 1 of neighbouring sites (subject
to constraints for the heights on the neighbouring sites as a consequence of the adjacency
conditions).

A face model is said to be integrable if its transfer matrix commutes for different values
of the spectral parameter, i.e. [t(u), t(v)] = 0. This is guaranteed by a local condition on the
Boltzmann weights: the face version of the Yang-Baxter equation reads∑

g∈S
W
(

f g
a b

∣∣∣∣u− v
)

W
(

f e
g d

∣∣∣∣ v)W
(

g d
b c

∣∣∣∣u)

=
∑
g∈S

W
(

f e
a g

∣∣∣∣u)W
(

a g
b c

∣∣∣∣ v)W
(

e d
g c

∣∣∣∣u− v
)

,
(12)

or, in the graphical notation,

a

f f e

d

cbb

g
u− v

v

u
= a

f e e

d

ccb

g

u

v
u− v , (13)

where heights on nodes with a solid circle are summed over and heights connected by dotted
lines are taken to be equal.

We also assume a unitarity condition

∑
e∈S

W
(

d e
a b

∣∣∣∣u)W
(

d c
e b

∣∣∣∣−u
)
= a

d d

c

b

e

b

u −u = ρ(u)ρ(−u)δac , (14)

crossing symmetry

W
(

d c
a b

∣∣∣∣u)=W
(

c b
d a

∣∣∣∣λ− u
)

, (15)
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and the initial condition

W
(

d c
a b

∣∣∣∣0)=
d

a

c

b

0 = δa,c . (16)

Here λ is the crossing parameter and ρ(u) a function, both are model-dependent. We assume
ρ(0)2 = 1 which can always be reached by rescaling the Boltzmann weights.

3 Reduced density matrices

A complete characterization of the models introduced above requires the computation of
generic correlation functions, which can in turn be expressed through reduced density ma-
trices, i.e. matrix elements of the operators (11)

1
〈Φ0|Φ0〉

〈Φ0| E
αn1

...αn2
βn1

...βn2
|Φ0〉 . (17)

Here |Φ0〉 ∈HL
per is the ground state of the model. More generally one may consider the right

(left) eigenvectors |Φ〉 (〈Φ|) of the transfer matrix corresponding to a particular eigenvalue
Λ(u), i.e. t(u)|Φ〉= Λ(u)|Φ〉 (〈Φ|t(u) = 〈Φ|Λ(u)).

An important step towards the calculation of these quantities in integrable (vertex) models
has been the solution of the ‘inverse problem’, i.e. expressing local operators through elements
of the Yang-Baxter algebra. This has been achieved for the six-vertex and related models in [23,
24,33]. In Refs. [25,26] this construction has been generalized to local spin and local height
operators in face models allowing for a formulation as a dynamical vertex model [20,34,35].
Here we formulate the solution to the inverse problem for a general integrable face model,
i.e. without using the existence of an R-matrix satisfying a dynamical Yang-Baxter equation,
by expressing the elementary height operators (11) in terms of the single-row operators (8),
(10) introduced above:

Theorem 1. The local operator
(

Eαβ

)
n

, 1≤ n< L, can be expressed as

(
Eαβ

)
n
=

L∏
k,`=1

1
ρ(uk − u`)

(
n−1∏
k=1

t(uk)

)
Tαβ(un)T

αβ(un+1)

(
L∏

k=n+2

t(uk)

)
. (18)

We use the convention that empty products are 1.

Proof. Let us first proof the statement for an easy example where the chain length is L = 2,
i.e. two faces per row. For |a〉, |b〉 ∈H2

per we calculate:

〈a|Tαβ(u1)T
αβ(u2)|b〉=

u1 − u1 u1 − u2

u2 − u1 u2 − u2

a0 a1 a0

b0 b1 b0

α β =

u1 − u2

u2 − u1

a0 a1 a0

b0 b1 b0

α β

7
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=
2∏

k,`=1

ρ(uk − u`)δa0 b0
δa1α

δb1β
=

2∏
k,`=1

ρ(uk − u`)〈a|
(

Eαβ

)
1
|b〉.

For general L the procedure works similarly, see Appendix A.

Unitarity of the Boltzmann weights implies

L∏
`=1

t(u`) =
L∏

k,`=1

ρ(uk − u`)1 . (19)

This allows to reformulate the theorem as:(
Eαβ

)
n
=

(
n−1∏
k=1

t(uk)

)
Tαβ(un)T

αβ(un+1)

(
n+1∏
k=1

t−1(uk)

)
. (20)

Note that the operators
(

Eαβ

)
L

can only be represented in the form (18) for α= β .

Similarly an elementary operator acting on sequences of neighbouring sites can be ex-
pressed as (1≤ n1 ≤ n2 < L)

E
αn1

...αn2
βn1

...βn2
=

L∏
k,`=1

1
ρ(uk − u`)

(n1−1∏
k=1

t(uk)

)
×

× Tαn1
βn1
(un1
)

 n2∏
k=n1+1

Tαk−1βk−1
αkβk

(uk)

 Tαn2
βn2 (un2+1)

 L∏
k=n2+2

t(uk)


=

(n1−1∏
k=1

t(uk)

)
Tαn1

βn1
(un1
)×

×

 n2∏
k=n1+1

Tαk−1βk−1
αkβk

(uk)

 Tαn2
βn2 (un2+1)

(n2+1∏
k=1

t−1(uk)

)
.

(21)

We emphasize that this construction and proof is valid for all face models whose Boltzmann
weights satisfy the unitarity conditions.

Let us now introduce the operators T̃
{α}{β}
N : HL → HL , corresponding to

N = n2 − n1 + 2 consecutive rows of the face model with independent spectral parame-
ters λn1

, . . . ,λn2+1 and fixed sequences α = (α`)
n2+1
`=n1−1 and β = (β`)

n2+1
`=n1−1 of auxiliary in-

dices (although not written explicitly the index N is to be understood as the combination
(n1, n2 = n1 + N − 2))

T̃N (λn1
, . . . ,λn2+1)

{α}{β} =
n2+1∏
k=n1

Tαk−1βk−1
αkβk

(λk) . (22)

Taking the expectation value of these operators in an eigenstate |Φ〉 of the transfer matrix t(u)
with corresponding eigenvalue Λ(u) we can define an operator DN

DN (λn1
, . . . ,λn2+1)

{α}{β} =
〈Φ|T̃N (λn1

, . . . ,λn2+1)
{α}{β}|Φ〉

〈Φ|Φ〉
n2+1∏
k=n1

Λ(λk)
, (23)
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which by construction is a matrix on the auxiliary space ' VN . Graphically this operator can
be depicted as (here shown for N = 2 with n1 = 1, n2 = 1):

D2(λ1,λ2)
{α}{β} =

α0 β0

α1

α2

β1

β2

Φ

Φ

T̃2(λ1,λ2) ·
1

〈Φ|Φ〉Λ(λ1)Λ(λ2)

=

α0 β0

α1

α2

β1

β2

Φ

Φ

λ1 − u1 . . .

. . .

λ1 − uL

λ2 − uLλ2 − u1

·
1

〈Φ|Φ〉Λ(λ1)Λ(λ2)
,

(24)

where the projection onto the eigenstate |Φ〉 is indicated by sandwiching of T̃N . Note that

D
{α}{β}
N = 0 for αn1−1 6= βn1−1, αn2+1 6= βn2+1 for states |Φ〉 ∈HL

per. This allows to decompose
DN into blocks labeled by αn1−1 and αn2+1, i.e.

D2(λ1,λ2)
{α}{β} =

(
D[α0,α2]

2 (λ1,λ2)
)α1

β1

, (25)

for the example N = 2 displayed above.
Comparing to (21) we observe that the reduced density matrix of the face model for N

consecutive edges (or segments of the fusion path) in an eigenstate |Φ〉 of the transfer matrix
is obtained from DN by proper choice of the arguments λk:

DN (λn1
, . . . ,λn2+1)

{α}{β}
∣∣∣
λk=uk , k=n1,...,n2+1

=
1
〈Φ|Φ〉

〈Φ|E
αn1

...αn2
βn1

...βn2
|Φ〉 . (26)

In a slight misuse of notation we shall denote DN as N -site density matrix below. DN is normal-
ized such that trVN DN (λn1

, . . .λn2+1) = 1, which gives a constraint on the diagonal elements
of DN . Taking partial traces, i.e. summing over pairs (α`,β`) of auxiliary indices, any n-point
function with n≤ N can be computed from DN .

4 Functional equations

For the next step towards the calculation of correlation functions in an IRF model the functional
dependence of the density matrices DN of the generalized problem on the spectral parameters
λn1

, . . . ,λn2+1 has to be found. In integrable models such correlation functions are often closely
related to solutions of functional equations of quantum Knizhnik-Zamolodchikov type [36]. In
the context of face models from the Andrews-Baxter-Forrester (ABF) series [17] such difference
equations have been obtained by Foda et al. for the infinite lattice using corner transfer matrix
and vertex operator techniques [18]. Below we show that the density matrices DN satisfy a
discrete version of such equations using the local properties of the Boltzmann weights of an
integrable model. Our approach resembles that of Ref. [15] for the Heisenberg model. Other
than the approach of Ref. [18], it is also applicable for finite size face models.

To derive the functional equations for the density operators (23) we introduce the linear
operator AN (λ1, . . . ,λN ) : End(VN )→ End(VN ). Let B be an arbitrary operator acting on VN

9
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as defined in (7). The action of AN on B graphically as(
AN (λ1, . . . ,λN )[B]

){α}{β}
=

δα0β0
δαNβN∏N

i=1ρ(λi −λN )ρ(λN −λi)
×

×
∑
{γ}{δ}

δαN−1γN

N−1∏
i=1

W
(
γi−1 γi
αi−1 αi

∣∣∣∣λN −λi

)
B{γ}{δ}×

×
N−1∏
i=1

W
(
δi−1 βi−1
δi βi

∣∣∣∣λi −λN

)
P−

(
δN−1 βN−1
δN βN

)
=

δα0β0
δαNβN∏N

i=1ρ(λi −λN )ρ(λN −λi)
×

. . ....

α0

α1

αN−2

αN−1

β0

β1

βN−2

βN−1

αN = βN

B

λN −λN−1

λN −λ1

P−

λN−1 −λN

λ1 −λN

(27)
For models with crossing symmetry as in (15) the operator P− ∈ End(V1) is obtained by evalu-
ation of the Boltzmann weight (2) at u= λ. For more complicated cases this expression needs
to be modified, see (46) below. Note the extra Kronecker δ’s enforcing that the image of B has
elements acting on HL

per only.
As an example consider the action of A2 on the density matrix D2, here shown for a system

of length L = 2:

(A2(λ1,λ2)[D2(λ1,λ2)])
{α}{β} =

δα0β0
δα2β2

ρ(λ1 −λ2)ρ(λ2 −λ1)Λ(λ1)Λ(λ2)
×

× λ2 −λ1 λ1 −λ2

λ

λ1 − u1 λ1 − u2

λ2 − u1 λ2 − u2

α0 β0

α1 β1

α2 = β2

Φ

Φ

We can now formulate the main theorem of this chapter.
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Theorem 2. The density operator DN (λ1, . . . ,λN ) is a solution of the functional equation

AN (λ1, . . . ,λN )[DN (λ1, . . . ,λN )] = DN (λ1, . . . ,λN +λ) (28)

if λN is equal to one of the inhomogeneities, i.e. λN ∈ {ui}Li=1.

Proof. The proof is given in Appendix B.

For general λN the functional equation (28) is a difference equation for the elements of
the density operator resembling the reduced quantum Knizhnik-Zamolodchikov (qKZ) equa-
tion for correlation functions of the six-vertex model in the thermodynamic limit [7, 36, 37].
In general Eq. (28) is valid only for a discrete set of values, namely λN ∈ {u1, . . . , uN} – as
in the finite temperature case for the spin-1/2 Heisenberg model [15]. For the face models
considered here, however, it is straightforward to show that this restriction can be dropped
for matrix elements of (28) where αN−1 is a leaf node on the adjacency graph G, i.e. if it has
exactly one neighbour.

Another functional equation satisfied by the density matrices follows directly from the
Yang-Baxter equation. Introducing the operator

〈α|Wi(u)|β〉 ≡W
(
αi−1 βi
αi αi+1

∣∣∣∣u)∏
j 6=i

δα jβ j
, (29)

we have for 1≤ i < N :

Wi(λi+1 −λi) · DN (λ1, . . . ,λi ,λi+1, . . . ,λN ) =

DN (λ1, . . . ,λi+i ,λi , . . . ,λN ) ·Wi(λi+1 −λi) .
(30)

5 Applications

In this section we will use the functional equation (28) to compute the density matrices of face
models of solid-on-solid (SOS) type and the related anyon chains. This class of face models
has been introduced by Andrews, Baxter and Forrester as an auxiliary tool to solve the 8-vertex
model. Specifically, we shall consider two critical models with a finite set S of height variables,
i.e. the cyclic solid-on-solid (CSOS) model [38, 39] and the restricted solid-on solid (RSOS)
model [17].

5.1 The cyclic solid-on-solid model

The height variables of the CSOS model take integer values 0≤ a ≤ r−1 for a positive integer
r. Heights on adjacent sites are required to differ by ±1 modulo r, hence a configuration of
neighbouring spins 0 and r − 1 is allowed. As a consequence the adjacency graph for this
model corresponds to the Dynkin diagram of the affine Lie algebra Ãr−1, see Figure 1(a). The
Boltzmann weights of the critical CSOS model are (heights in the arguments of W are taken
modulo r)

αa =W
(

a− 1 a
a a+ 1

∣∣∣∣u)=W
(

a+ 1 a
a a− 1

∣∣∣∣u)= sin(λ− u)
sinλ

,

β±a =W
(

a a± 1
a∓ 1 a

∣∣∣∣u)= sin u
sinλ

,

γa =W
(

a a+ 1
a+ 1 a

∣∣∣∣u)= 1 ,

δa =W
(

a a− 1
a− 1 a

∣∣∣∣u)= 1 .

(31)
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. . .1 2 r − 2 r − 1

0

(a)

. . .1 2 r − 2 r − 1

(b)

Figure 1: Adjacency graphs of the CSOS model (a) and the RSOS model (b).

Here the crossing parameter is λ= πm/r where 1≤ m≤ r−1 is coprime to r (the Boltzmann
weights of the general CSOS model are elliptic functions of the spectral parameter u depending
explicitly on the height variable a through an additional phase angle which, however, plays no
role in the critical case). Note that the weights (31) coincide with the non-zero vertex weights
in the R-matrix of the six-vertex model. In fact, this relation has been used extensively, e.g.
to identify the operator content of the low energy effective theory of the lattice model in
the thermodynamic limit [40]. Furthermore, and unlike most other face models, the transfer
matrix of the CSOS model has a simple eigenstate which allows for its solution by means of
the algebraic Bethe ansatz method based on an R-matrix depending on a dynamical parameter
related to the height variables. This property has already been used to compute form factors
in the basis of Bethe eigenstates of this model [25].

Here we will utilize the existence of a particularly simple eigenstate of the CSOS transfer
matrix to illustrate the approach to compute correlation functions based on the functional
equation (28). To be specific we choose the CSOS model with r = 3 and crossing parameter
λ= 2π/3. Considering a lattice of length L = 3k with integer k it is easy to verify that

|Ω〉 ≡
1
p

3
(|012 012 . . . 0〉+ |120 120 . . . 1〉+ |201 201 . . . 2〉) ∈HL

per (32)

is an eigenstate of the transfer matrix with eigenvalue

Λ0(u) = a(u) + d(u) , (33)

where

a(u)≡
L∏

i=1

sin(λ− (u− ui))
sinλ

, d(u)≡
L∏

i=1

sin(u− ui)
sinλ

. (34)

From the definition of the Boltzmann weights it follows that the action of the single row
operators (8) on this state is

Tααα+1α+1(u)|Ω〉=
a(u)
p

3
|αα+ 1α+ 2 α . . .α〉 ,

Tααα−1α−1(u)|Ω〉=
d(u)
p

3
|αα− 1α− 2 α . . .α〉 .

(35)
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This allows to analyze the density matrices DN in the state (32). The simplest case is N = 1
where periodic boundary conditions imply that α0 = β0 and α1 = β1. As a consequence D1(λ)
is a diagonal operator on V1 whose diagonal elements can be directly read off from Eqs. (35),
e.g.

〈01|D(Ω)1 (λ)|01〉=
1
p

3
ã(λ) , 〈02|D(Ω)1 (λ)|02〉=

1
p

3
d̃(λ) , (36)

where ã(u) = a(u)/(
p

3 Λ0(u)) and respectively for d̃. Note that the trace condition
trV1 D1(λ) = 1 implies d̃(λ) = 1/

p
3− ã(λ) .

Similarly, the diagonal elements of the two-site density matrix D2(λ1,λ2) in the reference
state are obtained from (35). The functional equation (28) allows for the direct computation
of all off-diagonal elements: choosing

{|010〉, |012〉, |020〉, |021〉}∪ {|121〉, |120〉, |101〉, |102〉}∪ {|202〉, |201〉, |212〉, |210〉} (37)

as a basis for the auxiliary space V2 and using the fact that the Boltzmann weights are invariant
under the shift of all heights by an integer we find that the density matrix has a structure of
three identical 4× 4 blocks D(Ω)2 (λ1,λ2). Restricting ourselves to the first of these blocks we
find for the reference state (32)

D(Ω)2 (λ1,λ2) =


ã(λ1)d̃(λ2) 0 g(λ1,λ2) 0

0 ã(λ1)ã(λ2) 0 0
0 0 ã(λ2)d̃(λ1) 0
0 0 0 d̃(λ1)d̃(λ2)

 , (38)

or, using the notation introduced in Eq. (25),

D(Ω)[00]
2 (λ1,λ2) =

(
ã(λ1)d̃(λ2) g(λ1,λ2)

0 ã(λ2)d̃(λ1)

)
,

D(Ω)[01]
2 (λ1,λ2) = d̃(λ1)d̃(λ2) , D(Ω)[02]

2 (λ1,λ2) = ã(λ1)ã(λ2) .

(39)

With this ansatz we obtain from the functional equations (28) and (30) after some algebra an
explicit expression for the off-diagonal element (λk` ≡ λk −λ`)

g(λ1,λ2) = −
p

3
2sin(λ12)

(
d̃(λ1)ã(λ2)− ã(λ1)d̃(λ2)

)
. (40)

Hence, as a consequence of the simple form of the reference state (32) of the r = 3 CSOS
model, the two-site density matrix is completely determined by the one-point function ã(λ).
This is also true for the three-site density matrix D(Ω)3 ({λ1,λ2,λ3}). Choosing the bases

[0,0] : |0120〉, |0210〉 , [0,1] : |0101〉, |0121〉, |0201〉 , [0, 2] : |0102〉, |0202〉, |0212〉

for the [0, a]-blocks in the auxiliary space V3 we find:2

D(Ω)[0,0]
3 ({λ j}) =

p
3
(

ã(λ1)ã(λ2)ã(λ3) 0
0 d̃(λ1)d̃(λ2)d̃(λ3)

)

D(Ω)[0,1]
3 ({λ j}) =

p
3

ã(λ1)d̃(λ2)ã(λ3) 0 −ã(λ3)g(λ1,λ2)
−ã(λ1)g(λ2,λ3) ã(λ1)ã(λ2)d̃(λ3) ?

0 0 ã(λ1)ã(λ2)ã(λ3)


D(Ω)[0,2]

3 ({λ j}) =
p

3

ã(λ1)d̃(λ2)d̃(λ3) −d̃(λ1)g(λ1,λ2) ??

0 d̃(λ1)ã(λ2)d̃(λ3) −d̃(λ1)g(λ2,λ3)
0 0 d̃(λ1)d̃(λ2)ã(λ3)

 ,

(41)

2The coefficients in (41) are obtained using a combination of the functional equations (28) and (30) and the al-
gorithm for the calculation of the structure functions in the factorized form of the N -site density matrices desscribed
below.
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with

?= −
cos(π6 −λ12)ã(λ2)g(λ1,λ3)

sinλ12
−
p

3ã(λ1)g(λ2,λ3)
2 sinλ12

,

??=
cos(π6 −λ12)d̃(λ2)g(λ1,λ3)

sinλ12
−
p

3d̃(λ1)g(λ2,λ3)
2sinλ12

.

This suffices for the calculation of the nearest and next-nearest neighbour correlation func-
tions in the reference state (32). In the homogeneous limit (i.e. all inhomogeneities uk = 0)
we have ã(0) = 1/

p
3, d̃(0) = 0, and g(0,0) = 0. Therefore, the two and three-site density

matrices for λi = 0 are diagonal with non-zero elements

〈012|D(Ω)2 (0,0)|012〉= 〈120|D(Ω)2 (0, 0)|120〉= 〈201|D(Ω)2 (0,0)|201〉=
1
3

,

〈0120|D(Ω)3 (0,0, 0)|0120〉= 〈1201|D(Ω)3 (0,0, 0)|1201〉= 〈2012|D(Ω)3 (0, 0,0)|2012〉=
1
3

.

(42)
With Eq. (26) this yields the expected results for the two- and three-point functions in the
reference state |Ω〉 of the r = 3 CSOS model.

5.2 The restricted solid-on-solid model

The RSOS model can be treated in a similar way. The state space is obtained by removing 0
from the set of heights allowed in the CSOS model. As a consequence the adjacency graph
corresponds to the Dynkin diagram of Ar−1, Fig. 1(b). The Boltzmann weights of the critical
RSOS model are again given in terms of trigonometric functions

W
(

a b
c d

∣∣∣∣u)= δad

√
gb gc

ga gd
ρ(u+λ)−δbcρ(u) , (43)

with

ρ(u) =
sin(u−λ)

sinλ
, gx =

sin(λx)
sinλ

(44)

and a crossing parameter λ = π/r. They satisfy the face Yang-Baxter equation (12) and the
unitarity condition (14). As a consequence of the gauge factors gx in the definition of the
Boltzmann weights the crossing relation (15) is modified to

W
(

a b
c d

∣∣∣∣u)=√ gb gc

ga gd
W
(

b d
a c

∣∣∣∣λ− u
)

. (45)

This modification has to be taken into account whenever crossing symmetry is used, in par-
ticular in the definition of the A-operator in (27). To cancel the additional factors from the
Boltzmann weight evaluated at u= λ we have to rescale the corresponding weight giving the
operator P− ∈ End(V1):

〈α0α1α2|P−|β0β1β2〉= α1

α0 = β0

β1

α2 = β2

P− ≡ δα0β0
δα2β2

√
gα0

gα2

gα1
gβ1

α1

α0

β1

α2

λ . (46)

In addition, the third step of the proof in Appendix B needs to be reconsidered. Keeping track
of the gauge factors we find, that the A-operator needs to be multiplied by an additional factor

of
√

gβN−1
/gαN−1

.
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By construction the transfer matrix (9) of this model and its eigenvalues Λ(u) are Fourier
polynomials of degree L

Λ(u) =
L/2∑

n=−L/2

Λ2nei2nu . (47)

The leading Fourier coefficients are known to take values [41]

Λ±L =

(
L∏
`=1

exp(∓i(u` +λ/2))

)
2cos((2 j + 1)λ)
(2 sinλ)L

, j ∈ {0,
1
2

,1, . . . ,
r − 2

2
} . (48)

This allows to decompose the spectrum of the RSOS model into topological sectors with ’quan-
tum dimension’

dq( j) =
sin(π(2 j + 1)/r)

sin(π/r)
, (49)

labeled by the quantum number j. In addition there is a discrete symmetry due to the invari-
ance of the Boltzmann weights under a reflection of all heights, i.e. a→ r−a.3 This symmetry
is inherited to the transfer matrix and the reduced density operators.

Starting with the single-site density matrix D1(λ1) we observe that only its diagonal ele-
ments are allowed to be non-zero. We will now prove that D1(λ) is independent of the spectral
parameter λ in any eigenstate |Φ〉 of the transfer matrix (although the matrix elements may
still depend on the choice of inhomogeneities {ui}Li=1): to compute D[12]

1 (λ) we note that due
to the adjacency condition

D[12]
1 (λ) = 〈12|D1(λ)|12〉=

∑
α1

〈1α1|D1(λ)|1α1〉=
〈Φ|P(1)1 t(λ)|Φ〉
〈Φ|Φ〉Λ(λ)

=
〈Φ|P(1)1 |Φ〉
〈Φ|Φ〉

, (50)

where we have used the definition of D1. Note that the one-site projection operators, defined
as

〈a|P(ā)` |b〉= δa` ā

∏
δa j b j

, |a〉, |b〉 ∈HL , (51)

are independent of the spectral parameter. Hence, the 1-point function (50) is the local height
probability for finding a spin a = 1 if |Φ〉 = (〈Φ|)†. With the same reasoning, one concludes
that D[21]

1 (λ) and the reflected matrix elements are equal to (50). Following the same route,
we calculate

D[21]
1 (λ) + D[23]

1 (λ) =
∑
α1

D[2α1]
1 (λ) =

〈Φ|P(2)1 |Φ〉
〈Φ|Φ〉

. (52)

Given that D[21]
1 (λ) is constant we find that D[23]

1 (λ) is also independent of λ. Repeating this
procedure we find that in fact all matrix elements are independent of the spectral parameter
and given as sums of the local height probabilities. Generically the latter depend on state |Φ〉
and the inhomogeneities. For the critical RSOS models considered here we find, however, that
they are functions only of r and the local spin in the topological sectors with quantum dimen-
sion dq = 1. Using the known values for the local height probabilities in the thermodynamic
ground state of the homogeneous system [17] we find

D[a,a+1]
1 (λ) =

sin (πa/r) sin (π(a+ 1)/r)
r cos (π/r)

(53)

for the non-zero elements of the single-site density matrix in these sectors.

3Note that this reflection is an automorphism of the underlying fusion algebra su(2)r−2 for odd r, see the
discussion for r = 5 in Appendix D. This allows to restrict the possible topological quantum numbers in (48) to
take integer values j ∈ {0, 1, . . . , (r − 3)/2} .
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The r = 4 RSOS model. For the simplest nontrivial case, r = 4, the height variables take val-
ues 1 ≤ a ≤ 3, and from the considerations above we immediately get
D[αβ]1 (λ) = 〈Φ|P(1)1 |Φ〉/〈Φ|Φ〉 for all states |αβ〉 ∈ V1. Using the trace condition with dimV1 = 4
it follows that

D1(λ) =
1
4
1 , (54)

independent of the choice of inhomogeneities and agreement with Eq. (53).
For the two-site density matrix we consider the auxiliary space V2 with dimension six and

we choose
{|121〉, |123〉, |212〉, |232〉, |321〉, |323〉} (55)

as a basis. Similar to the previous reasonings we find

〈212|D2(λ1,λ2)|212〉=
∑
α2

〈21α2|D2(λ1,λ2)|21α2〉= D[21]
1 (λ1) =

1
4

(56)

and also, due to reflection symmetry, 〈232|D2(λ1,λ2)|232〉= 1/4. In addition, we have that∑
α2

〈12α2|D2(λ1,λ2)|12α2〉= D[12]
1 (λ1) =

1
4

. (57)

Hence, we find that the non-zero blocks in D2(λ1,λ2) are

D[11]
2 (λ1,λ2) =

1
8
+

1
2

f (λ1,λ2) , D[13]
2 (λ1,λ2) =

1
8
−

1
2

f (λ1,λ2) ,

D[22]
2 (λ1,λ2) =

( 1
4 g(λ1,λ2)

g(λ1,λ2)
1
4

)
,

(58)

D[31]
2 and D[33]

2 follow from height reflection ai → r−ai . Generically the two functions f and g
are independent. Evaluating equation (30) we find that f (u, v) = f (v, u) and g(u, v) = g(v, u),
i.e. the two site density operator for r = 4 is symmetric under exchange of the arguments.

Taking (58) as an ansatz in the functional equation (28) we obtain 2L linear relations for
the unknown functions f and g at λ2 ∈ {u1, u2, . . . , uL}:

cos(2λ12) f (λ1,λ2 +λ) + sin(2λ12) g(λ1,λ2) =
1
4

,

cos(2λ12) g(λ1,λ2 +λ) + sin(2λ12) f (λ1,λ2) =
1
4

.
(59)

For the actual computation of of the density matrices we note that, as a consequence of (23) the
elements of DN (λ1, . . . ,λN )

∏N
k=1Λ(λk) are Fourier polynomials in the spectral parameters λk.

We have checked that, for small N and system sizes, the (L+1)N unknown Fourier coefficients
can be determined uniquely for a given transfer matrix eigenvalue Λ(u) using the discrete
functional equations (59) for N = 2 and similarly (28) for general N once DN−1 is known (cf.
the appearance of D1 in the sum rules (56) and (57) for D2).

This procedure is simplified when we consider density operators for eigenstates in the sec-
tors with quantum dimension dq( j) = 1, i.e. topological quantum numbers j ∈ {0, 1}: here we
find that D2 is determined by a single function of the spectral parameters f (λ1,λ2)≡ g(λ1,λ2)
such that equations (59) for the elements of the two-site density matrix degenerate to a set of
L equations. Another simplification in these sectors is found for spectral parameter λ2→ i∞:
in this limit the functions f and g vanish and D2(λ1,λ2) becomes the single-site density ma-
trix D1(λ1), written as an operator on V2 using the basis (55). In fact, we find that a similar
reduction relating DN for large λN to DN−1 for N ≥ 2 holds in the topological sectors with
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quantum dimension dq = 1 of the RSOS models where (recall that D1 is independent of the
spectral parameter and diagonal): 4

lim
λN→i∞

[DN (λ1, . . . ,λN )]
α0...αN ,β0...βN

= [DN−1(λ1, . . . ,λN−1)]
α0...αN−1,β0...βN−1

[D1]
αN−1αN ,βN−1βN∑

α [D1]
αN−1α,βN−1α

.
(60)

Using (30) one obtains expressions for DN in the limit of large λk, k < N .
Hence, the asymptotics of the N -site density matrix is determined by the (N −1)-site one,

e.g. (recall that f = g in these sectors)

lim
λ3→i∞

D3(λ1,λ2,λ3) =
1
8
1+

f (λ1,λ2)
2



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1


, (61)

for the three-site density matrix of the r = 4 model in the basis

{|1212〉, |1232〉} ∪ {|2121〉, |2321〉} ∪ {|2123〉, |2323〉} ∪ {|3212〉, |3232〉}

of V3.
Remarkably, it has been shown that the density matrices of the Heisenberg spin chain can

be written as

DN (λ1, . . . ,λN ) =
[N/2]∑
m=0

∑
I ,J

 m∏
p=1

ω(λip ,λ jp)

 fN ;I ,J (λ1, . . . ,λN ) , (62)

in terms of a nearest neighbour two-point function ω and a set of recursively defined elemen-
tary functions fN ;I ,J of the spectral parameters λ j , so-called ‘structure functions’ [7]. Here
I = (i1, . . . , im) and J = ( j1, . . . , jm) such that I ∩ J = ;, 1≤ ip < jp ≤ N and i1 < · · ·< im.

For the density matrices in eigenstates from the topological sectors with quantum dimen-
sion dq( j) = 1 ( j ∈ {0, 1} for the r = 4 RSOS model) we observe a similar behaviour, e.g. for
the three-point density matrix: motivated by Eq. (62) we assume that the matrix elements of
D3(λ1,λ2,λ3) can be written as

f0(λ1,λ2,λ3) + f1,2(λ1,λ2,λ3) f (λ1,λ2)

+ f2,3(λ1,λ2,λ3) f (λ2,λ3) + f1,3(λ1,λ2,λ3) f (λ1,λ3) ,
(63)

where f0 and the fI ,J are rational functions of e2iλ12 and e2iλ23 (λk` ≡ λk −λ`), and f (u, v) is
the single function from (58) which determines the two-site density matrix in these topological
sectors.

Most importantly, the model parameters such as the system size L and the inhomogeneities
{uk} enter the expressions (62) only via the two-point functionω (or f in (63)). This fact can
be used to implement an efficient algorithm5 for the numerical calculation of f0 and fI ,J in the
ansatz (63) for the 3-site density matrix of the r = 4 RSOS model (or the structure functions
fN ;I ,J appearing in an ansatz such as (62) for elements of the N -site density matrix DN ):

4A similar reduction has been found to be satisfied by the density matrices of the Heisenberg spin chain [14].
5A similar method has been used to compute expectation values of local operators for the spin-1/2 Heisenberg

chain in a particular basis [42–44].
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1. choose a set of spectral parameters Λ= {λ1, . . . ,λN},

2. diagonalize the transfer matrix of a sufficiently small system with randomly chosen in-
homogeneities,

3. pick an eigenstate of the transfer matrix (from the topological sector considered) and
compute the generalized N -site density matrix DN (λ1, . . . ,λN ) and the two-site density
matrix D2(λ j ,λk) for pairs (λ j ,λk) from Λ using their definition (23),

4. compare D2 to (58) to obtain numerical values for the corresponding two-point functions
f (λ j ,λk),

5. insert the data from steps 3 and 4 into (63) (resp. (62)) to get a linear equation relating
the structure functions,

6. repeat steps 2 to 5 to build a system of linear equations which can be solved for the
structure functions fN ;I ,J (λ1, . . . ,λN ).

Once these functions are known for a range of spectral parameters it is straightforward to find
analytical expressions, e.g. by Fourier analysis, which can be checked using (28).

A slight complication in the present case of the r = 4 RSOS model is that the decomposition
(63) is not unique. Evaluating the diagonal element α = β = (1, 2,1, 2) of the functional
equation (28) for D3(x , y, z) we find an additional relation satisfied by the two-point function
f :

sin(2λ12) f (λ1,λ2) + sin(2λ23) f (λ2,λ3)− sin(2λ13) f (λ1,λ3) = 0 . (64)

This identity holds for arbitrary values of λ j , j = 1,2, 3, as a consequence of α2 = 1 being a
leaf node on the adjacency graph (c.f. the remark in Appendix B).

Taking this into account we have used the procedure outlined above to compute the fac-
torized form of the three-point density matrix DN=3 of the r = 4 RSOS model. Remarkably, it
turns out to be sufficient to compute the initial data for a system of length L = 2 < N . More-
over, we find that the structure functions are the same for all eigenstates |Φ〉 of the transfer
matrix in the topological sectors considered here. As a result we obtain

D[12]
3 (λ1,λ2,λ3) =

1
8
1+

1
2sin(2λ23)

(
sin(2λ23) −1

1 − sin(2λ23)

)
f (λ1,λ2)

+
cos(2λ23)

2sin(2λ23)

(
0 1
−1 0

)
f (λ1,λ3) +

1
2

(
0 1
1 0

)
f (λ2,λ3) ,

D[21]
3 (λ1,λ2,λ3) =

1
8
1+

1
2

(
0 1
1 0

)
f (λ1,λ2) +

cos(2λ12)
2 sin(2λ12)

(
0 1
−1 0

)
f (λ1,λ3)

+
1

2sin(2λ12)

(
sin(2λ12) −1

1 − sin(2λ12)

)
f (λ2,λ3) .

(65)

As before the other non-zero blocks follow from the height reflection symmetry of the density
matrix. These expressions are unique up to transformations based on Eq. (64).

Again we can consider the homogeneous limit uk ≡ 0 for k = 1, . . . , L where the expectation
values of N -point functions can be obtained from the density matrix

DN (λ1, . . . ,λN )|λk≡0 , (66)

according to Eq. (26). In this case the one-point function D1(0) is already given by (54). In
addition, D2(0,0) is completely fixed by the two-point function f (0,0).
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For the computation of D3(0,0, 0) the singularities for λ1 = λ2 and λ2 = λ3 in Eq. (65)
has to be taken care of. We expand the two-point function as

f (λ1,λ2)' (0, 0) + (1,0)λ1 + (0,1)λ2 +
1
2

(
(2,0)λ2

1 + 2 (1,1)λ1λ2 + (0,2)λ2
2

)
+ . . . , (67)

with (k,`)≡ ∂ k
1 ∂

`
2 f (λ1,λ2)|λ1=λ2=0. Note that (k,`) = (`, k) due to the symmetry of f (λ1,λ2).

Additional relations between the coefficients of the r = 4 two-point function follow from the
identity (64), e.g. (1,0) = 0 and (2,0) − 2(1,1) = 4(0, 0). As a result the singularities are
removed and the homogeneous limit of D3 is found to be

D3(λ1,λ2,λ3)|λk≡0 =
1
8
1+

f (0, 0)
2



1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 1 1


. (68)

As a consequence the two- and three-point correlations in a transfer matrix eigenstate |Φ〉 from
the topological sectors with dq = 1 of the homogeneous r = 4 RSOS model are given in terms
of (0, 0), i.e. the numerical value of the two-point function at spectral parameters λ1 = λ2 = 0,
alone. The latter is directly related to the corresponding eigenvalue of the RSOS hamiltonian
H = J ∂u ln t(u)|u=0, i.e.

EΦ = 4J L f (0,0) . (69)

Hence, explicit expressions for two- and three-point functions in the ground states of the infi-
nite system can be obtained from Eqs. (58) and (68) using the known results for the energy
density of the RSOS model in the thermodynamic limit [45]. We find

f (0,0) = ±
1

2π
, (70)

for the ground state of the RSOS hamiltonian with J = −1 (+1).

The r = 5 RSOS model. As a second example we consider the r = 5 RSOS model with local
heights 1≤ a ≤ 4. Similarly as above, we can compute the single site density matrix. In states
from the sector with topological quantum number j = 0 (recall that the topological sectors in
the odd r RSOS models are labelled by integers 0≤ j ≤ (r−3)/2= 1) we find that the matrix
elements are independent of the system size and the inhomogeneities {uk}, namely

D[αβ]1 (λ) =

{
1/(5+

p
5) for (αβ) ∈ {(12), (21), (34), (43)} ,

p
5/10 for (αβ) ∈ {(23), (32)} ,

(71)

as given by Eq. (53).
The auxiliary space V2 for the two-site density matrix of the r = 5 model has dimension

ten. Due to the adjacency condition the Hilbert space of states splits into two spanned by
fusion paths with a0 even and odd, respectively. The transfer matrix is a map between these
two subspaces. Similarly, products of an even number of transfer matrices (or more general
single row operators) are therefore block diagonal and may be written as the sum of an even
and and odd part. In view of this decomposition of the Hilbert space we chose the following
basis for V2:

{|121〉, |123〉, |321〉, |323〉, |343〉} ∪ {|212〉, |232〉, |234〉, |432〉, |434〉}. (72)
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The two sets are related by reflection ai → r − ai and hence we may restrict ourselves to
the subspace generated by the first. Again the structure of the density operator D2(λ1,λ2) is
constrained by sum rules such as (56) and (57). We find the non-zero blocks of D2 in the first
subspace with odd a0 to be (b is a constant)

D[1,1]
2 (λ1,λ2) = −

1
2
+ 4D[21]

1 + f (λ1,λ2) ,

D[1,3]
2 (λ1,λ2) = D[3,1]

2 (λ1,λ2) = e(λ1,λ2) ,

D[3,3]
2 (λ1,λ2) =

(
d(λ1,λ2) c1(λ1,λ2)
c2(λ1,λ2) b

)
.

(73)

The sum rules immediately imply

e(λ1,λ2) =
1
2
− 3D[21]

1 − f (λ1,λ2) , b = D[21]
1 . (74)

Furthermore the trace condition trV2 D2(λ1,λ2) = 1 yields

d(λ1,λ2) = f (λ1,λ2) + D[21]
1 . (75)

Using the relations (30) find that the off-diagonal functions are related via
c1(λ1,λ2) = c2(λ2,λ1)≡ (

p
5+ 2)

1
2 g(λ1,λ2) and

f (λ1,λ2) =
g(λ1,λ2) + g(λ2,λ1)

2
+
(
5+ 2

p
5
) 1

2 cotλ12
g(λ1,λ2)− g(λ2,λ1)

2
. (76)

We find further simplifications for eigenstates of the transfer matrix belonging to the j = 0
topological sector (where b = 1/(5+

p
5) according to Eq. (71)): in this sector the off-diagonal

elements of D2 coincide, i.e. g(λ1,λ2) = g(λ2,λ1), and therefore g(λ1,λ2) = f (λ1,λ2) . As a
consequence D2 can again be expressed in terms of a single scalar function f (λ1,λ2) satisfying
the functional equation

f (λ1,λ2 +λ) =
1

5+ 3
p

5cos(2λ12)
+

cos(2(λ12 −λ))− cos(2λ)
cos(2λ12)− cos(2λ)

f (λ1,λ2) , (77)

for λ2 ∈ {u1. . . . , uL}. As in the r = 4 RSOS model the density matrices DN can be computed
recursively for any given transfer matrix eigenvalue using their analytical properties and the
functional equations. In particular, we find that the asymptotic behaviour of the N -site density
matrices is related to the N − 1-site one as given by (60), e.g.

lim
λ2→i∞

D(odd,odd)
2 (λ1,λ2) =

1
2(
p

5+ 5)


3−
p

5 0 0 0 0
0

p
5− 1 0 0 0

0 0
p

5− 1 0 0
0 0 0 2 0
0 0 0 0 2

 , (78)

in the topological sector with quantum dimension dq = 1, i.e. j = 0 for the r = 5 RSOS model.
Similar as in (65) for r = 4 we have been able to express the three-point density matrix

of the r = 5 RSOS model in this topological sector as a sum of terms factorizing into spectral-
parameter dependent elementary functions and the two-point function f (λ1,λ2) solving the
functional equation (77). Proceeding as for r = 4 we find the factorization of the D3 in the
one-dimensional block corresponding to the sequence α= (1234) of heights to be

D[14]
3 (λ1,λ2,λ3) =

7
4
p

5
−

3
4
−

1
4

(p
5+ 1+ (3

p
5− 5) cotλ13 cotλ23

)
f (λ1,λ2)

−
1
4

(p
5+ 1+ (3

p
5− 5) cotλ12 cotλ13

)
f (λ2,λ3)

−
1
4

(p
5+ 1− (3

p
5− 5) cotλ12 cotλ23

)
f (λ1,λ3) .

(79)
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We present the complete list of non-zero matrix elements of D3 in Appendix C.
Now it is straightforward, to calculate D3 in the homogeneous limit. Expanding the two-

point function as in Eq. (67) for the case r = 4 we find for the one-dimensional block consid-
ered above

D[14]
3 (0,0, 0) =

7
4
p

5
−

3
4
− 2 (0, 0) +

1
8

(
3
p

5− 5
)
(2 (1, 1)− (2, 0)) . (80)

All other matrix elements may be computed using Appendix C.

5.3 Fibonacci anyons

As discussed earlier we can relate face models to one-dimensional quantum chains with any-
onic degrees of freedom on each lattice site. Considering the Hamiltonian limit of the homo-
geneous RSOS model with r = 5, i.e. ui ≡ 0 in (8), one obtains an integrable model of su(2)3
or Fibonacci anyons [28, 46]. Despite its simplicity this non-Abelian anyon model gives rise
to universal quantum computation. It contains only two types of anyons, the trivial anyon 1
and a second one, τ. Here we will use the functional equation (28) to compute the two-site
density matrix for the chain of τ-anyons.

The Hilbert space of fusion paths for these anyons can be shown to be isomorphic to the
a0 odd part of the RSOS Hilbert space HL

per for r = 5. A Hamiltonian for a chain of L τ-anyons

with local interaction can be constructed using the operators P(ττ→1) = 1−P(ττ→τ) projecting
on one of the outcomes of fusing neighbouring anyons according to the rule τ⊗τ= 1⊕τ. In
Appendix D we show that these operators can be expressed in terms of the Boltzmann weights
of the RSOS model (43). This allows for an embedding of the anyon Hamiltonian

H = J
L−1∑
n=0

P(ττ→1)
n (81)

into the family of commuting operators generated by the transfer matrix of the RSOS transfer
matrix (9). By choosing a negative (positive) coupling constant J fusion of two neighbouring
anyons to a trivial (τ) anyon is energetically favoured.

We will now use the inverse problem and relate the energies of the anyon model to the
density operator of the homogeneous model. Note that in this case t(0) is the translation
operator with eigenvalues Λ(0) = exp(2πik/L) for some integer k. Furthermore, we have
ρ(0) = −1 for the RSOS model. Assuming that the eigenstates of the transfer matrix are
normalized, 〈Φ|Φ〉= 1, the two-point function (26) is

〈Φ|Eα0α1α2
β0β1β2

|Φ〉= D2(0,0){α}{β} . (82)

Translation invariance, i.e [H, t(0)] = 0, implies that the energy is EΦ = L J 〈Φ|P(ττ→1)
1 |Φ〉 for

any eigenstate |Φ〉. As P(ττ→1)
1 depends only on the first three heights of the chain, we can

directly use (82) and obtain

EΦ = L J trV2

(
P(ττ→1)

1 D2(0, 0)
)

, (83)

relating the energy density of the anyon chain to certain correlators of the RSOS model.
Plugging in the the explicit expression of P(ττ→1)

1 into (83) and using the simplified form
of the two-site density matrix (73) for eigenstates |Φ〉 in the topological sector j = 0 of the
r = 5 RSOS model 6 we finally obtain

EΦ
L
=

J
2

(p
5+ 5

)
(0,0) +

J
2

(
3−
p

5
)

. (84)

6This condition holds in particular for the ground states of the antiferromagnetic anyon chain (J > 0) with L
mod 3= 0 and the ferromagnetic model (J < 0).
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As for the r = 4 RSOS model the ground state energies of the anyon model in the thermody-
namic limit are known [45] giving

(0, 0) =

{
−2+

p
5+ 1

3

√
5
6(25− 11

p
5) for J > 0

1− 2/
p

5 for J < 0
, (85)

for the corresponding two-point functions f (0, 0). Finally, we show how our results can be
used for the computation of 3-point functions. Therefore, we consider the operator P(τττ→1)

which projects the fusion product of three consecutive τ-anyons to an anyon of type 1. Using
the homogeneous limit of D3 (again for eigenstates |Φ〉 in the topological sector j = 0 of the
r = 5 RSOS model) as discussed in the previous section and (26) we find

〈Φ|P(τττ→1)
1 |Φ〉=

p
5− 2− 2

(p
5+ 5

)
(0,0)−

5
4

(p
5− 1

)
(2 (1,1)− (2,0)) . (86)

6 Conclusion

We have studied correlation functions for generic models with interactions-round-a-face on
a square lattice (and the related anyonic quantum chains). To make use of the Yang-Baxter
integrability local operators have been expressed in terms of (generalized) transfer matrices
for inhomogeneous versions of these models, see Eqs. (18) and (21). This allowed to encode
correlation functions in N -point reduced density matrices DN , Eq. (23), depending on a set of
N spectral parameters. We have constructed a set of discrete functional equations of reduced
quantum Knizhnik-Zamolodchikov type (28) which determine the functional dependence of
DN on these spectral parameters.

This framework has been applied to several critical solid-on-solid models: in the simple ’ref-
erence’ state (32) of the r = 3 CSOS model we have obtained explicit expressions for the gen-
eralized reduced density matrices on up to three neighbouring sites in terms of the one-point
function depending on the spectral parameter and the choice of inhomogeneities. By contrast,
the one-point functions in the RSOS models are independent of the spectral parameter. For
the r = 4 and 5 RSOS models we have been able to express the two-site density matrices in
terms of two unknown functions similar to the spin-1/2 Heisenberg chains [13, 15]. We find
that these functions (and, together with the application of the sum rules, the elements of the
N > 2-site density matrices) are uniquely determined by the discrete functional equations for
any transfer matrix eigenstate, given the analytical properties inherited from the Boltzmann
weights.

Additional properties of the density matrices are found in topological sectors with quantum
dimension dq = 1 (containing the ground states of the RSOS model): here we have observed
a reduction relating DN to DN−1 when one of the spectral parameters is sent to infinity. This
resembles the asymptotic condition on the density matrices complementing the discrete qKZ
equation for the Heisenberg spin chain guaranteeing the uniquess of its solution [14, 15].
Moreover, we have found that the reduced density operators of the r = 4 and 5 RSOS models
in these topological sectors can be expressed in terms of a single function determining the
nearest-neighbour two-site correlations in the particular transfer matrix eigenstate together
with a set of elementary structure functions. This observation and preliminary results for
r > 5 lead us to conjecture that this holds for all RSOS models in these topological sectors.

For the remaining tasks of calculation of the nearest-neighbour function (the physical part
of the correlation functions) and the structure functions (the algebraic part) in the topologi-
cal sectors with dq = 1 we have used an ansatz motivated by the ’factorized’ form of density
matrices for the spin-1/2 Heisenberg chain [7] together with the observation that the density
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operator depends on the particular realization of the model, i.e. the system size and choice of
inhomogeneities, only via the two-site function. This allows for an efficient computation of
the structure functions. We have applied this algorithm to reduce the calculation of the den-
sity operators on three neighbouring sites for the r = 4 and r = 5 RSOS models and related
correlation functions for the Fibonacci anyon chain to that of the physical part. The latter
solves discrete difference equations (59) and (77) resulting from the functional equation for
the two-site density matrix. Explicit expressions for the two-site functions solving these equa-
tions are limited to RSOS models of sufficiently small length or a special state as for the CSOS
model. In the fermionic basis approach for the spin-1/2 Heisenberg model the physical part of
the correlation functions at both finite length and finite temperature has been characterized
in terms of integral formulae and difference equations [13] or in terms of solutions to linear
and non-linear integral equations [47]. For face models such representation of the two-site
function is not known. As a first step, one might consider the zero temperature ground state
of these models in the thermodynamic limit: choosing a continuous distribution of the inho-
mogeneities the functional equations (28) are expected to hold for arbitrary complex values
of the spectral parameter λN allowing for their solution.

To conclude let us mention just two open problems which may be addressed based on the
approach presented here: first of all, in the context of RSOS models a comparison of the den-
sity matrices with the corresponding quantities for the related anisotropic Heisenberg chains
at roots of unity can provide insights on the boundary contributions to correlation functions
resulting from the peculiar fusion path nature of the RSOS Hilbert space. Secondly we want to
emphasize that the discrete functional equations (28) for the density operators hold for generic
integrable IRF models (such equations are also known for vertex models and spin chains re-
lated to quantum groups [48]). Together with the algorithm used here for the computation
of the structure functions in factorized expressions (62) and (63) this may well allow to shed
some light on the question whether the factorization of correlation functions is a general prop-
erty of integrable models which extends beyond RSOS models and spin-1/2 chains.
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A Proof of Theorem 1

Here we provide the proof of (18) for arbitrary values of L and 1 ≤ n < L. Let us first look at
its graphical representation (double arrows indicating periodical boundary conditions in the
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horizontal direction): for |a〉, |b〉 ∈HL
per we consider the matrix element

〈a|

(
n−1∏
k=1

t(uk)

)
Tαβ(un)T

αβ(un+1)

(
L∏

k=n+2

t(uk)

)
|b〉=

=

0 u1,2 . . . u1,L−1 u1,L

u2,1 0 . . . u2,L−1 u2,L

...
...

...
...

...

un,1 un,2 . . . un,L−1 un,L

un+1,1 un+1,2 . . . un+1,L−1 un+1,L

...
...

...
...

...

uL−1,1 uL−1,2 . . . 0 uL−1,L

uL,1 uL,2 . . . uL,L−1 0

a0 a1 a2 aL−2 aL−1 aL

b0 b1 b2 bL−2 bL−1 bL

α β

. (A.1)

After using the initial condition (16) in each row the Boltzmann weights can be turned into
Kronecker δ’s by repeated use of unitarity (14). To understand the principle we have a closer
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look at the four rows n− 1, n, n+ 1 and n+ 2, i.e.

· · · t(un−1)Tαβ(un)T
αβ(un+1)t(un+2) · · ·=

=

. . . un−1,n un−1,n+1 un−1,n+2 . . .

. . . un,n−1 un,n+1 un,n+2 . . .

. . . un+1,n−1 un+1,n un+1,n+2 . . .

. . . un+2,n−1 un+2,n un+2,n+1 . . .

α β

= ρn−1,nρn,n+1ρn+1,n+2×

×

. . . un−1,n+1 un−1,n+2 . . .

. . . un,n+2 . . .

. . . un+1,n−1 . . .

. . . un+2,n−1 un+2,n . . .

α β

= ρn−1,nρn,n+1ρn+1,n+2ρn−1,n+1ρn,n+2×

×

. . . un−1,n+2 . . .

. . . . . .

. . . . . .

. . . un+2,n−1 . . .

α β

= ρn−1,nρn,n+1ρn+1,n+2ρn−1,n+1ρn,n+2ρn−1,n+2×

×

. . . . . .

. . . . . .

. . . . . .

. . . . . .

α β
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where we used ui, j ≡ ui − u j and ρi, j ≡ ρ(ui − u j)ρ(u j − ui). Continuing this procedure
throughout (A.1) as on the shaded regions shown above, it is easy to see that

〈a|

(
n−1∏
k=1

t(uk)

)
Tαβ(un)T

αβ(un+1)

(
L∏

k=n+2

t(uk)

)
|b〉=

=
L∏

k,`=1

ρ(uk − u`)

. . . an−1 an = α an+1
. . .

. . . bn−1 bn = β bn+1 . . .

α β

=
L∏

k,`=1

ρ(uk − u`)δan,αδbn,β

∏
j 6=n

δa j b j

=
L∏

k,`=1

ρ(uk − u`) 〈a|
(

Eαβ

)
n
|b〉

is produced which finishes the proof.

B Proof of Theorem 2

Here we will provide the proof for the functional equation (28). It consists of three steps.
The idea is, to consider the action of AN on a density operator with one row added, i.e.
DN+1(λ1, . . . ,λN ,λN + λ). Recall, that for every n ∈ N Dn(λ1, . . . ,λn)

{α}{β} = 0 if α0 6= β0
or αn 6= βn. In those cases the functional equation holds trivially, so we may assume α0 = β0.
Also note that (AN (λ1, . . . ,λN ) [DN+1 (λ1, . . . ,λN ,λN +λ)])

{α}{β} is a matrix element of an
operator VN+1 → VN+1. To keep the presentation legible, the following steps will be shown
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graphically for N = L = 2, e.g.

A2 (λ1,λ2) [D3 (λ1,λ2,λ2 +λ)]
{α}{β} =

δα0β0
δα2β2

ρ(λ1 −λ2)ρ(λ2 −λ1)Λ(λ1)Λ(λ2)Λ(λ2 +λ)
×

×

γ

λ1 −λ2 λ2 −λ1

λ

λ1 − u1 λ1 − u2

λ2 − u1 λ2 − u2

λ2 +λ− u1 λ2 +λ− u2

α0 β0

α1 β1

α2 = β2
β3α3

Φ

Φ .

Now, writing VN+1 = VN ⊗̂V1 (see Section 2 for the definition of the symbol ⊗̂) we perform
two ‘(constrained) partial traces’ over the factor V1 each leading to one side of the functional
equation, i.e. operators on VN . In a final step we show that for the special choice of λN being
one of the inhomogeneities {ui} the constraint can be dropped and both summations lead to
the same result.

In a first step we note that from the definition (23) of the density operators∑
αN+1

DN+1 (λ1, . . .λN ,λN +λ)
{α}{β} = DN (λ1, . . . ,λN )

{α′}{β′} , (B.1)

where α′ = (α0, . . . ,αN ) and β′ = (β0, . . . ,βN ) with α0 = β0 and αN = βN . This gives imme-
diately∑
αN+1

AN (λ1, . . . ,λN ) [DN+1 (λ1, . . .λN ,λN +λ)]
αβ =

AN (λ1, . . . ,λN ) [DN (λ1, . . .λN )]
α′β′ .

(B.2)

Note that this fixes the spin γ to be equal to α1 in the graphical representation above (or αN−1
for general N). Therefore we have obtained the left-hand side of the functional equation (28).

For the second step we sum over α = αN = βN and fix the spin γ to be equal to βN−1. For
N = L = 2 this becomes (thick dotted lines indicate where the constraint δγβ1

is used)

δγβ1

∑
α2

A2 (λ1,λ2) [D3 (λ1,λ2,λ2 +λ)]
{α}{β} =

=
δα0β0

ρ(λ1 −λ2)ρ(λ2 −λ1)Λ(λ1)Λ(λ2)Λ(λ2 +λ)
×

×
∑
α

γ

λ1 −λ2 λ2 −λ1

λ

λ1 − u1 λ1 − u2

λ2 − u1 λ2 − u2

λ2 +λ− u1 λ2 +λ− u2

α0 β0

α1 β1

α
β3α3

Φ

Φ
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=
δα0β0

ρ(λ1 −λ2)ρ(λ2 −λ1)Λ(λ1)Λ(λ2)Λ(λ2 +λ)
×

×
α

γ

λ1 −λ2 λ2 −λ1

λ1 − u1 λ1 − u2

λ2 − u1 λ2 − u2

λ2 +λ− u1 λ2 +λ− u2

α0 β0

α1 β1

β3α3

Φ

Φ

=
δα0β0

Λ(λ1)Λ(λ2)Λ(λ2 +λ)

λ2 − u1 λ2 − u2

λ1 − u1 λ1 − u2

λ2 +λ− u1 λ2 +λ− u2

α0 β0

α1 β1

β3α3

Φ

Φ

=
1

Λ(λ1)Λ(λ2 +λ)

λ1 − u1 λ1 − u2

λ2 +λ− u1 λ2 +λ− u2

α0 β0

α1 β1

β3α3

Φ

Φ

= D2 (λ1,λ2 +λ)
α̃ β̃

with α̃= (α0,α1,α3) and β̃ accordingly. Here we have used the initial and crossing conditions
to evaluate the Boltzmann weight at λ, the Yang-Baxter equation to pull the rotated weight
from the right to the left and finally 〈Φ|Tα0α0

(λ2) = Λ(λ2)〈Φ| Pα0α0
with the projection operator

Pαα : Hper → Hαα. For general N > 2 these operations have to be iterated to move the row
T (λN ) to the top yielding the right-hand side of Eq. (28).

The final step consists of showing that for the special choice ofλN the two operations shown
above yield the same result. Combining the unitarity condition (14) and crossing symmetry
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(15) it follows immediately that

a

c

a

b

d

e

u

u+λ

= ρ(u)ρ(−u)δbe . (B.3)

This relation can be iterated which was used to find inversion relations for the transfer matrices
of inhomogeneous face models [49]. Here it is the key ingredient to complete the proof. To
this end we focus on the last two lines of AN [DN+1](λ1, . . . , ui , ui + λ). The scalar prefactors
appearing in (27) and in the following operations are suppressed as they do not depend on the
spins in the auxiliary spaces and are irrelevant for the proof. Now we use the initial condition
in the i-th column and (B.3) in the following ones until the rightmost line of spins is reached:

Φ

...
...

...
...

. . .

. . .

. . .

. . .

. . .

0 ui − ui+1 ui − uL

λ ui − ui+1 +λ ui − uL +λ

λγ

βN+1
αN = βN

βN−1

=

Φ

...
...

...
...

. . .

. . .

. . .

. . .

. . .

ui − ui+1 ui − uL

ui − ui+1 +λ ui − uL +λ

λγ

βN+1
αN = βN

βN−1
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=

Φ

...
...

...
...

. . .

. . .

. . .

. . .

. . .

ui − uL

ui − uL +λ

γ

βN+1
αN = βN

βN−1

=

Φ

...
...

...
...

. . .

. . .

. . .

λN −λN−1

γ

βN+1

βN

βN−1

βN−2

.

Using the initial condition for the rotated weight with spectral parameter λ we obtain that
βN = βN+1. By definition of the operator AN and periodic boundary conditions in quantum
space Hper we also have αN = αN+1. The spin γ is not connected to one of the Boltzmann
weights any more and therefore the partial traces considered above yield the same result.
This proves the theorem.

Note that the restriction of λN ∈ {ui} in the functional equation (28) can be dropped
for matrix elements where αN−1 is a leaf node of the adjacency graph G: in this case all
neighbouring spins are necessarily equal and therefore the lowest two rows can be removed
using (B.3) for arbitrary values of λN .

Finally one should remark that, depending on the definition of the Boltzmann weigths for
a particular model, the crossing relation may be modified by height dependent gauge factors,
see e.g. (45) for the RSOS model. While these factors cancel in calculations where periodic
boundary conditions can be imposed they have to be taken care of in the functional equation
(28) – either by rescaling the operators A and D or by adding constant (i.e. not spectral
parameter dependent) prefactors.
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C Factorization of D3 for the r = 5 RSOS model

Similar as in the r = 4 case, Eq. (63), the matrix elements of the three-site density operator
D3(λ1,λ2,λ3) in transfer matrix eigenstates from the j = 0 sector of the r = 5 RSOS model
can be decomposed in terms factorizing into the two-point function f (λi ,λ j), 1 ≤ i < j ≤ 3,
as defined in (73) and a set of structure functions fi, j(λ1,λ2,λ3), i.e.

f0 + f1,2(λ1,λ2,λ3) f (λ1,λ2) + f2,3(λ1,λ2,λ3) f (λ2,λ3) + f1,3(λ1,λ2,λ3) f (λ1,λ3) .

Furthermore we find that all structure functions can be written as

f1,2(λ1,λ2,λ3) =
1
4

(
f 1
1,2 + f 2

1,2 cot(λ13) + f 3
1,2 cot(λ23) + f 4

1,2 cot(λ13) cot(λ23)
)

f1,3(λ1,λ2,λ3) =
1
4

(
f 1
1,3 + f 2

1,3 cot(λ12) + f 3
1,3 cot(λ23) + f 4

1,3 cot(λ12) cot(λ23)
)

f2,3(λ1,λ2,λ3) =
1
4

(
f 1
2,3 + f 2

2,3 cot(λ12) + f 3
2,3 cot(λ13) + f 4

2,3 cot(λ12) cot(λ13)
)

,

(C.1)

where f0 and { f 1
i, j , f 2

i, j , f 3
i, j , f 4

i, j} are constants depending on the considered matrix element.
Hence, we can uniquely describe any matrix element by in total 13 constants. In Table 1 we
list these constants for the non-zero matrix elements 〈α|D3(λ1,λ2,λ3)|β〉 in the sector with
odd α0. All other matrix elements can be obtained by using reflection symmetry.
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D Non-abelian anyons

The sequence of fusion processes defining the fusion path basis (4) of states for an anyonic
quantum chain can be reordered by so-called F-moves [32]. Up to some gauge freedom the
latter are determined by the fusion rules (3) and the pentagon equation. Here we define the
F-moves graphically

a de

b c

=
∑

f

(
F abc

d

)e
f a d

f

b c

. (D.1)

For Fibonacci anyons the only non-trivial F-move is

(
Fττττ

)e
f =

(
φ−1 φ−1/2

φ−1/2 −1/φ

)
e f

, (D.2)

where e, f ∈ {1,τ} and φ ≡ 1
2(1+

p
5) is the golden ratio (see e.g. Ref. [28]. All others are 1

if they are allowed by the fusion rules and 0 else.
Local projection operators can be expressed in terms of the F-moves as

P(ττ→`)i ≡
∑

ai−1,ai ,a
′
i ,ai+1

[(
F ai−1ττ

ai+1

)a′i

`

]∗ (
F ai−1ττ

ai+1

)ai

`
| . . . ai−1a′iai+1 . . . 〉〈. . . ai−1aiai+1 . . . |. (D.3)

Though depending on the sites i−1, i and i+1 they leave the first and the last invariant. Since
the F-moves of the Fibonacci anyons are real valued, we can drop the complex conjugation. A
straight forward generalization allows to express local three anyon projection operators as

〈a|P(τττ→`)i |b〉 ≡

 ∏
k/∈{i,i+1}

δak bk

∑
x

[(
F bi−1ττ

ai+1

)ai

x

(
F bi−1 xτ

bi+2

)ai+1

`

]∗ (
F bi−1 xτ

bi+2

)bi+1

`

(
F bi−1ττ

bi+1

)bi

x
.

(D.4)
The anyons of an su(2)3 theory can be labeled by generalized spins j = 0, 1

2 , 1, 3
2 . An

automorphism of the corresponding fusion algebra allows to identify j = 0, 3
2 with the trivial

(x = 1) and j = 1
2 , 1 with the τ-anyon of the Fibonacci chain. Starting from fusion path states

|x0 x1 . . . xL〉 of Fibonacci anyons with xn ∈ {1,τ} we obtain the Hilbert space of r = 5 RSOS
model defined in Section 5.2 by mapping

xn 7→ an ≡


1 for xn = 1, n odd

2 for xn = τ, n even

3 for xn = τ, n odd

4 for xn = 1, n even

. (D.5)

Note that this mapping gives only half of the basis states of the RSOS model, since an will
be even (odd) on the even (odd) sublattice. The other half is obtained by switching odd and
even in (D.5). This also provides a mapping of the anyon Hamiltonian to an operator in the
RSOS model. Similarly the projection operators P(ττ→1)

i are mapped (up to a factorφ) to local
operators ei forming a representation of the Temperley-Lieb algebra [28,50]

〈a|ei|b〉= δai−1ai+1

√
gai

gbi

gai−1
gai+1

∏
k 6=i

δak bk
, (D.6)
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with gauge factors gx from Eq. (44). Comparing this with the RSOS Boltzmann-weights (43)
we find:

〈a|ei|b〉=

∏
k 6=i

δak bk

 W
(

ai−1 ai
bi ai+1

∣∣∣∣λ) . (D.7)

We will now express the Hamiltonian by means of the transfer matrix. Therefore, we observe
that

W ′
(

ai−1 ai
bi ai+1

∣∣∣∣0)= 1
sinλ

W
(

ai−1 ai
bi ai+1

∣∣∣∣λ)− cotλδbi ai
, (D.8)

where W ′ is the derivative with respect to the spectral parameter u. Furthermore, crossing
symmetry and unitarity imply that t−1(0) = t(λ) for the homogeneous model (i.e. all inho-
mogeneities ui = 0). In that case, both t(0) and t(λ) are shift operators due to the initial
condition. Hence, the logarithmic derivative of the transfer matrix at u= 0 is the sum of local
operators

〈a|t−1(0)t ′(0)|b〉=
∑

i


1

sinλ
. . . . . .

λ

ai−1 ai ai+1

bi−1 bi bi+1

− cotλ
L∏

k=0

δak bk


=
∑

i

〈a|
ei

sinλ
− cotλ1|b〉 (D.9)

or ∑
i

ei = sinλ t−1(0)t ′(0) + L cosλ1 . (D.10)

Hence the anyonic Hamiltonian (81)

H = J
∑

i

P(ττ→1)
i 7→

J
φ

∑
i

ei (D.11)

is a member of the commuting family of operators generated by the transfer matrix (9) of the
r = 5 RSOS model.

Likewise we can also map the 3-anyon projector (D.4) to an operator acting on the r = 5
RSOS model Hilbert space.
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