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Analysis-Suitable T-Splines of arbitrary degree and dimension
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This paper defines analysis-suitable T-splines for arbitrary degree (including even and mixed degrees) and arbitrary dimension.
We generalize the concept of anchor elements known from the two-dimensional setting, extend two existing concepts of
analysis-suitability and justify their sufficiency for linear independence of the T-spline basis.
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1 Introduction

T-splines were introduced in 2003 in computer-aided design as a new realization for B-splines on non-uniform meshes [1]
with local mesh refinement [2]. Shortly after, Isogeometric Analysis was introduced, and T-splines were applied as ansatz
functions for Galerkin schemes with promising results [3,4], but were proven to lack linear independence in certain cases [5],
which actually excludes them from the application in a Galerkin method. The issue was solved in 2012 [6], proving that
linear independence is guaranteed if meshline extensions at the hanging nodes, called T-junction extensions, do not intersect.
This criterion is referred to as analysis-suitability. Still in 2012, the introduction of dual-compatibility and its equivalence
to analysis-suitability [7] provided new insight on the linear independence of T-splines, and in 2013, analysis-suitability was
generalized to T-splines of arbitrary polynomial degree [8], still restricted to the two-dimensional case. At that time, techniques
for the construction of 3D T-spline meshes from boundary representations were introduced [9, 10], motivating the theoretical
research on T-splines in three space dimensions, but in particular the linear independence of higher-dimensional T-splines
was only characterized through the dual-compatibility criterion, until in 2016, a definition of T-junction extensions and a
more abstract version of analysis-suitability in three dimensions [11] was introduced and, in 2017, generalized to arbitrary
dimension [12], but only for odd polynomial degrees.

In this paper, we give a dimension-independent definition of analysis-suitable T-Splines of arbitrary degree. We general-
ize both approaches to analysis-suitability, the abstract and the geometric one, and argue that both are sufficient for linear
independence of the corresponding T-splines.

The rest of this paper is organized as follows. Section 2 generalizes T-splines of arbitrary degree, in particular the concept
of anchor elements, to arbitrary dimension and explains the construction of the T-spline blending functions. Section 3 gives
a generalization of analysis-suitability in the sense of [12] to arbitrary degree, called abstract analysis-suitability, and a gen-
eralization of analysis-suitability in the sense of [8] to arbitrary dimension, called geometric analysis-suitability. Finally, we
sketch a proof that geometric analysis-suitability is sufficient for abstract analysis-suitability, and hence that both criteria are
sufficient for linearly independent T-splines. In Section 4, we give conclusions and outlook to future work.

2 Multivariate T-Splines

We consider a rectangular index domain Ω =×d

k=1
[0, Nk], with Nk ∈ N for k = 1, . . . , d and the corresponding para-

metric domain Ω̂ =×d

k=1
[ξk0 , ξ

k
Nk

]. Let T be a mesh of Ω, consisting of open axis-parallel boxes with integer vertices.
For k = 1, . . . , d, we denote by H(k) the set of k-dimensional mesh entities of T. The union of all element boundaries
Sk =

⋃
T∈T ∂T =

⋃d−1
j=0 H

(j) = Ω \ T is called the skeleton of T. For an index set κ = {κ1, . . . , κn} and a d-dimensional
(volumetric) element T = T1 × · · · × Td ∈ H(d) = T composed from open intervals T1, . . . , Td, we denote the (d − n)-
dimensional, κ-orthogonal interfaces by H(κ)(T ), i.e.

H(κ)(T ) = {T̃ = T̃1 × · · · × T̃d | T̃j ⊊ ∂Tj for j ∈ κ, T̃j = Tj for j ̸∈ κ},

where the components T̃j are either singleton sets or open intervals with start and end points in {0, . . . , Nj}.
The global set of κ-orthogonal mesh entities is denoted by H(κ) =

⋃
T∈T H(κ)(T ) ⊆ H(d−n), with equality only if n = 0

or n = d, see Figure 1 for a 3D illustration. Note that κ may be empty, which yields H(∅)(T ) = {T} and H(∅) = T.
For polynomial degrees p = (p1, . . . , pd) ∈ Nd, we split the index domain Ω into an active region AR and a frame region

FR, with

AR :=
d×

k=1

[⌊
pk + 3

2

⌋
, Nk −

⌊
pk + 3

2

⌋]
and FR := Ω \AR.
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We restrict ourselves to certain types of index T-meshes which we call admissible. The index T-mesh defines T-Splines
based on the knot vectors associated with the anchor elements. Since we consider p-open knot vectors in the construction, we
require the following condition on the T-meshes.

Definition 2.1 (T-junctions, admissible meshes) We define for any k = 1, . . . , d and n = 0, . . . , Nj the slice

Sk(n) :=
k−1×
j=1

[0, nj ]× {n} ×
d×

j=k+1

[0, nj ] =
{
(x1, . . . , xd) ∈ Ω | xj = n

}
,

and we call an interface E ∈ H(d−2) with E ⊈ ∂Ω a hanging interface or T-junction if it has valence |{H ∈ H(d−1) | E ⊂ ∂H}| < 4.
Finally, a mesh T is called admissible if for k = 1, . . . , d

Sk(n) ⊆ Sk for n = 0 , . . . ,

⌊
pk + 3

2

⌋
and n = Nk −

⌊
pk + 3

2

⌋
, . . . , Nk, (1)

and if there are no hanging interfaces in the frame region.

Definition 2.2 (anchors) Let p = (p1, . . . , pd) be the vector of polynomial degrees of the T-splines. The set of anchors is
then defined by

A = {A ∈ H(κ) | A ⊂ AR} with κ = {ℓ | pℓ odd }.

Definition 2.3 (Index sets and vectors) For any mesh entity E = E1 × · · · × Ed ∈ H(ℓ) with an index set ℓ ⊆ {1, . . . , d},
we define the index sets

Ij(E) := {n ∈ N | E1 × · · · × Ej−1 × {n} × Ej+1 × · · · × Ed ⊂ ⋃
H(ℓ∪{j})}.

The index vectors vj(A) for an anchor A = A1 × · · · ×Ad are defined as subsets of the index sets Ij(A) given by:

• If pj is odd, then vj(A) ∈ Npj+2 consists of the pj + 2 consecutive indices ℓ0, . . . , ℓpj+1 in Ij(A), such that Aj =
{ℓ(pj+1)/2} is the middle element.

• If pj is even, then vj(A) ∈ Npj+2 consists of the pj + 2 consecutive indices ℓ0, . . . , ℓpj+1 in Ij(A), such that Aj =
(ℓpj/2, ℓpj/2+1) is the interval bounded by the two middle elements.

An example is given in Figure 2. With p = (3, 2), the set of anchors is given by all the vertical line segments in the active
region AR. In Figure 2 the anchor A = {3}×(2, 3) is marked by a solid dot. The index sets are given by fixing one coordinate
and checking for which integer it is in the set of vertices, hence I1(A) = {0, 1, 2, 3, 5, 6, 7} and I2(A) = {0, 1, 2, 3, 4, 5}.
In the first coordinate we have p1 = 3 (odd), thus we choose the p1 + 2 = 5 indices ℓ10, . . . , ℓ

1
4, s.t. ℓ12 = 3 and we

get vk(A) = (1, 2, 3, 5, 6). In the other direction we have p2 = 2 (even), and we choose again the p2 + 2 = 4 indices

x1

x2

x3

H(2)

H(3)

H(1)

H(1,2) H(1,2)

H(1,2)

H(2,3)

H(2,3)

H(2,3)

H(1,3) H(1,3)

H(1,3)

Fig. 1: Visualization of the different entities. The lines H(i,j)

have coordinates xi and xj fixed, and the planes (resp. faces)
H(k) have coordinate xk fixed. For sake of simplicity, the ver-
tices have been left out in this example.
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Fig. 2: Visualization of index sets and vectors for an anchor
A. The filled ellipses resp. circles correspond to the indices
of the index set that fill the index vector. The marked entities
correspond to the indices used for the index set, resp. vector.
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ℓ20, . . . , ℓ
2
3, s.t. (ℓ21, ℓ

2
2) = (2, 3) and we get vk(A) = (1, 2, 3, 4). Since the index vector vk(A) is associated to the knot vector

(ξℓk1 , . . . , ξℓkpk+2
), the support of the T-Spline at the anchor A is

supp B̂A = [ξ11 , ξ
1
6 ]× [ξ21 , ξ

2
4 ].

In a structured, uniform mesh, this construction yields the usual tensor-product B-spline basis. However, a non-uniform
refinement (i.e. adaptive) results in meshes as demonstrated in Figure 2, where B-splines or NURBS cannot be applied.

Definition 2.4 (T-spline) For pj ∈ N, we denote by Bvj(A) : Ω̂ → R the univariate B-spline function of degree pj that is
returned by the Cox-deBoor recursion with knot vector ξvj(A) = (ξℓ0 , . . . , ξℓpj+1

). The T-spline function associated with the
anchor A is defined as

BA(ζ1, . . . , ζd) :=
d∏

j=1

Bvj(A)(ζj), for (ζ1, . . . , ζd) ∈ Ω̂, (2)

and the corresponding T-spline space is given by ST,A(Ω̂) = span{BA | A ∈ A}. The index support of BA will be denoted
by suppΩ(BA) =×d

k=1
conv(vk(A)), where conv(M) is the convex hull of a set M .

3 Analysis-Suitability

Definition 3.1 (Abstract T-junction extensions and analysis-suitability) We define for all j = 1, . . . , d and n = 0, . . . , Nj

the abstract T-junction extension

ATJj(n) = Sj(n) ∩
⋃

A∈A
n∈Ij(A)

suppΩ(BA) ∩
⋃

A∈A
n/∈Ij(A)

suppΩ(BA) and ATJj =

Nj⋃

n=0

ATJj(n).

We call the mesh T abstractly analysis suitable (AAS) if the abstract T-junction extensions are pairwise disjoint, i.e. if
ATJi ∩ATJj = ∅ for i ̸= j.

This definition is applicable in the index space as well as in the parametric space, and it can be shown that AAS T-meshes
generate linearly independent T-splines, see [12, Theorems 5.3.14 and 5.3.15]. However, an application in practice as a
sufficient criterion for linear independence is likely to be more expensive than checking for singularity of the system matrix,
including assembly. We therefore introduce a second, geometric approach to analysis-suitability which refers to the classical
notion of T-junction extensions, see e.g. [6, 13, 14].

Definition 3.2 (Geometric T-junction extensions and analysis-suitability) Let T = T1×· · ·×Td ∈ H(d−2) be a T-Junction,
i.e. T is a hanging interface, with Ti and Tj being singletons, and let Ik(T) be its corresponding index sets. For each index k
we define the extension (index) vector vek(T), to be the vector of the (pk+1) consecutive indices of Ik(T), s.t. Tk is the middle
element (see also the definition of index vectors for anchors). Further, let ℓ = i or ℓ = j be the index, s.t.

GTJℓ(T) := Sℓ(Tℓ) ∩ conv
(
[ve1(T)× · · · × ved(T)]

)
̸⊂ H(ℓ).

We then call GTJℓ(T) the geometric T-Junction extension of T. Further, we say that T is geometrically analysis-suitable
(GAS), if for all T1, T2 ∈ H(d−2), with T1 and T2 hanging interfaces and corresponding direction i ̸= j, there is GTJi(T1) ∩
GTJj(T2) = ∅.

Note that ℓ is not necessary unique, however, if the mesh is geometrically analysis-suitable it is by definition.
The key ideas in both definitions are the same, i.e. the T-Junction extensions are required to be pairwise disjoint. Although

the above definitions of analysis-suitability seem very different, the following theorem shows their connection, namely, that
abstract T-junction extensions are neighborhoods of T-junctions.

Theorem 3.3 All GAS T-meshes are AAS.

Sketch of proof . We know that all uniform meshes (i.e., meshes without T-junctions and hence empty ATJs and non-
existent GTJs) are AAS and GAS. Consider a non-uniform T-mesh T and suppose w.l.o.g. that ATJ1 ̸= ∅ and hence
ATJ1(n) ̸= ∅ for some n ∈ {0, . . . , Nj}. Then there exists

x ∈ ATJ1(n) = S1(n) ∩
⋃

A∈A
n∈I1(A)

suppΩ(BA) ∩
⋃

A∈A
n/∈I1(A)

suppΩ(BA),

and there exist anchors A(1) = A
(1)
1 × · · · ×A

(1)
d ,A(2) = A

(2)
1 × · · · ×A

(2)
d ∈ A with n ∈ I1(A

(1)) and n /∈ I1(A
(2)) such

that x ∈ S1(n) ∩ supp(BA(1)) ∩ supp(BA(2)). The definition of I1(•) yields that {n} × A
(1)
2 × · · · × A

(1)
d ⊆ ⋃

H(ℓ∪{1})

www.gamm-proceedings.com © 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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and {n} × A
(2)
2 × · · · × A

(2)
d ⊈

⋃
H(ℓ∪{1}). Hence, there exist points r, s ∈ S1(n) ∩ supp(BA(1)) ∩ supp(BA(2)) such

that r ∈ S1(n) ∩
⋃
H(ℓ∪{1}) and s ∈ S1(n) \

⋃
H(ℓ∪{1}). Somewhere between r and s is a hanging interface T ⊂ S1(n) ∩

supp(BA(1)) ∩ supp(BA(2)) ∩
⋃
H(ℓ∪{1}). The maximal distance between x and T are p+1

2 segments in dimensions with odd
polynomial degree and p

2 segments in dimensions with even polynomial degree, except the first dimension, since both x and T

are in S1(n).
Consequently, the arbitrarily chosen x ∈ ATJ1 is always contained in some geometric T-junction extension, and hence the

union of all geometric T-junction extensions in first direction is a superset of the union of the corresponding abstract T-junction
extension,

x ∈ GTJ1(T) ⊆
⋃

T′ T-junction
in direction 1

GTJ1(T
′) for all x ∈ ATJ1 =⇒ ATJ1 ⊆

⋃

T′ T-junction
in direction 1

GTJ1(T
′)

and analogously for other dimensions j = 2, . . . , d.
If T is not AAS, then two ATJs intersect, so will two GTJs, and hence T is not GAS. This concludes the proof.

4 Conclusions & Outlook

We have generalized analysis-suitability of T-splines to arbitrary degree in higher dimensions. In addition to the abstract
notion of analysis-suitability developped in [12], a generalized version of classical geometric T-junction extensions was shown
to be an appropriate tool for analysis-suitability as well. Ongoing work is the detailed elaboration of the sketched proof of
Theorem 3.3 and the precise application of [12, Theorems 5.3.14 and 5.3.15] to the definitions given here, furthermore an
implementation for trivariate AS T-splines and the development of anisotropic refinement schemes that preserve analysis-
suitability.

Acknowledgements Open access funding enabled and organized by Projekt DEAL.

References
[1] T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri, T-splines and t-NURCCs, in: ACM SIGGRAPH 2003 Papers on - SIGGRAPH

'03, (ACM Press, 2003).
[2] T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng, and T. Lyche, T-spline simplification and local refinement, in:

ACM SIGGRAPH 2004 Papers, , SIGGRAPH ’04 (Association for Computing Machinery, New York, NY, USA, 2004), p. 276–283.
[3] Y. Bazilevs, V. Calo, J. Cottrell, J. Evans, T. Hughes, S. Lipton, M. Scott, and T. Sederberg, Computer Methods in Applied Mechanics

and Engineering 199(5), 229–263 (2010), Computational Geometry and Analysis.
[4] M. R. Dörfel, B. Jüttler, and B. Simeon, Computer Methods in Applied Mechanics and Engineering 199(5), 264–275 (2010), Com-

putational Geometry and Analysis.
[5] A. Buffa, D. Cho, and G. Sangalli, Computer Methods in Applied Mechanics and Engineering 199(23), 1437–1445 (2010).
[6] X. Li, J. Zheng, T. W. Sederberg, T. J. Hughes, and M. A. Scott, Computer Aided Geometric Design 29(1), 63–76 (2012), Geometric

Constraints and Reasoning.
[7] L. Beirão da Veiga, A. Buffa, D. Cho, and G. Sangalli, Computer Methods in Applied Mechanics and Engineering 249-252, 42–51

(2012), Higher Order Finite Element and Isogeometric Methods.
[8] L. Beirão da Veiga, A. Buffa, and other, Mathematical Models and Methods in Applied Sciences 23(11), 1979–2003 (2013).
[9] Y. Zhang, W. Wang, and T. J. Hughes, Computer Methods in Applied Mechanics and Engineering 249-252, 185–197 (2012), Higher

Order Finite Element and Isogeometric Methods.
[10] W. Wang, Y. Zhang, L. Liu, and T. J. Hughes, Computer-Aided Design 45(2), 351–360 (2013), Solid and Physical Modeling 2012.
[11] P. Morgenstern, SIAM Journal on Numerical Analysis 54(4), 2163–2186 (2016).
[12] P. Morgenstern, Mesh Refinement Strategies for the Adaptive Isogeometric Method, PhD thesis, Friedrich-Wilhelm-University Bonn,

June 2017.
[13] L. Beirão da Veiga, A. Buffa, D. Cho, and G. Sangalli, Computer Methods in Applied Mechanics and Engineering 249-252, 42–51

(2012).
[14] L. Beirão da Veiga, A. Buffa, G. Sangalli, and R. Vázquez, Acta Numerica 23, 157–287 (2014).

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com

 16177061, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202100234 by T

echnische Inform
ationsbibliothek, W

iley O
nline L

ibrary on [17/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


