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A self-excited dynamic system is able to oscillate periodically by itself. Corresponding solutions of the autonomous differ-
ential equation are called limit cycles or periodic attractors. To find these solutions, a simple approach would be brute-force
search for the corresponding basins of attraction. However, grid searching might become unfeasible with increasing number
of degrees of freedom. Instead, solution path continuation techniques are often used to keep computational costs low. As the
continuation of solution branches and their bifurcations provides only solutions which are connected to each other, isolas and
detached branches are missed out. We present a method for fast limit cycle detection of self-excited systems with isolas based
on nonlinear modes. A nonlinear mode, often referred to as nonlinear normal mode, is defined as a periodic motion of the
undamped and unforced mechanical system. For nonconservative systems however, e.g. with friction nonlinearity, damping
cannot be neglected as it is characteristic for the oscillators nonlinear dynamics. Therefore, the Extended Periodic Motion
Concept (E-PMC) was proposed recently to find periodic solutions of nonconservative nonlinear systems. In this work, the
E-PMC is applied to self-excited dynamic systems in order to find periodic attractors along its nonlinear modes. Zero cross-
ings of the nonlinear damping curve indicate autonomous solutions which can be used as starting points for single parameter
continuation. Thus, solutions corresponding to the main branch and detached curves in the solution space are connected by
nonlinear modes. The proposed method is applied to a frictional oscillator with cubic stiffness and proves to be robust in the
search for isolated periodic solutions that are already known from literature.
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1 Concept of nonlinear modes

A nonlinear mode (NM) is defined as a (nonnecessarily synchronous) periodic motion of a nonlinear system for which damping
and forcing terms are neglected [2]. NMs are thus periodic solutions of the autonomous system resulting from the general
equation of motion as follows

M7+ Ci+ KZ + fu(#,7) = F(t) (1)

= Mi+KZ+ fu(@=0 , )

where nonlinear forces are conservative. Applying Shooting or Harmonic Balance techniques, solutions of the autonomous
system can be found denoted as the Periodic Motion Concept (PMC), cf. [1] and [3]. Like their linear counterpart, i.e. lin-
ear modes, a NM describes the region of maximum response under external forcing. In contrast to linear systems, resulting
eigenfrequencies can be energy dependent which reflects the characteristic nonlinear behaviour, e.g. stiffening or softening
behavior under increasing amplitudes. However, in the case of non-conservative nonlinearities neglecting damping and veloc-
ity dependent nonlinear force terms is not appropriate as fundamental nonlinear mechanisms are ignored. For periodic motion,
an unforced non-conservative nonlinear system requires energy inputs to compensate the dissipative terms, as in the case of
self-excitation. Thus, to analyse periodic oscillation of non-conservative systems, the Extended Periodic Motion Concept
(E-PMC) was proposed, which introduces artificial damping in order to balance the system’s energy at all times [1]. Mass
proportional damping of the form —&M. 7 is added to the unforced system yielding

Mi+(C—eM)Z+ K7+ fu(Z,7) =0 . 3)

This way, periodic solutions can be computed using the same techniques as in the conservative case. The unknown £ is
computed such that energy sources and sinks are balanced, hence achieving a periodic motion of the system in Eq. 3. Using a
mass proportional negative damping term is in accordance with linear modal analysis and modal damping. Considering linear
systems, the artificial damping is not affecting frequencies or mode shapes and the relation 2Dwy = & holds. For nonlinear
systems, mode shapes are no longer orthogonal and artificial modal coupling may be introduced. In this work, we propose to
use the artificial damping as an indicator function for autonomous solutions of the true nonlinear system. Such solutions are
found at points along the NM for which £ = 0 hold. Here, no artificial damping is required, and as £ vanishes, no kind of
artificial modal coupling is introduced. The E-PMC is thus an excellent choice for limit cycle detection of self-excited systems
with non-conservative nonlinear forces. Details considering implementation and further results can be found in [6] and [7].
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Fig. 1: 3 DOF nonlinear oscillator model, cf. [4] and [6] Fig. 2: Bifurcation diagram of 3 DOF model for variation of &,

2 Limit cycle computation using nonlinear modes

Limit cycles of non-conservative nonlinear systems can be represented by 1D-submanifolds for a certain parameter variation.
Fig. 2 depicts a subcritical Hopf bifurcation of the 3 DOF model from Fig. 1. The static equilibrium and a limit cycle oscillation
(solid lines) are connected by an unstable branch (dashed line). However, there may be limit cycle solutions which are not
connected to either of those solutions, hence forming isolas in the given parameter space. Nonlinear modes can be used here
to find limit cycle solutions whithout changing a system parameter. Zero crossings of the artificial damping parameter £ along
the nonlinear mode indicate periodic solutions of the dynamical system. This complementary approach to limit cycle detection
is applied to the 3 DOF nonlinear oscillator to point out its benefits.

3 3 DOF nonlinear oscillator limit cycles

The 3 DOF system shown in Fig. 1 will be analysed with respect to limit cycles, cf. [4]. The mass m is connected to the base
oscillator via a linear and an additional cubic nonlinear spring as well as a linear dashpot damper. Energy is fed in the system
through the frictional contact with a continuously moving belt. Fig. 2 shows the bifurcation plot for variation of stiffness &,
exhibiting limit cycle oscillation with typical bifurcation. Bifurcation diagrams are computed using orthogonal collocation
implemented in the software package MatCont [5]. A nonlinear modal analysis is performed applying a Harmonic Balance
approach with path continuation within the E-PMC with artificial damping. For the 3 DOF system there are 3 nonlinear
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Fig. 3: Nonlinear modes of the 3 DOF oscillator at k, = 32.5 with marked limit cycle solutions for which Dny = 0, cf. [6].
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Fig. 4: Combined results of bifurcation analysis and nonlinear mode NM 2 computed for k, = 32.5, cf. [6].

modes which coincide with their linear counterpart for small amplitudes, see Fig. 3. The nonlinear modes are plotted over the
equivalent damping ratio Dy which is defined by

Dxut = 2570 , @)

with energy dependent eigenfrequency wy > 0 of the corresponding nonlinear mode. At k, = 32.5, there are two zero
crossings of the equivalent damping ratio, which is zero for £ = 0, i.e. two periodic solutions of the oscillator are detected by
the proposed approach.

The bifurcation diagram and the nonlinear mode computation are combined in Fig. 4. Here, the complementary compu-
tation reveals its benefits in finding periodic solutions for a fixed set of system parameters (i.e. here: fixing k, = 32.5).
Both, the stable and unstable limit cycle solutions are detected and coincide with the solution computed using orthogonal
collocation. Fig. 5 shows the bifurcation plot from Fig. 2 for a wider range of &, and with stepwise reduced damping values
d = d, = d, = d. For the smaller damping values, the NMs exhibit three zero-crossings of the artificial damping term, i.e.
indicating three periodic solutions of the system. The solution at low amplitude values corresponds to the stable limit cycle
linked to the equilibrium, but the two intersections at high amplitude values correspond to an isolated solution branch, which
is not connected to any other solution. Hence, finding this isola would have remained to a considerable amount of luck during
the analysis of the system. The E-PMC adds significant value at this point, as it turns out to be a fast and robust method for
finding those solutions. The additional coexisting periodic solutions found for high amlitude values Z can each be set as a
starting point for continuation in the £ — k,—plane to compute the evolved isola. Further reduction of damping coefficients
results in a larger isola which shows typical stable and unstable sections.
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Fig. 5: Analysis results for different levels of damping with d = d, = dy = d. revealing an isolated branch of limit cycle solutions which
is found applying the E-PMC path continuation, cf. [6].
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4 Conclusion

Nonlinear modes are a concept allowing for modal analysis of nonlinear systems motivated by its counterpart in linear modal
analysis. Recent developments in nonlinear mode computation of non-conservative systems open up new possibilities beyond
system characterization. In this work, the Extended Periodic Motion Concept (E-PMC) for non-conservative systems proposed
in [1] is applied to limit cycle detection of a 3 DOF self-excited oscillator. The E-PMC is based on an artificial damping term
to cancel out dissipative mechanisms and thus creating periodic motion of the frictional nonlinear system. A zero crossing of
the resulting equivalent damping value Dy of a nonlinear mode indicates an autonomous periodic motion which is related
to a limit cycle solution of the self-excited system. This way, a limit cycle detection complementary to bifurcation analysis is
established. For the 3 DOF nonlinear oscillator coexisting stable limit cycles are found one of which is located on an isolated
solution path disconnected from the equilibrium. Limit cycle search using E-PMC is thus a promising supplement to classical
bifurction analysis.
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