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Families of curves with Higgs field of arbitrarily large kernel

Vı́ctor González-Alonso and Sara Torelli

Abstract

In this article, we consider the flat bundle U and the kernel K of the Higgs field naturally
associated to any (polarized) variation of Hodge structures of weight 1. We study how strict the
inclusion U ⊆ K can be in the geometric case. More precisely, for any smooth projective curve
C of genus g � 2 and any r = 0, . . . , g − 1, we construct non-isotrivial deformations of C over a
quasi-projective base such that rkK = r and rkU � g+1

2
.

1. Introduction and notations

The Hodge bundle H1,0 = f∗ωf of a one-parametric semistable family f : S → B of complex
projective curves of genus g (or more generally, of a polarized variation of Hodge structures of
weight one) carries two natural vector subbundles: the flat unitary summand U of the second
Fujita decomposition [4, 5, 12] and the kernel K of the associated Higgs field (see Section 3
for more details). By definition, there is an inclusion U ⊆ K, which must be an equality if
K = H1,0. Besides this trivial case, it is not difficult to explicitly construct (non-geometric)
variations of Hodge structures over a disk where both rkU and rkK can be chosen arbitrarily
(satisfying rkU � rkK < g). However, it is not clear whether this construction can provide
geometric variations of Hodge structures, that is, arising from a semistable family of curves,
or on the contrary such geometric variations have some restrictions on the ranks of U and K.
In particular, it is not clear when the equality U = K holds in the geometric case.

We shortly highlight the importance of both bundles in the literature. The flat unitary
summand U is the obstruction to the ampleness of the Hodge bundle, which has very strong
consequences for the theory of moduli of algebraic varieties. In a recent paper [2], Catanese and
Detweiler showed that U might be not even semiample, answering in the negative a question
posed by Fujita. As for the kernel bundle K, it is very closely related to the study of (strictly)
maximal Higgs fields addressed, for example, by Viehweg and Zuo [22–24], for which some
Arakelov type inequality is actually an equality.

The main result of this note is that K can have any rank (between 0 and g − 1) also
in geometric cases, with families containing an arbitrarily chosen curve, and even over
(quasi-)projective base. If moreover the chosen curve has simple Jacobian variety, the family
can be chosen with U = 0. More precisely, we prove:
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494 VÍCTOR GONZÁLEZ-ALONSO AND SARA TORELLI

Theorem 1.1. Let C be any smooth projective curve of genus g � 2. Then for any 0 � r < g
there is f : C → B, a non-isotrivial semistable one-dimensional family of deformations of C over
a projective base B, such that rkK = r and rkU � g+1

2 .

Corollary 1.2. If C is a smooth projective curve of genus g � 2 with simple jacobian
variety, then for 0 < r < g there is a deformation as in Theorem 1.1 with U = 0, hence U � K.

Our motivation to study this question stems from the classification of fibered (irregular)
surfaces. Indeed, in the recent work [15] an upper bound for the rank of U is obtained,
depending on geometric invariants of the fibers like their genus and the general Clifford index,
generalizing a previous result of [1] on the relative irregularity. A closer look at the proof of that
result shows that in some cases the inequality rkU � g+1

2 can be proved using Massey products
of sections of U [14, 21] combined with Castelnuovo–de Franchis fibration type theorems.
Similar constructions are used in [18] to study hyperelliptic fibrations. In the remaining cases,
the upper bound on rkU is actually a bound for the rank of K. Therefore a better understanding
of the inclusion U ⊆ K could lead to improvements of the main result in [15].

A second possible application is the so-called Coleman–Oort conjecture: roughly speaking,
for high enough genus, the Torelli locus in Ag should not contain positive-dimensional Shimura
subvarieties. A curve X ⊆ Ag carries a natural variation of Hodge structures with a flat unitary
subbundle U . In a first study [19], Lu and Zuo excluded the existence of certain types of Shimura
curves in the Torelli locus using properties of U . In the subsequent works [6, 7], Chen, Lu and
Zuo proved that if rkU � 4g+2

5 or rkU � 2g−22
7 , then X is not generically contained in the

Torelli locus (that is, X intersects the Torelli locus at most in isolated points). Therefore,
Shimura curves in the Torelli locus cannot have U of too big or too small rank. Since both
bundles U and K for a curve X in Ag reflect the local structure of X ⊂ Ag, there could be
a similar statement with rkK instead of rkU . The relation between U and K with Massey
products has also recently been used by Ghigi, Pirola and the second author in [13] to prove
that any Shimura subvariety generically contained in the Torelli locus can have dimension
at most 7g−2

3 . Altogether this supports the idea that a better understanding of the inclusion
U ⊆ K might lead to new insights for the Coleman–Oort conjecture.

Let us devote a few words to our techniques. Our main tool to estimate the ranks of U and
K is Lemma 3.3, which leads us to focus on families that are supported on relatively rigid
divisors (see Definition 2.1). Roughly speaking, on a general fiber the first-order infinitesimal
deformation is described by a rigid divisor of the fiber, and these divisors glue along the family.
However, supporting divisors are not canonically definable, not even the minimal ones. Indeed,
any divisor of degree greater than 2g − 2 supports every deformation (for example, D = (2g −
1)p for any point p), and thus any deformation has a minimal supporting divisor concentrated at
any given point (with multiplicity). Nonetheless, for families obtained by deforming a branched
finite covering, the theory developed by Horikawa in [16] allows to construct some natural
minimal supporting divisors (see Lemma 2.3).

At first sight, one might expect that U and K coincide locally, and that a strict inequality
U � K would be caused by monodromy if the base is not simply connected. But this is false, as
the local nature of Lemma 3.3 shows. This fact is strongly highlighted in Theorem 3.5 where
some ad hoc local examples have been constructed. We note that the set of rigid divisors of
a given degree of a curve is open and Zariski-dense in the Picard variety of the fixed degree,
hence many families can be constructed in this way.

The proof of Theorem 1.1 follows this line. We take a smooth projective curve C of genus
g and for any 0 � r < g we construct a covering C → P1 suitably ramified on a chosen rigid
divisor D ⊂ C of degree g − r. Then we consider a family of coverings obtained by moving
D, which can be extended to a quasi-projective base. At this point the proof concludes as a
straightforward application of Lemmas 2.3 and 2.2.
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The proof of Corollary 1.2 follows immediately by Theorem 1.1 because the monodromy of
the flat bundle U of those families is finite by a result of [21]. Thus a non-vanishing U would
define a subvariety of the Jacobian of a general fiber, contradicting its simplicity.

Although the constructions as given in the proof are already very explicit, in Section 4 we
study in more detail some deformations of cyclic coverings inspired by the study on U done
in [3, 17]. Our interest on these examples is motivated by the fact that the corresponding
U has infinite monodromy, rank bigger than (g + 1)/2 and moreover K = U , hence they look
very different from our case where U is smaller than K, has rank less than (g + 1)/2 and finite
monodromy. This kind of examples has been intensively studied with different approaches and
objectives (see [8, 20]). We note that they are also interesting in our study since they admit
a non-vanishing flat bundle, which does not occur for a very general curve (see [11, Theo-
rem 3.13]) and therefore we spend a few lines rephrasing some of their results using our tools.

The paper is organized as follows. In Section 2, we relate the theories of supporting divisors
and deformations of maps and prove Lemma 2.3, which constructs a natural minimal supporting
divisor by means of Horikawa’s theory. In Section 3, we analyze the case of rigid supporting
divisors (Lemma 2.2) and construct local families with any rkK (Theorem 3.5). In Section 4,
we consider in more detail deformations of cyclic coverings and compare them to those of [3,
17]. Finally in Section 5 we prove Theorem 1.1 and Corollary 1.2.

2. Horikawa’s deformation theory and supporting divisors

In this section, we relate the theories of supporting divisors (see [1]) and of deformation of
maps (see [16]) to produce a somehow canonical supporting divisor for families of morphisms,
which we use to estimate the ranks of U and K. Let f : C → B be a smooth family of projective
curves of genus g � 2 over a disk B.

Definition 2.1 (Supporting divisors). Let C be a smooth projective curve and ξ ∈
H1(C, TC) a first-order infinitesimal deformation of C. An effective divisor D in C is a
supporting divisor of ξ if

ξ ∈ ker
(
H1(C, TC)−→H1(C, TC(D))

)
= im

(
H0

(
D,TC(D)|D

)
−→H1(C, TC)

)
. (2.1)

A minimal supporting divisor is a supporting divisor D with the extra property that any
effective strict subdivisor D′ < D does not support ξ.

A (minimal) supporting divisor of a smooth family of curves f : C → B is an effective divisor
D ⊂ C such that on a general fiber Cb = f−1(b) the restriction Db = D|Cb

is a (minimal)
supporting divisor of the infinitesimal deformation ξb of Cb induced by f .

For instance, when ξ is supported on a single point D = P , ξ is a Schiffer variation.
In the case of a family, up to shrinking B, we can always assume that a supporting divisor

consists of sections of f (possibly with coefficients).
For any divisor D on a curve C we denote by r(D) = dim |D| = h0(C,OC(D)) − 1 the

dimension of its complete linear series, and by Cliff(D) = degD − 2r(D) its Clifford index.
The following result is our basic tool to estimate the ranks of U and K in terms of invariants

of a supporting divisor.

Lemma 2.2 ([1, Lemma 2.3 and Theorem 2.4] or [15, Theorem 2.9]). Let C be a projective
curve of genus g, ξ ∈ H1(C, TC) a first-order infinitesimal deformation and ∪ξ : H0(C,ωC) →
H1(C,OC) the map induced by cup-product.

(1) If D is a divisor (in C) supporting ξ, then H0(C,ωC(−D)) ⊆ ker(∪ξ) and hence

dim ker(∪ξ) � g − (degD − r(D)).
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496 VÍCTOR GONZÁLEZ-ALONSO AND SARA TORELLI

(2) If further D supports ξ minimally, then

dim ker(∪ξ) � g − (degD − 2r(D)) = g − Cliff(D).

We note that in particular, when a minimal supporting divisor D is rigid (that is,
h0(C,OC(D)) = 1), the estimates in Lemma 2.2 lead to the equality

dim ker (∪ξ) = g − degD. (2.2)

In order to apply Lemma 2.2, one has to construct a divisor minimally supporting f , but
unfortunately such divisors are not unique and in general there is no canonical choice. In the
case of families of curves f arising as deformations of morphisms onto a fixed curve, Horikawa’s
theory as developed in [16] gives a natural way to construct a supporting divisor using the
so-called Horikawa characteristic class.

We shortly recall the construction of the characteristic map and the relation to the Kodaira–
Spencer class. Let C ′ be a smooth projective curve. A family of morphisms of curves onto C ′ is a
morphism (f,Φ) : C → B × C ′ such that f : C → B is a family of curves, and for any b ∈ B the
restriction πb = Φ ◦ ib : Cb → C ′ given by the inclusion ib : Cb = f−1(b) ↪→ C is a non-constant
morphism of curves. For any fixed b ∈ B, the morphism π = πb : C = Cb → C ′ defines a short
exact sequence

(2.3)

We can fix local coordinate systems (Ui, (zi, t)) of C and (Vi, wi) of C ′ by choosing Stein open
sets such that Φ(Ui) ⊂ Vi and where t is the pull-back of a local coordinate of B around b.
We denote by Φi the local expression of Φ with respect to these coordinate systems, that is,
wi = Φi(zi, t), and define a 0-cochain of π∗TC′ by setting

si =
(
∂Φi

∂t

)
|t=b

∂

∂wi

on Ui = Ui ∩ C. By applying pπ we obtain a 0-cochain of Tπ given by τi = pπ(si) on Ui. These
sections turn out to agree in the intersections Ui ∩ Uj , giving rise to a section τ ∈ H0(C, Tπ)
that is called characteristic class of π. The characteristic map

τ : TbB → H0(C, Tπ)

is the map that sends the generator ∂
∂t ∈ TbB to the characteristic class τ ∈ H0(C, Tπ) defined

as above. By [16, Proposition 1.4], the Kodaira–Spencer map KS : TbB → H1(C, TC) factors
through the characteristic map as in

(2.4)

where δ : H0(C, Tπ) → H1(C, TC) is the connecting homomorphism associated to (2.3). By
construction this gives a one-to-one correspondence between the vector space H0(C, Tπ) and
the set of equivalence classes of first-order deformations of the morphism π : C → C ′ (leaving
C ′ fixed).

The sheaf Tπ can be more explicitly described through the ramification divisor R of π. Indeed,
by definition of the ramification divisor there is an isomorphism π∗TC′ ∼= TC(R) identifying dπ
with the natural inclusion TC ↪→ TC(R). This in turn induces an isomorphism Tπ ∼= TC(R)|R,
which we use to construct a divisor minimally supporting f in some cases.

In the previous setting, we say that the family f is obtained from some π = πo : C → C ′

by moving some (distinct) branch points q1, . . . , qk ∈ C ′ (while keeping the remaining branch
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FAMILIES OF CURVES WITH HIGGS FIELD OF ARBITRARILY LARGE KERNEL 497

points qk+1, . . . , qn fixed) if there are some maps q̃1, . . . , q̃k : B → C ′ injective around b = o
and such that each πb : Cb → C ′ is ramified over q̃1(b), . . . , q̃k(b), qk+1, . . . , qn with the same
ramification type as for b = o.

Lemma 2.3. Keeping the above notations, suppose furthermore that for i = 1, . . . , k there is
only one ramification point pi over qi, let ri + 1 be its ramification index and set D =

∑k
i=1 ripi.

If H0(C, TC(D)) = 0, then any deformation of π obtained moving q1, . . . , qk is minimally
supported in D.

Proof. We consider the extension class ξ ∈ H1(C, TC) induced by f on C = f−1(o) and we
prove that this is minimally supported over D =

∑k
i=1 ripi. To do so, we compute ξ by using

the Horikawa characteristic map. Fix first a local coordinate t of B centered in o ∈ B and for
each i = 1, . . . , k choose local coordinates zi, respectively, wi, centered on pi ∈ C, respectively,
qi = π(pi) ∈ C ′, such that wi = f(zi, t) = zri+1

i + t. Then ξ is given as

ξ = KS

(
∂

∂t

)
= δ

(
k∑

i=1

∂

∂wi

)
= δ

(
k∑

i=1

1
(ri + 1)zrii

∂

∂zi

)
.

Since
∑k

i=1
1

(ri+1)z
ri
i

∂
∂zi

is an element in H0(D,TC(D)|D) ⊂ H0(R, TC(R)|R), this proves that

ξ ∈ Im(H0(C, TC(D)|D)−→H1(C, TC))

and so that D supports ξ. We now prove that D is minimally supporting ξ, that is,
that any effective subdivisor D′ < D does not support it. To do this, it is enough to
consider a subdivisor D′ = D − pi of D obtained by removing a point pi and then check
this is not supporting f . We consider the short exact sequences 0 → TC → TC(D′) →
TC(D′)|D′ → 0 and 0 → TC → TC(D) → TC(D)|D → 0 induced by D and D′ and we compare
them through the inclusion D′ < D. Since we have assumed H0(C, TC(D)) = 0, the map
H0(C, TC(D)|D)−→H1(C, TC) is injective, hence it is enough to check that 1

z
ri
i

∂
∂zi

does not

lie in H0(D′, TC(D′)|D′) ⊆ H0(D,TC(D)|D). Indeed with the induced trivializations, the map
H0(D′, TC(D′)|D′) → H0(D,TC(D)|D) is given by multiplication with zi, and sends the sub-
set < 1, zi, . . . , zri−2

i > ⊗{ 1

z
ri−1
i

∂
∂zi

} of H0(D′, TC(D′)|D′) to the subset < zi, z
2
i , . . . , z

ri−1
i >

⊗{ 1
z
ri
i

∂
∂zi

} ⊂ H0(D,TC(D)|D), which obviously does not contain 1
z
ri
i

∂
∂zi

. �

Remark 2.4. Note that in the above setting, if k � 1, there is a non-zero minimal supporting
divisor. This implies that the family is not isotrivial, since the infinitesimal deformation is
not zero.

3. The case of rigid supporting divisors

In this section, we study the ranks of the unitary flat and kernel bundles for families supported
on (relatively) rigid divisors and we also analyze the monodromy of the unitary flat bundle. In
particular, we construct families of curves with K of any given rank between 0 and g − 1. On
the other hand, we show that rkU � g+1

2 , hence in particular we can construct (local) families
with U � K. Note that rkK = g happens if and only if the family is isotrivial, and hence also
U = K.

We start recalling the basic definitions around these bundles. Let B be a complex curve
and f : C → B a non-isotrivial semistable family of projective curves of genus g � 2. Consider
the Hodge bundle f∗ωf , where ωf = ωC ⊗ f∗ω∨

B . The Fujita decomposition [12] factors it as a
direct sum f∗ωf = U ⊕A, with U unitary flat and A ample. If Γ ⊂ B denotes the set of critical
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498 VÍCTOR GONZÁLEZ-ALONSO AND SARA TORELLI

values (corresponding to singular fibers) and Υ = f∗Γ, we can also consider the short exact
sequence

0 → f∗ωB(log Γ) → Ω1
C(log Υ) → Ω1

C/B(log Υ) → 0.

Pushing it forward and using the canonical isomorphism f∗ωf � f∗Ω1
C/B(log Υ) we obtain a

long exact sequence with connecting homomorphism

θ : f∗ωf � f∗Ω1
C/B(log Υ) −→ R1f∗f∗ωB(log Γ) � R1f∗OC ⊗ ωB(log Γ). (3.1)

It is a morphism of vector bundles whose kernel K = ker θ is a vector subbundle of f∗ωf .
Indeed, by definition of K there is an inclusion of sheaves f∗ωf/K ↪→ R1f∗OC ⊗ ωB(log Γ).
Since R1f∗OC is a locally free (hence torsion-free) sheaf on B, the quotient f∗ωf/K is also
torsion-free, and thus locally free because B is a curve. This shows that K ⊆ f∗ωf is actually
a vector subbundle.

Definition 3.1. We call the bundles U and K as defined above the unitary flat bundle and
kernel bundle of f , respectively.

By construction there are inclusions U ⊆ K ⊆ f∗ωf , which combined with the splitting
f∗ωf

∼= U ⊕A give an exact sequence

0 → K/U → A → f∗ωf/K → 0,

exhibiting K/U as a vector subbundle of A. If U = K, K/U has negative curvature by [25],
hence f∗ωf/K has bigger degree than A.

If f is not semistable, the Fujita decomposition still exists and thus U can be defined, but we
lack (in general) of a global definition of θ as (3.1), hence K might not be defined. Nonetheless,
we can always perform a semistable reduction and obtain a new fibration where both U and
K are defined, although the new U might have bigger rank than the original one because of
the monodromy around the non-semistable families (see, for example, [15]). Moreover, as we
will explain next, these U and K will be determined by the polarized variation of the Hodge
structures on the smooth fibers of the new fibration, hence also by the smooth fibers of the
original, possibly non-semistable one.

With a little abuse of notation, suppose thus for this paragraph that f is smooth. In this
case, the Hodge bundle is

H1,0 = f∗ωf ⊂ H1 = R1f∗C ⊗C OB ,

where ωf = ωC ⊗ f∗ω∨
B
∼= Ω1

C/B because f is smooth. The Gauß–Manin connection restricts
to ∇H1,0 : H1,0 → H1 ⊗ ωB , the unitary flat local system over H1,0 is U = ker∇H1,0 and the
unitary flat subbundle is U = U ⊗C OB . The Higgs field

θ = p ◦ ∇H1,0 : H1,0 → H1 ⊗ ωB →
(
H1/H1,0

)
⊗ ωB

∼= R1f∗OC ⊗ ωB

coincides with the connecting homomorphism

θ : H1,0 = f∗Ω1
C/B → R1f∗(f∗ωB) = R1f∗OC ⊗ ωB

arising by pushing forward the exact sequence 0 → f∗ωB → Ω1
C → Ω1

C/B → 0, and the kernel
bundle is K = ker θ.

The link of this construction with the cup-products with Kodaira–Spencer classes discussed
in the previous section is that, for any b ∈ B with smooth fiber Cb and Kodaira–Spencer class
ξb ∈ H1(Cb, TCb

), the Higgs field

θ(b) : f∗Ω1
C/B ⊗ C(b) = H0(Cb, ωCb

) −→ R1f∗OC ⊗ ωB ⊗ C(b) = H1(Cb,OCb
) ⊗ T∨

B,b

coincides with ∪ξb (up to non-zero scalar, depending on the choice of an isomorphism T∨
B,b

∼= C).

 14692120, 2021, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12437 by T

echnische Inform
ationsbibliothek, W

iley O
nline L

ibrary on [12/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FAMILIES OF CURVES WITH HIGGS FIELD OF ARBITRARILY LARGE KERNEL 499

Remark 3.2. The equality K = ker θ gives inclusions K ⊗ C(b) ⊆ ker(θ(b)) for every b.
These inclusions are equalities for general b ∈ B, but might be strict even for some b
corresponding to smooth fibers. Indeed, denoting G = coker(θ), there is a short exact sequence

0−→K⊗ C(b)−→ ker (θ(b))−→TorOB
1 (G,C(b))−→0.

Thus K ⊗ C(b) � ker(θ(b)) precisely at the points where G is not locally free (that is, the points
where θ drops rank).

Our main tool in order to understand how K can be larger than U is given by the following

Lemma 3.3. Let f be minimally supported on a divisor D with D · Cb = d and
h0(Cb,OCb

(D|Cb
)) = 1 for general b ∈ B (that is, D is relatively rigid). Then (1) rkK = g − d

and (2) rkU � g+1
2 .

Proof. (1) It follows from Lemma 2.2. For a general b ∈ B, we indeed have

K ⊗ C(b) = ker
(
∪ξb : H0(Cb, ωCb

) −→ H1(Cb,OCb
)
)
.

Since h0(Cb,OCb
(D|Cb

)) = 1, then

rkK = dimK ⊗ C(b) = dim ker(∪ξb) = g − deg(D|Cb
) = g − d.

(2) The argument follows the line of [15, section 3.1, case 1] (see also [21, Lemma 3.2]).
Assume that rankU � 2, otherwise there is nothing to prove. Since rkU is determined by
any open subset of smooth fibers, we can also assume that B is a disk and f : S → B is
smooth. By [15, Lemma 2.12], there is a factorization ωf (−D) ↪→ Ω1

S → ωf , and moreover
K = f∗ωf (−D) ([15, pp. 8674]). Then, we can lift a basis η1, . . . , ηuf

of flat sections of U ⊆ K,
to a set ω1, . . . , ωuf

∈ H0(C,Ω1
C) of linearly independent closed 1-forms which are sections of

the line bundle ωf (−D) ⊆ Ω1
S , hence any two of these forms wedge to zero. Applying the

‘Tubular Castelnuovo–de Franchis’ (see [15, Theorem 1.4]), we get a family ϕb : Cb → C of
morphisms from the general fiber Cb of f to a fixed curve C of genus g(C) � uf = rkU . By
the Riemann–Hurwitz formula,

2g − 2 = degϕb(2g(C) − 2) + degRb � 2 degϕb(uf − 1),

where Rb is the ramification divisor of ϕb. In particular,

g − 1 � degϕb(uf − 1),

and so for uf > g+1
2 and g � 2, one has degϕb = 1 and hence a isotrivial family. �

Lemma 3.4. Let f be minimally supported on a relatively rigid divisor. Then U has
finite monodromy.

Proof. We can assume rankU � 2 (in the case of rank 1, the monodromy is finite since
the line bundle must be torsion, proven, for example, in [9, Corollary 4.2.8]). Repeating
the argument given in (2) of the proof of Lemma 3.3, we have that our bundle satisfies the
assumptions of [21, Theorem 0.2] and thus has finite monodromy. �

We end this section by providing a way to construct non-isotrivial local families of curves
with K of any given rank between 1 and g − 1.

Theorem 3.5. Let C be any curve of genus g � 3. Then for any 0 � r � g − 1 there are
one-dimensional deformations of C with rkK = r.
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500 VÍCTOR GONZÁLEZ-ALONSO AND SARA TORELLI

Proof. Let us first consider a more geometric interpretation of supporting divisors. Let C
be a curve of genus g and φ : C → P(H0(C,ω⊗2

C )∨) ∼= P3g−4 its bicanonical embedding. Given
an effective divisor D in C, we define its span as

〈D〉 := ∩D�φ∗HH = P
(
H0(C,ω⊗2

C (−D))⊥
)
,

that is, the intersection of all hyperplanes cutting out a divisor on C that contains D, which
coincides with the projectivization of the annihilator of H0(C,ω⊗2

C (−D)). In particular, if
degD < degωC = 2g − 2, then Riemann–Roch gives dim〈D〉 = degD − 1.

Let now ξ ∈ H1(C, TC) be a non-zero first-order infinitesimal deformation, which defines a
point [ξ] ∈ P(H1(C, TC)) ∼= P(H0(C,ω⊗2

C )∨). It is just a reformulation of the definitions that
a divisor D supports ξ if and only if [ξ] ∈ 〈D〉. Thus first-order deformations supported on a
divisor D correspond to points in 〈D〉. Furthermore, 〈D′〉 � 〈D〉 for any 0 � D′ < D if and
only if ω⊗2

C (−D) has no base points, for example, if degD � 2g − 4. In this case, the first-order
deformations minimally supported in D form a non-empty Zariski-open subset 〈D〉◦ of 〈D〉,
namely the complement of the spans of the finitely many strict subdivisors of D.

We want to focus on the deformations supported on rigid divisors of a given degree d ∈
{1, . . . , g}. For any such d, the map C(d) = Divd(C) → Picd(C) is generically one-to-one, thus
the rigid divisors form a non-empty Zariski-open set Vd ⊆ C(d). Let

Xd = {(D, [ξ]) | degD = d, [ξ] ∈ 〈D〉} =
⋃

D∈C(d)

{D} × 〈D〉 ⊂ C(d) × P(H0(C,ω⊗2
C )∨)

be the obvious incidence variety, which is irreducible of dimension 2d− 1 because dim〈D〉 =
d− 1 for d < 2g − 2. The subset

X◦
d =

⋃
D∈Vd

{D} × 〈D〉◦ ⊂ Xd

is a dense open subset. Indeed, its complement Xd \X◦
d is contained in the union of:

(1) the Zariski-closed strict subset (Vd \ Vd−1) × P(H0(C,ω⊗2
C )∨); and

(2) the image of Xd−1 × C → Xd, defined by (D′, [ξ], p) �→ (D′ + p, [ξ]), which has dimension
at most

dimXd−1 + dimC = 2(d− 1) − 1 + 1 = 2d− 2 < dimXd.

Set also Yd = p2(Xd) ⊂ P(H0(C,ω⊗2
C )∨), which by the above discussion corresponds to the

(closed) set of infinitesimal deformations supported on some divisor of degree d. Of course, Yd

coincides with the dth secant variety of C ⊂ P(H0(C,ω⊗2
C )∨). Define also the dense subset

Y ◦
d = p2(X◦

d ) ⊂ Yd,

which corresponds to the first-order deformations minimally supported on some divisor of
degree d. Thus, for any [ξ] ∈ Y ◦

d , there is some minimal supporting divisor D of degree d and
r(D) = 0, and hence by Lemma 2.2

dim ker(∪ξ : H0(C,ωC) → H1(C,OC)) = g − d.

Let now π : C → Δ be a semiuniversal deformation of C over some (3g − 3)-dimensional
polydisk Δ, P = PΔ(π∗ω⊗2

π ) → Δ and φ : C → P the relative bicanonical map. We can mimic
the above construction on every fiber of π and obtain a non-empty locally closed subset Y◦

d ⊂ P

that surjects onto Δ. Indeed, if C(d)
Δ = Divd(C/Δ) denotes the relative symmetric dth product

of C, we can consider the Zariski-open subset Vd ⊆ C(d)
Δ corresponding to rigid divisors and the

incidence subvariety

Xd =
{
(D, ξ, t) | t ∈ Δ, D ∈ Divd(Ct), ξ ∈ H1(Ct, TCt

), [ξ] ∈ 〈D〉
}
⊆ C(d)

Δ ×Δ P.
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FAMILIES OF CURVES WITH HIGGS FIELD OF ARBITRARILY LARGE KERNEL 501

The announced Y◦
d is then the image by the projection to P of the (non-empty) open subset

X o
d = (Xd \ (Xd−1 ×Δ C)) ∩ (Vd ×Δ P).

Up to shrinking Δ, we can find a section σ : Δ → Y◦
d , which thus at every point b ∈ B defines

(up to scalar) a first-order deformation ξb minimally supported on a divisor of degree d.
Since TbΔ ∼= H1(Cb, TCb

) for any b ∈ Δ, the relative bicanonical space P can be identified
with the projectivization of the tangent bundle of Δ. In this way, any section σ : Δ → Y◦

d can
be thought of as a rank-one (hence automatically integrable) distribution on Δ. If B ⊂ Δ is any
integral curve of a given σ, the restriction f = πB : π−1(B) → B gives the desired family. �

These families are constructed over a disk. One could thus wonder, if such examples can
exist over a quasi-projective base B. The answer is yes, as our main results and also some more
explicit examples constructed in Section 4 show.

4. Semistable families of cyclic coverings of P1 with K larger than U
In this section we construct semistable families of curves over a projective base with U � K by
moving few branch points of a low degree covering. The largest range for rkK is achieved by
families of hyperelliptic curves. Our main tool is the following

Proposition 4.1. Let π : C → P1 be a simple cyclic covering of degree n with reduced
branch divisor B = q1 + · · · + qm (n | m) and suppose g(C) = g � 2. Let f : C → Δ be a
deformation of C obtained by moving the branch points q1, . . . , qk. If k < m

n , then

rkK = g − (n− 1)k =
(n− 1)(m− 2 − 2k)

2
and rkU � g + 1

2
.

In particular, if k < g−1
2(n−1) = mn−2n−m

4(n−1) , then U � K.

Proof. For each i = 1, . . . , k, let pi = π−1(qi) be the ramification point above qi, and set
D = (n− 1)(p1 + · · · + pk), the variable ramification divisor. We will show that D is a rigid
divisor that supports f minimally, and Lemma 3.3 gives the final assertions.

In order to show that D is a rigid divisor, let us consider first the divisor D′ = n
n−1D =

n(p1 + · · · + pk) = π∗(q1 + · · · + qk). It holds then

H0(C,OC(D′)) = H0(C, π∗OP1(q1 + · · · + qk))
π∗
∼= H0

(
P1,OP1(q1 + · · · + qk) ⊗ (π∗OC)

)
∼=

n−1⊕
i=0

H0
(
P1,OP1(q1 + · · · + qk) ⊗OP1

(
−i

m

n

))
= H0

(
P1,OP1(q1 + · · · + qk)

)
,

where the last equality follows from the hypothesis k < m
n , hence

deg
(
OP1(q1 + · · · + qk) ⊗OP1

(
−i

m

n

))
< 0

for any i > 0.
This shows that any meromorphic function in H0(C,OC(D′)) is the pull-back of a

meromorphic function in H0(P1,OP1(q1 + · · · + qk)). In particular, any non-constant function
in H0(C,OC(D′)) has poles of order exactly n at some pi, and hence H0(C,OC(D)) ⊆
H0(C,OC(D′)) consists only of the constant functions, that is, D is rigid.

It remains to show that D is a minimal supporting divisor of f . The genus of C is g =
(m−2)(n−1)

2 , and thus deg(TC(D)) � 0 with equality if and only if n = k = g = 2 (hence m = 6).
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502 VÍCTOR GONZÁLEZ-ALONSO AND SARA TORELLI

In this last case, an argument along the lines above shows that H0(C, TC(D)) = 0. Lemma 2.3
can thus be applied in any case, giving that D is a minimal rigid supporting divisor. �

Theorem 4.2. Let n,m and k be positive integers such that n | m and k < m
n . Then there

is a semistable fibration f : Z → B over a projective curve B whose general fiber has genus

g = (n−1)(m−2)
2 , U has finite monodromy group, rkU � g+1

2 , and moreover

rkK = g − (n− 1)k =
(n− 1)(m− 2 − 2k)

2
.

Proof. We construct the family as in Proposition 4.1, deforming a simple cyclic covering
π : C → P1 of degree n with reduced branch divisor B = q1 + · · · + qm. In order to obtain a
projective base, fix two points 0,∞ ∈ P1 and for each i = 1, . . . , k let Li ⊂ P1 × P1 be a curve
of bidegree (1,1) with Li ∩ {0} × P1 = {(0, qi)}, or equivalently, the graph of an automorphism
φi : P1 → P1 with φi(0) = qi. For i = k + 1, . . . ,m, let Li = P1 × {qi} ⊂ P1 × P1.

For a general choice of the lines Li we can assume that all of them intersect transversely
in k(m− k) + 2

(
k
2

)
= k(m− 1) different points t1, . . . , tk(m−1), none of them lying on M =

{∞} × P1. In this case, the divisor M +
∑m

i=1 Li has simple normal crossings.
If r ∈ Z�0 is such that k + r is a multiple of n, then OP1×P1(

∑m
i=1 Li + rM) = OP1×P1(k +

r,m) is divisible by n. We can thus consider the degree n cyclic covering of P1 × P1 branched
along

∑m
i=1 Li + rM , so that the family defined by the projection onto the first P1 looks like

the deformations in Proposition 4.1 around the smooth fibers. The claimed fibration can be
constructed as the semistable reduction of the minimal desingularization of such cyclic covering.
The claims on the ranks of U and K follow at once from Proposition 4.1.

The assertion on the finite monodromy of U follows from Lemma 3.4, since the supporting
divisor of the family is relatively rigid (proof of Proposition 4.1). �

This construction is inspired by a series of examples studied by Catanese and Dettweiler
in [3], where also degree n cyclic coverings are considered, but ramified only over four points
(with multiplicities). Although they do a more general analysis, we will here focus on what
they call ‘standard case’, which has gcd(n, 6) = 1, three of the branch points have multiplicity
one and the fourth one has multiplicity n− 3. Moving one of the ramification points defines
a family over P1, which becomes semistable after a degree n covering of the base (and a
desingularization). Let f : S → B be the resulting fibration. The genus of the smooth fibers is
g = n− 1 and the singular fibers consist of two curves of genus n−1

2 meeting transversely in
one point. It holds q(S) = g(B) = n−1

2 , hence f is the Albanese map of S. More details can
be found in [3, Section 4]. These families provide examples where U has infinite monodromy
group, so they behave very differently from ours, where we have seen that the monodromy
is finite.

The rank of their flat unitary summand U has been studied by Lu in [17], where arbitrary
n � 4 is also considered, proving the lower bounds

rkU �

⎧⎨⎩
⌊

2g+1
3

⌋
if n ≡ 2 mod 3⌊

2g−2
3

⌋
if n ≡ 2 mod 3.

(4.1)

A straightforward application of Riemann–Hurwitz gives the relation

g =

{
n− 2 if n ≡ 0 mod 3
n− 1 if n ≡ 0 mod 3.

(4.2)

With our techniques we are able to prove furthermore the following.
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FAMILIES OF CURVES WITH HIGGS FIELD OF ARBITRARILY LARGE KERNEL 503

Proposition 4.3. Let f : S → B be as in the ‘standard cases’ of [3]. Then U = K and
equality holds in (4.1).

Proof. Since U ⊆ K, we only have to prove rkK � � 2g+1
3 � if n ≡ 1 mod 3, and rkK �

� 2g−2
3 � otherwise.
By construction, f is a family obtained by moving one branch point of a morphism from

a general fiber to P1. So we can apply Lemma 2.3 to obtain a minimally supporting divisor
D = (n− 1)P ⊆ S, where P is the section defined by moving the branch point. By Lemma 2.2,
we have that

rkK � g − degD + 2r(D),
where D = D|C = (n− 1)P is the restriction to a general fiber C of f . In order to compute
r(D) = r((n− 1)P ), note first that r((n− 1)P ) = r(nP ) − 1 because P is not a base point of
|nP |. Indeed, since nP = π∗Q for some Q ∈ P1, the pull-back of any other Q′ ∈ P1 is a divisor
linearly equivalent to nP not containing P . Second, since C → P1 is a morphism of degree n
ramified over a divisor of the form R = (n− 3)0 + 1 + Q + ∞, that is, also of degree n, we can
apply [10, Corollary 3.11] with L = OP1(1) and obtain

π∗OC =
n−1⊕
i=0

OP1

(
−i +

⌊
i

n
R

⌋)
=

n−1⊕
i=0

OP1

(
−i +

⌊
i(n− 3)

n

⌋)
=

n−1⊕
i=0

OP1

(⌊
−3i
n

⌋)
.

This implies

h0(OC(nP )) = h0(π∗OP1(1)) = h0(π∗π∗OP1(1)) = h0(OP1(1) ⊗ π∗OC)

=
n−1∑
i=0

h0

(
OP1

(
1 +

⌊
−3i
n

⌋))
=

⌊n
3

⌋
+ 2,

and thus r(D) = r(nP ) − 1 = �n
3 �. Explicitly writing �n

3 � in terms of g according to (4.2) leads
to the desired upper bound for rkK. �

5. Proof of the main theorems

In this section, we give the proof of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. We say that a ramified covering π : C → P1 is simply ramified at
p ∈ C if p is the only ramification point on its fiber and its ramification index is 2.

We first show that for any subset {p1, . . . , pg} of g distinct points of C there is a covering
π : C → P1 simply ramified at each p1, . . . , pg. To this aim, we fix an embedding C ↪→ Pn =
P(H0(C,L)) given by a complete linear system |L| of degree d � 5g + 3 and consider morphisms
πH : C → P1 given by projection from a linear subspace H ⊂ Pn of codimension 2 and disjoint
from C.

The condition on the degree assures that h0(C,L(−D)) = h0(C,L) − degD for any effective
divisor D with degD � 3g + 2. In particular, for any p ∈ C the tangent line Lp = TpC and the
osculating plane Πp are given by

Lp = P
(
H0(C,L(−2p))⊥

)
∼= P1 and Πp = P

(
H0(C,L(−3p))⊥

)
∼= P2,

where ⊥ denotes the annihilator inside H0(C,L)∨. Moreover, for any distinct p1, . . . , pg, p ∈ C
the osculating planes Πp1 , . . . ,Πpg

and the tangent line Lp are independent, in the sense that
the linear span 〈

Πp1 , . . . ,Πpg
, Lp

〉
⊂ Pn

has dimension 3g + 2, the maximal possible.
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504 VÍCTOR GONZÁLEZ-ALONSO AND SARA TORELLI

Consider now a linear subspace H ⊂ Pn of codimension 2 and disjoint from C. Then πH is
ramified at p if and only if Lp ⊆ 〈p,H〉, (that is, if Lp ∩H = ∅) and the ramification index is
exactly 2 if and only if Πp ⊂ 〈p,H〉 (that is, if Πp ∩H = Lp ∩H). On the other hand, it holds
πH(p) = πH(q) for p = q if and only if 〈p,H〉 = 〈q,H〉, or equivalently H intersects the line pq.

Let now p1, . . . , pg ∈ C be arbitrary distinct points and for each i = 1, . . . , g pick qi ∈
Lpi

, qi = pi. It is now easy to show that the set of codimension-2 linear subspaces H containing
q1, . . . , qg and such that πH is ramified at each pi with index 2 and πH(pi) = πH(pj) for i = j
form a Zariski-open subset of the Grassmannian G of codimension-2 subspaces containing the
q1, . . . , qg. It remains to achieve the simple ramification at each p1, . . . , pg, that is, no other
ramification point has the same image as any pi. By the above discussion, the covering πH

is ramified at another given point p ∈ C if and only Lp ∩H = ∅, which is a codimension-2
condition on G (because of the condition degL � 5g + 3). By moving p ∈ C, we see that the
set of ‘bad’ subspaces H (such that πH is not simply ramified at p1, . . . , pg) has codimension at
least 1 in G, hence a general H ∈ G defines a covering simply ramified at p1, . . . , pg, as wanted.

Suppose now in addition that the points p1, . . . , pg form a rigid divisor on C (which happens
for a set of g points in general position on C) and pick a covering π : C → P1 as above, simply
ramified at p1, . . . , pg. Denote by b1 = π(p1), . . . , bg = π(pg), bg+1, . . . , bk the branch points of
π. To finish the proof, we construct a one-dimensional family f : C → B of deformations of C
over a quasi-projective base B, moving r of the branch points b1, . . . , bg as follows.

For i = 1, . . . , r, let Δi ⊂ P1 be a disk centered in bi, small enough so that Δi ∩ Δj = ∅
for i = j, and also bj ∈ Δi for i = 1, . . . , r and j = r + 1, . . . , k. By the Riemann-existence
theorem, for any t = (t1, . . . , tr) ∈

∏r
i=1 Δi = Δ there is a covering πt : Ct → P1 branched

on {t1, t2, . . . , tr, qr+1, . . . , qk} with the same ramification data as π. These coverings vary
holomorphically over the polydisk Δ, and thus define an r-dimensional family f : C → Δ with
f−1(t) = Ct. Because of monodromy reasons, this family might not extend automatically over
the quasi-projective variety X = (P1)r \ Z, where

Z = {(t1, . . . , tr) ∈ (P1)r | ti = tj or ti = bj for some i = j}

is the set where two branch points collide. We can anyway extend it over any simply connected
open set containing Δ and so in particular over the universal covering ψ : X̃ → X, which is,
however, not quasi-projective.

Nevertheless, for given t ∈ X there are only finitely many coverings (up to isomorphism)
branched over {t1, t2, . . . , tr, br+1, . . . , bk}, and the fundamental group π1(X) acts naturally
on this finite set. The kernel G of the induced group homomorphism ρ : π1(X) → ΣN into
the symmetric group ΣN (for some appropriate N) has therefore finite index in π1(X) and is
independent of t ∈ X general. The family over X̃ induces thus a family f : C → Y over Y =
X̃/G, which is a finite covering of the quasi-projective variety X, hence quasi-projective itself.

To finish the proof, we consider a quasi-projective curve B ⊂ Y through a point t0 of Y
above (b1, . . . , br) ∈ X corresponding to π, and transverse to the ‘coordinate hypersurfaces’
{ti = bi}. Possibly after a finite base change this family can be extended to a semistable one
over a projective base. The fact that rkK = g − r follows directly from Lemmas 2.3 and 2.2.
Indeed, Lemma 2.3 shows that for t0 ∈ B the infinitesimal deformation is minimally supported
on D = p1 + · · · + pr, hence in particular is not isotrivial (see Remark 2.4). By construction of
π, the divisor D is rigid and Lemma 3.3 gives both rkK = g − r and rkU � g+1

2 . �

Proof of Corollary 1.2. The proof is a straightforward application of Theorem 1.1 together
with the following argument about the monodromy of the unitary flat summand. Since C is
a smooth curve with simple Jacobian variety J(C), the unitary flat bundle U of any one-
dimensional family f : C → B through C must be either zero or have infinite monodromy.
Otherwise, U would become trivial after a finite étale base change, defining an abelian subva-
riety of J(C) and contradicting its simplicity. However, the family f : C → B as constructed
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FAMILIES OF CURVES WITH HIGGS FIELD OF ARBITRARILY LARGE KERNEL 505

in the proof of Theorem 1.1 is minimally supported on a relatively rigid divisor. Lemma 3.4
implies that U has finite monodromy, hence it must be zero by the above discussion. �
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1. M. Á. Barja, V. González-Alonso and J. C. Naranjo, ‘Xiao’s conjecture for general fibred surfaces’,
J. reine angew. Math. 739 (2018) 297–308.

2. F. Catanese and M. Dettweiler, ‘The direct image of the relative dualizing sheaf needs not be
semiample’, C. R. Math. Acad. Sci. Paris 352 (2014) 241–244.

3. F. Catanese and M. Dettweiler, ‘Vector bundles on curves coming from variation of Hodge structures’,
Internat. J. Math. 27 (2016) 1640001.

4. F. Catanese and M. Dettweiler, ‘Answer to a question by Fujita on Variation of Hodge Structures’,
Adv. Stud. Pure Math. 74 (2017) 73–102.

5. F. Catanese and Y. Kawamata, ‘Fujita decomposition over higher dimensional base’, Eur. J. Math. 5
(2019) 720–728.

6. K. Chen, X. Lu and K. Zuo, ‘On the Oort conjecture for Shimura varieties of unitary and orthogonal
types’, Compos. Math. 152 (2016) 889–917.

7. K. Chen, X. Lu and K. Zuo, ‘The Oort conjecture for Shimura curves of small unitary rank’, Commun.
Math. Stat. 6 (2018) 249–268.

8. E. Colombo, P. Frediani and A. Ghigi, ‘On totally geodesic submanifolds in the Jacobian locus’,
Internat. J. Math. 26 (2015) 1550005.
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