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Article

When Experiments  
Need Models

Donal Khosrowi1

Abstract
This paper argues that an important type of experiment-target inference, 
extrapolating causal effects, requires models to be successful. Focusing on 
extrapolation in Evidence-Based Policy, it is argued that extrapolation should 
be understood not as an inference from an experiment to a target directly, 
but as a hybrid inference that involves experiments and models. A general 
framework, METI, is proposed to capture this role of models, and several 
benefits are outlined: (1) METI highlights epistemically significant interactions 
between experiments and models, (2) reconciles some differences among 
existing accounts of experiment-target relationships, and (3) facilitates 
critical appraisal of inferential practices from experiments.

Keywords
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1. Introduction

Experiments and models are routinely used as surrogate systems in the social 
sciences (Mäki 2009): they are studied independently of target systems of 
interest, allow us to isolate phenomena and exercise discriminate control over 
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1I will not distinguish between experiments and models in a principled way, nor 
assume that a clear-cut intensional distinction is possible (see Morgan 2003; 2005; 
Guala 2002; 2005; Mäki 2005; Parker 2009; Winsberg 2009; Parke 2014 for discus-
sions). First, the tools I consider here, that is, RCTs and structural/graphical causal 
models, are robustly identified as experiments and models over several such distinc-
tions. Second, while it seems possible to conceive of these tools differently, for exam-
ple, to think of randomized controlled trials as material models (like animal models in 
biology), this would perhaps change the main claim developed here to “some models 
need (good) further models to permit good inferences,” but leaves the nuances elabo-
rated and the general capabilities of the framework developed untouched. So it seems 
that finding ways to make epistemically pertinent distinctions between experiments 
and models is largely orthogonal to my project.

them, and they facilitate inferences about these phenomena as they occur in 
distinct targets.

The existing literature has detailed how experiments and models, respec-
tively, relate to targets, permit learning about them, and how their epistemic 
capabilities can differ. Models (and simulations drawing on them) are thought 
to relate to targets by means of abstract relationships such as formal similar-
ity, resemblance, (partial) isomorphism, etc., and to permit reliable inferences 
when such relationships are adequately realized (e.g., Da Costa and French 
2003; Frigg and Nguyen 2020; Giere 2010; Khosrowi 2020; Mäki 2005; 
Weisberg 2013). Experiments, by contrast, are often thought to promote 
learning about targets in virtue of exhibiting concrete relationships, such as 
material analogy, ontological equivalence, representativeness, or specimen-
hood (e.g., Currie and Levy 2020; Guala 2002, 2005; Morgan 2003, 2005), 
and there has been extensive debate concerning whether experiments are 
epistemically privileged in virtue of such concrete relationships (see Parker 
2009; Winsberg 2009; and Parke 2014, who resist such conclusions).

An issue that has received somewhat less attention is how experiments 
and models can be integrated to facilitate learning about the world.1 In this 
paper, I focus on the practice of extrapolating causal effects from experi-
ments, which is increasingly common in various social sciences, including 
particularly in Evidence-Based Policy and economics. I argue that extrapola-
tion requires (good) models to be successful. To extrapolate a causal effect 
from a study population to a novel target, one needs to support that popula-
tions are sufficiently similar, or account for how they differ. This is where 
models play important but underappreciated roles (see Cartwright and 
Stegenga 2011). Good causal models of both populations are needed for (1) 
guiding the search for similarities and differences, (2) making these accessi-
ble to investigators, and (3) deriving predictions about the effects of interest. 
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These crucial roles for models suggest that it is unhelpful to understand 
extrapolation as an inference proceeding directly from an experiment to a 
target. Rather, I argue it is better understood as a hybrid inference, called 
Model-Mediated Experiment-Target Inference (METI), which involves both 
experiments and models.

METI is detailed as a general framework to elucidate several important 
aspects of experiment-target inference. First, it highlights epistemically sig-
nificant interactions between experiments and models: together, they enable 
conclusions not accessible with either tool alone. Second, METI emphasizes 
that experiment-target inference proceeds through thick layers of abstract 
experiment-target relationships. This departs from existing accounts like 
Morgan’s (2003, 2005) and Guala’s (2002; 2005), which characterize exper-
iment-target inference as anchored in concrete relationships obtaining directly 
between experimental and target systems. Accommodating related arguments 
by Parker (2009), METI maintains that both concrete and abstract relation-
ships play important roles, and neither takes priority over the other. Third, 
METI helps critically appraise inferential practices: extrapolation always 
requires models, but the models relied on in practice are likely to remain 
implicit, difficult to scrutinize, and inadequate for underwriting good 
inferences.

I proceed as follows. Section 2 characterizes extrapolation in the context 
of Evidence-Based Policy, elaborates the challenges encountered there, and 
details how extrapolation requires models. Section 3 focuses on two strate-
gies for extrapolation, explaining how both involve models but differ in how 
explicit these are made. Section 4 elaborates METI as a framework for under-
standing (some kinds of) experiment-target inference, highlights several 
desirable features of this framework, and considers questions about its rela-
tion to existing accounts as well as its scope. Section 5 responds to an objec-
tion. Section 6 concludes.

2. Extrapolation in Evidence-Based Policy

Evidence-Based Policy (EBP) is the movement according to which public 
policy should be based on high-quality evidence of ‘what works’. Specifically, 
using experimental evidence from randomized controlled trials (RCTs) and 
other credible study designs, EBP seeks to clarify whether policies (e.g., uni-
versal basic income) are effective in doing what they are supposed to do (e.g., 
improving individual’s welfare). Such evidence, in turn, is systematically 
reviewed, summarized, and collated in evidence libraries that offer decision-
makers up-to-date evidence on interventions addressing a wide range of pol-
icy issues (Duflo 2004; Parkhurst 2017 ch.2).
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2Of course, whether populations do in fact differ, and how such differences bear on an 
effect in a target, is generally unknown to investigators when endeavouring to make 
an inference.
3I use ‘modifying variables’ to refer to both moderating and mediating variables 
(Baron and Kenny 1986). W is a moderating variable if different values W of induce 
different marginal effects of X on Y. Z is a mediating variable if it transmits the effects 
of X on Y, such as in the causal mechanism X → Z → Y. While mediating variables are 
traditionally not considered to modify an X-Y-effect since they merely transmit varia-
tion from X to Y, there are cases where they can do so, such as when Y is a non-linear 
function of Z, so Z’s initial value matters for how much a given change in X changes Y.

In pursuing these goals, EBP faces a substantial obstacle: extrapolating 
causal effects measured in a study population to an eventual policy target. 
Extrapolation is challenging because populations often differ in causally 
important respects (Vivalt 2020): an intervention distributing free bed-nets to 
decrease malaria infection rates might be highly effective in one place, but 
fail in another because individuals experience incentives to use the nets for 
fishing instead (McLean et al. 2014). More generally, the causal mechanisms 
underwriting the effectiveness of an intervention in one place might be dis-
rupted in another, institutions and individuals’ dispositions to respond to 
interventions can differ, crucial background conditions needed for an effect 
might be absent, and so forth. So, in making an inference to a new population, 
extrapolation requires conscientiously seeking out information pertaining to 
causally relevant similarities and differences, as failure to do so runs the risk 
of mistaken conclusions.

Extrapolation can take various forms. Some problems are easier to handle 
than others, such as when study populations are representatively sampled from 
a target. In many cases, however, evidence is brought to bear on questions 
about populations that can importantly differ from a study population.2 In the 
following, I assume that we face these more severe extrapolation problems.

In these cases, we proceed from a causal effect of X  on an outcome Y  esti-
mated in A and endeavour to draw a conclusion about the X  to Y -effect in a 
novel target B, where A and B can differ in various ways. A useful way of 
organizing these differences is to distinguish three layers of causal analysis 
(Khosrowi 2019). Differences can occur concerning: (1) the structure of causal 
mechanisms, for example, whether there is a causal relationship between cer-
tain variables or not; (2) the finer-grained details of individual causal relation-
ships between variables, such as whether a relationship is best described 
linearly or non-linearly, or what values important structural parameters shaping 
these relationships take; and (3) the values of so-called modifying variables3, 
that is, variables that can meddle with the sign and magnitude of an effect.
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4I understand successful extrapolation here as requiring at least that an effect is cor-
rectly predicted (to within some margin) and that the prediction is adequately justified.
5An exceedingly naïve extrapolator might elude the committment to believe in any 
model by simply taking a leap of faith without seeking justification. I do not consider 
this approach here.

Successful extrapolation requires that we can either assume that popula-
tions are similar at each of these three layers of causal analysis, or, if they 
differ, that we can express how these differences bear on the effect of interest 
in a target.4 Either way, extrapolation is challenging since we need to make 
extensive causal assumptions about both populations and support these 
assumptions empirically. Let me outline how models can help make these 
assumptions explicit, which is an important precondition for attempts at sup-
porting them.

2.1. Extrapolation Requires Models

Extrapolation requires models in two senses. The first is that in making an 
inference to a new environment one needs to make some assumptions about 
how populations are related causally (Banerjee and Duflo 2009:160). Even 
the most unsophisticated form of extrapolation, that is, naïve extrapolation 
(cf. Steel 2009 on simple induction), which predicts that an effect will be 
the same in a target as in a study, will need to make some implicit causal 
assumptions—in particular, that the causal makeup of both populations is 
such that an effect is the same in B  as in A  (cf. Cartwright 2013a). These 
assumptions, in turn, can be understood to constitute a class of implicit 
causal models of both populations. This class includes models asserting 
that the two populations are exactly causally alike in all respects, but also 
models asserting that the two populations differ, but in such a way that 
these differences do not matter. While a naïve extrapolator is not committed 
to any specific models among this class, they are at least committed to 
believing that some models from this class adequately characterize relevant 
causal features of both populations. Otherwise, they would not be justified 
in expecting an effect to be the same in B as in A .5

Implicit causal models are typically unhelpful (cf. Cartwright 2013a): the 
details of their assumptions remain vague and cannot be scrutinized; it 
remains unclear what empirical support might be needed to justify their 
assumptions, whether such support is available, and how it should be sought; 
and they cannot be easily investigated and manipulated to exploit their deri-
vational resources. What is more, the implicit models relied upon by naïve 
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6One might say that the first sense in which extrapolation requires models is norma-
tive in character, too, since it presupposes that extrapolation should be justified some-
how (rather than relying on a leap of faith). I take this presupposition to be widely 
shared, however, so the normative character of extrapolation requiring some models 
does not need particular emphasis.
7The points made here are similar to those made by Cartwright (2013a), who argues 
that (good) extrapolation is best understood in terms of valid and sound effectiveness 
arguments. Focusing on models seems preferable to me because they offer cogni-
tive and epistemic advantages that extend beyond the capabilities of arguments, for 
example, they are easier to manipulate and are analytically more tractable, as will be 
highlighted in Section 3. I am open, however, to recruiting models for the purpose of 
devising sophisticated effectiveness arguments.

extrapolation are also particularly unhelpful, since populations can routinely 
differ in important ways (Cartwright 2013b; Fuller 2019; Reiss 2019; Steel 
2009; Vivalt 2020). So not only is naïve extrapolation relying on models 
likely to lack adequate support, resist scrutiny, and elude further analysis, but 
is also likely to rely on models that are inadequate, thereby precluding suc-
cessful extrapolation.

Conversely, as others have stressed (see Cartwright and Stegenga 2011), 
successful extrapolation is importantly facilitated by models that are 
explicit and well-supported. These virtues go hand in hand: the more 
explicit and detailed causal models are, including their ability to resolve 
different layers of causal analysis (e.g., those outlined earlier), the easier it 
is to tell which particular assumptions they encode, which assumptions are 
in need of support, and whether there is enough support in their favor. 
Recognizing these important benefits provides us with a second sense in 
which extrapolation requires models: one that arises not out of necessity 
but one that is normative in character and up to us to cater to.6 Successful 
extrapolation requires not just some model, but good models: models that 
are explicit and well-supported.7

Unfortunately, there are reasons to think that extrapolation in EBP often 
proceeds against the background of bad, implicit models. While some authors 
have recently more fully acknowledged the intricacies involved in extrapola-
tion (e.g., Peters, Jain, and Gaarder 2019), methodological guidelines issued 
by central EBP institutions remain unhelpfully thin on issues of extrapolation 
(e.g., Guyatt et al. 2011; Schünemann et al. 2019). They suggest that it is 
essential to consider whether populations are sufficiently similar, but provide 
little guidance beyond the level of such slogans. So, unless extrapolators 
move considerably beyond what the guidelines ask, extrapolation risks pro-
ceeding in a methodological vacuum and the models underlying these 
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inferences may remain implicit, poorly justified, and often inadequate causal 
accounts of the populations of interest.

To help elaborate more fully the important role that good, explicit models 
can play, let me turn to consider two approaches to extrapolation: statistical 
and causal graph-based approaches. While both involve models, they differ 
in how explicit these models are made, which bears on their ability to resolve 
important causal detail and promote the process of justifying extrapolation.

3. Two Approaches to Extrapolation

Among the various approaches to extrapolation that have been proposed and 
discussed (e.g., Cartwright 2012, 2013a, 2013b; Cartwright and Hardie 
2012; Guala 2010; Muller 2013, 2014, 2015; Steel 2009, 2010; van Eersel, 
Koppenol-Gonzalez, and Reiss 2019), statistical and causal graph-based 
approaches stand out because they offer resources to overcome a wide variety 
of problems of extrapolation. Specifically, unlike other approaches, they 
offer formal recipes for how to adjust an effect estimated in one population to 
accommodate differences between populations. Let me introduce a working 
example to illustrate how both approaches work, before highlighting their 
differences.

Assume we are interested in the effect of a microfinance intervention 
intended to improve household welfare of the rural poor. The intervention 
seeks to help people lacking access to credit obtain the necessary capital for 
starting small businesses, which, in turn, is hoped to increase household 
income and ultimately welfare. Assume further that we have measured the 
effect of our intervention in a study population A: the intervention has proven 
to be highly effective at increasing welfare there. Let us also assume that the 
microfinance effect (in particular, how successful any investments in small 
businesses are in yielding increases to household income, and ultimately wel-
fare) is influenced by two modifying variables in A . First, individuals’ age is 
a negative modifying variable: younger individuals have better intuitions 
about what could be successful business ideas. Second, entrepreneurial abil-
ity (in the broadest sense) is a positive modifying variable: individuals who 
have a better grasp of how to run a small business are better at successfully 
converting business investments into household income. Finally, let us 
assume that age and entrepreneurial ability are positively correlated in A. 
Older individuals, other things being equal, are more likely to have received 
pertinent education and to have had previous opportunities in starting small 
businesses and learning from these experiences, which increases their entre-
preneurial ability. With this example in place, let me proceed to outline how 
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statistical and graph-based approaches would handle an extrapolation of the 
microfinance effect.

Statistical approaches have been proposed in the microeconometrics lit-
erature (Crump et al. 2008; Hotz, Imbens, and Mortimer 2005; see Khosrowi 
2019; Muller 2013, 2014, 2015 for discussions) and other proposals have 
since followed their general rationale (van Eersel, Koppenol-Gonzalez, and 
Reiss 2019). In enabling extrapolation even when populations differ rele-
vantly, statistical approaches focus on differences in the distribution of modi-
fying variables. Let us focus on the role of age in our microfinance example: 
assume we know that the microfinance effect depends negatively on age in  
A, and that the mean of the age distribution is higher in B . Based on this, we 
might think that the microfinance effect will be lower in B than in A . To tell 
us how much lower, statistical approaches proceed by measuring the effect 
conditionally on the age distribution in A as a so-called conditional average 
treatment effect (CATE). In essence, a CATE amounts to a statistical model of 
how the effect of interest measured varies over, and in that sense depends on, 
age. With this model in place, statistical approaches proceed to forming a 
prediction about B  by reweighting the effect measured in A according to the 
age distribution in B.

In enabling such extrapolations, statistical approaches require a wide 
range of assumptions (see e.g., Khosrowi 2019; Muller 2013, 2014, 2015), 
including causal assumptions about A and B. Among other things, they 
require that populations only differ concerning how modifying variables are 
distributed, but not concerning whether a modifying variable that plays a role 
in A also influences an effect in B , or how, exactly, it does so. For instance, 
age might not be a modifying variable at all in B  since individuals have simi-
larly promising business ideas across the age distribution, or age might be 
involved in B, but differently than in A—say when high rather than low age 
coincides with more successful business ideas because older individuals have 
a better idea of what needs are currently uncatered to by businesses in their 
community. In adjusting for differences between populations, however,  
statistical approaches need to rule out such fundamental differences. This 
implies a host of substantive causal assumptions at the layers of causal analy-
sis outlined earlier (see Khosrowi 2019). These assumptions are rarely explic-
itly recognized, including by proponents of statistical approaches. One reason 
for this omission could be that statistical approaches do what it says on the 
box: they focus on statistical models and not on the causal underpinnings of 
the effects of interest. This can easily become a problem, however, as popula-
tions may well often differ at those levels of causal analysis where statistical 
approaches must assume essential similarities.
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By contrast, graph-based approaches (Bareinboim and Pearl 2012, 2016) 
proposed in the computer science literature offer a richer set of resources to 
make such assumptions explicit. They involve three main ingredients. The 
first are structural causal models (SCMs), that is, a set of structural equations 
that encode the causal relationships assumed to hold between variables. 
Second, the relationships stipulated by SCMs are captured by corresponding 
graphical causal models, called directed acyclic graphs (DAGs). In extrapo-
lation, the graph-based approach involves building a special kind of DAG, a 
so-called selection diagram, which represents experimental and target popu-
lations in a single graph and uses selection nodes to encode differences 
between populations, such as when the distribution of a variable or the func-
tional relationship between two variables differs. Figure 1 illustrates a selec-
tion diagram for our microfinance example.

The main causal pathway proceeds from microfinance ( X), through 
investment in small businesses ( I ) and household income (H ), to household 
welfare (Y ). In addition, there are two further arrows pointing into H : they 
capture the modifying variables age (T ) and entrepreneurial ability (E). I ,  
T , and E  interact with each other in producing H . Because T  and E  are 
modifying variables (which we know at least for the experimental popula-
tion), different levels of T  and E  each induce different marginal effects of a 
given increment of investment I  on household income H : higher age induces 
smaller effects, and higher entrepreneurial ability induces larger effects of  
I  on H , other things being equal. In addition to this basic structure, the 
dashed arrow (confounding arc) between T  and E  indicates that there are 

Figure 1. Selection diagram encoding causal assumptions and relevant differences.
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unmeasured confounding variables that induce a correlation between them.8 
For instance, school curricula and social structures might determine at which 
age individuals acquire pertinent knowledge or relevant experience that bear 
on their ability to convert investments I  into household income H . Finally, 
to accommodate how A  and B  might differ, there are two selection nodes S  
and S ’ pointing into T  and E  respectively. They indicate that the distribu-
tions of T  and E  can differ between populations.

In facilitating causal inference, the graph-based approach relies on a third 
important element: an inference engine. Specifically, it offers a powerful for-
mal calculus that helps us derive so-called transport formulae, that is, formal 
expressions that answer a causal query (such as: what is the effect of inter-
vening on X  on the distribution of Y  in B ) in terms of interventional and 
observational quantities from both populations (e.g., the causal effect mea-
sured in A  and the distributions of T  and E  measured in B ). I will not dive 
deeper into how transport formulae are derived (see Bareinboim and Pearl 
2012, 2016), including for our example. For our present purposes, it is enough 
to note that the graph-based approach involves three elements: (1) structural 
causal models of the populations of interest, (2) corresponding graphical 
causal models, including a joint causal model of both populations encoding 
relevant differences (selection diagram), and (3) an inference engine that 
helps us answer queries about the target based on (1) and (2).

The outline provided above helps us recognize a key difference between 
statistical and graph-based approaches: the extent to which they make the 
causal models needed for extrapolation explicit. While statistical approaches 
model explicitly how an effect depends, statistically, on certain modifying 
variables, they keep crucial causal assumptions, and hence a substantial part 
of the models needed for an inference, implicit. The graph-based approach, 
by contrast, is firmly committed to the idea of making models explicit (as far 
as existing causal knowledge permits) in the form of an SCM, DAGs, and, in 
particular, through selection diagrams, that is, joint causal models encoding 
similarities and differences between populations.

Of course, an explicit model is not automatically a good model, as it may 
involve assumptions that are not adequately supported, or might indeed be 
wrong. Yet, making models explicit is an important step in facilitating suc-
cessful extrapolation as it offers three important benefits.

First, having explicit models makes it easier to assess which assumptions, 
exactly, an extrapolation involves; whether they appear plausible; whether 
they enjoy sufficient support; and what one should do to substantiate them. 

8Further confounding arcs are omitted for simplicity.
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Consider our microfinance example: in helping us detail the causal structure 
governing the welfare outcome in both populations, a joint causal model 
helps us recognize which kinds of similarities are essential for an extrapola-
tion. It makes clear that the ways in which T  and E  individually meddle 
with the effect of I  on H  must be the same in both populations. These 
assumptions, in turn, require empirical support: for instance, we must some-
how get an empirical handle on whether age is indeed a negative modifying 
variable in B  or not. A joint causal model is helpful for estimating T ‘s indi-
vidual bearing on the effect of interest in the target because it can instruct us, 
for instance, to break the correlation between T  and E  by choosing an 
appropriate conditioning set.

A second important advantage of making models explicit is that it helps 
make fine-grained details of the causal and correlational structures of both 
populations salient to investigators, details that the statistical approach likely 
fails to recognize. Recall that our microfinance example assumes that, in A , 
T  is a negative modifying variable, E  a positive one, and both are positively 
correlated. If this correlation is strong enough, the statistical approach faces 
a problem: if a CATE is estimated conditionally only on T , it can appear as if 
T  is a positive modifying variable, whereas, causally speaking, it really is a 
negative one. Likewise, a CATE measured conditionally only on E  would 
underestimate E ’s positive bearing on the effect of interest. To be sure, there 
is nothing, in principle, that would stop us from considering both variables 
when measuring a CATE and thereby obtaining the correct expectation of the 
effect in the target. However, this still requires that we can assume that T  and 
E  are involved in meddling with the microfinance effect in the same way in 
B  as in A . The advantage of encoding these assumptions in an explicit 
causal model is not only that it can help us recognize which assumptions are 
needed, but also that it helps us extrapolate when these assumptions fail 
because populations indeed differ. For instance, if the way in which a correla-
tion between T  and E  is induced is different in B, for example, because 
younger individuals tend to receive pertinent education that increases their 
entrepreneurial ability there, then even if we take both T  and E  into account 
when adjusting our prediction based on the CATE estimated in A, we would 
still get the effect in B  wrong. An explicit causal model, by contrast, helps us 
distinguish between how variables are involved causally and how they are 
distributed, rather than mixing both together in an estimate of how an effect 
depends on these variables in a purely statistical sense.

Finally, a third important advantage of having a well-supported joint 
causal model of both populations is that such a model can also offer deriva-
tional resources for answering a range of further causal queries, such as what 
co-interventions are needed to help achieve a specific effect. For instance, if 
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9Of couse, similarity and difference are a matter of judgment and not brute fact. I am 
interested here in those parts of the causal makeup of A and B that these judgments 
supervene on.

a target differs in age distribution (higher mean) and entrepreneurial ability 
(lower mean) but is otherwise causally similar, we might consider comple-
menting our microfinance program with a co-intervention that improves indi-
viduals’ entrepreneurial ability (e.g., a skills training program).

In sum, through making models explicit, the graph-based approach offers 
crucial resources for turning the models that are invariably involved in 
extrapolation into explicit and good models, that is, models that (1) ade-
quately capture the causal makeup of both populations, including important 
differences between them, (2) facilitate the process of providing support for 
licensing our inferences, and (3) can be used for a variety of further epistemic 
and practical purposes.

With these ideas in place, let me detail in a more systematic way how we 
can understand extrapolation as a hybrid inference involving experiments 
and models.

4. Experiment-Model-Target Inference

In elucidating what successful learning from experiments requires, the existing 
literature has tended to focus on the kinds of relationships that obtain between 
experimental and target systems directly. For instance, in the context of making 
epistemologically pertinent distinctions between experiments and simulations, 
Morgan (2005) argues that experiments exhibit distinctive epistemic powers in 
virtue of exploiting ontological equivalences between study and target entities 
of interest. Similarly, Guala (2002, 2005) argues that experiments permit suc-
cessful inferences about targets to the extent that experimental and target sys-
tems are materially analogous, for example, because the entities figuring in 
them are of the same kind, the same material causes operate in both systems, or 
they exhibit analogies at some other material level of description.

What these proposals have in common is that they focus on a relationship 
R  that obtains directly between two empirical systems and their respective 
causal makeup, that is, the entities figuring in these systems, their causal 
features, and specific instances of similarity and difference between these 
features. Importantly, R  is a concrete relationship characterized at an ontic 
level: it is ‘out there’, its nature is up to the world to decide, and it dictates 
what form causal phenomena or effects take in each population and whether 
these are similar or not.9 Importantly, all of this is the case regardless of 
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whether we are interested in learning about these phenomena/effects or not, 
or indeed learning about R  itself. Figure 2 summarizes this schematically.

Here R  is the relationship obtaining between the causal makeup of A  and 
B , and the success of an inference from A  to B  (dashed arrow) is thought to 
depend crucially on R.
R  is undoubtedly important in many cases where experiments are used to 

study broader phenomena of interest, especially in natural and life sciences. 
Particularly in those cases where we are interested in whether an effect/phe-
nomenon established in an experiment will obtain in the same (or a similar) 
way in a target, R  will need to take the right form to make this so (unless we 
are counting on lucky accidents), and our inferences will hence depend on R. 
For instance, a lab experiment investigating the reactive behaviors of a chem-
ical substance can be thought to be informative about the behaviors of other 
instances of the substance outside the lab in virtue of R  taking the right form, 
for example, that the substance involved in the experiment is materially simi-
lar/analogous to the substances that constitute the broader target of interest or 
that the same material causes relevant to its behaviors are present in the tar-
get, too. Similarly, in social sciences we are sometimes fortunate enough to 
study a representative sample from a target population, where arguments con-
cerning the representativeness of the experimental population can be used to 
ground that R  takes a suitable form and hence permits more straightforward 
inferences.

However, in focusing on R, this schema neglects important features of 
other, less straightforward kinds of experiment-target inference, such as the 
kinds of extrapolation discussed here. For one, establishing that R  takes a 
suitable form is often significantly more difficult in extrapolation, such as 
when populations are distinct rather than the experimental population being 
sampled from the target, or because appealing to material analogies is not 
helpful when crucial causal similarities are not guaranteed by entities belong-
ing to the same kind (see Strevens 2007). What is more, extrapolation is often 
not concerned with merely asking whether an effect will be the same in a 
target as in a study setting, but aims at drawing a conclusion about a target 
even when populations might differ relevantly, and by taking such differ-
ences into account.

Figure 2. Direct experiment-target inference justified by appeal to R.
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As the preceding discussion made clear, such inferences are unlikely to be 
successful without explicit models that encode similarities and differences 
between populations. Because of this, experiment-target inference is not use-
fully characterized as an inference from an experimental system to a target 
system directly, and underwritten by reference to R. While R  still governs 
whether or not effects will be similar between populations, R  itself is not the 
relationship that matters most in extrapolation. Rather, extrapolation requires 
that we can construct adequate and well-supported causal models MA  and 
MB of experimental and target populations respectively and a joint model 
M * (e.g., a selection diagram) that encodes similarities and differences 
between them. These models, in turn, introduce a second layer to extrapola-
tion: an epistemic layer at which our inference proceeds. Here, in addition to 
R , there is a second relationship of crucial importance: R*. R* is an epis-
temically pertinent (and fallible) abstraction on, and idealization of, the true 
causal makeup of both populations and their relationship R. Importantly, R* 
is acquired by means of representation: the models MA and MB and the joint 
causal model M *  that encodes R* are abstract and idealized representations 
of A  and B.

Since R* is needed to make similarities and differences accessible to 
investigators, the success of extrapolation hinges not only on R  (which deter-
mines whether/how an effect departs from that in the experiment) but also, 
and more importantly, on R*, that is, whether we manage to adequately cap-
ture similarities and differences with our joint causal model and whether, by 
using this information, we manage to correctly predict an effect. Importantly, 
R* can encode similarities (and perhaps differences) over and above those 
‘contained’ in R . For instance, individuals in two populations can respond 
similarly to one and the same intervention but for different underlying rea-
sons: an implicit social norm might govern behaviors in one population and 
an explicit institution (e.g., a law) might do so in the other. Here, even though 
there are no concrete similarities in the underlying mechanisms governing 
behaviors (e.g., in terms of entities and activities), there are properly abstract 
and formal similarities in terms of behaviors, and these can be captured by  
R*, and used for inferential purposes.

In light of the above, it seems that extrapolation is not well understood as 
an inference from an experiment to a target directly, but rather as a hybrid 
inference, which is mediated by causal models of both populations and a joint 
causal model encoding similarities and differences between them, and facili-
tated by an inference engine operating on the inputs from these models. Call 
this Model-Mediated Experiment-Target Inference (METI).

METI departs significantly from more straightforward experiment-target 
inference underwritten by reference to R , as Figure 3 illustrates.
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Here, we find the populations A  and B; the concrete relationship R  that 
obtains between them; the two causal models MA  and MB , which each stand 
in a representational relationship rA  and rB  to A  and B  respectively; and a 
joint causal model M *  which encodes the abstract relationship R*. The 
‘flow’ of inference is depicted in dashed arrows. It proceeds ‘upwards’ from 
both populations toward the models MA  and MB  representing them, through 
the joint model M *, and it is mediated by an inference engine I  in forming 
a prediction about B. METI hence carves out the role of models in more 
detail: models sit, inferentially, between an experiment and a conclusion, and, 
just like the experimental result from A , they form an essential part of the 
resources employed by an inference.

Importantly, METI characterizes the resources involved in extrapolation 
as an epistemic whole whose ingredients interact in ways that have not been 
recognized by existing accounts. An experimental result, by itself, might 
inspire hypotheses about what an effect in a target could be, but unless it is 
joined by a causal model that helps clarify relevant similarities and differ-
ences, and how these bear on the effect to be expected in a target, it remains 
largely uninformative about that effect. Likewise, even a sophisticated joint 
causal model, by itself, is unlikely to permit conclusions about an effect in the 
target with the same confidence as when it is complemented by a well-iden-
tified causal effect obtained from an experiment. It can tell us, for instance, 
that whatever an effect is in A , it will be similar in B  (or depart systemati-
cally according to certain differences), but it cannot tell us what, exactly, that 

Figure 3. METI as a hybrid, mediated inference from A to B.
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effect will be in a target unless we have confidently established the magni-
tude of the effect, for example, by means of an experiment. So, experiments 
and models each play important roles in METI, with neither being privileged, 
and together enable conclusions that would not be feasible with the same 
confidence from either ingredient alone.

Beyond elucidating the role of models in experiment-target inference, 
METI can also be useful for critically appraising such practices. As empha-
sized earlier, a key methodological shortcoming of EBP’s methodological 
guidelines is that they say little on extrapolation and thereby tolerate that 
models often remain implicit. METI gives us some normative leverage for 
refining these guidelines, for example, to demand that models be explicit, 
amenable to scrutiny, and well-supported.

It is also important, however, to emphasize that METI is limited in its 
ameliorative scope: it tells us that good models are needed for successful 
inference, but not how to build such models. There are indeed important chal-
lenges to be overcome in building the kinds of explicit and well-supported 
models that can facilitate extrapolation. One is simply that constructing such 
models is rarely straightforward and requires substantial epistemic resources, 
which is perhaps why even proponents of model-heavy approaches, such as 
Bareinboim and Pearl, say little on how causal models are constructed, and 
simply assume that an investigator is in possession of sufficient empirical 
knowledge to build them (see Hyttinen et al. 2015). But we are not com-
pletely empty-handed when it comes to positive proposals: advocates of real-
ist evaluation (Astbury and Leeuw 2010; Pawson 2013) as well as philosophers 
and methodologists (Cartwright 2020; Cartwright and Hardie 2012), have 
made important progress in furnishing details for how to construct so-called 
program theories or logic models that systematically and iteratively refine 
our understanding of the causal mechanisms by which policy interventions 
are effective and the conditions under which these interventions are likely to 
work best. These proposals constitute promising avenues for catering to 
METI’s demand for good models.

There is also a second, more principled challenge to be acknowledged 
when emphasizing the role of models in experiment-target inference: the 
extrapolator’s circle (Steel 2009; see also Khosrowi 2019). In a nutshell, the 
extrapolator’s circle cautions that the causal knowledge about a target 
required for an extrapolation must not be so comprehensive that we could 
answer our causal query on the basis of that knowledge alone. So maintaining 
that extrapolation requires explicit and well-supported causal models, as 
METI does, must stop well short of demanding models strong enough to 
obviate the need to extrapolate at all, as that would be self-effacing.
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Yet, while the extrapolator’s circle is indeed an important challenge, METI 
is not especially vulnerable to it, nor does it remain mute on the issues to be 
addressed in overcoming it. For one, it is important to recognize that the 
extrapolator’s circle is a challenge for any sincere attempt at extrapolation, 
with or without the help of models. Moreover, it seems that aiming to extrap-
olate by means of explicit causal models can indeed be helpful for evading 
the extrapolator’s circle. A statistical approach to extrapolation, for instance, 
will often need to support similarity assumptions en-bloc. For lack of encod-
ing finer-grained details about the causal makeup of two populations, it 
requires that they exhibit similarities wholesale at certain levels of causal 
analysis. This is problematic because such wide-ranging assumptions gener-
ally require more extensive support, for example, about mechanistic similari-
ties from start to finish, rather than at particular stages.

By contrast, following METI’s call to make models explicit can help us 
spell out in a more fine-grained way which assumptions are needed, which of 
these we can safely bet on and which ones are in need of further support, and 
whether providing such support would demand too much causal knowledge 
about a target. This is perhaps why existing proposals for overcoming the 
extrapolator’s circle (Steel 2009, 2010) already take a model-based approach 
toward delineating what assumptions need to be made and elaborating which 
of these we should focus on to avoid trivializing our inferences.

So while METI emphasizes that good models are needed to facilitate 
extrapolation, it does not claim that models are a silver bullet or come for 
free. It acknowledges that there remain substantial challenges in the way of 
constructing models that are powerful enough to facilitate extrapolation 
while not requiring extensive causal knowledge about a target. And it also 
emphasizes that explicit models can play important roles in overcoming these 
challenges, for example, by helping us recognize which inferences are prone 
to raise concerns about the extrapolator’s circle in the first place.

With these clarifications made, let me briefly touch upon two further 
issues to complete my detailing of METI: how it relates to existing accounts 
of experiment-target relationships, and whether its scope extends beyond 
extrapolation.

First, METI can help us improve on existing views of experiment-target 
relationships such as those offered by Morgan (2003, 2005) and Guala (2002, 
2005). These views have so far not fully distinguished between ontic and 
epistemic layers of experiment-target inference. Focusing on the ontic layer 
of concrete experiment-target relationships R , like Morgan and Guala do, is 
helpful for elucidating more straightforward cases of experiment-target infer-
ence. Yet, extrapolation hinges not only on R , but also, and more impor-
tantly, on whether we successfully manage to represent R‘s relevant features 
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as well as further, abstract similarities through R*� at an epistemic level, and 
whether we can successfully use these representations to answer causal que-
ries about the world. This hence accommodates some of the concerns 
expressed by Parker (2009) and Parke (2014), who have resisted Morgan’s 
and Guala’s emphasis on distinctive epistemic benefits yielded by concrete 
relationships obtaining directly between experimental and target populations, 
such as ontological equivalence and material analogy, by detailing how 
abstract, formal relationships of relevant similarity are often doing the impor-
tant work of facilitating inferences from experiments. METI can help further 
reconcile these views. It acknowledges that R  plays an important role in 
determining causal phenomena/effects in both populations and whether they 
are similar or not. But it also accommodates Parker and Parke’s emphasis on 
abstract relationships of similarity (and difference) by clarifying the role of 
R*  and highlighting that extrapolation proceeds through thick layers of rep-
resentation, abstraction, and idealization, before causal information is avail-
able to investigators at an epistemic level. So in METI, the success of 
extrapolation can hinge, at the same time, on concrete relationships obtaining 
directly between populations and on abstract relationships obtaining only at 
the epistemic level where inference proceeds.

What about the scope of METI? I have proposed METI as a characteriza-
tion of extrapolative inference from experiments in EBP and social science 
more generally. But we might ask whether METI can also be helpful in elu-
cidating other kinds of experiment-target inference. Here, it seems that much 
depends on the kind of inference at issue. We might think, for instance, that 
even the most straightforward cases of experiment-target inference, for 
example, those facilitated by justificatory strategies involving sampling-type 
or material analogy-type arguments, could be understood to involve models, 
too (at least implicitly). But it is questionable whether making these models 
explicit could provide epistemic benefits, so not much seems to be gained by 
thinking about experiment-target inference in terms of METI. Between these 
easier cases and more involved ones, like those encountered in extrapolation, 
there is however a whole spectrum of inferences that differ in various impor-
tant respects, including in (1) the aims they pursue (e.g., inferring whether 
phenomena/effects are the same in a target vs. predicting precise quantities), 
(2) the severity of the challenges faced (in what ways populations/systems 
might differ and to what extent, and what resources are available to clarify 
this), (3) the availability of justificatory strategies that appeal directly to R  
(e.g., representative sampling-type or material analogy-type justifications), 
etc. At the most general level, it seems that METI will be more appealing as 
a way to understand these inferences the more ambitious the aims are, the 
more severe the challenges involved, and the less any justificatory shortcuts 
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are available. Delineating the extension of this class of inferences is beyond 
the scope of this paper, but it is hoped that future work can help not only 
refine METI but also make progress in exploring where it can be usefully 
applied.

With this overview of METI in place, let us briefly consider an important 
objection against METI’s core claim, that is, that some kinds of experiment-
target inference need models.

5. Models proper?

While it is clear that good inferences from experiments need plenty of addi-
tional resources, including causal assumptions enjoying adequate support, 
one might nevertheless have reservations about whether this is enough to 
conclude that what is needed are models proper. The assumptions involved in 
extrapolation might be understood as causal models, but perhaps these causal 
models should not be counted as scientific models in the general sense, and 
no broader conclusions about interactions between models and experiments 
should be drawn beyond those specifically pertaining to causal models in the 
context of extrapolation.

Let me defend here in more detail why the models involved in extrapola-
tion, at least if built conscientiously, should be considered capital-M scien-
tific models in the most general sense. This is because they exhibit a range of 
essential characteristics that figure prominently in existing accounts of scien-
tific models:

(1) They are artifacts that are constructed and used for pursuing particu-
lar epistemic purposes, that is, extrapolating causal effects, and they 
figure as surrogates for real-world systems (cf. Mäki 2009), that is, 
they allow us to answer causal queries about a target without studying 
that target directly.

(2) They are formal/mathematical and/or diagrammatical representations 
of the causal makeup of real-world systems. In virtue of this, they 
raise standard issues of scientific representation (Frigg and Nguyen 
2020; Giere 2010; Khosrowi 2020; Suárez 2003; Teller 2001; van 
Fraassen 2008; Weisberg 2013), that is, to promote certain epistemic 
purposes, they need to be suitably related (e.g., sufficiently similar, 
structurally isomorphic, etc.) to their targets in epistemically relevant 
respects.

(3) They involve abstractions. In order to remain analytically tractable, 
causal models omit inessential details, such as when an extraneous 
causal relationship understood to be inessential for an effect is 
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omitted from a model, or when a relationship between two variables 
is represented as analytically primitive even though we believe it is 
underwritten by a finer-grained causal structure in the real world.

(4) They involve idealizations. For instance, a parametric structural 
equation model might assume linear functional forms throughout if it 
is understood that this is a reasonable approximation for the epistemic 
purpose at hand.

(5) Context matters. Fidelity desiderata and contextual factors co-deter-
mine whether a particular model is adequate for a purpose (Parker 
2020). For instance, we would expect a model to resolve greater 
causal detail if we are interested in precise quantitative predictions 
rather than qualitative predictions. Similarly, the stakes involved in 
acting on a prediction, and other contextual factors related to epis-
temic risk (Biddle and Kukla 2017), may bear on the fidelity desid-
erata imposed on both model construction and justification.

(6) To be useful, the models at work in extrapolation need to be empiri-
cally informed with measurements of certain variables and structural 
parameters relevant to an effect, much like structural models in eco-
nomics and econometrics need to be populated with measurements 
and calibrated before being put to use successfully (see e.g., Boumans 
2002).

(7) They are autonomous epistemic instruments (Morrison and Morgan 
1999) that can be used for epistemic and practical purposes beyond 
extrapolation, for example, by facilitating understanding of causal 
phenomena (see e.g., de Donato Rodríguez and Zamora Bonilla 
2009), such as how effects vary between populations and individuals; 
by guiding efforts to unpack finer-grained details of a given causal 
structure; and, as argued earlier, by inspiring novel interventions, 
such as when helping us realize that a co-intervention might be useful 
to achieve a certain desired effect.

In sum, the above characteristics suggest that we should take the causal 
models involved in extrapolation seriously as capital-M scientific models 
proper.

6. Conclusions

I have argued that an important class of experiment-target inference is not 
well understood as proceeding from an experimental system to a target 
directly, but rather as a hybrid inference, METI, which involves experi-
ments and models. I have focused on the practice of extrapolation in EBP 
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and argued that extrapolation requires models for two reasons: first, because 
we need to make at least some implicit causal assumptions, and second, 
because good, explicit models play essential roles in facilitating successful 
extrapolation: they guide the search for relevant similarities and differ-
ences, encode such information at an epistemic level, and help with deriv-
ing predictions about the effects of ultimate interest. Recognizing the 
importance of models has three important benefits: (1) it brings to the fore 
epistemically significant but heretofore unrecognized interactions between 
experiments and models as part of epistemic wholes enabling conclusions 
that would remain inaccessible otherwise, (2) it helps critically appraise 
inferential practices involving experiments and offers normative leverage 
to ask that the models involved be made explicit, and (3) it reconciles some 
differences among existing views on experiment-target relationships by 
clarifying that both concrete and abstract relationships are important for 
successful inference.

In light of these benefits, it seems interesting to explore whether METI 
can also be informative for understanding and critically appraising other 
kinds of experiment-target inference beyond extrapolation, an issue that has 
not been explored here. It is hoped, however, that the first sketch of METI 
developed here can figure as an interesting starting point to further advance 
the larger philosophical project of elucidating how experiments and mod-
els, on their own, or when joined together, facilitate learning about the 
world.
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