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Abstract
The Milnor number μ f of a holomorphic function f : (Cn, 0) → (C, 0) with an iso-
lated singularity has several different characterizations as, for example: 1) the number
of critical points in a morsification of f , 2) the middle Betti number of its Milnor fiber
M f , 3) the degree of the differential d f at the origin, and 4) the length of an analytic
algebra due to Milnor’s formula μ f = dimCOn/ Jac( f ). Let (X , 0) ⊂ (Cn, 0) be an
arbitrarily singular reduced analytic space, endowed with its canonical Whitney strat-
ification and let f : (Cn, 0) → (C, 0) be a holomorphic function whose restriction
f |(X , 0) has an isolated singularity in the stratified sense. For each stratum Sα let
μ f (α; X , 0) be the number of critical points onSα in a morsification of f |(X , 0). We
show that the numbersμ f (α; X , 0) generalize the classicalMilnor number in all of the
four characterizations above. To this end, we describe a homology decomposition of
theMilnor fiberM f |(X ,0) in terms of theμ f (α; X , 0) and introduce a new homological
index which computes these numbers directly as a holomorphic Euler characteristic.
We furthermore give an algorithm for this computation when the closure of the stratum
is a hypersurface.
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1 Summary of results

The Milnor number μ f is one of the central invariants of a holomorphic function

f : (Cn, 0) → (C, 0)

with isolated singularity. It has—among others—the following characterizations, cf.
[29, Chapter 7] and [1, Chapter 2].

1) It is the number of Morse critical points in a morsification fη of f .
2) It is equal to the middle Betti number of the Milnor fiber

M f = Bε ∩ f −1({δ}), ε � δ > 0.

3) It is the degree of the map

1

| d f | d f : ∂Bε → S2n−1

for some choice of a Hermitian metric on (Cn, 0).
4) It is the length of the Milnor algebra

On/ Jac( f ),

where Jac( f ) = 〈 ∂ f
∂x1

, . . . ,
∂ f
∂xn

〉 is the Jacobian ideal of f .

In this note we consider the more general setup of an arbitrary reduced complex
analytic space (X , 0) ⊂ (Cn, 0) and a holomorphic function f : (Cn, 0) → (C, 0),
whose restriction f |(X , 0) to (X , 0) has an isolated singularity in the stratified sense.
To this end, we will assume that (X , 0) is endowed with a complex analytic Whitney
stratification S = {Sα}α∈A with finitely many connected strata Sα . There always
exists a Milnor fibration for the restriction f |(X , 0) of any function f to (X , 0),
regardless of whether or not f |(X , 0) has isolated singularity; see [23], or [14]. Denote
the corresponding Milnor fiber by

M f |(X ,0) = Bε ∩ X ∩ f −1({δ}),

where X is a suitable representative, Bε a ball of radius ε centered at the origin in Cn ,
and ε � δ > 0 sufficiently small.
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A generalization of Milnor’s formula 903

We introduce invariantsμ f (α; X , 0) of f |(X , 0)—see Definition 5—which gener-
alize the classical Milnor number simultaneously in all of these four characterizations.
Let Xα = Sα be the closure of the stratum Sα and d(α) its (complex) dimension.
Then for every α ∈ A the number μ f (α; X , 0) is

1’) the number of Morse critical points on the stratumSα in a morsification of f . For
the definition of morsifications in this context see Sect. 3.1.

2’) the number of direct summands forα in the homology decomposition of theMilnor
fiber M f |(X ,0), see Proposition 1.

3’) the Euler obstruction Eud f (Xα, 0) of the 1-form d f on (Xα, 0), see Definition 8
and Corollary 3.

4’) the derived homological index

μ f (α; X , 0) = (−1)d(α) · χ
(
Rν∗
(
Ω̃•

α, ν∗ d f ∧ −
)
0

)
,

i.e. the Euler characteristic of a finite complex of coherent OX -modules, cf. The-
orem 1 and Corollary 4.

A similar discussion for the generalizations of 1)–3) has been carried out by Seade
et al. in [30]. The study of homology decomposition for the Milnor fiber has been
initiated by Siersma [31] in the case that not only f |(X , 0) but also the space (X , 0)
itself has isolated singularity. See also the closely related bouquet decomposition of
the Milnor fiber [33] due to Tibăr and the article [28] by Massey for a decomposition
similar to Proposition 1 in terms of hypercohomology of constructible sheaves. The
definition of the Euler obstruction of a 1-form goes back to MacPherson [27], but
can also be adapted from the analogous notion for vector fields as described in [2] by
Brasselet et al. We will use the definition by Ebeling and Gusein-Zade from [8].

Contrary to those previous topological considerations for the generalizations of
1)–3), we will describe the Euler obstructions Eud f (Xα, 0) as an analytic invariant
in Theorem 1. This allows us to also generalize the characterization 4) of the Milnor
number to 4’). For the particular case whenSα is a hypersurface, an algorithm for the
computation of the numbers μ f (α; X , 0) as a homological index is given in Sect. 5.

Example 1 The following example illustrates the setup considered in this article. Let
X ⊂ C

3 be the Whitney umbrella given by the equation h = y2 − xz2 = 0 and
endowed with the stratification

S0 = {0},
S1 = {y = z = 0} \S0,

S2 = X \ (S0 ∪S1).

This stratification is known to satisfy the Whitney conditions A and B (Fig. 1).
As a function f : C3 → C with isolated singularity on (X , 0) we consider

f (x, y, z) = y2 − (x − z)2.
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904 M. Zach

Fig. 1 The Whitney Umbrella with 1) its three strata, 2) the zero level of f and the critical points of f |X ,
and level sets of f of 3) a regular value of f |X , and 4) a critical value of f |X

Note that f does not have isolated singularity onC3. Its restriction f |X to X , however,
has only isolated critical points in the stratified sense (cf. Definitions 1 and 2 below)
at the points

0 = (0, 0, 0) and p6,7 =
(
3
2 , ± 3√

2
, −3

)
.

In particular, there are no critical points of the restriction f |S1 = −x2 of f to the
first stratum S1 ∼= C

∗ since 0 /∈ S1. It will become clear later, why we label the last
two of these points with indices 6 and 7. We will usually have to neglect these points,
since we are interested in the local behaviour of f on the germ (X , 0) of X at the
origin 0 ∈ C

3. As we shall see in Example 2, we have

μ f (0; X , 0) = 1, μ f (1; X , 0) = 1, μ f (2; X , 0) = 5
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A generalization of Milnor’s formula 905

for the restriction f |(X , 0) at this point.

2 Background andmotivation

Suppose the function f , the space (X , 0), and its stratification have been chosen as in
1’) to 4’) from Sect. 1. An application of [30, Proposition 2.3] by Seade et al. shows
that

μ f (α; X , 0) = (−1)dimSα · Eu f

(
S α, 0

)

where Eu f

(
S α, 0

)
is the Euler obstruction of the function f on (S α, 0) from [2].

It is defined as follows.
Let ν : X̃ → X be the Nash transformation of (X , 0). Then there always exists a

continuous alteration v of the gradient vector field grad f on (Cn, 0) which is tangent
to the strata of (X , 0), and a lift ν∗v of v to the Nash bundle T̃ on X̃ . Over the
link K = ∂Bε ∩ X of (X , 0) this lift is well defined as a non-zero section in T̃ up to
homotopy. Now Eu f (X , 0) is the obstruction to extending ν∗v as a nowhere vanishing
section to the interior of X̃ . The same procedure can then be applied to the closure of
a stratum (Sα, 0) in place of (X , 0).

Based on this notion, Seade et al. discuss a generalization of 1)–3) in [30] which is
similar to the one presented here. To understand how our approach came about to also
include 4), i.e. Milnor’s formula, we have to consider the article [30] in the context of
a series of papers by various authors on different indices of vector fields and 1-forms
on singular varieties. A thorough survey of the results from that time is [9].

One of these indices—the GSV index of a vector field—is particularly close to the
idea of the Euler obstruction. The GSV index was first defined in [13, Definition 2.1
ii)] for the following setup:

Let (X , 0) = (g−1({0}), 0) ⊂ (Cn+1, 0) be an isolated hypersurface singularity and
v the germ of a vector field on

(
C
n+1, 0

)
which has an isolated zero at the origin and

is tangent to (X , 0). The GSV index IndGSV (v, X , 0) of v on (X , 0) is the obstruction
to extending the section v|K as a C∞-section of the tangent bundle from the link
K = X ∩ ∂Bε to the interior of the Milnor fiber Bε ∩ g−1({δ}). Here we deliberately
identify the link K with the boundary ∂Bε ∩ g−1({δ}) of the Milnor fiber and the
section v|K with its image under this identification.

In [12], Gómez-Mont introduces the homological index of a vector field v on (X , 0)
as above in order to obtain an algebraic formula1 for the GSV index. The homological
index is defined as Indhom(v, X , 0) = χ(Ω•

X ,0, v), i.e. the Euler characteristic of the
complex

0 ←− OX ,0
v←− Ω1

X ,0
v←− Ω2

X ,0
v←− · · · v←− Ωn−1

X ,0
v←− Ωn

X ,0 ←− 0 (1)

1 Algebraic formulae for the GSV index of v on (X , 0)were also given in [13], but only under the additional
assumption that v was also tangent to all fibers of f .
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906 M. Zach

where Ω
p
X ,0 denotes the module of universally finite Kähler differentials on (X , 0)

and v is the homomorphism given by contraction of a differential form with the vector
field v. Later on in his article, Gómez-Mont generalizes the GSV index in the obvious
way to the setting of an arbitrary complex space (X , 0) with an isolated singularity
and a fixed smoothing X ′ of (X , 0). He proves in [12, Theorem 3.2] that

IndGSV (v, X , X ′) − Indhom(v, X , 0) = k(X , X ′) (2)

with k(X , X ′) a constant depending only on (X , 0) and the chosen smoothing, but
independent of the vector field v. This is an important intermediate step for the com-
putation of the GSV index from the homological index, but it remains to determine
the constant k(X , X ′).

For an isolated hypersurface singularity (X , 0) = (g−1({0}), 0) and its canonical
smoothing X ′ = Bε ∩ g−1({δ}), ε � δ > 0 this is done in [12, Section 3.2]: in this
case k(X , X ′) = 0 so that the homological index and the GSV index really coincide.
In the general case, however, the constant k(X , X ′) is a non-trivial invariant of the
singularity and its smoothing.

From our point of view, the main novelty in the approach by Gómez-Mont was the
introduction of derived geometry in this setting and its comparison with topological
invariants in Eq. (2). To prove it, he uses the fact that both indices obey the law
of conservation of number which states, roughly speaking, that the total number of
indices is preserved under small perturbations of the vector field. For the GSV index
this is immediate from the definition since it only depends on the homotopy class of the
non-zero section v|K on the boundary. For the homological index Indhom(v, X , 0) this
follows from a result in [11] which states that, more generally, the law of conservation
of number holds for the holomorphic Euler characteristic of a complex of coherent
sheaves with finite dimensional cohomology under arbitrary small perturbations of
the (co-)boundary maps. The complex (Ω•

X ,0, v) in (1) with perturbations of v is
a particular instance of this situation and, hence, for suitable representatives and ṽ

sufficiently close to v one has

Indhom(v, X , 0) =
∑
p∈X

Indhom(ṽ, X , p).

To conclude the proof of Eq. (2), observe that at smooth points p ∈ Xreg the GSV
index and the homological index coincide so that any deformation of v to some ṽ

necessarily changes the two indices at the origin by the same amount. Consequently,
the difference of these two indices is a locally constant function in v. The general claim
then follows from the fact that for the choice of a sufficiently small ball Bε around the
origin, the set of those vector fields on Bε ∩ X with an isolated zero on (X , 0) form
an open and connected set in the Banach space of continuous vector fields on Bε ∩ X
which are holomorphic in the interior, cf. [12, Theorem 3.2].
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A generalization of Milnor’s formula 907

In this article, we will not be dealing with vector fields, but with holomorphic 1-
forms.2 This is more natural in the context of morsifications and it has several further
advantages. For example, we can drop the tangency conditions to (X , 0) which we
had to impose on a vector field. It is straightforward—and even easier—to also define
the Euler obstruction Euω(X , 0) of a 1-form ω with isolated zero on (X , 0): again,
let ν : X̃ → X be the Nash transformation. Then there is a natural pullback ν∗ω of
ω to a section of the dual of the Nash bundle and this section does not vanish on
ν−1(∂Bε ∩ X) whenever ω has an isolated zero on (X , 0) in the stratified sense. The
Euler obstruction of such an ω on (X , 0) is the obstruction to extending ν∗ω as a
nowhere vanishing section to the interior of X̃ .

There is a natural notion of the homological index for a 1-form ω with isolated zero
on any purely n-dimensional complex analytic space (X , 0) with isolated singularity.
In [10], Ebeling et al. define

Indhom(ω, X , 0) = (−1)nχ(Ω•
X ,0, ω ∧ −)

where
(
Ω•

X ,0, ω ∧ −
)
is the complex

0 OX ,0
ω∧

Ω1
X ,0

ω∧ · · · ω∧
Ωn−1

X ,0
ω∧

Ωn
X ,0 0 (3)

with differential given by the exterior multiplication with ω. Note that in case
(X , 0) ∼= (Cn, 0) is smooth and ω = d f is the differential of a function f with
isolated singularity on (X , 0), the homological index coincides with the classical Mil-
nor number. This is due to the fact that the complex (3) is the Koszul complex in the
partial derivatives ∂ f

∂xi
of f which is known to be a free resolution of theMilnor algebra

for an isolated hypersurface singularity.
When (X , 0) has isolated singularity, there is no immediate interpretation for the

homological index of ω in terms of previously known invariants. However, it is rel-
atively easy to see with the same reasoning as for indices of vector fields that the
difference

Euω(X , 0) − Indhom(ω, X , 0) = k′(X , 0) (4)

is also a constant, independent of the 1-form ω. Again, both invariants satisfy the law
of conservation of number. Suppose we have chosen a suitable representative X of
(X , 0) and a sufficiently small ball Bε. Then for any holomorphic 1-form ω′ on X
which has only isolated zeroes on the smooth part Xreg of X and which is sufficiently

2 In fact, the original definition of the Euler obstruction by MacPherson in [27] was phrased in terms of
radial 1-forms and only later the use of vector fields became popular following the work of Brasselet and
Schwartz [3].
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908 M. Zach

close to the original 1-form ω, we have

Euω(X , 0) − Indhom(ω, X , 0)

=
∑

p∈X∩Bε

Euω′
(X , p) −

∑
p∈X∩Bε

Indhom(ω′, X , p)

= Euω′
(X , 0) − Indhom(ω′, X , 0) +

∑
p∈Xreg∩Bε

(
Euω′

(X , p) − Indhom(ω′, X , p)
)

= Euω′
(X , 0) − Indhom(ω′, X , 0).

This holds because, again, Euω′
(X , p) = Indhom(ω′, X , p) at smooth points p ∈ Xreg

so that the difference of these two indices at the origin is a locally constant function of
ω. A similar reasoning as for the homological index for vector fields above can now
be made to conclude that k′(X , 0) is well defined invariant of (X , 0).

The formula (4) can only be used to compute Euω(X , 0) from the homological index
Indind(ω, X , 0) up to the constant k′(X , 0) which is a sort of “residual homological
index”. Since this invariant of (X , 0) is unknown in general, we propose amodification
of the homological index in Sect. 4 which directly computes the Euler obstruction, i.e.
for which the residual homological index always vanishes by construction. This new
index will be based on the Nash transformation ν : X̃ → X of (X , 0), the complex

of sheaves
(
Ω̃•, ν∗ω ∧ −

)
on X̃ , and the derived pushforward of this complex along

the proper map ν. It will therefore be called the derived homological index and it is
in general different from the homological index defined in [10] and also harder to
compute. However, the derived homological index has the further advantage that it is
defined for arbitrarily singular spaces (X , 0).

3 Generalizations of theMilnor number

We briefly recall the necessary definitions of singularity theory on stratified spaces,
cf. [24]. Let U ⊂ C

n be an open domain, X ⊂ U a closed, reduced complex analytic
set, and f : U → C a holomorphic function.

Definition 1 Suppose S = {Sα}α∈A is a complex analytic Whitney stratification of
X . A point p ∈ X is a regular point of f |X in the stratified sense, if it is a regular
point of the restriction f |Sα of f to the stratumSα containing p.

The existence of complex analytic Whitney stratifications was shown by Hiron-
aka [21]. In [26, Corollaire 6.1.8] Lê and Teissier constructed a canonical Whitney
stratification for reduced, equidimensional complex analytic spaces, and in [32] it was
shown that this stratification is minimal. Whenever one of these strata consists of sev-
eral components, we shall in the following consider each one of these components as
a stratum of its own and—unless otherwise specified—use this stratification on any
given reduced equidimensional complex analytic space X .
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A generalization of Milnor’s formula 909

Definition 2 We say that f has an isolated singularity at (X , p), if there exists a
neighborhood U ′ of p such that all points x ∈ U ′ ∩ X \ {p} are regular points of f in
the stratified sense for the canonical Whitney stratification of X .

We give a brief definition of the Milnor fibration of f |(X , p) in this setting, cf. [24,
Paragraphe (3.3) and Lemme 3.5]. Let Bε be the ball of radius ε around p inCn . There
exists ε0 > 0 such that for every ε0 ≥ ε > 0 the intersections ∂Bε∩ X is transversal in
the stratified sense, see e.g. [14, Part I, Section 1.4], [6], or [5]. Since f is a stratified
submersion on (X , 0) away from the origin, the central fiber X∩ f −1({ f (p)}) is again
Whitney stratified by the intersections of the strata of X with f −1({ f (p)}). We can
apply the same arguments so that also ∂Bε∩X ∩ f −1({ f (p)}) is a stratified transverse
intersection for all ε0 ≥ ε > 0. Fix one such ε = ε0 > 0. Applying Thom’s isotopy
lemma, we find that for sufficiently small ε � δ > 0 the restriction of f

f : Bε ∩ X ∩ f −1(D∗
δ ) → D∗

δ (5)

is a proper C0-fiber bundle over the punctured disc D∗
δ ⊂ C of radius δ > 0 around

f (p): the Milnor fibration of f |(X , p). The fiber

M f |(X ,p) = Bε ∩ X ∩ f −1({δ})

is unique up to homeomorphism and thus an invariant of f |(X , p).

3.1 Morsifications

For functions on stratified spaces the simplest singularities are the stratified Morse
critical points. They generalize the classical Morse critical points of a holomorphic
function in the sense that every function f with an isolated singularity on (X , p)
can be deformed to a function with finitely many stratified Morse critical points on
X , cf. Corollary 2. Thus, they are the basic building blocks for the study of isolated
singularities on stratified spaces.

Definition 3 (cf. [14, Section 2.1]) A point p ∈ Sα ⊂ X is a stratified Morse critical
point of f |X if

i) the point p is a classical Morse critical point of the restriction f |Sα of f to the
stratumSα .

ii) the differential d f (p) of f at p ∈ C
n does not annihilate any limiting tangent

spaces T ⊂ TpC
n from other adjacent strataSβ of X at p.

Consider a point p ∈ U and the germ f : (Cn, p) → (C, f (p)) of f at p. An
unfolding of f at p is a map germ

F : (Cn, p) × (C, 0) → (C, f (p)) × (C, 0), (x, t) �→ ( ft (x), t)

such that f = f0. It is clear that whenever p ∈ X , any unfolding of f induces an
unfolding F |(X , p) × (C, 0) of f |(X , p).
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910 M. Zach

Fig. 2 The real picture of the
polar curves from Example 2 for
the morsification of f on the
regular locus of X ; visualized as
hyperplane sections together
with the critical points of ft for
t = 1

Definition 4 Let (X , p) ⊂ (Cn, p) be a reduced complex analytic space and
f : (Cn, p) → (C, f (p)) a holomorphic function with isolated singularity on (X , p).
An unfolding F of f induces a morsification of f |(X , p), if there exists an open
neighborhoods V ⊂ C

n of p and an open disc T ⊂ C around the origin such that
ft |X has only Morse critical points in X ∩ V for all 0 �= t ∈ T .

For the existence of morsifications and the density of Morse functions in the strat-
ified setting see for example [14]. We will usually take ft (x) = f (x) − t · l(x) for a
generic linear form l ∈ Hom(Cn,C), cf. [25] and Corollary 2.

We may choose the open neighborhood V in Definition 4 to be an open Milnor ball
Bε for f |(X , p). Then for t = η �= 0 sufficiently small, all Morse critical points of
fη on X ∩ Bε arise from the original singularity of f0 at 0 ∈ X and we can count the
number of Morse critical points of fη on each stratum Sα in X ∩ Bε.

Definition 5 We define the numbers μ f (α; X , 0) of f |(X , p) to be the number of
Morse critical points on the stratum Sα in a morsification of f |(X , p).

These numbers clearly depend on the choice of the stratification. However, it follows
from [30, Proposition 2.3], that they do not depend on the choice of the morsification
F |(X , p) of f |(X , p). This fact will also be a consequence of Theorem 1.

Example 2 We continue with Example 1. As a morsification of f |(X , 0) we may
choose

ft (x, y, z) = y2 − (x − z)2 − t(x + 2z).

Clearly, μ f (0; X , 0) = 1, because S0 is a one-point stratum and any such point is a
critical point of a function in the stratified sense.

OnS1 the function fη has exactly one Morse critical point for η �= 0 (not pictured
in Fig. 2). This can be verified by classical methods: note that X1 = S1 is smooth
and the restriction of f to X1 is an ordinary A1 singularity. The given morsification
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A generalization of Milnor’s formula 911

is moving this critical point from x = 0 to x = −t/2 so that for t �= 0 it really lies in
the stratum S1.

In order to compute μ f (2; X , 0) let

Γ = {(x, t) ∈ Xreg × C : x is a critical point of ft on Xreg}

be the global curve of critical points of ft on the regular part Xreg = S2 of the whole
affine variety X ⊂ C

3. Using a computer algebra system, one can verify that the
critical points of ft on (X , 0) sweep out seven branches in Γ under the variation of t .
Five of these branches

Γ1(t) =
⎛
⎝
0,
0,
−t

⎞
⎠ , Γ2,3(t) =

⎛
⎝

√
t

± 4
√
t3√
t

⎞
⎠ , Γ4,5 =

⎛
⎝

−√t
±i

4
√
t3

−√t

⎞
⎠

pass through the origin 0 ∈ C
3, i.e. they arise from the critical point of f on (X , 0).

Note that Γ4,5(t) does not have real coordinates for t ∈ R \ {0} so that these branches
do not appear in the real picture in Fig. 2. However, their behaviour is symmetric to
what happens with the real branches Γ2,3(t). Each one of these branches corresponds
to a Morse critical point of ft on S2 ⊂ X and we drew them as dots in Fig. 2 for
t = 1. Thus we have

μ f (0; X , 0) = 1, μ f (1; X , 0) = 1, μ f (2; X , 0) = 5.

The remaining two branches

Γ6,7(t) =
⎛
⎜⎝

3
2 − t

2

±
√

27−9t
2

−3

⎞
⎟⎠

are swept out from the points p6 and p7 and do not contribute to the number
μ f (2; X , 0) of f |(X , 0) at the origin. They lay on the horizontal component of the
polar curve in the lower half of Fig. 2.

3.2 Homology decomposition for theMilnor fiber

The Milnor fiber M f |(X ,0) of a holomorphic function f on a complex analytic space
(X , 0) ⊂ (Cn, 0) is by construction a topologically stable object: by virtue of Thom’s
Isotopy Lemma, small perturbations of the defining equation f do not alter M f |(X ,0)
up to homeomorphism. Consequently, in a morsification F = ( ft , t) of f |(X , 0) we
may identify the Milnor fiber M f |(X ,0)

M f |(X ,0) = Bε ∩ X ∩ f −1({δ}) ∼= Bε ∩ X ∩ f −1
η ({δ})
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912 M. Zach

Fig. 3 Morsification of f |X in a Milnor ball: 1) the Milnor fiber of f |X , 2) the same fiber of fη|X . 3) and
4) depict passing the first critical value of fη|X

and the generic fiber Bε ∩ X ∩ f −1
η ({δ}) of fη for suitable choices of ε � δ � η > 0.

For the previous example this is illustrated in the first two pictures of Fig. 3.
The classical theory of morsifications (see e.g. [1]) can be generalized to this setting

using stratified Morse theory [14, Part II]. This leads to the following homology
decomposition for the Milnor fiber:

Proposition 1 Let (X , 0) ⊂ (Cn, 0) be a complex analytic space, S = {Sα}α∈A a
complex analytic Whitney stratification of X with connected strata, L(X ,Sα) the
complex link of X along the stratum Sα , C(L(X ,Sα)) the real cone over it,

f : (Cn, 0) → (C, 0)

a holomorphic function with an isolated singularity on (X , 0) in the stratified sense,
and M f |(X ,0) its Milnor fiber on X. Then the reduced homology of the Milnor fiber
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A generalization of Milnor’s formula 913

decomposes as

H̃•
(
M f |(X ,0)

) ∼=
⊕
α∈A

μ f (α;X ,0)⊕
i=1

H•−d(α)+1 (C(L(X ,Sα)),L(X ,Sα)) , (6)

where d(α) = dim(Sα) is the complex dimension of the stratumSα and μ f (α; X , 0)
the number of Morse critical points on Sα in a morsification of f .

Proposition 1 shows that the characterizations 1’) and 2’) of the numbers μ f (α; X , 0)
in Sect. 1 coincide. We will give a proof below, but first discuss some relations of
Proposition 1 with various other results.

For f and (X , 0) as in Proposition 1 the vanishing Euler characteristic of f |(X , 0)
is defined to be the reduced topological Euler characteristic of the Milnor fiber
χ
(
M f |(X ,0)

)
. Now the homology decomposition provides a formula for this invariant

as a linear combination of the numbers μ f (α; X , 0):

Corollary 1 In the same setup as in Proposition 1 the vanishing Euler characteristic
of f |(X , 0) is

χ
(
M f |(X ,0)

) =
∑
α∈A

μ f (α; X , 0) · (−1)d(α)−1 · (1− χ(L(X ,Sα))).

Note that the coefficients (−1)d(α)−1 · (1− χ(L(X ,Sα))) depend only on the germ
(X , 0), but not on the function f .

Remark 1 When (X , 0) is smooth, this formula reduces to the equality χ(M f ) = μ f

of the classicalMilnor number and the reduced Euler characteristic of theMilnor fiber.
In the case where (X , 0) is equidimensional of dimension d with an isolated sin-

gularity at the origin, the right hand side has two summands:

χ
(
M f |(X ,0)

) = χ (L(X , {0})) + (−1)d−1 · μ f (X , 0).

The first one corresponds to the zero-dimensional stratum S0 = {0} ⊂ X and the
other one to the stratum S1 = Xreg of smooth points of X . Since S0 is only a point,
the number μ f (0; X , 0) is always equal to one and L(X , {0}) is the classical complex
link of (X , 0). We wrote μ f (X , 0) for the only other number of Morse critical points,
omitting the index α of the stratum.

We will see later on in Corollary 3 that μ f (X , 0) equals Eud f (X , 0) and then
Corollary 1 recovers a formula from [8, Proposition 4]:

μ f (X , 0) = Eud f (X , 0) = (−1)d(χ(L(X , {0})) − χ(M f |(X ,0))).

See also the discussion of the relation with the Lê-Greuel formula in Example 4 below
for the case that (X , 0) is an isolated complete intersection singularity.
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914 M. Zach

Remark 2 We may also relate Corollary 1 to some results from [8] around the radial
index for continuous 1-forms ω with isolated singularity on (X , 0) as defined by
Ebeling and Gusein-Zade in [10, Definition 2.1] and [8, Section 1]. Suppose (X , 0)
is equidimensional of complex dimension d. Then according to [8, Theorem 3] the
(complex) radial index of the 1-form d f is

Indrad(d f , X , 0) = (−1)d(1− χ(M f |(X ,0))).

Substituting this into Corollary 1 we recover the formula from [8, Theorem 4]

Indrad(d f , X , 0) =
∑
α∈A

Eud f (S α, 0) · (−1)d−d(α) (1− χ (L (X ,Sα)))

in the special case where the 1-form ω is of the form d f for some function f .

Proof of Proposition 1 Choose ε > 0 sufficiently small so that the squared distance
function to the origin r2 : Cn → R≥0 does not have any critical points in the ball Bε

neither on X nor on X ∩ f −1({0}). After shrinking ε > 0 once more, if necessary, we
may assume that the space Bε ∩ X ∩ f −1({0}) is a deformation retract of Bε ∩ X ∩
f −1(Dδ) for sufficiently small ε � δ > 0. In particular, the space Bε ∩ X ∩ f −1(Dδ)

is contractible.
Its boundary ∂(Bε∩X∩ f −1(Dδ)) is topologically stable under small perturbations

of f . So is the Milnor fiber

M f |(X ,0) = Bε ∩ X ∩ f −1({δ}) ⊂ ∂(Bε ∩ X ∩ f −1(Dδ)).

In any unfolding F = ( ft , t) of f we may therefore identify the pairs

(
Bε ∩ X ∩ f −1(Dδ), M f |(X ,0)

) ∼=
(
Bε ∩ X ∩ f −1

η (Dδ), Bε ∩ X ∩ f −1
η ({δ})

)

for sufficiently small ε � δ � η > 0.
After modifying fη a little more we may assume that all critical values {ci }Ni=1

of fη are distinct points in the disc Dδ . Choose non-intersecting differentiable paths
γi : [0, 1] → Dδ from δ to ci and let γi ([0, 1]) be its image in Dδ . By virtue of Thom’s
First Isotopy Lemma, the map

fη : Bε ∩ X ∩ f −1
η (Dδ) → Dδ

is a C0-fiber bundle away from the points ci and the space Bε ∩ X ∩ f −1
η (Dδ) retracts

onto f −1
η

(⋃N
i=1 γi ([0, 1])

)
.

Along each path γi , one attaches a so called thimble to Bε ∩ X ∩ f −1
η ({δ}) ∼=

M f |(X ,0). This thimble is given by the product of the tangential and the normal Morse
datum of fη at the critical point pi over ci . See [14] for a definition of these. Altogether,
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A generalization of Milnor’s formula 915

we obtain

H̃•(M f |(X ,0))

∼= H•+1

(
Bε ∩ X ∩ f −1(Dδ), M f |(X ,0)

)

∼= H•+1

(
Bε ∩ X ∩ f −1

η (Dδ), Bε ∩ X ∩ f −1
η ({δ})

)

∼= H•+1

(
Bε ∩ X ∩ f −1

η

(
N⋃
i=1

γi ([0, 1])
)

, Bε ∩ X ∩ f −1
η ({δ})

)

∼= H•+1

(
Bε ∩ X ∩ f −1

η

(
N⋃
i=1

γi ([0, 1])
)

, Bε ∩ X ∩ f −1
η

(
N⋃
i=1

γi ([0, 1))
))

∼=
⊕
α∈A

μ f (α;X ,0)⊕
i=1

H•+1

(
([0, 1], ∂[0, 1])d(α) × (C(L(X ,Sα)),L(X ,Sα))

)

∼=
⊕
α∈A

μ f (α;X ,0)⊕
i=1

H•−d(α)+1 (C(L(X ,Sα)),L(X ,Sα)) .

This finishes the proof of Proposition 1. ��
Remark 3 The existence of a homology decomposition as in (6) also follows from the
bouquet decomposition of the Milnor fiber due to Tibăr [33] which is stronger in the
sense that it holds on a homotopy level. But since its proof is not built onmorsifications,
it is a priori not clear that in general the numbers which play the corresponding role of
the μ f (α; X , 0) in the resulting homology decomposition coincide with the number
of Morse critical points in a morsification. The interplay of Proposition 1 with Tibăr’s
bouquet decomposition will be studied in a forthcoming note.

Example 3 We continue with Example 2. For t = 1 the critical point of the morsified
function f1 on S1 is (−1/2, 0, 0)T . On S2 ⊂ X they are

p1 =
⎛
⎝

0
0
−1

⎞
⎠ , p2,3 =

⎛
⎝

1
±1
1

⎞
⎠ , p4,5 =

⎛
⎝
−1
±i
−1

⎞
⎠ , p6,7 =

⎛
⎝

1
±3
−3

⎞
⎠ .

The complex links L(X ,Sα) of X along the different strata are the following.
For S0 = {0}, it is the complex link of the Whitney umbrella (X , 0) itself, which

is known to be the nodal cubic. Hence (X ,S0) ∼=ht S1 is homotopy equivalent to a
circle.

AlongS1 the normal slice of X consists of two complex linesmeeting transversally.
The complex link is therefore a pair of points L(X ,S1) ∼= {q1, q2}.

For the third stratumS2, the normal slice is a single point and the complex link is
empty. We adapt the convention that the real cone over the empty set C(∅) = {pt} is
the vertex pt of the cone (Fig. 4).
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916 M. Zach

Fig. 4 Morsification of f |X in a Milnor ball: 1) and 2) passing the critical point of fη|X onS0, 3) and 4)
passing another two critical points on S2, one being on the backside

The homology decomposition for the Milnor fiber thus reads

H̃•(M f |(X ,0))

∼= H•+1(C(S1), S1) ⊕ H•(C({q1, q2}), {q1, q2}) ⊕
5⊕

i=1

H•−1({pt})

∼= Z[1] ⊕ Z[1] ⊕ (Z[1])5

where we write Z[e] for a shift of Z by e in the homological degree. In combination
with the bouquet decomposition theorem from [33], we may even infer that M f |(X ,0)
is homotopy equivalent to a bouquet of seven circles.
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A generalization of Milnor’s formula 917

At this point it is apt to compare our results to the well known Lê-Greuel formulas
for isolated complete intersection singularities [16,22]. As we will see, the numerical
invariants considered there are in general different from our numbers μ f (α; X , 0).

Example 4 Suppose h = x2 + y2 − z2 so that X = {h = 0} ⊂ C
3 is the double cone

and let

f : C3 → C, (x, y, z) �→ x · z.

Then both (X , 0) and (X∩ f −1({0}), 0) are isolated complete intersection singularities
with Milnor fibers Mh|(Cn ,0) and M f |(X ,0), respectively. It is well known that these
Milnor fibers are homotopy equivalent to a bouquet of spheres of real dimension d
equal to their complex dimensions, cf. [19], and we obtain the numbers

bh|(C3,0) := rank H2
(
Mh|(C3,0)

) = 1 and b f |(X ,0) := rank H1
(
M f |(X ,0)

) = 5,

i.e. the classical Milnor numbers of the ICIS.
If we were to compute these numbers using the Lê-Greuel formulas, [22, Theorem

3.7.1] and [16, Korollar 5.5], wewould proceed as follows. For suitable representatives
we consider the restriction of the function f to the Milnor fiber Mh|(C3,0), i.e. the

canonical smoothing of (X , 0). We may choose a small, generic perturbation f̃ of f
which has only Morse critical points on Mh|(C3,0) and deliberately identify M f |(X ,0)
with the subspace

M f |(X ,0) ∼= Mh|(C3,0) ∩ f̃ −1({δ})

for some 1 � |δ| > 0. A part of the long exact sequence of the pair(
Mh|(C3,0), M f |(X ,0)

)
then reads

0 → H2(Mh|(C3,0)) → H2(Mh|(C3,0), M f |(X ,0)) → H1(M f |(X ,0)) → 0

and it is easy to see using Morse theory that the term in the middle is a free Z-module
of rank r equal to the number of Morse critical points of f̃ on Mh|(C3,0).

Nowbh|(C3,0) = 1 can be deduced directly fromMilnor’s classical formula.Accord-
ing to [16, Korollar 5.5], the number r can be computed as the length of an algebra:

r = dimCC{x, y, z}/
〈
h,

∂(h, f )

∂(x, y, z)

〉
= 6.

By the last term we mean the 2 × 2-minors of the Jacobian matrix of h and f . Then
the exact sequence above yields b f |(X ,0) = 5.

Let us now compute the homology of M f |(X ,0) along the lines of Proposition 1.
The difference is that we do not consider a morsification of f on the smoothing of
(X , 0), but on the singular space itself. We choose this morsification to be

F = ( ft , t) : (C3, 0) × (C, 0) → (C, 0) × (C, 0), ((x, y, z), t) �→ (x · (z + t), t).
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918 M. Zach

and one finds that ft has Morse critical points on the two-dimensional stratumS2 :=
Xreg at only four points

⎛
⎝
x
y
z

⎞
⎠ =

⎛
⎝
±t/2
0

−t/2

⎞
⎠ and

⎛
⎝
x
y
z

⎞
⎠ =

⎛
⎝

0
±t
−t

⎞
⎠ .

Thus, μ f (2; X , 0) = 4 in this example and there is a free direct summand of rank 4
in the homology decomposition (6) of M f |(X ,0).

The part of the decomposition of H1(M f |(X ,0)) that is yet missing stems from the
critical point of ft on the zero dimensional stratum S0 = {0} of X at the origin. It
is now easy to see that the complex link L(X , {0}) is nothing but the Milnor fiber of
the restriction of the function h to the hyperplane {x = 0} and therefore homotopy
equivalent to a single sphere of dimension 1.

Altogether, this again yields H2(M f |(X ,0)) ∼= Z⊕Z
4 to be free of rank 5, but with

an additional decomposition of this homology group as a direct sum. Note, however,
that this decomposition depends on the particular choice of the space (X , 0) and
the function f or—equivalent to that—it depends on the particular regular sequence
(h, f ). It is not an invariant of the ICIS (X ∩ f −1({0}), 0) ⊂ (C3, 0) since the latter
is defined by the ideal 〈h, f 〉which could also be given by any other set of generators.

Also note that in this example, the homological index as it was defined by W.
Ebeling, S. Gusein-Zade, and J. Seade is in fact

Indhom(d f , X , 0)) = r = 6

due to [10, Theorem 3.2 (iii)]. That means, similar to the GSV index [12], it measures
the number of critical points of a perturbation f̃ of the function f on the smoothing
of (X , 0) and might therefore be better suited for the study of functions on isolated
hypersurface and complete intersection singularities.

3.3 The Euler obstruction of a 1-form

In [30, Proposition 2.3], J. Seade et al. proved that

μ f (γ ; X , 0) = (−1)dimSγ Eu f (X , 0)

for the top dimensional stratum3 Sγ . The Euler obstruction of a function is defined
using the gradient vector field grad f . For the purposes of this note, it is more natural
to consider the 1-form d f and its canonical lift to the dual Ω̃1 of the Nash bundle as
we will describe below. This provides the notion of the Euler obstruction Eud f (X , 0)
of the 1-form d f on (X , 0), as was first defined by Ebeling and Gusein-Zade in [8]. In
this section, we will follow their example and also consider the slightly more general
case of an arbitrary 1-form ω on (X , 0).

3 Or, in case (X , 0) is reducible, the union of the top dimensional strata.
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A generalization of Milnor’s formula 919

Throughout this section, we letU ⊂ C
n be an open domain and X ⊂ U a reduced,

complex analytic space. Suppose that X is equidimensional of dimension d. On the
set of nonsingular points Xreg we can consider the map

Φ : Xreg → Grass(d, n), p �→ [
TpX ⊂ TpC

n] (7)

taking any point p to the class of its tangent space TpX as a subspace of TpC
n by

means of the embedding of X .

Definition 6 The Nash transformation of X is the complex analytic closure of the
graph

X̃ = {(p, Φ(p)) : p ∈ Xreg} ⊂ U × Grass(d, n)

together with its projections

X̃

ν ρ

X Grass(d, n).

The restriction of the tautological bundle on U ×Grass(d, n) to X̃ will be referred to
as the Nash bundle T̃ . The dual bundle will be denoted by Ω̃1.

For the dual of the Nash bundle there is a natural notion of pullback of 1-forms on
X which is defined as follows. We can think of a point (p, V ) ∈ X̃ as a pair of a point
p ∈ X and a limiting tangent space V from Xreg at p. The space V can be considered
both as a subspace of TpC

n and as the fiber of the Nash bundle T̃ at the point (p, V ).
Let us denote by 〈·, ·〉 the canonical pairing between a vector space and its dual. For
a 1-form ω on Cn , a limiting tangent space V at p and a vector v ∈ V we define

〈ν∗ω(p, V ), v〉 := 〈ω(p), v〉. (8)

Here we consider v as a point in the fiber of the Nash bundle over the point (p, V ) ∈ X̃
on the left hand side and as a vector in V ⊂ TpC

n on the right hand side.
In order to define the Euler obstruction of a 1-form, we need to adapt Definitions 1

and 3 in this setup. Since for 1-forms there is no associated Milnor fibration, we may
drop the assumption that the stratification of X satisfies Whitney’s condition B.

Definition 7 Letω be a holomorphic 1-form onU ⊂ C
n and suppose S = {Sα}α∈A is

a complex analytic stratification of X ⊂ U satisfying Whitney’s condition A. We say
that ω|(X , p) is nonzero at a point p ∈ X in the stratified sense if ω does not vanish
on the tangent space TpSβ of the stratum Sβ containing p. We say that a 1-form ω

on U has an isolated zero on (X , p), if there exists an open neighborhood U ′ of p
such that ω is nonzero on X in the stratified sense at every point x ∈ U ′ ∩ X \ {p}.
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If in the followingwe do not specify a stratification, we again choose S to be the canon-
ical Whitney stratification for a reduced, equidimensional complex analytic space X .

It is an immediate consequence of the Whitney’s condition A that at every point
p ∈ X such that the restriction ω|Sα of ω to the stratum Sα containing p is non-
zero, also the pullback ν∗ω is non-zero at any point (p, V ) ∈ ν−1({p}) in the fiber of
ν : X̃ → X over p. In particular, ν∗ω is a nowhere vanishing section on the preimage
of a punctured neighborhood U ′ of p whenever ω has an isolated zero on (X , p) in
the stratified sense.

Definition 8 (cf. [8]) Let (X , p) ⊂ (Cn, p) be an equidimensional, reduced, complex
analytic space of dimension d andω the germof a 1-formon (Cn, p) such thatω|(X , p)
has an isolated zero in the stratified sense. The Euler obstruction Euω(X , p) of ω on
(X , p) is defined as the obstruction to extending ν∗ω as a nowhere vanishing section of
the dual of the Nash bundle from the preimage ν−1(∂Bε ∩ X) of the real link ∂Bε ∩ X
of (X , p) to the interior of ν−1(Bε ∩ X) of the Nash transform. More precisely, it is
the value of the obstruction class

Obs(ν∗ω) ∈ H2d
(
ν−1(Bε ∩ X), ν−1(∂Bε ∩ X)

)

of the section ν∗ω on the fundamental class of the pair(
ν−1(Bε ∩ X), ν−1(∂Bε ∩ X)

)
:

Euω(X , p) =
〈
Obs(ν∗ω),

[
ν−1(Bε ∩ X), ν−1(∂Bε ∩ X)

]〉
.

As we shall see below, the Euler obstruction of a 1-form ω with isolated singularity
on (X , p) counts the zeroes on Xreg of a generic deformation ωη of ω. In the case ω =
d f for some function f with isolated singularity on (X , p), these zeroes correspond
to Morse critical points of fη on Xreg in an unfolding. We have seen before that these
are not the only critical points of fη.

Definition 9 Suppose S = {Sα}α∈A is a complex analytic stratification of X satisfying
Whitney’s condition A. A point p ∈ X is a simple zero of ω|X , if the following holds.
LetSβ be the stratum containing p and σ(ω|Sβ) the section of the restriction ω|Sβ

as a submanifold of the total space of the vector bundle Ω1
Sβ

. Denote the zero section

by σ(0).

i) The intersection of σ(ω|Sβ) and the zero section

σ(ω|Sβ) �p σ(0)

in the vector bundle Ω1
Sβ

on Sβ is transverse at p.
ii) ω does not annihilate any limiting tangent space V from a higher dimensional

stratum at p.

Whenever ω = d f for some holomorphic function f , this reduces precisely to the
definition of a stratified Morse critical point p of f |X , Definition 3.
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A generalization of Milnor’s formula 921

Analogous to morsifications we define an unfolding of a 1-form ω. Since Ω1
U is

trivial, we can consider ω as a holomorphic map U → C
n . An unfolding of ω is then

given by a holomorphic map germ

W : (Cn, p) × (C, 0) → (Cn, ω(p)) × (C, 0), (x, t) �→ (ωt (x), t).

Proposition 2 Any 1-form ω with an isolated zero on (X , p) admits an unfolding
W = (ωt , t) as above on some open sets U ′ × T such that for a sufficiently small ball
Bε ⊂ U ′ around p and an open subset 0 ∈ T ′ ⊂ T one has

i) X ∩ Bε retracts onto the point p,
ii) ω = ω0 on U ′ and ω has an isolated zero on X ∩U ′,
iii) for every t ∈ T ′, t �= 0, the 1-form ωt has only simple isolated zeroes on X ∩ Bε

and is nonzero on X ∩U ′ at all boundary points x ∈ X ∩ ∂Bε.

Moreover, ωt can be chosen to be of the form ωt = ω − t · dl for a linear form
l ∈ Hom(Cn,C).

Definition 10 We define the multiplicity μω(α; X , p) of ω|(X , p) to be the number
of simple zeroes of ωt on Sα for t �= 0 in an unfolding as in Proposition 2.

Again, we clearly have μ f (α; X , p) = μd f (α; X , p) in the case where ω = d f is
the differential of a function f with isolated singularity on (X , p). As a straightforward
consequence we obtain:

Corollary 2 For a holomorphic function f : U → C with an isolated singularity in
the stratified sense at (X , p) a morsification F = ( ft , t) of f |(X , p) can be chosen
to be of the form

ft = f − t · l

for a linear form l ∈ Hom(Cn,C).

A statement similar to Corollary 2 has been proven by Lê in [25]. In order to be
self-contained, we include a proof of our version for morsifications of 1-forms.

Proof of Proposition 2 We will show using Bertini-Sard-type methods that there exists
a dense set Λ ⊂ P(Hom(Cn,C)) of admissible lines such that the linear form l in
Proposition 2 can be chosen to be an arbitrary non-zero linear form with [l] ∈ Λ.

For a fixed α let Xα = Sα be the closure of the stratum Sα , d(α) its dimension,
and ν : X̃α → Xα its Nash transform. Denote the fiber of ν over the point p ∈ X by
E . Since the question is local in p, we may restrict our attention to arbitrary small
open neighborhoods of E of the form ν−1(U ′) for some open set U ′ � p. Set

N =
{
(x, V , ϕ) ∈ X̃α × Hom(Cn,C) : ϕ|V = ν∗ω(x, V )

}

and let π : N → X̃α and ρ : N → Hom(Cn,C) be the two canonical projections.
It is easy to see that N has the structure of a principle C

n−d(α)-bundle over X̃α . In
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922 M. Zach

particular, the open subset S ′
α = (ν ◦ π)−1(Sα) ⊂ N is a complex manifold of

dimension n.
Let Φ : N ��� P(Hom(Cn,C)) be the rational map sending a point (x, V , ϕ) to

the class [ϕ] ∈ P(Hom(Cn,C)). Since ω had an isolated zero on (X , p), this map is
regular on the dense open subset N \ (π ◦ ν)−1({p}) which in particular containsS ′

α .
In order to work with regular and proper maps, we may resolve the indeterminacy of
Φ and obtain a commutative diagram

Ŝα

∼=

N̂

Φ̂

S ′
α N

ρ

π

Hom(Cn,C) P(Hom(Cn,C)).

S̃α

∼=

X̃α

ν

Sα Xα

Suppose L ∈ P(Hom(Cn,C)) is a regular value of Φ̂|Ŝα , then Φ̂−1({L}) ∩ Ŝα is a
smooth complex analytic curve. If we let C ⊂ N be the image in N of its analytic
closure in N̂ , then evidently ρ|C : C → L is a finite, branched covering at 0 ∈ L . It
follows a posteriori from the Curve Selection Lemma that ρ is a submersion at every
point (x, V , ϕ) ∈ C∩S ′

α in a neighborhood of E . An inspection of the differential of ρ
at such a point (x, V , ϕ) reveals that the transversality requirement i) in Definition 9 is
satisfied for the 1-formω−dϕ at x . Conversely, thismeans that for every nonzero linear
form l ∈ L and every sufficiently small t �= 0 the 1-form ω − t · dl has only isolated
zeroes at those points x ∈ Sα , for which (x, V , t · l) ∈ C . Repeating this process for
every stratum, we obtain a dense set Λ1 ⊂ P(Hom(Cn,C)) of pre-admissible lines.

In order to verify also the requirement ii) in Definition 9, we proceed as follows. Let
Yα = Xα \Sα be the union of limiting strata ofSα and Ỹα , Y ′

α , and Ŷα their preimages
in X̃α , N , and N̂ , respectively. These three spacesmight have rather difficult geometry,
but evidently dim Ŷα < dim N̂ = n and the map Ŷα → Yα is surjective.

There exists a dense subsetΛ2 ⊂ P(Hom(Cn,C)) such that the restriction Φ̂|Ŷα has
at most discrete fibers over Λ2. To see this, we may for example stratify Ŷα by finitely
many locally closed complex submanifolds Mi and choose Λ2 as the set of all regular
values of Φ̂|Mi . Since dim Mi ≤ dim Ŷα < n, the fiber Q̂ = (Φ̂|Ŷα)−1(L) of a point
L ∈ Λ2 is discrete and so is its image Q ⊂ N , because N̂ → N is proper. This means
that for a given l ∈ L there are only finitely many preimages (x, V , l) ∈ ρ−1(L), i.e.
the set of points x ∈ X , for which ω − dl annihilates a limiting tangent space V at x
is finite in a neighborhood of p. We may chooseU ′ and Bε sufficiently small to avoid
those points.

To conclude the proof set Λ = Λ1 ∩Λ2, choose a linear form 0 �= l ∈ L for some
L ∈ Λ and adjust the choices of U ′ and Bε accordingly. Since ∂Bε ∩ X is compact
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there will be no zeroes of ωt = ω − t · dl on the boundary for small variations of t
and T ′ can be chosen so that this holds for all t ∈ T ′. ��

We are now prepared to show equivalence of 1’) and 3’), in parallel to [30, Propo-
sition 2.3].

Proposition 3 For every 1-form ω on U with an isolated zero on (X , p) we have

μω(α; X , p) = Euω(Xα, p),

where Xα = Sα is the closure of the stratum Sα .

Proof Choose a representative

W = (ωt , t) : U ′ × T → C
n × T

of an unfolding of ω|(X , p) and a ball Bε ⊂ U ′ as in Proposition 2. The Euler
obstruction of ω at (Xα, p) depends only on its obstruction class

Obs(ν∗ω) ∈ H2d(ν−1(Bε ∩ Xα), ν−1(∂Bε ∩ Xα)).

Being a homotopy invariant, this class does not change under small perturbations and
it is therefore evident from the definitions that for every η ∈ T and every α ∈ A one
has

Euω(Xα, p) =
〈
Obs(ν∗ω),

[
ν−1(Bε ∩ Xα), ν−1(∂Bε ∩ Xα)

]〉

=
〈
Obs(ν∗ωt ),

[
ν−1(Bε ∩ Xα), ν−1(∂Bε ∩ Xα)

]〉
.

We may therefore select one η �= 0 and use ωη instead of ω to compute the Euler
obstruction. The evaluation of the obstruction class counts the number of zeroes of
ωη. Observe that by construction, ν∗ω is nonzero at any point (x, V ) ∈ X̃α \ν−1(Sα),
because ωη does not annihilate any limiting tangent space V at x . Thus, the zeroes of
ν∗ωη are located in ν−1(Sα). At every such zero (x, V ) ∈ ν−1(Sα) ofωη the intersec-
tion of σ(ωη|Sα) and the zero section in Ω1

Sα
is transverse with positive orientation

and therefore contributes an increment of 1 to the Euler obstruction. Consequently,
Euω(Xα, p) coincides with μω(α; X , p). ��
Corollary 3 Whenever f : U → C is a holomorphic function with isolated singularity
on (X , p), we have

μ f (α; X , p) = Eud f (Xα, p).

Example 5 We continue with Example 3. For α = 0 the real link of (S0, 0) is empty
and the Euler obstruction is 1 by convention.

In the case α = 1 the closure X1 = S 1 of the stratum S1 is already a smooth
line. Consequently, the Nash transformation ν : X̃1 → X1 is an isomorphism and Ω̃1
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coincideswith the usual sheaf ofKähler differentials. In this case, the Euler obstruction
of d f on (X1, 0) coincides with the degree of the map

d f

| d f | : ∂Bε ∩ X1 → S1.

Since 0 ∈ X1 is a classical Morse critical point, d f has a simple, isolated zero on
(X1, 0) and therefore

Eud f (X1, 0) = deg
d f

| d f | = 1.

In this particular case of a function on a complex line, the computation of the Euler
obstruction reduces to Rouché’s theorem.

For α = 2 we really need to work with the Nash transformation and the morsi-
fication F = ( ft , t) of f |(X , 0). To this end, we identify Grass(2, 3) with its dual
Grassmannian Grass(1, 3) ∼= P

2 via

V �→ V⊥ = {ϕ ∈ Hom(C3,C) : ϕ|V = 0}.

In homogeneous coordinates (s0 : s1 : s2) of P2 the rational map Φ from (7) is given
by the differential of h:

Φ : S2 → P
2,

⎛
⎝
x
y
z

⎞
⎠ �→

⎛
⎝
s0
s1
s2

⎞
⎠ =

⎛
⎝

−z2

2y
−2xz

⎞
⎠

The equations for X̃ ⊂ P
2×C

3 are rather complicated, but they simplify in the canon-
ical charts of P2×C

3. We will consider the chart s0 �= 0, leaving the computations in
the other charts to the reader. The equations for X̃ read

x = 1

4
z2s21 , y = −1

2
z2s1, s2 = 1

2
zs21 .

In particular, we can use (z, s1) as coordinates on X̃ ∩{s0 �= 0} ∼= C
2. The exceptional

set E ⊂ X̃ , i.e. the set of points q ∈ X̃ , at which ν : X̃ → X is not a local isomorphism,
is the preimage of the x-axis in C

3. In the above coordinates it is given by

E = {z = 0} = {0} × C ⊂ C
2 ∼= X̃ ∩ {s0 �= 0}.

Let O(−1) be the (relative) tautological bundle on P
2 × C

3. The dual bundle
O(1) has a canonical set of global sections e0, e1, e2 in correspondence with the
homogeneous coordinates (s0 : s1 : s2). With these choices the differential of ft =
y2 − (x − z)2 − t(x + 2z) pulls back to

ν∗ d ft = (−2(x − z)− t) · e0 + 2y · e1 + (2(x − z)− 2t) · e2
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We consider ν∗ d ft as a section in Ω̃1, the dual of the Nash bundle T̃ . Note that T̃
appears as part of the Euler sequence

0 T̃ O3
X̃

OX̃ (1) 0

on X̃ . The standard trivialization of T̃ in the chart s0 �= 0 is given by the sections

v1 =
⎛
⎝
−s1
1
0

⎞
⎠ , v2 =

⎛
⎝
−s2
0
1

⎞
⎠

and therefore the zero locus of ν∗ d ft on X̃ is given by the equations ν∗ d ft (v1) =
ν∗ d ft (v2) = 0. Substituting all the above expressions we obtain

ν∗ d ft (v1) = (−s1)

(
z2 − 1

2
z2s21 + 2z − t

)

ν∗ d ft (v2) =
(
1+ 1

2
zs21

)
·
(
1

2
z2s21 − 2z

)
+ t

(
1

2
zs21 − 2

)
.

It is easy to see that for t = 0 the exceptional set E = {z = 0} is contained in the zero
locus of ν∗ d f0. In particular, the zero locus is non-isolated and we can not use ν∗ d f0
to compute the Euler obstruction as in the proof of Proposition 3.

For η �= 0, however, the zero locus of ν∗ d fη consists of only finitely many points.
A primary decomposition reveals that there are seven branches

Γ̃1(t) =
(−t
0

)
, Γ̃2,3(t) =

( √
t

± 2
4√t

)
, Γ̃4,5(t) =

(−√t
± 2i

4√t

)
, Γ̃6,7 =

(
−3

±
√
6−2t
3

)

in the local coordinates (z, s1) of X̃ . They are precisely taken to the corresponding
branchesΓi (t) fromExample 2 by ν. Again, only the first five of them have limit points
close to ν−1({0}) for t → 0, i.e. only the first five branches contribute to Eud f (X , 0)
for sufficiently small ε � η > 0. Therefore,

Eud f (X , 0) = 5 = μ f (2; X , 0),

as anticipated.

Remark 4 Definition 10 and Proposition 2 suggest yet another interpretation of the
numbers μω(α; X , p), namely as microlocal intersection numbers—a point of view
which has also been used in [28]. For a stratum Sα of X and its closure Xα one can
define the conormal cycle ofSα as

Λα = {(ϕ, x) ∈ Ω1
U : x ∈ Sα, ϕ|TxSα = 0}.

123



926 M. Zach

This is an analytic subvariety of the total space of the vector bundle Ω1
U . So is

the section σ(ω) of ω on U . In this context, Proposition 2 appears as a moving
lemma, which puts the two varieties in a general position. Clearly, the local inter-
section multiplicity (Λα ◦ σ(ω)) of the two varieties at (p, 0) ∈ Ω1

U coincides with
μω(α; X , p) = Euω(Xα, p). See also [2, Corollary 5.4].

4 The Euler obstruction as a homological index

Throughout this section let again U ⊂ C
n be an open domain and X ⊂ U a closed,

equidimensional, reduced, complex analytic space.
For a holomorphic function f : U → C with an isolated singularity on X at a

point p ∈ X , Proposition 3 and Corollary 3 suggest the following interpretation of
the Euler obstruction: in a morsification F = ( ft , t) of f |(X , p) the singularities
of f |(X , p) become Morse critical points on the regular strata Sα . In this sense, a
morsification separates the singularities of the function f |(X , p) from the singularities
of the space (X , p) itself. The Euler obstructions Eud f (Xα, p) of d f on the closures
Xα = S α of the strata know the outcome of this separation beforehand and even
without a given concrete morsification. A particular, but remarkable consequence of
these considerations is that Eud f (Xα, p) = 0 for all α ∈ A whenever f does not have
a singularity on (X , p)—independent of the singularities of the germ (X , p) itself.

Suppose for the moment that also the space (X , p) has itself only an isolated
singularity so that the homological index Indhom(d f , X , p) as in [10] is defined. The
comparison of Eud f (X , p) with Indhom(d f , X , p) is based on the fact that both the
Euler obstruction and the homological index satisfy the law of conservation of number
and that they coincide at Morse critical points. In an arbitrary unfolding F = ( ft , t) of
f |(X , p) we can therefore use both the Euler obstruction and the homological index
to count the number of Morse critical points on Xreg arising from f |(X , p). But for a
fixed unfolding parameter t = η only the Euler obstruction Eud fη (X , p) can be used
to measure whether fη is still singular at (X , p) or whether all singularities of f have
left from the point p for t = η �= 0. If the latter is the case—as for example in a
morsification—the homological index Indhom(d fη, X , p) is

Indhom(d fη, X , p) = Indhom(d f , X , p) − Eud f (X , p) = −k′(X , p).

The number k′(X , p) is an invariant of the space (X , p), but unknown in general.
Therefore, the homological index Indhom(d f , X , p) can not be used to count the
number of Morse critical points on Xreg in a morsification; it only separates the sin-
gularities of the function f from the singularities of X up to an unknown quantity.

We return to the more general setting of an arbitrarily singular X ⊂ U . Suppose ω

is a holomorphic 1-form on U and let p ∈ X be a point for which ω has an isolated
zero on (X , p). Then Euω(Xα, p) is counting the number of simple zeroes on Sα

close to p in a generic perturbation ωη of ω. It is evident from the construction that we
may restrict our attention to the case where X = Xα = S α is irreducible and reduced
and we only need to consider isolated zeroes of ωη on Xreg. Translating the previous
discussion to this setting we see that—conversely—a homological index I (ω, X , p)
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has to coincide with the Euler obstruction Euω(X , p) whenever the following two
conditions are met:

(†) I (ω, X , p) coincides with Euω(X , p) at any smooth point p of X .
(‡) For every singular point p of X one has

I (ω, X , p) = 0

whenever ω is a 1-form such that ω|(X , p) is nonzero or has at most a simple zero
at p in the stratified sense.

It is therefore worthwhile to investigate once again the structural reasons as to why (†)
is satisfied for Indhom(ω, X , p) at smooth points and why Euω(X , p) = 0 whenever
ω has at most a simple zero on X at a point p on a lower dimensional stratum. We
will exploit these reasons for the construction of the derived homological index in
Theorem 1 which then satisfies (†) and (‡) simultaneously.

The fact that the homological index of a 1-form ω with an isolated zero at a smooth
point (X , p) ∼= (Cn, p) coincides with its Euler obstruction and its topological index
is based on the following observation. In local coordinates x1, . . . , xn of (X , p), the
complex (3) becomes a Koszul complex on the local ring OX ,p in the components of
ω =∑n

i=1 ωi dxi . SinceOX ,p is Cohen-Macaulay and the zero locus of ω is isolated,
the ωi must form a regular sequence onOX ,p and the following lemma applies, cf. [4,
Corollary 1.6.19].

Lemma 1 Let (R,m) be a Noetherian local ring, M = Rr a free module, v =
(v1, . . . , vr )

T ∈ M an element and

K •(v, R) : 0 R v∧ M v∧ ∧2 M v∧ · · ·

· · · v∧ ∧r−1 M v∧ ∧r M 0

(9)

the Koszul complex associated to v. We consider R = ∧0 M to be situated in degree
zero, M =∧1 M in degree one, etc.

i) Whenever (v1, . . . , vr ) is a regular sequence on R as an R-module, then (9) is
exact except for the last step where we find

Hr (K •(v, R)
) = R/〈v1, . . . , vr 〉.

ii) Whenever v /∈ mM, the Koszul complex is exact.

Consequently, Indhom(ω, X , p) = dimCOX ,p/〈ω1, . . . , ωn〉 at a smooth point p
of X and this evaluates to 1 on simple zeroes of ω. Part ii) of this lemma explains why
the homological index of ω is zero at all smooth points where ω does not vanish.

From this viewpoint, the difficulty in comparing the Euler obstruction of a 1-form
ω at a singular point p of X with its homological index at p stems from the fact that
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the restriction ω|(X , p) is not anymore an element of a free module, but of the module
of Kähler differentials Ω1

X ,p. The key idea is to address this issue by replacing Ω1
X ,p

and ω with the Nash bundle Ω̃1 and the section ν∗ω. In order to work with finite
OX -modules we need to consider the derived pushforward of the associated bundles.
The following Lemma establishes the requirement (‡) for the derived homological
index in Theorem 1 as motivated from Lemma 1 ii).

Lemma 2 Let U ⊂ C
n be an open domain, X ⊂ U an irreducible and reduced closed

analytic subspace of dimension d, and ν : X̃ → X its Nash transformation. For any
point p ∈ X the stalk at p of the complex of sheaves

Rν∗
(
Ω̃•, ν∗ω ∧ −

)
p

is exact, whenever ω does not annihilate any limiting tangent space V from Xreg at p.

Proof The statement that ω does not annihilate any limiting tangent space V of a top-
dimensional stratum at p is equivalent to saying that ν∗ω is nonzero at every point
(p, V ) ∈ X̃ in the fiber ν−1({p}) of the Nash transformation over p. If ν∗ω is nonzero
then, according to Lemma 1 ii), the complex of sheaves

0 OX̃
ν∗ω∧

Ω̃1 ν∗ω∧
Ω̃2 ν∗ω∧ · · · ν∗ω∧

Ω̃d−1 ν∗ω∧
Ω̃d 0 (10)

is exact along ν−1({p}) and therefore quasi-isomorphic to the zero complex. Conse-
quently, also the stalk at p of the derived pushforward of this complex has to vanish.

��
Theorem 1 Suppose U ⊂ C

n is an open domain, X ⊂ U a reduced, equidimensional
complex analytic subspace of dimension d, endowed with a complex analytic stratifi-
cation satisfying Whitney’s condition A. Let ω be a holomorphic 1-form on U with an
isolated zero on X in the stratified sense at a point p. Then

Euω(X , p) = (−1)dχ

(
Rν∗
(
Ω̃•, ν∗ω ∧ −

)
p

)
(11)

where ν : X̃ → X is the Nash transformation and (Ω̃•, ν∗ω ∧ −) is the complex of
coherent sheaves on X̃ given by the exterior powers of the Nash bundle and multipli-
cation with ν∗ω.

Corollary 4 Let (X , p) ⊂ (Cn, p) be a reduced complex analytic space with a complex
analytic Whitney stratification S = {Sα}α∈A. Suppose

f : (Cn, p) → (C, 0)

is a holomorphic function with an isolated singularity on (X , p). For α ∈ A let
ν : X̃α → Xα be the Nash transformation of the closure Xα = Sα and Ω̃k

α the k-th
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exterior power of the dual of the Nash bundle on X̃α . Then

μ f (α; X , 0) = (−1)d(α)χ

(
Rν∗
(
Ω̃•

α, ν∗ d f ∧ −
)
p

)
. (12)

Proof We may apply Theorem 1 to the space Xα = Sα and the restriction of the
1-form d f to it. ��
Proof of Theorem 1 The sheaves in the complex Rν∗(Ω̃•, ν∗ω ∧ −) are finite On-
modules since the morphism ν is proper. By assumption, ω has an isolated zero on
(X , p) in the stratified sense and hence Lemma 2 implies that the cohomology of this
complex is supported at the origin. In particular, its Euler characteristic is finite.

SupposeW = (ωt , t) is an unfolding ofω|(X , p) as in Proposition 2 and—possibly
after shrinking U—let

W : U × T → C
n × T

be a suitable representative thereof. Denote by π : U × T → T the projection
to the parameter t . The unfolding of ω induces a family of complexes of sheaves(
Ω̃•, ν∗ωt ∧−

)
on the Nash transform X̃ and hence also on the derived pushfor-

ward. This furnishes a complex of coherent sheaves

Rν∗
(
Ω̃•, ν∗ωt ∧ −

)

onU × T which becomes a family of complexes over T via the projection π . Clearly,
every sheaf Rkν∗Ω̃r is π -flat. We may apply the main result of [12]: there exist
neighborhoods p ∈ U ′ ⊂ U and 0 ∈ T ′ ⊂ T such that for every η ∈ T ′ we have

(−1)dχ

(
Rν∗
(
Ω̃•, ν∗ω0 ∧ −

)
p

)
= (−1)d

∑
x∈U ′

χ
(
Rν∗
(
Ω̃•, ν∗ωη ∧ −

)
x

)
,

(13)

i.e. the Euler characteristic satisfies the law of conservation of number.
Suppose U ′, T ′ and Bε have also been chosen as in Proposition 2 and fix η ∈ T ′,

η �= 0. By construction, ωη has only simple, isolated zeroes on the interior of X ∩ Bε

and none on the boundary.
Whenever x ∈ (X \Xreg)∩Bε is such a point, at whichωη has a simple zero outside

Xreg, the restriction of ωη to any limiting tangent space V of Xreg at x is nonzero and
consequently

Rν∗
(
Ω̃, ν∗ω ∧ −

)
x
∼=qis 0

according to Lemma 2.
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Whenever x ∈ Xreg ∩ Bε is a point with a simple zero of ωη at x we find the
following. The Nash transformation ν is a local isomorphism around x and therefore

Rν∗
(
Ω̃•, ν∗ωη ∧ −

)
x
∼= (Ω•

X ,x , ωη ∧ −)

is the Koszul complex on the modulesΩk
X ,x . Lemma 1 allows us to compute the Euler

characteristic

(−1)d · χ (Ω•
X ,x , ωη ∧ −) = 1.

The statement now follows from the principle of conservation of number. ��

5 Explicit computations for a function on a singular hypersurface

The following section will be phrased in purely algebraic terms. This is due to the
fact that the complex numbers do not form a computable field and also the ring of
convergent power series is often unavailable in computer algebra systems for symbolic
computations. For these reasons, we will assume that both (X , 0) ⊂ (Cn, 0) and either
f or ω as in Theorem 1 or Corollary 4 are algebraic and defined over some finite
extension field K of Q. More generally, we will work with proper maps

(X̃ ,Pr × {0})
π

P
r × (Cn, 0)

π ′

(X , 0) (Cn, 0)

of algebraic spaces and coherent algebraic sheaves F on X̃ which are given in terms
of some finitely presented, graded module M over the ring

(
K [x1, . . . , xn]〈x1,...,xn〉

) [s0, . . . , sr ].

In our applications in Sect. 5.2 the map π will be the projection of the Nash transfor-
mation and F should be thought of as one of the exterior powers of the dual of the
Nash bundle.

It is well known that for any coherent algebraic sheafF on X̃ the sheaves Rpπ∗(F)

are OX -coherent. Let Oh
X , Oh

X̃
, and Fh be the respective analytifications. Grauert’s

theorem on direct images [15] assures that also the direct images Rpπ∗(Fh) are Oh
X -

coherent and using Čech cohomology we obtain a natural morphism of cohomology
sheaves

ε : Rpπ∗(F) → Rpπ∗(Fh).

for every p.

123



A generalization of Milnor’s formula 931

Whenever F is given by a graded module M as above, one can express the higher
direct images ofF in terms of the cohomology of the relative twisting sheavesO(−w)

on P
r × (Cn, 0) (cf. Propositions 4, Proposition 5 below) and vice versa for the

respective analytifications. Now the formal completions of the rings

C{x1, . . . , xn} and C[x1, . . . , xn]〈x1,...,xn〉
are isomorphic and so are the formal completions of

Rpπ ′∗(O(−w)) and Rpπ ′∗(Oh(−w))

for all p and w.
In the particular cases we will be considering, the sheaf F—or, more generally, a

complex of sheaves F•—will always be of a form such that the modules Rpπ ′∗F and
Rpπ ′∗(Fh), or, respectively, the cohomology sheaves of Rπ ′∗F• and Rπ ′∗(F•)h , have
at most isolated support at the origin. Thus, in either one of the settings the canonical
maps to the formal completions of the cohomology modules are isomorphisms of
vector spaces and it follows that the comparison morphisms ε above are isomorphisms
in this case as well. With the given restrictions on F or F•, we may therefore carry
out all the computations of the Euler characteristics of the coherent analytic sheaves
derived from Fh or (F•)h on Xh in the purely algebraic setting over the field K .

Example 6 We continue with Example 5 and prepare for the explicit computation. As
previously discussed, the only interesting stratum of X isS 2 = Xreg. To compute the
number μ f (2; X , 0) we will describe a complex of graded S-modules representing
(Ω̃•, ν∗ d f ∧−). We set A = C[x, y, z], S = A[s0, s1, s2] and consider S as a homo-
geneous coordinate ring of P2

A over A. The ideal J ⊂ S of homogeneous equations
for the Nash transform X̃ is obtained from the equations for the total transform by
saturation: denote by L the ideal of 2× 2-minors of the matrix

(
s0 s1 s2
∂h
∂x

∂h
∂ y

∂h
∂z

)
.

Over Xreg these equations describe the graph of the rational map Φ underlying the
Nash blowup (7). Now

J = (〈h〉 + L) : 〈y, z〉∞,

where 〈y, z〉 is the ideal defining the singular locus of X on which Φ is not defined.
Let Qp be the module representing

∧p Q withQ the tautological quotient bundle
on P2

A. A graded, free resolution of the Qp is given by appropriate shifts of the Koszul
complex in the s-variables. Let

θ = s0 · e0 + s1 · e1 + s2 · e2 ∈ H0(P2
A,O(1)3) ∼=

(
S3
)
1

be the tautological section. Together with
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ν∗ d f = −2(x − z) · e0 + 2y · e1 + 2(x − z) · e2 ∈ H0(P2
A,O3) ∼=

(
S3
)
0

we obtain the following double complex.

0 0 0

0 Q0 ν∗ d f∧
Q1 ν∗ d f∧

Q2 0

0
∧0 S3

ν∗ d f∧
ε

∧1 S3
ν∗ d f∧

ε

∧2 S3

ε

0

0
(∧0 S3

)
⊗ S(−1)

θ∧
ν∗ d f∧ (∧1 S3

)
⊗ S(−1)

θ∧

0

0
(∧0 S3

)
⊗ S(−2)

θ∧

0

0

For every q the module Mq representing the restriction
∧q

Ω̃1 of Qq to X̃ is given
by Qq ⊗ S/J . The complex of sheaves (Ω̃•, ν∗ d f ∧−) on X̃ is thus represented by
the complex of graded modules

(
M•, ν∗ d f ∧ −) = (Q• ⊗ S/J , ν∗ d f ∧ −) .

As we shall see in the next section, Proposition 5, we can compute the derived push-
forward Rν∗(Ω̃•, ν∗ d f ∧ −) via a truncated Čech-double-complex on the complex
of modules (M•, ν∗ d f ∧ −).

5.1 Derived pushforward on relative projective space

Let A be a commutative Noetherian ring. We set S = A[s0, . . . , sr ] and consider S as
a graded A-algebra. On the geometric side let

π : PrA → Spec A

be the associated projection. Let O = S̃ be the structure sheaf of PrA and O(−w) the
relative twisting sheaves forw ∈ Z. Given a finitely generated graded S-module M let
M̃ be the corresponding of O-modules on PrA. We will first describe how to compute
Rπ∗(M̃) as a complex of finitely generated A-modules up to quasi-isomorphism and
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then generalize these results for complexes of finite, graded S-modules (M•, D•) and
their associated complexes of sheaves on P

r
A.

To this end, we may use Čech cohomology with respect to the canonical open
covering of PrA. For a graded S-module M let

Č p(M) =
⊕

0≤i0<i1<···<i p≤r
M ⊗ S[(si0si1 · · · si p )−1].

These modules are not finitely generated over S, but they have a natural structure as a
direct limit of finite S-modules given by the submodules

Č p
≤d(M) =

⊕
0≤i0<i1<···<i p≤r

M ⊗ 1

(si0si1 · · · si p )d
.

The Čech complexonM is obtained from Č p(M) and thedifferentials ď : Č p(M) →
Č p+1(M) taking an element

ai1,...,i p
(si0 · · · si p )d

with ai1,...,i p ∈ M

to the element in Č p+1(M) with its ( j0, . . . , jp+1)-th component given by

1

(s j0 · · · s jp+1)
d

p+1∑
k=0

(−1)ksdjk a j0,..., ĵk ,..., jp+1
.

As usual, the hat ·̂ indicates that the index is to be omitted. We will write

Ȟ p(M) := H p
(
Č•(M)

)
and Ȟ p

≤d(M) := H p
(
Č•≤d(M)

)

for the p-th cohomology of the Čech complex on a module M and its truncations.
The modules S(−w) and the corresponding twisting sheaves O(−w) have a well

known cohomology, see [20, Chapter III.5]. We deliberately identify

S(−w) =
⊕
d∈Z

R0π∗(O(d − w))

and set

E(−w) =
⊕
d∈Z

Rrπ∗(O(d − w)) ∼= Ȟr (S(−w))) .

The last term has a structure as a direct limit of S-modules via the maps

Ψd : S(d(r + 1) − w)/〈sd0 , . . . , sdr 〉
∼=−→ Ȟr≤d(S(−w)) ⊂ Ȟr (S(−w)) ,

1 �→ 1

(s0 · · · sr )d .
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The pairing of monomials

S(w) × E(−w − r − 1) → A(
sα0
0 sα1

1 · · · sαr
r ,

1

sβ0
0 sβ1

1 · · · sβr
r

)
�→
{
1 if αi = βi − 1 ∀i
0 otherwise

provides us with an identification

E(−w − r − 1) ∼= HomA(S(w), A) (14)

for all w ∈ Z. Note that this pairing is compatible with the natural S-module
structure on both sides.

Proposition 4 Let M be a graded S-module and

K • : 0 M ⊕β0
i0=1S(−w0,i0)

ε ⊕β−1
i−1=1S(−w−1,i−1) · · ·D0

· · · ⊕β−r
i−r=1S(−w−r ,i−r )

D−r+1 ⊕β−r−1
i−r−1=1S(−w−r−1,i−r−1)

D−r

an exact complex. Let
(⊕r•

i•=1 E(w•,i•), D•
)
be the complex with the S-module⊕r−k

i−k=1 E(w−k,i−k ) as in (14) in cohomological degree −k and Dk the differentials
induced by the same differentials as those in K •. Then there is a short exact sequence

0 M Ȟ0(M) H−r
(⊕β•

i•=1 E(−w•,i•), D•
)

0

and isomorphisms

Ȟ p(M) ∼= H p−r
⎛
⎝

β•⊕
i•=1

E(−w•,i•), D•
⎞
⎠

for 0 < p ≤ r .

Proof The statements follow from a diagram chase in the double complex (15). Note
that in (15) all columns but the last one are exact by construction. The same holds for
all rows but the first one. Since taking cohomology commutes with direct sums, the
complex

⎛
⎝

β•⊕
i•=1

E(−w•,i•), D•
⎞
⎠

is identical with the last column of (15), while the first row is the Čech complex
on M . ��
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0
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Č
0
(K

−r
)

ď
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ď

Č
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ď

D

···
ď
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We can use Proposition 4 to describe Rπ∗(M̃) as a complex of finite A-modules.
Choose any

d ≥ max{w−k,i−k : 0 ≥ −k ≥ −r − 1} − r

and let

Ψ−k
d :

β−k⊕
i−k=1

S(d(r + 1) − w−k,i−k )

〈sd0 , . . . , sdr 〉
↪→

β−k⊕
i−k=1

E(−w−k,i−k )

be the inclusions of finite S-modules as before. The restriction on the choice of d
assures that the degree zero part of every E(−w−k,i−k ) is fully contained in the image
of Ψ−k

d . Consequently, the homomorphism of complexes in degree zero

Ψ •
d :
⎛
⎝

β•⊕
i•=1

S(d(r + 1) − w•,i•)
〈sd0 , . . . , sdr 〉

, D•
⎞
⎠

0

∼=−→
⎛
⎝

β•⊕
i•=1

E(−w•,i•), D•
⎞
⎠

0

is an isomorphism of complexes of finite A-modules.
In other words, there is a short exact sequence of free finite A-modules

0 M0 R0π∗(M̃) H−r
(⊕β•

i•=1
S(d(r+1)−w•,i• )

〈sd0 ,...,sdr 〉
, D•
)

0
0

and isomorphisms

Rpπ∗(M̃) ∼= H p−r
⎛
⎝

β•⊕
i•=1

S(d(r + 1) − w•,i•)/〈sd0 , . . . , sdr 〉, D•
⎞
⎠

0

for 0 < p ≤ r .
In terms of Čech-cohomology this implies the following. We may replace every

Čech complex Č•(K−p) in (15) by its truncation Č•≤d(K−p) and restrict to the degree
zero strands in each term. Another diagram chase reveals a quasi-isomorphism

Rπ∗(M̃) ∼= Č•≤d(M)0 (16)

as complexes of finite A-modules.

Proposition 5 Let M• be a bounded complex of finitely generated, graded S-modules
and K •,q ε−→ Mq a graded free resolution of every Mq with

K−p,q =
β−p,q⊕

i−p,q=1

S
(−w−p,q,i−p,q

)
.
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Choose d ≥ max
{
w−p,q,i−p,q : Mq �= 0,−p > −r − 1

} − r . Then Rπ∗(M̃•) is
quasi-isomorphic to the degree zero part of the total complex of the double complex
C•,•
≤d with terms C p,q

≤d = Č p
≤d(Mq):

Rπ∗(M̃•) ∼=qis Tot
(
Č•≤d(M•)

)
0
.

Proof The right derived pushforward of a single sheaf M̃ on PrA is usually defined via
injective resolutions of M̃ and it is well known that the resulting complex is quasi-
isomorphic to the Čech complex on M̃ for the affine covering above. For a complex
of sheaves M̃• the derived pushforward can be computed as the total complex of a
double complex I •,• of injective sheaves which forms an injective resolution of M̃•.
There is a corresponding spectral sequence identifying this total complex with the
total complex of the Čech double complex for M̃• up to quasi isomorphism analogous
to the case of a single sheaf. The result now follows from (16): On the first page of
the spectral sequence of the Čech double complex Č•(M•) we may replace each term
H p(Č•(Mq)) with the truncation H p(Č•≤d(M•)). ��

5.2 An algorithm for the derived homological index

Let (X , 0) ⊂ (Cn, 0) be a reduced algebraic hypersurface defined over some finite
extension K ofQ andω an algebraic 1-formwith an isolated zero on (X , 0) in the strati-
fied sense and defined over the same field.We briefly describe how to use Proposition 5
in order to compute the Euler obstruction Euω(X , 0) as in (11) from Theorem 1.

Set A = K [x1, . . . , xn]〈x1,...,xn〉 and let S = A[s1, . . . , sn] be the graded ring in
the s-variables. Let J be the homogeneous ideal of S defining the Nash transform
X̃ ⊂ P

n−1 × (Cn, 0) and Mq the graded modules presenting the duals of the exterior
powers of the Nash bundle Ω̃q on X̃ joint with the morphisms given by the pullbacks
ν∗ω as in Example 6. To compute the Euler obstruction Euω(X , 0) as a homological
index we proceed as follows.

1) We compute a partial graded free resolution of every one of the Mq using standard
bases and amixed orderingwhose first block is graded and global in the s-variables
and whose second block is local in the x-variables, cf. [17].

2) From this we obtain the bound d on the pole order for the Čech double complex and
we can build the truncated Čech double complex Č•≤d(M•) as a double complex
of finite S-modules.

3) The degree-0-strands of Č•≤d(M•) are finite A-modules generated by monomials
in the s-variables. We can choose generators and relations accordingly and extract
the induced matrices for ν∗ω ∧ − and the maps of the Čech complexes over A
from the corresponding maps defined over S.

4) Since ω had an isolated zero, the cohomology of the resulting total complex must
be finite over K . We can proceed by the usual standard basis methods for the
computation of Euler characteristics.

These computations apply in particular to the case X = Sα and ω = d f as in
Corollary 4.
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Table 1 The shifts wp,i p in the graded resolutions of the Mq

q\p 0 -1 -2 -3 -4 -5 -6

0 01 011422 1326 2432 31 - -

1 03 0311326 11322235 21631241 3742 41 -

2 03 0311425 11522636 1122431942 2331645 3344 41

Remark 5 Note that in Proposition 5 we do not need to compute a quasi-isomorphism
of M• with a complex of free S-modules by means of a double complex, but only
resolutions of the individual terms Mq . With a view towards the application of Propo-
sition 5 for the computation of (11) this entails that the number d can be chosen once
and for all for a given space (X , 0) and then used for every 1-form ω with an isolated
zero on (X , 0).

Example 7 We continue with Example 6 and compute μ f (2; X , 0) by means of For-
mula (12) in Corollary 4. The algorithm above has been implemented in the computer
algebra system Singular [7] and the computations were carried out over the rings

ring S = 0 ,(s (0. .2) ,x,y, z ) ,(dp(3) ,ds(3));

with a mixed ordering and the ring

ring A = 0 ,(x,y, z) ,ds ;

with a local ordering.
As a first step, we need to determine the bound d in Proposition 5 and therefore

compute graded resolutions of the modules Mq in Example 6. The shifts wp,i p as in
Proposition 5 are gathered in Table 1 where we writewk whenever the shiftw appears
exactly k times among the generators of the respective module.

We deduce from Table 1 that choosing d = 2 is sufficient for our computations and
proceed to assemble the truncated Čech double complex with terms

Č p
≤2(M

q) =
⊕

0≤i0<i1<···<i p≤r
Mq ⊗ 1

(si0si1 · · · si p )2

∼= Mq ⊗
⎛
⎝ ⊕

0≤i0<i1<···<i p≤r
S ((−2) · (p + 1))

⎞
⎠ .
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Table 2 Number of generators
in the total complex and its
degree-0-part

q 0 1 2 3

#gen’s over S 3 12 19 12

#gen’s over A 18 1188 4123 2628

This complex now takes the form

0 0 0

0 M0 ⊗ S(−6) M1 ⊗ S(−6) M2 ⊗ S(−6) 0

0 M0 ⊗ (S(−4))3 M1 ⊗ (S(−4))3 M2 ⊗ (S(−4))3 0

0 M0 ⊗ (S(−2))3 M1 ⊗ (S(−2))3 M2 ⊗ (S(−2))3 0

0 0 0

with the horizontal maps being induced by exterior multiplication with ν∗ d f on the
first factor and the vertical maps by the Čech differentials on the second factor of the
respective tensor products. Note that these maps are both merely those of the Koszul
complex in the components of ν∗ d f and the sequence (s20 , s

2
1 , s

2
2 ), respectively.

The associated total complex is again a complex of finite S-modules. The number
of generators of the modules involved is listed in the second row of Table 2. In order
to extract the degree-0-part, i.e. the corresponding complex of A-modules, we choose
the appropriate monomial bases in the s-variables. As the reader can see from the
third row of Table 2, this immediately pushes the number of generators and the size of
the involved matrices towards sizes which are impossible to treat without the aid of a
computer. Nevertheless, the computations are feasible and amodern desktop computer
takes only fractions of a second to compute the cohomology of this complex. The result
is

hk
(
Rν∗
(
Ω̃•, ν∗ d f ∧ −

))
= hk

(
Tot Č•≤2

(
M•)

0

)
=
{
5 for k = 2,

0 otherwise
(17)

wherewewrite hk(·) for the vector space dimension of the k-th homology of a complex.
Comparing this with Formula (12) confirms the result: μ f (2; X , 0) = 5.

We conclude this section with two more remarks.
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Remark 6 As the previous example suggests, it is essential to usemixed orderings with
a local block for the affine variables for the computation of the homological index.
Indeed, if one chooses a global ordering on the variables x, y, z, one will obtain the
value 7 for k = 2 in (17), i.e. one again also counts the two critical points of f on X
away from the origin.

Remark 7 In this section we have restricted ourselves to the case of a function f on a
hypersurface (X , 0) ⊂ (Cn, 0). The reason for this is that in this case theGrassmannian
involved in the computation of the Nash blowup can be identified with P

n−1 and
there is a well established theory and notation for the twisting sheaves O(−e) and
their cohomology. Theoretically, it would also be possible to do similar computations
for varieties (X , 0) of arbitrary codimension c in (Cn, 0) by means of the Plücker
embedding

Grass(c, n) ↪→ P(nc)−1.

In practice, however, this introduces a very inconvenient amount of homogeneous
variables and new equations coming from the Plücker relations. Furthermore, the
description of the tautological bundle over the Grassmannian and its cohomology in
terms of the twisting sheaves is more complicated for general c. This leads us to
exclude the general case from our discussion for now.
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