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J. A. Budagosky, A. Castro, D. Dimitrovski, C. Hofmann, C. Lemell, H. Ni,
S. V. Popruzhenko, A. M. Sayler, J. Solanpää, T. Rathje, A. Rubio, and
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SUMMARY

Semiclassical models based on classical trajectories for the description of the
electron motion in the continuum are a powerful tool of strong-field, ultra-
fast, and attosecond physics. The semiclassical models allow us to identify
the specific mechanism of a phenomenon of interest and visualize it in terms
of classical trajectories. Often these models are also computationally sim-
ple. In the present work we developed a range of new semiclassical models
and applied them to various strong-field phenomena. Among these are: cap-
ture of electrons into Rydberg states, sequential multiple ionization, above-
threshold ionization of the hydrogen molecule, multielectron effects due to
the laser-induced polarization of the atomic ion, and strong-field holography
with photoelectrons. We also used the semiclassical simulations to under-
stand the results obtained using quantum optimal control theory, namely,
optimization of the high-harmonic yield by shaping of the driving pulse. We
developed a method capable of retrieving effective single-active electron po-
tentials, which are required for semiclassical simulations. In this method the
single-active electron potential is found as the result of an optimization pro-
cedure aimed at reproducing given photoelectron momentum distributions.
Finally, we applied deep learning to retrieve the internuclear distance in a
molecule ionized by a strong laser pulse from the photoelectron momentum
distribution. The results of this thesis will serve as a basis for development
of new generation of semiclassical models that are expected to combine accu-
rate description of the ionization step, the ability to account for interference
and multielectron effects, and numerical efficiency. The emergence of such
models will open new perspectives in the theory of laser-matter interaction.



1. INTRODUCTION

Strong-field physics is a fascinating field of research that has emerged due
to the outstanding progress in laser technologies during last decades. This
area of modern physics focuses on highly nonlinear phenomena emerging as a
result of interaction of strong laser pulses with atoms, molecules, nanostruc-
tures, etc. The most well-known examples of these phenomena are: Above-
threshold ionization (ATI) along with formation of the plateau at high ener-
gies in the photoelectron energy spectrum (high-order ATI), high-order har-
monic generation (HHG), and nonsequential double ionization (NDSI), see
Refs. [1–6] for reviews. Many different theoretical approaches to strong-field
processes have been developed so far. Most of these approaches are based on
the strong-field approximation (SFA) [7–9], direct numerical solution of the
time-dependent Schrödinger equation (TDSE), see, e.g., Refs. [10–13], and
the semiclassical models, such as the widely known two-step [14–16] and the
three-step models [17, 18].

In many cases the numerical solution of the TDSE in the single-active
electron approximation provides a good agreement with experimental results.
Presently the TDSE in three spatial dimensions for an atom interacting with
a strong laser pulse can be solved at moderate computational costs. However,
it is often difficult to understand the physical mechanism responsible for the
process under study based on the numerical wave function. Furthermore,
computational power of modern computers is not infinite. Already the direct
numerical solution of the three-dimensional (3D) TDSE for a molecule ionized
by a strong laser pulse is a very difficult task. This TDSE can be solved only
for the simplest molecules and with selection of the most important degrees
of freedom, see Refs. [19, 20]. Moreover, such problems as, e.g., NSDI in
molecules, or the same process in atoms caused by elliptically polarized laser
pulse, are far beyond the reach of modern computer clusters.

The SFA describes ionization as a direct quantum transition from an ini-
tial bound state to the Volkov state. Since the Volkov state is the wave
function of an electron in an electromagnetic wave and the initial state is as-
sumed to be unaffected by the laser field, the SFA neglects both the Coulomb
field in the final state and the intermediate bound states. The role of the
SFA in studies of strong-field phenomena and the transparent physical pic-
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ture of these phenomena provided by the SFA could not be overemphasized,
see, e.g., Refs. [1, 2, 6]. In many cases this method allows to obtain analytic
or semi-analytic solutions. Nevertheless, the approximations used in the SFA
are severe, and, in some cases, may lead to wrong results. The well-known
example is the fourfold symmetry of the electron angular distributions pre-
dicted by the SFA [21]. However, the distributions observed experimentally
possess only the inversion symmetry, i.e., they are asymmetric in any half of
the polarization plane, see Ref. [22]. It was shown that the fourfold symme-
try arises from neglecting the effect of the Coulomb field of the parent ion
on the electron motion in the continuum [23–28].

The semiclassical models employ a classical description of the electron
after it has been released from an atom or molecule, often by tunneling ion-
ization. These models have a number of important advantages compared to
other theoretical approaches. First, the trajectory-based models allow us to
reveal the specific mechanism underlying the strong-field process under study
and to interpret this mechanism in terms of classical trajectories. Second,
these models are often computationally simple. Finally, for some strong-field
processes the semiclassical models are the only feasible approach as, e.g., for
the above-mentioned NSDI process in molecules. All this explains a wide use
of semiclassical models in intense laser-matter physics.

The trajectory-based models have allowed to obtain invaluable informa-
tion about strong-field processes. First of all, this applies to the ATI process.
In ATI an electron absorbs more photons than necessary to overcome the ion-
ization threshold. As a result, the ionized electrons are detected with energies
larger than the one corresponding to the threshold channel. It was found that
the typical electron energy spectrum consists of two different parts. The first
rapidly decaying part of the spectrum ends at an energy close to 2Up, where
Up = F 2/4ω2 is the ponderomotive energy (atomic units are used through-
out the thesis unless indicated otherwise). Here, in turn, F and ω are the
amplitude and the frequency of the laser field, respectively. This first part is
called the direct ionization spectrum. The second part that is often referred
to as the high-energy plateau extends up to 10Up. The high-energy plateau is
often several orders of magnitude lower than the maximum of the low-energy
part.

The direct ionization spectrum can be described by the two-step model.
In the first step of the two-step model an electron tunnels out of an atom, and
in the second step it moves towards a detector along a classical trajectory
in the laser field. The high-energy plateau is qualitatively described within
the three-step model. The three-step model involves the interaction of the
returning electron with the parent ion as the third step. Indeed, along with
the electrons that do not return to the parent ions, i.e., direct electrons
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contributing to the direct ionization spectrum, there are also rescattered
electrons that are driven back by the alternating laser field to their ions and
rescatter off them by large angles. These rescattered electrons are responsible
for the formation of the high-energy plateau. The three-step model also
allows us to understand the HHG and the NSDI processes. Specifically,
the returning electron can recombine with the parent ion accompanied by
emission of a high-frequency photon (harmonic radiation). On the other
hand, if the energy of the returning electron is sufficient, it can liberate a
second electron from the ion.

The three-step model has explained many important features of the pro-
cesses induced by rescattering, i.e., ATI, HHG, and NSDI. Among these
are: the cutoffs in both the high-order ATI [29] and HHG spectra (see
Refs. [17, 30]), the maximal allowed angles in photoelectron angular dis-
tributions from rescattering [31], and characteristic cutoffs of the NSDI dis-
tributions [32, 33]. The two-step model accounting for the Coulomb potential
has revealed the Coulomb focusing effect [34]. The semiclassical models in-
cluding the ionic force in the Newton’s equations of motion have also been
used to study the Coulomb cusp in photoelectron angular distributions [35],
the low-energy structures in the electron spectra produced by strong midin-
frared pulses [36–44] (i.e., the widely known ionization surprise that was for
the first time observed in the experiment of Ref. [45]), and the nonadiabatic
effects in ionization [46–48].

The present work focuses on the development and application of novel
semiclassical models for strong-field, ultrafast, and attosecond physics. Si-
multaneously, the thesis is not restricted by this topic only. Three different
problems closely related to the semiclassical simulations are also considered
in the present work. These problems are: optimization of the strong-field
phenomena using quantum optimal control theory, reconstruction of the ef-
fective single-active-electron potential from observables, and the retrieval of
the internuclear distance in a molecule interacting with a strong laser field.
The results included in this cumulative habilitation thesis were obtained
during the applicant’s work at the Moscow Engineering Physics Institute
(National Research Nuclear University), Frierdrich-Schiller University Jena,
Aarhus University, Tampere University of Technology, and Leibniz University
Hannover in the period of 2009–2022.

The thesis is organized as follows. In Chapter 2 we first discuss the
general formulation of semiclassical models used in strong-field physics. We
next discuss development and application of the semiclassical models to the
capture into Rydberg states and sequential multiple ionization. We also
consider the applicability conditions of the trajectory-based approaches. In
Chapter 3 we discuss the semiclassical two-step model (SCTS) describing
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quantum interference effects and its modifications: the semiclassical two-
step model with quantum input and the SCTS model for ionization of the
hydrogen molecule. Semiclassical models describing polarization-type mul-
telectron effects and the algorithm for retrieving the effective single-active
electron potential are discussed in Chapter 4. Chapter 5 focuses on the ap-
plication of the semiclassical models for understanding the results obtained
from quantum optimal control theory. This applies to the optimization of the
HHG yield and ionization suppression in atoms and molecules. In Chapter
6 we discuss the application of the SCTS model to strong-field holography
with photoelectrons, as well as the retrieval of the internuclear distance in
a molecule from interference patterns in electron momentum distributions.
The conclusions and perspectives of the thesis are given in Chapter 7.



2. SEMICLASSICAL SIMULATIONS OF STRONG-FIELD
PROCESSES

2.1 Semiclassical models: Theoretical background

In any semiclassical model accounting for the ionic potential V (r⃗, t) the elec-
tron trajectory r⃗ (t) is found from Newton’s equation of motion:

d2r

dt2
= −F (t)−∇V (r, t) , (2.1)

where F (t) is the electric field of the laser pulse. In order to integrate
Eq. (2.1), we need to specify the initial conditions: The initial electron veloc-
ity and the starting point of the trajectory. Actually, the initial conditions
are the weak point of the semiclassical models. Indeed, the choice of the
initial conditions that are to connect classical and quantum descriptions of
strong-field phenomena is a nontrivial task. It is usually assumed that the
electron starts with zero initial velocity along the laser field v0,|| = 0, whereas
it can have an arbitrary initial velocity v0,⊥ in the transverse direction. It
should be noted that the SFA implies a nonzero initial longitudinal velocity,
see, e.g., Refs. [38, 49, 50]. The effect of the nonzero initial parallel velocity
in semiclassical simulations is discussed in Ref. [P1]

It is natural to treat the tunnel exit point as the starting point of the
electron trajectory. The corresponding potential barrier is formed by ionic
potential and the electric field of the laser pulse. If this potential is considered
in a 1D cut along the field direction, the resulting approach is often called
the field direction model (FDM), see Ref. [P2]. This model is used in many
studies applying trajectory-based simulations, see, e.g., Refs. [34, 35, 40,
51] and [P3]. Within the FDM the tunnel exit point is determined by the
equation:

V (r) + F (t0) ze = −Ip, (2.2)

where Ip is the ionization potential. In the simplest version of the FDM, the
ionic potential is neglected in Eq. (2.2), i.e., it is assumed that the potential
barrier is formed by the laser field and the ground-state energy only. The
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exit point for the corresponding triangular barrier is given by

|ze (t0)| =
Ip

F (t0)
. (2.3)

Here the sign of ze (t0) is to be chosen from the condition that the electron
tunnels in the direction opposite to the electric field F (t0) at the time of
ionization.

If the ionic potential is modeled by the Coulomb one, the tunnel exit point
can be found using the separation of the corresponding static problem in the
parabolic coordinates. Let us assume that the static electric field acts along
the z-axis, i.e., F = Fez with F > 0, and define the parabolic coordinates
as ξ = r + z, η = r − z, and φ = arctan (y/x). The tunnel exit coordinate
ηe > 0 is then determined by the equation

−β2 (F )
2η

+
m2 − 1

8η2
− Fη

8
= −Ip (F )

4
, (2.4)

see, e.g., Ref. [52], and the tunnel exit point is found as ze ≈ −ηe/2. In
Eq. (2.4) m is the magnetic quantum number of the initial state, Ip (F ) is
the Stark-shifted ionization potential, and

β2 (F ) = Z − (1 + |m|)
√
2Ip (F )

2
(2.5)

is the separation constant, see, e.g., Ref. [53]. The ionization potential Ip (F )
accounting for the Stark shift is given by

Ip (F ) = Ip (0) + (µN − µI) · F+
1

2
(αN − αI)F

2, (2.6)

where Ip (0) is the field-free ionization potential, and µN,I and αN,I are the
static dipole moments and polarizabilities, respectively. The index N stands
for a neutral atom or molecule, and the index I refers to its ion. We note
that for atoms the second (i.e., linear in F ) term is absent in Eq. (2.6)
provided the atom is placed at the origin. It should be also stressed that
quasistatic approximation is assumed in Eqs. (2.4)-(2.6), i.e., the field F is
to be interpreted as the instantaneous field value at the time of ionization t0.

It is obvious that the trajectories, which form the electron wave packet
produced in the ionization process, have different weights. These weights
are determined by the corresponding ionization instants and initial veloci-
ties. Specifically, the static ionization rate (see Ref. [21, 52, 54, 55]) is often
employed to distribute the times of ionization and the initial transverse mo-
menta:

w (t0, v0,⊥) ∼ exp

(
− 2κ3

3F (t0)

)
exp

(
−
κv20,⊥
F (t0)

)
, (2.7)
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with κ =
√

2Ip. For simplicity, the preexponential factor is omitted in
Eq. (2.7). This is justified, as long as ionization of atoms is considered.
Indeed, for atoms this factor only slightly affects the shape of the resulting
photoelectron momentum distributions, which we are interested in. However,
in contrast to the atomic case, this preexponential factor should be taken into
account if the ionization of molecule is considered (see Sec. 3.3).

After the end of the laser pulse the electron moves in the ionic potential
only. For simplicity, we assume this potential to be the Coulomb one. If
the electron energy E at the end of the laser pulse t = tf is negative, the
electron should be considered as captured into a Rydberg state. In this
case it will move along an elliptical orbit. It is clear that ionized electrons
correspond to E > 0 (hyperbolic trajectories). The asymptotic momentum
of an ionized electron can be completely determined from its position r (tf )
and momentum p (tf ) at the end of the laser pulse:

k = k
k (L× a)− a

1 + k2L2
, (2.8)

see Refs. [P4,P2] (the misprint in this formula obtained in Ref. [P4] was
corrected in Ref. [P2]). Here L = r (tf ) × p (tf ) and a = p (tf ) × L −
Zr (tf ) /r (tf ) are the conserved angular momentum and Runge-Lenz vector,
respectively. The absolute value of the final momentum that is present in
Eq. (2.8) is found from the energy conservation:

k2

2
=

p2 (tf )

2
− Z

r (tf )
. (2.9)

The semiclassical models often operate with large ensembles of classical
trajectories. These ensembles are propagated in the continuum till the end of
the laser pulse and, in this way, the final asymptotic momenta of all the tra-
jectories are found. Thereafter the trajectories are binned in accord to their
final momenta in bins in momentum space, and the contributions associated
with the trajectories reaching the same bin are summed. This approach is
sometimes referred to as “shooting method” [38]. However, this is not the
only possible approach to the semiclassical simulations. Alternatively, we can
solve the so-called inverse problem, i.e., find all the trajectories corresponding
to a given final momentum. This approach was used, e.g., in Refs. [56–60].
The advantage of this approach is that it allows to avoid large ensembles of
trajectories. Furthermore, by solving the inverse problem, we can establish
a better control over cusps and caustics that are always present in classical
simulations [P5]. However, this method can often be less versatile, and the
solution of the inverse problem is often a difficult task. For these reasons,
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in this work we use the standard approach based on ensembles of classical
trajectories.

2.2 Capture into Rydberg states

Stabilization in strong-field ionization refers to a decrease of the total ion-
ization yield when the laser field strength exceeds a certain value. This phe-
nomenon was intensively studied both experimentally and theoretically in the
1980s and 1990s (see Refs. [1, 61] for reviews). It was found that there are
two different mechanisms responsible for the stabilization effect: adiabatic
stabilization, which is often called stabilization in the Kramers-Henneberger
regime, and interference stabilization. The adiabatic stabilization can be ob-
served for the laser frequency exceeding the ionization potential, ω > Ip. In
this case there is a single-photon coupling between the states of the discrete
spectrum and the continuum states. In experiment this stabilization regime
can be realized by populating Rydberg states. In contrast to this, the inter-
ference stabilization occurs due to multiple Raman-type transitions between
the Rydberg states and the common continuum. In interference stabiliza-
tion ionization is suppressed due to destructive interference of the transition
amplitudes from these coherently populated states to the continuum.

The renewed interest in the studies of the neural atoms produced in ion-
ization by a strong laser field was caused by the results obtained in Ref. [62].
The experimental study of Ref. [62] focuses on the yield of neutral excited
He atoms produced in ionization of a gaseous target by laser pulses with the
wavelength 800 nm, pulse duration 30 fs, and intensities up to 1015 W/cm2.
It was shown that at relatively low laser intensities the observed excited neu-
tral atom yield is about 20 % of the ion yield. For higher intensities this yield
decreases to about 10 %. The experimental data were compared with the
direct numerical solution of the TDSE and with the results of a semiclassical
model that accounts for both the laser field and the Coulomb potential of the
atomic residual [62]. In the latter approach the electrons with negative total
energies at the end of the laser pulse were considered as captured into bound
states. The corresponding distribution over the effective principal quantum
number is in quantitative agreement with the quantum results [62].

The production of the substantial number of neutral atoms in the tunnel-
ing ionization regime was named in Ref. [62] frustrated tunneling ionization
(FTI). The FTI process was extensively studied over the last years. One of
the first theoretical studies of the FTI phenomenon was done in Ref. [P4].
This study also applies a semiclassical model. However, it is mainly focused
on the mechanism responsible for the production of neutral excited atoms and
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the derivation of the scaling of this yield with the laser-atom parameters. In
addition to this, the impact of the FTI on the momentum distributions of
the ionized electrons is studied in Ref. [P4].

The following quasistatic tunneling rate was used in Ref. [P4] instead of
Eq. (2.7):

w (t0, v0,⊥) ∼
(2Ip)

3

F 2 (t0)
√

1 + v20,⊥/2Ip
exp

{
− 2κ3

3F (t0)

[
1 +

v20,⊥
2Ip

]3/2}
(2.10)

This expression can be obtained from the standard SFA amplitude by using
the saddle-point method in the tunneling regime when the Keldysh parameter
γ = ω

√
2Ip/F ≪ 1 (see Refs. [63, 64] for details of the derivation). It is

assumed that the electron tunnels with zero initial velocity along the laser
field polarization direction, see Sec. 2.1. The tunnel exit point is given by
Eq. (2.3). The initial conditions fully determine the electron trajectory in the
continuum, i.e., the time-dependent electron position r (t) = r (t, t0, v0,⊥) and
momentum p (t) = q (t, t0, v0,⊥). As in Ref. [62], the electrons with negative
total energies at the end of the laser pulse, t = tf , are considered as captured
in Rydberg states:

E (τf ) =
q2

2
− 1

r
< 0, (2.11)

where q and r are the electron velocity and the distance from the ion at the
end of the laser pulse, respectively. The results of the semiclassical simula-
tions based on this model are in a good agreement with those obtained in
Ref. [62]. This is true for both the relative yield of the neutral atoms and
the distribution of the captured electrons over the principal quantum number
[P4].

The in-depth analysis of the electron trajectories has shown that only
those electrons are captured into Rydberg states that (i) have moderate
initial transverse velocities at the time of ionization and (ii) avoid strong
interactions with the ion, i.e., “hard collisions” (see Ref. [P4] for details).
This analysis allows us to derive the analytical scaling for the ratio of the
neutral excited atoms and singly charged ions with laser-atom parameters
[P4]. Indeed, the electron momentum at the end of the laser pulse can be
written as

q = −A (t0) + v0,⊥ + pC (t0,v0,⊥) , (2.12)

where A (t0) is the vector potential of the laser pulse at the time of start, and
pC (t0,v0,⊥) is the contribution due to the Coulomb field. For the parame-
ters used in Ref. [62] the Coulomb force is small compared to the laser field



2. Semiclassical simulations of strong-field processes 16

already at the tunnel exit and decreases further along the trajectory. There-
fore, the Coulomb contribution to the final momentum can be calculated by
integration of the Coulomb force along the trajectory in the laser field only:

pC (t0,v0,⊥) = −
∫ +∞

t0

rL (t)

r3L (t)
, (2.13)

Only the first initial part of the trajectory adjacent to the exit point con-
tributes significantly to the integral of Eq. (2.13). This part of trajectory can
be approximated by the electron trajectory in the constant field equal to the
instantaneous field strength at the time of ionization:

rL (t) =

{
x0 +

1

2
F (t0) (t− t0)

2

}
ex + v0,⊥ (t− t0) ey. (2.14)

We note that similar approach was used in Ref. [63]. The following estimate
for the relative yield of neutral excited atoms N∗ and singly charged ions N+

was derived in Ref. [P4]:

N∗

N+
∼ ω

F 3/2τ
2/3
L

(
1− 2

F

(2Ip)
2

)−1

. (2.15)

This scaling with respect to the laser parameters and ionization potential
agrees well with the semiclassical simulations.

Finally, the capture into Rydberg states has a pronounced effect on
the photoelectron momentum distribution, especially on its low-energy part.
Specifically, it is correlated with the formation of the widely discussed “dip”
in the longitudinal momentum distributions (see, e.g., Refs. [35, 65–69]). It
should be noted that the approach developed in Ref. [P4] is extensively used
in many other studies of the FTI. The findings of the study [P4] has been
substantially extended (see Ref. [70] and references therein).

2.3 Sequential multiple ionization

Theoretical description of double and multiple ionization is one of the most
difficult problems in strong-field physics. These processes have been inten-
sively studied over the last decades and two different physical mechanisms
responsible for the production of doubly and multiply charged ions were
revealed. These are nonsequential and sequential double (or multiple) ion-
ization. The term nonsequential double (multiple) ionization is used in the
situation when two (or more) electrons are ionized as a result of one cor-
related process. Therefore, electron-electron correlation is necessary for the



2. Semiclassical simulations of strong-field processes 17

nonsequential ionization. The mechanism of this correlation has been in-
tensively studied over the last two decades. By now it is established that
inelastic recollision of the ionized electron with the parent ion underlies the
nonsequential ionization and this process can be visualized by the three-step
model, see Chapter 1. However, the actual details depend on the specific
atom (molecule), see Ref. [4, 71, 72] for reviews. It is obvious that the
rate of the nonsequential process cannot be calculated as the product of sin-
gle ionization rates and more sophisticated models are required (see, e.g,
Refs. [4, 73]).

In contrast to this, in sequential double (multiple) ionization electrons
are ionized sequentially and independently of one another. While the nonse-
quential ionization dominates at relatively low laser intensities, the sequential
mechanism becomes important at higher intensities, where the product of two
(or several) large ionization rates exceeds the contribution of the nonsequen-
tial channel. The studies of sequential ionization are important in view of
the constant increase in the intensity of the available laser systems. Further-
more, the availability of the cold-target recoil-ion momentum spectroscopy
(COLTRIMS), which is also known as reaction microscope (REMI) allows us
to measure not only the total ion yields, but also the momentum distributions
of the product ions [66, 74–79].

The sequential mechanism also dominates for elliptically (circularly) po-
larized laser fields. In this case the nonsequential mechanism is suppressed
for a different reason. In order to return to the parent ion in elliptically po-
larized field, an ionized electron has to start with a nonzero initial transverse
velocity. This velocity decreases the ionization yield, see Eq. (2.7). We note
that all the recollision-induced processes are suppressed with the increase of
the ellipticity of the incident field [80].

The sequential process may appear trivial compared to the nonsequen-
tial one. The yields of the multiply charged ions generated in sequential
ionization process were calculated in many works, see, e.g., Refs. [81–89].
However, the primary interest was in empirical formulas capable to describe
the well-known “knee” in the ion yield originating from the nonsequential ion-
ization. Furthermore, there is a lack of studies of momentum distributions
of multiply charged ions. The distributions along the polarization direction
for doubly charged ions of noble gas atoms ions were studied experimen-
tally in Refs. [76, 77]. In Ref. [90] these distributions are observed for Ar
and Ne ions with the charges up to Z = 4, and the experimental study of
Ref. [89] analyzes momentum distributions of Arn+, Krm+, and Xel+ ions
with n ≤ 9, m ≤ 9, and l ≤ 12, respectively. It was shown that the mo-
mentum distributions have a Gaussian-like shape with its center (maximum)
at zero momentum. The longitudinal momentum distributions of multiply
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charged ions of Ne, Ar, and Kr were observed and simulated numerically
in Refs. [91, 92] for laser pulses with durations of 200 fs and intensities of
5− 7× 1015 W/cm2. For calculation of the ion momentum distributions the
classical trajectory Monte-Carlo method including tunneling (CTMC-T, see
Refs. [35, 93]) was used in Refs. [91, 92]. It has been revealed that the width
of the longitudinal ion momentum distributions is almost a linear function
of the ionization potential. This dependence of the width can be explained
using the SFA and the electron kinematics in the laser pulse [91]. The study
of Ref. [P6] focuses on the momentum distributions of highly charged Xe ions
with Z > 8. Furthermore, sequential multiple ionization by short laser pulses
including the CEP effects was for the first time investigated in Ref. [P6].

The yields of the highly charged ions produced in sequential ionization
by a laser field can be calculated by solving the system of rate equations.
This approach is used in the vast majority of the studies of the sequential
ionization process, see, e.g., [81–83, 86, 87, 89]. This system was also solved
in Ref. [P6] accounting for both the envelope and the oscillations of the laser
field. The solution of the rate equations requires well-defined ionization rates.
The static tunneling rate [21, 52, 54]

Wl,m = (2Ip) (2l + 1)
(l +m)!

2mm! (l −m)!
C2

κl2
2n∗−m

(
F

Fa

)m+1−2n∗

× exp

(
−2Fa

3F

)
(2.16)

and the barrier-suppression ionization rate [94, 95]

Wl,m =
√
π (2Ip) (2l + 1)

(l +m)!

2mm! (l −m)!
C2

κl2
2n∗+ 14

3
−m

×
(
F

Fa

)m+ 1
6
−2n∗ ∫ ∞

0

Ai2
(
k2 + x2

)
x2dx (2.17)

with F = F (t0) were used in Ref. [P6]. Here n∗ = Z/
√
2Ip is the effective

quantum number, Cκl is the assymptotic coefficient of the atomic wave func-
tion (see, e.g., Ref. [96]), Fa = (2Ip)

3/2 is the atomic field, k = 2Ip/ (2F )
2/3,

and l and m are the orbital and magnetic quantum numbers, respectively.
We note in passing that the system of rate equations is stiff because two

tunneling rates entering the same rate equation usually can differ even by
more than one order of magnitude. Therefore, it is impractical to solve the
rate equations using the standard numerical methods, such as the Runge-
Kutta method with adaptive step size control [97]. The Gear method [98]
aimed at the solution of stiff differential equations was used in Ref. [P6]. The
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Fig. 2.1: Results of the numerical solution of the rate equations for Xe ions. The
panels (a), (b), and (c) correspond to peak intensities of 0.8, 60, and 500×
1014 W/cm2, respectively. The color scale depicts the time-dependent
ionization state distribution. In all cases, the pulse duration is 30 fs at
FWHM and the white line is the instantaneous intensity. Taken from
Ref. [P6].

results of the solution of the rate equations are shown in Figs. 2.1 (a)-(c),
which show the probability for an ion to have a specific charge as a function
of time for three different laser intensities (see Ref. [P6] for details). The nu-
merical analysis has shown that ions with Z > 2 are ionized before the field
strength reaches the corresponding barrier-suppression regime, and there-
fore tunneling rates determined by Eq. (2.16) can be used for simulations.
However, it is not possible to calculate the ion momentum distributions by
solving the system of rate equations. In order to calculate these distribu-
tions, a simple semiclassical model was developed in Ref. [P6]. This model
is based on the calculation of the ion trajectory in the laser field allowing
for the possibility of a single or multiple ionization during the laser pulse.
More specifically, the time axis is subdivided into small intervals, and the ion
trajectory is considered in each of these intervals. The neutral atom (Z = 0)
starts its motion with zero initial velocity along the polarization direction
Px = 0. It is clear that the laser pulse cannot act on the neutral particle.
Let us assume that Z and Px (t0) are the charge and the momentum of the
ion at time t0, respectively. The ion momentum at the end of the interval is
calculated using the Newton’s equation of motion

Px (t0 +∆t) = Px (t0) + Z

∫ t0+∆t

t0

F (t′) dt′, (2.18)

and the probability for the ion to be ionized during the time interval is equal
to
∫ t0+∆t

t0
WZ (t) dt. This probability is compared with a random number

0 ≤ r ≤ 1. If the ionization probability is larger than this random number,
the ion is again ionized and the charge Z should be increased by one. In this
case the motion of the ion with the charge (Z + 1) is considered in the next
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Fig. 2.2: Ion momentum distribution of Xe21+ at the intensity of 1.5×1018 W/cm2

for two different pulse durations at FWHM. The shift of the maximum
is clearly seen from the figure. From Ref. [P6].

time interval. If the ionization probability is less than r, no ionization occurs
for t0 ≤ t ≤ t0 +∆t. In both these cases the initial momentum of the ion for
the next time interval is equal to Px (t0 +∆t) determined by Eq. (2.18). At
the end of the pulse, the ion has a certain charge ZF and a certain momentum
Px,F . By doing these simulations for an ensemble of particles we obtain the
ion momentum distributions.

Examples of the resulting longitudinal ion momentum distributions are
shown in Fig. 2.2. It is seen that the distributions have Gaussian shape. In
what follows we discuss the momentum distributions of the ions that have
the maximum yield at a given laser intensity. The simulations performed in
Ref. [P6] show that the width of the ion momentum distributions is propor-
tional to I1.4p within a wider range of intensities (1014−1018 W/cm2) than the
one considered in Ref. [91]. Moreover, a new effect was predicted in Ref. [P6]:
It is found that the maxima of the ion momentum distributions shift from
zero momenta. The shift of the maxima originates from the finite duration
of the ionizing field, and therefore, it cannot be observed in a monochromatic
field [P6]. This shift also disappears in the distributions averaged over the
carrier envelope phase (CEP). It is shown that the magnitude of this shift
is proportional to the field strength and inversely proportional to the pulse
duration. However, in order to reliably estimate the position of the max-
ima in the ion momentum distributions at given parameters, it is necessary
to know the subcycle ionization dynamics, i.e., to solve rate equations (see
Ref. [P6] for details). The intensity and CEP dependence of the position of



2. Semiclassical simulations of strong-field processes 21

Fig. 2.3: The shift of the centroid in atomic units as a function of the CEP and
the intensity. At any given intensity only the distribution of the ion with
the highest yield is considered. The two panels (a) and (b) correspond
to the pulse duration of 30 and 6.7 fs at FHWH, respectively. Modified
from Fig. 6 in Ref. [P6].

the maxima was also studied, see Fig. 2.3. It is found that at high intensities
the shift of the maxima can be observed in long laser pulses [up to 30 fs
at full with at half maximum (FWHM)]. The pronounced dependence on
the CEP originates due to different ionization dynamics that corresponds to
different temporal evolution of the varying field. This temporal evolution,
in turn, depends strongly on the absolute phase. We note that CEP effects
for relatively long pulses were observed in HHG, see Ref. [99]. However, the
mechanism responsible for these effects, i.e., interference of the contributions
from different recolliding trajectories, is substantially different from the one
discussed here.

It appears easier to observe CEP effects in the total yields of multiply
charged ions than the CEP-dependent shift of the maxima of the ion momen-
tum distributions. The effect of the absolute phase on the yields of multiply
charged ions produced in sequential ionization was studied in Ref. [P7]. It is
found that the ion yields oscillate as functions of the CEP if the pulse length
is no more than 6−7 fs at FWHM. A surprising property of this effect is that
it can only be observed, if at the end of the ionizing pulse the yields of at
least two ions are comparable to each other. The analytic model describing
the basic features of this effect was also developed in Ref. [P7]. Although the
oscillations of the yields strongly depend on the laser intensity, the predicted
effect survives averaging over the focal volume. It should be experimentally
observable for the noble gas atoms.
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2.4 Applicability of trajectory-based models

Although the semiclassical models had been widely used in strong-field physics,
for a long time there were no systematic studies of their applicability regions.
Such a study was for the first time performed in Ref. [P8] that focuses on
the applicability of the two-step model [14, 15]. The approach of Ref. [P8]
is based on Ehrenfest’s theorem (see, e.g., Ref. [100] for a text-book treat-
ment). Ehrenfest’s theorem formulates the quantum-mechanical counterpart
to the Newton’s equation of motion. More specifically, Ehrenfest’s theorem
establishes the equation of motion obeyed by the mean values of the spa-
tial and momentum coordinates of the quantum system. Let us consider a
single-particle quantum system with the Hamiltonian

Ĥ = −1

2
∇2

r + V (r, t) , (2.19)

where V (r, t) is the potential. In accord with Ehrenfest’s theorem, the equa-
tions for the mean values of the position and momentum operators read as

d ⟨r⟩
dt

= ⟨p⟩ (2.20)

and
d ⟨p⟩
dt

= ⟨−∇rV (r, t)⟩ , (2.21)

respectively. At first glance, it seems that the averaged values ⟨r⟩ and ⟨p⟩
satisfy classical equations of motion. However, this is not true, since the term
⟨−∇rV (r, t)⟩ in the right-hand side of Eq. (2.21) is the average value of the
force acting on the particle, but not the force at the average position. Let us
call the equations

d ⟨r⟩
dt

= ⟨p⟩ (2.22)

and
d ⟨p⟩
dt

= −∇rV (r, t) |r=⟨r⟩. (2.23)

the strict form of Ehrenfest’s theorem. It is seen from Eqs. (2.22) and (2.23)
that if the quantum system satisfies the strict form of the Ehrenfest’s the-
orem, the mean values of the position and momentum operators obey the
classical equations of motion. We have found a correlation between the in-
applicability of the two-step model and the deviation from the strict form of
the Ehrenfest’s theorem for an ensemble of classical trajectories [P8].

Simple analysis based on the Taylor expansion shows that quantum sys-
tems with potentials linear or quadratic in r satisfy the strict form of Ehren-
fest’s theorem, as, e.g., the free particle in the external laser field or the
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3D harmonic oscillator. All other quantum systems, including atoms and
molecules in a laser field, do not satisfy Eqs. (2.23) and (2.23). Indeed, in
case of strong-field ionization of an atom or molecule the potential V reads
as

V (r, t) = V0 + F (t) · r, (2.24)

where V0 is the atomic (molecular) potential and F (t) is the electric field of
the pulse. In general, the first term of Eq. (2.24) is not linear or quadratic in
r, and therefore, it does not satisfy the strict form of the Ehrenfest’s theorem.

The deviation of a given quantum system from the strict form of Ehren-
fest’s theorem can be quantified by the following measure:

Rq (t) =

∣∣∇rV (r, t) |r=⟨r⟩ − ⟨∇rV (r, t)⟩
∣∣

⟨∇rV (r, t)⟩ . (2.25)

Equation (2.25) is the relative deviation between the force at the average
position of the system and the average value of the force. The averaged val-
ues in Eq. (2.25) should be calculated quantum mechanically what requires
the exact solution of the TDSE at all times and makes the application of
the measure (2.25) impractical. It is useful to possess a method that (i) is
capable to estimate the applicability of a semiclassical model for description
of quantum phenomena, and (ii) does not need the numerical solution of
the TDSE. It was shown that the average values of the coordinate and mo-
mentum for a probability distribution of a classical ensemble satisfying the
Liouville equation obey the Ehrenfest’s theorem, but violates its strict form,
see Ref. [101].

In Ref. [P8] the validity of the strict form of the Ehrenfest’s theorem
is monitored using a classical ensemble, i.e., the relative deviation R (t) is
defined as:

R (t) =

∣∣∣∣∇rV (r, t) |r=⟨r(t)⟩ −
∑
A
wi∇rV (r, t)

∣∣∣∣
∣∣∣∣
∑
A
wi∇rV (r, t)

∣∣∣∣
. (2.26)

Here ⟨r⟩ is the average position of the ensemble A of classical trajectories
at time t, and wi is a weight of the i-th trajectory in the ensemble. The
relative deviation (2.26) should be monitored for the whole duration of the
laser pulse. The maximal relative deviation R (t) was used in Ref. [P8] as the
measure of violation of the strict form of Ehrenfest’s theorem. However, this
measure alone is not sufficient to gauge the validity of the two-step model. It
was shown that the time at which the maximum is achieved, i.e., the time of
maximal relative deviation, is equally important [P8]. It turns out that even
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substantial deviations from the strict form of Ehrenfest’s theorem at times
close to the electron ejection, as well as at the end of the pulse, do not affect
the agreement between the two-step model and the exact quantum results.
This can be attributed to the following. At times close to the ionization
time the quantum part of the semiclassical model (i.e., initial conditions) is
interfacing the classical propagation of the electron trajectory. On the other
hand, when the laser pulse is over, the ensemble of classical trajectories
represents both ionized and excited atoms (see Ref. [P8] for details).

However, we have found that a substantial deviation from the strict form
of Ehrenfest’s theorem at any other time during the laser pulse is a man-
ifestation of the inapplicability of the two-step model. As an example, let
us compare the PMDs calculated from the two-step model and the solution
of the TDSE for ionization by a laser pulse with peak intensity 2.0 × 1014

W/cm2, ellipticity 0.5, and pulse duration np = 3 cycles for two different
wavelengths: 800 nm and 400 nm, see Figs. 2.4 and 2.5, respectively. It is
seen that at 800 nm the two-step model shows a good qualitative agreement
with the TDSE. Simultaneously, there is a substantial discrepancy between
the predictions of the semiclassical model and the TDSE result at 400 nm:
Even the maxima of the distributions shown in Figs. 2.5 (a) and (b) are in
different quadrants of the (kx, ky) plane. The relative deviations that corre-
spond to these two cases as functions of time are shown in Fig. 2.6 (a) and
(b), respectively. It is seen that for the wavelength of 800 nm the maximal
relative deviation does not exceed 0.1 and occurs at the half cycle where
the trajectories are launched. In contrast to this, for 400 nm the maximal
relative deviation exceeds 0.25 and occurs at the next half cycle after the
trajectories of the ensemble were launched, i.e., at a later stage of the time
evolution. Therefore, there is indeed a correlation between the inapplicability
of the two-step model and the violation of the strict form of the Ehrenfest’s
theorem along the lines discussed here.

The maximal relative deviations and the times of these deviations are
calculated as functions of parameters of the laser field and the atomic target:
ellipticity, intensity, wavelength, ionization potential, and the range of the
potential, see Ref. [P8]. Therefore, the study of Ref. [P8] investigates the
trends of the applicability of the two-step model. Moreover, this study is not
restricted to the hydrogen atom: The applicability of the two-step model is
investigated for Mg, Xe, Kr, Ar, Ne, and He. In all these cases the corre-
sponding Stark-shifts and the polarization-induced dipole potentials (as in
Refs. [102–104] and [P2]) are taken into account.

It should be mentioned that the study of Ref. [P8] is based on the 2D
implementation of the two-step model. Therefore, the limitations that should
be imposed on the laser-atom parameters for the model to be applicable in the
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Fig. 2.4: Momentum distribution (normalized to the peak value) for the H atom in
the polarization plane using a laser pulse with wavelength λ = 800 nm,
peak intensity 2 × 1014 W/cm2, ellipticity ϵ = 0.5 and a laser pulse
duration of np = 3 cycles, obtained (a) using the semiclassical two-step
model, and (b) by numerical solution of the TDSE (the size of the spatial
box Xmax = 600 a.u., the maximum angular momentum lmax = 60). The
maximum of the semiclassical momentum distribution is qualitatively
indicated by a (green) square in (a). Taken from Ref. [P8]

Fig. 2.5: Momentum distribution (normalized to the peak value) for the H atom in
the polarization plane using a laser pulse with wavelength λ = 400 nm,
peak intensity 2 × 1014 W/cm2, ellipticity ϵ = 0.5 and a laser pulse
duration of np = 3 cycles, obtained (a) using the semiclassical two-step
model, and (b) by numerical solution of the TDSE (the size of the spatial
box Xmax = 400 a.u., the maximum angular momentum lmax = 40). The
maximum of the semiclassical momentum distribution is qualitatively
indicated by a (green) square in (a). Taken from Ref. [P8].
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Fig. 2.6: Time-dependence of the x-components (full curves) and the y-
components (long-dashed curves) of the Coulomb force for trajectories
that lead to final momenta corresponding to the maxima of the momen-
tum distributions in (a) Fig. 2.4 (a) and (b) Fig. 2.5 (a). The pulse
parameters are as in Figs. 2.4 and 2.5, respectively. In (b) the time axis
is given in units of half-cycle duration, the pulse starts at time zero, and
ωt/π corresponds to the center of the pulse. From Ref. [P8].

real 3D case might not be as strict as predicted in Ref. [P8]. Nevertheless, the
results obtained in Ref. [P8] can be used as a guideline for the applicability
of the two-step semiclassical model for ionization by a strong laser pulse.



3. SEMICLASSICAL TWO-STEP MODEL AND ITS
MODIFICATIONS

3.1 Semiclassical two-step model

For a long time, the semiclassical models were not able to describe quantum
interference. A substantial progress in this direction has been achieved in
the last years: new trajectory-based models capable of accounting for the
quantum interference effects have been developed. Among these are: The
trajectory-based Coulomb SFA (TCSFA) [105, 106], the quantum trajectory
Monte Carlo model (QTMC) [107], the Coulomb quantum orbit strong-field
approximation (CQSFA) [56–60, 108], and the semiclassical two-step model
(SCTS) [P1]. All these approaches assign certain phases to electron trajec-
tories, and the contributions of the trajectories corresponding to the same
final momentum are to be added coherently.

The TCSFA is a further development of the CCSFA model [49, 50]. In
contrast to the CCSFA approach, in the TCSFA model the laser field and
the Coulomb force of the ionic residual are treated on an equal footing in the
Newton’s equations of motion. However, the first-order semiclassical pertur-
bation theory (see Ref. [109]) is used in the TCSFA model to account for the
Coulomb potential in the phase assigned to the trajectory. The semiclassi-
cal perturbation theory was also applied in the phase of the QTMC model.
The other two models capable to describe quantum interference effects, i.e.,
CQSFA and SCTS, account for the ionic potential in the phase beyond the
semiclassical perturbation theory.

The phase used in the SCTS model coincides with the phase of the matrix
element of the semiclassical propagator between the initial state of a quantum
system at time t1 and its final state at time t2 [110–112] (see Refs. [113, 114]
for a text-book treatment). There are four different expressions for this
semiclassical propagator USC for different variables describing the initial and
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final states of a quantum system:

⟨r2|USC (t2, t1) |r1⟩ =
[
−det (∂2ϕ1 (r1, r2) /∂r1∂r2)

(2πi)3

]1/2

× exp [iϕ1 (r1, r2)] , (3.1a)

⟨r2|USC (t2, t1) |p1⟩ =
[
−det (∂2ϕ2 (p1, r2) /∂p1∂r2)

(2πi)3

]1/2

× exp [iϕ2 (p1, r2)] , (3.1b)

⟨p2|USC (t2, t1) |r1⟩ =
[
−det (∂2ϕ3 (r1,p2) /∂r1∂p2)

(2πi)3

]1/2

× exp [iϕ3 (r1,p2)] , (3.1c)

⟨p2|USC (t2, t1) |p1⟩ =
[
−det (∂2ϕ4 (p1,p2) /∂p1∂p2)

(2πi)3

]1/2

× exp [iϕ4 (p1,p2)] . (3.1d)

In Eqs. (3.1a)-(3.1d) r1 (r2) and p1 (p2) are the initial (final) sets of positions
and momenta, respectively. For example, the phase ϕ1 in Eq. (3.1a) corre-
sponds to the transition from the initial state described by the coordinate r1
to the final state described by the coordinate r2. This phase is determined
by the classical action

ϕ1 (r1, r2) =

∫ t2

t1

{p (t) ṙ (t)−H [r (t) ,p (t)]} dt, (3.2)

Here H [r (t) ,p (t)] is the classical Hamiltonian function that depends on
both the canonical coordinates and momenta. The canonical transformations

ϕ2 (p1, r2) = ϕ1 (r1, r2) + p1 · r1 , (3.3a)

ϕ3 (r1,p2) = ϕ1 (r1, r2)− p2 · r2 , (3.3b)

ϕ4 (p1,p2) = ϕ1 (r1, r2) + p1 · r1 − p2 · r2 , (3.3c)

relate the phases ϕ2, ϕ3, and ϕ4 to the phase ϕ1 [110].
The phase ϕ3 is used in the SCTS model. This choice is justified by the

following considerations. For a given ionization time t0 the starting point
of the electron trajectory (the tunnel exit point) is localized in space [see,
e.g., Eqs. (2.2), (2.3), and (2.4)]. In contrast to this, the initial electron
velocity is distributed in accord with Eq. (2.7). Simultaneously, the final
state is characterized by the asymptotic electron momentum k. It should
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be noted that the ionization by a strong laser field can be considered as
a half-scattering process, in which an electron is initially located near the
atom (molecule) and detected with the given asymptotic momentum [P1].
For zero initial longitudinal velocity v0,|| = 0, the initial electron position
vector is orthogonal to the initial momentum, i.e., p1 · r1 = 0. In this case
the phases ϕ3 and ϕ4 are equal to each other. For nonzero initial longitudinal
velocity, the term p1 · r1 is not equal to zero and should be included in the
phase. However, it does not substantially affect the resulting photoelectron
momentum distribution (see Ref. [P1] for details).

The phase used in the SCTS model is given by:

ΦSCTS (t0,v0) = −v0 · r (t0) + Ipt0

−
∫ ∞

t0

dt {ṗ(t) · r (t) +H[r (t) ,p (t)]} , (3.4)

To arrive at Eq. (3.4) we have used an integration by parts. It is also assumed
that the electron trajectory possesses the initial phase exp (iIpt0). This initial
phase describes the time evolution of the initial state. By using Newton’s
equation of motion and the explicit form of the Hamiltonian for an arbitrary
effective potential V (r)

H [r (t) ,p (t)] =
p2 (t)

2
+ F (t) · r (t) + V (r) , (3.5)

we can rewrite Eq. (3.4) as follows

ΦSCTS (t0,v0) = −v0 · r (t0) + Ipt0

−
∫ ∞

t0

dt

{
p2 (t)

2
+ V [r (t)]− r (t) · ∇V [r(t)]

}
. (3.6)

It should be emphasized that this expression can be applied for any single-
active-electron potential (or pseudopotential, see, e.g., Ref. [115]) describing
the multielectron atom or molecule. For the Coulomb potential the phase
(3.6) is given by:

ΦSTCS (t0,v0) = −v0 · r (t0) + Ipt0 −
∫ ∞

t0

dt

{
p2 (t)

2
− 2Z

r (t)

}
(3.7)

The corresponding expression used in the QTMC model reads as:

ΦSTCS (t0,v0) = −v0 · r (t0) + Ipt0 −
∫ ∞

t0

dt

{
p2 (t)

2
− Z

r (t)

}
. (3.8)
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The QTMC phase coincides with the SCTS phase if the term r (t) · ∇V [r(t)]
is neglected in Eq. (3.6). The presence of this term leads to the double weight
of the Z/r term in the phase of the SCTS model. This double contribution
of the Coulomb term ensures better agreement with the numerical solution
of the TDSE [P1].

It should be noted that the SCTS phase diverges when t → ∞. A reg-
ularization of the phase was performed in Ref. [P1]. This regularization is
based on the following decomposition of the SCTS phase

ΦSCTS (t0,v0) = −v0 · r (t0) + Ipt0 −
∫ tf

t0

{
p2 (t)

2
− 2Z

r (t)

}

−
∫ ∞

tf

dt

{
E − Z

r (t)

}
(3.9)

and the separation of the time-independent part of the integrand in the last
term of Eq. (3.9), see Ref. [P1] for details. As a result, the contribution to
the phase accumulated due to the Coulomb potential in the time interval
between tf and ∞ is given by

Φ̃C
f (tf ) = −Z

√
b

[
ln g + arsinh

{
r(tf ) · p(tf )

g
√
b

}]
. (3.10)

Here b = 1/ (2E) and g =
√
1 + 2EL2. This asymptotic correction to the

phase, which is referred to as post-pulse phase in Ref. [P1], is absent in both
the QTMC and TCSFA models.

In Ref. [P1] the STCS model was compared with the direct numerical solu-
tion of the TDSE and the QTMC model. The photoelectron momentum dis-
tributions calculated within the three approaches are shown in Figs. 3.1 (a)-
(c). It is seen that both the QTMC and SCTS models reproduce the most
important features of the TDSE result: elongation of the PMDs along the
polarization direction, the ATI rings, and a central interference structure at
small momenta. It should be noted that both semiclassical approaches un-
derestimate the width of the distributions along the polarization axis. This
underestimate occurs due to the zero initial longitudinal velocity v0,|| (see
Ref. [P1] for details). Nevertheless, a closer look at the low-energy parts
of the PMDs shows significant deviations. For |k| < 0.3 a.u., i.e., electron
energies well below Up = 0.2 a.u., the 2D momentum distributions show
pronounced fanlike interference structures, see Figs. 3.2 (a)-(c). These struc-
tures are similar to that of Ramsauer-Townsend diffraction oscillations, see
Refs. [116–119]. It is seen from Figs. 3.2 (a)-(c) that the SCTS model repro-
duces the nodal pattern on the TDSE. In contrast to this, the QTMC model
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Fig. 3.1: Vectorial electron momentum distributions for the H atom ionized by a
laser pulse with a duration of n = 8 cycles, wavelength of λ = 800 nm,
and peak intensity of I = 0.9×1014 W/cm2 obtained from (a) the QTMC
model, (b) solution of the TDSE, and (c) the present SCTS model. The
distributions are normalized to the total ionization yield. A logarithmic
color scale in arbitrary units is used. The laser field is linearly polarized
along the z-axis. From [P1].

yields fewer nodal lines. This fact was explained by the underestimate of the
Coulomb contribution in the QTMC interference phase, see Eq. (3.8). The
comparison of the electron energy spectra dR/dE and photoelectron angular
distributions dR/ (sin θdθ) calculated using the QTMC and the SCTS mod-
els shows that the semiclassical approaches qualitatively reproduce the ATI
peaks. However, quantitative agreement between the semiclassical models
and the TDSE results can be achieved only for the low-order peaks [P1]. This
is due to the fact that the initial conditions [see Eq. (2.7)] allow for insuffi-
cient number of trajectories with large initial momenta along the polarization
direction (see Ref. [P1] for details). This lack of trajectories with large initial
longitudinal momenta is also responsible for the too rapid fall down of the
electron energy spectra predicted by the semiclassical approaches. It was
shown that the main reason of deviations between the SCTS model and the
TDSE are the inaccuracies in description of the initial tunneling step rather
than the semiclassical treatment of the electron motion in the continuum
[P1].

It should be noted that an efficient extension of the STCS model was
proposed recently, see Ref. [120]. This study focuses on the effect of the
preexponential factor of the semiclassical matrix element that is neglected in
other versions of the SCTS model. The SFA and the saddle-point approxi-
mation were used in Ref. [120] to implement the SCTS model. Furthermore,
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Fig. 3.2: Magnification of Fig. 3.1 for |kz|, |k⊥| < 0.3 a.u. Taken from Ref. [P1].

the inverse problem was solved in [120]. The resulting model shows an ex-
cellent agreement with the TDSE. Nevertheless, here we improve the SCTS
model by combining it with the exact numerical solution of the TDSE.

3.2 Semiclassical two-step model with quantum input

The semiclassical two-step model with quantum input (SCTSQI) combines
the SCTS model with the initial conditions for classical trajectories obtained
from the numerical solution of the TDSE. The SCTSQI model was proposed
and implemented in the one-dimensional (1D) case in Ref. [P9]. For the 1D
model atom, the TDSE in the velocity gauge is given by:

i
∂

∂t
Ψ(x, t) =

{
1

2

(
−i ∂
∂x

+ Ax (t)

)2

+ V (x)

}
Ψ(x, t) , (3.11)

where

V (x) = − 1√
x2 + a0

(3.12)

is the soft-core Coulomb potential with the soft-core parameter a0.
It is clear that a unification of the direct solution of the TDSE with the

trajectory-based approach is a highly non-trivial task. Indeed, in order to
unambiguously determine the classical trajectory, we need to specify both the
initial velocity and the starting point. It is known, however, that the Heisen-
berg’s uncertainty principle imposes a fundamental limit to the precision with
which position and momentum (as canonically conjugated variables) can be
simultaneously known. A position-momentum quasiprobability distribution
allows to extract information about both the position and momentum of a
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quantum particle from a known wavefunction. The Wigner function and
the Husimi distribution [121] (see, e.g., Ref. [122] for a textbook treatment)
are the most well-known examples of the quasiprobability distributions. In
Ref. [P9] we used the Gabor transform of the wave function Ψ (x, t):

G (x0, px, t) =
1√
2π

∫ ∞

−∞
Ψ(x′, t) exp

[
−(x′ − x0)

2

2δ20

]
exp (−ipxx′) dx′, (3.13)

Here x0 is the point near which the Gabor transform is calculated, px is
the electron momentum, and δ0 is the width of the Gaussian window. The
square modulus of G (x0, px, t) corresponds to the momentum distribution of
the electron in the vicinity of the point x0 at time t. It should be noted that
|G (x0, px, t)|2 is actually the Husimi distribution, which can be obtained by
the Gaussian smoothing of the Wigner function.

In Ref. [P9] the Gabor transform (3.13) was combined with the absorb-
ing boundaries used in the solution of the TDSE. The absorbing boundaries
prevent unphysical reflections of the wave function from the boundary of
the computational grid. More specifically, in the SCTSQI model the Gabor
transformation is applied to the part of the wave function that is absorbed
at every step of the time propagation of the TDSE. An example of the corre-
sponding Husimi distribution is shown in Fig. 3.3. This absorbed part of the
wave function is transformed into an ensemble of classical trajectories. The
latter is then propagated using the Newton’s equation of motion in both the
laser field Fx (t) and the soft-core potential:

d2x

dt2
= −Fx (t)−

x

(x2 + a2)3/2
, (3.14)

Therefore, in the SCTSQI model the initial conditions of the classical
trajectories are determined by the exact quantum dynamics. Furthermore,
every trajectory is assigned with the SCTS phase

Φ (t0, v0) = −
∫ ∞

t0

dt

{
v2x (t)

2
− x2

(x2 + a2)3/2
− 1√

x2 + a2

}
dt (3.15)

and the quantum amplitude G (x, px, t). It should be noted that the ampli-
tude is a complex function that has both absolute value and phase. As in
every semiclassical model describing quantum interference effects, the con-
tributions of different trajectories reaching the same bin centered at kx have
to be added coherently. Therefore, the ionization probability in the SCTSQI
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Fig. 3.3: The Husimi distribution |G (x,px, t)|2 in the absorbing mask regions cal-
culated for ionization of 1D model atom at the end of the laser pulse
with a duration of 4 optical cycles, intensity of 2.0× 1014 W/cm2, and a
wavelength of 800 nm. A logarithmic color scale is used. The three main
maxima of the Husimi distribution are shown by white circles. Modified
from Fig. 10 in [P10].

model reads as

R (kx) =

∣∣∣∣∣
NT∑

m=1

nkx∑

j=1

G
(
tm0 , x

j
0, p

j
x,0

)
exp

[
iΦ0

(
tm0 , x

j
0, p

j
x,0

)]
∣∣∣∣∣

2

. (3.16)

Here NT is the number of the time steps needed to solve the TDSE and nkx

is the number of the trajectories leading to the same final momentum kx. It
is clear that convergence with respect to the number of trajectories launched
at each time step and the positions of the absorbing boundaries should be
carefully checked in the SCTSQI.

As noted above, the SCTS phase is divergent at t→ ∞. The regulariza-
tion procedure for the 1D case slightly differs from the one used in the full 3D
case (see Ref. [P9] for details). In the 1D case the corresponding post-pulse
phase is given by:

≈
ΦV

f =

∫ ∞

tf

[
x2

(x2 + a2)3/2
− 2Et2

(2Et2 + a2)3/2

]
dt. (3.17)

This converging integral depends on the electron position x (tf ) and velocity
px (tf ) at the end of the laser pulse and can be calculated numerically.

The SCTSQI model was compared with the SCTS model and the direct
solution of the TDSE, see Fig. 3.4 and Ref. [P9]. It is seen that the SCT-
SQI model provides not only qualitative, but also quantitative agreement



3. Semiclassical two-step model and its modifications 35

with the exact quantum results. This applies for the width of the electron
momentum distributions and the positions of the interference maxima and
minima. There is, however, a small discrepancy in the heights of some inter-
ference maxima, see Fig. 3.4 (b). This discrepancy is attributed to the ne-
glected preexponential factor of the semiclassical matrix element USC (t2, t1),
see Eq. (3.4). The agreement between the energy spectra obtained within
the SCTSQI model and from the solution of the TDSE is almost perfect, see
Fig. 3.4 (c). In contrast to this, and similarly to the 3D case, the SCTS model
only qualitatively reproduces the TDSE spectrum. Again, the energy spec-
trum calculated within the SCTS model falls off too rapidly with increasing
energy compared to the spectrum obtained from the TDSE.
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Fig. 3.4: Comparison of the semiclassical models with the TDSE for ionization of
a 1D model atom by the laser pulse with a duration of 4 cycles, intensity
of 2.0×1014 W/cm2, and a wavelength of 800 nm. (a) The photoelectron
momentum distributions for ionization of a one-dimensional model atom
obtained from the SCTS model (thin magenta curve) and the solution
of the TDSE (thick light blue curve). The distributions are normalized
to the total ionization yield. (b) The electron momentum distributions
calculated using the present SCTSQI model (dashed dark green curve)
and the TDSE (thick light blue curve). The distributions are normalized
to the peak values. (c) Electron energy spectra obtained from the TDSE
(thick light blue curve), SCTSQI (dashed dark green curve), and the
SCTS (thin magenta curve). The spectra are normalized to the peak
values. Taken from Ref. [P9].

It was shown in Ref. [P9] that the phase of the Gabor transformG (x, px, t)
is very important in the SCTSQI model. Without this phase the SCTSQI
cannot provide even a qualitative agreement with quantum results. This
is easy to understand, if we take into account that the complex amplitude
G (x, px, t) contains all the information about the quantum dynamics of the
absorbed part of the electron wave function before its transformation into
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the ensemble of trajectories.
The SCSTQI model can be further developed to make it applicable to

rescattering-induced phenomena: high-order ATI, HHG, and NSDI. As other
semiclassical models, the SCTSQI model allows to obtain a valuable physical
picture of the phenomena of interest using classical trajectories. What is
even more important, the initial conditions of these trajectories are deter-
mined by the exact quantum mechanical calculations. Indeed, the SCTSQI
model demonstrates a way to circumvent a non-trivial problem of choosing
the initial conditions in trajectory-based models of strong-field processes.
Therefore, it corrects the inaccuracies of the standard semiclassical models
in description of ionization steps. Nevertheless, further work is needed to (i)
extend the SCTSQI model to the 3D case, (ii) make it computationally more
efficient, i.e., to decrease the number of trajectories launched at every time
step by applying more sophisticated sampling techniques, and (iii) develop
a way of efficient visualization of the strong-field processes with this model,
see Ref. [P9].

3.3 Semiclassical two-step model for the H2 molecule

It is clear that strong-field ionization of a molecule is much more involved
than the same process for an atom. This is due to the necessity to account
for the nuclear motion (extra degrees of freedom and the associated time
scales) and complicated shape of the orbitals. Indeed, it should be noted
that the nuclear motion period of the proton is about 10-15 fs. This is com-
parable to the characteristic pulse length. Simultaneously, the rich nuclear
structure in molecules leads to orbitals of diverse symmetries. In principle,
all these features can be taken into account by the direct numerical solution
of the TDSE in three spatial dimensions. However, this is a very complicated
task. The numerical solution of the 3D TDSE is possible only for the sim-
plest molecules and with selection of the most important degrees of freedom
[19, 20]. Therefore, approximate semianalytical models such as, e.g., the
molecular strong-field approximation (MO-SFA) [123, 124] and the molec-
ular Ammosov-Delone-Krainov (MO-ADK) theory [125] are very valuable
for providing insight into ionization of molecules by strong laser fields. The
same is also true for the semiclassical models. Presently there are only a few
studies that apply trajectory-based models with interference to strong-field
ionization of molecules [126, 127] and [P3]. In Refs. [126, 127] the QTMC
model was extended to the molecular case. The study of Ref. [P3] applies
the SCTS model to ionization of the hydrogen molecule.

The effective SAE potential for an outer electron in the H2 molecule reads



3. Semiclassical two-step model and its modifications 38

as

V (r) = − Z1

|r−R/2| −
Z2

|r+R/2| (3.18)

where R is the vector pointing from one nucleus to another, and Z1 and Z2

are the effective charges. These charges are chosen to be equal to 0.5. a.u.
(see Refs. [126, 127]). The key question emerging in semiclassical simulations
of ionization of a molecule is how to choose initial conditions for classical tra-
jectories. There are two well-known approaches to this problem, namely the
molecular quantum-trajectory Monte-Carlo model (MO-QTMC) [126, 127]
and the partial Fourier transform for molecules (MO-PFT), see Refs. [127–
129]. While the MO-QTMC approach is based on the MO-SFA, the MO-PFT
model considers the wave function in mixed (coordinate-momentum) repre-
sentation and uses the Wentzel-Kramers-Brillouin approximation. The work
[P3] applies the MO-PFT approach.

The bound-state orbital of the H2 molecule is given by the bonding super-
position of the two 1s atomic orbitals located at the positions of the nuclei:

ΨH2 (r) =
1√

2 (1 + SOI)
[ψatom (r−R/2) + ψatom (r+R/2)] , (3.19)

where SOI is the atomic overlap integral. The partial Fourier transform of
the wave function (3.19) reads as:

ΠH2 (px, py, z) = exp

(
− i

2
R sin θm [px cosφm

+ py sinφm]

)
Πatom

(
px, py, z −

R

2
cos θm

)

+ exp

(
i

2
R sin θm [px cosφm

+ py sinφm]

)
Πatom

(
px, py, z +

R

2
cos θm

)
. (3.20)

see Ref. [126]. Here Πatom (px, py, z) is the partial Fourier transform of the 1s
orbital, and θm and φm are the polar and azimuthal angles of the molecular
axis, respectively. By using the explicit formula for Πatom (px, py, z) derived
in Ref. [128], the following mixed-representation wave function is obtained
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in Ref. [P3]:

Π (px, py, ze)

∼
{
exp

(
− i

2
R sin θm [px cosφm + py sinφm]

)
× exp

(
−1

2
κR cos θm

)

+ exp

(
i

2
R sin θm [px cosφm + py sinφm]

)
× exp

(
−1

2
κR cos θm

)}

× exp

[
− κ3

3F
− κ

(
p2x + p2y

)

2F

]
. (3.21)

We note that this expression is valid just beyond the tunnel exit point. Sim-
ilar to the study of Ref. [127], Eq. (3.21) is used as a complex ionization
amplitude [P3]. This amplitude corresponds to ionization of an electron at
time t0 with initial transverse velocity v0,⊥ = py. The study of Ref. [P3]
focuses on the simplest case where the molecule is oriented along the polar-
ization direction: θm = φm = 0. In this case the preexponential factor in
brackets in Eq. (3.21) is a constant for the fixed internuclear distance and,
therefore, it is sufficient to account for the exponent only [P3]. Both triangu-
lar and the FDM potential barriers were used in Ref. [P3] to find the tunnel
exit point.

The SCTS phase for the H2 molecule reads as:

ΦSCTS
H2

(t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t)

2
− Z1 (r−R/2) · (2r−R/2)

|r−R/2|3

−Z2 (r+R/2) · (2r+R/2)

|r+R/2|3
}
, (3.22)

In order to arrive at Eq. (3.22) the potential (3.18) is to be substituted
in the general expression for the SCTS phase (3.6). For rf ≫ R the phase
(3.22) coincides with the SCTS phase for the Coulomb potential −Z/r, where
Z = Z1 + Z2. We note that the corresponding QTMC phase is given by:

ΦQTMC
H2

(t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2 (t)

2
− Z1

|r−R/2| −
Z2

|r+R/2|

}
. (3.23)

Assuming that at the end of the laser pulse the ionized electron is far away
from the molecule, the asymptotic momentum and the post-pulse phase can
be found from Eqs. (1) and (3.10), respectively [P3].
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The comparison of the predictions of the SCTS model for the H atom
and the H2 molecule was performed in Ref. [P3], see Figs. 3.5 (a)-(c). Figure
3.5 (a) shows the electron momentum distribution for H, whereas Figs. 3.5
(b) and (c) presents the same distributions for H2. The triangular poten-
tial barrier was used to calculate the distributions of Figs. 3.5 (a) and (b).
Nevertheless, the molecular potential (3.18) was fully taken into account in
Newton’s equation of motion (2.1) and in the phase when calculation the
PMD shown in Fig. 3.5 (b), see Ref. [P3]. The distribution of Fig. 3.5 (c)
was obtained using the FDM expression for the tunnel exit point. It is seen
that the PMDs of Figs. 3.5 (a) and (b) are similar to each other. Therefore, it
is found that the effects of the molecular structure are not visible in electron
momentum distributions, if the molecular potential is not taken into account
in the expression for the exit point [P3]. We note that this result can be ex-
pected. Indeed, r0 = Ip/F0 ≫ R/2 for the parameters of Fig. 3.5. Moreover,
the distance between the molecular ion and the ionized electron increases
further when the electron starts its motion in the continuum. Therefore, if
the expression (2.3) is used to calculate the tunnel exit point, the electron
moves in the same Coulomb potential as in the case of the H atom.

The application of the FDM model leads to smaller exit points compared
to the triangular barrier formula [P3]. As a result, the effects of the molec-
ular potential become visible in Fig. 3.5 (c). It is seen that the PMD is
more extended in the polarization direction compared to the atomic hydro-
gen case. For this reason, the electron energy spectra for H2 fall off slower
with increasing energy than the ones for the H atom, and the photoelectron
angular distributions are more aligned along the laser polarization direction
(see Ref. [P3] for details). The comparison of the PMDs calculated within
the STCS and the QTMC models has show that, similar to the atomic case,
the QTMC model predicts fewer nodal lines in the interference structure in
the low-energy part of the distributions than the SCTS. This is again at-
tributed to the underestimation of the potential in the phase of the QTMC
model (3.8), see Ref. [P3].
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Fig. 3.5: The two-dimensional photoelectron momentum distributions for the H
atom [panel (a)] and the H2 molecule [panels (b) and (c)] ionized by a laser
pulse with a sine square envelope, duration of n = 8 cycles, wavelength of
λ = 800 nm, and intensity of 2.0× 1014 W/cm2. The panels (a) and (b)
show the distributions calculated for the exit point given by Eq. (2.3).
The panel (c) correspond to the exit point found in accord with the FDM
[Eq. (2.2)]. The holographic fringes are indicated by white dashed lines
in panel (a). The distributions are normalized to the total ionization
yield. A logarithmic color scale in arbitrary units is used. The laser field
is linearly polarized along the z axis. From Ref. [P3].



4. SEMICLASSICAL MODELS AND MULTIELECTRON
EFFECTS

4.1 Multielectron polarization effects

The theoretical approaches used to analyze strong-field physics problems are
usually based on the single-active electron approximation (SAE). The SAE
treats the ionization as a one-electron process, i.e., an atom or molecule
interacting with the laser field is replaced by a single electron that moves
in the laser field and in an effective potential. This effective potential has
to be optimized to reproduce the ground state and the excited states of
a real atom (molecule). The SAE allows to understand many features of
ATI, HHG, and other processes (see, Refs. [2, 114] and references therein).
However, multielectron effects (ME) in strong-field phenomena have been at-
tracting considerable attention recently, see, e.g., Refs. [130, 131]. There exist
many theoretical methods capable of accounting for ME effects in strong-
field physics. Among these are: time-dependent density functional the-
ory [132] (see Refs. [133, 134] for a text-book treatment), multiconfiguration
time-dependent Hartree-Fock theory [135, 136], time-dependent restricted-
active-space and time-dependent complete-active-space self-consistent-field
theories (see Refs. [137] and [138], respectively), time-dependent R-matrix
theory [139, 140], the R-matrix method with time dependence [141, 142],
time-dependent configuration interactions singles [143, 144], time-dependent
restricted-active space configuration-interaction methods [145, 146], time-
dependent analytical R-matrix theory [147], and various semiclassical ap-
proaches [P2], [44, 103, 130, 148, 149]. The advantages of the semiclassical
models discussed in the Introduction are particularly important in studies of
the ME effects.

Laser-induced polarization of the parent atomic or molecular ion is one of
the most well-known and intensively studied ME effects [44, 103, 130, 148–
150] and [P2]. In Refs. [151, 152] and [150] the effective potential for the
outer electron was found within the adiabatic approximation. The potential
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derived in Refs. [150–152] reads as

V (r, t) = −Z
r
− αIF (t) · r

r3
(4.1)

In Eq. (4.1) the ME effect is accounted through the induced dipole potential
αIF (t) · r/r3 , where αI is the static polarizability of the ion. This poten-
tial takes into account the external laser field, the Coulomb potential, and
the polarization of the ionic core. In the study of Ref. [103] it was for the
first time shown that the time-independent Schrödinger equation with this
effective potential and accounting for the Stark shift of the ionization po-
tential can be approximately separated in the parabolic coordinates. This
separation procedure leads to a certain tunneling geometry. The resulting
physical picture is called tunnel ionization in parabolic coordinates with in-
duced dipole and Stark shift (TIPIS). In the TIPIS model the tunnel exit
point is calculated as ze ≈ −ηe/2, where ηe is the solution of the equation:

−β2 (F )
2η

+
m2 − 1

8η2
− Fη

8
+
αIF

η2
= −Ip (F )

4
, (4.2)

see Refs. [P2,P11]. It is possible to develop semiclassical models based on the
TIPIS approach. These models disregarding the interference effects are in
a good agreement with the TDSE results [P2], [103] and experimental data
(see Refs. [103, 148, 149]).

We note that the effective potential of Refs. [150–152] is applicable only
at large and intermediate distances from the ionic core. For this reason,
most of the studies applying this potential were done for circularly or el-
liptically polarized laser pulses. Indeed, the rescattering-induced processes
are suppressed in close to circularly polarized fields, and, as a result, most
of the electrons do not return to the vicinity of the parent ion. We note
that strong-field processes in elliptically polarized pulses have been attracted
particular interest for a number of reasons. First, evolution of the electron
momentum distributions, electron energy and high-order harmonics spectra
with increasing ellipticity provides additional information about the process
under study. Second, the electron kinematics in an elliptically polarized laser
pulse is essentially two-dimensional (2D), which is not the case for linearly
polarized pulse. This 2D kinematics leads to features and properties that
are absent with a linearly polarized field. Indeed, the first observation of the
CEP effect was performed using the ATI by a circularly polarized laser pulse
[153]. Other examples are the photoelectron angular distributions produced
by an elliptically polarized field [22–28, 63, 154, 155], predominant emission
when the laser field points along the major axis of the polarization ellipse
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leading to the peaks in the PMD along the minor axis [154, 156, 157], and
attosecond angular streaking [158, 159].

It was shown that the electron momentum distributions produced in ion-
ization of various atoms and molecules (Ar, Mg, CO, naphthalene, etc.) by
elliptically or circularly polarized pulses are very sensitive to the ME ef-
fects caused by the induced dipole moment of the ionic core, see Refs. [P2],
[44, 103, 148, 149]. In particular, the study of Ref. [P2] focuses on the role of
the multielectron effects in the formation of the PMDs. This role is revealed
and investigated over a wide range of laser wavelengths and intensities for
ionization of Mg. The choice of Mg is due to the following reasons. Along
with the inapplicability of the potential (4.1) for small r, the range of appli-
cability of the TIPIS model is also restricted by the two following conditions.
On the one hand, the intensity of the laser pulse should not be too high,
and the third term of Eq. (2.6) should not exceed 10-20 % of the first one.
On the other hand, the Keldysh parameter γ = ω

√
2Ip/F has to be less or

order of unity, and, thus, the laser pulse should be strong enough. Therefore,
for each atomic species and fixed wavelength there exist a range of intensi-
ties, within which the TIPIS model is applicable. At the first glance, alkali
metals seems to be ideal candidates for studies of the ME effects, since they
have high values of αN and low values of αI . However, alkali metals have
very low ionization potentials, and therefore they will be ionized before the
laser intensity reaches its maximum. Elements such as Mg, Cu, Zn have
relatively high ionization potentials and static polarizabilities. What is also
important, the polarizabilities of these elements are substantially different
from those of their ions. For Mg, Ip = 0.28 a.u., αN = 71.33 a.u., and
αI = 35.00 a.u. Finally, multiphoton ionization of the Mg atom has been in-
tensively studied both experimentally [160–164] and theoretically [165–169].
For the Mg atom ionized by a laser pulse with the a wavelength of 1600 nm,
intensity of 5.0 × 1013 W/cm2 and ellipticity of 0.78, the quadratic in F
term in Eq. (2.6) is about 6% of the field-free ionization potential Ip (0), and
the Keldysh parameter is γ = 0.7. On the other hand, for the intensity of
2.35 × 1013 W/cm2, the same wavelength and ellipticity, the third term is
about 3% of the frst one in Eq. (2.6), and the Keldysh parameter γ = 1.05.
Therefore, we did the semiclassical simulations for Mg within the intensity
range 2.35× 1013 − 5.0× 1013 W/cm2, see Ref. [P2].

The results of the simulations of Ref. [P2] are shown in Figs. 4.1 (a)-(i).
Figure 4.1 presents the 2D PMDs at three different laser intensities obtained
within the three different semiclassical models. The left column [panels (a),
(d), and (g)] show the distributions obtained ignoring the ionic potential after
tunneling, i.e., within the two-step model. These distributions are similar to
those predicted by the SFA. The central column, i.e., the panels (b), (e),
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and (h), present the same distributions, but accounting for the Coulomb
potential. The right column shows the results of the full TIPIS model, within
which an electron moves in the laser field and in the potential of Eq. (4.1).
In all three cases the Stark shift is taken into account. It is seen that at low
intensities the ME term does not affect the electron momentum distributions.
However, with increasing intensity the offset angle, i.e., the angle between
the maximum of the PMD and the minor axis of the polarization ellipse,
decreases compared to the case where the ME term is neglected. This is
clearly seen from the comparison of Figs. 4.1 (e) and 4.1 (f), as well as of
Figs. 4.1 (h) and (i). The decrease of the offset angle is due to the fact that
in the initial stage of the electron motion in the continuum the Coulomb and
the ME forces act in opposite directions.

The decrease of the offset angle is further confirmed by the analytic esti-
mates obtained in Ref. [P2]. These estimates allowed to understand better
the underlying physics. As in Ref. [P4], the asymptotic momentum of an
electron ionized at time t0 can be written as:

P (t0,v0) = −A (t0) + v0 +PC (t0,v0) +PME (t0,v0) , (4.3)

Here v0 is the initial electron velocity, and PC and PME are the contributions
due to the Coulomb force and the ME force, respectively. By treating both
the Coulomb and the ME potentials as perturbations, the contributions PC

and PME can be calculated by integrating the respective forces along the
electron trajectory in the laser field only (see Sec. 2.2):

PC = −
∫ ∞

t0

dt
rL (t)

r3L (t)
, (4.4)

PME =

∫ ∞

t0

dt

(
αIF (t)

r3L
− 3αI [F (t) · rL] rL

r5L

)
. (4.5)

Furthermore, both contributions can be estimated by calculating the integrals
along the trajectory in the constant field F = F (t0), see Ref. [P2]. These
estimates can be improved by considering the trajectory in the field F (t0) ≈
F (t0) + F′ (t0) (t− t0). In Ref. [P2] the improved estimates were obtained
only for one single trajectory that corresponds to the maximum of the electric
field. The latter is defined as follows:

F (t) =
F0√
1 + ϵ2

sin2

(
πt

τL

)
[cos (ωt+ φ) ex + ϵ sin (ωt+ φ) ey] , (4.6)

where τL is the pulse duration, ϵ is the ellipticity, np is the number of cycles,
and φ is related to the CEP. For the trajectory corresponding to the field
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Fig. 4.1: Momentum distributions of the photoelectrons emitted from Mg at a
wavelength of 1600 nm calculated within the three different versions of
semiclassical approaches. The left column, i.e., the panels (a), (d), and
(g), shows the distributions, calculated ingnoring the ionic potential af-
ter tunneling, when the tunneled electron moves in the laser field only.
The middle column (panels (b), (e), and (h)) depicts the same distribu-
tions, but with consideration for the Coulomb field. The right column
(panels (c), (f), and (i)) presents the results of the full TIPIS model,
when both terms are taken into account in Eq. (4.1). The distributions
(a)-(c), (d)-(f), and (g)-(i) correspond to the intensity of 2.35, 3.5, and
5.0× 1013 W/cm2, and to the Keldysh parameter of 1.05, 0.85, and 0.7,
respectively. The same color scale is used for all the distributions. Taken
from Ref. [P2].

maximum the Coulomb contribution PC is given by

PC (t0 = τL/2,v0,⊥ = 0) = −
(
π

4

√
2

Fr30
ex +

ϵω

6Fr0
ey

)
, (4.7)
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whereas the total correction to the final momentum due to the ion potential
PI = PC +PME reads as

PI (t0 = τL/2,v0,⊥ = 0) =
π

4

√
2

Fr30

(
3αIF

2r0
− 1

)
ex −

ϵω

6Fr0
ey. (4.8)

Here r0 is absolute value of the tunnel exit point. It is seen that the x-
components of the Coulomb and ME contributions have opposite signs. This
explains the decrease of the offset angle. Furthermore, both PC and PME in-
crease with increasing intensity, but the ME contribution increases faster due
to the presence of the additional factor of r0 in the denominator. Although
the estimates (4.7) and (4.8) do not quantitatively agree with the simulation
results, they provide valuable insight into the properties and evolution of
the PMDs (see Ref. [P2] for details). It was shown that the ME potential
affects both the exit point and electron dynamics in the continuum. The
calculations of Ref. [P2] were done for random CEP. Therefore, the obtained
theoretical results can be relatively easily checked in an experiment.

4.2 Combination of the SCTS model and the TIPIS approach

The TIPIS approach was combined with the SCTS model in Ref. [P11]. The
semiclassical approach developed in Ref. [P11] describes interference effects
and accounts for the Stark shift, the Coulomb potential, and the polarization
induced dipole potential [P11]. The phase used in this approach is determined
by Eq. (3.6) with the potential given by Eq. (4.1):

ΦSCTS (t0,v0) = −v0 · r (t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t)

2
− 2Z

r
− 3αIF (t) · r

r3

}
. (4.9)

Furthermore, the study of Ref. [P11] analyses the applicability of the TIPIS
model for linearly polarized fields. It is clear that application of the potential
(4.1) at small distances should be avoided. To this end, a special cutoff
radius rC was introduced. Classical trajectories entering the sphere r < rC
were not taken into account. The rest of trajectories do not come close to
the parent ion. Therefore, the application of the potential (4.1) is justified
for these trajectories. It is clear, that the elimination of the whole class of
the returning trajectories will lead to the depletion of certain parts of the
resulting electron momentum distributions [P11]. However, it was shown that
for the parameters of interest these parts usually correspond to the boundary
of the direct ionization spectrum. As a result, the depletion of the PMDs
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caused by elimination of returning trajectories does not affect the main part
of the momentum distributions (see Ref. [P11] for details).

The combined semiclassical model was applied to the cases of Mg and Ca
atoms. These atoms have similar ionization potentials, but their static ionic
polarizabilities are different by approximately of factor of two. Indeed, for the
Ca atom, Ip = 0.22 a.u., αN = 169.0 a.u., and αI = 74.11 a.u. The resulting
2D electron momentum distributions are displayed in Figs. 4.2 (a)-(d). The
distributions of Figs. 4.2 (a),(c) are calculated by taking into account the laser
and the Coulomb fields only, whereas the PMDs of Figs. 4.2 (b) and (d) show
the results of the combined TIPIS+SCTS approach, i.e., with the account
of the ME potential. The panels [(a),(b)] and [(c),(d)] display the PMDs for
ionization of Mg and Ca, respectively. It is seen that the presence of the
ME term in the potential leads to the two following effects: (i) narrowing
of the distributions in the longitudinal direction, and (ii) modification of the
interference patterns. Both effects were analyzed in Ref. [P11].

The narrowing of the longitudinal momentum distribution is a kinematic
effect [P11]. It was found that there are different groups of trajectories
leading to a bin centered at some final momentum k. One of these groups
of classical trajectories is strongly affected by induced polarization of atomic
core. The trajectories of this group start their motion closer to the parent
ion than other trajectories. Simultaneously, their initial transverse velocities
are small. Since the ME force acting on the electron decreases as 1/r2 with
increasing r, this force affects the electron motion only at the initial part
of the trajectory. For the dominant trajectories the ME force effectively
reduces both longitudinal and transverse electron momentum components.
As a result, the electrons belonging to the discussed group lead to the bins
with smaller value of kz (see Ref. [P11] for details).

For Mg and Ca the interference effect caused by the presence of the
polarization-induced dipole potential is not very strong. The interference
structure changes only in the vicinity of the kz axis and for the first and the
second ATI peaks, see Figs. 4.2 (a)-(d). It was found that the modification
of the interference patterns is mostly due to the presence of the ME term in
the Newton’s equation rather than due to the additional term −3αIF · r/r3
in the phase. Indeed, the contributions

−
∫ ∞

t0

dt
3αIF · r (t)
r3 (t)

(4.10)

to the phase of trajectories leading to a given bin in the momentum space
are often close to each other. Therefore, the difference between the ME con-
tributions is small. However, a noticeable phase difference is an important
precondition for observation of any interference effect. The similarity of the
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Fig. 4.2: The two-dimensional photoelecton momentum distributions for Mg [(a),
(b)] and Ca [(c), (d)] ionized by a laser pulse with a duration of n = 8
cycles at a wavelength of 1600 nm. Panels (a,b) and (c,d) correspond
to the intensities 3.0× 1013 W/cm2 and 1.0× 1013 W/cm2, respectively,
implying the Keldysh parameters 0.71 and 1.13. The left column [panels
(a) and (c)] show the distributions calculated ignoring the ME terms
in Eqs. (4.1), (4.2), and (4.9). The right column [panels (b) and (d)]
displays the distributions obtained with account of the ME terms in all
equations. The distributions are normalized to the total ionization yield.
A logarithmic color scale in arbitrary units is used. The laser field is
linearly polarized along the z axis. Modified from Ref. [P11].

ME contributions to the phase from different trajectories interfering in the
same bin can be understood as follows. The tunneling rate (2.7) is very sen-
sitive to the field strength F (t0). In order to have similar weights, which
is also necessary for the interference effect to be observable, the interfering
trajectories should start at times that correspond to close values of the field
strength. The starting point of the electron trajectory depends only on the
field F (t0) and the parameters of the atom (molecule), and the main con-
tribution to the integral (4.10) is made by the initial part of the electron
trajectory.

However, the situation changes for atoms and molecules with high values
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of the ionic polarizability αI . In this case, the difference of the ME contri-
butions to the phase is large enough, and modification of the interference
structures caused by the ME effect can be highly pronounced, see Figs. 4.3
(a)-(d). It is seen that the number of radial nodal lines in the fanlike in-
terference structure at low energies is different for the PMD’s obtained with
and without the ME term in the phase (3.6).
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Fig. 4.3: Two-dimensional electron momentum distributions for the Ba atom
(αN = 273.9 a.u., αI = 124.15 a.u.) ionized by a laser pulse with a
duration of n = 4 cycles, wavelength of 1600 nm and an intensity of
3.0 × 1013 W/cm2 calculated [(a),(c)] disregarding the ME term in the
phase [Eq. (4.9)], and [(b),(d)] with the ME term. Panels (c) and (d)
show the magnification for |kz| ≤ 0.3 a.u and |k⊥| ≤ 0.25 a.u. of the
distributions shown in (a) and (b), respectively. For both distributions
the ME force is included in the equations of motion. The distributions
are normalized to the total ionization yield. A logarithmic color scale in
arbitrary units is used. Modified from Ref. [P11].
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4.3 Retrieval of single-active-electron potentials from
photoelectron momentum distributions

As discussed above, the SAE approximation provides a reliable basis for stud-
ies of many strong-field phenomena. The semiclassical approaches discussed
in this thesis are based on the SAE. Moreover, in the cases, where the mul-
tielectron effects are important, the SAE provides a necessary benchmark
for the comparison with the results of multielectron approaches. However,
the multielectron calculations are not always possible and, in such situations,
the SAE is the only possible approach. It is therefore important to be able
to obtain suitable SAE potentials for various atomic and molecular systems.
However, the calculation of these potentials is a difficult task. This is true
even in the atomic case. The SAE potential for a multielectron atom should
account for both the atomic nuclei and, within some approximation, the effect
of the other electrons. The well-known potential proposed by Tong and Lin
[170], which is obtained on the basis of density functional theory, has a sin-
gularity at r → 0. The same singularity is characteristic to the other widely
used potential of Ref. [171], and the SAE potentials obtained by fitting to
the effective Kohn-Sham potentials. This singularity often causes problems
in numerical solution of the TDSE. The approach proposed by Troullier and
Martins (see Ref. [172]) avoids this singularity by converting the SAE po-
tential into a pseudopotential. The resulting pseudopotentials are applicable
for the description of the direct electrons. However, the application of the
pseudopotentials to the rescattered electrons can be problematic [173].

Often the SAE potentials are heuristically constructed as analytic func-
tions depending on one or a few parameters. These parameters are adjusted
using an optimization technique. The resulting potential is usually capable
of reproducing the energy of one (if the potential is determined by only one
parameter) or a few different bound states (for a potential determined by
several parameters). Therefore, it appears natural to obtain the SAE po-
tential as a result of some optimization process. This idea was exploited
in Ref. [174]. It was shown that the atomic potential can be reconstructed
from the differential electron scattering cross section by using a genetic algo-
rithm. In turn, the differential cross sections are extracted from the PMDs
of rescattered electrons. The potential experienced by the ionized electron
directly affects the corresponding momentum distributions. Therefore, the
unknown SAE potential can be retrieved in an optimization procedure aimed
at reproducing a given PMD generated in strong-field ionization process. We
have developed the corresponding optimization procedure, see Ref. [P12].

In Ref. [P12] this procedure was implemented in the case of a 1D model
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atom, and the optimization method is based on the direct numerical solution
of the TDSE. It is clear that application of any optimization-based approach
requires specification of a measure that allows to identify whether the op-
timization target is achieved. The momentum distributions in the 1D case
are functions of only one variable. The following metric is widely used to
calculate the distance between continuous functions f (x) and g (x) that are
defined for x ∈ [a, b]:

ρ [f (x) , g (x)] =

{∫ b

a

dx [f (x)− g (x)]2
}1/2

. (4.11)

This metric was used in Ref. [P12] to measure the difference between two
distributions: the result of the current iteration and the optimization tar-
get that is to be achieved. The derivatives of this similarity measure with
respect to the potential parameters can be calculated only numerically. For
this reason, derivative-free optimization techniques were used in [P12] (see
Refs. [175, 176] for recent reviews of these techniques). It is shown that the
proposed method demonstrates a high accuracy in the retrieval of the poten-
tial [P12]. This is true for different ways used to represent the SAE potential
sought, including parameterization or specification of the potential by its
values on a spatial grid, see, e.g., Fig. 4.4. In the latter case an effective way
to improve the spatial resolution is found in Ref. [P12]: The optimization
results on a sparse grid can be used as an initial approximation for further
optimization on the dense grid.

The method of Ref. [P12] can be extended to the 3D case. It is clear
that this extension will require a reliable measure for comparison of different
PMDs, at least the 2D ones. Since the 2D electron momentum distribution
is a picture (image), the tools used in image analysis and pattern recognition
can be applied. The well-known examples of such measures are the mean
squared error, structural similarity index (SSIM) [177], and perceptual hash
functions (see, e.g., Ref. [178]). The technique of Ref. [P12] is based on
optimization of only one part of the PMD created by the direct electrons.
Simultaneously, our preliminary results show that the momentum distribu-
tions of the rescattered electrons can be used as more sensitive optimization
targets. It is therefore of interest to develop a method based on the opti-
mization of the PMDs for rescattered electrons. Finally, the experimental
momentum distributions are affected by focal volume averaging. The de-
veloped optimization technique allows us to reconstruct not only the SAE
potential, but also the actual laser intensity. Nevertheless, the question how
sensitive is the proposed method to the focal averaging is to be investigated.
Finally, the method of Ref. [P12] has not been applied to molecular potentials
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Fig. 4.4: (a),(c) The values of the SAE potential (magenta circles) reconstructed
by optimization of the electron momentum distribution, boundaries for
the allowed potential values (dashed blue curves), the potential obtained
by spline interpolation using the reconstructed values (thin magenta
curve), and the soft-core Coulomb potential (thick black curve). (b),(d)
The PMD calculated using the optimized potential (thin magenta curve)
and the target PMD (TPMD) that is to be reproduced (thick light-blue
curve). Panels (a) and (b) show the optimization results for the potential
determined by its values on a uniform grid consisting of 10 points between
0 and 10.0 a.u. Panels (c) and (d) display the optimization results for the
same grid consisting of 20 points. The PMDs correspond to ionization of
a 1D atom by a laser pulse with a duration of np = 4 cycles, wavelength
of 800 nm, phase φ = 0, and intensity of 2.0× 1014 W/cm2. Taken from
Ref. [P12].

yet. Further studies are needed to address the questions listed here. Never-
theless, the obtained results suggest that the optimization-based method for
reconstruction of the SAE potential has prospects of becoming a powerful
tool for studies of strong-field processes.



5. QUANTUM OPTIMAL CONTROL AND
SEMICLASSICAL SIMULATIONS

5.1 Optimal control of high-harmonic generation

Monitoring and control of electron dynamics on its natural time scale would
ideally be based on pulses with duration of only a few dozen attoseconds (see,
e.g., Ref. [179]). However, generation of such pulses is a non-trivial task.
Indeed, ultrashort pulses can be produced by using large and expensive free-
electron laser facilities or with table-top intense optical lasers. In the latter
case ultrashort pulses are produced due to the HHG process. However, the
pulses obtained in HHG are often too long and weak.

Similar to the electron energy spectrum of high-order ATI, the spectrum
of high-order harmonics has a range of a nearly constant yield (harmonic
plateau) that ends at a certain cutoff. Attosecond pulses are created from
superposition of high harmonics. Therefore, the low yield of high-order har-
monics results in the low amplitude of the attosecond pulses. Furthermore,
the duration of the ultrashort pulses is determined by the plateau cutoff: the
higher the cutoff energy, the shorter the pulse. Therefore, it is important to
increase the harmonic yield and extend the plateau in the HHG spectrum.
Recently both problems have attracted considerable attention. The cutoff
extension can be achieved by using two-color laser fields [180, 181], chirped
pulses [182–184], steepening of the carrier wave [185], a sawtooth pulse [186],
or combined temporal and spatial synthesis of the driving pulse [187]. The
harmonic yield can be increased in two-color fields [188–193] or by HHG in
a mixture of two target cases. The goal of a simultaneous enhancement of
both the harmonic yield and the cutoff energy can be achieved by temporal
shaping of the initial driving pulse. The temporal shaping of strong laser
pulses is experimentally feasible nowadays [194, 195]. The required shape
of the driving pulse can be obtained using quantum optimal control the-
ory (QOCT). QOCT [196, 197] is the theoretical approach to the control of
various quantum phenomena (see Refs. [198] and [199] for reviews).

In the early work of Ref. [200], QOCT was applied to the problem at hand
and a cutoff extension was achieved. However, the yield of the high-order
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harmonics in the optimized pulse remained relatively low. The application
of QOCT requires the specification of the target functional that is to be
maximized. The ground-state occupation at the end of the laser pulse was
maximized in Ref. [200]. In contrast to this, in Ref. [P13] we used the fol-
lowing target functional:

J1 [ϵ] =

∫ ωb

ωa

∣∣∣d̈ [F ] (ω)
∣∣∣
2

dω. (5.1)

Here [ωa, ωb] is the frequency range within which the enhancement of the
HHG spectrum is desired, F (t) is the laser pulse, and d̈ [F ] (ω) is the Fourier
transform of the dipole acceleration. We define the harmonic spectrum as

S (ω) =
∣∣∣d̈ (ω)

∣∣∣
2

/ω2 (see Ref. [201]). The study of Ref. [P13] focuses on the

1D model atom with the soft-core potential V (x) = −1/
√
x2 + 1. The laser

field F (t) that is to be optimized is represented by a number of parameters.
Therefore, maximization of the functional (5.1) can be viewed as an optimiza-
tion of these parameters under some constraints. These constraints include
(i) discrete number of frequencies contained in the laser pulse and a maxi-
mum allowed frequency, (ii) a fixed length of the pulse, and (iii) a fixed pulse
fluence (integrated intensity). The latter was taken to be equal to that of
the reference single-frequency pulse. A gradient-free algorithm (NEWUOA,
see Ref. [202]) and the gradient based Broyden-Fletcher-Goldfarb-Shannon
(BFGS) algorithm [203] were used for the optimization. Both algorithms lead
to similar results. The optimization involves the direct numerical solution of
the 1D TDSE.

The optimization goals have been fully achieved, see Figs. 5.1 and 5.2.
The optimized pulse provides a remarkable cutoff extension and enhancement
of the harmonic yield (see Ref. [P13] for details). It is shown that the physical
mechanisms underlying the cutoff extension and the yield enhancement are
essentially different. The yield enhancement was shown to have a quantum
origin. Specifically, it was attributed to the increased tunneling probability
in the optimized pulses compared to the reference pulses [P13].

In contrast to the yield enhancement, the semiclassical simulations al-
lowed us to reveal that the extension of the plateau has a classical origin.
More specifically, 1D semiclassical simulations were performed in Ref. [P13].
The ionization times of trajectories were distributed either uniformly, or in
accord with the tunneling rate w (t0) ∼ exp(−[2 (2Ip)

3/2]/[3 |F (t0)|]) with
the ionization potential Ip = 0.669 a.u. The tunnel exit was found using the
FMD model, i.e., from the equation V (x) + Fx (t)x = −Ip and the initial
velocity was set to zero. It as assumed that a photon is emitted upon the
return of the electron to the origin. The frequency of this photon is equal to
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the electron energy at the time of return. The late returns were also taken
into account. It should be emphasized that the electron motion in both the
laser field and the effective 1D potential was considered in Ref. [P13]. The
three-step model, which neglects the atomic potential, underestimates the
cutoff of the HHG plateau severely, see Ref. [P13] for details. The predic-
tions of the semiclassical model are in a good agreement with the quantum
results, see Fig. 5.1 (c) and Fig 5.2 (c), which is the decisive argument in
favor of the classical origin of the cutoff extension.

The optimized pulse produced by using the BFGS-algorithm allows mul-
tiple returns of the electron, see Fig. 5.2 (c). The corresponding classical
energies were obtained for the case where the ionization times are distributed
in accord to the tunneling rate. This rate underestimates some ionization
events. As a result, not all the maxima of the spectrotemporal plot can be
reproduced by the semiclassical model, see Fig. 5.2 (c). The effect of the mul-
tiple returns was also analyzed by using the semiclassical model [P13]. It is
shown that for longer pulses the second return of the electron is important for
the enhancement of the HHG process. The optimization scheme developed
in Ref. [P13] is straightforwardly applicable to more realistic models.

5.2 Suppression of strong-field ionization

The ability to control the electron dynamics in real time provided by the
strong-field, ultrafast, and attosecond physics implies plenty of possible ap-
plications, and, especially, in femtochemistry. Femtochemistry is the area
of physical chemistry that studies chemical reactions on the femtosecond or,
in some cases, the attosecond time scale (see, e.g., Ref. [204]). The laser
control of chemical dynamics is an important problem in femtochemistry.
Among the applications of such control are photoassociation [205], control
of branching ratios in photofragmentation processes [206–208], enhancement
of molecular bond breaking in the electronic ground state [209, 210], and
possible creation of molecules that cannot be created without the action of
the laser source. It is conventional to distinguish between weak-field and
strong-field laser control. The latter one is often more efficient. For example,
the branching ratios in photofragmentation of CH2BrCl can be more effi-
ciently controlled (compared to the case of relatively weak laser fields) using
intensities higher than 1013 W/cm2, see Refs. [208, 211, 212]. However, the
strong-field control is often accompanied by undesired ionization. Indeed, it
was experimentally shown in Ref. [211] that the fragments of the molecule
emerging in the photofragmentation process are ionized by the strong laser
pulse. The same problem occurs in the control of electron localization in
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Fig. 5.1: Optimization results with the NEWUOA algorithm for pulse length T =
1104 a.u. (26.7 fs) and reference pulse peak intensity of 6× 1013W/cm2.
The maximum frequency of the optimal pulse is ωmax = 0.0569 a.u.
(800 nm). (a) Pulses and their frequencies (inset) for optimized (solid
black) and reference (dashed blue) pulses. (b) High-harmonic spectra for
optimized (black) and reference (blue) pulses. The target range is shown
with vertical dashed lines. (c) Quantum mechanical time-dependent har-
monic spectrum in log-scale (the color image) and classical return energies
using an exponential tunneling rate (solid line). Spurious branches from
a uniform tunneling rate are shown with dashed lines. Modified from
[P13].

molecular dissociation [213]. Therefore, for applications in femtochemistry
it is necessary to develop a tool capable to suppress the undesired ionization
process. In order to control ionization, laser pulses of specific shape can be
used. The optimal shape of the laser pulse can be obtained using QOCT.
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Fig. 5.2: Same as Fig. 5.1 but for an extended target range (up to ω = 5 a.u.) and
for the gradient-based BFGS optimization algorithm. In (c), energies of
an electron calculated from the semiclassical model upon its first, second,
third, and fourth return to the origin are shown with black, blue, white,
and cyan curves, respectively. Modified from Ref. [P13].

In Ref. [200] the QOCT was applied to suppress ionization of a 1D model
H atom. The inverse problem, i.e., enhancement of ionization using QOCT
was considered in Ref. [214] for the H+

2 molecular ion with fixed internuclear
distance in the 3D case.

The ability to suppress strong-field ionization of the hydrogen atom and
the H+

2 molecule by optimal pulse shaping was investigated in Ref. [P14].
The first term of the functional minimized in QOCT, i.e., the optimization
target, is given by:

J1 =
〈
Ψ(T )

∣∣Ô
∣∣Ψ(T )

〉
=
∣∣〈Ψ(T )

∣∣Ψ0

〉∣∣2 , (5.2)
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where Ψ0 is the ground state, Ô is the target operator (projection onto
the ground state), Ψ (t) is the time-dependent wave function, and the laser
pulse terminates at t = T , see Ref. [P14]. It should be noted that different
parametrizations and different QOCT algorithms have to be used for high and
low laser frequencies, i.e., ultraviolet and infrared laser fields (see Ref. [P14]
for details). Both these cases were considered in Ref. [P14] for the H atom,
whereas the ionization suppression in the H+

2 molecule was studied only in
the low-frequency regime and in the fixed-nuclei approximation due to the
computational complexity of the problem [P14]. Considerable suppression
of the ionization yield for both H and H+

2 can be achieved for fixed fluence
and length of the laser pulse [P14]. However, the mechanisms responsible for
ionization suppression are substantially different for ultraviolet and infrared
pulses. It is shown that in the high-frequency regime the ionization can be
suppressed by using a resonance population transfer between the ground (1s)
state and excited states (2p and 3p), see Fig. 5.3. This mechanism cannot
be reproduced by a semiclassical model.
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Fig. 5.3: (a) Initial laser pulse with F0 = 0.15 a.u. and ω = 0.4 a.u. (dashed
blue curve) and the optimized pulse (full red curve) with a fixed fluence
equal to 1.16 a.u. (b) Fourier spectra of the pulses. (c) The occupations
of some of the bound states during the optimized pulse. (d) The total
bound-state occupation and the population in the continuum during the
optimized pulse. From Ref. [P14].
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The situation is different in the low-frequency case. The corresponding
QOCT results are shown in Figs. 5.4 (a)-(d). In order to decrease the strong
yield keeping the fluence constant, the optimized pulse suppresses the highest
peaks of the laser field, see Fig. 5.4 (a). This can be understood even without
trajectory-based simulations. Indeed, the tunneling rate is proportional to
exp (−2κ3/3F ) with F = F (t0), where t0 is the time of ionization. It is clear
that a lower amplitude of the laser field results in a smaller ionization yield
in an exponentially sensitive manner [P14]. Therefore, QOCT leads to an
overall flatter profile of the laser pulse. Since the pulse fluence is fixed, the
peaks at the beginning and at the end of the laser pulse become larger
[Fig. 5.4 (a)], and Fourier spectrum of the pulse shifts towards lower fre-
quencies, see Fig. 5.4 (b). The remarkable technological progress that has
been achieved in generation of strong few-cycle pulses with a predefined shape
allows us to hope that the experimental realization of the results obtained in
Ref. [P14] will become possible.

0 200 400 600 800
−0.1

−0.05

0

0.05

0.1

F
(t

) 
(a

.u
.)

t (a.u.)

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

gr
ou

nd
 s

ta
te

 o
cc

up
at

io
n 

 

 

t (a.u.)

initial
QOCT

0 100 200 300 400 500 600 700 800
0

0.2
0.4
0.6
0.8

1

t (a.u.)

co
nt

in
uu

m
 

oc
cu

pa
tio

n 

 

 

initial
QOCT

0 0.02 0.04 0.06 0.08
0

2

4

6

8

10

ω (a.u.)

|F
(ω

)|
 (

ar
b.

 u
ni

ts
)

(a) (b)

(c)

(d)

Fig. 5.4: (a) Initial laser pulse with F0 = 0.1 a.u. and ω = 0.0459 a.u. (dashed
blue curve) and the optimized pulse (full red curve). The pulse fluence is
fixed to 2.07 a.u. (b) Fourier spectra of the pulses. (c) Time-dependence
of the ground state occupation in an H atom for the initial pulse (dashed
blue curve) and the same dependence for the optimized one (full red
curve). (d) Continuum occupation during the initial (dashed blue curve)
and the optimized (full red curve) laser pulses. Taken from Ref. [P14].



6. STRONG-FIELD HOLOGRAPHY WITH
PHOTOELECTRONS

6.1 Time-resolved molecular imaging

The ability to visualize electronic and molecular dynamics in real time will
lead to a revolution in chemistry, biology, and material science. Many tech-
niques for time-resolved molecular imaging have been developed so far, see
Ref. [215] for a review. These techniques employ the remarkable achievements
in laser technologies and, especially, the emergence of free-electron lasers
and development of the technology for pulse compression. The availability
of table-top intense femtosecond laser systems operating at various wave-
lengths has opened new perspectives for time-resolved molecular imaging.
Several new time-resolved imaging techniques based on strong-field processes
have recently emerged. The well-known examples of these techniques are
laser-induced Coulomb explosion imaging [216–219], laser-assisted electron
diffraction [220, 221], high-order harmonic orbital tomography [222, 223],
laser-induced electron diffraction (LIED) [224–226], and strong-field holog-
raphy with photoelectrons [227].

The strong-field holography with photoelectrons (SFPH) puts the idea
of holography [228] into practice in strong-field physics. It was for the first
time shown by Y. Huismans and co-authors [227] that a holographic pattern
in electron momentum distributions can be clearly observed in experiment.
This hologram is created by the interference of the direct (reference) electrons
with the rescattered (signal) ones. It was found that the SFPH method
has several important advantages. First, this technique can be implemented
using a table-top laser system. Second, the recorded hologram contains a
wealth of spatio-temporal information not only about the electrons, but also
about the parent ions. Finally, attosecond time resolution is accessible for
the imaging of the electron dynamics. For these reasons, the SFPH has been
extensively studied recently. This applies both to theory [56–60, 227, 229–
236] and experiment (see Refs. [229, 230, 237, 238] and [P15]).

However, most of the SFPH experiments [227, 229–231, 237] have pro-
vided valuable insights into the ionization process and the electron wave



6. Strong-field holography with photoelectrons 62

packet dynamics, but not the molecular structure or dynamics. The reason
for this is that for diatomic and small molecules the holographic structures
are mostly governed by the long-range and alignment-independent Coulomb
potential of the ion. Therefore, the short-range effects that reflect the molec-
ular structure are not visible in the holographic patterns on the background
of the order-of-magnitude stronger contribution. A simple and elegant so-
lution of this problem was found in the experimental study of Ref. [238].
The approach of Ref. [238] uses the fact that for large scattering angles the
differential cross section deviates from that of the Coulomb potential and
depends on the molecular alignment. Therefore, the alignment independent
interference can be removed by calculating the difference between the nor-
malized PMDs for aligned and antialigned molecules. A similar method was
also used in the experiment [P15].

Different theoretical approaches were applied in the studies of SFPH.
Among these are: the three-step model, the modified SFA capable to de-
scribe rescattering process [227, 231], the CCSFA [227, 231], direct numerical
solution of the TDSE [232], the CQSFA [56–60], etc. (see Ref. [239] for a
recent review). The SCTS model was also applied to SFPH, see Refs. [P15,
P16].

6.2 Experimental holographic patterns and the SCTS model

In Ref. [P15] the SCTS model was used to simulate the experimental holo-
graphic patterns emerging in ionization of the NO molecule. Since the exper-
iment [P15] applies the same approach to the long-range Coloumb potential
problem as Ref. [238], the corresponding PMDs were calculated for two dif-
ferent cases, where the electron density of the highest occupied molecular
orbital (HOMO) is aligned in two different perpendicular directions. We
note that for application of the SCTS to both these cases the corresponding
distributions over the initial transverse velocities are necessary. These distri-
butions were calculated using the MO-PFT approach. In turn, the MO-PFT
requires the corresponding HOMO’s. The latter were calculated using the
GAMESS package [240].

The distributions calculated using the SCTS model and their normalized
difference are shown in Figs. 6.1 (a)-(c). The semiclassical results are in
excellent agreement with the experimental data. The simulations within
the SCTS model allow us to reproduce all characteristic properties of the
holographic patterns, see Fig. 6.1 (c). Simultaneously, the calculations based
on the three-step model neglecting the Coulomb potential (see Ref. [232])
overestimate the spacing between the interference maxima (minima) in the



6. Strong-field holography with photoelectrons 63

direction perpendicular to the laser polarization. Therefore, the improved
agreement between the experiment and trajectory-based modelling originates
from the account of the Coulomb potential in the SCTS model.

Fig. 6.1: Calculated momentum distribution for ionization of the NO molecule by
a laser pulse with a duration of 35 fs, wavelength of 800 nm, and intensity
of 2.3×1014 W/cm2. The panels (a) and (b) show the distributions calcu-
lated for the cases where the electron density of the HOMO is aligned in
two different perpendicular directions. Panel (c) displays the normalized
difference of the momentum distributions shown in (a) and (b). Taken
from Ref. [P15].

6.3 Effects of the Coulomb potential

Several different types of holographic structures were predicted within the
three-step model [232]. Indeed, the signal and reference electrons can be
ionized not only in the same quarter cycle of the laser field, but also in
different quarter cycles. The simulations of SFPH in the three-step model
are usually performed under the assumption that the starting points of the
electron trajectories do not depend on the instantaneous value of the laser
field. Rather, the starting points are determined by the field amplitude
[107, 232–234] and the sub-cycle variation is neglected. In contrast to this,
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in Ref. [P16] we obtained the holographic patterns of various types assuming
that the tunnel exit point depends on time. It is found that the interference
structures change significantly when the time dependence of the exit point
is taken into account. This is due to the substantial change in kinematics of
the signal electron.

For every kind of the holographic structure predicted by the three-step
model we calculated its counterpart emerging in the presence of the Coulomb
potential of the parent ion. To this end, we used an adapted version of the
SCTS model. Specifically, we used the tunnel exit point (2.3), in order to di-
rectly compare the resulting holographic patterns with the ones predicted by
the three-step model. Moreover, we disregarded the weights of classical tra-
jectories and distributed them uniformly. Therefore, the study of Ref. [P16]
focuses on the shape and location of interference fringes, i.e., on holographic
patterns instead of the full momentum distributions. For every bin in the
momentum space only one kind of direct and only one kind of rescattered
trajectories were considered. This is necessary to prevent a mixture of differ-
ent types of holographic interferences. The isolation of the single direct and
rescattered contributions is not a simple task if both the laser field and the
Coulomb force are taken into account in equations of motion. Indeed, it is not
obvious how to distinguish between the direct and rescattered electrons in
the presence of the Coulomb potential. It is clear that all the trajectories are
to some extent affected by the Coulomb force. The study of Ref. [P16] defines
the direct trajectories as those that pass the ion at large distances. These
trajectories experience only small-angle scattering and obey the condition
v0,⊥ky ≥ 0. In contrast to this, the rescattered trajectories pass the par-
ent ion at small distances. They undergo large-angle scattering. Therefore,
the condition v0,⊥ky ≤ 0 is met for the rescattered trajectories. However,
these conditions are not sufficient for accurate calculation of the holographic
patterns.

In the presence of the Coulomb potential the mapping from the initial
condition plane (t0, v0,⊥) to the final momentum components plane (kx, ky)
is a complicated function. Specifically, this mapping is not bijective (one-
to-one) in the domain defined by the condition v0,⊥ky ≤ 0 that correspond
to signal trajectories. As a result, different sets of initial condition lead to
the same final momentum. The necessary separation of the corresponding
trajectories can be achieved by using machine learning, namely, by applying
the clusterization algorithms. However, in Ref. [P16] the trajectories were
separated manually by identifying the domains of initial conditions where
the mapping (t0, v0,⊥) → (kx, ky) is bijective.

We have found that the presence of the Coulomb potential modifies the
holographic patterns significantly. In addition to changing the width and the
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positions of the interference stripes, the Coulomb potential manifests itself
in three other effects. The first effect is the shift of the interference pattern
as a whole. The second effect is the filling of the parts of the holographic
structure that are unfilled when the Coulomb potential is not taken into
account. Finally, the Coulomb potential is responsible for the characteristic
kink of the interference stripes at zero transverse momentum, see Figs. 6.2 (a)
and (b). However, it should be studied how sensitive are these Coulomb
effects to focal averaging. This study is needed to understand which of the
predicted effects can be observed in an experiment.
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Fig. 6.2: Holographic patterns emerging due to interference of a direct elec-
tron with a rescattered electron that has the shortest travel time (see
Ref. [P16]) calculated (a) using the three-step model with time-dependent
exit point, and (b) accounting for the Coulomb potential of the ion. The
interference patterns are calculated for ionization of the H atom at a wave-
length of 800 nm and intensity of 6.0× 1014 W/cm2. Taken from [P5].

6.4 Deep learning and retrieval of the internuclear distance in
a molecule

The new and promising methods for time-resolved molecular imaging, namely,
LIED and SFPH analyze electron momentum distributions produced in ion-
ization by a strong laser field. The remarkable experimental achievements of
these methods suggest that in the nearest future we can expect new experi-
ments aimed at extracting the information about the motion of the nuclei and
many-electron dynamics from the PMDs. The understanding of the existing
and forthcoming experiments requires theoretical analysis of the effect of the
nuclear motion in the electron momentum distributions. The work in this
direction has already begun. For example, it was shown that the different
dynamics of the nuclear wave packets in hydrogen and deuterium leads to a
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difference in bond length [238]. In turn, this difference transforms into a shift
of the holographic fringes that can be observed at certain electron momenta.

Before studying the effects of the nuclear motion on the momentum distri-
butions, it is useful to consider changes of the PMDs calculated for fixed nu-
clei positions with varying internuclear distance. This problem was addressed
in Ref. [P17] by using methods of machine learning (see, e.g., Refs. [241–
243] for a textbook treatment). We note that machine learning and, more
precisely, deep learning has been successfully applied to many sophisticated
problems of strong-field, ultrafast, and attosecond physics. Among these are:
prediction of the ground-state energy for various 2D potentials [244], predic-
tion of the flux of high-order harmonics for different experimental parameters
[245], reconstruction of the intensity and the CEP of ultrashort laser pulses
from frequency-resolved optical gating traces [246] and dispersion scan traces
[247], prediction of the HHG spectra for model di- and triatomic molecules
for randomly chosen parameters (laser intensity, internuclear distance, and
molecular orientation) [248]. Convolutional neural network (CNN) can be
used for solving inverse problems, e.g., determination of laser and molecu-
lar parameters or classification of molecules using the HHG spectra [248]. It
should be emphasized that a deep neural network was also used to implement
the TCSFA efficiently, see Ref. [249].

In Ref. [P17] we trained a CNN capable to retrieve the internuclear dis-
tance in the H+

2 molecule using electron momentum distributions. This prob-
lem is hard to solve by manually inspecting a variety of PMDs. The distri-
butions that are required to train the CNN were calculated by the numerical
solution of the 2D TDSE. The deep neural network applied to retrieval of the
internuclear distance consists of five nonreducing convolutional layers, each
followed by a reducing average pooling layer (see Ref. [P17] for details). The
results of the application of the neural network to the test data are shown
in Fig. 6.3 (a). The CNN trained on a few thousand images can predict the
internuclear distance with a mean absolute error (MAE) less than 0.1 a.u.
Furthermore, we use deep learning to retrieve more than one parameter from
a given PMD [P17]. Specifically, we used the CNN to retrieve both the inter-
nuclear distance and the laser intensity. Moreover, we have found that the
ability of the CNN to retrieve both parameters does not affect the accuracy
with which the internuclear distance is obtained, see Ref. [P17].

It is evident that the shape of momentum distributions depends not only
on the internuclear distance. This shape is also affected by the laser pa-
rameters and, especially, the intensity of the pulse. In order to understand
how the focal averaging affects the performance of the CNN, we obtained
a number of focal volume averaged PMDs and used them to test the CNN,
which is trained on the distributions calculated for fixed laser intensities.
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Fig. 6.3: Plot of predicted vs. true internuclear distances illustrating the per-
formance of neural networks. (a) Neural network trained on a set of
distributions that were calculated with fixed laser intensities (not focal
averaged), see text. (b) The same neural network as in (a), but receiving
focal averaged momentum distributions as test images. (c) The neu-
ral network trained on a set of focal averaged distributions and tested
on another independent set of focal averaged distributions. Taken from
Ref. [P17].

The performance of the CNN on this test set is not as good as for the non-
averaged distributions, see Fig. refdeep (b). The corresponding MAE is equal
to 0.83 a.u. This raises the question: Can the internuclear distance be re-
liably retrieved from the focal averaged PMDs by using deep learning? To
answer this question, we trained another CNN on a set of focal volume av-
eraged PMDs, see Ref. [P17] for details. This CNN also shows an excellent
performance: it retrieves the internuclear distance with a MAE less than 0.2
a.u., see Fig. 6.3 (c).

For application of the CNN to experimental data, it should possess some
transferability. This means that the CNN should be able to predict correct
internuclear distances even for distributions obtained at parameters that it
has not been trained for. The CNNs trained in Ref. [P17] show only limited
transferability. This problem can be solved by using the transfer learning
technique, see, e.g. Ref. [250]. We note that the transfer learning was used
in the study of Ref. [248]. The application of this technique to the problem
at hand will be a subject of further studies. Another important question
that is planned to be investigated is to understand, how the neural net-
work, a “blackbox” by its nature, takes its decisions [P17]. Indeed, it would
be beneficial to know what features of the holographic structures allow the
CNN to predict the corresponding internuclear distance. This problem can
be solved by application of the so-called visualization methods of deep neu-
ral networks (see, e.g., Ref. [251] for a review). To summarize, the results
obtained in Ref. [P17] suggest that deep learning has a high potential for
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retrieving various molecular properties from the electron momentum distri-
butions generated by strong laser pulses.



7. CONCLUSIONS AND PERSPECTIVES

Semiclassical models applying classical mechanics to describe the motion of
an electron after it has been freed by a strong laser field are widely used
in the studies of laser-matter interaction. In many cases, the semiclassical
simulations provide deeper insight into the physical mechanism of a strong-
field process under consideration than the direct numerical solution of the
time-dependent Schrödinger equation (TDSE) and the strong-field approx-
imation (SFA). The trajectory-based models are also invaluable tools for
the investigation and development of techniques for time-resolved molecular
imaging, interpretation of the outcomes of quantum optimal control theory
(QOCT), and the studies of multielectron effects in strong-field physics. In
the present work we have developed several new semiclassical approaches
and applied them to investigations of capture into Rydberg states, sequen-
tial multiple ionization, above-threshold ionization (ATI) in molecules, mul-
tielectron polarization effects, and strong-field photoelectron holography. We
applied deep learning to retrieve the internuclear distance in a molecule from
holographic interference patterns. Furthermore, we used semiclassical simu-
lations to reveal the specific mechanisms responsible for the optimization of
the high-harmonic emission by optimal pulse shaping. Finally, we developed
a method for retrieval of effective single-active electron (SAE) potentials that
are needed for semiclassical simulations. The method is based on reproducing
given electron momentum distributions produced by a strong laser pulse.

The semiclassical simulations of the capture into Rydberg states in ion-
ization by a strong laser pulse have led us to a simple physical picture of
this process. We were able to identify the class of trajectories that can be
captured by the ionic potential. This, in turn, allowed us to obtain analytic
estimates and scaling relations. Furthermore, we developed the semiclassical
model for sequential multiple ionization by a short intense laser pulse. The
model allows us to obtain both the relative yield and momentum distribu-
tions of multiply charged ions. Two new effects were predicted on the basis
of the semiclassical simulations. The first effect is the substantial shift of
the maximum of the ion momentum distribution along the laser polarization
direction. This shift depends on the laser intensity and the CEP (“absolute
phase”) of the pulse. The CEP dependence is visible even for relatively long
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pulses. The second effect is also CEP dependent. It is shown that the ion
yield oscillates as a function of the absolute phase. This effect can only be
observed if the yields of at least two ions are comparable at the end of the
laser pulse.

We have investigated the validity of the semiclassical model for strong-
field ionization accounting for the atomic potential. It is found that the
discrepancy between the semiclassical model and the solution of the TDSE
correlates with the situations where the dynamics of an ensemble of classical
trajectories deviates from the so-called strict form of the Ehrenfest’s theorem.
We proposed a measure of this deviation for classical dynamics of an ensemble
of trajectories. This measure has allowed us to identify the general trends for
the applicability of the trajectory-based models in terms of laser intensity,
wavelength, ellipticity, and parameters of the atomic potential.

The semiclassical two-step (SCTS) model developed within the present
work is one of the few modern semiclassical approaches aimed at the de-
scription of quantum interference effects. The SCTS reproduces interference
patterns in momentum distributions, energy spectra, and angular distribu-
tions of photoelectrons produced in ATI and accounts for the ionic potential
beyond the semiclassical perturbation theory. The SCTS model shows bet-
ter agreement with the numerical solution of the TDSE than, e.g., the well-
known quantum trajectory Monte Carlo (QTMC) model. The reason for this
is that the QTMC uses the first-order semiclassical perturbation theory to
describe the Coulomb potential of the parent ion in the phase.

Initially the SCTS model was applied to ionization of atomic hydrogen.
We have extended this model to the molecular case and used it to describe
the strong-field ionization of the H2 molecule. We have found significant
deviations in the electron momentum distributions and energy spectra from
the case of the H atom. It is shown that for the H2 molecule the electron
energy spectra fall off slower with increasing energy for the same parameters
of the laser pulse. Simultaneously, the holographic interference fringes in the
photoelectron momentum distributions (PMDs) are more pronounced for the
H2 molecule than that for the hydrogen atom. The SCTS model can be also
generalized to an arbitrary polarization of the laser pulse and orientation
of the molecule. The same also applies for heteronuclear and polyatomic
molecules.

Recently we have developed the SCTS model further to improve the de-
scription of its first step, i.e., ionization. The resulting SCTSQI model allows
to overcome deficiencies of standard semiclassical approaches in the descrip-
tion of the ionization step: In this model the initial conditions for classical
trajectories are determined by the exact quantum dynamics. Specifically, we
have solved the TDSE with absorbing boundary conditions in a restricted
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part of space, applied the Gabor transform to the part of the electron wave
packet absorbed at each time step, and transformed this absorbed part into
an ensemble of classical trajectories. In the SCTSQI model the Gabor trans-
form determines quantum amplitudes that are assigned to trajectories of the
ensemble. The model was implemented for a 1D model atom and tested by
comparison of its outcomes with the solution of the TDSE. It is shown that
the SCTSQI model yields quantitative agreement with the full quantum re-
sults. Further work in needed to improve the efficiency of the SCTSQI model
and to generalize it to the 3D case.

The semiclassical approaches were used for studies of multielectron po-
larization effects in ATI. We have used the semiclassical model accounting
for the Stark shift of the initial state, the Coulomb potential, and the po-
larization induced dipole potential to study the PMDs in strong elliptically
polarized laser pulse. It is shown that the momentum distributions are highly
sensitive to the tunneling exit point, the Coulomb field, and the multielectron
polarization potential. We have investigated the PMDs over a wide range of
laser intensities and wavelengths and identified the role of the ME effects in
the formation of the electron momentum distributions. Analytic estimates
for the position of the maximum in the PMD were obtained. Furthermore,
the SCTS model was modified to take into account the multielectron polar-
ization potential. The semiclassical simulations within the combined model
have predicted a pronounced narrowing of the PMDs in the direction paral-
lel to the laser polarization. It is shown that this narrowing occurs due to
the focusing of the electron by the induced dipole potential. Moreover, the
induced polarization of the ionic core also modifies interference patterns in
electron momentum distributions. Specifically, the number of fanlike inter-
ference fringes at low energies of the 2D PMD may change.

Any semiclassical model requires specification of an effective SAE poten-
tial simulating an atom or molecule under consideration. We have developed
a method for retrieving of such a potential from a given electron momentum
distribution produced by strong-field ionization. In this method the potential
is determined as the result of the optimization procedure aimed at reproduc-
ing the given PMD. The optimization procedure based on the solution of the
TDSE has been implemented in the 1D case. The proposed method allows
us to reconstruct the SAE potential with high accuracy. It is planned to
extend this method to the 3D case.

The semiclassical simulations were used to understand the results and the
mechanisms of optimization of strong-field processes. For example, we devel-
oped and applied the trajectory-based model to get insight into the QOCT-
based optimization of the high-order harmonic generation (HHG) process in
a 1D atom. The optimization of the driving pulse using the QOCT has al-
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lowed us both to extend the cutoff of the HHG spectrum and to enhance the
harmonic yield. The semiclassical simulations have revealed that the cutoff
extension is a classical effect. In contrast to this, the harmonic yield increases
due to the increase of the tunneling probability. The developed optimization
scheme can be applied to real 3D atoms and molecules.

The SCTS model was used in the study of the strong-field holography with
photoelectrons. We have shown that semiclassical simulations performed
within the SCTS are in excellent agreement with the recent experimental
results. This model has reproduced all main features of the observed holo-
graphic structures. We have also used the SCTS model to study the effects of
the Coulomb potential in the strong-field photoelectron holography (SFPH).
Three main characteristic effects of the Coulomb potential have been pre-
dicted: the shift of the whole interference pattern, the filling of the parts of
the interference pattern that are missing if the Coulomb potential is not taken
into account, and the kink of the interference stripes at zero perpendicular
momentum. It needs to be studied which of these effects are less vulnerable
to focal averaging and, therefore, can be observed in an experiment.

Continuing our studies of the SFPH that we began with the trajectory-
based model, we applied machine learning to retrieval of the internuclear
distance in a molecule ionized by a strong laser pulse. In particular, we
applied a convolutional neural network to predict the internuclear distance
in the 2D H+

2 molecule based on the electron momentum distribution. It is
shown that the neural network trained on a dataset consisting of a few thou-
sand images can efficiently predict the internuclear distance with a mean
absolute error of about 0.1 a.u. Furthermore, it is possible to retrieve more
than one parameter from a given PMD: we have shown that both the in-
ternuclear distance and the laser intensity can be predicted simultaneously.
We have studied the effect of the focal volume averaging on the retrieval of
the internucnear distance. The neural network trained on a set of focal aver-
aged PMDs also shows an excellent performance. Nevertheless, future work
is required to achieve transferability of the trained neural networks. This is
planned to be done by using the transfer learning technique.

The results obtained in the present work clearly show that in the foresee-
able future the semiclassical models will remain an important tool in studies
of strong-field phenomena. Moreover, we can expect soon the emergence of a
new generation of these models, namely combining more accurate description
of the ionization step, ability to describe interference effects, and numerical
efficiency. The development of such approaches, as well as wide application of
machine learning, modern optimization techniques, and pattern recognition
tools will provide the basis for new achievements in strong-field, ultrafast,
and attosecond physics.
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X.-M. Tong, Phys. Rev. A 87, 013421 (2013).

[42] B. Wolter, C. Lemell, M. Baudisch, M. G. Pullen, X.-M. Tong, M. Hem-
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How to Build Global Distributed Hash-Trees (Springer, Berlin, Heidel-
berg, 2013).

[179] P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).

[180] T. Shao, G. Zhao, B. Wen, and H. Yang, Phys. Rev. A 82, 063838
(2010).

[181] Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, Phys. Rev. Lett. 98,
203901 (2007).

[182] D. G. Lee, J.-H. Kim, K.-H. Hong, and C. H. Nam, Phys. Rev. Lett.
87, 243902 (2001).

[183] J. J. Carrera and S.-I. Chu, Phys. Rev. A 75, 033807 (2007).

[184] Y. Xiang, Y. Niu, and S. Gong, Phys. Rev. A 79, 053419 (2009).

[185] S. B. P. Radnor, L. E. Chipperfield, P. Kinsler, and G. H. C. New,
Phys. Rev. A 77, 033806 (2008).

[186] L. E. Chipperfield, J. S. Robinson, J. W. G. Tisch, and J. P. Marangos,
Phys. Rev. Lett. 102, 063003 (2009).
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We present a semiclassical two-step model for strong-field ionization that accounts for path interferences
of tunnel-ionized electrons in the ionic potential beyond perturbation theory. Within the framework of a
classical trajectory Monte Carlo representation of the phase-space dynamics, the model employs the semiclassical
approximation to the phase of the full quantum propagator in the exit channel. By comparison with the exact
numerical solution of the time-dependent Schrödinger equation for strong-field ionization of hydrogen, we
show that for suitable choices of the momentum distribution after the first tunneling step, the model yields
good quantitative agreement with the full quantum simulation. The two-dimensional photoelectron momentum
distributions, the energy spectra, and the angular distributions are found to be in good agreement with the
corresponding quantum results. Specifically, the model quantitatively reproduces the fanlike interference patterns
in the low-energy part of the two-dimensional momentum distributions, as well as the modulations in the
photoelectron angular distributions.

DOI: 10.1103/PhysRevA.94.013415

I. INTRODUCTION

Strong-field physics is concerned with highly nonlinear
phenomena originating from the interaction of strong laser
radiation with atoms and molecules. Above-threshold ioniza-
tion (ATI), high-order harmonic generation, and nonsequential
double ionization are the most well-known examples (see
Refs. [1–5] for reviews). Among the main theoretical ap-
proaches used to understand these diverse phenomena are the
direct numerical solution of the time-dependent Schrödinger
equation (TDSE), the strong-field approximation (SFA) [6–8],
and semiclassical models applying a classical description of
an electron after it has been released from an atom, e.g.,
by tunneling ionization [9–11]. The most widely known
examples of semiclassical approaches are the two-step model
for ionization [12–14] and the three-step models for harmonic
radiation and rescattering [15,16]. In the first step of the
two-step model an electron tunnels out of an atom, and in
the second step it propagates in the laser field. The third step
involves the rescattering of the returning electron with the
residual ion. Thus, the three-step model allows for a qualitative
description of rescattering-induced processes: high-order ATI,
high-order harmonic generation, and nonsequential double
ionization.

Although significant progress has been made over the last
two decades in development of the theoretical approaches
based on the SFA and, particularly, on the TDSE (see, e.g.,
Refs. [17,18] and references therein), the semiclassical models
are still extensively used in strong-field physics. The reason is

*n79@narod.ru

that these models have a number of advantages. Indeed, semi-
classical simulations can help to identify the specific mecha-
nisms responsible for the phenomena under consideration and
provide an illustrative picture in terms of classical trajectories.
For example, the three-step model explained the cutoffs in
high-order harmonic generation [19,20] and high-order ATI
spectra [21], the maximum angles in the photoelectron angular
distributions [22], and the characteristic momenta of recoil ions
of the nonsequential double ionization [23,24].

In their original formulation, the two-step and three-step
models do not take into account the effect of the Coulomb
potential of the parent ion on the electron motion after
ionization. The inclusion of the Coulomb potential into the
two-step model made it possible to reveal the so-called
Coulomb focusing effect [25]. Employing classical trajectory
Monte Carlo (CTMC) simulations for the second step, the
Coulomb cusp in the angular distribution of strong-field
ionized electrons could be identified [26]. Among the more
recent examples of application of the semiclassical models
with the Coulomb potential are the investigation of the so-
called “ionization surprise” [27], i.e., the low-energy structures
in strong-field ionization by midinfrared pulses [28–36], the
study of the angular shifts of the photoelectron momentum
distributions in close to circularly polarized laser fields [37–
39], and the analysis of the nonadiabatic effects in strong-field
ionization (see, e.g., Refs. [40–42]). Semiclassical simulations
are often (but not necessarily always) computationally much
simpler than the direct numerical solution of the TDSE.
Sometimes rather large ensembles of classical trajectories are
needed (e.g., in the present case about 109 trajectories) in
order to get statistically reliable results or resolve fine details
of the photoelectron differential distributions. Nevertheless,
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semiclassical models remain powerful tools even in this
situation, since trajectory-based simulations can be easily
and very efficiently parallelized even on modest computer
clusters. Moreover, there are still many strong-field problems,
for which semiclassical models are the only feasible approach.
Well-known examples of the latter category include the non-
sequential double ionization of atoms by elliptically [43–45]
and circularly [46] polarized fields as well as the nonsequential
double ionization of molecules [47]. Therefore, improvements
of the semiclassical models of strong-field phenomena are
being sought with the goal to render them quantitatively
predictive.

Recently, some progress among these lines has been
achieved. For example, a criterion of applicability of the
two-step model with the Coulomb potential of the parent
ion was formulated in Ref. [48]. Within a purely classical
treatment of the electron dynamics subsequent to tunnel
ionization, interference structures in the photoelectron spec-
trum and two-dimensional momentum distribution [49–52]
cannot be reproduced. This deficiency has been overcome
by a semiclassical model denoted by the authors of [53]
as the “quantum trajectory Monte Carlo (QTMC).”1 This
model makes it possible to include interference effects into the
two-step model with the Coulomb potential. Accordingly, each
classical trajectory is associated with a phase determined by the
classical action, and the contributions of all trajectories leading
to a given final momentum calculated by a CTMC approach
are added coherently. The QTMC model has already been used
in the study of nonadiabatic effects in tunneling ionization
of atoms in elliptically polarized laser fields [42]. A similar
approach, but disregarding the Coulomb potential, was used in
Ref. [55] to investigate the holographic interference patterns
in strong-field ionization of N2, O2, and CO2. Very recently,
the QTMC model has been applied to the identification of
resonance structures in the low-energy part of the photoelec-
tron spectra [56] and to the study of the nonadiabatic subcycle
electron dynamics in orthogonally polarized two-color laser
fields [57].

The Coulomb-corrected strong-field approximation
(CCSFA) [30,58,59] has been applied to analyze results
of experiment and theory. The CCSFA invokes first-order
perturbation theory [60] to include the Coulomb potential.
Likewise, according to the Supplemental Material in
Ref. [53], the QTMC model includes the Coulomb effect in
a perturbative manner, a point that we discuss below. It is,
therefore, of interest to formulate a semiclassical two-step
(SCTS) model that accounts for the Coulomb potential beyond
the semiclassical perturbation theory. Our present approach
is based on the theory of semiclassical time-dependent
propagators (see, e.g., Refs. [61,62] for a textbook treatment).
Here we derive a semiclassical expression for the transition
amplitude for strong-field ionization that differs from the

1This model should not be confused with another approach termed
quantum trajectory Monte Carlo that was used for the solution of the
Liouville equation for open quantum systems [54]. It is based on an
ensemble of solutions of a stochastic Schrödinger equation, each of
which corresponds to a quantum trajectory in Hilbert space.

one used in the QTMC and CCSFA models improving the
agreement with full quantum simulations.

The paper is organized as follows. In Sec. II we briefly
review previous two-step models that invoke semiclassi-
cal approximations at various stages of their development.
In Sec. III we present our semiclassical two-step model
that combines the CTMC method for trajectory sampling
with the phase of the semiclassical propagator and dis-
cuss its numerical implementation. The application to the
benchmark case of strong-field ionization of atomic hydro-
gen and the comparison with TDSE results are presented
in Sec. IV, followed by concluding remarks in Sec. V.
Atomic units are used throughout the paper unless indicated
otherwise.

II. TWO-STEP MODELS

The two-step models for direct strong-field ionization as
well as their three-step extensions typically invoke semi-
classical approximations to the full quantum dynamics at
various levels. We briefly sketch the major steps involved in
order to delineate the point of departure of the present SCTS
model. It should be stressed that our model is different from
SFA-type models such as the CCSFA model [30,58,59] as
the latter are applicable for arbitrary values of the Keldysh
parameter γ = ωκ/F [6] (here ω is the angular frequency
of the laser field, F is the field amplitude, and κ = √

2Ip,
where Ip is the ionization potential). In contrast to this,
we employ instantaneous tunneling ionization rates. The
description of the ionization step by tunneling is expected
to be accurate only for small values of the Keldysh parameter,
γ � 1.

The starting point of the semiclassical approximation is the
assumption that the (classical) action in the Feynman propa-
gator is asymptotically large compared to the quantum action
� such that the path integral over (in general, nonclassical)
paths can be performed by the saddle-point approximation.
Equivalently, the semiclassical approximation can be viewed
as the leading term in an �n expansion as � → 0. Accordingly,
the expression for the matrix element of the semiclassical
propagator USC between the initial state at time t1 and the
final state at time t2(t2 > t1) reads [63–65] (see Refs. [61]
and [62] for a textbook treatment)

〈�r2|USC(t2,t1)|�r1〉 =
[
−det(∂2φ1(�r1,�r2)/∂�r1∂�r2)

(2πi)3

]1/2

× exp[iφ1(�r1,�r2)]. (1)

Here �r1 and �r2 are the spatial coordinates of a particle at times
t1 and t2, respectively, and the phase φ1(�r1,�r2) = S1(�r1,�r2)/�
is given in terms of the action S1,

S1(�r1,�r2) =
∫ t2

t1

{ �p(t)�̇r(t) − H [�r(t), �p(t)]}dt, (2)

where, in turn, H [�r(t), �p(t)] is the classical Hamiltonian
function as a function of the canonical coordinates �r(t)
and momenta �p(t). In dipole approximation the Hamiltonian
function of an electron moving in laser and Coulomb fields is
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given by

H [�r(t), �p(t)] = p2(t)

2
+ �F (t) · �r(t) − Z

r(t)
, (3)

where �F (t) is the electric field and Z is the ionic charge. The
prefactor in Eq. (1) contains the determinant of −∂2S1/∂�r1∂�r2,
frequently referred to as the van Vleck (vV) determinant for
multidimensional systems, which is independent of �. The
phase factor exp(iφi) is nonanalytic as � → 0 and accounts for
the nonuniform approach to the classical limit via increasingly
fast oscillations (see Ref. [66]).

For classically allowed processes, the vV-determinant gov-
erns the classical phase-space density (or probability density)
for the phase flow from �r1 to �r2 within the time interval t2 − t1.
Higher-order corrections in � are neglected in Eq. (1) from
the outset. Using atomic units in the following we do not
display the � dependence explicitly but, instead, express the
semiclassical limit in terms of the de Broglie wavelength λdB

exploiting the equivalence of vanishing de Broglie wavelength
λdB → 0 and the limit � → 0.

The point to be emphasized is that the applicability of the
saddle-point approximation, and, in turn, the semiclassical
limit for the ionization process in the presence of laser and
Coulomb fields is, a priori, not obvious. The tunneling process
is intrinsically nonclassical and the de Broglie wavelength
λdB(E) of slow electrons close to the tunneling exit is, in
general, not small compared to the exit coordinate η or the
width of the barrier; i.e., the semiclassical relation λdB � η is
violated.

A. Semiclassical approximation for the first step

The starting point for the first step of strong-field ionization,
the tunneling through the barrier formed by the atomic (ionic)
potential and the interaction with the electromagnetic field, is
the quantum transition matrix element in distorted-wave Born
approximation (SFA)

MSFA(�k) = −i

∫ ∞

−∞
dt〈ψ�k(t)|VL(t)|ψi(t)〉, (4)

where |ψi(t)〉 is the bound initial state and |ψ�k(t)〉 is the Volkov
state after tunneling with the asymptotic momentum �k,

ψ�k(�r,t) = exp

{
i[�k + �A(t)/c]�r − i

2

∫ t

−∞
dt ′[�k + �A(t ′)/c]2

}
.

(5)

Equation (4) is referred to as the strong-field approximation
as in the final state the ionic potential is considered to be
negligible in comparison to the interaction VL(t) = �F (t) · �r .
Note that we use a length gauge in Eqs. (4) and (5) and
define the strong electric field �F (t) = − 1

c
d �A
dt

through the

vector potential �A(t). The time integral is evaluated within
the framework of the saddle-point approximation assuming
that the effective phase (or action)

S(�k,t) =
∫ t

−∞
dt ′

{
1

2
[�k + �A(t ′)/c]2 − εi

}
(6)

is large and rapidly varying with t , thereby invoking the
semiclassical (SC) limit. The prerequisites for the applicability

of this semiclassical limit are the ponderomotive energy Up

and the ionization potential Ip = −εi to be large compared
to the photon energy ω, Up/ω 	 1 and Ip/ω 	 1. Unlike
Eq. (1), the semiclassical approximation is applied to the tran-
sition matrix element [Eq. (4)] rather than to the propagator.
Accordingly (see, e.g., [67,68]),

MSC
SFA =

∑
j

exp
[
iS

(�k,t
j
s

)]
[

∂2

∂t2 S
(�k,t

j
s

)]1/2 V
j

�k , (7)

with V
j

�k containing the spatial dependencies of the transition
matrix element. The saddle-point equation

∂

∂t
S(�k,ts) = 1

2
[�k + �A(ts)/c]2 + Ip = 0 (8)

has complex solutions in t , t
j
s = t

j

0 + it
j
t , where the real part

t0 is referred to as the ionization time and the imaginary
part tt as the tunneling time. Because of the complex
solutions, the emerging trajectories are often referred to as
quantum trajectories; see Refs. [67,69]. When more than one
saddle point contributes (j = 1, . . .), Eq. (7) can give rise to
semiclassical path interferences.

Frequently employed approximate evaluations of Eq. (7)
include the Perelomov-Popov-Terent’ev or Ammosov-
Delone-Krainov rates for adiabatic tunneling in which t0
coincides with the extremum of the electric field F [9–11]:

w(t0,v0,⊥) ∼ ∣∣MSC
SFA

∣∣2

∼ exp

[
− 2κ3

3F (t0)

]
exp

[
−κv2

0,⊥
F (t0)

]
. (9)

For simplicity, we omit the preexponential factor in Eq. (9).
Although this factor changes the total ionization rate by several
orders of magnitude, for atoms it only slightly affects the
shape of the photoelecton momentum distributions. When
applying Eq. (9), a simple and frequently used choice is
that the electron emerges with vanishing velocity component
along the laser polarization direction v0,z = 0, while v0,⊥
is Gaussian distributed. It is common to apply Eq. (9)
as a quasistatic rate [70], i.e., for tunneling ionization for
laser phases other than the field extremum, with F (t0) in
Eq. (9) denoting the instantaneous field. Nonzero longitudinal
velocity components v0,z �= 0 appear near the tunnel exit
when the subbarrier motion is modeled by the strong-field
approximation [71].

The coordinates of the tunneling exit can be conveniently
determined by using the fact that for an electron in a time-
independent electric field F and the Coulomb potential, −Z/r ,
both the classical Hamilton-Jacobi equation [72] and the
stationary Schrödinger equation are separable in parabolic
coordinates (see Refs. [9,73])

ξ = r + z, η = r − z, φ = arctan

(
y

x

)
. (10)

If the electric field points along the positive z direction, the
electron is trapped by an attractive potential along the ξ

coordinate and can tunnel out only in the η direction. The
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tunnel exit coordinate η is then obtained from the equation

−β2(F )

2η
+ m2 − 1

8η2
− Fη

8
= −Ip(F )

4
, (11)

where

β2(F ) = Z − (1 + |m|)
√

2Ip(F )

2
(12)

is the separation constant (see, e.g., Ref. [74]) and m is the
magnetic quantum number of the initial state. In Eq. (12) we
have allowed for the Stark shift of the initial state, i.e., of the
ionization potential,

Ip(F ) = Ip + 1
2 (αN − αI )F 2, (13)

where F is the instantaneous field amplitude at the ionization
time t0 and αN and αI are the static polarizabilities of
an atom and of its ion, respectively [75]. With Eqs. (11)
and (9), the initial conditions for the propagation of trajectories
subsequent to tunneling ionization, i.e., for the second step, are
determined.

As the focus of the present work is the improved semi-
classical description of the second step, we treat in the
following the output of the first step, in particular the initial
velocity (or momentum) distribution at the tunneling exit
[see, e.g., Eq. (9)] as adjustable input. We use two different
initial phase-space distributions resulting from the tunneling
step as initial conditions for the post-tunneling semiclassical
propagation. Both choices of distributions are described by
Eq. (9). The difference is that in one case, the initial parallel
velocity v0,z is set to zero, whereas in the other case, it is set
to a nonzero value predicted by the SFA [71].

B. Semiclassical approximation for the second step

The position and momentum distributions at the tunneling
exit serve as initial conditions for the propagation of classical
trajectories in the second step. In the simplest approximation,
the quiver motion for a selected set of trajectories for free
electrons in the electromagnetic field is treated, thereby
neglecting the atomic force field [14–16,20]. More advanced
descriptions employ full CTMC simulations treating the laser
field and the atomic force field on equal footing by solving
Newton’s equation of motion,

d2�r(t)

dt2
= − �F (t) − Z�r(t)

r3(t)
, (14)

for a large number of initial conditions (typically �107),
thereby sampling the initial phase-space distribution after
tunneling [26].

For the propagation of the electron in the combined
fields [Eq. (14)], a semiclassical approximation in terms of
a coherent superposition of amplitudes appears justified since
classical-quantum correspondence holds separately for both
the propagation in the Coulomb field and in the laser field. For
the linear potential of a charged particle in the external field,
VL = �F · �r , the Ehrenfest theorem holds for Newton’s law,
〈 �∇VL〉 = �∇VL(〈�r〉). For the long-range Coulomb potential
λdB(E) is negligible compared to the infinite range of the
potential at any energy E. However, an extension of CTMC
simulations to the semiclassical domain faces considerable

difficulties in view of the intrinsic numerical instability,
which is closely related to the nonuniform convergence
to the classical limit mentioned above. Superposition of a
large number of amplitudes associated with trajectories with
rapidly oscillating phases fails to yield converged scatter-
ing amplitudes in the asymptotic limit t → ∞ [66]. One
key ingredient is therefore the binning of the trajectories
according to the appropriate final canonical momenta and
restricting coherent superpositions to those trajectories within
each bin. For bound-state excitation driven by ultrashort
pulses this corresponds to binning of the action variable,
i.e., to a quantization of classical trajectories. This quantized
classical trajectory Monte Carlo method [76] can accurately
account for quantum revivals and dephasing in Rydberg
manifolds.

For strong-field ionization, the final states lie in the
continuum and are binned according to their momenta in cells
in momentum space [42,57], [ki,ki + �ki], with i = x,y,z.
Accordingly, the amplitudes associated with all np trajectories
taking off at t j0 with initial velocity �vj

0 (j = 1, . . . ,np) reaching
the same bin centered at �k = (kx,ky,kz) are added coherently.
Thus, the ionization probability R(�k) for this final momentum
�k is given by

R(�k) =
∣∣∣∣∣∣

np∑
j=1

√
w

(
t
j

0 ,�vj

0

)
exp

[
i�

(
t
j

0 ,�vj

0

)]
∣∣∣∣∣∣
2

, (15)

where w(t j0 ,v
j

0 ) is the probability density of the initial
conditions. The sum over j samples the classical phase flow
from �v0 to the bin �k corresponding to the vV determinant
as determined by CTMC. �(t j0 ,�vj

0 ) is the phase that each
trajectory carries. When the interference phases of trajectories
reaching the same bin are neglected, the classical CTMC
probability density

R(�k) =
np∑

j=1

w
(
t
j

0 ,�vj

0

)
(16)

emerges. In the QTMC model [53], the phase in Eq. (15) was
approximated by

�QTMC
(
t
j

0 ,�vj

0

) ≈ Ipt
j

0 −
∫ ∞

t
j

0

[
p2(t)

2
− Z

r(t)

]
dt. (17)

We relate the phase in Eq. (17) to our semiclassical phase in
Sec. III A.

III. FORMULATION OF THE MODEL

A. Semiclassical expression for the phase

The two key ingredients of the present semiclassical two-
step model are the choice of an initial momentum distribution
emerging from the first tunneling step based on SFA estimates
and a proper semiclassical description for the second step. This
approach accounts for the expectation that the semiclassical
limit is applicable for the evolution of the liberated electron
in the combined laser and ionic force fields. We describe
the second step of the two-step model using the expression
for the matrix element of the semiclassical propagator USC.
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In addition to its coordinate representation [Eq. (1)], three
equivalent forms involving different combinations of phase-
space coordinates exist [63,77]:

〈�r2|USC(t2,t1)| �p1〉 =
[
−det(∂2φ2( �p1,�r2)/∂ �p1∂�r2)

(2πi)3

]1/2

× exp[iφ2( �p1,�r2)], (18a)

〈 �p2|USC(t2,t1)|�r1〉 =
[
−det(∂2φ3(�r1, �p2)/∂�r1∂ �p2)

(2πi)3

]1/2

× exp[iφ3(�r1, �p2)], (18b)

〈 �p2|USC(t2,t1)| �p1〉 =
[
−det(∂2φ4( �p1, �p2)/∂ �p1∂ �p2)

(2πi)3

]1/2

× exp[iφ4( �p1, �p2)]. (18c)

They describe the propagation from the initial position (�r1)
or momentum coordinate ( �p1) to a final position (�r2) or
momentum coordinate ( �p2) within the time interval t2 − t1.
The phases φi, i = 2,3,4 in Eqs. (18a)–(18c) are given by the
classical action associated with the corresponding canonical
transformations,

φ2( �p1,�r2) = φ1(�r1,�r2) + �p1 · �r1, (19a)

φ3(�r1, �p2) = φ1(�r1,�r2) − �p2 · �r2, (19b)

φ4( �p1, �p2) = φ1(�r1,�r2) + �p1 · �r1 − �p2 · �r2, (19c)

with φ1(�r1,�r2) given by Eq. (2).
It is now of interest to inquire which of the propagator

matrix elements is appropriate for the second step of strong-
field ionization. Semiclassical scattering characterized by a
transition from momentum �p1 at t → −∞ to �p2 at t → ∞ is
described by the propagator Eq. (18c) with the compensated
action φ4 given by [Eq. (19c)]:

φ4( �p1, �p2) =
∫ t2

t1

{−�r(t) · �̇p(t) − H [�r(t), �p(t)]}dt. (20)

For strong-field ionization representing a half-scattering pro-
cess of an electron initially located near the nucleus and emit-
ted with final momentum �p2(t → ∞), the propagator Eq. (18b)
with action φ3 should be applicable for trajectories launched
with initial phase exp (iIpt0) according to the time evolution
of the ground state. This choice is based on the assumption
of well-localized starting points in coordinate space �r1 near
the tunnel exit [Eq. (11)] with negligible phase accumulation
under the barrier in position-space representation. We have

φ3(�r1, �p2) = φ4( �p1, �p2) − �p1 · �r1. (21)

Since in length gauge �v0 = �p1, �p1 is orthogonal to �r1 in the
limit of vanishing longitudinal velocity at the tunneling exit
(v0,z = 0) and, hence, φ3 and φ4 coincide. In the following
we include the phase contribution �p1 · �r1 for nonzero v0,z.
Its contribution to the interference pattern discussed below is
numerically found, however, to be of minor importance.

In our model we restrict ourselves to exponential accuracy.
Thus, we ignore the preexponential factor of the matrix
element. Using φ3(�r1, �p2) in Eq. (15) yields the semiclas-
sical approximation for the phase corresponding to a given

trajectory

�
(
t
j

0 ,�vj

0

) = −�vj

0 · �r(t j0 ) + Ipt
j

0

−
∫ ∞

t
j

0

dt{ �̇p(t) · �r(t) + H [�r(t), �p(t)]}

= −�vj

0 · �r(t j0 ) + Ipt
j

0 −
∫ ∞

t
j

0

dt

{
p2(t)

2
− 2Z

r(t)

}
.

(22)

To arrive at this result, �̇p is expressed in terms of the negative
gradient of the total potential containing the electric field and
the Coulomb potential. In the case of an arbitrary effective
potential V (�r), the Hamiltonian function H [�r(t), �p(t)] reads

H [�r(t), �p(t)] = p2(t)

2
+ �F (t) · �r(t) + V (�r) (23)

and Newton’s equation of motion,

�̇p = − �F (t) − �∇V [�r(t)]. (24)

Using Eqs. (23) and (24) to derive the integrand in Eq. (20) we
obtain from Eq. (21) the following expression for the phase:

�
(
t
j

0 ,�vj

0

) = −�vj

0 · �r(t j0 ) + Ipt
j

0

−
∫ ∞

t
j

0

dt

{
p2(t)

2
+ V [�r(t)] − �r(t) · �∇V [�r(t)]

}
.

(25)

Equation (22) is a special case of Eq. (25) when V (�r) is set
to the Coulomb potential −Z/r . Equation (25) is applicable
to effective one-electron descriptions of ionization of multi-
electron systems employing model or pseudopotentials [78].
It should be noted, however, that in the presence of a strong
short-ranged contribution to V (�r) the validity of the underlying
semiclassical approximation, λdB � R, where R is the range
of the short-ranged contribution, is not obvious and remains to
be verified.

For the Coulomb potential V (�r) = −Z/r , the phase of the
QTMC model can be obtained from Eq. (25) by omitting the
term �r(t) · �∇V [�r(t)] in the integrand of Eq. (25). Thus, the
semiclassical phase given by Eq. (22) differs from that of
the QTMC model [Eq. (17)]: The Coulomb interaction enters
with doubled weight. The factor 2 originates from properly
accounting for elastic scattering in Eqs. (19b) and (25),
i.e., from fully accounting for the Coulomb potential in the
compensated action φ4( �p1, �p2). Note, that this compensated
action accounts for elastic scattering also in the absence of
time-dependent processes. By contrast, Eq. (17) yields for
any time-independent Hamiltonian only a trivial trajectory-
independent phase ∼ ∫

dt(H + Ip). The QTMC phase can
therefore be viewed as an approximation to the full semiclas-
sical phase, Eq. (22).

B. Numerical implementation

In the presence of long-range interactions the calculation
of the semiclassical transition amplitude [Eq. (15)] for strong-
field ionization requires special care in view of divergent
phases and the large number of trajectories for a dense
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sampling of phase space needed for achieving sufficient
resolution for the multidifferential ionization probability.

We subdivide the integration interval [t j0 ,∞] into two
intervals, [t j0 ,τf ] and [τf ,∞], where τf is the time at which
the laser pulse has concluded and beyond which the energy
H (τf ) = E is conserved along the outgoing Kepler hyperbola.
For pure Coulomb potentials the asymptotic phase-space
coordinates (�k) can be determined by the analytic Coulomb
mapping of the coordinates [�r(τf ), �p(τf )] for given energy E,

k2

2
= p2(τf )

2
− 1

r(τf )
, (26)

the angular momentum,

�L = �r(τf ) × �p(τf ), (27)

and the Runge-Lenz vector,

�a = �p(τf ) × �L − �r(τf )/r(τf ). (28)

The asymptotic momentum follows from (see Ref. [39], which
corrects the misprint in [79])

�k = k
k( �L × �a) − �a

1 + k2L2
. (29)

The phase Eq. (22) can be analogously decomposed as

�
(
t
j

0 ,�vj

0

) = −�vj

0 · �r(t j0 ) + Ipt
j

0 −
∫ τf

t
j

0

dt

{
p2(t)

2
− 2Z

r(t)

}

−
∫ ∞

τf

dt

{
E − Z

r(t)

}
. (30)

We furthermore separate the last term in Eq. (30) repre-
senting the scattering phase accumulated in the asymptotic
interval [τf ,∞] into the parts with time-independent and
time-dependent integrand. The first part yields the linearly
divergent contribution

lim
t→∞ E(t − τf ). (31)

Since only the relative phase between those trajectories
arriving in the same bin contribute to the probability (15)
whose final momenta and, therefore, energies coincide, the
relative phase (Ej − Ej ′ )(t − τf ) vanishes. This allows for
the reduction of the integral for the interval [τf ,∞] to the
Coulomb phase,

�C
f (τf ) = Z

∫ ∞

τf

dt

r(t)
, (32)

which is still divergent. The regularization of this integral
can be performed by analytic Coulomb mapping for Kepler
hyperbolae: The distance from the Coulomb center (i.e., from
the ion) at a given time t reads (see, e.g., Ref. [80])

r(t) = b(g cosh ξ − 1), (33)

where b = 1/(2E), g = √
1 + 2EL2, and the parameter ξ =

ξ (t) is determined from

t =
√

b3(g sinh ξ − ξ ) + C. (34)

The constant C in Eq. (34) can be found from the initial
conditions for the motion in the Coulomb field, i.e., from the

position �r(τf ) and momentum �p(τf ) of an electron at t = τf .
With Eqs. (33) and (34) the integral in Eq. (32) gives

�C
f (τf ) = Z

√
b[ξ (∞) − ξ (τf )]. (35)

Thus, for every trajectory we need to calculate ξ (∞) and
ξ (τf ). Since ξ → ∞ for t → ∞, we can discard the decaying
exponent in sinh ξ = [exp (ξ ) + exp (−ξ )]/2 and neglect both
C and ξ compared to exp (ξ ) in the asymptotic limit [Eq. (34)].
Consequently, we find for asymptotically large ξ

t ≈
√

b3g exp(ξ )/2, (36)

from which follows

ξ (t → ∞) ≈ ln

(
2t

g
√

b3

)
. (37)

It is clear that ξ (t) diverges at t → ∞. However, we can
isolate the divergent part of Eq. (37), which is common for
all the trajectories interfering in a given bin of momentum
space, from the finite contributions specific for every individual
trajectory. Indeed, we are interested in the relative phases of
the interfering trajectories within the same bin, and b depends
only on the energy E. Therefore, the common divergent part
is given by ln (2t/

√
b3), and the finite contribution of every

trajectory to the phase [Eq. (30)] is equal to − ln (g). Note that
g depends on both electron energy and angular momentum
L. The latter is different for different interfering trajectories
within a given bin of the momentum space. For the lower
boundary in Eq. (35) we find from Eq. (33)

ξ (τf ) = ± arcosh

{
1

g

[
r(τf )

b
+ 1

]}
, (38)

where the sign still needs to be determined. Taking into account
that dr/dt = �r �v/r and dr/dt = (dr/dξ )/(dt/dξ ) and using
Eqs. (33) and (34), we find for ξ (τf )

ξ (τf ) = arsinh

{ �r(τf ) · �p(τf )

g
√

b

}
. (39)

Thus, the finite interference contribution �̃C
f (τf ) from the

Coulomb phase becomes

�̃C
f (τf ) = −Z

√
b

[
ln g + arsinh

{ �r(τf ) · �p(τf )

g
√

b

}]
. (40)

We note that such asymptotic Coulomb phase contributions
are missing in the QTMC model [53].

In order to achieve convergent semiclassical amplitudes
based on Monte-Carlo sampling of a large number of classical
trajectories, efficient sampling of initial conditions is essential.
One possible method employs initial sets of t0 and �v0 that
are either uniformly randomly distributed or distributed on a
uniform grid (e.g., in Ref. [53]). This results in sampling of
a large number of trajectories with relatively small weights
[see, e.g., Eq. (9)], which contribute to the final momentum
distribution only to a small extent.

Here we implement an alternative Monte Carlo algorithm
based on importance sampling. Accordingly, the importance
(weight) of a given trajectory is accounted already at the
sampling stage, i.e., before the integration of the equations
of motion (14). This means that initial sets of t0 and �v0

are distributed taking into account the tunneling probability
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w(t0,v0,⊥). Importance sampling is a standard method in
Monte Carlo integration [81] and is also used in many
semiclassical simulations of above-threshold ionization dis-
regarding interference effects (see, e.g., Refs. [22,79]). In
the absence of interference effects, the classical probability
density R(�k) is calculated within the importance sampling
approach as a number of trajectories ending up in a given bin
[instead of using Eq. (16) for uniformly distributed initial sets].

Importance sampling is particularly significant in the pres-
ence of interference because typically many more trajectories
are needed to resolve fine interference structures compared
to CTMC simulations without interference (see Sec. IV).
Calculation of the ionization probability with trajectories
selected by importance sampling is given [instead of Eq. (15)]
by

R
(
�k
)

=
∣∣∣∣∣∣

np∑
j=1

exp
[
i�

(
t
j

0 ,�vj

0

)]
∣∣∣∣∣∣
2

, (41)

with ionization times t
j

0 and initial velocities �vj

0 distributed
according to the square root of the tunneling probability,√

w(t0,�v0) [Eq. (9)]. Depending on the laser parameters and
tunneling probabilities this importance sampling algorithm
can significantly increase the computational speed and con-
vergence as a function of the number of simulated trajectories.

IV. RESULTS AND DISCUSSION

In our simulations we use a few-cycle linearly polarized
laser pulse defined in terms of a vector potential that is present
between t = 0 and t = τf ,

�A(t) = (−1)n+1 cF0

ω
sin2

(
ωt

2n

)
sin(ωt)�ez. (42)

Here �ez is the unit vector pointing in polarization direction
and n is the number of optical cycles of the field with τf =
2πn/ω. The electric field is obtained from Eq. (42) by �F (t) =
− 1

c
d �A
dt

. We define the vector potential �A(t) with a prefactor
(−1)n+1 [Eq. (42)] in order to ensure that the electric field
has its maximum at the center of the pulse at ωt = πn for
both even and odd numbers of cycles n. We solve Newton’s
equations of motion using a fourth-order Runge-Kutta method
with adaptive step size [81] and calculate the phase [Eq. (22)]
by adding an extra equation to the system of equations of
motion.

Because of the rotational symmetry with respect to the po-
larization direction of the laser pulse the semiclassical simula-
tions for a linearly polarized field can be performed employing
only two degrees of freedom (z,r⊥). This reduces the numerical
complexity of the problem significantly. Indeed, in order
to achieve convergence of the interference oscillations, we
need about 1.6 × 109 trajectories (for a comparison, 1.5 × 106

trajectories were sufficient in the CTMC simulation to
calculate electron momentum distributions without interfer-
ence [39]). Nearly the same number of trajectories is used
in CCSFA calculations (see, e.g., Ref. [30]). Thus, about
1000 times more trajectories are needed for the semiclassical
simulations when interference is included. Simulations of

interactions with elliptically or circularly polarized laser fields
will require an even larger number of trajectories.

Importance sampling reduces the number of trajectories
required to reach convergence of the photoelectron spectrum
by a factor 4–5. Typically, we need with importance sampling
4 × 108 trajectories at 800 nm and 1.6 × 109 trajectories at
1200 and 1600 nm. It should be stressed, however, that the
performance of numerical approaches employing a uniform
distribution of the initial conditions strongly depends on the
distribution of initial conditions. The maximum modulus of the
initial transverse velocity v0,⊥ in the aforementioned example
is chosen to correspond to an ionization probability of 10−6

of the maximum value of w(t0,v0,⊥) [the latter is achieved
for v0,⊥ = 0; see Eq. (9)] when considering ionization at the
field maximum. Moreover, the efficiency depends also on the
laser-atom parameters and the calculated observable.

We benchmark our present SCTS model against the
exact numerical solution of the time-dependent Schrödinger
equation and also compare with results of the previous QTMC
model. In order to numerically solve the TDSE

i
∂|ψ(t)〉

∂t
=

{
− �

2
+ V (r) + zF (t)

}
|ψ(t)〉 (43)

in the dipole approximation for a single active electron, we
employ the generalized pseudospectral method [82–84]. This
method combines the discretization of the radial coordinate
optimized for the Coulomb singularity with quadrature meth-
ods to allow stable long-time evolution using a split-operator
representation of the time-evolution operator. Both the bound
as well as the unbound parts of the wave function |ψ(t)〉 can be
accurately represented. The atomic potential V (r) is taken to
be the Coulomb potential, V (r) = −1/r . Propagation of the
wave function is started from the ground state of hydrogen.
Due to the cylindrical symmetry of the system, the magnetic
quantum number m = 0 is conserved. After the end of the
laser pulse the wave function is projected on eigenstates |k,�〉
of the free atomic Hamiltonian with positive eigenenergy
E = k2/2 and orbital quantum number � to determine the
transition probabilities R(�k) to reach the final state |φ�k〉 (see
Refs. [85–87]):

R(�k) = 1

4πk

∣∣∣∣∣
∑

l

eiδ�(k)
√

2l + 1P�(cos θ )〈k,�|ψ(tf )〉
∣∣∣∣∣
2

.

(44)

In Eq. (44), δ�(k) is the momentum-dependent atomic phase
shift, θ is the angle between the electron momentum �k
and the polarization direction of the laser field �ez and
P� is the Legendre polynomial of degree �. In order to
avoid unphysical reflections of the wave function at the
boundary of the system, the length of the computing box
was chosen to be 1200 a.u. (∼65 nm), which is much larger
than the maximum quiver amplitude α = F0/ω

2 = 62 a.u. at
the intensity of 0.9 × 1014 W/cm2 and the wavelength of
1600 nm. The maximum angular momentum included was
�max = 300.
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FIG. 1. Vectorial momentum distributions for the H atom ionized
by a laser pulse with a duration of n = 8 cycles, wavelength of λ =
800 nm, and peak intensity of I = 0.9 × 1014 W/cm2 obtained from
(a) the QTMC model, (b) solution of the TDSE, and (c) the present
SCTS model. The distributions are normalized to the total ionization
yield. A logarithmic color scale in arbitrary units is used. The laser
field is linearly polarized along the z axis.

We first turn our attention to the vectorial photoelectron
momentum distribution in the (kz,k⊥) plane (Fig. 1). For the
semiclassical simulations we first employ the initial distri-
bution [Eq. (9)] with zero initial parallel velocity. Important
features of the TDSE momentum distribution are reproduced
by both the SCTS and the QTMC models: The distributions are
stretched along the polarization axis with clear ATI rings and a
central interference structure at small momenta. The spread of
the distribution along the polarization axis is underestimated
by both semiclassical models due to the initial condition
v0,z = 0 (see below).

A close-up of the low-energy spectrum (Fig. 2) shows
marked differences between the different models. For |k| �
0.3 a.u. and energies well below Up = 0.2 a.u., the vecto-
rial momentum distribution displays a fanlike interference
structure similar to that of Ramsauer-Townsend diffraction
oscillations [50,51,88,89]. The number of radial nodal lines is
controlled by the dominant partial-wave angular momentum
�c in Eq. (44); i.e., R(�k) ∼ |Plc (cosθ )|2 (see Refs. [88,89]).
While the SCTS model closely matches the nodal pattern of
the TDSE, the QTMC model yields fewer nodal lines, which
is a direct consequence of the underestimate of the Coulomb
interaction in the QTMC treatment of the interference phase.
This effect of neglecting the elastic scattering in the Coulomb
field occurs both during the laser pulse [Eq. (30)] and after
[Eq. (40)]. The magnitude of the latter is illustrated in Fig. 3
where we display the effect of �̃C

f (τf ) for both an ultrashort
single-cycle pulse and the longer eight-cycle pulse. The post-
pulse Coulomb phase is more pronounced for shorter τf as the
electron is still closer to the nucleus at the end of the pulse.
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FIG. 2. Magnification of Fig. 1 for |kz|,|k⊥| < 0.3 a.u.
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FIG. 3. Vectorial momentum distribution from the present SCTS
model for low-energy electrons without (a),(c) and with (b),(d)
inclusion of the postpulse Coulomb phase �̃C

f (τf ) [Eq. (40)] for the
eight-cycle pulse of Fig. 1 (a),(b) and a single-cycle pulse (c),(d) with
all other laser parameters identical. The distributions are normalized
to the total ionization yield. A logarithmic color scale in arbitrary
units is used.

For a quantitative comparison of different methods we
consider the singly differential angular distribution (Fig. 4)

dR

sin θdθ
= 2π

∫ ∞

0
dE

√
2ER[�k(E)] (45)

and the photoelectron spectrum

dR

dE
= 2π

√
2E

∫ π

0
dθ sin θR[�k(θ )]. (46)

The energy spectra feature pronounced ATI peaks. These
are qualitatively reproduced by the semiclassical methods.
However, only for the low-order peaks can the semiclassical
approximation quantitatively reproduce the amplitude of the
oscillations [52]. This is closely related to the fact that the
initial conditions from the tunneling step [Eq. (9)] provide
too few trajectories with large longitudinal momenta that
could account for intercycle interferences, the semiclassical
origin of the ATI modulation at large momenta. For the
same reason the photoelectron spectrum dR/dE falls off too
rapidly for energies exceeding ∼Up. The semiclassical angular
distributions reproduce the Ramsauer-Townsend diffraction
oscillations [88,89]. The modulation amplitude as well as the
position of the minima of the SCTS agree better with the
TDSE compared to the QTMC model because of the improved
interference phase. The difference is more pronounced for the
angular distribution of low-energy electrons (Fig. 5).

Obviously, further improvement of the semiclassical
description of the energy and angular distributions of pho-
toelectrons require an improved initial distribution emerging
from the tunneling step. To this end, we set the initial
conditions for the propagation of classical trajectories, we
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FIG. 4. Energy spectra (a),(c),(e) and angular distributions
(b),(d),(f) of the photoelectrons for ionization of H at an intensity
of 9 × 1013 W/cm2 and a pulse duration of eight cycles obtained
from the QTMC model [thin (magenta) curve with solid circles], the
SCTS model [solid (blue) curve], and TDSE [thick (green) curve].
The distributions [(a),(b)], [(c),(d)], and [(e),(f)] correspond to the
wavelengths of 800, 1200, and 1600 nm, with Keldysh parameters of
1.12, 0.75, and 0.56, respectively. The energy spectra are normalized
to the peak value; the angular distributions are normalized to the total
ionization yield and show the spectrum for electrons with asymptotic
energies E < Up . The energy equal to Up is shown by arrows in
panels (a) and (c).

set the initial parallel velocity v0,z at every ionization time
t0 in Eq. (9) to a nonzero value predicted by the strong-field
approximation (see Refs. [30,58,59,71]). For the pulse defined
in Eq. (42) it can be, for a sufficiently long pulse, approximated
by

vz,0(t0) = −1

c
Az(t0)[

√
1 + γ 2(t0,v0,⊥) − 1], (47)

where

γ (t0,v0,⊥) =
ω

√
2Ip + v2

0,⊥
F0 sin2

(
ωt0
2n

)| cos(ωt0)| (48)

is the effective Keldysh parameter [71]. In the tunneling
limit γ (t0,v0,⊥) → 0 the longitudinal initial velocity vz,0(t0)
vanishes.

Employing Eq. (47) as initial condition for CTMC trajec-
tories taking off at t0 at the tunneling exit yields improved
agreement between the SCTS model and the TDSE for both
the vectorial momentum distribution (Fig. 6) and the singly
differential distributions dR/dE and dR/(sin θdθ ) (Fig. 7).

Indeed, the SCTS model can now better reproduce the
energy spectrum obtained from the TDSE; see Fig. 7(a). For
angular distribution the agreement between the QTMC and the
TDSE worsens, whereas the agreement between the SCTS and
the TDSE improves [compare Fig. 7(b) with Fig. 4(b)]. These
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FIG. 5. Angular distributions for low-energy electrons (inner-
most fanlike structure; cf. Fig. 2): (a) E < 0.022 a.u. for λ = 800 nm,
(b) E < 0.031 a.u. for λ = 1200 nm, and (c) E < 0.036 a.u. for
λ = 1600 nm. Cutoff energies have been determined from TDSE
results.

results clearly suggest that the main source of deviations of
the SCTS model from the TDSE are the errors in treating the
tunneling step rather than the semiclassical description of the
post-tunneling propagation.

V. CONCLUSIONS AND OUTLOOK

We have developed a semiclassical two-step model for
strong-field ionization that describes quantum interference and
accounts for the Coulomb potential beyond the semiclassical
perturbation theory. In the SCTS model the phase associated
with every classical trajectory is calculated using the semi-
classical expression for the matrix element of the quantum
mechanical propagator. For identical initial conditions after
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FIG. 6. Vectorial momentum distributions obtained from (a)
SCTS model with zero initial parallel velocity, (b) solution of the
TDSE, and (c) the SCTS model with nonzero initial parallel velocity.
The parameters are the same as in Fig. 1. Panel (a) is the same as
Fig. 1(c). A logarithmic color scale in arbitrary units is used.

013415-9

8. Publications 99



N. I. SHVETSOV-SHILOVSKI et al. PHYSICAL REVIEW A 94, 013415 (2016)

0 0.1 0.2 0.3 0.4 0.5

0.01

0.1

1

E (a.u.)

dR
/d

E

 

 

0 30 60 90 120 150 180
0.01

0.1

1

10

emission angle (deg)

dR
/(s

in
θd

θ )

 

 

QTMC SCTS TDSE

Up

10−3

(a) (b)

FIG. 7. Same as Fig. 4 for λ = 800 nm with nonzero initial
parallel velocity.

the tunneling ionization step taken from standard tunnel
ionization rates [1], the SCTS model yields closer agreement
with the exact solution of the Schrödinger equation than
the previously proposed QTMC model. Furthermore, after
improving the input from the tunneling ionization step by
including nonzero parallel velocities in the initial conditions
for the motion after tunneling, the SCTS model yields
significantly improved agreement in the angular distribution,
i.e., the position of interference fringes with the TDSE results.
Remaining differences in the intensity of energy distributions
are traced back to improvable starting conditions (in particular
the choice of parallel velocities) of classical trajectories.

The present SCTS model can be extended to multielec-
tron targets in a straightforward fashion by the inclusion
of dynamical Stark shifts and polarization-induced dipole
potentials. To this end, the SCTS model can be combined
with the semiclassical approach developed in Refs. [37,39]

that is based on the effective potential for the outer elec-
tron [75]. This effective potential includes the laser field, the
Coulomb field, and the polarization effects of the inner core.
Semiclassical models of this type will make it possible to
investigate the role of the multielectron polarization effect
in the formation of the interference structure in the electron
momentum distributions. Since the multielectron potential
affects both the exit point and the electron dynamics in the
continuum, pronounced imprints of the polarization effects in
the interference patterns are expected. Finally, the two-step
semiclassical models accounting for both the interference
and the multielectron effects can provide a valuable tool for
investigation of the delays in photoemission, which is presently
one of the most intensively studied problems in strong-field
physics and attosecond science.
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[88] D. G Arbó, S. Yoshida, E. Persson, K. I. Dimitriou, and J.
Burgdörfer, Interference Oscillations in the Angular Distribution
of Laser-Ionized Electrons Near Ionization Threshold, Phys.
Rev. Lett. 96, 143003 (2006).
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In the tunneling regime we present a semiclassical model of above-threshold ionization with inclusion of the
Stark shift of the initial state, the Coulomb potential, and a polarization induced dipole potential. The model is
used for the investigation of the photoelectron momentum distributions in close to circularly polarized light, and
it is validated by comparison with ab initio results and experiments. The momentum distributions are shown to be
highly sensitive to the tunneling exit point, the Coulomb force, and the dipole potential from the induced dipole
in the atomic core. This multielectron potential affects both the exit point and the dynamics, as illustrated by
calculations on Ar and Mg. Analytical estimates for the position of the maximum in the photoelectron distribution
are presented, and the model is compared with other semiclassical approaches.
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I. INTRODUCTION

The interaction of a strong laser field with atoms and
molecules gives rise to a variety of phenomena, including
above-threshold ionization (ATI) along with the formation of
the high-energy plateau in the electron spectrum, excessive
yield of doubly and multiply charged ions, and the generation
of the high-order harmonics of the incident field (see, e.g.,
Refs. [1–6] for reviews). The theoretical approaches used to
describe all of these phenomena are based on the numerical
solution of the time-dependent Schrödinger equation (TDSE)
(see, e.g., Refs. [7–11] and references therein), the strong-field
approximation (SFA) [12–14], and the semiclassical model
for strong-field ionization [15–19], with the initial step being
tunneling ionization [20–22] and the subsequent dynamics
described by classical equations of motion. When all other
interactions but that of the laser field are ignored in this
propagation, this latter approach is known as the simpleman’s
model.

Although the solution of the TDSE in most cases gives
good agreement with the experimental data, it is often very
difficult to reconstruct the mechanism of the phenomena under
consideration. In the SFA the initial bound state of the atom is
unaffected by the laser field, whereas the final continuum state
does not feel the binding potential of the parent ion. Despite
the appealing physical picture of many laser-atom phenomena
provided by the SFA, it has been known for many years that
neglecting the binding potential is severe [23–31].

The three-step model [15–19] has given great insight into
strong-field phenomena. Presently semiclassical simulations
based on the three-step model are widely used due to
(i) their numerical simplicity and (ii) the physical picture
of strong-field phenomena. For some laser-atom problems,
the semiclassical simulations are, in fact, the only feasible
approach, for example, for the nonsequential double ionization
of molecules [32] and atoms by elliptically [33–36] and
circularly polarized fields [37]. For a linearly polarized field the
three-step model is equivalent to the following simple picture.
At some time an electron tunnels out of the atom and moves
along a classical trajectory in the laser field. The tunneling

rate is calculated in the static limit [20] with a field strength
set equal to the instantaneous value of the oscillating laser field.
The description of the ionization step by tunneling is expected
to be accurate when the Keldysh parameter γ = ωκ/F � 1
[12], where ω is the carrier angular frequency, F is the
field strength, and κ = √

2Ip with Ip the ionization potential
(atomic units are used throughout this paper). In most cases the
tunneled electrons reach the detector without recolliding with
their parent ions. These direct electrons have energies below
2Up, where Up = F 2/4ω2 is the ponderomotive energy. There
are also electrons which are driven back by the laser field to
rescatter on their parent ions by angles close to 180◦. These
backscattered electrons are responsible for the formation of
the high-energy plateau of the ATI spectrum, which is usually
4–6 orders of magnitude lower than the maximum of the
low-energy spectrum. In this work we focus on the direct
electrons, that is on the low-energy spectrum, therefore the
model that we use consists of essentially two steps: Ionization
and propagation. In the following we shall refer to this situation
where recollision has been switched off as the two-step model.
An example where recollision is absent is the case of ionization
in close to circularly polarized fields considered here.

Above-threshold ionization, as well as other strong-field
phenomena generated by elliptically polarized fields, has
attracted particular attention for a number of reasons. First,
the evolution of the distributions with increasing ellipticity
from linear to circular gives additional information about
the process under consideration. Second, in the experiment
it is easier to control the ellipticity than the intensity of the
fluctuating laser pulse. Finally, the kinematics caused by an
elliptically polarized field is essentially two dimensional (2D),
in contrast to the case of linear polarization, when the laser
field acts only along one spatial direction. The 2D nature,
in turn, gives rise to features and properties which are not
accessible with a linearly polarized laser field. For example,
the ATI by a circularly polarized laser pulse was used in the
first observation of the carrier-envelope effect in [38], see also
theoretical studies [39,40].

Another example is the angular distribution of photo-
electrons generated by an elliptically polarized field. While
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the SFA predicts a fourfold symmetry of the photoelectron
angular distribution with respect to the both main axes of
polarization ellipse [41], the experimentally observed distri-
butions possess only inversion symmetry, see Refs. [23–25].
This was soon realized to be an effect of the Coulomb
potential [26–28,42–44]. Other examples are the predomi-
nant ionization when the field points along the major axis
resulting in peaks in the photoelectron momentum distri-
bution along the minor axis [41,45,46], asymmetries in the
photoelectron angular distributions resulting from the ioniza-
tion of the oriented molecules [47–52], attosecond angular
streaking [53,54], and the possibility of detailed exploration
of Stark and polarization effects in the initial tunneling
step [55].

In Ref. [56] the molecular SFA was extended to include
the linear and quadratic Stark shifts. The adiabatic approx-
imation was made in order to find the effective potential
for the outer electron, which includes the laser field and
the polarization effects of the inner core. It was found in
Ref. [55] that the parabolic coordinates approximately separate
the Schrödinger equation with this effective potential. This
separation procedure defines a certain tunneling geometry,
that is, identifies the flow of the electron charge associated
with the tunneling electron in parabolic coordinates. The
emerging physical picture is referred to as tunnel ionization
in parabolic coordinates with induced dipole and Stark shift
(TIPIS). Here we describe the TIPIS model and explore its
predictions.

In the study of Ref. [55] the offset angle θ , that is, the angle
between the maximum of the momentum distribution and the
minor axes of the polarization ellipse (see Fig. 1), was in focus.
It was found that for Ar in the tunneling regime this angle is
of the order of 10◦–15◦ and decreasing with laser intensity,
whereas for He the angle was 5◦–10◦ and less sensitive to the
laser intensity. The difference between Ar and He was related
to the difference in polarizability of the two systems. It is
interesting to find a situation where the offset angle is larger,
that is, the effect of rotation away from the minor axis is more
pronounced. Here we consider not only the offset angle, but
the shape of the whole distribution and its evolution with the
intensity and wavelength.

In this paper we (i) present an exhaustive derivation of
the TIPIS model; (ii) validate the semiclassical approach
by comparing with TDSE results; (iii) analyze momentum
distribution generated by an elliptically polarized laser field;
(iv) further investigate the role of the polarization effects;
and (v) compare different approaches to the semiclassical
simulations of the ATI.

The paper is organized as follows. In Sec. II we discuss
approaches to the classical simulation of the momentum
distribution, present a detailed derivation of the TIPIS
model, and discuss its range of applicability. Our results
are discussed in Sec III and conclusions are given in
Sec. IV.

II. SEMICLASSICAL MODELS

In the semiclassical approach to ATI, the electron is ejected
from the atom by tunneling [20–22]. Subsequently, Newton’s
equations of motion are solved for the electron, starting out at

the exit of the tunnel in the combined atomic or ionic potential
V (r) and the electric field F(t) of the laser pulse,

d2r
dt2

= −∇V (r) − F(t). (1)

Semiclassical models have been successfully used to explain
various strong-field phenomena involving single ionization
(see, e.g. [55,57–64]) and double ionization [34–37,65,66].
The abovementioned models vary greatly with respect to the
particular implementation. Here we present the semiclassical
model referred to as TIPIS [55].

To solve Eq. (1) one needs to specify the initial conditions
for the electron in phase-space just after the escape from the
atom. The static tunneling rate with which the classical tra-
jectories are weighted is a quantum input in the semiclassical
model. The exit point at the outer turning point of the barrier
also depends critically on the quantum model used to solve the
tunneling problem—a key point that we come back to below.
To start, we consider the static problem of an electron, bound
by V (r) in the presence of the static electric field F (which
should be interpreted as the instantaneous value of the laser
field at the time of ionization and it is assumed to point in the
positive z direction) [67],( − 1

2� + V (r) + F · r
)
� = −Ip(F )�. (2)

In Eq. (2) we have included the static Stark shifts [50,56],

Ip(F ) = Ip(0) + 1
2 (αN − αI )F 2, (3)

where Ip(0) is the field-free ionization potential and αN and
αI are the static polarizabilies of the atomic system with
charge Z − 1 and the Z-charged atomic ion, respectively.
We have specialized to the case of atoms, with no permanent
dipole moment and therefore no linear Stark shift is present in
Eq. (3). The above perturbative expansion of the Stark-shifted
ionization potential holds for shifts that are small compared to
the field-free ionization potential Ip(0). In all cases presented
in this paper, this requirement is satisfied.

Following the ionization step, we will consider propagation
in the potential V (r),

V (r,t) = −Z

r
− αI F (t) · r

r3
, (4)

which is valid at large and intermediate distances [56,67], and
where the multielectron effect expressed through the induced
dipole of the ion [αI F (t)] is taken into account [55,56]. We
refer to the second term of Eq. (4) as the multielectron (ME)
term.

In semiclassical simulations it is important to find the tunnel
exit point ze, from where the classical trajectory starts. In the
next two subsections we present two possible approximate
separations of the static tunneling problem that lead to different
values of the tunnel exit point, and therefore different results
in the semiclassical model.

A. Field direction model

The simplest and most widely used approach to determine
the tunneling path and ze is to consider the potential barrier
formed by the atomic potential and the electric field of the
laser in a 1D cut along the direction of the field. We denote
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this approach as the field direction model (FDM) (see, e.g.,
Refs. [57,58,63,68,69]), where this model was used. The
tunnel exit point is found from

V (ze) + Fze = −Ip(F ). (5)

However, in this approach, it is implicitly assumed that the
tunneling problem can be treated as one dimensional along the
field direction. The direction along the field can be separated
from the transverse coordinates in Eq. (2) if the potential does
not depend on the transverse dimension, that is when V (r) =
V (z). Then the wave function can be sought as a product
�(x,y,z) = �2(z)�1(x,y), and Eq. (2) is separated as follows:

−1

2

(
∂2

∂x2
+ ∂2

∂y2

)
�1(x,y) = λ1�1(x,y), (6)

λ1 = p2
x + p2

y

2
= p2

⊥
2

, (7)(
−1

2

∂2

∂z2
+ V (z) + Fz

)
�2(z) = λ2�2(z), (8)

where λ1 and λ2 are the separation constants. The sum of the
separation constants is equal to the energy of the initial state

λ1 + λ2 = −Ip(F ), (9)

and therefore

λ2 = −
(

Ip (F ) + p2
⊥

2

)
. (10)

Equation (6) states the fact that because the artificial potential
used in the FDM does not depend on the transverse dimension,
the electron can be described as a free particle in these degrees
of freedom. On the other hand, Eq. (8) gives the effective 1D
tunneling problem where Eq. (10) shows that the effective
ionization potential is increased by the transverse kinetic
energy of the particle [70]. The minimal ionization potential
that occurs for transverse energy zero is taken into the equation
for the tunnel exit point in FDM (5).

It is clear that the potential in Eq. (4), even without the ME
term, is not in the form required for a separation in the FDM. A
much more accurate approach is to use parabolic coordinates
as discussed in the next subsection.

B. Separated problem in parabolic coordinates
and TIPIS model

To separate the problem of an electron bound by a pure
Coulomb potential in a static field, parabolic coordinates are
used [20]:

ξ = r + z, η = r − z, φ = arctan (y/x) . (11)

Under the assumption that the electric field vector points in the
positive z direction, the separation results in two 1D problems:
in the ξ coordinate the electron is trapped in an attractive
potential without the possibility to tunnel out, whereas in the η

coordinate a potential barrier exists that enables tunneling [20].
However, for the potential in Eq. (4), where the ME term
is included, and also, in general for atomic and molecular
potentials, such a separation is not possible. In Ref. [55] an
approximate separation in the limit ξ/η � 1 was carried out.
As the external field is increased, the exit point moves to

smaller distances. Hence, the approximate separation becomes
inaccurate if the field strength becomes too large.

To perform the separation we seek the solution to Eq. (2) in
the product form �(r) = (1/

√
ξη)f1(ξ )f2(η)eimφ/

√
2π , and

after retaining the lowest-order term in ξ/η coming from αI F ·
r/r3 we arrive at two separated equations

d2f1(ξ )

dξ 2
+ 2

(
−Ip(F )

4
− V1(ξ,F )

)
f1(ξ ) = 0, (12)

d2f2(η)

dη2
+ 2

(
−Ip(F )

4
− V2(η,F )

)
f2(η) = 0. (13)

The potentials V1 and V2 are

V1(ξ,F ) = −β1(F )

2ξ
+ m2 − 1

8ξ 2
+ Fξ

8
, (14)

V2(η,F ) = −β2(F )

2η
+ m2 − 1

8η2
− Fη

8
+ αIF

η2
, (15)

where β1 (F ) and β2 (F ) are the separation constants fulfilling

β1(F ) + β2(F ) = Z, (16)

β2(F ) = Z − (1 + |m|)
√

2Ip(F )

2
. (17)

Again, the potential V1(ξ,F ) along the ξ coordinate is a
bound one, while V2 (η,F ) shows that along the η coordinate
tunneling is possible. To lowest order in ξ/η, the potential (14)
is identical to the potential obtained for ξ when separating the
pure Coulomb plus field problem. In addition to the terms that
appear for pure Coulomb potential and a field, the potential
(15) along the η direction contains the multielectron term
αIF/η2. The sum of the separation constants gives the nuclear
charge Z [Eq. (16)], in contrast to the FDM where the sum of
the separation constants gives the Stark-shifted eigenenergy of
the initial state [Eq. (9)].

The separation in parabolic coordinates is not to be
understood as a coordinate transformation from the FDM
since Eqs. (13) and (8) define different tunneling problems.
The tunneling occurs through the η coordinate; this defines
the geometry of tunneling, that is, the “natural” path of the
tunneling current flow in atoms [55]. The tunnel exit point ze

is obtained as ze ≈ −ηe/2, where ηe is obtained by equating
the potential V2 of Eq. (15) with the energy term −Ip/4, that
is,

V2(ηe,F ) = −Ip(F )

4
. (18)

The approximate separation of the tunneling problem in
parabolic coordinates, together with the inclusion of Stark
shifts and the ME term, are the essential ingredients of the
TIPIS model. We note that, contrary to the FDM, in this
treatment no unphysical assumption about free motion in the
transverse degrees of freedom is introduced.

Equation (18) for ηe is a cubic equation. However, for exit
points that are sufficiently far away from the origin, that is, for

ηe � 2[αIF + (m2 − 1)/8]

β2(F )
, (19)
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Eq. (18) becomes quadratic and the exit point ηe is well
approximated by

ηe ≈
Ip(F ) +

√
I 2
p(F ) − 4β2(F )F

F
. (20)

In Cartesian coordinates, using ze ≈ −ηe/2,

ze ≈ −
Ip(F ) +

√
I 2
p(F ) − 4β2(F )F

2F
, (21)

which is different from the corresponding exit point in FDM,
following from (5)

ze ≈ −
Ip(F ) +

√
I 2
p(F ) − 4ZF

2F
. (22)

Below we show examples highlighting that the final momen-
tum depends very sensitively on the use of either Eq. (18) or
Eq. (22) for the exit point.

C. Details of the classical simulations

In our calculations we consider the following short laser
pulse elliptically polarized in the (x,y) plane:

F (t) = F0√
1 + ε2

sin2 (πt/τL)

× [cos(ωt + ϕ)ex + ε sin(ωt + ϕ)ey], (23)

with the duration τL = (2π/ω)np and a sine-square envelope,
and where np is the number of cycles, ε is the ellipticity,
and ϕ is the carrier-envelope phase. As in recent experiments
[55] we use ε = 0.78 throughout. Note that the rescattering
process is suppressed for close to circularly polarized field
(see, e.g., [71]), and direct electrons, which we are interested
in, dominate in the ATI spectrum.

In the present studies we assume that the electron has
zero initial velocity in the direction of the laser field v|| =
0, however, we include an initial transverse velocity v0⊥.
The ionization instant and this initial transverse velocity
are distributed according to the static ionization rate in the
tunneling regime [21,22,68]:

w (t0,v0) ∼ exp

(
−2κ3

3F

)
exp

(
−κv2

0⊥
F

)
, (24)

where F = F (t0). For simplicity, we omit the preexponential
factor in Eq. (24). Although this factor changes the total
ionization rate by several orders of magnitude, its effect on
the shape of the final momentum distributions, which we are
interested in, is weak for atoms. Moreover, analysis of the
transverse momentum distributions in terms of the Siegert
eigenfunctions [72] showed that the Gaussian shape of the
distribution in Eq. (24) holds if the laser field is less than
0.2 a.u., which is the regime of interest in our case.

An ensemble of 1.5 × 106 trajectories weighted with the
probability given by Eq. (24) was used to calculate the
momentum distributions. Equation (1) was solved using
a fourth-order Runge-Kutta method with adaptive stepsize
control [73]. It is necessary to soften the 1/r2 ME term in
numerical simulations because it tends to the infinity as r → 0.
To do so we multiply this term by the factor exp (−b0/r),

where b0 = 0.1 a.u. Otherwise, nonphysical bursts can appear
in the momentum distributions. Bearing in mind that it is
often very difficult to stabilize the carrier-envelope phase
in the experiment, we choose ϕ in Eq. (23) randomly for
each trajectory. The distributions calculated in this way are,
however, very similar to those with ϕ = π (or ϕ = 0) since the
absolute maximum of the field (23) occurs at that particular
phase and according to Eq. (24) the absolute maximum of the
field is strongly favored. We typically use np = 6.

The calculation of the momentum distributions of the
photoelectrons must take into account the possible population
of Rydberg orbits, see [59,74]. So we follow the procedure of
Ref. [74] and exclude trajectories with negative energy at the
end of the pulse, and take into account the subsequent motion
of electrons with positive energies in the Coulomb field of
the atomic residual. The electron momentum q = q (t0,v0,τL)
and its position r = r (t0,v0,τL) at the end of the laser pulse
uniquely determine the asymptotic momentum:

P = P
P (L × a) − a

1 + p2L2
. (25)

Here L = r × q and a = q × L − r/r are the conserved
angular momentum and Runge-Lenz vector, respectively. The
above equation corrects a misprint in Ref. [74]. The absolute
value P of the asymptotic momentum, appearing in Eq. (25),
is found from energy conservation:

q2

2
− Z

r
= P 2

2
. (26)

D. Analytical estimates

Numerical simulations give valuable insights into the
properties and evolution of the momentum distributions.
Nevertheless, it would be desirable to have some analytical
estimates for better understanding of the underlying physics.
Let us then write the asymptotic momentum of an electron
tunneling at time t0 with nonzero initial velocity v0 as a sum:

P(t0,v0) = PL(t0) + v0 + PC(t0,v0)

+ PME (t0,v0) . (27)

Here PC and PME are the contributions of the Coulomb force
FC = −r/r3 and of the multielectron force FME = ∇[αI F(t) ·
r/r3], respectively, and PL(t0) = − ∫ τL

t0
F(t)dt is the integral

of the force due to the external field F(t) from the time of
ionization. In the simpleman’s model PL is the estimate of
the final momentum. Here, however, the effects of other force
terms are significant. In order to estimate PC and PME, one
can use the approach of Refs. [25,74]. Hence we treat the
Coulomb and ME potentials as perturbations and calculate
each contribution by integrating the respective force along
a trajectory rL(t) = ∫ t

t0
PL(t ′)dt ′ + v0(t − t0) governed by the

laser field only:

PC = −
∫ +∞

t0

dt
rL(t)

r3
L(t)

, (28)

PME =
∫ +∞

t0

dt

(
αIF(t)

r3
L

− 3αI [F(t) · rL]rL

r5
L

)
, (29)
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where the upper integration limit is extended to infinity. We
restrict our consideration to sufficiently large ellipticities.
Therefore, the trajectory of an electron will not come very
close to the atomic residual for the vast majority of initial
conditions. Already at the exit of the tunnel the Coulomb and
ME forces are small as compared to that of the laser field and
they decrease further along the trajectory [25].

Estimates for both contributions can be obtained by calcu-
lating the integrals in Eqs. (28) and (29) along the trajectory
generated by a constant field F (t) = F (t0). Then, for small
initial velocities, v0 � κ, the main contributions are given by

PC = −π

4

√
2

r3
0 F (t0)

nF (t0) − v0⊥
2r2

0 F (t0)
n⊥ (t0) (30)

and

PME = 3παI

8

√
2F (t0)

r5
0

nF (t0) + αIv0⊥
r3

0

n⊥ (t0) , (31)

where r0 is the absolute value of the tunnel exit point, nF (t0)
is a unit vector along the laser field at time t0, and n⊥ (t0) is a
unit vector in the polarization plane perpendicular to the laser
field at t0.

One can improve the estimate of Eq. (30) by evaluating
the integral in Eq. (28) along a trajectory in the field F (t) ≈
F (t0) + F′ (t0) (t − t0). For simplicity, in this analytical devel-
opment let us consider only a single electron trajectory, cor-
responding to the maximum of the field. For such a trajectory
and for carrier-envelope phase ϕ = π one has t0 = τL/2, and,
therefore, nF = ex , n⊥ = ey , and F = F0/

√
1 + ε2. Then, one

has the following estimate of the Coulomb contribution:

PC (t0 = τL/2,v0⊥ = 0) = −
(

π

4

√
2

Fr3
0

ex + εω

6Fr0
ey

)
.

(32)

Let us also introduce the total correction PI = PC + PME due
to the ion potential to the electron momentum:

PI (t0 = τL/2,v0⊥ = 0) = π

4

√
2

Fr3
0

(
3αIF

2r0
− 1

)
ex

− εω

6Fr0
ey. (33)

For the parameters considered here 3αIF/2r0 � 1 so the
estimates Eqs. (32) and (33) show that the contribution of
the ME term is small compared to the Coulomb correction.
Both contributions increase with increasing intensity, but PME

increases faster than PC due to the additional factor of r0 in
the denominator, see Eq. (33). As we shall see in Sec. III B
the estimates provided by Eqs. (32) and (33) underestimate the
effect of the ME term and do not account quantitatively for the
momentum distributions. However, they do provide valuable
insight in the evolution and properties of the momentum
distributions.

III. RESULTS AND DISCUSSION

In the following, using our semiclassical model, we con-
sider the momentum distributions from elliptically polarized

FIG. 1. (Color online) The 2D electron momentum distribution
for ionization of Ar by a Ti:sapphire laser pulse (λ = 800 nm) with
a duration np = 6 cycles, peak intensity of 0.8 × 1015 W/cm2, and
ellipticity ε = 0.78. The Keldysh parameter is γ = 0.5. The offset
angle θ is shown on the figure. The black curve represents −A (t),
where A (t) is the vector potential corresponding to the field (23).

pulses, compare them with the solution of the TDSE, and
consider the differences between the FDM and TIPIS model.
In Ref. [55] the TIPIS model was already compared with exper-
imental data for the rotation (offset) angle of the momentum
distribution generated by elliptically polarized field, that is,
the angle θ between the maximum of the distribution and the
minor axes of the polarization ellipse. In Fig. 1 we present the
momentum distribution in the polarization plane for ionization
of Ar by the field of Ti:sapphire laser. The figure shows the
main characteristics of the momentum distribution consisting
of two main lobes rotated by the angle θ with respect to the
minor axis, and that the distribution peaks at −A (t).

A. Validation of the TIPIS model

We establish the validity of our semiclassical model by
comparison with the experiment and an ab initio solution of
the TDSE. In Fig. 2 we present the momentum distribution
in the polarization plane for the case of ionization of the
hydrogen atom. In Ref. [75] the solution of the TDSE for the
case of the hydrogen atom in a few-cycle circularly polarized
laser pulse was presented. The distribution now only has a
single main lobe. This is due to the short duration of the
phase-stabilized pulse. Calculations in our semiclassical model
for the exact same parameters as in Ref. [75] yielded the
momentum distribution in Fig. 2. Comparing the momentum
distributions obtained with the TDSE, the distributions in Fig. 2
look qualitatively very similar. The interference pattern that
is present in the TDSE momentum distribution is not repro-
ducible by our semiclassical model. A quantitative comparison
of the distributions can be made by calculating the offset angle:
for the TDSE the offset angle is 23◦ for 5.0 × 1013 W/cm2 and
12◦ for 1014 W/cm2 [75], while the offset angles calculated
at these intensities within the semiclassical model are 18◦
and 15◦, respectively. The agreement is quite good, also for
lower intensity where γ = 1.5, and the application of tunneling
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FIG. 2. (Color online) The 2D electron momentum distributions
in the polarization plane for ionization of H(1s) by circularly polarized
Ti:sapphire laser pulse with a duration np = 3 cycles and peak
intensity of 1014 W/cm2. Panels (a) and (b) show results obtained
by solving the TDSE, and using the classical simulations within the
TIPIS model, respectively. The curves represent −A (t), where A (t)
is the vector potential, defined as in Ref. [75] for this particular figure.

theory for the description of the initial tunneling step is
expected to be less accurate.

B. Momentum distributions for λ = 1600 and λ = 800 nm:
Difference between the FDM and the TIPIS model, and the

role of the ME term

We are interested in a situation where the offset angle θ

is larger than for noble gases, that is, when the rotation of
the momentum distribution is more pronounced, so that any
differences between the semiclassical approaches and also the
role of the ME term could be more easily observed. At first
glance it would seem that alkali metals are suitable candidates
for a large θ . Indeed, the static polarizabilities of the Ar and
Ar+ atom are αN = 11.08 a.u. and αI = 7.2 a.u, and, for
example, in the case of Li the same quantities are equal to 164.2
and 0.1883 a.u., respectively [76,77]. However, alkali metals
have very low ionization potential (for Li I0 = 5.39 eV) and
this prevents us from using them in our simulations. In order to
understand this fact, let us discuss the applicability conditions
of the TIPIS model in more detail.

The validity range of the simulations based on the TIPIS
approach is restricted by the two following conditions. On one
hand, the laser intensity should not be too high: The second
term of Eq. (3) should be not more than 10−20% of the first
one. On the other hand, the laser field needs to be strong enough
to keep the Keldysh parameter less than or of the order of
unity, such that the ionization probability can be described by
tunneling. Thus for each atomic species and given wavelength
(in our case λ = 1600 or λ = 800 nm) the aforementioned
conditions define a range of acceptable intensities. In the
case of Li and λ = 800 nm, this range of intensities is
8.7 × 1012−8.7 × 1013 W/cm2, which corresponds to the
following interval of the Keldysh parameter: γ = 4.8 − 1.6.
Although the tunneling ionization rate often works even when
the Keldysh parameter is several times greater than unity (see,
e.g., Ref. [78]), we do not consider alkali metals here.

A close inspection of the ionization potentials and static
polarizabilities of different atomic species shows that elements
as Mg, Cu, or Zn can be used for the present purpose. Indeed,
these elements have higher ionization potentials than the

alkali metals. Simultaneously, their polarizabilities are high
and substantially different from those of the corresponding
ions. We perform our simulations for Mg since multiphoton
ionization of this atom has already attracted attention in ex-
periment [79–83] and theory [84–88]. For Mg, Ip = 0.28 a.u.,
αN = 71.33 a.u., and αI = 35.00 a.u., and at the wavelength of
800 nm, our simulation technique is applicable at the intensities
of 2.35 × 1013−1.0 × 1014 W/cm2, for which the Keldysh
parameter is γ = 2.0 − 1.0.

The results of our simulations for Mg are shown in
Figs. 3–5. First we turn our attention to Figs. 3 and 4
where 2D momentum distributions at three different intensities
calculated within three different semiclassical models at
two wavelengths are shown. The difference between the
semiclassical models compared in Figs. 3 and 4 is the potential
V (r) in which the classical trajectories (1) are propagated. The
first column of Figs. 3 and 4, that is, panels (a), (d), and (g),
presents the distributions, calculated ignoring the influence
of the ionic potential on the electron motion after tunneling,
that is, the tunneled electron moves only in the laser field
(the simpleman’s model). It is reasonable therefore that these
distributions are very similar to those obtained within the SFA
(see, e.g. Ref. [78]). The second column of Figs. 3 and 4
shows the same distributions, but now including the Coulomb
potential. Finally, the third column presents the results of the
full TIPIS model when an electron moves under the action of
the laser field and the potential of Eq. (4). It should be stressed
that in all three cases the exit points were calculated with the
account of the Stark shift, while for the distributions in the first
and the second columns of Figs. 3 and 4, the ME term was
omitted in Eq. (18). Moreover, the effect of the capture into
Rydberg states was taken into account while calculating the
distributions of Figs. 3 and 4, see Sec. II above.

The distributions of Fig. 3 are similar to those for Ar at
800 nm, see Fig. 1 and Ref. [55]. As expected, the effect of the
rotation is more pronounced, now θ ∈ [30◦; 40◦], whereas for
Ar it was θ ∈ [10◦; 15◦] (see Fig. 1). At the same intensities
the shape of the distributions at a wavelength of 800 nm
differs from that at a wavelength of 1600 nm, compare Fig. 3
and Fig. 4. The reason is that the Keldysh parameter at λ =
800 nm is two times greater than at λ = 1600 nm. This, in turn,
has two consequences. First, for larger γ the 2D distribution
calculated within the plain SM [see Figs. 4(a), 4(d), and 4(g)]
is two times closer to the origin of the (px,py) plane because
one has P = PL ∼ (F/ω,εF/ω) = (κ/γ,εκ/γ ). Conversely,
at λ = 800 nm the relative yield of neutral excited atoms N∗
with respect to the number of singly charged ions N+ is larger
than at a wavelength of 1600 nm in accordance with Ref. [74],
where N∗/N+ ∼ 1/λ5/2, provided the field strength F is the
same for the two wavelengths.

In the first column of Figs. 3 and 4 the momentum
distributions consist of two lobes along the minor polarization
axis (along the Py axis), that peak at Py equal to the value
of the vector potential at the time of maximum emission
[the time when the electric field (23) points along the major
polarization axis]. In the second and third columns of Figs. 3
and 4, the momentum distributions are shifted with respect to
the minor polarization axis of the field by some offset angle,
discussed above in connection with Fig. 1. By comparison
between the second and third columns in Figs. 3 and 4 we
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FIG. 3. (Color online) Momentum distributions of the photoelectrons emitted from Mg at a wavelength of 1600 nm and ellipticity ε = 0.78
calculated within the three different versions of semiclassical approaches. The left column, that is, panels (a), (d), and (g), shows the distributions,
calculated ignoring the ionic potential after tunneling, when the tunneled electron moves in the laser field only. The middle column [panels (b),
(e), and (h)] depicts the same distributions, but with consideration for the Coulomb field. The right column [panels (c), (f), and (i)] presents
the results of the full TIPIS model, when both terms are taken into account in Eq. (4). The distributions (a)–(c), (d)–(f), and (g)–(i) correspond
to the intensity of 2.35, 3.5, and 5.0 × 1013 W/cm2, and to the Keldysh parameter of 1.05, 0.85, and 0.7, respectively. The same color scale is
used for all the distributions.

can gauge the influence of the ME term. At low intensities
[Figs. 3(b), 3(c), 4(b), and 4(c)] the ME term does not play
any noticeable role: there is hardly any difference whether
the ME term is taken into account or not. However, the
situation changes with increasing intensity: The offset angles
θ of the distributions of Figs. 3(f) and 3(i) are smaller than
those of Figs. 3(e) and 3(h). This is so because in the initial
stages of the propagation the ME and Coulomb forces act in
opposite directions, which results in a smaller offset angle
when the ME term is taken into account. This feature is
also captured in the analytic estimates: the x components of
the Coulomb and ME corrections of the electron momentum
have different signs, see Eq. (33). Next, detailed comparison
of the semiclassical calculations and the analytic estimates

show that the estimate of Eq. (31) for the contribution of
the ME term is quite good. For example, at the intensity
of 5.0 × 1013 W/cm2 and at a wavelength of 800 nm, for
ϕ = π and Ip = 7.64 eV (Mg atom), and for initial conditions,
which correspond to the maximum of the field Eq. (23), that
is, for t0 = τL/2 and v0 = 0, one has PME = (0.058,0) from
the estimate Eq. (31), whereas exact numerical solution of
Newton’s equations gives (0.046, − 0.01). Contrary to this, the
estimate of the Coulomb contribution Eq. (30) is not accurate.
The latter does not describe a decrease in the Py component
due to the Coulomb field (along minor axis), see Fig. 4, which
is clear from the following example: For the same initial
conditions and field parameters as above, the estimate Eq. (30)
gives PC = (−0.27,0), whereas the numerical solution gives
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FIG. 4. (Color online) Momentum distributions of the photoelectrons emitted from Mg at a wavelength of 800 nm and ellipticity ε = 0.78
calculated within the three different versions of semiclassical approaches. The left column, that is, panels (a), (d), and (g), shows the distributions,
calculated ignoring the ionic potential after tunneling, when the tunneled electron moves in the laser field only. The middle column [panels (b),
(e), and (h)] depicts the same distributions, but with consideration for the Coulomb field. The right column [panels (c), (f), and (i)] presents the
results of the full TIPIS model, when both terms are taken into account in Eq. (4). The distributions (a)–(c), (d)–(f), and (g)–(i) correspond to
the intensity of 2.35, 3.5, and 5.0 × 1013 W/cm2, and to the Keldysh parameter of 2.1, 1.7, and 1.4, respectively. The same color scale is used
for all the distributions.

(−0.31, − 0.19) with a nonvanishing y component. Therefore
the estimate of Eq. (32) is to be used instead of Eq. (30).

The evolution of the distributions at λ = 800 nm with
increasing intensity is more dramatic since not only do the
angular offset changes, but also the shapes of the momentum
distributions. The two main lobes in the momentum distribu-
tion, although distorted, are still present, but also a substantial
amount of probability is located in the low-energy part of the
distribution. The central (low energy) part of the distribution
shown in Fig. 4(e) is more depleted than that of Fig. 4(f). One
could expect that this depletion results from the more effective
capture into bound states in the absence of the ME force. This
is, however, not true. From the estimate (33) one can see that

the magnitude of the final electronic momentum is slightly
decreased when the ME term is taken into account. This leads
to a larger number of electronic trajectories finishing with
smaller radial momenta and, in accord with Eq. (26), more
trajectories will finish with negative energy and be captured.
Hence the effect of capture after the end of the pulse is stronger
when the ME term is taken into account in the potential
of Eq. (4): The relative yields of the captured trajectories
associated with the momentum distributions of Figs. 4(e) and
4(f) are equal to 0.06 and 0.13, respectively. As expected from
Eq. (15), it is seen from Figs. 3 and 4 that the influence of the
ME term increases with increasing intensity, which is again
consistent with the estimate of Eq. (31).
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FIG. 5. (Color online) The electron momentum distributions for
ionization of Mg at a wavelength of 1600 nm for the ellipticity
ε = 0.78 and two different intensities: (a), (b) 2.35 × 1013 W/cm2

and (c), (d) 3.5 × 1013 W/cm2, which corresponds to the Keldysh
parameter γ of 1.05 and 0.85, respectively. The left column of the
panels corresponds to the TIPIS model, whereas the right one presents
the results of the FDM with the potential given by Eq. (4). In both
cases Stark shifts and ME terms are included. The color scale is the
same for all the panels.

Next we test to which extent the separation procedure of the
static problem of an atom plus field into an one-dimensional
tunneling problem, described in Secs. II A and II B, can influ-
ence the outcome of the semiclassical simulation. Momentum
distributions calculated according to the full TIPIS approach
and within the FDM with all force terms are shown in Fig. 5
for three different laser intensities at wavelengths of 1600 nm.
The only difference between these approaches is the position
of the exit point, which is different in TIPIS and in FDM.
We note that in all cases in Fig. 5 the tunneling occurs
below the barrier, calculated in FDM or TIPIS. Figure 5
illustrates that the exit point plays a crucial role in semiclassical
simulations.

Since β2(F ) < Z [see Eq. (17)], and comparing Eqs. (21)
and (22), it is evident that the exit point evaluated with the
TIPIS model is larger than in the FDM. This is true whether
the inequality Eq. (19) is valid (as in the case of Figs. 3–5)
or not. Smaller exit points result in larger influence of the

parent ion potential on the trajectory of the tunnelled electron
and therefore larger offset angle. This explains why the offset
angle is larger in the FDM. At the lower intensity [Figs. 5(a)
and 5(b)], the difference between the exit points in the FDM
and the TIPIS model is small and therefore the differences
between the momentum distributions [Figs. 5(a) and 5(b)] are
small. Increasing the intensity [Figs. 5(c) and 5(d)], the tunnel
exit point moves closer to the origin and simultaneously the
difference between the exit points obtained with the FDM and
the TIPIS model increases. Hence, there is a large difference
between the offset angles in Figs. 5(c) and 5(d). These trends
are correctly captured in the analytic estimates (30)–(31) and
(33): they are all inverse proportional to powers of the tunnel
exit point r0. In the final expression of Eq. (33), the ratio
between the x and the y component of final momentum is
inverse proportional to the tunnel exit point, which gives
correct dependence of the offset angle on the tunnel exit point.

IV. CONCLUSIONS

In conclusion, we have investigated in detail a recently
introduced physical picture of above-threshold ionization [55]:
Tunnel ionization in parabolic coordinates with induced dipole
and Stark shift followed by classical propagation in all force
fields. We have tested this model by applying it for the
investigation of the photoelectron momentum distributions in
elliptically polarized field. The present approach demonstrates
good agreement with recent experimental data [55] and with
TDSE [75]. The role of the multielectron effects in the
formation of the photoelectron momentum distributions is
clearly identified and investigated over a wide range of laser
intensities and wavelengths. The tunnel exit point, and with
it the separation procedure yielding the one-dimensional tun-
neling problem, are clearly demonstrated to have a profound
influence on the momentum distributions. The evolution of
the momentum distributions with respect to the intensity, the
terms in the atomic (ionic) potential, and the tunnel exit point
are correctly captured by the analytic estimates and scalings
proposed here. Finally, all the effects presented here are studied
using pulses with random carrier-envelope phase and therefore
can be easily checked in an experiment.
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Abstract. We extend the semiclassical two-step model for strong-field ionization that describes quantum
interference and accounts for the Coulomb potential beyond the semiclassical perturbation theory to the
hydrogen molecule. In the simplest case of the molecule oriented along the polarization direction of a linearly
polarized laser field, we predict significant deviations of the two-dimensional photoelectron momentum dis-
tributions and the energy spectra from the case of atomic hydrogen. Specifically, for the hydrogen molecule
the electron energy spectrum falls off slower with increasing energy, and the holographic interference fringes
are more pronounced than for the hydrogen atom at the same parameters of the laser pulse.

1 Introduction

Strong-field physics focuses on the interaction of intense
laser radiation with atoms and molecules. This interaction
leads to such phenomena as above-threshold ionization
(ATI), formation of the high-energy plateau in the elec-
tron energy spectrum, generation of high-order harmonics,
sequential and nonsequential double and multiple ion-
ization, etc. (see Refs. [1–4] for reviews). Among the
main theoretical approaches used in strong-field laser-
atom physics are the direct numerical solution of the
time-dependent Schrödinger equation (TDSE) (see, e.g.,
Refs. [5–7]), the strong-field approximation (SFA) [8–10],
and the semiclassical models (see, e.g., Refs. [11–14])
applying a classical description of an electron after it has
been released from an atom, e.g., by tunneling ionization
[15–17].

However, ionization of a molecule by a strong laser pulse
is much more complicated than the same process for an
atom. This is due to the presence of extra degrees of free-
dom (nuclear motion), the corresponding time scales, and
complicated shape of the electronic orbitals. In order to
fully consider all the features of the molecular ionization,
the TDSE in three spatial dimensions should be solved.
This is a very difficult task, which is possible only for
the simplest molecules and under selection of the most

? Contribution to the Topical Issue “Many Particle
Spectroscopy of Atoms, Molecules, Clusters and Surfaces
(2018)”, edited by Károly Tőkési, Béla Paripás, Gábor Pszota,
and Andrey V. Solov’yov.

a e-mail: nikolay.shvetsov@itp.uni-hannover.de

relevant degrees of freedom (see Refs. [18,19]). Therefore,
approximate semianalytic models that can provide the
basic physical insight are very important for theoretical
description of molecules in strong laser fields. The molec-
ular strong-field approximation (MO-SFA) [20,21] and the
molecular tunneling theory, i.e., the molecular Ammosov-
Delone-Krainov (MO-ADK) theory [22], are the most
widely known examples of such models. MO-SFA is a gen-
eralization of the atomic SFA onto the case of molecules.
In turn, the MO-ADK is the extension of the Perelomov-
Popov-Terent’ev [16] or ADK [17] tunneling formulas. In
both MO-SFA and MO-ADK (as well as in the SFA and
ADK) ionization is described as a transition from an ini-
tial field-free state to a Volkov state (the wave function
for an electron in an electromagnetic field). As a result,
intermediate bound states and the Coulomb interaction
in the final state are completely neglected in the MO-SFA
and MO-ADK.

In contrast to this, the semiclassical approaches allow
to account for the effects of the Coulomb potential. In
addition to this, the trajectory-based models do not usu-
ally require as high computational costs as the numerical
solution of the TDSE. Finally, by analyzing classical tra-
jectories these models are able to illustrate the mechanism
underlying the strong-field phenomena of interest. For
these reasons, the semiclassical model accounting for the
ionic potential has become one of the powerful tools of the
strong-field physics. However, presently there are only a
few studies applying these models to describe strong-field
ionization of molecules, see, e.g., references [23–26].

Until recently, trajectory-based models have not been
able to account for quantum interference and to describe
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interference effects in photoelectron spectra and momen-
tum distributions. This drawback has been overcome by
a quantum trajectory Monte Carlo (QTMC) [27] and
semiclassical two-step (SCTS) [28] models. In these mod-
els each classical trajectory is associated with a certain
phase, and the contributions of all the trajectories lead-
ing to a given final (asymptotic) momentum are added
coherently. In the SCTS model the phase is calculated
from the semiclassical expression for the matrix element
of the quantum mechanical propagator. Therefore, the
SCTS model accounts for the Coulomb potential beyond
the semiclassical perturbation theory. The phase used in
the QTMC model can be viewed as an approximation
to the full semiclassical phase of the SCTS. As a result,
the SCTS model yields better agreement with the direct
numerical solution of the TDSE than previously developed
QTMC model, see reference [28]. While the QTMC model
was applied to strong-field ionization of molecules (see
Refs. [24,25]), the SCTS model has not been generalized
to the molecular case so far.

In this paper, we extend the SCTS model to molecu-
lar hydrogen. We calculate two-dimensional momentum
distributions, energy spectra, and angular distributions of
ionized electrons, and compare them to the case of atomic
hydrogen. We reveal significant differences in momentum
distributions and electron energy spectra. Then we com-
pare our molecular SCTS to the predictions of the QTMC
model for molecules.

The paper is organized as follows. In Section 2 we for-
mulate the SCTS model for the hydrogen molecule. In
Section 3 we compare the results of the SCTS model for
the H2 molecule and the H atom. The conclusions are
given in Section 4. Atomic units are used throughout the
paper unless indicated otherwise.

2 Semiclassical two-step model
for H2 molecule

Any semiclassical approach to a strong-field process is
based on propagation of an ensemble of classical trajecto-
ries that obey Newton’s equation of motion. We treat the
electric field of the laser pulse F (t) and the ionic potential
V (r, t) on equal footing, and, therefore, the equation of
motion reads as:

d2r

dt2
= −F (t)−∇V (r, t) . (1)

For the H2 molecule the ionic potential reads as

V (r) = − Z1

|r−R/2| −
Z2

|r + R/2| , (2)

where R is the vector that points from one nucleus to
another. Here we assume that the origin of the coordinate
system is placed in the center of the molecule. Following
references [24,25], we choose the effective charges Z1 and
Z2 to be equal to 0.5 a.u.

In order to find the trajectory r (t) and momentum p (t)
by integrating equation (1), we need to specify the initial

velocity of the electron and the starting point of its tra-
jectory. As in many trajectory-based models, we assume
that the electron starts with zero initial velocity along the
laser field v0,z = 0, but can have a nonzero initial velocity
v0,⊥ = v0,xex + v0,yey in the perpendicular direction. (We
imply that the field is polarized along the z axis.) Various
approaches are used to obtain the starting point of the
trajectory, i.e., the tunnel exit point ze. For the H atom
the tunnel exit can be found using the separation of the
tunneling problem for the Coulomb potential in parabolic
coordinates [15]. However, in the case of the H atom we use
the simplest formula for ze neglecting the Coulomb poten-
tial, i.e., assuming triangular potential barrier formed by
the laser field and the ground state energy:

re (t0) =
Ip

F (t0)
, (3)

where Ip is the ionization potential, re (t0) = |ze (t0)|, and
the sign of ze (t0) is chosen the ensure that the electron
tunnels out from under the barrier in the direction oppo-
site to the laser field F (t0) at the time of ionization.
For the H2 molecule we use and compare two differ-
ent approaches to determine ze. The first one applies
equation (3) neglecting the molecular potential, and the
second approach considers the potential barrier formed by
the molecular potential and the electric field of the laser
in a 1D cut along the field direction. This latter approach
is often called the field direction model (FDM), see [29].
Thus in the FDM the tunnel exit point is found from the
equation:

V (r) + F (t0) ze = −Ip. (4)

The electron trajectory r (t) is completely determined by
the ionization time t0 and initial transverse velocity v0,⊥.
However, in contrast to the atomic case, for ionization of
a molecule it is not obvious how to distribute the times of
ionization and the initial transverse momenta.

The two main approaches to this problem are
presently used in semiclassical simulations of the ATI
in molecules: Molecular quantum-trajectory Monte-Carlo
model (MO-QTMC) [24,25] and partial Fourier trans-
form approach for molecules (MO-PFT), see refer-
ences [25,30,31]. The MO-QTMC approach is based on
the MO-SFA, whereas the MO-PFT introduces the wave
function in mixed representation and applies the Wentzel-
Kramers-Brillouin (WKB) approximation. For the param-
eters of interest both approaches yield similar results when
combined with the QTMC model (see Ref. [25]). In the
present paper we use the MO-PFT model. This model is
based on the partial Fourier transform (PFT) approach
for atoms [32]. In order to make the presentation self-
contained, here we repeat the main points of the PFT
and MO-PFT.

The mixed representation wave function Π (px, py, z) of
an electron in a zero-range potential and a static electric
field that points in the direction of the z axis is given by
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ΠH2
(px, py, z) = exp

(
− i

2
pxR sin θm cosϕm −

i

2
pyR sin θm sinϕm

)
Πatom1

(
px, py, z −

R

2
cos θm

)

+ exp

(
i

2
pxR sin θm cosϕm +

i

2
pyR sin θm sinϕm

)
Πatom2

(
px, py, z +

R

2
cos θm

)
(10)

(see Ref. [32]):

Π (px, py, z) = Π (px, py, z0)

√
pz (z0)

pz (z)

× exp {i [S (px, py, z)− S (px, py, z0)]} .
(5)

Here pz (z) = |∂S (px, py, pz) /∂z| is the electron momen-
tum in the z direction, S (px, py, z) is the classical action,
and z0 < 0 is the point (for F > 0) in the classically forbid-
den region, where the one-dimensional WKB solution for
the motion along the z axis is matched to the wave func-
tion of the initial bound state. We note that since z0 is
not a turning point, the wave function and its derivatives
are continuous at z0. The exponential of equation (5) can
be found by integration of the Hamilton-Jacobi equation:

S (px, py, z)− S (px, py, z0)

=
1

3F
(2E′ − 2Fz)

3/2 − 1

3F
(2E′ − 2Fz0)

3/2
. (6)

Here E′ = −
(
Ip + p2⊥/2

)
and p⊥ =

√
p2x + p2y. Assuming

that |z0| << |ze|, where ze = −Ip/F < 0 is the exit point
from the triangular barrier, we expand the expression in
the right-hand side of equation (6) in powers of z0 up to
the first order:

S (px, py, ze)−S (px, py, z0) = i
κ3

3F
+ i

κp2⊥
2F
− iκ |z0| , (7)

where κ =
√

2Ip. Inserting this expression into
equation (5) and replacing the momentum pz (z0) with κ,
we obtain the following expression for the wave function
in mixed representation (see Ref. [32]):

Π (px, py, z) = Π (px, py, z0)

√
κ

pz (z)

× exp

[
− κ

3

3F
− κp2⊥

2F
+ κ |z0|

]
. (8)

For the H2 molecule the bound-state orbital is the bonding
superposition of the two 1s atomic orbitals at the atomic
centers (see, e.g., Ref. [33]).

ΨH2
(r) =

1√
2 (1 + SOI)

[ψatom1 (r−R/2)

+ ψatom2 (r + R/2)] , (9)

where SOI is the atomic overlap integral. In what fol-
lows we omit the coefficient before the sum of two atomic

orbitals in equation (9), since it has no effect on the shape
of the momentum distributions that we are interested in.
The partial Fourier transform of this molecular orbital
reads as (see Ref. [31]):

See equation (10) above

where θm and ϕm are the polar and azimuthal angles
of the molecular axis, respectively (see Fig. 1). Insert-
ing the partial Fourier transforms of the 1s orbitals (see
Ref. [32]) into equation (10) and taking into account that
the new matching points z1 and z2 for atoms 1 and 2 are
z1,2 = z0 ± R cos θm/2, we arrive at the following expres-
sion for the wave function of the H2 molecule in mixed
representation just beyond the tunnel exit:

See equation (11) next page.

Following reference [25], we use expression (11) as a
complex amplitude for ionization at t0 and v0,⊥, without
adding prefactors. Thus, we put F = F (t0), px = v0,x, and
py = v0,y in equation (11). Furthermore, we concentrate
on the case when the H2 molecule is oriented along the
polarization direction of the laser field, i.e., θm = ϕm = 0.
Then the factor in the curly brackets in equation (11) is
a constant for a fixed R. Therefore, in our simulations we
use only the exponential part of the amplitude (11). We
use the ionization potential Ip = 0.60 a.u., what corre-
sponds to the vertical ionization potential of H2 molecule,
i.e., to the case when the H+

2 ion has the same internu-
clear distance R as the neutral hydrogen molecule. Since
in our model the positions of the nuclei are fixed, we dis-
regard the vibrational energy levels when calculating the
ionization potential.

For not too short laser pulses the ionized electron is far
away from both nuclei at the time instant tf when the
pulse terminates: r (tf )� R/2. Therefore, we can assume
that after the end of the pulse the electron moves in the
Coulomb field only. Indeed, the potential of equation (2)
tends to Z/r for r → ∞, where Z = Z1 + Z2. Therefore,
the asymptotic momentum k of the electron is uniquely
determined by its momentum and position at the end of
the pulse [29,34]. The magnitude of the final momentum
can be found from energy conservation:

k2

2
=
p2(tf )

2
− Z

r(tf )
, (12)

whereas its orientation is determined by the following
expression:

k = k
k (L× a)− a

1 + k2L2
. (13)
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Π (px, py, ze) ∼





exp

(
− i

2
pxR sin θm cosϕm −

i

2
pyR sin θm sinϕm

)
exp

(
−1

2
κR cos θm

)

+ exp

(
i

2
pxR sin θm cosϕm +

i

2
pyR sin θm sinϕm

)
exp

(
1

2
κR cos θm

)





× exp

[
− κ

3

3F
− κ

(
p2x + p2y

)

2F

]
(11)

Here L = r(tf )× p(tf ) and a = p(tf )×L− Zr(tf )/r(tf )
are the conserving angular momentum and the Runge-
Lenz vector, respectively. For a single-cycle or two-cycle
pulse the condition r (tf ) � R/2 is not true for a sub-
stantial number of trajectories. In this case the asymp-
totic momenta are to be found by numerical integration
of equation (1) up to times substantially exceeding the
duration of the pulse.

In order to accomplish the generalization of the SCTS
model to the hydrogen molecule, we need to derive the
corresponding expression for the phase associated with a
classical trajectory. In the case of an arbitrary effective
potential V (r, t) the SCTS phase reads as:

ΦSCTS (t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t)

2
+ V [r(t)]− r(t) · ∇V [r(t)]

}

(14)

see reference [28]. For the molecular potential V (r)
(Eq. (2)) the phase Φ (t0,v0) is given by

ΦSCTS
H2

(t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t)

2
− Z1 (r−R/2) · (2r−R/2)

|r−R/2|3

+
Z2 (r + R/2) · (2r + R/2)

|r + R/2|3

}
. (15)

It is easy to see that for r � R/2

ΦSCTS
H (t0,v0) ≈− v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2 (t)

2
− 2Z

r (t)

}
. (16)

Equation (16) coincides with the SCTS phase for the
Coulomb potential, −Z/r (see Ref. [28]). Assuming that
r (tf )� R/2 we can use the expression for the phase accu-
mulated in the asymptotic interval [tf ,∞] for the Coulomb
potential (see Ref. [28]):

Φ̃C
f (tf ) = −Z

√
b

[
ln g + arcsinh

{
r(tf ) · p(tf )

g
√
b

}]
, (17)

where b = 1/2E and g =
√

1 + 2EL2. Here, in turn, E
is the conserving energy of the electron moving along

Fig. 1. The sketch of the hydrogen molecule. The thick blue
line depicts the molecular axis. Its orientation is determined by
the polar θm and azimuthal ϕm angles. The positions of the
first and the second atoms are given by the vectors −R/2 and
R/2, respectively. The laser field F points towards z direc-
tion. The longitudinal displacement R cos θm/2 and the new
matching point z1 for atom 1 are shown on the z-axis.

the outgoing Kepler hyperbola. Equation (17) allows to
decompose the integral in equation (15) into two integrals
over the intervals [t0, tf ] and [tf ,∞]. The first integral over
[t0, tf ] can be readily calculated numerically knowing the
position vector r (t) and momentum p (t) of the electron.

In contrast to this, the phase associated with each
trajectory in the molecular QTMC model reads as:

ΦQTMC
H2

(t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2 (t)

2
− Z1

|r−R/2| −
Z2

|r + R/2|

}
,

(18)

see references [24,25]. At large distances equation (18)
recovers the QTMC phase for the H atom (see Ref. [27]):

ΦQTMC
H (t0,v0) ≈ −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2 (t)

2
− Z

r (t)

}
. (19)

For the simulations we apply an importance sampling
implementation of both QTMC and SCTS models. Within
the importance sampling approach the initial conditions
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t0j and vj0 (j = 1, . . . , np) for all np trajectories of the
ensemble are distributed according to the square root of
the probability (Eq. (11)). We propagate the trajecto-
ries of the ensemble using equation (1) and bin them in
cells in momentum space in accord with their asymptotic
momenta. The amplitudes that correspond to the trajec-
tories reaching the same cell are added coherently, and the
ionization probability reads as:

dR

d3k
=

∣∣∣∣∣∣

np∑

j=1

exp
[
iΦ
(
tj0,v

j
0

)]
∣∣∣∣∣∣

2

, (20)

see reference [28]. It should be stressed that it is necessary
to achieve convergence both with respect to the size of the
momentum cell in and the number of the trajectories in
the ensemble.

3 Results and discussion

We define a few-cycle linearly polarized laser pulse in
terms of a vector potential:

A =
F0

ω
f (t) sin (ωt) ez. (21)

Here F0 is the field strength, ω is the carrier angular fre-
quency, ez is the unit vector in the polarization direction,
and f (t) is the envelope function. The pulse is present
between for 0 ≤ t ≤ tf . Here tf = nT , where, in turn, n
is the number of cycles within the pulse, and T = 2π/ω is
the laser period. The electric field can be obtained from
the vector potential (21) by F = −dA/dt. In our simula-
tions we consider a pulse with n = 8 optical cycles and
use two different envelope functions:

f1 (t) = sin2

(
ωt

16

)
, (22)

for a sine squared pulse, and

f2(t) =





t/2T, t < 2T

1, 2T ≤ t < 6T

(8T − t) /2T, 6T ≤ t ≤ 8T

(23)

for a trapezoidal pulse.
We first compare the results of the SCTS model for the

H atom and the H2 molecule. In Figure 2 we present the
two-dimensional (2D) photoelectron momentum distribu-
tions in the (kz, k⊥) plane for H (Fig. 2a) and H2 (Figs. 2b
and 2c). The tunnel exit point for the H atom was calcu-
lated from equation (3) (triangular potential barrier). For
the H2 molecule we show the momentum distribution cal-
culated for the exit point given by equation (3) (see Fig.
2b), as well as the distribution obtained for ze found in
accord with the FDM (see Fig. 2c). It is seen that the dis-
tributions of Figures 2a and 2b are rather similar to each
other. It should be stressed that the potential of equa-
tion (2) is fully taken into account in Newton’s equations

Fig. 2. The two-dimensional photoelectron momentum dis-
tributions for the H atom (a) and the H2 molecule (b) and
(c) ionized by a laser pulse with a sine square enve-
lope (Eq. (22)), duration of n = 8 cycles, wavelength of
λ = 800 nm, and intensity of 2.0 × 1014 W/cm2. The pan-
els (a) and (b) show the distributions calculated for the
exit point given by equation (3). The panel (c) corre-
sponds to the exit point found in accord with the FDM
(Eq. (4)). The holographic fringes are indicated by white
dashed lines in panel (a). The distributions are normalized to
the total ionization yield. A logarithmic color scale in arbitrary
units is used. The laser field is linearly polarized along the
z axis.

of motion and the expression for the phase when calcu-
lating of Figure 2b. These results show that the effects of
molecular structure are not pronounced in the photoelec-
tron momentum distributions if the molecular potential
is neglected in finding the starting point of the trajec-
tory. This fact is easy to understand taking into account
that for the parameters of Figure 2 the characteristic
exit for the triangular barrier r0 = Ip/F0 � R/2. Indeed,
for the H molecule at the intensity of 2.0 · 1014 W/cm2

ze,c ≈ 7.94 a.u. (cf. with R/2 = 0.71 a.u.). We note that
the distance between the released electron and the nuclei
increases further when the electron moves along the tra-
jectory. Therefore, if the tunnel exit point is calculated
from equation (3), the ionized electron is actually mov-
ing in the same Coulomb potential as in the case of the
atomic hydrogen. For the H2 molecule and the parame-
ters of Figure 2 the FDM predicts the tunnel exit point
at 5.48 a.u. at the maximum of the laser field. In Figure 3
we show the tunnel exit points corresponding to the max-
imum value of the pulse calculated from equation (3) and
in accord with the FDM as functions of the laser intensity.
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Fig. 3. The tunnel exit point as a function of laser inten-
sity. The parameters are as in Figure 2. The blue (dashed) and
green (solid) curves correspond to the triangular potential bar-
rier (Eq. (3)) and the FDM model, respectively. The critical
(threshold) intensity in the FDM model is shown by a thin
black (solid) line.

It is seen that the exit point from under the triangular
potential barrier is larger than the result of the FDM
that accounts for the molecular potential (Eq. (2)). More-
over, for the parameters of Figure 2 the FDM with the
potential of equation (2) yields the critical (threshold)
field that corresponds to the barrier-suppression regime
FC = 0.086 a.u. This value of the critical field corresponds
to the peak intensity of 2.60 × 1014 W/cm2 (see Fig. 3),
which is close to the widely known estimate for the criti-
cal field based on the one-dimensional consideration (see
Ref. [35]):

FC =
κ4

16Z
(24)

that predicts FC = 0.09 a.u. for a model atom with Ip =
0.60 a.u. equal to the one for H2. For these reasons, in what
follows we use the FDM for calculation of the exit point
for the H2 molecule. The comparison of Figures 2a and
2c shows that the molecular potential has a pronounced
effect on the shape of the momentum distribution and its
interference structure. Indeed, the 2D momentum distri-
bution for the H2 molecule is more extended along the
polarization direction that the one for the H atom. It is
seen that the interference pattern contains well-resolved
side lobes (fringes) marked by white (dashed) lines in
Figure 2a. These fringes result from holographic inter-
ference (see Ref. [36]). It is seen that at the same laser
parameters the holographic fringes are more pronounced
for the hydrogen molecule than for the H atom.

The photoelectron energy spectra and angular distribu-
tions calculated for H and H2 are shown in Figures 4a and
4b, respectively. It is seen that the energy spectrum for the
H2 molecule falls off slower than the spectrum for the H
atom. This is a direct consequence of the fact that the 2D
momentum distribution for the hydrogen molecule is more
extended along the polarization direction, where the signal
is maximal. Accordingly, the angular distribution for H2 is

Fig. 4. Energy spectra (a) and and angular distributions (b) of
the photoelectrons for ionization of H and H2. The parameters
are the same as in Figure 2. The energy spectra are normalized
to the peak value, and the angular distributions are normalized
to the total ionization yield.

Fig. 5. The two-dimensional photoelectron momentum distri-
butions for H2 ionized by a laser pulse with an intensity of
1.2 × 1014 W/cm2. The rest of parameters is the same as in
Figure 2. The left column [panels (a) and (c)] shows the predic-
tions of the QTMC model. The right column [panels (b) and
(d)] displays the results of the SCTS model. Panels (a,b) and
(c,d) correspond to the sine squared (Eq. (22)) and trapezoidal
(Eq. (23)) pulse, respectively. The distributions are normalized
to the total ionization yield. A logarithmic color scale in arbi-
trary units is used. The laser field is linearly polarized along
the z axis.

more aligned along the polarization axis than that for the
H atom, see Figure 4b. Up to this point we have discussed
the results of the SCTS model. It is instructive to compare
these results with the predictions of the QTMC model. In
Figures 5a–5d we present the 2D electron momentum dis-
tributions for the H2 molecule calculated in accord with
the QTMC (Figs. 5a and 5c) and the SCTS (Figs. 5b
and 5d). The first and the second row of Figure 5, i.e.,
the panels (Figs. 5a and 5b) and (Figs. 5c and 5d) show
the results for the sine squared (Eq. (22)) and trape-
zoidal (Eq. (23)) pulse, respectively. Figures 6a–6d show
the magnification of the distributions of Figures 5a–5d for
|kz|, |k⊥| < 0.35 a.u. It is seen from Figures 6a and 6b that
in their low-energy part the 2D momentum distributions
display fan-like interference structures. For the trapezoidal
pulse the interference structure in the low-energy part of
the distributions consists of a number of blobs on a circle
of the radius k ≈ 0.30 a.u. (see Figs. 6c and 6d). These
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Fig. 6. Magnification of Figure 5 for |kz| < 0.35 a.u. and
|k⊥| < 0.3 a.u.

structures are similar to that of Ramsauer-Townsend
diffraction oscillations were thoroughly studied in refer-
ences [37–40]. It is seen that similar to the atomic case [28],
the QTMC predicts for the H2 molecule fewer nodal lines
in the low-energy interference structure than the SCTS
model. As in the case of atomic hydrogen, we attribute this
fact to the underestimation of the Coulomb interaction in
the QTMC treatment of the interference phase.

4 Conclusions

In conclusion, we have extended the SCTS model of
reference [28] to ionization of the hydrogen molecule by a
strong few-cycle laser pulse. We have restricted ourselves
to the simplest case when the H2 molecule is oriented
along the direction of a linearly polarized laser field. In
our simple implementation of the molecular SCTS model
the ionized electron moves in the laser field and in the
Coulomb fields of the two fixed atomic nuclei with equal
effective charges of 0.5 a.u.

We have compared the 2D photoelectron momentum
distributions calculated for the H2 molecule and the
hydrogen atom. We have found that for the same laser
parameters the distributions for H2 are more extended
along the polarization axis than the ones for H. As the
result, the energy spectrum for the H2 molecule falls
off slower with electron energy than for the hydrogen
atom. Furthermore, the holographic interference fringes
in the 2D electron momentum distributions are more pro-
nounced for the hydrogen molecule than for the H atom.

By comparing with the predictions of the QTMC model
for H2 we have found that similar to the atomic case, the
QTMC yields fewer nodal lines in the interference struc-
ture that is characteristic for the low-energy part of the
momentum distributions. As in the case of the H atom, we
attribute this to the fact that the QTMC model underes-
timates the Coulomb interaction in the phase associated
with each classical trajectory.

The present SCTS model for H2 can be straight-
forwardly extended to an arbitrary orientation of the

molecule and polarization of the laser field, as well as to
other molecules, including heteronuclear and polyatomic
ones. We believe that this further development of the
molecular SCTS model will help to understand better the
complicated highly nonlinear phenomena originating from
the interaction of intense laser radiation with molecules.
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40. D.G. Arbó, K.L. Ishikawa, K. Schiessl, E. Persson,
J. Burgdörfer, Phys. Rev. A 81, 021403(R) (2010)

8. Publications 121



ISSN 1054�660X, Laser Physics, 2009, Vol. 19, No. 8, pp. 1550–1558.
© Pleiades Publishing, Ltd., 2009.
Original Russian Text © Astro, Ltd., 2009.

1550

1 1. INTRODUCTION

The interaction of strong laser radiation with atoms
and molecules generates a variety of highly nonlinear
phenomena. These include the extended photoelec�
tron spectrum of above�threshold ionization (ATI),
the excessive yield of doubly and multiply charged
ions, the generation of very high harmonics of the
driving field, and the yield of neutral atoms in excited
Rydberg states (see [1–5] for reviews). The generally
recognized transparent physical picture of the first
three phenomena is based on the so�called direct ion�
ization and rescattering scenario. According to it,
electrons are promoted to the continuum via tunnel�
ing ionization and, while oscillating in the laser field,
interact with their parent ions. Most of the ionized
electrons, i.e., the “direct” electrons, are decelerated
and deflected by the ion at small angles and finally
contribute to the low�energy part of the photoelectron
spectrum. In some rare cases, the ionized electron
returns close to its parent ion and recombines emitting
a high�frequency harmonic photon or kicks out one or
several electrons, producing thereby a doubly or mul�
tiply charged ion. Yet another opportunity upon the
close encounter is that the electron is elastically back�
scattered and thereafter acquires additional energy
from the laser field. Such electrons contribute to the
high�energy part of the photoelectron spectrum. The
rescattering picture is explicitly realized in terms of
complex “quantum orbits” or even simpler in terms of
the two� and three�step semi�classical models. In the

1 The article is published in the original.

latter, real electron trajectories after ionization are cal�
culated with Newton’s equations.

The interpretation of the afore�mentioned pro�
cesses is largely classical, based on trajectories
obtained from Newton’s equations. Population trap�
ping in Rydberg states resulting in an excited neutral
atom at the end of the laser pulse is an exception
because until recently its interpretation was purely
quantum mechanical. The effect was considered as
evidence of the existence of stabilization against ion�
ization and studied theoretically and experimentally in
many papers (see [4, 5] and references therein). It is
generally believed that there are two different mecha�
nisms of stabilization: adiabatic stabilization (stabili�
zation in the Kramers−Henneberger regime) and
interference stabilization. The adiabatic approach is
appropriate when the field frequency ω exceeds the
atomic ionization potential I so that the states in the
discrete spectrum and the continuum are coupled by
one�photon transitions. In experiments with optical
lasers, such conditions were realized by initially popu�
lating Rydberg states. The physical mechanism behind
interference stabilization is associated with multiple
Raman�type transitions between the Rydberg levels
and the common continuum. Destructive interference
of the transition amplitudes from these coherently
populated states to the continuum suppresses ioniza�
tion and, hence, serves to retain population in Ryd�
berg states.

The recent paper [6] reports data on the yield of
neutral excited He* atoms and singly charged ions
He+ from a gaseous target irradiated by 30�fs Tita�
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nium−Sapphire (Ti:Sa) laser pulses with intensities up
to 1015 W/cm2. The data, corrected for the radiative
decay of neutral excited atoms on the way to the detec�
tor, fairly well agree with the results of extensive quan�
tum�mechanical calculations. The latter were accom�
plished in two ways: by approximately solving the two�
electron TDSE for helium exposed to a laser field and
in single�active�electron (SAE) approximation. The
excited neutral atom yield is roughly 20% of the ion
yield at lower intensities decreasing to about 10% at
higher intensities.

In addition, a two�step semiclassical model was
employed for the first time for providing a simple pic�
ture of the dynamics resulting in the population of
Rydberg states. Monte Carlo calculations were per�
formed with classical trajectories in the combined
Coulomb potential and electric laser field. Those elec�
trons are captured into bound states of the neutral
atom that have negative total (kinetic plus Coulomb)
energy at the end of the laser pulse. The energy distri�
bution in the subset of bound trajectories was con�
verted into the distribution in an effective principal
quantum number (E = –1/2n2) and the latter was
found to be in qualitative and even quantitative agree�
ment with the one deduced from quantum calcula�
tions.

The implication of this study is that in Monte�
Carlo simulations with classical trajectories in the laser
field and the ionic Coulomb field not all electrons that
tunneled out at some time are actually ionized after
the end of the laser pulse. Some may be captured back
into bound states. This outcome of the electron
motion in the continuum was dubbed frustrated tun�
neling ionization (FTI) in [6]. Transient trapping in
Rydberg states during the laser pulse was mentioned
earlier in [7]. However, to the best of our knowledge,
there are no comments on the formation of excited
neutral atoms at the end of the pulse in the papers
where Monte Carlo simulation of classical trajectories
after tunneling was used to model the effect of Cou�
lomb focusing on the rescattering processes [7–9] or
to investigate the low�energy photoelectron spectra
[10–12].

In this paper, we further exploit the semiclassical
model: (i) to get deeper insight into the mechanism
responsible for the yield of neutral exited atoms; (ii) to
find out the scaling of this yield with the laser�atom
parameters; and (iii) to understand the impact of the
population trapping on the momentum distributions
of the ionized electrons.

2. MODEL

In this section we will sketch our simulation tech�
nique with special emphasis on the details that are
essential for the following.

Let us consider a neutral atom with the ionization
potential I, irradiated by a short laser pulse with the

duration τL = (2π/ω)np and sine�square envelope, lin�
early polarized along the x axis:

(1)

where np is the number of cycles and ω is the carrier
frequency. At time t0 the bound electron tunnels out of
the atom quasistatically with the rate

(2)

Here, I and Fa = (2I)3/2 are the ionization potential
and the characteristic atomic force of the bound state
(I = 1/2, Fa = 1 for the ground state of hydrogen). The
rate (2) is obtained from the standard strong�field ion�
ization amplitude [13, 14] calculated by the saddle�
point method in the tunneling regime, when the

Keldysh parameter γ =  � 1. Details of the
calculations are presented elsewhere (see [15, 16]).
Atomic units e = m = � = 1 are used.

At the tunnel exit x0 = I/F(t0) the electron has zero
longitudinal and nonzero initial transverse velocity v0.
The released electron moves along a classical trajec�
tory under the action of the laser field and the Cou�
lomb force of its residual ion. The initial conditions
unambiguously determine its position r(t) = r(t0, v0, t)
and velocity q(t) = q(t0, v0, t) at any time instant t. In
the limit of large t, one obtains the asymptotic
momentum p = q(t0, v0, t  ∞), which is identical
with the momentum measured by the detector. During
the whole laser pulse 0 ≤ t0 ≤ τL, an ensemble of trajec�
tories is launched corresponding to different pairs
(t0, v0) weighted with the probability (2). No interfer�
ence effects are accounted for. In our simulations we
employed about 1.5 × 106 trajectories regardless of the
intensity. By solving the respective Newton equations
one obtains r(t) and q(t) for each trajectory. The ratio
of the number of trajectories in a particular bin of
momentum space to the total number of trajectories is
the momentum distribution at given time t normalized
to unity. It evolves in time and in the limit t  ∞ can
be compared with the experimental data.

The picture described in the previous paragraph is
not complete, however. Indeed, if the Coulomb field
of the nucleus is included into the Newton equations
then, for some initial conditions (t0, v0), the electron’s
momentum simply does not converge to any constant
value but keeps oscillating in the limit t  ∞. Such
trajectories correspond to those electrons whose total
energy after the end of the laser pulse is negative

(3)
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so that they never reach a detector. Following [6] we
interpret these electrons as trapped in Rydberg states
(captured electrons). Here, q = q(v0, t0, τL) and r =
r(v0, t0, τL) are the electron velocity and its distance
from the ion at the end of the laser pulse, respectively.
Starting with the time τL the electron moves only in the
Coulomb field, and its energy as well as the angular
momentum are conserved. Thus, since this time the
whole ensemble of trajectories can be subdivided into
two subsets. The subset of trajectories satisfying condi�
tion (3) specifies the distribution of the bound elec�
trons over the principal and the angular quantum
numbers n and l. The subset of trajectories with posi�
tive total energy determines the distribution of ionized
electrons.

3. RESULTS AND DISCUSSION

The results of our simulations are presented in
Figs. 1, 2, and 3.

The energy distribution of the electrons at the time
τL is shown in Fig. 1. It can be seen from the figure that
the number of captured electrons corresponds to
approximately 15% of the number of ions, which
agrees with the results obtained in [6]. The distribution
of the trapped electrons over the principal quantum
number is depicted in Fig. 2. This distribution is simi�
lar to those evaluated in [6] by the solution of the time�
dependent Schrödinger equation and by Monte Carlo
simulations: the maximum of the distribution corre�
sponds to n = 6.

Finally, Fig. 3 exhibits the areas of the plane (t0, v0)
of initial conditions that lead to capture of the electron
into Rydberg states. The profile of the laser pulse is
also shown in the figure. Figure 3 reveals two main fea�
tures. First, the capture does not take place for any ini�
tial velocity. It occurs only when |v0| is less than some
maximum value (approximately 0.3 for the parameters
of Fig. 3). But this is not yet a sufficient condition.
Such a condition will be formulated in the next sec�
tion, in which Fig. 3 is explained and all necessary esti�
mates are done.

3.1. Mechanism and Scalings of Population Trapping

To understand the results of Fig. 3 one should keep
in mind that the momentum (velocity) q and the dis�
tance r in the capture condition (3) are actually corre�
lated. The larger the momentum, the larger is the elec�
tron distance and the smaller is the potential energy
and, hence, the electron cannot be trapped. With the
equality sign, Eq. (3) sets an upper limit for q. Regard�
ing smaller values for q, the electron can have a small
drift momentum at the end of the laser pulse only
under certain conditions. The trajectories of electrons
ionized near the field extrema with initially small drift
momentum along the laser field and with small trans�
verse velocity are strongly affected by the attraction of
the Coulomb field. While such an electron oscillates in
the laser field, a single “hard” collision or a sequence
of “soft” collisions [7] are likely to increase its drift
momentum so that, with very high probability, it is not
a candidate for capture anymore. On closer inspec�
tion, this holds for electrons that start their orbit after
an extremum of the field. In this case, the drift
momentum imparted by the laser field is directed

−0.10 −0.05 0 0.05 0.10 0.15 0.20 0.25
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0

Electron yield, au

Fig. 1. The distribution of the total energy E = q2/2 – 1/r
of electrons tunneling out of an H�atom (I = 13.6 eV) at
the end of a laser pulse with a duration of np = 5 cycles, fre�

quency ω = 0.05 au and an intensity of 3.5 × 1014 W/cm2.
The number of electrons with negative energy (shown by
green bars) is estimated at about 15%, which is consistent
with [6].
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Fig. 2. The distribution of the captured electrons over the
principal quantum number n. The parameters are those of
Fig. 1.

8. Publications 124



LASER PHYSICS  Vol. 19  No. 8  2009

CAPTURE INTO RYDBERG STATES AND MOMENTUM DISTRIBUTIONS 1553

towards the ion. The net effect of the laser field is that
these electrons are driven back to the ion at least once
if not many times. An example of such a trajectory is
shown in Fig. 4 by the solid line. The Coulomb force
still further increases the drift momentum in the direc�
tion towards the ion. Inevitably electrons with large
drift momentum return back to the ion and scatter
depending on the magnitude of their impact parame�
ter. The opportunity to avoid strong interaction with
the ion and have sufficiently small drift momentum at
the end of the laser pulse exists for electrons which
start in the continuum before the field extremum.
Without the Coulomb field, while oscillating in the
laser field they drift away from their parent ion and
never return to its vicinity (the trajectory shown by the
dashed line in Fig. 4). The Coulomb attraction
reduces the drift momentum without reversing its
direction, so that the trajectory remains “on the aver�

age outgoing.” This classification of trajectories is
illustrated by Fig. 4.

To support this general conclusion, let us consider
the contribution to the capture process from a single
half cycle of the laser field, for example, from the cen�
tral maximum of the field (1). With time counted from
this maximum and for phases within the interval
⎯π/2 < ωt < π/2, the field and its vector potential are
simplified as F(t) = Fcos(ωt) and A(t) = –(F/ω)sin(ωt).
The momentum at the end of the laser pulse of an elec�
tron tunneling at time t0 with nonzero transverse
velocity can be written as

(4)

At t > τL the momentum (4) evolves in the Coulomb
field. The trajectory starts at the tunnel exit x0 = I/F(t0)
and the field F(t0) accelerates the electron away from
it. For the laser�atom parameters of interest, the Cou�
lomb force is small in comparison to the laser field
already at the tunnel exit and rapidly decreases when
the electron departs from the ion. For example, with
the parameters of Figs. 1 and 4 and not too far from the
field maximum one has x0 ≈ 5 au, while the oscillation
amplitude A0 = F0/ω2 is about 40 au. This allows us to
evaluate the contribution of the Coulomb force in Eq.
(4)

(5)

q q t0 v0 τL, ,( )≡ A t0( ) v0 pC t0 v0,( ).+ +=
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Fig. 3. (a) The 2D distribution of the captured electrons
over the time of tunneling t0 and initial velocity v0 for the
parameters of Fig. 1. The laser field (1) is shown by a blue
line; (b) The same as in (a), but for the dominant maxi�
mum of the pulse. Dark means high electron yield.
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Fig. 4. Two electron trajectories in the field F(t) =
F0cos(ωt) corresponding to two instants of ionization
before and after the field maximum: ωt0 = –0.1 (dashed
curve) and ωt0 = 0.1 (solid curve) for the parameters of
Fig. 1. The coordinate is scaled by the amplitude A0 =

F0/ω2 of the electron oscillation in the laser field.
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as the integral along the initial part of the electron tra�
jectory

and to extend the upper integration limit to infinity
[15]. Evaluation of the integral (5) for not very large

transverse velocities, v0 < , gives the drift momen�
tum (4) in the plane defined by the directions of the
field (x axis) and of the transverse initial velocity
(⊥ axis):

(6)

(7)

Except for the numerical factor, the Coulomb contri�
bution to the drift momentum (6) is just the product of

the Coulomb force at the tunnel exit, –1/ , and the

time interval ∆t =  over which the elec�
tron�ion distance doubles. Not surprisingly, this time
interval coincides with the time of flight under the

potential barrier, x0/ , introduced by Keldysh.

For the next half period, the laser field changes its
direction and pulls the outgoing electron back to
the ion.

But, for qx > 0, the minimum distance in the x
direction between the electron and the ion will be
larger than the tunnel exit x0 by the drift displacement
qx/ω. So, if this displacement is of the order of or larger
than x0, the Coulomb force upon the closest approach
is less than the one at the time of tunneling, and its
effect can be neglected. In such cases, the drift
momentum given by (6) and (7) remains practically
constant during the rest of the laser pulse. This allows
us to estimate the electron�ion distance at the end of
the laser pulse in Eq. (3) as

(8)

where q = . With the momentum and the dis�
tance at the end of the laser pulse known as functions
of t0 and v0, the condition (3) determines the subspace
of the initial parameters that result in capture to the
bound states:

(9)

It is immediately obvious that the number of trapped
electrons decreases with increasing time that the elec�
tron spends in the laser field after ionization. This
explains the difference in the number of electrons cap�

rL t( ) x0
1
2
��F t0( ) t t0–( )2

+ v0 t t0–( ),
⎩ ⎭
⎨ ⎬
⎧ ⎫

,=

2I

qx
F
ω
��� ωt0( )sin– π

F ωt0( )cos

2I( )3/2
���������������������,–=

q
⊥ v0 2v0

F t0( )

2I( )2
������������ .–=

x0
2

2x0/F t0( )

2I

r q τL t0–( ),=

qx
2

q⊥

2
+

q 2
τL t0–
������������⎝ ⎠

⎛ ⎞ 1/3

.<

tured from identical laser half�periods before and after
the field maximum, which is seen in Fig. 3a.

Next, we try to obtain a rough analytical estimate
for the relative yield of neutral excited atoms with
respect to singly charged ions, i.e., the ratio N*/N+, in
a short laser pulse. The numbers N* and N+ can be
evaluated by integrating the rate (2) over the respective
parts of the (t0, v0)�plane shown in Fig. 3a. To a fair
approximation, the integration can be performed over
the initial conditions related to the central maximum
of the field. Furthermore, applying the theorem of the
mean to both integrals, we assume that the rates (2) do
not differ essentially and cancel out in their ratio,
which thereby is estimated as N*/N+ ≈ Σ*/Σ+. Here,
Σ* and Σ+ are the areas of the (t0, v0) plane effective for
population trapping and real ionization, respectively.
For ions from the central maximum of the field we

have Σ+ ≈ π × , where the second factor is
the width of the rate (2) in the initial velocity.

For the neutrals, Σ* is just the area of the crescent�
shaped region in Fig. 3b. First, we find the interval of
start times that are favorable for capture for v0 = 0. Its
left end t0< is found by equating the two sides of Eq. (9)
under the assumption that we deal with an “on the
average outgoing trajectory”, i.e., qx > 0. The resulting
equation is

, (10)

where λ = πω/(2I)3/2. In the middle of the laser pulse,
τL – t0 ≈ τL/2, and, typically, the r.h.s. of Eq. (10) is
small in comparison with unity. To first order in ωt0 <
1, the solution within the interval –π/2 < ωt0 < π/2 is

(11)

The momentum (6) decreases when the start time t0 >
t0< moves away from the left end of the favorable inter�
val. If it is recalled that trajectories with very small
momenta are strongly perturbed by the Coulomb field
and do not contribute to the process of capture, then
the upper end of the window can be estimated from the
equation qx(t0>, v0, τL) = 0. For λ < 1, one easily finds

(12)

For the parameters of Fig. 3, the predictions of
Eqs. (11) and (12), i.e., ωt0< ≈ –15° and ωt0> ≈ –9°,
respectively, agree nicely with the results of the Monte
Carlo simulations presented in the lower panel of this
figure.

It can be seen that the transverse width of the cres�
cent�like shape in Fig. 3b, i.e., the maximum trans�
verse velocity allowing for the capture of electrons into
the bound states, is more or less the same for start
times within the favorable window. To estimate this
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width, we consider the condition (9) for the case when
qx(t0>, v0, τL) = 0 and for times in the middle of the
laser pulse so that τL – t0 ≈ τL/2. With account of (7),
it immediately takes the form |v0 | < vmax, where

(13)

Actually, in (13) we have neglected terms of the order
of λ2 � 1. In Fig. 3, the transverse velocity does not
exceed 0.30 au whereas, for the same parameters, one
has from Eq. (13) vmax = 0.23 au. Again, the agree�
ment is quite reasonable.

By roughly estimating the capture area in Fig. 3 as
Σ* ≈ ω(t0> – t0<) × 2vmax and dividing it by the area Σ+

effective for ionization (see above) we have for the rel�
ative yield of neutral excited atoms with respect to sin�
gly charged ions

(14)

The scaling with the laser parameters given by Eq. (14)
was correlated with the results of the Monte Carlo
simulations. According to the latter, when the field
strength varies from F = 0.1 to F = 0.07 the ratio
N*/N+ rises from 0.18 to 0.41, i.e., by a factor of 2.3,
while Eq. (14) predicts a factor of 1.7. Agreement is
even better with respect to pulse duration. When the
pulse duration is doubled from 5 to 10 cycles, then for
the field strength of F = 0.1 au the relative yield drops
from 0.18 to 0.11, i.e., by a factor of 1.64, which is
practically equal to the factor of 22/3 expected from
(14). The general tendency of an increasing percent�
age of bound electrons for shorter pulses and lower
intensities was observed in the Monte Carlo simula�
tions of [6].

Experimentally, a strong decrease of the yield of
neutral excited atoms with increasing pulse duration
was reported in an early paper [17]. When the scaling
of Eq. (14) is applied to analyze ionization of He
atoms with their high ionization potential, the very last
factor can be dropped. Then it follows from (14) that
an�order�of�magnitude increase of the laser intensity
will reduce the relative yield by a factor of 5 to 6. The
relative yield reported in [6] decreases over such a
range by approximately a factor of 2. The origin of this
discrepancy is not presently clear.

According to [6], the maximum of the n�distribu�

tion scales with . The derivation of this depen�
dence presented there was based on the heuristic
assumption that the radial expectation value of the
final Rydberg atom,  ∝ n2, is proportional to the
amplitude of electron oscillation in the laser field, A0 =
F/ω2. Our idea is that the quantum�mechanical mean
distance of a captured orbit is determined by the elec�
tron distance (8) at the end of the laser pulse,  ≈

vmax
4
τL

����⎝ ⎠
⎛ ⎞ 1/3

  1 2 F

2I( )2
����������–⎝ ⎠

⎛ ⎞ .=

N*

N
+

������ ω

F
3/2τL

2/3
�������������� 1 2 F

2I( )2
����������–⎝ ⎠

⎛ ⎞ 1–
.∝

F/ω

r〈 〉

r〈 〉

r(t0). From Monte Carlo simulations with the param�
eters of Fig. 1, we found that the distribution of the dis�
tances of trapped electrons (not shown here) has a
maximum around rmax = 60 au. The relation rmax = 
= 3n2/2 then gives nmax ≈ 6, which agrees nicely with
the results of Fig. 2. The distance (8) indeed becomes
proportional to the oscillation amplitude if one factors
out the dimensional factor F/ω from the momentum
and converts time into the field phase.

3.2. The Capture into Rydberg States 
and the Distribution of the Ionized Electrons

The fact that a substantial part of the tunneled elec�
trons end up in bound states with E < 0 after the end of
the pulse should affect the energy�angular spectrum of
direct ionization, particularly its low�energy part. This
raises the question of a possible relation between the
capture into Rydberg states and the dip (minimum) at
p = 0 in the momentum distribution of ionized elec�
trons along the laser polarization, which was for the
first time observed in [18]. The origin of this dip has
been the object of intense investigations [10, 11, 19–
22]. In this section we analyze momentum distribu�
tions of the ionized electrons, calculated taking into
account the capture into bound states.

First, however, we address the photoelectron
momentum distribution at the end of the pulse (not at
infinity) (see Fig. 5), calculated with the assumption
that all electrons are ionized, regardless of whether the
total energy E(τL) (Eq. (3)) is positive or negative [10].
Note, that in the presence of the Coulomb field such a
distribution is not an observable, since the momentum
is not conserved. However, the momentum distribu�
tion at the end of the pulse is instructive for under�
standing the influence of the Coulomb force on the
electron dynamics. The distribution evaluated without
taking the Coulomb field of the atomic residual into
account is also shown in the figure. Figure 5 demon�
strates that the Coulomb force severely modifies the
central part of the longitudinal momentum distribu�
tion. Incidentally, the asymmetry of the dip is due to
the small (5 optical cycles) duration of the laser pulse.

Figure 6 illustrates the evolution of the distribution
of px calculated considering all launched trajectories,
including those with E(τL) < 0 at the end of the pulse,
under the action of the Coulomb force. One observes
that the dip in the longitudinal distribution is gradually
filled in and a narrow maximum develops in its place.
Our simulations show that the dip in this approach
also vanishes with increasing laser intensity and pulse
duration. We should focus our attention on the fact
that the latter result coincides with a conclusion of
[11], which, however, concerned the asymptotic distri�
bution of the ionized electrons. It is very important to
note that the asymptotic distribution, by which we
understand the distribution to be measured by a detec�
tor far away from the ion, has to be calculated by

r〈 〉
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excluding the trajectories with E(τL) < 0. Since the latter
are trapped into Rydberg states they will never reach
the detector. If nevertheless they are included into the
asymptotic distribution, their momenta will not con�
verge to definite values as time goes to infinity or,
depending on the numerical accuracy, they will con�
tribute to a spurious accumulation of events with very
low momenta. Indeed, the asymptotic distribution
obtained by excluding the trajectories with negative
energy (the solid red curve in Fig. 6) has a distinct min�
imum at zero longitudinal momentum.

Let us summarize the results shown in Figs. 5 and
6. A dip in the longitudinal momentum distribution
generated by a relatively short laser pulse is already
seen at the end of the pulse. A comparison of the two
curves calculated with and without the Coulomb field
suggests that the Coulomb field is responsible for the
formation of this dip [10, 11]. However, Fig. 6 shows
that this dip is washed out if we allow the distribution
to continue developing under the action of the Cou�
lomb field after the end of the laser field. Our defini�
tion of the asymptotic distribution discards the contri�
bution of those electrons with negative energy at the
end of the pulse. Remarkably, the asymptotic distribu�
tion again exhibits a dip. The obvious conclusion is
that the mechanism responsible for the formation of
the dip at zero momentum is closely related to the one
that governs the electron capture into Rydberg states.
Both effects are caused by the Coulomb field and
occur in adjacent energy intervals. We notice in pass�

ing that the observed structure also survives focal aver�
aging, which is inevitable in real experimental condi�
tions.

Hence, the calculation of the momentum distribu�
tion of ionized electrons must take into account the
possible population of Rydberg orbits with negative
total energy. The two�dimensional momentum distri�
bution, which disregards electrons with E(t) < 0 at t =
τL, is depicted in Fig. 7a. One can see from the figure
that the central part of the distribution is completely
unpopulated. Simulations for t > τL show that the sub�
sequent motion in the Coulomb field partly fills in this
hole, see below.

The asymptotic distribution at t  ∞ can be
obtained without calculations up to a large time
instant tend, which guarantees the asymptotic regime
for the vast majority of launched trajectories. Indeed,
the electron momentum q(t0, v0, τL) and its position
vector r(t0, v0, τL) at the end of the laser pulse uniquely
determine the subsequent trajectory in the Coulomb
field of the parent ion. Standard formulas of classical
mechanics for hyperbolic motion (see, for example
[23]), allow straightforward analytical evaluation of
the electronic asymptotic momentum

(15)

where M = r × q and A = q × M – r/r are the conserved
angular momentum and Runge–Lenz vector, respec�

p pp A M×( ) A–

1 p
2
M

2
+

���������������������������,=

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0
Px, au

1.0
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0.4
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W, au

Fig. 5. The longitudinal momentum distribution evaluated
by Monte Carlo simulations at the end of the laser pulse at
time τL. Dotted blue curve: All launched trajectories,
including those with E(τL) < 0, are accounted for. Solid red
curve: The trajectories with negative energies are excluded.
Dashed green curve: The result of simulations with the
Coulomb field entirely turned off. The parameters are
those of Fig. 1.
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Fig. 6. The longitudinal momentum distributions, calcu�
lated taking into consideration all launched trajectories, at
t = 2τL (dotted blue curve), t = 3τL (dashed green curve),
t = 4τL (dash�dotted magenta curve). The red curve shows
the asymptotic distribution, which was evaluated by
excluding the trajectories with E(τL) < 0, as discussed in
the text.
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tively. The absolute value p of the asymptotic
momentum can be determined from the energy con�
servation law:

(16)

It should be noticed that Eq. (16) can also be used to
explain the origin of the unpopulated area in Fig. 7a.

In fact, at the end of the laser pulse electrons can be
found at various finite distances from the ion. The pos�
itivity of the total energy imposes a lower limit on the
value of the electron momentum at that instant of
time. In contrast, the electron does not feel the Cou�
lomb field at t  ∞, and its momentum can be arbi�
trarily small.

The distribution evaluated by this approach is
shown in Fig. 7b. Together with Fig. 8 it demonstrates
that the dip is not smeared out by the evolution in the
Coulomb field after the end of the laser pulse and,
moreover, its shape is not very sensitive to the laser
intensity. The same holds for the behavior of the distri�
bution with increasing pulse duration.

Thus, depletion of the low�energy part of the ion�
ization spectrum due to the capture into Rydberg
states is a possible mechanism for the formation of a
dip in the momentum distribution along the polariza�
tion direction.

q
2

2
���� 1

r
��– p

2

2
���.=

4. CONCLUSIONS

Based on the two�step semiclassical model, we
have investigated the electron motion after tunneling
in a strong laser field considering the interaction with
the Coulomb field of the parent ion. The focus of
attention is on the mechanism governing the yield of
neutral excited atoms from a gaseous target irradiated
by a short laser pulse. A simple physical picture
emerges from Monte Carlo simulations with classical
trajectories after tunneling. With account of the Cou�
lomb field, not all tunneled electrons are actually ion�
ized since some of them are captured back into bound
atomic states after the end of the laser pulse. Obvi�
ously, an electron remains bound if its total energy at
the end of the laser pulse is negative. Furthermore, we
show that for an electron to be captured it (i) has to
have moderate drift momentum at the time of tunnel�
ing and (ii) has to avoid strong interaction (“hard”
collision) with the ion. Such trajectories do exist when
electrons are released within a narrow time window
before the extrema of the oscillating laser field having
a not too large transverse velocity v0. Understanding
these features has allowed us to derive the scaling of
the ratio of neutral excited atoms and singly charged
ions with the laser�atom parameters in analytic form.
Its prediction, that the percentage of neutrals
increases with decreasing intensity or pulse duration,
fits into the general physical picture. In both cases, the
electron drifts away from the ion by a smaller distance
during the laser pulse and experiences a stronger Cou�
lomb attraction. This distance is smaller at lower
intensity because of a reduced drift momentum
imparted by the laser field and, in the other case of a
shorter pulse, because of a smaller travel time. In addi�
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Fig. 7. (a) The 2D momentum distribution for the param�
eters of Fig. 1 resulting from Monte Carlo simulations at
the end of the laser pulse, where the trajectories with neg�
ative total energy E = q2/2 – 1/r < 0 are discarded. (b) The
same distribution in the asymptotic limit after its subse�
quent evolution in the Coulomb field.
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Fig. 8. Asymptotic momentum distributions along laser
polarization for different laser intensities (in W/cm2) for
the parameters of Fig. 1.
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tion, it has been demonstrated that the channel of cap�
ture, when accounted for in semiclassical calculations,
has a pronounced effect on the momentum distribu�
tion of electrons with small positive energy. In partic�
ular, it is correlated with the formation of a “dip” at
zero momentum in the distribution of the longitudinal
momentum.
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Abstract. We review the semiclassical two-step model for strong-field ionization. The semiclassical two-
step model describes quantum interference and accounts for the ionic potential beyond the semiclassical
perturbation theory. We discuss formulation and implementation of this model, its further developments,
as well as some of the applications. The reviewed applications of the model include strong-field holography
with photoelectrons, multielectron polarization effects in ionization by an intense laser pulse, and strong-
field ionization of the hydrogen molecule.

1 Introduction

Strong-field physics studies phenomena arising from
the interaction of strong laser pulses with atoms and
molecules. The most well-known examples of these
highly nonlinear phenomena are above-threshold ion-
ization (ATI), formation of the high-energy plateau in
the electron energy spectrum (High-order ATI), genera-
tion of high-order harmonics (HHG) and nonsequential
double ionization (NSDI), see Refs. [1–5] for reviews.
Both experimental and theoretical approaches used to
analyze these processes are constantly being improved.
The vast majority of the modern theoretical methods
used in strong-field physics are based on the strong-field
approximation SFA [6–8], the direct numerical solu-
tion of the time-dependent Schrödinger equation (see
Refs. [9–12] and references therein), and the semiclassi-
cal models applying classical mechanics to describe the
electron motion in the continuum. The widely known
examples of the semiclassical models are the two-step
model [13–15] and the three-step model [16,17].

In the SFA ionization is described as a transition
from an initial state unaffected by the laser field to a
Volkov state, i.e., the wave function of an electron in
an electromagnetic field. Therefore, the SFA neglects
the intermediate bound states and the Coulomb inter-
action in the final state. The SFA provides the illustra-
tive physical picture of many strong-field phenomena
and often allows for the analytic solutions. Nevertheless,
the approximations used in the SFA are strong enough
and may sometimes lead to wrong results. The widely
known example is the fourfold symmetry of the photo-
electron angular distributions in the elliptically polar-
ized field predicted by the SFA [18]. In contrast to this,

a e-mail: nikolay.shvetsov@itp.uni-hannover.de (corre-
sponding author)

the experimental angular distributions show only the
inversion symmetry: They are asymmetric in any half
of the polarization plane [19]. The theoretical studies
[20–25] have shown that the fourfold symmetry of the
angular distributions is a direct consequence of neglect-
ing the effect of the Coulomb potential on the electron
motion in the continuum.

In most cases the direct numerical solution of the
TDSE provides a good agreement with the experimen-
tal results. However, it is often difficult to understand
the physical mechanism of the phenomena under study
with only the numerical wave function. What is also
important, the capabilities of modern computers are
not unlimited. One of the most prominent examples is
the strong-field ionization of molecules. The solution of
the TDSE in three spatial dimensions is possible only
for the simplest molecules and with selection of the
most relevant degrees of freedom [26,27]. Indeed, ion-
ization of a molecule by an intense laser pulse is much
more complicated than ionization of an atom. This is
because of the existence of additional degrees of free-
dom (nuclear motion), the associated time scales, and
the complex shape of the electronic orbitals. For typical
laser paremeters used in experiments nuclear motion
should be treated on an equal footing with the pro-
cesses induced by a strong laser field. Simultaneously,
the rich nuclear structure of molecules results in orbitals
of diverse symmetries.

Although the first semiclassical model (i.e., the
two-step model) was formulated in 1988-1989 [13–15],
the trajectory-based models are still widely used for
description of various strong-field phenomena. This is
due to a number of important advantages characteristic
to the semiclassical approaches. The semiclassical mod-
els provide a great insight into strong-field processes.
They allow to reveal the specific mechanism responsible
for the process under investigation, as well as visualize
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it using classical trajectories. This point needs to be
discussed in more details.

In the ATI an electron absorbs more photons than
necessary for ionization. The studies of the ATI have
revealed that the majority of the ionized electrons do
not experience hard recollisions with their parent ions.
These electrons are referred to as direct electrons. They
contribute to the low energy part of the ATI energy
spectrum E < 2Up, where Up = F 2

0 /4ω2 is the pondero-
motive energy. Here, in turn, F0 and ω are the ampli-
tude and the frequency of the laser field (atomic units
are used throughout the paper). The two-step model
allows to describe the spectrum of the direct electrons.
In the first step of the this model an electron tunnels
out of an atom. In the second step it moves along a
classical trajectory in the laser field towards a detector.

There are also rescattered electrons that are driven
back by the laser field to their parent ions. Upon their
returns the rescattered electrons scatter from the par-
ent ions by large angles close to 180◦. These electrons
form the high-energy plateau of the ATI spectrum. The
rescattering scenario provides the basis for an under-
standing of the HHG and NSDI. Indeed, the returning
electron can recombine to the parent ion and as the
result of the recombination a high-frequency photon
(harmonic) radiation is emitted. Alternatively, if the
energy of the scattered electron is sufficient enough, it
can release the second electron from the ion, e.g., by
impact ionization. The three-step model comprises the
interaction of the rescattered electron with the parent
ion as the third step. As the result, the three-step model
provides the qualitative description of the rescattering-
induced processes.

The three-step model explained a number of features
revealed in the studies of the high-order ATI, HHG,
and NSDI: the cutoffs in high-order ATI spectrum [28]
and HHG [16,29], the maximum angles of the angular
distributions of ionized electrons [30], the characteristic
recoil ion momenta in NSDI [31,32], etc. Originally the
two-step and the three-step models did not account for
the effect of the ionic potential on the electron motion
in the continuum. The inclusion of the ionic force in
the Newton’s equation of motions allowed to uncover
the Coulomb focusing effect [33], study the Coulomb
cusp in the angular distributions of the photoelectrons
[34], investigate the low-energy structures in ionization
by the strong midinfrared pulses [35–43] (the so-called
ionization surprise observed for the first time in exper-
iment [44]), explore the nonadiabatic effects in ioniza-
tion by intense laser pulses (see, e.g., Refs. [45–47]),
etc.

The trajectory-based simulations are often (although
not always) computationally less expensive than the
solution of the TDSE. Furthermore, for some strong-
field processes the semiclassical simulations are presently
the only feasible approach. The most well-known exam-
ple of such process is the NSDI of atoms by circularly
[48] or elliptically polarized pulses [49–51], as well as
the NSDI in molecules [52]. Therefore, further devel-
opment of the semiclassical approaches to strong-field
phenomena is an important objective.

Until recently the trajectory-based models were not
able to describe quantum interference effects. However,
a significant progress along these lines has been made
in the last decade. The trajectory-based Coulomb SFA
(TCSFA) [37,53], the quantum trajectory Monte Carlo
model (QTMC) [54], the semiclassical two-step model
(SCTS) [55], and the Coulomb quantum orbit strong-
field approximation (CQSFA) [56–60] (see Ref. [61] for
the foundations of the CQSFA approach) are recent
trajectory-based models that are capable to reproduce
interference structures in photoelectron momentum dis-
tributions of the ATI process. These models assign cer-
tain phases to classical trajectories, and the contribu-
tions of different trajectories leading to the same final
momentum are added coherently.

The TCSFA is an extension of the CCSFA [62,63]
that on an equal footing accounts the laser field and
the Coulomb force in the Newton’s equation for electron
motion in the continuum. The TCSFA applies the first-
order semiclassical perturbation theory [64] to account
the Coulomb potential in the phase associated with
every trajectory. The same first-order semiclassical per-
turbation theory was used in the phase of the QTMC
model. In contrast to this, the SCTS and the CQSFA
approaches go beyond the perturbation theory.

The SCTS model operates with large ensembles of
classical trajectories that are propagated in the con-
tinuum to find the final asymptotic momenta and bin
them (and, therefore, the corresponding contributions
assigned to these trajectories) in bins in momentum
space. This approach is often referred to as “shoot-
ing method” (see, e.g., Ref. [37]). Instead, the CQSFA
model solves the so-called inverse problem, i.e., finds
all the trajectories leading to a given final momen-
tum. This allows to avoid large ensembles of trajecto-
ries and establish a better control over cusps and caus-
tics that are inevitable in trajectory-based simulations.
The price that is to be paid is that the solution of the
inverse problem is a difficult task. In addition to this,
the approach with the inverse problem can often be less
versatile.

In this paper we review the SCTS model, as well as
two recent implementations of this model. We also dis-
cuss some of the applications of the SCTS. The SCTS
model has been applied to the investigation of the intra-
half-cycle interference of photoelectrons with low ener-
gies [65], to the studies of the interference patterns aris-
ing in the strong-field photoelectron holography [66–
68], to the analysis of the sub-cycle interference in ion-
ization by counter-rotating two-color fields [69], to the
investigation of sideband modulation by subcycle inter-
ference in ionization by circularly polarized two-color
laser fields [70], etc. Here we focus on the applications
of the SCTS to the strong-field photoelectron hologra-
phy, study of the multielectron polarization effects, and
the ionization of the H2 molecule.

The paper is organized as follows. In Sect. 2 we
review the SCTS and discuss different approaches used
to implement this model numerically. In Sect. 3 we dis-
cuss the further modifications of the SCTS model: the
semiclassical two-step model with quantum input and
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the SCTS model accounting for the preexponential fac-
tor of the semiclassical propagator. In Sect. 4 we briefly
review applications of the SCTS model to the strong-
field photoelectron holography. The application of the
SCTS to the study of the multielectron polarization
effects in the ATI are discussed in Sect. 5. In Sect. 6
we review the usage of the SCTS model to describe the
strong-field ionization of the H2 molecule. The conclu-
sions of this colloquia paper are given in Sect. 7.

2 Semiclassical two-step model

2.1 Formulation of the semiclassical two-step model

As any semiclassical model, the electron trajectory in
SCTS is calculated using classical equation of motion:

d2r

dt2
= −F (t) − ∇V (r, t) , (1)

where F (t) is the laser field and V (r, t) is the ionic
potential. In order to find the trajectory from Eq. (1),
we need to specify the initial conditions, i.e., the ini-
tial velocity of the departing electron and the start-
ing point. In the original version of the SCTS model
it is assumed that the electron starts with zero ini-
tial velocity along the laser field v0,z = 0, but it can
have a nonzero initial velocity v0,⊥ in the perpendicu-
lar direction. We note that the application of the SFA to
describe the electron motion under the potential barrier
leads to a nonzero initial longitudinal velocity v0,z �= 0.
The effect of the nonzero v0,z will be discussed later. Let
us first assume that the interaction of the ionized elec-
tron with the ion is modelled by the Coulomb potential.
Then the starting point of the trajectory, i.e., the tun-
nel exit point, can be obtained using the separation of
the static tunneling problem in parabolic coordinates.
For the static field polarized along the z-axis we define
the parabolic coordinates as ξ = r + z, η = r − z, and
ϕ = arctan (y/x) and find the tunnel exit coordinate ηe

from the following equation:

− β2 (F )

2η
+

m2 − 1

8η2
− Fη

8
= −Ip (F )

4
. (2)

Here m is the magnetic quantum number of the initial
state, Ip (F ) is the Stark-shifted ionization potential,
and

β2 (F ) = Z − (1 + |m|)
√

2Ip (F )

2
. (3)

The tunnel exit point is given by ze = −ηe/2. In the
general case, the ionization potential Ip (F ) in Eq. (2)
is given by

Ip (F ) = Ip (0) + (μN − μI) · F +
1

2
(αN − αI)F

2.(4)

Here Ip (0) is the ionization potential in the absence of
the field, and μN,I and αN,I are the dipole moments
and static polarizabilities, respectively. The index N
refers to the neutral atom (molecule), and the index
I stands for its ion. We note that for atom the term
linear with respect to F is absent in Eq. (4). The static
field F in Eqs. (2), (3), and (4) should be replaced by
the instantaneous value of the laser field at the time of
ionization t0.

The instants of ionization and the initial transverse
velocities are distributed in accord with the static ion-
ization rate [71]:

w (t0, v0,⊥) ∼ exp

(
− 2κ3

3F (t0)

)
exp

(
−

κv2
0,⊥

F (t0)

)
, (5)

where κ =
√

2Ip. Following the original formulation of
the SCTS model we omit the preexponential factor in
Eq. (5). For atoms it only slightly affects the shape of
the electron momentum distributions.

After the laser pulse terminates an electron moves
in the Coulomb field only. If the electron energy at
the time t = tf at which the laser pulse terminates
is negative E < 0, the electron moves along the ellip-
tical orbit, and it should be treated as captured into
a Rydberg state [72,73]. The corresponding process is
often referred to as frustrated tunnel ionization, see,
e.g., Refs. [74–77]. It is clear that the trajectories with
E < 0 should be excluded from consideration, if we
are interested in ionized electrons. The latter obviously
correspond to the hyperbolic trajectories (E > 0). The
asymptotic momentum k of the electron is determined
by its position r (tf ) and momentum p (tf ) at the time
t = tf :

k = k
k (L × a) − a

1 + k2L2
, (6)

see Refs. [73,78]. In Eq. (6) L = r (tf ) × p (tf ) and
a = p (tf )×L−Zr (tf ) /r (tf ) are the angular momen-
tum and the Runge-Lenz vector, respectively. The mag-
nitude of the momentum k is determined by the energy
conservation:

k2

2
=

p2 (tf )

2
− Z

r (tf )
. (7)

The key ingredient of the SCTS model is the expres-
sion for the phase associated with every trajectory. This
phase corresponds to the phase of the matrix element
of the semiclassical propagator USC (t2, t1) between the
initial state at time t1 and the final state at time t2
[79–81] (for a text-book treatment see Refs. [82,83]).
Depending on the variables used to describe the initial
and final states there exist four equivalent forms of the
semiclassical propagator USC :

〈r2| USC (t2, t1) |r1〉 =

[
−det

(
∂2φ2 (r1, r2) /∂r1∂r2

)

(2πi)3

]1/2
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× exp[iφ1(r1, r2)], (8a)

〈r2| USC (t2, t1) |p1〉 =

[
−det

(
∂2φ2 (p1, r2) /∂p1∂r2

)

(2πi)3

]1/2

× exp [iφ2 (p1, r2)] , (8b)

〈p2| USC (t2, t1) |r1〉 =

[
−det

(
∂2φ3 (r1,p2) /∂r1∂p2

)

(2πi)3

]1/2

× exp [iφ3 (r1,p2)] , (8c)

〈p2| USC (t2, t1) |p1〉 =

[
−det

(
∂2φ4 (p1,p2) /∂p1∂p2

)

(2πi)3

]1/2

× exp [iφ4 (p1,p2)] . (8d)

Here r1 (r2) and p1 (p2) are the initial (final) coor-
dinates and momenta, respectively. The phase φ1 that
corresponds to the transition from the initial state to
the final state, which are both described by the posi-
tion, is determined by the classical action:

φ1 (r1, r2) =

∫ t2

t1

{p (t) ṙ (t) − H [r (t) ,p (t)]} dt, (9)

where H [r (t) ,p (t)] is the classical Hamiltonian func-
tion that depends on the canonical coordinates r (t) and
momenta p (t). The other three phases φ2, φ3, and φ4

are related to φ1 by the canonical transformations:

φ2 (p1, r2) = φ1 (r1, r2) + p1 · r1 , (10a)

φ3 (r1,p2) = φ1 (r1, r2) − p2 · r2 , (10b)

φ4 (p1,p2) = φ1 (r1, r2) + p1 · r1 − p2 · r2 ,
(10c)

Then the question arises: Which of these phases should
be chosen for description of the strong-field ionization
process? On the assumption that for a given ioniza-
tion time the starting-point of the electron trajectory is
localized in space [see Eq. (2)] and the final state is char-
acterized by the asymptotic momentum k, the phase
φ3 is used in the SCTS model. Indeed, the strong-field
ionization can be viewed as a half-scattering process
of an electron that is initially localized near the atom
(molecule) and detected with the final momentum k.
We note that if the initial longitudinal velocity is equal
to zero, the initial electron momentum p1 is orthogo-
nal to the initial position vector r1 (i.e., p1 · r1 = 0),
and therefore, the phases φ3 and φ4 coincide with each
other. For nonzero v0,z the term p1·r1 is to be accounted
in the phase. However, in most cases this term almost
does not affect the resulting electron momentum distri-
butions.

As the result, after a partial integration, the phase
corresponding to a given trajectory in the SCTS model
is given by:

ΦSCTS (t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt {ṗ(t) · r(t) + H[r (t) ,p(t)]} , (11)

where it is assumed that the trajectory has also the ini-
tial phase exp (iIpt0) that describes the time evolution
of the ground state. The expression (11) can be also
written as follows:

ΦSCTS (t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t)

2
+ V [r(t)] − r(t) · ∇V [r(t)]

}
.

(12)

To arrive at the expression (12), we use the explicit form
of the Hamiltonian for an arbitrary effective potential

H [r (t) , p (t)] =
p2 (t)

2
+ F (t) · r (t) + V (r) (13)

and employed Newton’s equation of motion (1). This
formula is applicable for any single-active-electron
potential used to describe the multielectron system
(atom or molecule), including pseudopotentials (see,
e.g., Ref. [84] and references therein). For the specific
case of the Coulomb potential, the phase (12) reads as

ΦSTCS (t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t)

2
− 2Z

r (t)

}
. (14)

This formula should be compared with the phase used
in the QTMC model:

ΦQTMC (t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t)

2
− Z

r (t)

}
. (15)

It is seen that the QTMC phase can be obtained from
Eq. (14) by neglecting the term r(t) · ∇V [r(t)] in the
integrand. This term leads to the double weight of the
Coulomb term in the SCTS compared to the QTMC.
Therefore, the QTMC phase can be considered as an
approximation to the SCTS one. The double weight of
the Coulomb contribution leads to a better agreement
with the TDSE results [55].

The SCTS phase (14) is divergent at t → ∞, and
therefore, it is to be regularized. The regularization
(see Ref. [55]) can be accomplished by decomposing the
SCTS phase as

ΦSCTS (t0,v0) = −v0 · r(t0) + Ipt0

−
∫ tf

t0

{
p2 (t)

2
− 2Z

r (t)

}
−

∫ ∞

tf

dt

{
E − Z

r (t)

}

(16)

and separating the time-independent part of the inte-
grand in the term

∫ ∞
tf

dt {E − Z/r (t)}. Although this

time-independent part leads to the contribution
lim

t→∞
E (t − tf ) that diverges linearly when t → ∞, it
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does not produce a phase difference for electron tra-
jectories ending up in the same bin. Indeed, the final
momenta of such trajectories (and, therefore, their ener-
gies) should be considered as equal. Using the solution
of the Kepler problem (see, e.g., Ref. [85]) we calculate
the divergent integral

ΦC
f (tf ) = Z

∫ ∞

tf

dt

r (t)
(17)

analytically: ΦC
f (τf ) = Z

√
b [ξ (∞) − ξ (tf )]. The param-

eter ξ is used to parametrize the time t and the distance
r from the Coulomb center:

r (t) = b (g cosh ξ − 1) ,

t =
√

b3 (g sinh ξ − ξ) + C (18)

Here, in turn, b = 1/ (2E) and g =
√

1 + 2EL2. The
constant C in Eq. (18) is to be found using the initial
conditions, i.e, r (tf ) and p (tf ). It is easy to verify that

ξ (tf → ∞) = ln

(
2t

g
√

b3

)
, (19)

see Ref. [55]. Therefore, for trajectories arriving at the
same bin, we can discriminate between the common

divergent part ln
(
2t/

√
b3

)
and the finite contributions

determined by − ln (g). We note that the latter depends
not only on the energy, but also on the angular momen-
tum L, and thus is different for different trajectories
interfering in a given bin. Since

ξ (tf ) = arsinh

{
r (tf ) · p (tf )

g
√

b

}
, (20)

we obtain the following contribution to the phase accu-
mulated in the time interval [tf ,∞] due to the Coulomb
potential (see Ref. [55]):

Φ̃C
f (tf ) = −Z

√
b

[
ln g + arsinh

{
r(tf ) · p(tf )

g
√

b

}]
.(21)

This asymptotic correction of the phase which we call
post-pulse phase is missing in the QTMC model.

2.2 Implementation of the semiclassical two-step
model

The expression for the phase can be conveniently
treated as an additional equation in the system of the
first-order ordinary differential equations for electron
coordinates and velocity components following from
(1). This system can be solved using the fourth-order
Runge–Kutta method with adaptive step size [86]. The
ability of the numerical method to change the integra-
tion step is particularly important at small distances
from the Coulomb center.

It is clear that the convergence of the results must be
controlled with respect to both the size of the bin in the
momentum space and the number of trajectories. It is
particularly convenient to control convergence by using
the energy spectra. In contrast to the three-dimensional
(3D) differential momentum distributions or their two-
dimensional (2D) cuts, the spectra are functions of only
one variable. They can be easily compared to each other
in, e.g., logarithmic scale.

Already the first practical application of the SCTS
model has shown that a large number of trajectories is
needed for convergence (see Ref. [55] for details). Typ-
ically, for the same laser parameters a thousand times
more trajectories are needed for the simulations with
the phase compared to a semiclassical model disregard-
ing the interference effect. This can be expected tak-
ing into account the fine interference details of elec-
tron momentum distributions generated in ionization
by strong laser pulses. For this reason, it is important
to consider optimization of the codes implementing the
SCTS model. The most obvious way to speed up the
SCTS calculations is to use parallelization. Indeed, any
trajectory-based simulation can be very easily and effi-
ciently implemented on a computer cluster by parallel-
ing the loop over the number of trajectories.

Another approach consists in an efficient sampling
of the initial conditions, i.e., times of ionization tj0
and initial velocities vj

0, where index j enumerates the
trajectories of an ensemble. In a standard trajectory-
based approach the initial conditions are chosen either
randomly or from a certain uniform grid. Neglecting
interference effect the ionization probability R (k) for
the final momentum k that corresponds to the bin
[ki, ki + Δki] (i = x, y, z) is calculated as

R (k) =

np∑

j=1

w
(
tj0, v

j
0

)
, (22)

while the similar formula for the SCTS model reads as

R (k)

=

np∑

j=1

∣∣∣∣∣

√
w

(
tj0, v

j
0

)
exp

[
iΦSCTS

(
tj0, v

j
0

)]∣∣∣∣∣

2

.(23)

The sums in Eqs. (22) and (23) are calculated over all
np trajectories arriving at the given bin. However, the
approach sketched here is not the only possible one.
Importance sampling widely used in Monte-Carlo inte-
gration (see, e.g., Ref. [86]) can be used to implement
the SCTS model.

We turn first to the semiclassical simulations disre-
garding interference. In the important sampling approach
the weights (importance) of classical trajectories are
accounted already at the sampling stage. More specif-

ically, the sets of initial conditions
(
tj0, v

j
0

)
are dis-

tributed in accord with the tunneling rate w
(
tj0, v

j
0

)
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and the ionization probability R (k) is given by a num-
ber of trajectories reaching the bin corresponding to the
final momentum k. It is easy to see that the ionization
probability in the SCTS model based on the importance
sampling reads as

R (k) =

np∑

j=1

∣∣∣exp
[
iΦSCTS

(
tj0, v

j
0

)]∣∣∣
2

. (24)

with the initial conditions distributed in accord to the
square root of the ionization probability. In many situa-
tions the important sampling technique provides faster
convergence compared to the standard approach of
Eqs. (22–23). Its performance, however, depends on the
laser-atom parameters and the specific part of photo-
electron momentum distribution under study.

2.3 Benchmark case: ionization of the H atom

The SCTS model was compared with the QTMC
approach and direct numerical solution of the TDSE for
ionization of the hydrogen atom (see Ref. [55]). The 2D
electron momentum distributions calculated in accord
to the all three approaches are shown in Fig. 2a–c. The
simulations are done for ionization by a few-cycle laser
pulse linearly polarized along the z-axis and defined
through the vector-potential:

A (t) = (−1)
n F0

ω
sin2

(
ωt

2n

)
sin (ωt + ϕ) ez. (25)

Here n is the number of optical cycles within the pulse,
and ez is the unit vector in the polarization direc-
tion. The pulse (25) is present between t = 0 and
t = tf = (2π/ω) · n. The laser field is to be calcu-
lated from Eq. (25) as F (t) = −dA (t) /dt. The factor
(−1)

n
in (25) ensures that Fz (t) for ϕ = 0 has its max-

imum (equal to F0) for ωt = πn, i.e., at the center of
the pulse. We do calculations for ϕ = 0.

It is seen that the most important features of the
TDSE result are reproduced by the semiclassical mod-
els (see Fig. 1a, c, e). Indeed, the electron momentum
distributions are stretched along the z-axis and show
clear ATI rings as well as the pronounced interference
structure in their low-energy parts. The width of the
momentum distributions along the polarization direc-
tion is obviously underestimated by both semiclassical
models. This is due to the initial condition v0,z = 0 (see
Ref. [55] for details).

However, a closer examination of the low-energy
parts of the distributions reveals remarkable deviations
Indeed, for |k| < 0.3 a.u. the photoelectron momentum
distributions demonstrate pronounced fanlike interfer-
ence structures, see Fig 1b, d, f. These structures are
similar to the ones of Ramsauer-Townsend diffraction
oscillations, see Refs. [87–90]. It is seen that the SCTS
model reproduces the interference pattern of the TDSE,
whereas the QTMC model predicts fewer nodal lines.
This fact was attributed to the underestimate of the

Fig. 1 Two-dimensional electron momentum distributions
for ionization of the H atom by a laser pulse with a duration
of n = 8 cycles, peak intensity of 0.9 × 1014 W/cm2, and
wavelength of 800 nm calculated from the QTMC model [a,
b], numerical solution of the TDSE [c, d], and the SCTS
[e, f ]. Panels b, d, and f display the magnifications for
|kz|,|k⊥| < 0.3 a.u. of the distributions shown in (a), (c),
and (d), respectively. The laser pulse is linearly polarized
along the z axis. The distributions are normalized to the
total ionization yield. A logarithmic color scale in arbitrary
units is used

Coulomb potential in the expression for the phase used
in the QTMC model. The comparison of the photo-
electron energy spectra dR/dE shows that the QTMC
and the SCTS qualitatively reproduce the ATI peaks,
see Fig. 2a–c. However, both semiclassical approaches
can quantitatively reproduce the amplitude of interfer-
ence oscillations only for a few low-order peaks. This
is related to the fact that due to the initial conditions
[Eq. (5)] used in both semiclassical models too few tra-
jectories with large initial momenta in the polarization
direction are launched. This also explains why the semi-
classical energy spectra fall off too rapidly with the
increase of energy. In order to test this hypothesis, the
initial longitudinal velocity for every ionization time is
set to the value predicted by the SFA, see, e.g. Ref.
[37]. This change in initial conditions leads to a better
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Fig. 2 Photoelectron energy spectra for ionization of the
H atom by a laser pulse with a duration of n = 8 cycles
and peak intensity of 0.9 × 1014 W/cm2 calculated using
the TDSE (thick light blue curve), the QTMC (dashed blue
curve) and the SCTS (solid red curve). Panels a, b, and
c correspond to the wavelengths of 800 nm, 1200 nm, and
1600 nm, respectively. The spectra are normalized to the
peak value
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Fig. 3 Photoelectron energy spectra calculated from the
TDSE (thick light blue curve), the QTMC model (dashed
blue curve) and the SCTS (solid red curve). A nonzero initial
parallel velocity predicted by the SFA is used in both the
QTMC and SCTS simulations. The pulse parameters are as
in Fig 2a

agreement between the SCTS model and the TDSE, see
Fig. 3 and Ref. [55]. Therefore, the main reason of devi-
ations of the SCTS results from the TDSE solutions is
not the semiclassical treating of the electron motion in
the continuum, but the fact that the SCTS model does
not describe the tunneling step accurately enough.

Here we compare the semiclassical simulations with
the direct numerical solution of the TDSE assuming
that the latter approach is exact. However, it should
be noted that the numerical solution of the TDSE
can sometimes have its own limitations. This is also
true for the extraction of the photoelectron momentum
distributions from the time-dependent wave function,
which is a non-trivial problem. Some methods used for
this purpose can cause wrong results (see Ref. [91] for
details).

3 Modifications of semiclassical two-step
model

Substantial efforts have been recently made to mod-
ify the SCTS model. These modifications are aimed at
providing not only a qualitative, but also a quantita-
tive agreement with the TDSE. To achieve this goal, it
is necessary to overcome the deficiencies of the SCTS
model (as well as of any other semiclassical model) in
description of the ionization step. The simplest way is
to use the SFA formulas to distribute the initial condi-
tions of classical trajectories. This approach dates back
to the studies of Refs. [92,93]. It is used in the various
semiclassical models (see, e.g., Refs. [37,45–47]), as well
as in the implementations of the SCTS model developed
in Refs. [70,94]. We note, however, that the validity of
the SFA formulas used as initial conditions for classi-
cal trajectories requires a systematic study. To the best
of our knowledge, such a study has not been accom-
plished so far. Here we discuss two modifications of the
SCTS model: The semiclassical two-step model with
quantum input (SCTSQI) [95] and the SCTS model
with the prefactor [94].

3.1 Semiclassical two-step model with quantum
input

The SCTSQI model combines the SCTS with initial
conditions obtained from the solution of the TDSE.
Such a combination leads to a novel quantum-classical
approach. The SCTSQI model is formulated for ioniza-
tion of a one-dimensional (1D) model atom. Therefore,
before reviewing the SCTSQI, we briefly discuss the
solution of the 1D TDSE, as well as the application of
the SCTS model in 1D case.

For the 1D model, the TDSE in the velocity gauge is
given by

i
∂

∂t
Ψ (x, t)

=

{
1

2

(
−i

∂

∂x
+ Ax (t)

)2

+ V (x)

}
Ψ (x, t) ,

(26)
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where Ψ (x, t) is the wave function in coordinate space.
The 1D soft-core Coulomb potential

V = − 1√
x2 + a2

(27)

with a = 1.0 (see Ref. [96]) is used in Ref. [95]. The
corresponding time-independent Schrödinger equation
reads as:

{
−1

2

d2

dx2
+ V (x)

}
Ψ (x) = EΨ (x) . (28)

Equation (28) can be easily solved on a grid using, e.g.,
the well-known three-step formula for approximation of
the second derivative and subsequent diagonalization.
In Ref. [95] the TDSE (26) is solved using slit-operator
method [97]. In the regions xb ≤ |x| ≤ xmax the wave
function is multiplied by a mask

M (x) = cos1/6

[
π (|x| − xb)

2 (xmax − xb)

]
, (29)

where x = ±xb correspond to the internal boundaries of
the absorbing regions, and xmax is the size of the com-
putational box. The mask prevents unphysical reflec-
tions of the propagating wave function from the grid
boundary and allows to calculate the electron momen-
tum distributions using the mask method [98].

In the 1D case the Newton’s equation for an electron
moving in the laser field and the field of the potential
(27) reads as

d2x

dt2
= −Fx (t) − x

(x2 + a2)
3/2

. (30)

The corresponding SCTS phase is given by (see Ref.
[95]):

ΦSCTS (t0,v0) = Ipt0

−
∫ ∞

t0

dt

{
v2

x (t)

2
− x2

(x2 + a2)
3/2

− 1√
x2 + a2

}
.

(31)

We note that the ionization rate (5) in the 1D case is
to be replaced by

w (t0) ∼ exp

(
−2 (2 |E0|)3/2

3F (t0)

)
, (32)

where E0 = −0.6698 a.u. is the ground-state energy in
the potential (27). Equation (30) is to be numerically
integrated up to the end of the laser pulse at t = tf .
The asymptotic momentum of the photoelectron can be
found from x (tf ) and px (tf ) using the energy conser-
vation law. We note that after the end of the pulse the

unbound electron cannot change its direction of motion,
and, therefore, kx has the same sign as that of px (tf ).

In order to correctly apply the SCTS model in the
1D case, the post-pulse phase is to be calculated. This
calculation can be performed as follows (see Ref. [95]).
At first, we decompose the phase as:

ΦSCTS (t0,v0) = Ipt0

−
∫ tf

t0

dt

{
v2

x (t)

2
− x2

(x2 + a2)
3/2

− 1√
x2 + a2

}

+ΦV
f , (33)

As in the 3D case, we separate the post-pulse phase
into parts with time-dependent and time-independent
integrands and disregard the linearly divergent contri-
bution from the first part. As the result, the post-pulse
phase is determined by:

Φ̃V
f =

∫ ∞

tf

x2 (t)

[x2 (t) + a2]
3/2

dt. (34)

The divergent part of this integral can be efficiently
isolated. Indeed, Eq. (34) can be equivalently rewritten
as follows:

Φ̃V
f =

∫ ∞

tf

[
x2

(x2 + a2)
3/2

− 2Et2

(2Et2 + a2)
3/2

]
dt

+

∫ ∞

tf

2Et2

(2Et2 + a2)
3/2

dt. (35)

Since the second divergent term in Eq. (35) depends
on the electron energy E and the parameter a, it is
the same for every trajectory that arrives at a given
bin [kx − Δkx, kx + Δkx]. Therefore, it does not affect
the resulting interference pattern and can be omitted
[95]. The post-pulse phase is determined by the first
term in Eq. (35). This converging integral is easily cal-
culated numerically. It depends on the position x (tf )
and velocity px (tf ) at the end of the laser pulse what
suggests an efficient way to calculate it by interpolation
[95].

This is not a simple task to unify the direct solution of
the TDSE and the trajectory-based approach in one sin-
gle model. The main problem of such combination has
a fundamental origin. Indeed, both the starting point
and the initial velocity are needed to uniquely deter-
mine the classical trajectory. On the other hand, the
Heisenberg’s uncertainty principle imposes a limit to
the precision with which position and momentum (as
other canonically conjugated variables) can be simul-
taneously known. The application of quasiprobability
distribution allows to extract the information from the
wave function about both the coordinate and momen-
tum.

The most widely-known examples of the quasiproba-
bility distributions are the Wigner function and Husimi
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distribution [99] (see Ref. [100] for a textbook treat-
ment). The latter can be obtained by smoothing of the
Wigner function with a Gaussian weight. The Gabor
transformation [101] was used in Ref. [95]. The Gabor
transformation is presently widely used in studies of the
ATI (see, e.g., Ref. [102]) and, especially, the HHG (see,
e.g., Refs. [103–105]). The Gabor transform of the wave

function Ψ̃ (x, t) near the point x0 is given by:

G (x0, px, t) =
1√
2π

∫ ∞

−∞
Ψ̃ (x′, t) exp

[
− (x′ − x0)

2

2δ2
0

]

× exp (−ipxx′) dx′, (36)

where δ0 is the width of the Gaussian window. The
square modulus |G (x0, px, t)|2 corresponds to the momen-
tum distribution of the particle in the vicinity of x = x0

at time t and is just the Husimi distribution [99]. The
Husimi distribution is a positive semidefinite function,
which helps to interpret it as a quasiprobability distri-
bution.

The SCTSQI model employs the solution of the
TDSE in the length gauge:

i
∂

∂t
Ψ (x, t)

=

{
−1

2

∂2

∂x2
+ V (x) + Fx (t) x

}
Ψ (x, t) . (37)

Two additional spatial grids containing N points are
introduced the absorbing regions |x| ≥ xb:

xj
0,± = ∓ (xb + Δx · j) , (38)

Here j = 0, ..., N and Δx = (xmax − xb) /N . In the
SCTSQI the Gabor transforms of the absorbed part
of the wave function Ψ̃ (x, t) = [1 − M (x)]Ψ (x, t)

are calculated at every time at the points xj
0,− and

xj
0,+ of the grids (38). The value of the Gabor trans-

formation at an arbitrary point belonging to D1 or
D2 can be obtained by interpolation (see Ref. [95]
for a details of the implementation of the SCTSQI
model). Hence, at every time t the Gabor transform
G (x, px, t) is known on the grids in the phase-space
domains D1 = [−xmax,−xb] × [−px,max, px,max] and
D2 = [xb, xmax] × [−px,max, px,max]. An example of the
Husimi distribution obtained in the domains D1 and D2

at t = 3tf/2 is shown in Fig. 4. It should be stressed
that the size of the computational box xmax used in the
SCTSQI can be much smaller than the one required to
obtain accurate momentum distributions by using the
mask method.

At every time t0 an ensemble of np classical trajec-

tories with random initial positions xj
0 and momenta

pj
x,0 (j = 1, ..., np) is launched in the SCTSQI model.

Every trajectory of the ensemble is assigned with the
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Fig. 4 The Husimi quasiprobability distribution
|G (x, px, t)|2 at t = 3tf/2 calculated for ionization of
1D model atom by a laser pulse with a duration of n = 4
cycles, wavelength of 800 nm, and peak intensity of
2.0 × 1014 W/cm2. The distribution is calculated in the
phase space domains D1 and D2 (see text). The points S1,
S2, and S3 depicted by a magenta square, cyan triangle,
and green circle, respectively show the three main maxima
of the Husimi distribution. A logarithmic color scale is used

amplitude G
(
t0, x

j
0, p

j
x,0

)
and the SCTSQI phase

ΦSCTSQI
0

(
t0, x

j
0, p

j
x,0

)

= −
∫ ∞

t0

dt

{
v2

x (t)

2
− x2

(x2 + a2)
3/2

− 1√
x2 + a2

}
. (39)

This phase coincides with the phase of the semiclassi-
cal propagator describing a transition from an initial
state characterized by the momentum to a final state,
which is also described by the momentum value. The
ionization probability R (kx) is calculated as:

R (kx) =

∣∣∣∣∣∣

NT∑

m=1

nkx∑

j=1

G
(
tm0 , xj

0, p
j
x,0

)

× exp
[
iΦSCTSQI

(
tm0 , xj

0, p
j
x,0

)]∣∣∣
2

, (40)

where NT is the number of steps that is used in the
TDSE propagation and nk is the number of trajecto-
ries arriving at the same bin centered at kx. It is impor-

tant to stress that G
(
tm0 , xj

0, p
j
x,0

)
is a complex function

having both modulus and the phase.
The SCTSQI model was tested by comparing its pre-

dictions with the numerical solution of the TDSE and
the SCTS model, see Fig. 5a, b. It is seen that the
SCTSQI provides not only qualitative, but also quan-
titative agreement with the TDSE result. This is true
for both the width of the electron momentum distribu-
tions and the positions of the interference maxima and
minima. The small discrepancy in the heights of some
interference peaks (see Fig. 5a) is attributed to the fact
that the SCTSQI model does not account for the pre-
exponential factor of the semiclassical matrix element.
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Fig. 5 a The photoelectron momentum distributions for
ionization of a 1D atom by a laser pulse with a duration
of n = 4 cycles, wavelength of 800 nm, and peak inten-
sity of 2.0 × 1014 W/cm2 calculated from the solution of
the TDSE (thick light blue curve) and the SCTSQI model
(dashed green curve). b Electron energy spectra obtained
from the TDSE (thick light blue curve), SCTSQI (dashed
blue curve), and the SCTS (red curve). The distributions
and spectra are normalized to the peak values

We note that as in the 3D case (see Sect. 2.3) the 1D
SCTS model shows only a qualitative agreement with
the fully quantum results, see Fig. 5b. Specifically, the
SCTS model underestimates the width of the momen-
tum distributions. The electron energy spectra calcu-
lated within the SCTSQI model and from the solution
of the TDSE are in almost perfect agreement. Simulta-
neously, the spectrum calculated using the SCTS model
falls off too rapidly with the increase of the energy. This
is caused by the underestimation of the width of the
electron momentum distributions in the SCTS model.
It was shown that the phase of the Gabor transform is
very important in the SCTSQI [95]. Without this phase
the SCTSQI model does not provide even a qualita-
tive agreement with the TDSE result. This could be
expected, since the amplitude G (t, x, px) contains all
the information about the quantum dynamics of the
absorbed part of the wave function before it was trans-
formed in an ensemble of trajectories. In a way the term
Ipt0 in the phase (11) of the SCTS model plays the same
role as the phase of G (t, x, px) in the SCTQI approach.

As any semiclassical approach, the SCTSQI model
can visualize the physical mechanism responsible for the
strong-field process under study using classical trajecto-
ries (see Ref. [95] for details). Since the initial conditions
in the SCTSQI model are determined from the direct
solution of the TDSE, we expect that this model will
be able to provide more accurate trajectory-based pic-
tures of strong-field phenomena compared to the stan-
dard semiclassical approaches. This advantage of the

SCTSQI model should be used in studies of compli-
cated strong-field processes. In addition to this, after
some modification the SCTSQI model can be applied
to studies of the rescattering-induced phenomena, espe-
cially the high-order ATI and the HHG. The ways of
this modification are suggested in Ref. [95]. Finally,
the extension of the SCTSQI model to the three-
dimensional (3D) case is straightforward and develop-
ments in this direction are on the way. Most impor-
tantly, the model solves the non-trivial problem how to
choose initial conditions for classical trajectories. In the
SCTSQI model these initial conditions are determined
by the exact quantum dynamics.

3.2 SCTS model with preexponential factor

An efficient modification and extension of the SCTS
model was proposed recently in Ref. [94]. This study for
the first time investigates systematically the influence
of the preexponential factor of the semiclassical matrix
element (8c) (see Refs. [106,107]) that was not explic-
itly considered in all other versions of the SCTS. This
preexponential factor for strong-field processes was cal-
culated in Appendix B of Ref. [108]. The modulus of
this prefactor that corresponds to the mapping from
initial conditions to the final momentum components
influences the weights of the classical trajectories. Its
phase known as the Maslov phase can be identified as a
case of Gouy’s phase anomaly and modifies the interfer-
ence structures [94]. In addition, the authors propose a
novel way of solving the so-called inverse problem based
on a clustering algorithm.

Since the SCTS implementation of Ref. [94] employs
the SFA and the saddle-point approximation to calcu-
late the ionization weight of the classical trajectories
and their initial positions, the ionization time t0 for
each initial electron momentum k′ is determined by
the real part of the corresponding saddle-point time
ts = t0 + it1. The saddle point ts satisfies the equation:

1

2
[k′ + A (ts)]

2
+ Ip = 0. (41)

The ionization probability is calculated as:

R (k)

=

∣∣∣∣∣
∑ DCCoul√

|J (t → ∞) |
exp

[
i
(
S0

↓ + S→ − νπ

2

)]∣∣∣∣∣

2

.

(42)

Here, the summation is over all the initial momenta k′

leading to the final momentum k. D is the matrix ele-
ment emerging when the saddle-point method is applied
to calculate the SFA ionization amplitude and CCoul is
the Coulomb correction of the ionization rate [64]. The
phase associated with every trajectory is decomposed
in Eq. (42) as S0

↓ + S→, where
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S0
↓ = Ipts − 1

2

∫ t0

ts

dt [k′ + A (t)]
2

(43)

corresponds to the ionization step (motion under the
potential barrier), and

S→ =

−
∫ ∞

t0

dt

{
p2(t)

2
+ V [r(t)] − r(t) · ∇V [r(t)]

}

(44)

accounts for the electron motion in the continuum. We
note that the phase S→ coincides with the third term
of the SCTS phase [see Eq. (12)]. The Jacobian J is
calculated as

J (t) = det

(
∂k (t)

∂k′

)
. (45)

The Maslov index ν changes at focal points, i.e, at times
T when the Jacobian is zero J (T ) = 0. The change
(jump) of the Maslov index when the trajectory passes
through a focal point is calculated as:

Δν (T ) = m − 1 + sgn det (g) , (46)

where the m × m matrix g is given by

gi,j = δr(i) · Hesser,r (H) δr(j) (47)

Here, in turn, m is the number of linearly independent
directions d(i) (i = 1, ...,m), which can be found at the
focal points, such that infinitesimal changes of the ini-
tial momenta in these directions k′ → k′ + εd(i) do
not affect k (T ) in the first order of ε. These changes of
the initial momenta correspond to the changes of the
position

δr(i) = ε
∑

j

∂r (T )

∂k′
j

d
(i)
j , (48)

see Eq. (47). The Hessian Hesser,r (H) of the Hamilto-
nian function

H =
1

2
[k + A (t)]

2
+ V (r) (49)

is calculated with respect to the position vector r.
The inverse problem is solved in Ref. [94] by using

clustering algorithms. More specifically, density-based
spatial clustering of applications with noise algorithms
was applied. The solution of inverse problem with clus-
tering shows an example of the application of machine
learning (see Ref. [109] for a text-book treatment) to
strong-field phenomena. Other recent applications of
the machine learning in strong-field physics are dis-
cussed in, e.g., Refs. [110,111].

The fact that the Jacobian is explicitly taken into
account in Eq. (42) along with the solution of the

inverse problem ensures the correct preexponential
weight of every trajectory, namely, 1/

√
|J |. It should

be emphasized that this weight cannot be reproduced in
“shooting method”, since the distribution of the trajec-
tories over the cells in accord with their final momenta
automatically creates a factor of 1/ |J | instead of the

1/
√

|J |. This problem was ignored in the implemen-
tation of the SCTS [55], since the implementation of
Ref. [55] accounts only for the exponential factors in
the trajectories weights.

The simple relation between the Jacobian in the 3D
case and the corresponding Jacobian for two spatial
dimensions was derived in [94] for systems (ionic poten-
tial and the laser field) with cylindrical symmetry:

|J3D| =
k⊥
k′

⊥
|J2D| , (50)

where k⊥ =
√

k2
x + k2

y (the field is polarized along

the z-axis). This correction weight allows to obtain the
results for the 3D system performing only the 2D sim-
ulations, and, by doing so, reduce the computational
costs of the SCTS model significantly. We note that
Eq. (50) has been already used in the SCTS simula-
tions of Ref. [55].

The modified version of the SCTS is in excellent
agreement with solution of the TDSE. This applies
for both electron momentum distributions and energy
spectra [94]. It is shown that the inclusion of the preex-
ponential factors is crucial for quantitative agreement
with the TDSE results. The extended version of the
SCTS can be applied not only to the linearly polarized
pulses, but also to non-cylindrically-symmetric laser
fields, e.g., bicircular ones, see Ref. [94]. Undoubtedly
the version of the SCTS developed in [94] is a valuable
tool that is extremely useful in studies of strong-field
ionization.

4 Semiclassical two-step model and the
strong-field holography with photoelectrons

Development of the techniques capable to image the
atomic positions that change in time in a chemical
reaction will lead to a revolution in chemistry, biology,
nanoscience, etc. At present there are many methods
for time-resolved molecular imaging (see Ref. [112] for a
review). These methods have been developed due to the
prominent progress in laser technologies. This applies
above all to the development of the technology for pulse
compression and the emergence of free-electron lasers.
Moreover, the availability of table-top intense femtosec-
ond lasers, which led to the emergence of strong-field,
ultrafast, and attosecond physics, gave a strong impulse
to the development of new techniques for time-resolved
molecular imaging. Among these techniques are: laser-
induced Coulomb-explosion imaging [113–116], laser-
assisted electron diffraction [117,118], high-order har-
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monic orbital tomography [119,120], laser-induced elec-
tron diffraction (see, e.g., Refs. [121–123]), and strong-
field photoelectron holography (SFPH) [124].

The SFPH method implements the widely-known
idea of holography (1971 Nobel Prize in Physics awarded
to Dennis Gabor, see Ref. [125]) in strong-field physics.
It was for the first time shown in 2011 by Y. Huis-
mans et al. [124] that a holographic pattern can be
clearly recorded in experiment. This pattern in the
electron momentum distributions is created by the sig-
nal (rescattered) and reference (direct) electrons. The
SFPH can be implemented in a table-top experiment.
It was shown that the holographic patterns encode a
lot of spatio-temporal information about both the par-
ent ion and the recolliding electron [124]. Last but not
least, the electron dynamics can be imaged with sub-
cycle (i.e., attosecond) time resolution. These advan-
tages have triggered extensive studies of the SFPH,
both experimental [66,126–129] and theoretical [56–
60,124,126,127,130–135].

However, the first SFPH experiments [124,126–128,
130] investigated the ionization process and the dynam-
ics of the electron wave packet rather than molecu-
lar structure or dynamics. This is because of the fact
that for diatomic and small molecules the holographic
structures are mostly determined by the long-range and
the alignment-independent Coulomb potential. As the
result, the short-range effect reflecting the molecular
structure cannot be observed on the background of the
more intense Coulomb contribution. This problem was
elegantly solved in experiment of Ref. [129] by consid-
ering the difference between the normalized photoelec-
tron holograms for aligned and antialigned molecules.
This approach is based on the fact that for large scat-
tering angles the differential cross section deviates from
the Coulomb one and depends on the alignment of the
molecule at the ionization instant. A similar method
was also used in Ref. [66]. Various approaches were
used for theoretical analysis of the SFPH: the three-step
model [131–133,135], the SFA version that accounts for
rescattering [124,130], the Coulomb-corrected strong-
field approximation [124,130], the CQSFA [56,57,59,
60], etc. (see Ref. [136] for recent review).

4.1 SCTS model and experimental holographic
patterns

The SCTS model was applied to the simulations of the
holographic interference patterns observed in the exper-
iment [66]. In the study [66] the electron momentum
distribution produced in ionization of the NO molecule
were calculated for two different cases. In the first case
the electron density of the highest occupied molecu-
lar orbital (HOMO) is aligned along the polarization
direction, whereas in the second case this density is
orthogonal to it. These distributions, as well as their
normalized difference are shown in Fig. 6. To apply the
SCTS model, the distributions over the initial trans-
verse velocities are needed for both these cases. These
distributions were determined using the approach based

Fig. 6 Photoelectron momentum distributions for ioniza-
tion of the NO molecule by a laser pulse with a duration
of 35 fs, intensity of 2.3 × 1014 W/cm2, and wavelength of
800 nm calculated using the SCTS model. The panels a and
b show the distributions obtained in the cases where the
electron density of the HOMO is aligned along the laser
polarization direction and perpendicular to it, respectively.
Panel c presents the normalized difference of the distribu-
tions shown in (a) and (b). The figure is reprinted from Ref.
[66]

on partial Fourier transform generalized to molecules
(MO-PFT) [137–139]. The MO-PFT approach works
with the electron wave function in mixed (coordinate-
momentum) representation and uses the Wentzel-Kra-
mers-Brillouin (WKB) approximation. The MO-PFT
requires the corresponding HOMO’s that were obtained
using the GAMESS package [140]. The semiclassi-
cal simulations are in a perfect agreement with the
experimental results [66]. The simulations within the
SCTS model reproduce all characteristic features of the
holographic patterns. The regions of constructive and
destructive interference predicted by the model of Ref.
[131] that neglects the Coulomb potential are shown
in Fig. 6 with white and black color, respectively. It is
seen that the three-step model overestimates the spac-
ing between the holographic fringes in the direction per-
pendicular to laser polarization. Therefore, the account
of the Coulomb potential leads to the improved agree-
ment between the experiment and the semiclassical sim-
ulations.

123

8. Publications 142



Eur. Phys. J. D (2021) 75 :130 Page 13 of 22 130

4.2 Effects of the Coulomb potential and the
strong-field photoelectron holography

The three-step semiclassical model predicts different
types of subcycle interferometric structures, see Ref.
[131]. Various types of the holographic structures arise
due to the fact that the reference and signal electrons
can start from different quarter cycles of the laser field.
In Ref. [67] the various types of the subcycle interfer-
ence patterns revealed in [131] were calculated account-
ing for the Coulomb potential of the ion with the
adapted version of the SCTS model. Here we sketch
the main points of this adapted SCTS.

First, an ensemble of classical trajectories is launched
only from the central period of a long (8 optical cycles)
laser pulse. Second, the simple formula entirely neglect-
ing the Coulomb potential, i.e., considering triangu-
lar potential barrier formed by the laser field and the
ground state energy, is used for the tunnel exit point:

|ze (t0)| = − Ip

F (t0)
, (51)

where the sign of ze (t0) is to be chosen to ensure the
electron tunnels in the direction opposite to the instan-
taneous field F (t0). This makes it possible to directly
compare the resulting interference patterns with the
patterns of the three-step model. Third, the weights
(5) of classical trajectories were not taken into account,
and the trajectories were distributed uniformly, which
is justified by the fact that holographic patterns and
not electron momentum distributions were calculated in
Ref. [67]. Finally, a special approach instead of Eq. (23)
has to be used in the semiclassical model to obtain
the phase difference between the signal and reference
electrons. Indeed, to calculate the phase difference we
need to isolate only one kind of rescattered trajectories
and only one kind of the direct ones. This is a com-
plicated task if the Newton’s equation of motion (1) is
solved treating the laser field and the Coulomb force
on equal footing. First of all, it is necessary to answer
the question: How to distinguish between the direct and
rescattered electron trajectories in the presence of the
Coulomb field? Indeed, all the trajectories are, to some
extent, affected by the Coulomb potential.

The following simple recipe is used in Ref. [67].
The reference trajectories were defined as those pass-
ing the ionic core at large distances and thus experi-
encing small-angle scattering only. More precisely, the
reference electrons obey the condition v0,⊥ky ≥ 0. In
contrast to them, the signal trajectories come close to
the parent ion and undergo large-angle scattering that
changes direction of the ky component compared to
the initial one. Therefore, the signal trajectories can
be defined as obeying the condition v0,⊥ky ≤ 0. How-
ever, these conditions are not sufficient to calculate the
holographic structures correctly. The fact is that in the
presence of the Coulomb field the mapping from the
plane of initial conditions (t0, v0,⊥) to the (kx, ky) plane
is a complicated function. For example, in the domain
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Fig. 7 Holographic patterns emerging due to interference
of a direct electron with a rescattered one that has the short-
est travel time (see Ref. [67]) calculated a using the three-
step model with time-dependent exit point, and b account-
ing for the Coulomb potential of the ion. The interference
patterns are calculated for ionization of the H atom at a
wavelength of 800 nm and intensity of 6.0 × 1014 W/cm2

where the condition v0,⊥ky ≤ 0 defining the signal tra-
jectories is fulfilled, this mapping is not one-to-one: Dif-
ferent sets of initial conditions lead to the same momen-
tum k, see Ref. [67] for details. The separation of trajec-
tories of different kinds can be efficiently done by using
the clusterization algorithms. In Ref. [67] this trajec-
tory separation was accomplished manually by careful
inspection of the mapping (t0, v0,⊥) → (kx, ky).

It was found that the Coulomb potential changes
interference patterns significantly. Three main effects
of the Coulomb field in the holographic patterns were
identified in Ref. [67]. These are: shift of the interfer-
ence pattern as a whole, filling of the parts of the pat-
tern that are unfilled when the Coulomb potential is
disregarded, and the characteristic kink of the interfer-
ence pattern in the vicinity of ky = 0 (cf. Fig. 7a, b).
This kink at zero transverse momenta was attributed to
the Coulomb focusing effect [141]. However, the ques-
tion remains, how sensitive are the predicted Coulomb
effects to focal averaging. Therefore, further studies are
required to understand which of these effects can be
observed in experiment.

5 Semiclassical two-step model and
multielectron polarization effects

The theoretical methods used in strong-field physics
usually employ the single-active electron approxima-
tion (SAE). In the SAE an atom or molecule interact-
ing with the laser pulse is replaced by a single elec-
tron. This single electron moves in the laser field and
in the field of an effective potential. Therefore, the ion-
ization is treated as a one-electron process. The SAE
is a basis for understanding of many strong-field pro-
cesses, including ATI and HHG [2,83]. Nevertheless,
the role of the multielectron effects (ME) in strong-
field and ultrafast physics has been attracting partic-
ular attention (see, e.g., Refs. [142,143] and references
therein). By now many theoretical approaches aimed at
the description of the ME effects have been developed.
The most well-known and widely used of them are:
the time-dependent density-functional theory [144] (see
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Refs. [145,146] for a text-book treatment), multiconfig-
uration time-dependent Hartree-Fock theory [147,148],
time-dependent restricted-active-space [149] and time-
dependent complete-active-space self-consistent field
theory [150], time-dependent R-matrix theory [151,152]
and R-matrix theory with time-dependence [153,154],
time-dependent analytical R-matrix theory [155], etc.
(see Ref. [156]). There are also many semiclassical
approaches capable to account for the ME effects, see,
e.g. Refs. [43,78,142,157–159]. The advantages of the
trajectory-based models discussed in Sect. 1 are partic-
ularly valuable in studies of complex ME effects.

One of the most well-known ME effects in strong-field
ionization is laser-induced polarization of the parent
ion. Recently the polarization effects in the ATI have
been actively studied, see, e.g., Refs. [43,78,142,157–
160]. In Refs. [161,162] and [160] the effective potential
for the outer electron that accounts for the external
laser field, the Coulomb interaction, and the polariza-
tion effects of the ionic core, is derived in the adia-
batic approximation. It was for the first time found in
Ref. [157] that the time-independent Schrodinger equa-
tion with this effective potential and accounting for the
Stark-shift of the ionization potential can be approx-
imately separated in parabolic coordinates. This sep-
aration determines a certain tunneling geometry. The
emerging physical picture of the flow of the electron
charge associated with the tunneling electron is referred
to as tunnel ionization in parabolic coordinates with
induced dipole and Stark shift (TIPIS). The semiclassi-
cal model based on the TIPIS approach and disregard-
ing the interference effect has shown a good agreement
with experimental data (see Refs. [157–159]) and the
TDSE results [78,157].

The electron momentum distributions generated in
ionization of different atoms and molecules, including
Ar, Mg, CO, naphthalene, etc., are very sensitive to the
ME effects accounted by the induced dipole of the ionic
core [43,78,157–159]. These studies consider ionization
by circularly or elliptically polarized laser pulses. This
is due to the fact that the effective potential derived
in Refs. [161,162] and [160] is valid only at large and
intermediate distances from the ionic core. In close to
circularly polarized laser fields the rescattering-induced
processes are suppressed (see Ref. [163]), and, there-
fore, the vast majority of the ionized electrons do not
return to the parent ion. However, this is not true
for linearly polarized field, and the applicability of the
TIPIS approach in semiclassical simulations in the case
of linear polarization raised questions. This problem is
addressed in Ref. [156]. Furthermore, the study [156]
combines the TIPIS approach with the SCTS model.
The resulting two-step semiclassical model for strong-
field ionization is capable to describe quantum inter-
ference and accounts for the Stark-shift, the Coulomb
potential, and the polarization induced dipole potential.

5.1 Combination of the TIPIS model and the STCS

The ionic potential derived in Refs. [160–162] reads as:

V (r, t) = −Z

r
− αIF (t) · r

r3
, (52)

where ME effect is accounted through the induced
dipole potential

[
αIF (t) · r/r3

]
. For the potential of

Eq. (52) the starting point of a classical trajectory can
be obtained as the tunnel exit in the TIPIS model.
More specifically, the tunnel exit point is given by
ze ≈ −ηe/2, where ηe satisfies the equation:

− β2 (F )

2η
+

m2 − 1

8η2
− Fη

8
+

αIF

η2
= −Ip (F )

4
, (53)

It is seen that Eq. (53) has the additional ME term in
the left-hand side compared to the equation (2). Since
the ME term in the potential (52) is proportional to
the laser field F(t), it is absent at t > tf . Therefore,
after the laser pulse terminates, the electron moves in
the Coulomb field only. This makes it possible to use
Eq. (6) for calculation of the asymptotic momentum of
the electron from its position and momentum at t = tf .
The SCTS phase (12) with the potential V (r, t) defined
by Eq. (52) reads as:

ΦSCTS (t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t)

2
− 2Z

r
− 3αIF (t) · r

r3

}
. (54)

In order to implement the resulting semiclassical model,
the importance sampling method was used in Ref.
[156]. We note that in addition to the inapplicability
of the potential (52) at small distances, there exist
other conditions that restrict the range of applicabil-
ity of the TIPIS model (see Refs. [78,156] for details).
The study [156] focuses on the cases of Mg (Ip =
0.28 a.u., αN = 71.33 a.u., αI = 35.00 a.u.) and Ca
(Ip = 0.22 a.u., αN = 169.0 a.u., αI = 74.11 a.u.)
atoms, which have similar ionization potentials. But
their static ionic polarizabilities are different by approx-
imately two times.

In order to avoid the application of the potential (52)
at small distances, a special cutoff radius rC was intro-
duced in Ref. [156], and all the trajectories entering
the sphere r < rC were ignored. The remaining trajec-
tories do not reach the vicinity of the ion. It is clear
that the elimination of the whole class of the trajec-
tories (the returning ones) depletes some parts of elec-
tron momentum distributions. However, these depleted
parts usually correspond to the boundary of the direct
ionization spectrum. Therefore, they do not affect the
main part of the momentum distributions that provides
major contribution to the ionization yield, see Ref. [156]
for details.

5.2 Application of the combined semiclassical model

The 2D photoelectron momentum distributions calcu-
lated in accord with the resulting semiclassical model
are shown in Fig. 8a–d. Figure 8a, c correspond to the
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Fig. 8 Two-dimensional electron momentum distributions
for the Mg [a, b] and Ca [c, d] atoms calculated by combin-
ing the TIPIS approach with the SCTS model. The wave-
length is 1600 nm and the pulse duration is n = 8 cycles.
Panels [a, b] and [c, d] show the distributions calculated at
the intensities of 3.0 × 1013 W/cm2 and 1.0 × 1013 W/cm2,
respectively. The distributions [a, c] are obtained neglecting
the ME terms in Eqs. (52), (53), and (54), whereas the dis-
tributions [b, d] are calculated accounting the ME terms in
all these equations. The momentum distributions are nor-
malized to the total ionization yield. A logarithmic color
scale in arbitrary units is used

distributions calculated accounting for the laser and
Coulomb fields. Figure 8b, d display the results of the
combined TIPIS + SCTS model, i.e., with the account
of the ME potential. The panels (a, b) and (c, d) cor-
respond to ionization of Mg and Ca, respectively. It is
seen that the presence of the ME term in the potential
of Eq. (52) results in a narrowing of the longitudinal
momentum distributions and modification of the inter-
ference structures.

We first discuss the narrowing of the longitudinal dis-
tributions. This effect is further illustrated in Fig. 9a,
c that show the longitudinal momentum distributions
obtained with and without the ME term for Mg and Ca,
respectively. Since the widths of the distributions do not
change due to the interference effects, the phase is disre-
garded in the calculations of Fig. 9a, c. The correspond-
ing electron energy spectra are shown in Fig. 9b, d. It is
seen that the spectra calculated accounting for the ME
term fall off more rapidly with increase of the energy
than the ones obtained neglecting the ME effects. This
is a direct consequence of the narrowing of the corre-
sponding 2D electron momentum distributions.

The mechanism underlying the narrowing effect has
a kinematic origin [156]. The analysis of classical trajec-
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Fig. 9 a, c Electron momentum distributions in the longi-
tudinal direction, and b, d energy spectra. Panels [a,b] and
[c,d] correspond to the ionization of Mg and Ca, respec-
tively. Thick green curve and thin blue curve show the
semiclassical results obtained with and without ME terms,
respectively. The wavelength and duration of the pulse are
as in Fig. 8. The panels [a, b] and [c, d] are calculated for
the intensities of 3.0 × 1013 W/cm2 and 1.0 × 1013 W/cm2,
respectively. The longitudinal distributions and energy spec-
tra are normalized to the maximum value

tories has shown that there is a certain class of trajecto-
ries strongly affected by the induced polarization of the
ionic core. The trajectories of this class start closer to
the parent ion that other trajectories and their initial
transverse velocities are not too large (see Ref. [156] for
details). Indeed, the force acting on the electron due
to the ME polarization effect (the ME force) decays as
1/r2 with increasing r. Therefore, this force can change
the electron motion only at the initial part of the trajec-
tory adjacent to the tunnel exit. The ME force reduces
both longitudinal and transverse components of the
electron final momentum, and, as the result, the tra-
jectories belonging to this class lead to the bins with
smaller k. We note that for close to circularly polarized
laser pulses the ME effects result in the rotation of the
2D electron momentum distributions towards the small
axis of polarization ellipse [157].

It is seen that the presence of the ME term in the
equations of motion and the phase does not dramat-
ically change the interference patterns. The interfer-
ence structure is modified only in the first and the sec-
ond ATI peaks and also in the vicinity of the kz axis.
The analysis of the mechanism behind the polarization-
induced interference effect showed that the changes in
interference patterns are mostly caused by the ME term
in the equation of motion, whereas the presence of the
term −3αIF · r/r3 in the phase (54) does not play a
substantial role [156].

It was found that the trajectories interfering in a
given bin often have similar ME contributions to the
phase
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Fig. 10 Two-dimensional photoelectron momentum dis-
tributions for the Ba atom ionized by a laser pulse with
a duration of n = 4 cycles, intensity of 3.0 × 1013 W/cm2

and a wavelength of 1600 nm obtained by semiclassical sim-
ulations neglecting the ME term in the phase (54) [a, c]
and including this term [b, d]. Panels (c) and (d) display
the magnification for |kz| ≤ 0.3 a.u. and |k⊥| ≤ 0.25 a.u. of
the momentum distributions shown in (a) and (b), respec-
tively. In both cases the ME force is included in the New-
ton’s equation of motion. The normalization to the total
ionization yield is used. The color scale is logarithmic with
arbitrary units

−
∫ ∞

t0

dt
3αIF · r (t)

r3 (t)
, (55)

and therefore, the difference of these contributions is
small. This difference is the only important quantity
for the interference effect. The ME contributions to the
phase are similar due to the combination of the follow-
ing reasons: (i) the tunneling probability is a sharp func-
tion of the laser field F (t0) at time of ionization, (ii)
the tunnel exit depends only on F (t0) and the param-
eters of the atom (molecule), and (iii) only the initial
part of the electron trajectory is relevant in the integral
(55). Nevertheless, for atoms and molecules with large
values of the ionic polarizability αI , the difference of
the ME contributions to the phase is essential. As the
result, the changes in the interference patters due to
the ME effect can be significant. This is illustrated in
Fig. 10a–d. It is seen that the number of radial nodal
lines in the fanlike interference pattern at low energies
is different when calculated with and without the ME
term in the phase of Eq. (54). In Fig. 10c there are six
nodal lines for positive k⊥, while in the presence of the
ME term only five such lines are visible [see Fig. 10d].

6 Semiclassical two-step model for H2

molecule

To the best of our knowledge, there are only a few works
that apply semiclassical models accounting for the
quantum interference effect to describe strong-field ion-
ization of molecules, see Refs. [139,164,165]. The stud-
ies [139,164] extend the QTMC model to the molecu-
lar case. The SCTS model was applied to the hydro-
gen molecule in Ref. [165]. Two-dimensional electron
momentum distributions, energy spectra, and angu-
lar distributions were compared to the ones calculated
for ionization of the atomic hydrogen. The study [165]
revealed substantial differences in electron momentum
distributions and energy spectra as compared to the
atomic case.

6.1 SCTS model for hydrogen molecule

The ionic potential experienced by a single-active-
electron in the H2 molecule is given by

V (r) = − Z1

|r − R/2| − Z2

|r + R/2| (56)

Here R is the vector pointing from one nucleus to
another. It is assumed that the origin of the coordi-
nate system is located in the center of the molecule.
The effective charges Z1 and Z2 are chosen to be equal
to 0.5 a.u. [139,164]. It is obvious that the question
how to distribute initial conditions of classical trajec-
tories is more complicated for a molecule than for an
atom. Presently there are two well-known approaches
to this problem: Molecular quantum-trajectory Monte-
Carlo model (MO-QTMC) [139,164] and MO-PFT
[137–139]. The MO-QTMC model applies expressions
of the molecular strong-field approximation (MO-SFA)
[166,167]. The MO-SFA is a generalization of the SFA
that was initially developed for atoms to the case of
molecules. The MO-PFT model was used in Ref. [165].

The bound state orbital in the H2 molecule is the
bonding superposition of the two 1s atomic orbitals
located at the centers of the atoms:

ΨH2
(r) =

1√
2 (1 + SOI)

[ψatom1 (r − R/2)

+ ψatom2 (r + R/2)] . (57)

The corresponding partial Fourier transform is given by
(see Ref. [138]):
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ΠH2
(px, py, z) = exp

(
− i

2
R sin θm [px cos ϕm

+ py sin ϕm]

)
Πatom1

(
px, py, z − R

2
cos θm

)

+exp

(
i

2
R sin θm [px cos ϕm

+ py sin ϕm]

)
Πatom2

(
px, py, z+

R

2
cos θm

)
. (58)

Here θm and ϕm are the polar and azimuthal angles of
the molecular axis, respectively, and Πatom (px, py, z)
is the partial Fourier transform of the 1s orbital. Sub-
stituting the expression for Πatom (px, py, z) (see Ref.
[137]) in Eq. (58) we obtain the following formula for the
mixed-representation wave function of the H2 molecule
applicable just beyond the tunnel exit:

Π (px, py, ze)

∼
{

exp

(
− i

2
R sin θm [px cos ϕm + py sin ϕm]

)

× exp

(
−1

2
κR cos θm

)

+ exp

(
i

2
R sin θm [px cos ϕm + py sinϕm]

)

× exp

(
−1

2
κR cos θm

)}

× exp

[
− κ3

3F
− κ

(
p2

x + p2
y

)

2F

]
. (59)

As in Ref. [139], this expression (without prefactor)
was used in [165] as a complex amplitude describing
ionization at time t0 with initial transverse velocity
v0,⊥ = p0,⊥. In the simplest case analyzed in Ref. [165]
the molecule is oriented along the laser polarization
direction (θm = ϕm = 0), and the factor in brackets in
Eq. (59) is constant for a fixed internuclear distance
R. This allows to use only the exponential factor of
Eq. (59).

Different approaches can be used to find the tunnel
exit point, i.e., the starting point of the trajectory, in
the molecular case. The simplest one consists in neglect-
ing the molecular potential, i.e., considering triangu-
lar potential barrier (51). An alternative approach, the
so-called field direction model (FDM) (see Ref. [78]),
accounts for the molecular potential. The potential bar-
rier in the FDM model is formed by the molecular
potential and the laser field in a 1D cut along the field
direction. Therefore, the tunnel exit point in the FDM
model is defined by the equation:

V (r) + F (t0) ze = −Ip. (60)

To finalize the generalization of the SCTS model to the
case of the H2 molecule, we need to obtain the phase,
which is assigned to a classical trajectory. This phase is

derived by substituting the potential (56) in Eq. (12):

ΦSCTS
H2

(t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t)

2
− Z1 (r − R/2) · (2r − R/2)

|r − R/2|3

+
Z2 (r + R/2) · (2r + R/2)

|r + R/2|3

}
, (61)

see Ref. [165]. It is seen that for r � R/2 this phase cor-
responds to the SCTS phase for the Coulomb potential
−Z/r with the effective charge Z = Z1+Z2. In contrast
to this, the QTMC phase for the H2 molecule is given
by:

ΦQTMC
H2

(t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2 (t)

2
− Z1

|r − R/2| − Z2

|r + R/2|

}
.

(62)

The expression (61) can be simplified at large distances
and, as the result, the SCTS phase for the H atom is
reproduced. Finally, it is assumed in Ref. [165] that at
the end of the laser pulse the ionized electron is far
enough from both nuclei, i.e., r (tf ) � R. If this con-
dition is met, after the end of the pulse the electron
moves in the Coulomb field with the effective charge Z.
Therefore, its asymptotic momentum can be calculated
from Eq. (6), and the post-pulse phase is determined
by Eq. (21).

6.2 Application of the SCTS model to H2 molecule

In Fig. 11 we compare the photoelectron momentum
distributions calculated within the SCTS model for the
hydrogen atom (Fig. 11a) and hydrogen molecule (Fig.
11b, c), see Ref. [165]. The starting point of the trajec-
tory for H is calculated using the triangular potential
barrier (51). The distribution of Fig. 11b for H2 is also
obtained for the exit point calculated from Eq (51).
We note that the molecular potential is fully taken into
account in the classical equations of motion (1) and in
the phase (12) when calculating Fig. 11b. The electron
momentum distribution of Fig. 11c corresponds to the
tunnel exit obtained by using the FDM model. The elec-
tron momentum distributions shown in Fig. 11a, b are
similar to each other. Therefore, it can be concluded
that if the molecular potential is not accounted in cal-
culating the starting point, the effects of the molec-
ular structure are not visible in electron momentum
distributions. This result can be expected bearing in
mind that r0 = Ip/F0 � R/2 for the parameters of
Fig. 11, and the distance between the ionized elec-
tron and the molecular ion increases further when the
electron moves along the trajectory. As the result, the
departing electron feels only the Coulomb asymptotic
instead of the full molecular potential. The FDM model
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predicts smaller exit points as compared to the triangu-
lar barrier formula (51), see Ref. [165]. For this reason,
the effects of the molecular potential (56) are visible
in Fig. 11c. First, the photoelectron momentum dis-
tribution is more extended in the polarization direc-
tion. As the result, the energy spectra for the hydro-
gen molecule falls off slower with the increase of energy
than the ones for the H atom. Simultaneously, the angu-
lar distributions in the molecular case are more aligned
along the polarization direction. Second, at the same
parameters of the laser pulse the holographic interfer-
ence fringes are more pronounced for H2 than for H (see
Fig. 11). The comparison of the distributions calculated
using the SCTS and QTMC models for ionization of the
H2 molecule is presented in Fig. 12a–d. Two different
pulse envelopes were used in Fig. 12a–d. Figure 12a, b
corresponds to the sine squared pulse, whereas Figure
12c, d shows the distributions obtained for the trape-
zoidal pulse (see Ref. [165] for details). Figure 12a, c
display the momentum distributions calculated within
the QTMC model, and Fig. 12b,d show the correspond-
ing SCTS results. For the sine squared pulse these dis-
tributions have a pronounced fan-like structure in their
low-energy part. For the trapezoidal envelope the fans
are substituted by the characteristic blobs (see Fig. 12c,
d) lying on a circle with the radius k = 0.30 a.u. Simi-
lar to the atomic case, the QTMC predicts fewer nodal
lines in the interference structure at low energies than
the SCTS model. This fact can be again attributed to
the underestimation of the Coulomb potential in the
QTMC phase [165].

7 Conclusions

The semiclassical models using classical mechanics to
describe the electron motion after it has been released
from an atom or molecule are one of the powerful meth-
ods of strong-field, ultrafast, and attosecond physics.
The standard formulation of the trajectory-based mod-
els does not allow to describe the effects of quantum
interference. Nevertheless, a substantial progress in sim-
ulations of the interference effects using the semiclassi-
cal models has been achieved recently. By present sev-
eral trajectory-based models capable to describe the
interference effects have been developed and success-
fully applied to the studies of the ATI. Here we discuss
one of these models, namely, the SCTS.

The SCTS model allows to reproduce interference
patterns of the ATI process and accounts for the ionic
potential beyond the semiclassical perturbation theory.
In the SCTS the phase assigned to every classical tra-
jectory is calculated using the semiclassical expression
for the matrix element of the quantum mechanical prop-
agator [79–81]. As the result, the SCTS model yields a
good agreement with the direct numerical solution of
the TDSE, better than, e.g., the QTMC model apply-
ing the first-order semiclassical perturbation theory to
account for the Coulomb potential in the phase.
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Fig. 11 Two-dimensional electron momentum distribu-
tions for ionization of a the H atom and b, c the H2 molecule
by a laser pulse with the duration of n = 4 cycles, inten-
sity of 2.0 × 1014 W/cm2, and wavelength of 800 nm. The
distributions shown in panels a and b correspond to the
tunnel exit point calculated from Eq. (51). The distribution
of panel c is obtained using the FDM expression for the
tunnel exit. The H2 molecule is oriented along the polar-
ization direction of the laser field (z-axis). The holographic
fringes are shown by white lines in panel (a). The normal-
ization to the total ionization yield is used. The color scale
is logarithmic with arbitrary units

Here we review further developments and applica-
tions of the SCTS. At first, we review the formulation
of the SCTS and its numerical implementation. The
application of the model was illustrated in the case
of the H atom. We next turn to the further develop-
ments of the SCTS: the SCTSQI model [95] and the
SCTS model with the prefactor [94]. In the SCTSQI
model the initial conditions for classical trajectories are
determined from the exact quantum dynamics of the
wavepacket. For ionization of the 1D atom the SCTSQI
model yields not only qualitative, but also quantitative
agreement with the numerical solution of the TDSE.
Further work is needed to accomplish the generaliza-
tion of the SCTSQI on the 3D case. The developments
in this direction have already begun. The quantitative
agreement with the TDSE was also achieved by the
extension of the SCTS model that accounts for the pref-
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Fig. 12 The low-energy parts of the two-dimensional pho-
toelectron momentum distributions for the H2 molecule ion-
ized by a laser pulse with a duration of n = 4 cycles, wave-
length of 800 nm, and peak intensity of 1.2 × 1014 W/cm2.
The left column panels a and c show the results of the
QTMC model. The right column panels b and d present
the distributions calculated within the SCTS model. Pan-
els [a, b] and [c, d] are calculated for the sine squared and
trapezoidal envelopes of the laser pulse, respectively (see
Ref. [165]). The molecule is oriented along the laser polar-
ization direction (z-axis). A logarithmic color scale in arbi-
trary units is used

actor of the semiclassical matrix element. Furthermore,
the 3D implementation of the SCTS [94] has a number
of other important modifications.

We discuss the application of the SCTS approach
to the SFPH. The semiclassical simulations within the
SCTS model are in perfect agreement with the results of
the recent experiment [66]. The model is able to repro-
duce all characteristic features of the observed holo-
graphic patterns. The SCTS model also allows to inves-
tigate the effect of the Coulomb potential on the holo-
graphic structures. Three main Coulomb effects in the
interference patterns were predicted [67]. However, it
should be investigated how sensitive are these Coulomb
effects to focal averaging. This further work will allow
to understand, which of the predicted effects can be
observed.

We also present a quick review of the application
of the SCTS to study of the multielectron polariza-
tion effects. We discuss the modification of the SCTS
model accounting for the multielectron polarization-
induced dipole potential. The semiclassical simulations
predict narrowing of the electron momentum distribu-
tions along the polarization direction. This narrowing
arises due to the focusing of the ionized electrons by the
induced dipole potential. Furthermore, the polarization

of the ionic core can also modify the interference pat-
terns in electron momentum distributions.

Finally, we briefly reviewed the extension of the
SCTS model to ionization of the hydrogen molecule.
The SCTS model for the H2 can be generalized to
an arbitrary laser polarization and orientation of the
molecule, as well as to heteronuclear and polyatomic
molecules. We believe that these generalizations being
combined with the extended versions of the SCTS will
result to an emergence of powerfool tools for studies of
the strong-field processes.
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The relative yield and momentum distributions of all multiply charged atomic ions generated by a short
(30 fs) intense (1014–5 × 1018 W/cm2) laser pulse are investigated using a Monte Carlo simulation. We predict
a substantial shift in the maximum (centroid) of the ion-momentum distribution along the laser polarization
as a function of the absolute phase. This effect should be experimentally detectable with currently available
laser systems even for relatively long pulses, such as 25–30 fs. In addition to the numerical results, we present
semianalytical scaling for the position of the maximum.

DOI: 10.1103/PhysRevA.83.033401 PACS number(s): 32.80.Fb, 32.80.Wr

I. INTRODUCTION

The interaction of strong laser pulses with atoms and
molecules results in a large number of different phenomena,
among which are the formation of the high-energy plateau in
the above-threshold ionization (ATI) spectrum, the generation
of high harmonics of the incident field (HHG), and the
excessive yield of doubly and multiply charged ions (see
reviews [1–5]). The respective phenomena have been studied
extensively in the last two decades, both theoretically and
experimentally. These investigations were initially concerned
with the total ion yield and the dependence of this yield on
the intensity. Most of them dealt with double ionization and
two different mechanisms underlying the production of doubly
(or multiply) charged ions were revealed: nonsequential and
sequential double (multiple) ionization.

The term nonsequential double (or multiple) ionization
refers to the situation in which two (or more) electrons are
ionized in one coherent process and the rate is not the product
of single ionization rates. Hence, electron-electron correlation
is a necessary condition of the nonsequential double ionization
process. Nonsequential ionization is observed at relatively low
laser intensities. It was first proposed in Refs. [6,7] that a
nonsequential channel contributes to double ionization. The
actual mechanism of this correlation was investigated and
debated for many years. Finally, a consensus (i.e., that the
dominating contribution to nonsequential double ionization is
due to recollision [8,9]) has been achieved. The recollision
process is also responsible for the ATI plateau and the HHG
[9,10]. However, the details strongly depend on the atomic
species (see [11] for reviews). When intensities increase such
that the magnetic components of the electromagnetic field
become significant, nonsequential ionization is suppressed. As
a consequence, sequential ionization is predicted to dominate.
This process is of considerable importance in view of the
rapid increase in the intensity of currently available lasers.
Another situation where sequential ionization may dominate
is ionization by a circularly polarized field. For elliptical
polarization, electrons have to start with nonzero initial
velocity perpendicular to the main axis of the polarization
ellipse in order to return to the position of the ion. However, this
initial velocity decreases the tunneling rate. As a consequence,

the levels of the ATI plateau as well as the nonsequential double
ionozation (NSDI) rate decrease quickly with increasing
ellipticity. Thus, in the case of a circular polarization, the
nonsequential channel is essentially suppressed.

Due to the capabilities of modern experiments (espe-
cially since the advent of cold-target recoil-ion-momentum
spectroscopy), both the total yield and the ion-momentum
distributions can be measured [12–18]. It was found that,
at high laser intensities, momentum distributions of multiply
charged ions along the polarization direction have a Gaussian-
type shape with the maximum at zero momentum [14,15,19].

In our laboratory, an experiment aimed at investigating the
ionization dynamics with ion beams of well-defined charge
state is under construction. In order to establish what to expect
based on the current understanding of multiple ionization at
high intensities, we investigate sequential ionization theoreti-
cally. Clearly, we do not expect perfect agreement between
the forthcoming experimental data and the predictions of
any model based on the sequential mechanism, especially
at relatively low intensities. Nevertheless, such a model will
provide a necessary benchmark for the data analysis and, no
doubt, will help to understand the real pathways of the multiple
ionization process.

At first glance, sequential ionization may appear trivial as
compared to the nonsequential process. Consequently, most
studies have focused on the latter ionization mechanism and
there is, in fact, a lack of theoretical studies of sequential
multiple ionization. Although the sequential ion yield was
calculated by many groups (see [20–27] and references
therein), emphasis has been put on the derivation of empirical
formulas, which can describe the well-known “knee” in the ion
yield, caused by the presence of the nonsequential channel. The
aforementioned lack of relevant theory becomes particularly
evident in the case of momentum distributions. Momentum
distribution of multiply charged ions up to Z = 8 produced
by a strong laser pulse with duration of 200 fs and maximum
intensity of 5–7 ×1015 W/cm2 were recently measured and
calculated in Refs. [28,29]. To the best of our knowledge,
Refs. [28,29] are the only theoretical studies of the momentum
distributions of the highly charged ions. Ionization dynamics
was simulated using the classical trajectory Monte Carlo
method including tunneling (CTMC-T method, see [30,31]). It

033401-11050-2947/2011/83(3)/033401(7) ©2011 American Physical Society

8. Publications 153

8.6 Momentum distributions of sequential ionization



SHVETSOV-SHILOVSKI, SAYLER, RATHJE, AND PAULUS PHYSICAL REVIEW A 83, 033401 (2011)

has been found experimentally that the width of the momentum
distribution along the polarization direction is almost a linear
function of the ionization potential. This linear dependence
was explained on the basis of the strong-field approximation
and electron kinematics in the laser field.

Nevertheless, the momentum distributions of highly
charged ions have not been analyzed so far. This requires
analyzing the subcycle ionization dynamics, whereas previous
work has concentrated on the pulse envelope. Moreover,
sequential multiple ionization by short laser pulses has
not been investigated including the corresponding carrier-
envelope phase (CEP) effects (see review [32] and references
therein). In this paper, we further explore the sequential
ionization in order to (i) calculate momentum distributions
of ion with Z � 8; (ii) consider the ion production by a short
laser pulse, when the CEP effects may be relevant; and (iii) find
out the scaling of momentum distributions with laser-atom
parameters.

II. EXPERIMENTAL SETUP

In this section, we briefly describe the experimental setup
under construction in our laboratory and that we have in
mind in our theoretical study. An ion beam is produced in
an EBIT (electron beam ion trap) that is kept at a potential of
approximately 5 kV, and which can produce xenon ions with
charges ranging from Xe1+ to around Xe20+.

Selecting the desired initial charge state with a Wienfilter
(WF) [33] allows for determining the effects of the initial
charge state on the subsequent laser-induced ionization. Einzel
lenses (EL1, EL2), deflector plates (DF1, DF2, DF3), and
adjustable pinholes (AP1, AP2) shown in Fig. 1 are used to
produce a well-collimated ion beam at the laser interaction
point (IA).

The focused laser beam is linearly polarized in the x di-
rection, which is orthogonal to the ion beam propagation in
the y direction, and hits the ion beam in the interaction region
(IA). The momentum distribution of the ions in the y direction
arises from the acceleration of the charged nuclei in the laser
field.

After the laser interaction, the charge separator (CS) de-
flects the ions in the z directon using an electrostatic field. The
nonionized portion of the ion beam is collected in a Faraday
cup (FC), while the different ionization states are separated in
space. The charge state and momentum distributions are then

FIG. 1. (Color online) Experimental setup of the ion beam
apparatus, which includes an electron beam ion trap (EBIT), two
Einzel lenses (EL1, EL2), a Wienfilter (WF), three deflector plates
(DF1, DF2, DF3), two adjustable pinholes (AP1, AP2), an interaction
region (IA), a charge separator (CS), a Faraday cup (FC), and a
delay-line detector (DD). The laser beam is focused vertically linear
polarized into the ion beam.

detected using a time- and position-sensitive microchannel
plate (MCP) delay-line detector (DD).

III. MODEL

In this section, we will sketch our numerical technique
with special emphasis on the details that are essential for the
following. Let us consider a short laser pulse with the duration
τL = (2π/ω) np and a sine-square envelope, linearly polarized
along the x axis:

F (t) = F0 sin2(πt/τL) cos(ωt + ϕ), (1)

where np is the number of cycles within the pulse and ω is the
carrier frequency.

In a strong field of laser radiation, an ionized electron can
obtain relativistic energy in the final continuum state that is
on the order of its rest energy. Taking into account that the
oscillation energy of a free electron is F 2/4 ω2, one can easily
find that relativistic effects occur for radiation of the Ti:Sa laser
at the intensity greater than 5 × 1018 W/cm2 (see Ref. [2]). In
our study, we will not consider intensities exceeding this value.
More importantly, we consider the ion momentum, which will
remain nonrelativistic even for much higher intensities.

A. Rate equations

Consider neutral atoms with a charge Z = 0 and initial
momentum P0 exposed to a short intense laser pulse. Let N be
the maximal ion charge that can be achieved for a given laser
intensity and RZ(t) denote the probability for an ion to have
charge Z at a given time instant t . Let WZ(t) ≡ WZ(F (t),IZ) be
the ionization rate for an ion with the charge Z and ionization
potential IZ . Assuming that ions are created in a sequential
process, we obtain the following system of rate equations:

dR0

dt
= −W0R0,

dR1

dt
= W0R0 − W1R1,

dR2

dt
= W1RZ+1 − W2R2, (2)

. . . ,

dRN

dt
= WNRN−1.

The initial conditions read as R0 (0) = 1 and RZ (0) = 0 for
Z = 1,2, . . . ,N . Adding all the equations of the system (2),
we get the conserved quantity

R0(t) + R1(t) + · · · + RN (t) = 1. (3)

Equation (3) is a constraint under which the system of rate
equations (2) needs to be solved. A glance at the result (see
Fig. 2) that will be obtained reveals that only two to three terms
that sum in Eq. (3) differ from zero at any given time instant.

The system of equations (2) has already been solved by
many authors (see [20–22,24–26] and references therein) for
different atomic species and within a wide range of laser
parameters. Particularly worth noting is the semianalytical
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FIG. 2. (Color online) Results of the numerical solution of the rate equations (2) for Xe ions. Three panels (a), (b), and (c) correspond to
peak intensities of 0.8, 60, and 500 × 1015 W/cm2, respectively. The color scale depicts the time-dependent ionization state distribution. In all
cases, the pulse duration is 30 fs at FWHM and the white line is the instantaneous intensity.

approach developed in [21], based on the following formal
solution of Eqs. (2):

R0(t) = exp

{
−

∫ t

−∞
W0(t ′) dt ′

}
,

R1(t) = exp

{
−

∫ t

−∞
W1(t ′) dt ′

} ∫ t

−∞
exp

{∫ s

−∞
W1(t ′) dt ′

}

×R0(s)W0(s) ds,

R2(t) = exp

{
−

∫ t

−∞
W2(t ′) dt ′

} ∫ t

−∞
exp

{∫ s

−∞
W2(t ′) dt ′

}

×R1(s)W1(s) ds,

. . . ,

RN (t) =
∫ t

−∞
WN−1(s)RN−1(s) ds. (4)

After some approximations, this formal solution (4) can be
simplified, and, by doing so, analytic estimates can be derived
[21].

The aforementioned solutions of rate equations were
obtained for Gaussian [22,24], Lorentzian [25,26], and
hyperbolic-secant [21] pulse envelopes. To the best of our
knowledge, the oscillations of the laser field have not been
taken into account for solving Eqs. (2). However, knowing the
cycle-resolved ionization dynamics is necessary to compute
the momentum distribution of a given ion. Due to these
reasons, we start our theoretical study from the solution of
the rate equations (2).

B. Ionization rates

In order to solve system (2), one needs to know the
ionization probabilities WZ(t). For such probabilities, we
can use the ionization probability by a static field [34] or
by Perelomov-Popov-Terent’ev [35] or Ammosov-Delone-
Krainov (ADK) [36] formulas. Then, the tunneling rate for
a level with ionization potential Ip reads as

Wl,m = (2Ip) (2l + 1)
(l + m)!

2mm!(l − m)!
C2

κl2
2n∗−m

×
(

F

Fa

)m+1−2n∗

exp

(
−2Fa

3F

)
. (5)

Here Fa = (2Ip)3/2 is the atomic feld, n∗ = Z/
√

2Ip is the
effective quantum number, C2

κl is the asymptotic coefficient
of the atomic wave function (see [37] for details), and l and
m are the angular and magnetic quantum numbers, respec-
tively. Atomic units (e = m = h̄ = 1) are used throughout the
paper. We omit the Keldysh parameter γ = ω

√
2Ip/F in the

exponent of Eq. (5), and, of course, the pre-exponential factor√
3π/F , because the latter arises from the averaging over the

laser period.
Simple estimates show, however, that neutral Xe atoms,

as well as Xe1+ and Xe2+ ions, are ionized in the barrier-
suppression regime even at an intensity of 1014 W/cm2. This
means that, strictly speaking, we need to use ionization rates
suitable for barrier suppression ionization in Eqs. (2).

Ionization by a field F � FBSI, where FBSI is the field
strength, when the perturbed energy of the initial state exceeds
the maximum of an effective potential barrier was analyzed by
many authors (see Refs. [38–42]). However, it is well known
that, presently, no universal nonempirical formulas for the
ionization probability in the barrier-suppression regime are in
agreement with solutions of the time-dependent Schrödinger
equation (TDSE) (see Ref. [40]).

An exception, however, is the result by V. S. Popov et al.
[37,41] based on the investigation of the Stark effect [43–46],
i.e., the probability was calculated as a width of the corre-
sponding Stark level. However, these results are appropriate
for atomic hydrogen only and their generalization to other
atomic species is not obvious.

A simple empirical formula (both for the tunneling and the
barrier-suppression regime) with only one free parameter has
recently been proposed by X. M. Tong and C. D. Lin [42]. This
parameter, however, must be computed by comparing with the
TDSE solution for any given initial state.

For low-frequency laser fields, the barrier-suppression
ionization rate was calculated by V. P. Krainov [38,39] on
the basis of the strong-field approximation. This rate reduces
to the usual ADK rate [36] in the tunneling limit when the
laser field is relatively weak: F � FBSI. Note that the Stark
shift of the initial bound state was not taken into account in the
derivation of the formulas in Refs. [38,39]. As a consequence,
this formula can give results only in qualitative agreement
with the solution of TDSE, considerably overestimating the
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ionization probability in the above barrier region [40]. In
addition, the result of Refs. [38,39] is averaged over one
laser cycle and valid only for s and p states (in the latter,
the averaging over m = −1,0,1 is performed).

Let us generalize the rate [38,39] for the case of an arbitrary
orbital momentum of the initial state and avoid averaging over
the laser period. By doing so, we get the following expression:

Wl,m = √
π(2Ip) (2l + 1)

(l + m)!

2mm!(l − m)!
C2

κl2
2n∗+ 14

3 −m

×
(

F

Fa

)m+ 1
6 −2n∗ ∫ ∞

0
Ai2(k2 + x2)x2dx, (6)

where k = 2Ip/ (2F )2/3 and Ai denotes the Airy function.
In the following, we will use mainly the probability Eq. (6).

However, as we will see below in Sec. IV A, there is no
essential difference as to which formula [Eq. (5) or (6)] is
used in the calculations. Moreover, we will consider these
expressions as the ionization probabilities by a static field. In
other words, for solving the rate equations, we will substitute
not the envelope, as was done before in Refs. [21,25,26],
but the instantaneous laser field in the formulas for Wl,m. To
be more specific, we will use the modulus of Eq. (1), i.e.,
F0 sin2 (πt/τL) |cos (ωt + ϕ)|, instead of F in the ionization
rates [Eqs. (5) and (6)].

C. Derivation of the momentum distributions

The calculation of the ion-momentum distribution is not
quite as simple as it may appear at first glance. The fact is that
the depletion of the ions with the preceding charge (Z − 1)
should be taken into account when calculating the distributions
of ions with charge Z.

Our solution of the problem is based on a Monte Carlo
algorithm, which has some important peculiarities that are
briefly described here. The simulations are based on the
calculation of the trajectory of a particle (the ion) in the laser
field taking into account the possibility for this particle to
be ionized by the field once, or many times, during the
pulse. For the simulation, the temporal axis is discretized,
i.e., subdivided into small intervals. The trajectory of the ion
must be analyzed in each of the intervals. We start from the
neutral atom Z = 0 with zero initial velocity along the laser
polarization Px = 0. Obviously, the laser field does not act on
the neutral particle, but it will act on the particle, as soon as it is
ionized.

Assume that Px (t0) and Z are the momentum and the charge
of the particle at a certain instant t0, respectively. Let us then
take a look at the interval (t0,t0 + �t). The ion momentum at
the end of this interval can be calculated according to Newton’s
equation

Px(t0 + �t) = Px(t0) + Z

∫ t0+�t

t0

F (t ′) dt ′. (7)

On the other hand, the probability for an ion of charge Z to be
ionized during the interval �ti can be calculated as WZ (ti) �ti

or, more exactly, as
∫ t0+�t

t0
WZ(t) dt . This probability is

evaluated and compared with a random number 0 � x � 1.
If the probability is greater than the random number, then the

next ionization occurs and the charge of Z is increased by one.
This means that, for the next time interval (t0 + �t,t0 + 2�t),
we consider the motion of an ion with charge (Z + 1). In
the opposite case, when the ionization probability is smaller
than our random number x, the particle is not ionized during
the interval (t0,t0 + �t). In both cases, the particle starts
its motion on the next time interval with the momentum
Px (t0 + �t) [see Eq. (7)]. Thus, at the end of the pulse,
we obtain an ion of a certain charge ZF and with a certain
momentum PF,x . By using an ensemble of such trajectories,
one can get the necessary statistics to calculate momentum
distributions.

IV. RESULTS AND DISCUSSION

A. Solution of the rate equations

For solving system (2), one can use the standard numerical
method such as the Runge-Kutta method with adaptive step-
size control (see, e.g., [47]). However, the rate equations
are stiff [21] because the tunneling rates Wk−1(t) and Wk(t)
entering into the rate equation for the probability RZ(t)
usually differ by more than one order of magnitude. Thus,
it is reasonable to use numerical methods specially adapted
to the solution of stiff differential equations, e.g., the Gear
method [48].

Another possible approach is based on the formal so-
lution (4). In this case, one has to evaluate a great num-
ber of definite and improper integrals. Although the in-
tegrands are positive, they oscillate very rapidly and it
is important to prevent precision loss due to truncation
errors.

We used both methods in order to check the consistency.
The results obtained by both alternatives are in agreement.
The characteristic probability for an ion to have a specific
charge as a function of time is shown in Figs. 2(a)–2(c)
at three different intensities. For visual convenience, the
instantaneous laser intensity is also shown on the figure.
These results provide detailed information about the ionization
dynamics of an ionic target. Our numerical analysis shows
that barrier-suppression ionization plays a minor role in the
production of highly charged ions, even for short laser pulses:
Ions with Z > 2 are ionized before the intensity reaches
the corresponding barrier-suppression value. This result is
in agreement with the conclusion of Ref. [28] for long
pulses.

In addition to, and aside from, other aspects, our cal-
culations deliver the time intervals when different highly
charged ions exist within the pulse (see Fig. 2). These
intervals can easily be transformed into respective intensity
regions. It should be mentioned that the boundaries of
these intensity regions, i.e., threshold and saturation inten-
sities, are in good quantitative agreement with the results
of [21].

Another interesting question is which ion would dominate
at the given intensity after the end of the laser pulse or, vice
versa, which intensity is necessary to maximize the yield of
a given ion. The latter dependence has been calculated and
is shown in Fig. 3. The entire dependence can be fitted by
a quadratic function. The two big groups of points on this
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FIG. 3. (Color online) The laser intensity, which maximizes the
ion yield of a specific charge state, is shown as a function of the
ion charge. The thin black line corresponds to the quadratic fitting:
log10 I ∝ Z2.

figure correspond to the atomic shells 5p65s2 and 4d104p64s2,
subsequently ionized in our calculations.

B. Momentum distributions

The results of our simulation for the ion-momentum
distributions are presented on Figs. 4, 5, and 6. It is seen
from these figures that the ion-momentum distribution has
a Gaussian shape. Any Gaussian-type curve can be charac-
terized by two parameters: its width and the position of the
maximum.

The dependence of the width of the ion-momentum dis-
tribution on the ionization potential Ip shown in Fig. 4 can
easily be obtained as follows: For any given ion, there is an
intensity that maximizes the yield of this ion (see Fig. 3). Thus,
by performing the Monte Carlo simulations at this intensity,
one can calculate the corresponding momentum distribution
and obtain its width. It is reasonable that the width of the
ion-momentum distribution increases with increasing laser
intensity. At intensities of 5–7×1016 W/cm2, the widths of
the momentum distribution of the product ions exhibit a linear

FIG. 4. (Color online) Width (FWHM) of the ion-momentum
distribution as a function of ionization potential Ip . Numerical results
are fitted to a power law ∝ I 1.4

p depicted by the thin black line.

FIG. 5. (Color online) Ion-momentum distribution of Xe21+ at
the intensity of 1.5 × 1018 W/cm2 for two different pulse durations
at FWHM. The shift of the maximum is clearly seen from the
figure.

dependence on the ionization potential of the respective ions
[28,29]. Such a linear dependence was analyzed theoretically
using the strong-field approximation and a reasonable scaling
was proposed [29]. However, our calculations show that,
within a wider range of intensities (1014–1018 W/cm2), the
width of ionic momentum distribution is proportional to I 1.4

p

(see Fig. 4).
Apart from the investigation of the widths, we predict a

new effect: the shift of the maxima from zero momentum (see
Fig. 5). This effect originates from the finite pulse duration
and vanishes for a monochromatic field. It also vanishes when
averaging over the carrier-envelope phase ϕ. Hence, this shift
must be considered as a carrier-envelope phase effect. It would
be very desirable to have a scaling for the shift. However, such
a scaling is quite an intricate problem.

It is evident that ionization happens near field maxima,
i.e., near minima of the vector potential. It would also
appear reasonable that each ionization act occurs near its own
maxima of the laser field. However, such a seemingly natural
assumption is not true [see Fig. 2(c)]. For example, at the
parameters of Fig. 2(c), we have one ionization event during
the first half of the laser period, two events during the second
half of period, etc. Thus, in order to estimate the position of the
maxima at given laser-atom parameters, one has to solve the
rate equations (2) first, i.e., one has to determine the subcycle
ionization dynamics.

Once the ionization dynamics is known, one can easily
derive the scaling of the shift of maximum. Indeed, according
to momentum conservation

P = −
∑

i

pei
, (8)

where pe are the momenta of all ionized electrons after the end
of the laser pulse.

Consider an electron ionized at instant of time t0. Then, the
asymptotic momentum of the electron at t → ∞ reads as

pe,x = −
∫ τL

t0

F (t) dt. (9)
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Assuming that ionization happens exactly at field maxima
ωt = πk, one has, from Eq. (1),

pe,x = F0

2ωnp

(−1)(k+1) sin

(
πk

np

)(
1 + 1

n2
p

)
. (10)

For simplicity, we assume that ϕ = 0 when calculating the
last equation. In order to estimate the position of the maximum,
one has to sum Eq. (10) over all the relevant values of k, which
should be extracted from the solution of Eqs. (2). Note that
the same value of k may appear in the sum of Eq. (10) several
times if there are several ionization events on the corresponding
half-cycle. For example, at the intensity of 5.0 × 1017 W/cm2

and for pulse duration of 30 fs (FWHM), the index k runs
over the values (2,3,3,4,4,5,6,6,9,11,12,13,14,15,17,19)
[see Fig. 2(c)]. In this case, we have, from Eqs. (8) and (10),
Px ≈ 2.3 a.u., whereas the calculated momentum distribution
of Xe16+ has its maximum at Px ≈ 5.0 a.u. It should be
noted, however, that the estimate Eq. (10) is appropriate
only if each ionization act can be assigned to a certain
half-cycle. If this is not the case, i.e., the new charge state
appears during several half of periods, this scaling gives wrong
results.

The intensity and phase dependence of the centroid is
shown in Fig. 6 for short and relatively long laser pulses. Here

FIG. 6. (Color online) The shift of the centroid in atomic units as
a function of the phase ϕ and intensity. At any given intensity only the
distribution of the ion with the highest yield is considered. The two
panels (a) and (b) correspond to the pulse duration of 30 and 6.7 fs at
FWHM, respectively.

we briefly discuss both the intensity and phase dependence.
It is evident from Eq. (10) that the shift of the maxima is
proportional to the field strength and inversely proportional to
the duration of the pulse. Because of this, the displacement of
the maxima from Px = 0 can be observed in long pulses [up
to 30 fs at FWHM; see Fig. 6(a)] provided the intensity is high
enough.

It should be mentioned that we were only discussing the
momentum distribution of the charge state, which has the
highest yield at the given peak intensity. The momentum
distribution of other charge states, which arises after the end of
the laser pulse, is also shifted. In principle, one can calculate
the corresponding shifts as well. However, this calculation
does not provide any additional information about the effect
under consideration: As one would expect, the distributions of
the lower charge states are less shifted than the distributions
of the higher ones.

The strong dependence on the CEP originates from the
different ionization pathways [different sets of k in Eq. (10)],
which are realized at different values of the phase due to the
different temporal evolution of the field. The phase dependence
of the shift survives even for relatively long pulses [see
Fig. 6(a)]. This may appear surprising. In fact, phase effects
with respectively long pulses have been observed before
in HHG under situations where contributions of different
recolliding electron trajectories interfered [49]. Here the
situation is completely different: The asymmetry is dominated
by the ionization event occurring in the optical cycle next
to the pulse maximum. Evidently, the phase effects for long
pulses are hard to observe if focal averaging plays a significant
role. Ion beam experiments have a distinct advantage in this
respect.

V. CONCLUSIONS

In conclusion, we have investigated the total yields and the
momentum distributions of highly charged ions produced by
strong laser pulses at different intensities and pulse durations.
We present numerical results as well as semianalytic estimates
and scaling relations. A surprising result of our study is that
the maximum of the longitudinal ion-momentum distribution
shifts from zero momentum, even for pulses much longer
than a few cycles provided the laser intensity is high enough.
The magnitude of this shift is proportional to the field
and inversely proportional to the pulse duration. This effect
should be experimentally detectable for pulses of 25–30 fs
duration at FWHM. In addition, we have demonstrated that,
even for short pulses, barrier-suppression ionization plays a
minor role in the production of multiply charged ions due
to the temporal variation of the laser field. Consequently,
tunneling is the most important mechanism of the multiple
ionization.
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1. Introduction

Double and multiple ionization of atoms and molecules is one of the most theoretically
challenging strong-field phenomena. This process has been intensively investigated over the
last two decades, both experimentally and theoretically. As a result of these investigations it
has been found that two different physical scenarios underlie this phenomenon: sequential and
nonsequential double (multiple) ionization (for reviews see [1–4]). In the process of sequential
ionization, electrons are ionized sequentially and independently of one another.

In contrast to this process, electron–electron correlation is a necessary condition for
nonsequential double (or multiple) ionization. The actual mechanism underlying this correlation
has been the subject of extensive investigation and debate for several years. At this point it has
been established that nonsequential double ionization occurs due to inelastic recollision of the
ionized electron with the parent ion [5, 6]. This mechanism can be visualized by the well-known
three-step model. According to this model, (i) one electron tunnels out of the atomic potential
and is driven by the laser field away from the residual atom. When the field changes its direction,
(ii) the electron is driven back, and on recollision with the ion core, (iii) it gives part of its kinetic
energy to a second bound electron, which is then freed. Finally, both are driven by the laser field.
Note that the details of this picture significantly depend on the specific atom (see, e.g., [1, 2]).
Obviously, the rate of the nonsequential process is not the product of single ionization rates. It
was first proposed in [7, 8] that the nonsequential mechanism contributes to double ionization.

In contrast to nonsequential ionization, which can be observed at relatively low laser
intensities, sequential ionization dominates at high intensities. Sequential processes also
dominate in the case of ionization by a circularly polarized laser field. For elliptical polarization
the electron must depart with nonzero initial velocity perpendicular to the main axis of the
polarization ellipse in order to return to its parent ion. However, this initial velocity decreases
the tunneling rate. As a result, the probability of the nonsequential double ionization decreases
quickly with increasing ellipticity and for a circularly polarized field, the nonsequential
mechanism is essentially eliminated. At present, sequential ionization is attracting particular
interest due to the constant increase in the intensity of modern lasers. Moreover, the rapid
progress of the experimental technique (particularly, the advent of the cold-target recoil-ion-
momentum spectroscopy COLTRIMS or REMI) has not only allowed for measurements of the
total ion yield, but also the momentum distributions of the product ions [9–15].
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Strange as it may seem, at present, there is a lack of theoretical studies of sequential
double and multiple ionization. This particularly holds for the ion momentum distributions and
for ionization by short laser pulses. At first glance, there is a considerable body of work on
sequential processes, such as [16–26]. However, the vast majority is concerned with only the
total ion yield. Moreover, emphasis has been put on the description of the well-known ‘knee’ in
the yield, which appears due to the nonsequential channel. Momentum distributions of multiply
charged ions generated by sequential ionization of atoms were studied in the works [24–26],
two of which were experimental and theoretical investigations [24, 25] of the momentum
distributions of multiply charged He, Ne and Ar ions up to the charge of Z = 8 generated by a
long (200 fs at full-width at half-maximum (FWHM)) laser pulse with the maximum intensity of
5–7 × 1015 W cm−2. In the third work [26], the momentum distributions of Xe ions up to Xe24+

were calculated for both relatively long and short laser pulses.
To the best of our knowledge, our previous work [26] is the only theoretical study of

sequential multiple ionization by a short laser pulse, when the carrier–envelope phase (CEP)
effects may be essential (for a review of these effects, see [27] and references therein). In [26],
we predicted a substantial shift in the maximum (centroid) of the ion-momentum distribution
along the laser polarization as a function of the CEP. This effect should be experimentally
detectable with currently available laser systems even for relatively long pulses, i.e. 25–30 fs.

At first glance, it is much easier to measure the variation of ion yield with the absolute
phase than to measure the phase-dependent shift of the momentum distributions. However, CEP
effects are often not apparent in measurements of the total yields, because they can be washed
out by the integration over momentum. Nevertheless, the effect of the absolute phase on the total
yield of highly charged ions has not been studied so far. In this paper, we investigate the CEP
dependence of the ion yield by solving the system of rate equations for different charge states.
We perform a comprehensive analysis of the absolute phase effect for various atomic targets
(Ne, Ar, Kr and Xe) over a wide range of laser intensities and formulate the conditions under
which it can be observed.

2. Phase dependence of the ion yields

2.1. Theoretical approach

In our calculations, we use a short linearly polarized laser pulse with a sinus-square envelope:

F(t) = F0 sin2(π t/τL) cos(ωt + ϕ), (1)

where ω is the carrier frequency, ϕ is the absolute phase and τL = (2π/ω)np is the duration
of the pulse; here, in turn, np is the number of cycles within the pulse. The pulse duration at
FWHM can be estimated as one half of the τL: τFWHM ≈ τL/2. Assuming that ion creation is a
sequential process (i.e. there is no interaction between the electrons), we come to the following
system of rate equations:

dr0

dt
= −w0r0,

dr1

dt
= w0r0 − w1r1,

dr2

dt
= w1r1 − w2r2,

. . . ,
drN

dt
= wNrN−1. (2)

Here rZ ≡ rZ(t, ϕ) is the probability for an ion to have charge Z at time t , N is the maximum
charge state that can be achieved at a given laser intensity and wZ ≡ wZ(F(t, ϕ), IZ) is the

New Journal of Physics 13 (2011) 123015 (http://www.njp.org/)

8. Publications 162



4

ionization rate for an ion with the charge Z and ionization potential IZ . The initial conditions
for the system of rate equations, equations (2), are r0(0, ϕ) = 1 and rZ(0, ϕ) = 0 for Z =

1, 2, . . . , N . As the probability of finding a particle with some charge is equal to unity, the
system (2) is constrained to the condition

r0(t, ϕ) + r1(t, ϕ) + · · · + rN (t, ϕ) = 1. (3)

In order to solve system (2), we need to know the ionization probabilities. According to
simple estimates, the ionization of the neutral Xe atoms, as well as that of the Xe1+ and Xe2+

ions, occurs in the barrier-suppression regime, and, strictly speaking, one needs to use ionization
rates suitable for barrier-suppression ionization; see, e.g., [28, 29]. The formula of [28, 29]
reduces to the usual Perelomov–Popov–Terent’ev (PPT) [30] or Ammosov–Delone–Krainov
(ADK) [31] rates in the tunneling limit, when the laser field is relatively weak. The extrapolation
of the tunneling formula into the barrier-suppression regime overestimates the ionization rate as
compared to the barrier-suppression one. However, a substantial difference between these two
formulae (say, at the level of 50%) occurs only when the laser field is at least 7–8 times greater
than the corresponding barrier-suppression value, which is not true in our case. Numerical
simulations show that the ionization of neutral atoms, as well as that of singly and doubly
charged ions, occurs mostly at field strengths no more than 2 times stronger in comparison
with the barrier-suppression fields (see figures 2(a) and (d)). Moreover, ions with Z > 2 are
ionized well before the intensity reaches the corresponding barrier-suppression value. Thus,
barrier-suppression ionization plays a minor role in the production of highly charged ions, both
for long [24] and short [26] laser pulses, and the PPT or ADK formulae for the ionization
probability, wZ(t), are appropriate. Thus, the tunneling rate for a level with ionization potential
Ip and angular and magnetic quantum numbers equal to l and m, respectively, is given by

wZ = (2Ip)(2l + 1)
(l + m)!

2mm! (l − m)!
C2

kl2
2n∗

−m

(
F

Fa

)m+1−2n∗

exp

(
−

2Fa

3F

)
, (4)

where Fa = (2Ip)
3/2 is the atomic field, n∗

= Z/
√

(2Ip) is the effective quantum number and
C2

kl is the asymptotic coefficient of the atomic wave function; see [32]. We neglect the Keldysh
parameter γ = ω

√
2Ip/F in the exponent of equation (4) and omit the pre-exponential factor

√
3π/F , because the latter arises from the averaging over the laser period.

The probabilities rZ(t, ϕ) can be calculated in various ways. In order to solve the system of
the rate equations (2) numerically, it is reasonable to use the Gear method [33] or other methods
adapted to the solution of stiff differential equations instead of the standard Runge–Kutta
method. The fact that the system (2) is stiff becomes evident if we compare the ionization rates
wk−1 and wk entering the same equation for the probability rk (t, ϕ). Usually these rates differ
by one or even more than one order of magnitude. Another technique is based on the simulation
procedure, which was developed in [26] for the derivation of ion momentum distributions.
For high laser intensities, when multiply charged ions are available and, as a consequence,
the system (2) consists of a large number of equations, the latter method is faster than the
former one. We used both approaches in order to check consistency. The results obtained by
both methods coincide with each other.

Bearing in mind potential measurements with widely available Ti:sapphire chirped pulse
amplification (CPA) systems, we perform calculations for the wavelength of 790 nm. When
solving the rate equations (2), we restrict ourselves to a maximal intensity of 5 × 1018 W cm−2.
At this intensity the energy of an ionized electron in the final continuum state is of the order of
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Figure 1. The ion yield as a function of the absolute phase ϕ. The two panels
(a) and (b) correspond to the intensities of 3.0 × 1015 and 5.0 × 1017 W cm−2,
respectively. The pulse duration is 5.3 fs at FWHM. The dashed lines show the
results of the analytic model, discussed in section 3.

its rest energy and the formulae for the relativistic ionization should be used in equations (2)
instead of the rate (4).

2.2. Results

Let RZ (ϕ) ≡ rZ (t = τL, ϕ), Z = 1, 2, . . . , N , be the yield of an ion with a charge Z at the end
of the laser pulse, i.e. at t → ∞. In the following, we consider only these final yields of different
charge states. We investigate how the yields RZ depend on the CEP ϕ. This dependence is shown
in figure 1 for several charge states at two laser intensities. It is seen that the relative yields are
oscillating functions of the absolute phase. The oscillation amplitude is rather complicated,
not a monotonic function of the laser intensity. The minima and maxima of the yield curves
correspond to ϕ = 0, π/2, π , 3π/2 and 2π . Moreover, if the yield of the ion with a certain
charge Z has a maximum, the yield of the ion Z − 1 has its minimum at the same phase, and
vice versa. If only two different charge states can be detected after the end of the pulse, this
feature can be easily explained by equation (3). In the general case, it follows from the analytic
formulae; see section 3.

The oscillations of the ion yield at a given intensity can be characterized by the difference
between the yields at ϕ = 0 and ϕ = π/2:

d = RZ(0) − RZ(π/2), (5)

see figure 1. The quantity d may be negative or positive depending on the intensity and ion
charge. This parameter can be considered as an absolute characteristic of the effect. It is useful
to introduce the relative parameter as well:

α =
RZ(0) − RZ(π/2)

(RZ(0) + RZ(π/2))
≡

d

(RZ(0) + RZ(π/2))
. (6)

The parameters d and α are two independent characteristics. This is evident from the following
example: at the intensity of 3.0 × 1015 W cm−2 (see figure 1(a)), for Xe5+ one has d = 0.04 and
α = 0.03. At the intensity of 5.0 × 1017 W cm−2 the oscillations of the Xe17+ yield are hardly
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Figure 2. Results of numerical solution of the rate equations (2) for Xe ions at
different intensities: (a, d) ion yields RZ(0); (b, e) absolute characteristic of the
phase dependence d; (c, f) relative characteristic α. The panels (a–c) and (d–f)
correspond to the pulse duration of 4.0 and 5.3 fs at FWHM, respectively.

visible from figure 1(b) and d = 0.02, while the relative characteristic α = 0.53 is much greater
than in the previous case due to the smaller yield.

The relative ion yield of different charge states, the difference d and the parameter α are
shown in figure 2 over the range of intensities 1014–5.0 × 1018 W cm−2 for two different pulse
durations. As expected, the shorter the laser pulse, the more pronounced the absolute phase
effect. We first discuss the yields, see figures 2(a) and (d). For any given ion there exists an
intensity region where the yield of this ion differs from zero. The left boundary of this interval
is referred to as threshold intensity (for more details, see, e.g., [17], where the corresponding
field strength for a long pulse was estimated analytically), whereas to the best of our knowledge,
there is no common term for the right boundary. Let us call it the depletion intensity. It is seen
from figures 2(a) and (d) that only two or, at some intensities, three yields differ from zero after
the end of the short laser pulse. This is also true for any given time instant within the pulse,
see [26].

The striking feature of the CEP effect can be revealed if we compare panels (a) and (b)
(or (d) and (e)) of figure 2: the extrema of the differences d correspond to such intensities at
which the ion yields are close to each other. If, on the other hand, the yields of all available
ions are substantially different at a given intensity, the corresponding absolute values of d are
small. In the case when only one charge state exists after the interaction with the laser pulse,
there is no noticeable absolute phase effect. Indeed, long steps in figures 2(a) and (d) for Z = 8
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Figure 3. (a) The yield of Xe5+ ion as a function of the CEP at several laser
intensities. (b) Absolute characteristic of the phase dependence for Xe5+ yield as
a function of intensity. Colored circles show the values of d , which correspond
to the curves of panel (a). The pulse duration is 4.0 fs at FWHM.

and Z = 18 in the intensity ranges of 2–4.5 × 1016 and 6.5–9 × 1017 W cm−2, respectively, give
rise to the zero difference d; see figures 2(b) and (e). Such a situation occurs every time a
subsequent atomic shell is completely ionized (in our case these are 5p65s2 and 4d104p64s2).
Hence, the presence of at least two ions with comparable yield is a necessary condition for
oscillations with the CEP to be detectable. This feature distinguishes the phase effect, which we
predict here for the sequential multiple ionization, from the other CEP effects known from the
ionization by short laser pulses.

Intensity variation has a dramatic effect on the phase dependence of the ion yield: The
maxima and minima change their places. This is clearly seen from figure 3(a), where the
phase dependence of Xe5+ yield is shown for several different intensities. As a consequence,
the difference d changes its sign with increasing intensity; see figures 2(b) and (e). The
evolution of d with intensity for Xe5+ ion is also shown in figure 3(b), which was obtained
by performing a cut of figure 2(b). It is seen that near the threshold intensity, d is positive
and close to zero. It increases up to a maximum with increasing intensity. After the maximum,
the difference decreases, passes through zero and becomes negative. Then d decreases further,
while increasing in absolute value, and has its minimum at a certain intensity. Finally, when the
intensity approaches the depletion value, d is negative and tends to zero. It should be noted that,
according to equation (3), at any intensity the sum of all the values of d is equal to zero; see
figures 2(b) and (e).

It is seen from figures 2(c) and (f) that, in contrast to the absolute characteristic, the relative
quantity α has its maxima close to the threshold and depletion intensities of each charge state.
The reason is that the ion yield varies faster with intensity than the difference d. It is important to
keep in mind that the parameter α can be big when the ion yield is close to zero. For this reason,
in figures 2(c) and (f) we show this parameter only if the corresponding relative ion yield is
more than 0.05. It is seen, however, that even with such a restriction the relative characteristic
can reach a value of 0.8 for shorter pulse at high intensities.

The dependence of the CEP effect on the atomic target is illustrated by figure 4, where
the absolute characteristic d is shown for Ne, Ar and Kr ions; see figure 3(e) for Xe. It is seen
that the heavier the atom, the more pronounced is the phase dependence of the ion yield. This
feature will be explained below; see section 3.
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Figure 4. The absolute characteristic d of the CEP effect for different atomic
targets. The pulse duration is 5.3 fs at FWHM.

Figure 5. (a) The ion yield RZ(0), (b) the absolute characteristic d and (c) the
relative α characteristic of the phase dependence after focal averaging for a pulse
duration of 5.3 fs at FWHM.

2.3. Volume averaging

It is evident from this analysis that the phase dependence of ion yield is very sensitive to small
variations in the laser intensity. This brings up the question: does the effect survive after focal
averaging, which is inevitable in the experiment? In order to clarify whether the CEP effect
can be observed in the worst possible case of 3D configuration, we integrate the yields RZ

over all space. We assume that the laser intensity is a focused beam of Gaussian spatial profile
and evaluate the volume integral by changing the integration variable from volume to intensity,
see [17, 34, 35]. This integrating over isointensity shells greatly simplifies the calculations.

The results of the averaging are shown in figures 5(a)–(c). It it seen that the effect is
quite detectable, especially near the threshold intensities. Moreover, averaging mostly affects
the negative values of d, reducing them approximately by one half, and the range of differences
becomes asymmetric. These results could be expected. Indeed, for any charge state Z there
is a distinct boundary between two intensity ranges, one of which corresponds to the positive
and the other one to the negative values of d; see figures 2(b) and (e). Focal averaging leads
to summation of the contributions from different intensities lower than a given peak value I0.
These contributions begin to compensate each other only if I0 belongs to the second intensity
range; otherwise no compensation occurs due to focal averaging and the CEP effect survives.
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3. Analytic model

Although numerical simulations have given an insight into the phase dependence of ion yield, it
would be highly desirable to have an analytic model of the effect to gain a better understanding
of the underlying physics. Such a model can be developed on the basis of the approximate
solution of the rate equations (2), derived in [17]. This approximate solution, in turn, is based
on the following formal solution of equations (2):

r0(t, ϕ) = exp

{
−

∫ t

−∞

w0(t
′, ϕ) dt ′

}
,

r1(t, ϕ) = exp

{
−

∫ t

−∞

w1(t
′, ϕ) dt ′

} ∫ t

−∞

exp

{∫ s

−∞

w1(t
′, ϕ) dt ′

}
r0(s, ϕ)w0(s) ds,

r2(t, ϕ) = exp

{
−

∫ t

−∞

w2(t
′, ϕ) dt ′

} ∫ t

−∞

exp

{∫ s

−∞

w2(t
′, ϕ) dt ′

}
r1(s, ϕ)w1(s, ϕ) ds,

. . . ,

rN (t, ϕ) =

∫ t

−∞

wN−1(s, ϕ)rN−1(s, ϕ) ds. (7)

Two approximations were performed in [17] to simplify equations (7): firstly, the
probabilities, rk , in the intergands of equation (7) were approximated by their decaying edges:
exp(−

∫ t
0 wk−1(t ′, ϕ) dt ′). This is well justified, if the charge states exist sequentially in time

and the temporal overlap of the different states is low, i.e. the population transfer from Z = N
to Z = N + 1 occurs quickly and all the Z = N population is transferred to Z = N + 1 before
there is a significant Z = N + 2 population; see [26]. Our numerical analysis of the ionization
dynamics for a short laser pulse shows that the aforementioned conditions are fulfilled provided
the intensity is less than ≈ 5–7 × 1017 W cm−2. For example, at an intensity of 4 × 1014 W cm−2,
Xe+ ionizes with 99% probability within 0.8 of the optical cycle. Secondly, the ionization rates
wk(t, ϕ) are assumed to be narrow square functions of time. This is also justified, because in the
case of a short pulse every ionization event occurs on one half or on two adjacent halves of the
laser period, i.e. on a small fraction of the whole pulse duration τL. Thus, the rates wk(t, ϕ) are
really narrow functions of time and, as a consequence, they may be approximated by squares of
different heights.

After these approximations, the probabilities of different charge states after the end of the
pulse read as (see [17])

R0 (ϕ) = exp(−W0(ϕ)),

R1 (ϕ) ≈ W0
exp(−W0(ϕ)) − exp(W1(ϕ))

W1(ϕ) − W0(ϕ)
,

R2(ϕ) ≈ W1
exp(−W1(ϕ)) − exp(W2(ϕ))

W2(ϕ) − W1(ϕ)
,

. . . ,

RN (ϕ) ≈ 1 − exp(−WN−1(ϕ)),

(8)
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where

Wk (ϕ) =

∫
∞

0
wk

(
t ′, ϕ

)
dt ′

is the total ionization probability for an ion with charge Z , i.e. the total area under the rate
curve, which can be calculated numerically. It is seen that the dependence of the yield Rk ,
k = 1, . . . , N − 1, on the absolute phase is governed by the same dependence of the total
rates Wk and Wk−1. This contrasts with the case of momentum distribution, where the strong
dependence on the CEP originates from various ionization pathways, which are realized at
different values of the phase due to different temporal evolutions of the field; see [26].

The CEP dependence of the total ionization rate with high accuracy can be approximated
by the following ansatz:

Wk(ϕ) ≈ W π/2
k + (W 0

k − W π/2
k ) cos2(ϕ) ≡ W 0

k − (W 0
k − W π/2

k ) sin2(ϕ), (9)

where W 0
k = Wk (0) and W π/2

k = Wk (π/2). Note that sine-like ansatz is a natural one for the
absolute phase dependence of the single charged ions. Ion yields calculated from equations (8)
and (9) are shown in figure 1 by dashed lines. It is seen that predictions of the analytic model
are in good quantitative agreement with the numerical results. The only exception is Xe17+ ion
at the intensity of 5 × 1017 W cm−2; see figure 1(b): equations (8) overestimate the ion yield by
a factor of two. This disagreement is caused by the fact that at high laser intensities the charge
states are not separated in time and the approximation of the ion yield by its decaying edge is no
longer valid, see above. However, even in this case, the model qualitatively describes the shape
of the phase dependence.

In the following, let us consider the yield of the ion with the maximal charge Z = N . After
the substitution of equation (9) the last equation of the system (8) reads as

RN (ϕ) ≈ 1 − exp(−W 0
N−1) exp[−(W 0

N−1 − W π/2
N−1) sin2(ϕ)]. (10)

For most intensities and ion charges the difference (W 0
N − W π/2

0 ) is small compared to unity.
This allows us to simplify equation (10) by expanding the exponent in a Taylor series:

RN ≈ 1 − exp(−W 0
N−1) + (W 0

N−1 − W π/2
N−1) exp(−W 0

N−1) sin2(ϕ). (11)

The product (W 0
N−1 − W π/2

N−1) exp(−W 0
N−1) in equation (11) is the oscillation amplitude of the

ion yield with the absolute phase, i.e. one half of the difference d: d/2. We notice that the
value of this amplitude is governed by the interplay of the probability W 0

N−1 and the difference
(W 0

N−1 − W π/2
N−1). If only one charge state N exists after the end of the laser pulse, the ionization

probability W 0
N−1 is much greater than unity, and the oscillation amplitude tends to zero due

to the factor of exp(−W 0
N−1). On the other hand, both the probabilities W 0

N−1 and W π/2
N−1 and

therefore their difference approach zero in the vicinity of the threshold intensity. As a result,
the oscillation amplitude is again negligibly small and no phase dependence can be detected.
Assuming that the difference of the probabilities (W 0

N−1 − W π/2
N−1) is some fraction of W 0

N−1, one
easily finds that the amplitude in equation (11) has its maximum at W 0

N−1 = 1 when RN ≈ 0.63
and therefore the yields of at least two ions substantially differ from zero.

The greater the ionization potential, the sharper the phase dependence of the total ionization
rate, i.e. the more substantial the difference between the total rates W 0

N−1 and W π/2
N−1. For

this reason, the CEP effect in the ion yield is more pronounced for heavier atoms than for
lighter ones. For example, let us consider the ionization of Ne and Xe at the same intensity
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of 2.5 × 1017 W cm−2, when Ne8+ and Xe13+ ions dominate in the corresponding yields. The
ionization potentials of the previous charge states, i.e. Ne7+ and Xe12+, are equal to 239.1 and
294.0 eV, respectively. For the ionization of Ne7+ the difference of the rates is (W 0

7 − W π/2
7 ) ≈

0.03, whereas for Xe12+ this difference is (W 0
12 − W π/2

12 ) ≈ 0.16. As a result, for Xe13+ one
has d = 0.06, which is six times greater than the same characteristic d = 0.01 for Ne7+. Thus
equation (11) explains all the basic features of the numerical results obtained in section 2.

4. Conclusion

In conclusion, on the basis of the rate equations we investigate the relative ion yields of
sequential ionization generated by a short (4–6 fs at FWHM) intense (1014–5 × 1018 W cm−2)
laser pulse. It is shown that the ion yields are oscillating functions of the absolute phase of
the pulse, provided the pulse length is not more than 6 fs at FWHM. In contrast to other well-
known CEP effects, the phase dependence of the yield can be observed only if, at the end
of the laser pulse, the yields of at least two ions are comparable with each other. Despite the
strong intensity dependence, the effect survives focal averaging and should be experimentally
detectable. In addition to the numerical results, we present an analytic model which explains the
basic features of the phase dependence.
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Ehrenfest’s theorem and the validity of the two-step model for strong-field ionization
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By comparison with the solution of the time-dependent Schrödinger equation we explore the validity of the
two-step semiclassical model for strong-field ionization in elliptically polarized laser pulses. We find that the
discrepancy between the two-step model and the quantum theory correlates with situations where the ensemble
average of the force deviates considerably from the force calculated at the average position of the trajectories of
the ensemble. We identify the general trends for the applicability of the semiclassical model in terms of intensity,
ellipticity, and wavelength of the laser pulse, and in terms of the properties of the atomic potential.

DOI: 10.1103/PhysRevA.87.013427 PACS number(s): 32.80.Fb, 32.80.Rm, 32.80.Wr

I. INTRODUCTION

Over the last three decades significant progress has been
made in the investigation of phenomena arising from the
interaction of strong laser fields with atoms and molecules.
The phenomena include above-threshold ionization (ATI),
high-order harmonic generation (HHG), and enhanced double
and multiple ionization (see Refs. [1–4] for recent reviews).
Along with the strong-field approximation (SFA) [5–7] and
the numerical solution of the time-dependent Schrödinger
equation (TDSE), semiclassical simulations are widely used in
strong-field physics. We denote a model as semiclassical when
it applies a classical description of the electron after it has
been promoted into the continuum by the laser field, typically
by tunneling ionization. The two-step [8,9] and three-step
[10–12] models are the most widely known examples of
such approaches to strong-field phenomena, where in some
cases even the initial tunneling step is skipped by simply
placing the classical electron in the external field at a chosen
ionization time. The description of ionization within the
two-step semiclassical model corresponds to the following
physical picture [8,9]. In the first step an electron tunnels
out of the atom, and in the second step, the electron moves
along a classical trajectory towards a detector. Along with
these two steps, the three-step model [10–12] involves the
interaction of the returning electron with the parent ion, and,
therefore, enables a qualitative description of the implications
of rescattering processes: high-order ATI, HHG, excitation,
and multiple ionization of the target.

The semiclassical models have a number of advantages.
First, semiclassical simulations can help to identify in terms
of classical trajectories the specific mechanism underlying
the strong-field phenomena of interest. For example, the
cutoffs in both high-order ATI [13] and high-harmonic spectra
[14,15], the position of the maxima in the photoelectron
angular distributions [16], and characteristic cutoffs for
nonsequential double ionization (see, e.g., Refs. [17,18])
can be explained by such simulations. The inclusion of
the Coulomb potential of the parent ion into the two-step
model revealed the so-called Coulomb focusing effect [19].
More recently, different semiclassical models that account for
the ionic potential were used to understand the low-energy
peak structures in strong-field ionization by midinfrared laser

pulses [20–25], as well as to explain the angular shifts of
the momentum distributions generated by close to circularly
polarized fields [26–28].

Another appealing feature of the semiclassical models is
their numerical simplicity compared to the solution of the
TDSE. In fact, it appears that such models are the only
computationally tractable route for some laser-atom problems
such as, e.g., nonsequential double ionization of atoms by near
infrared fields with elliptical [29–31] or circular polarization
[32]. As the the ellipticity and wavelength increases the TDSE
approach becomes increasingly impractical. The reason is that
one has to accommodate (i) the description of more angular
momentum states (because of the increase of ellipticity ε or
wavelength λ) and (ii) the increase in the quiver motion pro-
portional to λ2. Luckily, at larger wavelengths, the application
of tunneling theory for the initial ionization becomes more
accurate. One way to quantify this trend is to consider the
Keldysh parameter [5] and its decrease with the wavelength as
1/λ for fixed field strength, ellipticity, and ionization potential.
Accordingly, models based on a quantum description of the
tunneling ionization step supplemented by classical equations
of motion for the propagation become attractive.

It is therefore of interest to investigate the applicability
region of models based on propagation of classical trajectories
for strong-field ionization. This study is particularly important
in view of the rapid progress in experimental techniques,
which has made it possible to study strong-field processes in
completely new and unexplored regions of laser parameters. To
the best of our knowledge, the validity of the trajectory-based
models has not been systematically analyzed so far. In this
paper we address the question about the applicability of the
two-step semiclassical model of ionization by strong laser
fields. Our analysis is based on a quantitative comparison
of the results obtained by the two-step model with the exact
solution of the TDSE. In our analysis we will apply Ehrenfest’s
theorem (ET) (for a textbook treatment see, e.g., Ref. [33]),
which establishes the quantum-mechanical counterpart of the
classical equations of motion.

The paper is organized as follows. In Sec. II we formulate
the two-step semiclassical model used in our calculations.
In Sec. III we discuss ET in general, and for strong-field
ionization of atoms in particular. The comparison between
the semiclassical model and the solution of the TDSE
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(for the photoelectron momentum distributions generated by
elliptically polarized laser pulses), as well as the analysis in
terms of classical electron trajectories, are presented in Sec. IV.
Section V establishes a correlation between the inapplicability
of the two-step model and the deviation from what we define
as the “strict” form of ET for an ensemble of trajectories
satisfying the classical equations of motion. This deviation
is quantified, and a criterion of validity of the model based
on classical trajectories is formulated. In Sec. VI, using this
criterion we explore the trends for the applicability of the
two-step semiclassical model in terms of laser ellipticity,
intensity, and wavelength. In Sec. VII we investigate the
dependence of the deviation on the atomic potential, i.e., in
terms of the ionization potential and potential range. The
summary and conclusions of the paper are given in Sec. VIII.

II. TWO-STEP SEMICLASSICAL MODEL

According to the quantum-classical correspondence prin-
ciple, quantum mechanics reduces to classical mechanics in
the limit h̄ → 0. In this limit, the WKB-type approximations
are devised. A more elementary semiclassical approach,
considered here, is to assume that the electrons, after quantum-
mechanical tunneling, follow the classical equations of motion.
This approach is also in accord with the limit h̄ → 0 since by
having position and momentum defined for the classical elec-
tron at each instant of time after tunneling, the commutators
of these operators vanish, instead of being equal to ih̄.

The models based on propagation of classical trajectories
evolved along the following lines. Initially, these models
involved a classical ensemble [34] modeling the initial atomic
state before the action of the laser pulse (see, e.g., Ref. [35]).
Although such purely classical models explained some quali-
tative features of the dynamics of strong-field ionization, it was
recognized that one could improve them by adding a quantum
input, i.e., by simulating that the initial ionization step follows
from tunneling and employing the WKB tunneling exponent
to mimic the probability of tunneling [36,37]. In what follows
we discuss semiclassical models of the latter type, that is, the
two-step semiclassical model.

In the two-step semiclassical model, the trajectory of the
electron and its asymptotic momentum are calculated from
Newton’s equations of motion in the combined ionic potential
and the electric field of the laser pulse. This procedure requires
the specification of the initial conditions for the electron just
after the escape from the atom: the tunnel exit point [26,28],
and the momentum spread at the tunnel exit point of the
classical ensemble modeling the electronic wave packet [38].
The results obtained within the semiclassical model depend
critically on the initial conditions, but also on the precise
description of the ionic potential. We utilize the approximate
separation of the tunneling problem in parabolic coordinates
(in the case of atomic H the separation is exact) to obtain
the tunnel exit point [26]. We also include the Stark shifts
of the energy levels which affect the ionization probability and
the tunnel exit point [39]. Finally, the effective potential that
includes the multielectron effect through the induced dipole
term of the ion is taken into account. This potential affects
the tunnel exit point and the subsequent propagation of the
classical electronic trajectories [27,40].

Regarding the momentum composition of the classical
ensemble modeling the electronic wave packet, we assume
that at the tunnel exit the electron has zero initial momentum
parallel to the laser field p|| = 0 and nonzero initial transverse
momentum p⊥. The instants of ionization and the initial
transverse momenta are distributed according to the static
ionization rate [41–43] (from this point on we use atomic
units):

w(t0,v0) ∼ exp

(
−2κ3

3F

)
exp

(
−κp2

⊥
F

)
, (1)

with F = F (t0) and κ2/2 = Ip and where Ip denotes the
Stark-shifted ionization potential. For simplicity, the preex-
ponential factor is omitted in Eq. (1). This factor can change
the total ionization yield by several orders of magnitude, but
for the intensities considered it only slightly affects the shape
of the momentum distribution, the quantity of interest here.
In our calculations of momentum distributions we used an
ensemble of 1.5 × 106 trajectories each weighted with Eq. (1).
Newton’s equations of motion were solved using a fourth-order
Runge-Kutta method with adaptive step-size control [44].

At the end of the pulse, the trajectories with negative energy,
corresponding to the bound states [45,46], are removed.
Moreover, the classical trajectories corresponding to electrons
with positive energies should be propagated in the ionic
potential some time after the end of the pulse, so that
the momenta converge. This propagation can be performed
analytically to infinite times, so that the electron momentum
p and its position r at the end of the laser pulse uniquely
determine the asymptotic momentum k. For the Coulomb
potential of charge Z, the asymptotic momentum k is [28,46]

k = k
k(L × a) − a

1 + k2L2
, (2)

where the absolute value of the asymptotic momentum k can
be found from energy conservation

p2

2
− Z

r
= k2

2
, (3)

and where L = r × p and a = p × L − r/r are the angu-
lar momentum and Runge-Lenz vector, respectively. These
quantities are conserved after the end of the pulse and at
distances where only the Coulomb potential is important.
For the case of a Yukawa potential, which is also considered
below, the ensemble of trajectories is propagated after the end
of the laser pulse (typically 20 laser field periods) until the
electron momentum distribution converges. Each point in the
momentum distributions in the semiclassical model is obtained
by collecting a large number of classical trajectories with an
asymptotic momentum belonging to a square-shaped bin in
the momentum plane with a side length of 0.02 a.u.

III. EHRENFEST’S THEOREM

Ehrenfest’s theorem gives the law of the motion satisfied
by the mean values of the spatial, r, and the momentum,
p, coordinates of the quantum system. For the purpose of
this paper, a quantum system with a single active electron is
considered. The Hamiltonian of the system reads

Ĥ (t) = − 1
2∇2

r + V (r,t), (4)
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and the mean values of the position and momentum operators
for the quantum system satisfy

d〈r〉
dt

= 〈p〉 (5)

and

d〈p〉
dt

= 〈−∇rV (r,t)〉. (6)

From the above equations, it seems that the average values
〈r〉 and 〈p〉 of the quantum system follow the classical
equations of motion. This is, however, not the case because
of the term 〈−∇rV (r,t)〉 present in Eq. (6), which reflects the
average of the force [33]. In order that mean values 〈r〉 and 〈p〉
satisfy the classical equations of motion, instead of the average
of the force, the force at the average position should appear in
Eq. (6), i.e.,

d〈p〉
dt

= −∇rV (r,t)|r=〈r〉. (7)

We refer to the system of Eqs. (5) and (7) as the “strict” form
of ET. Mean values of r and p obey the classical equations of
motion for quantum systems that satisfy the strict form of ET.

In cases when the potential V (r,t) is slowly varying with
respect to r, ∇rV (r,t) can be expanded in the vicinity of 〈r〉
and to second order in (r − 〈r〉) as

∇rV (r,t) ≈ ∇rV (r,t)|r=〈r〉 + [(r − 〈r〉) · ∇r](∇rV (r,t))|r=〈r〉
+ 1

2 [(r − 〈r〉) · ∇r]2(∇rV (r,t))|r=〈r〉. (8)

In a single dimension (1D), the above expression reduces to

∂V (x,t)

∂x
≈ ∂V (x,t)

∂x

∣∣∣∣
x=〈x〉

+ (x − 〈x〉)∂
2V (x,t)

∂x2

∣∣∣∣
x=〈x〉

+ 1

2
(x − 〈x〉)2 ∂3V (x,t)

∂x3

∣∣∣∣
x=〈x〉

. (9)

Inserting the series (9) into Eq. (6), one obtains

d〈px〉
dt

≈ −∂V (x,t)

∂x

∣∣∣∣
x=〈x〉

− 1

2

∂3V (x,t)

∂x3

∣∣∣∣
x=〈x〉

(〈x2〉 − 〈x〉2). (10)

From the above equation it is clear that if the dependence of
a 1D Hamiltonian on the spatial coordinate is a polynomial of
up to quadratic order, the second term in Eq. (10) is zero, as well
as all higher-order terms. Therefore, all 1D quantum systems
with Hamiltonians that are polynomials up to the second power
in the spatial coordinate obey the strict form of ET.

For the three-dimensional (3D) case, inserting Eq. (8) into
Eq. (6) yields

d〈p〉
dt

≈ −∇rV (r,t)|r=〈r〉

− 1

2
〈[(r − 〈r〉) · ∇r]2(∇rV (r,t))|r=〈r〉〉, (11)

since, as in the 1D case, the term linear in (r − 〈r〉) disappears
when evaluating the expectation value. The second term in the
above equation reflects the lowest-order deviation from the
strict form of ET. This term is different from the term appearing

in the 1D case [Eq. (10)] and includes linear combinations of
terms of the type (〈xixj 〉 − 〈xi〉〈xj 〉), i,j = 1,2,3 where xi

are the components of r. Quantum systems with potentials
linear in r such as the free particle in the time-dependent
field [F(t) · r] satisfy the strict form of ET, and this is also
true for quantum systems with potentials that have terms up
to quadratic dependence on the components of the spatial
coordinate, e.g., the 3D harmonic oscillator. All other quantum
systems do not, in general, satisfy the strict form of ET,
including the cases of interest for strong-field physics: atoms
and molecules in a laser field. This deviation of a given
quantum system from the strict form of ET can be quantified
by introducing the relative deviation from the strict form of
ET as

Rq(t) = |∇rV (r,t)|r=〈r〉 − 〈∇rV (r,t)〉|
|〈∇rV (r,t)〉| , (12)

where the subscript q denotes that the above measure should be
evaluated quantum mechanically. Hence, to determine Rq(t),
it is necessary to have the exact solution of the TDSE at
all times, and therefore its evaluation is impractical. On the
other hand, it is interesting to gauge the validity of a certain
model simulating the quantum dynamics in cases where it
is impossible or very expensive in terms of computational
resources to solve the TDSE. Consequently, it makes sense
to monitor the validity of ET for a classical ensemble. For a
probability distribution of a classical ensemble in phase space
satisfying the Liouville equation, it can be shown that the
average values of the position and momentum satisfy ET of
Eqs. (5) and (6) [47]. In that way, if the corresponding quantum
system satisfies the strict form of ET, so does the statistical
ensemble of classical trajectories. According to Ref. [33],
for the semiclassical approach of Sec. II to be valid, the
mean values of the positions and momenta of the quantum
system should follow the classical laws of motion to a good
approximation, and the dimensions of the wave packet should
be smaller than the characteristic dimension of the problem at
hand. However, later it was remarked [47] that the quantum
system might violate the strict form of ET and still behave
essentially classically. We examine this below for the problem
of strong-field ionization of atoms.

For strong-field ionization of atoms, the potential is of the
form

V (r,t) = Vat(r) + F(t) · r, (13)

where Vat(r) is the atomic potential and F(t) is the electric field
of the laser pulse. Then for the F(t) · r part of the potential the
strict form of ET is satisfied, whereas for the Vat part it is, in
general, not.

In the following, we explore the validity of our model for
strong-field ionization in elliptically polarized laser pulses by
comparing it to exact solutions of the TDSE. We also examine
the correlation between the deviation from the strict form of ET
for the semiclassical model and the ability of the semiclassical
model to mimic the quantum dynamics; that is, we examine
the validity of the semiclassical model.
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IV. MOMENTUM DISTRIBUTIONS IN ELLIPTICALLY
POLARIZED PULSES

We start by considering momentum distributions obtained
by ionization of H by elliptically polarized laser pulses. To
facilitate the comparison of the semiclassical results with the
results obtained from a numerical solution of the TDSE in the
velocity gauge, the laser pulse is defined in terms of a vector
potential A(t) of the form (we choose a left circularly polarized
field in the xy plane)

A(t) = F0

ω
sin2

(
ωt

2np

)
(−1)np

[
− 1√

1 + ε2
sin(ωt)ex

+ ε√
1 + ε2

cos(ωt)ey

]
, (14)

where ω is the angular frequency, F0 is the field amplitude, ε is
the ellipticity of the pulse, np is the number of cycles, and ex,y

are unit vectors, the pulse is present from 0 to 2πnp/ω. The
electric field is obtained from Eq. (14) by F(t) = −∂A/∂t and
for np = 3 it is plotted in Fig. 1. Counting the minima in |F(t)|
one can see that there are approximately 7 half cycles in the
field with unequal duration. The maximum of the field occurs
in the dominant half cycle of the pulse, located approximately
from 2.5 to 3.5 (in units of ωt/π ).

Below we compare the results of semiclassical simulations
with the exact solution of the TDSE. We solve the TDSE in the
velocity gauge using a grid-based split-step method, where the
wave function is expressed on a basis of spherical harmonics:

�(r,t) =
lmax∑
l=0

l∑
m=−l

flm(r,t)

r
Ylm(θ,φ). (15)

The initial state is obtained by imaginary time propagation.
Then this state is evolved in time, the details being described
elsewhere (see Ref. [48]). Knowing the final wave function at
the end of the pulse T = 2πnp/ω, we can calculate the dif-
ferential momentum distribution by projection onto Coulomb
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FIG. 1. The electric field of the laser pulse F(t): modulus of
the field |F| (full curve), x component of F(t) (dashed curve),
and y component of F(t) (dotted curve). The pulse parameters are
wavelength λ = 800 nm, peak intensity 2 × 1014 W/cm2, ellipticity
ε = 0.5, and the number of cycles np = 3.

continuum scattering states of asymptotic momentum k:

∂3P

∂kx∂ky∂kz

= ∣∣〈�C−
k

∣∣�(r,T )
〉∣∣2

. (16)

The scattering states �C−
k entering Eq. (16) are obtained by

solving the time-independent Schrödinger equation subject to
incoming wave boundary conditions. For the TDSE calcula-
tions we used a radial grid consisting of 4096 points and a time
step 0.005 a.u., whereas the size of the sphere Xmax and the
maximum angular momentum lmax were adjusted to ensure
convergence depending on the wavelength and ellipticity:
These are stated in the captions of the figures showing the
TDSE results.

Using the semiclassical model defined in Sec. II, we obtain
the momentum distributions for a np = 3 cycle elliptically
(ε = 0.5) polarized pulse for a wavelength of 800 nm
[Fig. 2(a)] and 400 nm [Fig. 3(a)]. The intensities are chosen
such that the Keldysh parameters [5] are kept relatively low for
800 nm (γ = 0.75) and not substantially large for 400 nm (γ =
1.51). The momentum distributions from elliptically polarized
pulses with not too low value of ellipticity have a distinctive
shape with two crescents [26,28]. In cases of short, few-cycle
pulses with fixed carrier-envelope phase, as employed here,
only one of the crescents in the momentum distribution
remains, reflecting the dominant instant of emission by the
phase-stabilized laser pulse [28,49]. The maximum of the
momentum distribution is angularly shifted from the minor
polarization axis of the pulse in the direction of the rotation
of the electric field [28,49]. In this sense, the distribution
for 800 nm [Fig. 2(a)] has the expected shape, while the
distribution for 400 nm [Fig. 3(a)] deviates from the expected
shape (note that the maximum is in the first quadrant). To
investigate whether the features in the semiclassical momen-
tum distributions reflect the exact solution, we have performed
TDSE calculations for the same pulse parameters, the results
being shown in Figs. 2(b) and 3(b), respectively.

While the semiclassical model [Fig. 2(a)] agrees qualita-
tively with the TDSE result at λ = 800 nm [Fig. 2(b)], it is clear
from Fig. 3 that there is a large discrepancy between the TDSE
and the semiclassical model at 400 nm. First, the maximum in
Fig. 3(b), although shifted to smaller momenta, as compared
with the classical calculation, is mostly in the fourth quadrant,
as expected. On top of that, in the momentum distributions
by the TDSE, the ATI rings are visible, although somewhat
broadened because of the short pulse duration. The latter
discrepancy between the TDSE and the semiclassical model is
also present in the case of 800 nm in Fig. 2; such discrepancy
is expected as the semiclassical model cannot account for the
interference structures in the momentum distributions. On the
other hand, in Fig. 3 the position of the maximum and the
overall discrepancy of the shape of momentum distributions
between the semiclassical and quantum results is unexpected.
In addition, we have checked that the discrepancy in Fig. 3
cannot be removed if the tunnel exit point is chosen along the
field direction instead in parabolic coordinates chosen here.
Equally, and in accord with Ref. [28], the overall shape of the
momentum distribution for the case of Fig. 2 does not change
by choosing the tunnel exit point along the field direction,
although the exact angular shift in the polarization plane might
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FIG. 2. (Color online) Momentum distribution (normalized to the peak value) for the H atom in the polarization plane using a laser pulse
with wavelength λ = 800 nm, peak intensity 2 × 1014 W/cm2, ellipticity ε = 0.5, and a laser pulse duration of np = 3 cycles, obtained (a)
using the semiclassical two-step model and (b) by numerical solution of the TDSE (the size of the spatial box Xmax = 600 a.u., the maximum
angular momentum lmax = 60). The maximum of the semiclassical momentum distribution is qualitatively indicated by a (green) square in (a).

change [26,28]. As we show here, the discrepancy between the
quantum and the semiclassical result coincides with the cases
when the strict form of ET is not satisfied by the ensemble of
classical trajectories.

We note in passing that, contrary to the discrepancy between
the TDSE and the semiclassical model in the momentum
distributions at 400 nm, the energy distributions in Fig. 4,
obtained both from the TDSE and the calculation within the
semiclassical model, compare much more favorably. In fact, it
appears that the discrepancy between the energy distributions
obtained in the semiclassical model and the TDSE is small
for both 800 nm [Fig. 4(a)] and 400 nm [Fig. 4(b)]. In
the following, we focus on the comparison of momentum
distributions obtained by the TDSE and the semiclassical
model.

To investigate the reason for the appearance of peculiar
structures in the first quadrant of the momentum distributions

of Fig. 3(a), we first explore the difference between time evolu-
tion of the characteristic trajectories leading to the maxima in
Figs. 2(a) and 3(a), indicated qualitatively by (green) squares
in the fourth and the first quadrant, respectively. The first
difference is that the maximum in the momentum distribution
of Fig. 2(a) stems from the initial time instant when the
electric field of the laser reaches the maximum. In contrast, the
maximum in Fig. 3(a) is due to mapping of many trajectories
each with smaller weight into a single bin in the momentum
plane. This is clearly seen from Figs. 5(a) and 5(b), which
present initial conditions (i.e., instants of ionization ωt0 and
initial transverse velocity p⊥) for all the trajectories leading
to the bins indicated by the (green) squares, which contain
the maxima of Figs. 2(a) and 3(a), respectively. This is very
similar to the process of “bunching” of classical trajectories
that lead to the low-energy maximum in linearly polarized
infrared pulses [24].

FIG. 3. (Color online) Momentum distribution (normalized to the peak value) for the H atom in the polarization plane using a laser
pulse with wavelength λ = 400 nm, peak intensity 2 × 1014 W/cm2, ellipticity ε = 0.5, and a laser pulse duration of np = 3 cycles, obtained
(a) using the semiclassical two-step model and (b) by numerical solution of the TDSE (the size of the spatial box Xmax = 400 a.u., the maximum
angular momentum lmax = 40). The maximum of the semiclassical momentum distribution is qualitatively indicated by a (green) square in (a).
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FIG. 4. Comparison of the energy distributions obtained for the H atom from the semiclassical two-step model (dashed curve) and from
the TDSE (solid curve) at the wavelength of (a) λ = 800 nm, (b) λ = 400 nm. The rest of parameters are peak intensity 2 × 1014 W/cm2,
ellipticity ε = 0.5, and number of cycles np = 3 (see also Figs. 2 and 3). The energy distributions are normalized to the peak value.

In Figs. 6(a) and 6(b) we consider the time evolution
of the x and y components of the Coulomb forces acting
on the characteristic trajectories that lead to the maxima
in Figs. 2(a) and 3(a), respectively. The shape of the time
evolution of the Coulomb force is different in the two cases,
characterized by different wavelengths. More precisely, for the
case of 400 nm, in addition to the maximum during the half
cycle of the field when the trajectory started, an additional
maximum appears in the subsequent half cycle. This is so
because in the case of 400 nm the trajectories leading to
the maximum in the momentum distribution, after the initial
departure, come back relatively close to the Coulomb center,
exhibiting soft collisions (the trajectories are plotted in Fig. 7).
This leads to focusing of very many trajectories into the same
momentum-space bin. In the case of the pulse at 800 nm, the
characteristic trajectory does not exhibit any close collision
simply because the excursion amplitude of a classical electron
(proportional to F0/ω

2) is larger than in the case of 400 nm
(see Fig. 7). We have performed calculations with different
number of cycles and they all show that at 400 nm the electron

trajectory leading to the maximum of the distribution always
exhibits a soft collision during the first half cycle of the field
after the instant of ionization.

However, such an analysis lacks predictive power. We
would like to quantify at which parameters of the field and
the atomic target such spurious structures in the momentum
distributions from the semiclassical model appear and why.
We show that one way to analyze the validity of the results
obtained by the semiclassical models is through the use of ET.

V. QUANTIFICATION OF THE DEVIATION FROM
THE STRICT FORM OF EHRENFEST’S THEOREM

As stated in Sec. III, the strict form of ET is valid for
potentials of polynomial form up to the quadratic power in
the spatial coordinate. Instead of calculating the deviation
from the strict form of ET for the quantum system, here we
calculate this deviation for the semiclassical model. When
modeling strong-field ionization by classical trajectories, the
atomic potential is a source of deviation from the strict form of
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FIG. 5. (Color online) Initial conditions (instant of ionization and initial transverse velocity) for the trajectories leading to the maxima (a)
in Fig. 2(a) (800 nm) and (b) in Fig. 3(a) (400 nm) are shown by shaded (green) areas. The full curve shows the modulus of the laser field |F(t)|,
whereas the dashed and the dotted curves correspond to the x and y components of F(t), respectively (the curves are plotted in arbitrary units).
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FIG. 6. Time-dependence of the x components (full curves) and the y components (long-dashed curves) of the Coulomb force for trajectories
that lead to final momenta corresponding to the maxima of the momentum distributions in (a) Fig. 2(a) and (b) Fig. 3(a). The pulse parameters
are as in Figs. 2 and 3, respectively (see also Fig. 1). In (b) the time axis is given in units of half-cycle duration, the pulse starts at time zero,
and ωt/π = 3 corresponds to the center of the pulse.

ET. As we see below, such deviation could be used as a measure
for the quality of the semiclassical modeling. Before we start
with the analysis, we discuss how to quantify the deviation
from the strict form of ET for the semiclassical model. More
specifically, we address the questions of which quantity is a
suitable measure for the deviation from the strict form of ET
and when and on which ensemble of classical trajectories to
evaluate this deviation.

First, we propose to consider the relative deviation from the
strict form of ET for the semiclassical ensemble to quantify
the validity of the semiclassical simulation. In accord with
the discussion of Sec. III [Eq. (12)], we define the relative
deviation R(t) from the strict form of ET for the semiclassical
model as

R(t) =
∣∣∣∣∇rV (r,t)|r=〈r(t)〉

−
∑
A

wi∇rV (r,t)

∣∣∣∣
/∣∣∣∣

∑
A

wi∇rV (r,t)

∣∣∣∣, (17)
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FIG. 7. Classical electron trajectories in the laser and Coulomb
fields corresponding to the maxima of Fig. 2(a) (λ = 800 nm, solid
curve) and of Fig. 3(a) (λ = 400 nm, dashed curve).

where 〈r(t)〉 is the average position at time t , formed by the
set A of classical trajectories

〈r(t)〉 =
∑
A

wiri , (18)

with wi a weight assigned to trajectory i in A. The potential V ,
defined in Eq. (13) includes both the atomic potential and the
field of the pulse. Equation (17) can be read in words as force
at the average position minus the average of the force divided
by the average of the force. The relative deviation R(t) is the
measure of the deviation of ET during the time evolution of
the pulse. For the whole duration of the pulse, we also monitor
the maximal relative deviation,

R = max{R(t)} = R(tm), (19)

for a given classical ensemble A, where t is the time of the
evolution during the pulse and tm is the time of maximal relative
deviation.

The deviation from the strict form of ET should be
monitored for the whole duration of the pulse. If at some
point between the electron ejection and the end of the pulse
the deviation is substantial, then the semiclassical result will,
in general, not reflect the solution of the TDSE; therefore, we
“record” the maximum relative deviation R and the time tm at
which this occurs. The exemptions are for deviations at times
around the electron ejection and at times close to the end of
the pulse. At the time of electron ejection, the trajectory i is
assigned a weight wi , which is a quantum input in the model.
For times close to the time of ejection, the classical electrons
are close to the atomic potential and in the initial stages of
their trajectory the force terms from the atomic potential are
typically substantial. However, since at this stage the quantum
part of the model is interfacing the classical propagation of
electronic trajectories, those deviations are not important for
the quality of the semiclassical prediction. We make another
exemption for the times near to the end of the pulse where
one considers the mapping of the classical trajectories into
eigenstates of the field-free atom. When the field is turned
off, the ensemble of classical trajectories model both excited
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and ionized atoms. The field-free atom can be modeled by
an ensemble of classical trajectories: Although the ensemble
of classical trajectories does not satisfy the strict form of
ET, in accord with Ref. [47], we assume that the classical
model satisfactorally describes the field-free atom; without
this assumption we cannot relate the momentum distributions
of the quantum and the semiclassical model. Consequently,
we assume that the deviation from the strict form of ET at the
end of the pulse, that is, for the last half cycle of the pulse
is not important for assessing the validity of the semiclassical
prediction. We see below, when comparing the quantum and
classical results, that indeed these deviations from the strict
form of ET do not affect the possibility of the classical model
to give the correct prediction.

Second, we discuss the question about which classical
ensemble of trajectories to take into account when considering
the deviation from the strict form of ET. In the semiclassical
model, trajectories are started at different times during the
pulse with a weight wi determined by the static tunneling
rate. At each instant of tunneling, the electron appears with a
certain transverse initial momentum with a probability that is
governed by the expression given in Eq. (1). The ejection
of electrons at different times is uncorrelated because the
probability of electron tunneling at the current time does
not depend on the probability of tunneling at the previous
times if the depletion of the initial state is negligible (this is
satisfied in the cases considered here). Hence, the ensemble
of independent, random events in time is used to model the
quantum dynamics. In contrast, the electrons that emerge at
the same time, but with different initial momenta, depend on
the time of tunneling through the time-dependence of the
field. The different initial momenta at a particular instant
of tunneling form a set of classical trajectories that are the
classical analog of the quantum wave packet formed at the
tunnel exit point. Therefore, in principle, the subset of classical
trajectories used for the calculation of the deviation from the
strict form of ET should include all trajectories emerging from
the same time during the pulse, but not necessarily from dif-
ferent times. For practical purposes, it is of interest to consider
the ensemble of trajectories with largest weights, which also
leads to the dominant features in the momentum distributions.
In the following, we calculate deviations from the strict form of
ET for the classical ensemble consisting of all trajectories that
emerge from the dominant, most intense, half cycle of the field.

To start the analysis based on R and R(t), we first reconsider
the cases presented in Figs. 2 and 3. The time dependence of
the relative deviation for those cases is given in Fig. 8. For the
case of 800 nm (solid curve in Fig. 8), the maximal relative
deviation occurs at the half cycle where the trajectories were
launched and it never exceeds 0.1. On the other hand, for
400 nm (dashed curve in Fig. 8), the maximal relative deviation
is considerably larger than at 800 nm and it occurs at a later
stage of the time evolution of the pulse, namely at the next
second cycle after the trajectories were launched. In summary,
for large maximal relative deviation R (roughly exceeding 0.1)
the deviation from the strict form of ET is substantial and the
semiclassical model does not reflect the solution of the TDSE
as in the case of 400 nm (Fig. 3). On the other hand, if R(t) is
kept roughly below 0.1 at all times, the deviation from the strict
form of ET is minor and the semiclassical simulations capture
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FIG. 8. Time evolution for the relative deviation R(t) [Eq. (17)]
between the magnitudes of the force on the average position and
average of the force at ellipticity ε = 0.5 for two wavelengths: λ =
800 nm (solid curve) and λ = 400 (dashed curve). The laser pulse
duration is np = 3 cycles and the peak intensity is 2 × 1014 W/cm2.
The time axis is given in units of half-cycle duration, the pulse starts
at zero, ωt/π = 3 corresponds to the center of the pulse.

the main features of the TDSE result. In other words, in this
case there are no distortions in the semiclassical momentum
distributions that destroy the qualitative agreement with the
result of the TDSE.

Encouraged by the success of this criterion (R < 0.1) for
these two isolated cases, in the next sections we explore this
criterion in more depth by calculating the maximal relative
deviations from the strict form of ET, R, and the corresponding
time of the maximal deviation, tm, as a function of the
parameters of the laser pulse (ellipticity, wavelength, and
intensity) and as a function of the properties of the atomic target
(ionization potential and potential range). We confront the
predictions obtained analyzing R and tm with the comparison
between the TDSE and the semiclassical predictions of the
momentum distributions.

VI. DEPENDENCE OF THE DEVIATION FROM
THE STRICT FORM OF EHRENFEST’S THEOREM ON

THE PARAMETERS OF THE PULSE

A. Ellipticity dependence

When the ellipticity ε is decreased, keeping all other
parameters fixed, the number of recollision events is increased.
One expects that R is increased because of the relative increase
in the importance of the atomic potential. In the opposite
direction, increasing the ellipticity leads to small R values.
The maximum relative deviation R as a function of ellipticity
for 400 and 800 nm is plotted in Fig. 9(a). Both curves show
the expected trend of the decrease of the maximal relative
deviation R as a function of the ellipticity. Until around an
ellipticity of ε = 0.8 the curve for 400 nm lies higher than
the one for 800 nm. The former does not reach the level of
0.1 before the ellipticity reaches approximately 0.7. In the
latter case, for almost the whole ellipticity range, excluding
the interval of small ellipticities below approximately 0.2, R

is less then 0.1, consistent with a good qualitative agreement
between semiclassical and TDSE results.
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FIG. 9. (a) Maximum relative deviation R and (b) times tm (in half-cycle units) of maximum deviation [Eq. (19)] as a function of the
ellipticity of the laser pulse for the case of λ = 800 nm (open squares) and λ = 400 nm (solid circles). The laser pulse duration is np = 3 cycles,
the peak intensity is 2 × 1014 W/cm2, and the atom is H. The ensemble of trajectories included in this calculation consists of all the trajectories
that emerge from the dominant, most intense central half cycle of the pulse, peaking at ωt/π = 3.

The time instants tm corresponding to R are plotted in
Fig. 9(b). This figure clearly shows that the times of maximal
relative deviation exhibit a profound threshold behavior for
both wavelengths. For small ellipticities, the times of maximal
relative deviation for both wavelengths are located roughly
at the middle of the half cycle after the half cycle of the
field where the classical ensemble was created by tunneling,
indicating a return of the classical trajectories to the vicinity of
the atomic potential. Then, above an ellipticity of 0.2, the time
of maximal relative deviation for 800 nm changes to the cycle
at which the trajectories of the ensemble are launched. If tm is
in the half cycle where the classical trajectories are launched,
in accord with the discussion in Sec. IV, such deviations are
ignored and it is assumed that the system satisfies the strict
form of ET. More importantly, this drop in tm coincides with
the drop in R roughly below 0.1 [see Fig. 9(a)]. While R

monotonically decreases, the threshold behavior of tm clearly

delimits the dynamics when the value of R is substantial or not.
Equally, for the case of 400 nm tm at around ε = 0.65 exhibits a
threshold behavior, now from the half cycle after the half cycle
when the trajectories were launched to the last half cycle of the
pulse. Again, in accord with the discussion in the preceding
section, deviations at the end of the pulse are ignored and so it
is assumed that the classical ensemble satisfies the strict form
of the ET. Once again, this rapid change of the behavior of
the time of the maximal relative deviation coincides with the
ellipticity at which R decreases to a value below 0.1.

To check our conclusions on the validity of the semiclassical
results obtained analyzing R and tm, we compare momentum
distributions obtained within the semiclassical model and by
the TDSE. For comparison, we choose the cases when from our
analysis we have an indication that the semiclassical results for
400 nm are valid and for the case when the semiclassical model
at 800 nm fails. The comparison between the semiclassical
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FIG. 10. (Color online) Comparison of the momentum distributions for the H atom at 400 nm for the ellipticity ε = 0.85 obtained from
(a) the semiclassical model and (b) the TDSE. The laser pulse duration is np = 3 cycles and the peak intensity is 2 × 1014 W/cm2. The grid
for the TDSE extends up to Xmax = 400 a.u., and the maximum angular momentum is lmax = 40. The distributions are normalized to the peak
value.
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FIG. 11. (Color online) Comparison of the momentum distributions for the H atom at 800 nm for the ellipticity ε = 0.15 obtained from
(a) the semiclassical model and (b) the TDSE. The laser pulse duration is np = 3 cycles and the peak intensity is 2 × 1014 W/cm2. The grid
for the TDSE extends up to Xmax = 600 a.u., and the maximum angular momentum is lmax = 40. The distributions are normalized to the peak
value.

model and the TDSE for ε = 0.85 at 400 nm and for ε =
0.15 at 800 nm shown on Figs. 10 and 11, respectively,
confirms these expectations. Namely, for ε = 0.85 and λ =
400 nm, in accord with the analysis based on R and the
corresponding time instant tm, the semiclassical model should
describe the quantum dynamics correctly. Indeed, comparing
Figs. 10(a) and 10(b), we see that the overall rotation of the
momentum distribution is qualitatively well reproduced by
the semiclassical calculation. For ε = 0.15 and λ = 800 nm,
according to the analysis based on R and tm (Fig. 9), we
expect that the semiclassical model will not mimic the quantum
results. This is confirmed in Fig. 11; the small overall rotation
that the semiclassical model is pointing to is not present in
the TDSE result, where the population is concentrated along
the kx axis. In cases of larger ellipticity and λ = 800 nm, the
momentum distributions from the semiclassical model and the
TSDE show excellent agreement, as illustrated in Fig. 12 (for

ε = 0.85 and λ = 800 nm) and in accord with previous works
of Refs. [26,28].

B. Wavelength dependence

Next, we consider the wavelength dependence, keeping all
parameters of the laser pulse and the atomic target fixed;
ellipticity ε = 0.5 and intensity of 2 × 1014 W/cm2. The
maximal relative deviation R of Eq. (19), plotted in Fig. 13(a),
monotonically decreases as a function of the wavelength, up
to λ ≈ 600 nm. From λ = 600 nm on, R slowly increases with
wavelength, reaching a level of about 0.1 at λ = 1600 nm. The
graph for the time of maximal relative deviation tm [Fig. 13(b)]
reveals an abrupt change in the dynamics as the wavelength
is increased. First, until a wavelength around 600 nm tm
is in the half cycle after the half cycle where the classical
trajectories were started, this, as in the previous subsection,
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FIG. 12. (Color online) Comparison of the momentum distributions for the H atom at 800 nm for the ellipticity ε = 0.85 obtained from
(a) the semiclassical model and (b) the TDSE. The laser pulse duration is np = 3 cycles and the peak intensity is 2 × 1014 W/cm2. The grid
for the TDSE extends up to Xmax = 600 a.u., and the maximum angular momentum is lmax = 60. The distributions are normalized to the peak
value.
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FIG. 13. (a) Maximum relative deviation R as a function of the wavelength and (b) times tm (in units of half-cycle duration) of maximum
relative deviation of ET as a function of wavelength. The laser pulse duration is np = 3 cycles, the ellipticity is ε = 0.5, the peak intensity is
2 × 1014 W/cm2, and the atom is H. The ensemble consists of classical trajectories stemming from the largest (central) half cycle of the laser
pulse, peaking at ωt/π = 3.

leads to a non-negligible value of R. For wavelengths roughly
longer than 600 nm, tm moves to the half cycle where the
classical trajectories were launched. This is so because as the
wavelength increases, the excursion of classical trajectories
increases and they rapidly leave the region close to the
origin. This again causes the force terms stemming from the
potential to decrease rapidly, and therefore the deviation is
most pronounced when the trajectories are launched.

As discussed previously, it is assumed that the deviations
from the strict form of ET are correlating with the invalidity
of the semiclassical model; therefore, for wavelengths equal
to or larger then 600 nm, we expect that the results from
the semiclassical model will be qualitatively similar to the
results obtained from the TDSE. To test this, we consider as
an example the case of λ = 600 nm in Fig. 14. As pointed
out by our analysis, the case of 600 nm is at the edge of
applicability of the semiclassical model from the perspective

of the deviation from the strict form of ET. More precisely, a
few tens of nanometers before 600 nm, the time of maximum
deviation tm jumps; in this sense this case is at the edge of
applicability. Indeed, from the comparison in Fig. 14 one
sees that, qualitatively, the overall rotation in the momentum
distribution is reproduced.

C. Intensity dependence

Finally, we consider the dependency of R on the laser
pulse intensity, restraining ourselves to the case of 800 nm.
In Fig. 15(a) the maximum relative deviation R of Eq. (19) is
plotted as a function of intensity, keeping all other parameters
of the three-cycle pulse fixed, wavelength of 800 nm and
ellipticity ε = 0.5. The intensity dependence in Fig. 15(a) is
nonmonotonic and R exceeds 0.1 for the largest intensities
considered. The nonmonotonic dependence of R on intensity
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FIG. 14. (Color online) Comparison of the momentum distributions for the H atom at 600 nm obtained from (a) the semiclassical model
and (b) the TDSE. The ellipticity of the pulse is ε = 0.5, the laser pulse duration is np = 3 cycles, and the peak intensity is 2 × 1014 W/cm2.
The grid for the TDSE extends up to Xmax = 600 a.u., and the maximum angular momentum is lmax = 40. The distributions are normalized to
the peak value.
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FIG. 15. (a) Maximum relative deviation R as a function of the intensity and (b) time (in units of half-cycle duration) of maximum deviation
of ET as a function of intensity. The laser pulse duration is np = 3 cycles, the ellipticity is ε = 0.5, the wavelength is 800 nm, and the atom is
H. The ensemble consists of classical trajectories stemming from the largest, most intense half cycle of the pulse, peaking at ωt/π = 3.

can be understood as follows. Normally we would expect that
by decreasing intensity the classical trajectories will quickly
move away from the origin, decreasing the force term from
the atomic potential and thus decreasing the relative deviation.
Although with the decrease of the intensity the excursion
of the classical electron decreases and lower final momenta
are populated, the large absolute distance of the trajectories
from the atomic center is decisive for the decrease of the
maximal relative deviation. Indeed, this is so for the region
beginning from the highest intensities until the intensity of 1 ×
1014 W/cm2 [local minimum in Fig. 15(a)]. Decreasing the
intensity further leads to a rise of the maximal relative deviation
R, indicating that the excursion of the electronic trajectories
becomes very small at the end of the pulse. However, after
reaching maximum at 0.4 × 1014 W/cm2, R drops again.
The time tm, plotted in Fig. 15(b) does not show a rapid
change around that maximum, indicating that the dynamics
stays the same. In fact at the lowest intensities considered
here (below approximately 0.4 × 1014 W/cm2) the Keldysh
parameter γ becomes larger than 2, suggesting the invalidity
of the semiclassical model based on the static ionization
rates.

At the local minimum of the curve in Fig. 15(a) (intensity
1014 W/cm2), the dynamics changes, since tm in Fig. 15(b)
drops from times in the last half cycle to the half cycle at
which the classical trajectories are started. This is so because
the tunnel exit point is closer to the origin, making the force
terms of the potential larger; therefore, R is larger. Although
R exceeds 0.1, the corresponding times tm are located either in
the first or in the last half cycle, so it appears that at λ = 800 nm
variation in intensity will not lead to a qualitative difference
between the semiclassical and the TDSE results.

VII. DEPENDENCE OF THE DEVIATION FROM THE
STRICT FORM OF EHRENFEST’S THEOREM ON

THE PARAMETERS OF THE ATOMIC TARGET

A. Ionization potential dependence

In Figs. 16(a) and 16(b) we give R and tm the times of
maximum relative deviation for some atomic species with

different ionization potentials for both λ = 800 nm and λ =
400 nm, respectively. The laser pulse duration is np = 3 cycles,
the ellipticity is 0.5, and the intensity is 2 × 1014 W/cm2. The
semiclassical simulations are performed taking the static Stark
shifts and effective potential that includes the induced dipole
of the atomic ion [28] for all atomic species considered. To
characterize the static Stark shifts and the induced dipole, we
took the polarizabilities of the neutral atoms and atomic ions
from Ref. [50]. The tunnel exit point is determined in parabolic
coordinates [26,28].

Generally, the smaller the ionization potential, the larger
is R, since the tunnel exit points (∼Ip/F ) for the classical
ensemble of trajectories for weaker potentials are smaller,
resulting in larger force terms from the atomic potential. This
trend is evident in Fig. 16(a), especially for λ = 800 nm case.
For the λ = 400 nm case, the dependence of R on Ip is not
monotonic, partly because we have included the Stark shifts of
the ionization potential and the induced dipole in the atomic
potential, which vary nonmonotonically from one atom to the
other [54]. Analyzing tm, we find out that for λ = 400 nm, the
results from the semiclassical model will be invalid for atomic
species from Mg to Ar (there the tm’s are not located in the first
and the last half cycle). In all other cases Fig. 16(b) suggests
that the result from the semiclassical model give qualitatively
correct predictions.

To isolate the dependency of the relative deviation on the
ionization potential only, but also to show that at λ = 800 nm
(with laser pulse duration of np = 3 cycles and ellipticity
of 0.5), depending on the intensity, there will be ionization
potentials for which the two-step semiclassical model will be
invalid, we consider the case of an artificial hydrogen-like
atom with no static Stark shift and no polarizability. Again,
the tunnel exit point is determined in parabolic coordinates
[26,28]. The maximum relative deviation R and the times of
maximum relative deviation tm for this case are plotted in
Figs. 17(a) and 17(b), respectively. Two different intensities,
2.0 × 1014 (full curve) and 2.5 × 1013 W/cm2 (dashed curve),
are considered, and the calculations are performed up to the
ionization potential that corresponds to the over-the-barrier
ionization limit. From Fig. 17(a), we see that R is substantial
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FIG. 16. Maximum relative deviation (a) and times (in units of half-cycle duration) (b) for different atomic species. The laser pulse duration
is np = 3 cycles, ellipticity is 0.5, and the intensity is 2 × 1014 W/cm2, the field peaks at ωt/π = 3. Two different wavelengths are considered:
λ = 400 nm (solid circles) and λ = 800 nm (open squares). The ensemble of classical trajectories consists of all the trajectories that emerge
from the largest (central) half cycle of the pulse. We have included the static Stark shifts for the atomic species in question, as well as the
induced dipole term in the effective atomic potential, taking polarizabilities from Ref. [50]

(larger than 0.1) for the lower intensity and for the smallest
ionization potentials. The inspection of Fig. 17(b) reveals that
for the lower intensity and for ionization potentials below
approximatively 11 eV the semiclassical model can be invalid,
because in this case tm occurs in the half cycle after the classical
trajectories are ejected.

B. Potential with finite range

As a final dependence, we consider the range of the
potential as the parameter. For this purpose, we consider
the Yukawa potential VY (r) = − exp(−r/d)/r of range d. To
isolate the influence of the potential range when propagating
the classical ensemble, we assume that the classical ensemble
is created by tunneling from the H atom (tunnel exit point
is the same as in H) and that the classical ensemble moves

in VY (r). To illustrate the influence of the range on the
momentum distributions, we focus on the parameters used
in Fig. 3: λ = 400 nm, laser pulse duration np = 3 cycles,
ellipticity equal to 0.5, and intensity 2 × 1014 W/cm2. For
these parameters, the semiclassical model for H fails. In
Fig. 18, momentum distributions corresponding to ranges
decreasing from d = 50 to d = 5 are given. The momentum
distribution in Fig. 18(a), corresponding to the range of d = 50,
is almost indistinguishable from the result obtained for the pure
Coulomb potential [Fig. 3(a)]. Decreasing the potential range,
the momentum distribution smoothly changes into having the
usual form (one smooth maximum in the fourth quadrant)
[Fig. 18(d)]. The maximum relative deviation R and the
corresponding times tm are plotted in Figs. 19(a) and 19(b),
respectively. When the range of the potential increases, R

rises, reaching approximately R = 0.2. For d = 5, where the
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FIG. 17. (a) Maximum relative deviation and (b) times (in units of half-cycle duration) of maximum relative deviation as a function of the
ionization potential for an artificial H-like atom with no static Stark shift and no polarizability. The pulse wavelength is λ = 800 nm, the laser
pulse duration is np = 3 cycles, and the ellipticity is 0.5. The pulse peaks at ωt/π = 3. Two intensities are considered: 2.0 × 1014 (full curve)
and 2.5 × 1013 W/cm2 (dashed curve). The smallest ionization potentials considered correspond to the case of over-the-barrier ionization for
the particular intensity. The other pulse parameters are the same as in Fig. 16.
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FIG. 18. (Color online) Momentum distributions in the cases of a Yukawa potential [VY (r) = − exp(−r/d)
r

] with different range d: (a) d = 50,
(b) d = 20, (c) d = 10, and (d) d = 5. The laser pulse duration is np = 3 cycles, the peak intensity is 2 × 1014 W/cm2, the ellipticity of the
pulse is ε = 0.5, and the wavelength is λ = 400 nm.

momentum distribution has the usual form [Fig. 18(d)], R

reaches approximately 0.1. For very short-ranged potentials
(d < 4), the tm’s are located in the last half cycle, and then

for all larger ranges the tm’s are located in the half cycle sub-
sequent to the half cycle where the classical trajectories were
launched.
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FIG. 19. Maximum relative deviation (a) and times (in units of half-cycle duration) (b) as a function of the Yukawa potential range d . The
laser pulse duration is np = 3 cycles, the intensity is 2 × 1014 W/cm2, the ellipticity of the pulse is ε = 0.5, the pulse peaks at ωt/π = 3, and
the wavelength is λ = 400 nm. The ensemble of classical trajectories consists of all the trajectories that emerge from the largest (central) half
cycle of the pulse.

013427-14

8. Publications 185



EHRENFEST’S THEOREM AND THE VALIDITY OF THE . . . PHYSICAL REVIEW A 87, 013427 (2013)

VIII. SUMMARY AND CONCLUSIONS

In summary, by comparison with the accurate numerical
solution of the TDSE, we have investigated the applicability
of the two-step semiclassical model widely used for the
description of strong-field ionization. For an ensemble of
classical trajectories we have introduced a measure for the
deviation from the strict form of ET. This measure is the
relative deviation between the force at the average position of
the classical ensemble and the average of the force [Eq. (17)].
We have found a correlation between the invalidity of the
two-step model and the deviation from the strict form of ET.
We showed that even substantial deviations from the strict
form of ET at times close the electron ejection, as well as
at the end of the pulse, do not affect the agreement between
the solution of the TDSE and the two-step model. However, a
substantial deviation from the strict form of ET at any other
time should be considered as a manifestation of inapplicability
of the two-step model, at least for the adequate description of
the momentum distributions.

Specifically, we showed that if the relative deviation
exceeds the level of ≈10%, the deviation from the strict form of
ET is substantial, and the semiclassical model does not reflect
the solution of the TDSE. We have calculated the maximal
relative deviations and the times of these deviations as a
function of the parameters of the laser pulse and of the atomic
target: ellipticity, wavelength, intensity, ionization potential,
and the potential range. By doing so, we have explored
the trends of the applicability of the two-step semiclassical
model. For ellipticities where rescattering is suppressed, one
can expect better agreement between the two-step model and

the TDSE result with increasing ellipticity, wavelength, and
ionization potential, as well as with decreasing of the potential
range. More precisely, for the H atom, a peak intensity of
2.0 × 1014 W/cm2, and λ = 400 nm, the two-step model
is inapplicable for the ellipticities ε < 0.65, whereas at a
wavelength of 800 nm and the same intensity the model
is valid already for ε > 0.2. For the same intensity, but for
ellipticity ε = 0.5 the semiclassical model is applicable for H
at wavelengths greater than 600 nm. A similar criterion for the
intensity dependence of the applicability range of the two-step
model cannot be formulated, since this dependence is more
complex. In addition to H, we investigated the applicability of
the two-step model for the following atomic targets: Mg, Xe,
Kr, Ar, Ne, and He, taking into account the corresponding
Stark shifts of the initial states and polarization-induced
dipole potentials as in [26–28]. We showed that for 400 nm,
2.0 × 1014 W/cm2, and ε = 0.5 the results of the two-step
model will be valid only for Ne and He, whereas for 800 nm
and the same values of intensity and ellipticity the model is
applicable to all of the considered atomic species.

The results presented here can be used as a guideline for the
applicability of the two-step semiclassical model for strong-
field ionization, depending on the parameters of the laser pulse
and the target atom.
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We present a mixed quantum-classical approach to strong-field ionization—a semiclassical two-step model
with quantum input. In this model the initial conditions for classical trajectories that simulate an electron
wave packet after ionization are determined by the exact quantum dynamics. As a result, the model allows
to overcome deficiencies of standard semiclassical approaches in describing the ionization step. The comparison
with the exact numerical solution of the time-dependent Schrödinger equation shows that for ionization of a
one-dimensional atom the model yields quantitative agreement with the quantum result. This applies both to the
width of the photoelectron momentum distribution and to the interference structure.

DOI: 10.1103/PhysRevA.100.053411

I. INTRODUCTION

Strong-field physics is a fascinating field of research re-
sulting from remarkable progress in laser technologies dur-
ing the last three decades. The interaction of strong laser
radiation with atoms and molecules leads to many highly
nonlinear phenomena, including above-threshold ionization
(ATI) along with the formation of the plateau in the energy
spectrum of the photoelectrons (high-order ATI), generation
of high-order harmonics of the incident field (HHG), and
nonsequential double ionization (NSDI) (see, e.g., Refs. [1–5]
for reviews). The main theoretical approaches used to study all
these phenomena are based on the strong-field approximation
(SFA) [6–8], direct numerical solution of the time-dependent
Schrödinger equation (TDSE) (see, e.g, Refs. [9–14] and
references therein), and the semiclassical models.

The semiclassical models apply classical mechanics to
describe the motion of an electron after it has been released
from an atom or molecule by a strong laser field. The most
widely known examples of the semiclassical approaches are
the two-step [15–17] and the three-step [18,19] models. The
two-step model corresponds to the following picture of the
ionization process. In the first step an electron is promoted
into the continuum, typically by tunneling ionization [20–22].
In the second step the electron moves in the laser field towards
a detector along a classical trajectory. In addition to these
two steps, the three-step model involves the interaction of
the returning electron with the parent ion. Accounting for
this interaction allows the three-step model to qualitatively
describe high-order ATI, HHG, and NSDI.

The semiclassical approaches have important advantages.
First, the trajectory-based models, including those that take
into account both the laser field and the ionic potential, are
often computationally simpler than the numerical solution of
the TDSE. What is even more important, the analysis of the

*n79@narod.ru

classical trajectories helps to understand the physical picture
of the strong-field phenomenon under study.

In order to calculate the classical trajectory, it is necessary
to specify the corresponding initial conditions, i.e., the starting
point and the initial velocity of the electron. To obtain the for-
mer, i.e., the tunnel exit point, the separation of the tunneling
problem for the Coulomb potential in parabolic coordinates
can be used (see, e.g., Ref. [20]). In trajectory-based models
it is often assumed that the electron starts with zero initial
velocity along the laser field. Simultaneously, it can have a
nonzero initial velocity in the direction perpendicular to the
field. The initial transverse momenta, as well as the instants
of ionization, are usually distributed in accord with the static
ionization rate [23] with the field strength equal to the instan-
taneous field at the time of ionization.

In the standard formulation, the trajectory models used in
strong-field physics are not able to describe quantum interfer-
ence effects. Accounting for interference effects in trajectory-
based simulations has attracted considerable interest (see, e.g.,
Refs. [24–27]). The recently developed quantum trajectory
Monte Carlo (QTMC) [28] and semiclassical two-step (SCTS)
models [29] describe interference structures in photoelectron
momentum distributions of the ATI process. These models
assign a certain phase to each classical trajectory, and the
corresponding contributions of all the trajectories leading to
a given asymptotic (final) momentum are added coherently.
The QTMC model accounts for the Coulomb potential within
the semiclassical perturbation theory. In contrast to this, in
the SCTS model the phase associated with every trajectory is
obtained using the semiclassical expression for the matrix el-
ement of the quantum-mechanical propagator (see Ref. [30]).
Therefore, the SCTS model accounts for the binding potential
beyond the semiclassical perturbation theory. This explains
why for identical initial conditions after the ionization step
the SCTS model shows closer agreement with solution of the
TDSE than the QTMC model (see Ref. [29]).

The analysis of the photoelectron momentum distributions
and energy spectra calculated within both the QTMC and the
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SCTS models showed that the ATI peaks are qualitatively
reproduced by the semiclassical approaches [29]. However,
the semiclassical approximation does not quantitatively re-
produce the amplitude of the oscillations. The photoelectron
spectra calculated within the semiclassical models fall off too
rapidly for energies exceeding Up, where Up = F 2

0 /4ω2 is the
ponderomotive energy, i.e., the cycle-averaged quiver energy
of a free electron in an electromagnetic field (atomic units
are used throughout the paper unless indicated otherwise).
Here, F0 and ω are the amplitude and the frequency of the
field, respectively. This deficiency is closely related to the fact
that the initial conditions usually employed in semiclassical
models provide too few trajectories with large longitudinal
momenta [29].

Recently several approaches to improving the quality of the
initial conditions in semiclassical models have been proposed.
The simplest method is to distribute the initial conditions
for electron trajectories using the SFA formulas (see, e.g.,
Refs. [31–36]). We note that this method dates back to
Refs. [37,38]. In most cases it leads to closer agreement with
the TDSE. However, to the best of our knowledge, the validity
of the usage of the SFA expressions in trajectory-based sim-
ulations has not been systematically analyzed so far. In this
paper we consider an alternative approach: the combination
of the semiclassical models with direct numerical solution of
the TDSE.

A significant step in this direction has been taken
with the development of the backpropagation method (see
Refs. [39,40]). In this method, the wave packet of the outgoing
electron obtained from the TDSE is transformed into classical
trajectories. These trajectories are then propagated backwards
in time, which makes it possible to retrieve the information
about the tunnel exit point and the initial electron velocity.
Various approximations to the distributions of the starting
points and the initial velocities were analyzed by choosing dif-
ferent criteria to stop the backpropagating trajectories [40,41].
However, the backpropagation method requires the numerical
solution of the TDSE up to some point in time after the
end of the laser pulse in the whole space. This restricts its
applicability in the case of computationally difficult strong-
field problems.

A promising approach would be a combination of the
SCTS model with extended virtual detector theory (EVDT)
[42,43]. For the first time the concept of a virtual detector
(VD) was proposed in Ref. [44] as a method for calculat-
ing momentum distributions from the time-dependent wave
function. The EVDT approach combines the VD method with
semiclassical simulations. The EVDT employs a network of
virtual detectors that encloses an atom interacting with the
external laser field. Each detector detects the wave function
ψ (�r, t ) = A(�r, t ) exp [iφ(�r, t )] obtained by solving the TDSE
and generates a classical trajectory at the same position with
the initial momentum �k determined from the gradient of the
phase, �k(�rd , t ) ≡ ∇ · φ(�rd , t ) = �j(�rd , t )/|A(�rd , t )|2. Here �rd is
the position of a virtual detector and �j(�rd , t ) is the probability
flux at this position. The latter determines the relative weight
of the generated trajectory. The subsequent motion of an
electron is found from the solution of Newton’s equations.
The final photoelectron momentum distribution is obtained
by summing over all classical trajectories with their relative

weights. It should be stressed that EVDT solves the TDSE
only within some restricted region centered at the atom. A
network of virtual detectors is placed at the boundary of this
region. This reduces the computational load of numerically
difficult strong-field problems. Recently the VD approach
was used for study of tunneling times [45] and longitudinal
momentum distributions [46] in strong-field ionization.

Leaving the combination of the SCTS with the EVDT
for future studies, in this paper we formulate an alternative
quantum-classical approach: the semiclassical two-step model
with quantum input (SCTSQI). To this end, we combine the
SCTS model with initial conditions obtained from TDSE
solutions using Gabor transforms. For simplicity, we consider
ionization of a one-dimensional (1D) atom. The generaliza-
tion to the real three-dimensional case is straightforward. The
benefit of the 1D model, however, is that potential deficiencies
of trajectory models are exposed better and, therefore, it
makes the comparison with the fully quantum simulations
more valuable.

The paper is organized as follows. In Sec. II we sketch
our approach to solve the TDSE, we briefly review the SCTS
model, and we formulate our SCTSQI approach. In Sec. III
we apply our model to the ionization of a 1D model atom and
present comparison with the TDSE results. The conclusions
and outlook are given in Sec. IV.

II. SEMICLASSICAL TWO-STEP MODEL
WITH QUANTUM INPUT

We benchmark our semiclassical model against the results
obtained by direct numerical solution of the 1D TDSE and by
using the SCTS model. For this reason, before formulating the
SCTSQI model and discussing its outcomes, we briefly review
the technique used to solve the TDSE and sketch the SCTS
model. We define a few-cycle laser pulse linearly polarized
along the x axis in terms of a vector potential:

�A = (−1)n+1 F0

ω
sin2

(
ωt

2n

)
sin (ωt + ϕ)�ex. (1)

Here n is the number of the cycles within the pulse, ϕ is the
carrier envelope phase, and �ex is a unit vector. The laser pulse
is present between t = 0 and t f = (2π/ω)n, and its electric

field �F can be obtained from Eq. (1) by �F = − d �A
dt .

A. Solution of the one-dimensional time-dependent
Schrödinger equation

In the velocity gauge, the 1D TDSE for an electron in the
laser pulse reads as

i
∂

∂t
�(x, t ) =

{
1

2

(
−i

∂

∂x
+ Ax(t )

)2

+ V (x)

}
�(x, t ), (2)

where �(x, t ) is the time-dependent wave function in coordi-
nate space, and a soft-core potential V (x) = − 1√

x2+a2 is used,
with a = 1 as in Ref. [47].

In the absence of the laser pulse, the 1D system satisfies
the time-independent Schrödinger equation:{

−1

2

d2

dx2
+ V (x)

}
�(x) = E�(x). (3)
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We solve Eq. (3) on a grid and approximate the second
derivative by the well-known three-point formula. For our
simulations we use a box centered at the origin and extending
to ±xmax, i.e., x ∈ [−xmax, xmax]. Typically, our grid extends
up to xmax = 500 a.u. and consists of 8192 points, which
corresponds to the grid spacing dx ≈ 0.1221 a.u. The energy
eigenvalues En and the corresponding eigenfunctions �n(x)
are found by a diagonalization routine designed for sparse
matrices [48]. For the chosen value of a we find the ground-
state energy E0 = −0.6698 a.u. This value, as well as the
energies of other lowest-energy bound states, coincides with
the results of Ref. [47].

We solve Eq. (2) using the split-operator method [49] with
the time step 	t = 0.0734 a.u. Unphysical reflections of the
wave function from the grid boundary are prevented by using
absorbing boundaries. More specifically, in the region |x| � xb

we multiply the wave function by a mask

M(x) = cos1/6

[
π (|x| − xb)

2(xmax − xb)

]
. (4)

Here we assume that the internal boundaries of the absorbing
regions correspond to x = ±xb (we use xb = 3xmax/4). This
ensures that the part of the wave function in the mask region
is absorbed without an effect on the inner part |x| < xb. We
calculate the photoelectron momentum distributions using the
mask method (see Ref. [50]).

B. Semiclassical two-step model

In our semiclassical simulations the trajectory �r(t ) and
momentum �p(t ) of an electron are calculated treating the
electric field of the pulse �F (t ) and the ionic potential V (�r, t )
on equal footing:

d2�r
dt2

= − �F (t ) − �∇V (�r, t ). (5)

In the SCTS model, every trajectory is associated with the
phase of the matrix element of the semiclassical propagator
[30]. For an arbitrary effective potential V (�r, t ) the SCTS
phase reads as


(t0, �v0) = −�v0 · �r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t )

2
+ V [�r(t )] − �r(t ) · �∇V [�r(t )]

}
,

(6)

where t0 is the ionization time, and �r(t0) and �v0 are the initial
electron position and velocity of an electron, respectively.

We solve Newton’s equations of motion (5), in order to
find the final (asymptotic) momenta of all the trajectories, and
bin them in cells in momentum space according to these final
momenta. If the quantum interference is taken into account,
a large number of classical trajectories is needed in order
to achieve convergence of electron momentum distributions.
Different approaches of sampling the initial conditions can
be used. In one possible approach the initial conditions, i.e.,
the ionization times t j

0 and transverse initial velocities �v j
0,⊥

( j = 1, . . . , np) of the ensemble consisting of np trajectories
are distributed randomly, or, equivalently, a uniform grid in
the (t0, �v0) space is used. The weight of each trajectory is

determined by the corresponding tunneling probability. The
latter is given by the formula for the static ionization rate [23]:

w(t0, v0,⊥) ∼ exp

(
−2(2Ip)3/2

3F (t0)

)
exp

(
−κv2

0,⊥
F (t0)

)
, (7)

where �v0,⊥ is the initial electron velocity in the direction
perpendicular to the instantaneous laser field �F (t0) at the time
of ionization. Here it is assumed that the electron emerges
at the tunnel exit from the potential barrier formed by the
instantaneous field and the ionic potential with zero initial
velocity along the laser field: �v0,|| = 0. Indeed, in the tunnel-
ing picture the electron velocity in the direction of tunneling
must be equal to zero at the turning point. However, the
tunneling makes no restriction on the perpendicular velocity.
This is supported by the tunneling theory (see Ref. [20]). The
contributions of the n�k trajectories that reach the same bin
centered at a given final momentum �k are added coherently.
Therefore, the ionization probability is given by

R(�k) =
∣∣∣∣∣∣

n�k∑
j=1

√
w

(
t j
0 , �v j

0,⊥
)

exp
[
i


(
t j
0 , �v j

0,⊥
)]∣∣∣∣∣∣

2

. (8)

Alternatively, we can take into account the weight of a given
trajectory before the solution of Newton’s equations, i.e., al-
ready at the sampling stage. To this end, we distribute the sets
of initial conditions (t j

0 , �v j
0,⊥) in accord with the square root of

the tunneling probability (see Ref. [29] for details). We refer
to this implementation of the SCTS model as the importance
sampling implementation. We note that a similar approach
is widely used in Monte Carlo integration (see Ref. [51]).
If the trajectories are selected by importance sampling, the
ionization probability in the SCTS model is calculated as

R(�k) =
∣∣∣∣∣∣

n�k∑
j=1

exp
[
i


(
t j
0 , �v j

0

)]∣∣∣∣∣∣
2

. (9)

For some laser parameters the importance sampling approach
can significantly decrease the computational cost of the SCTS
model. In the present work we use the important sampling
implementation of the SCTS model. However, in our SCTSQI
model we employ the first approach with random distribution
of the initial conditions (see Sec. II B).

If the potential V (�r, t ) is set to the 1D soft-core potential
V (x) = −1/

√
x2 + a2, the equation of motion (5) and the

expression for the SCTS phase (6) reads as

d2x

dt2
= −Fx(t ) − x

(x2 + a2)3/2
, (10)

and, choosing the initial velocity as zero, we have the phase


(t0, �v0)

= Ipt0 −
∫ ∞

t0

dt

{
v2

x (t )

2
− x2

(x2 + a2)3/2
− 1√

x2 + a2

}
dt .

(11)
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In the 1D case the ionization rate (7) is replaced by

w(t0) ∼ exp

(
−2(2|E0|)3/2

3F (t0)

)
, (12)

where E0 = −0.6698 a.u. is the ground-state energy in the
potential V (x).

We integrate the equation of motion numerically up to
t = t f and find the final electron momentum kx from its mo-
mentum px(t f ) and position x(t f ) at the end of the laser pulse.
To this end, the energy conservation law can be used. Since
an unbound classical electron cannot change the direction of
its motion at t � t f , the sign of the kx coincides with that of
px(t f ).

In order to accomplish the formulation of the SCTS model
for the 1D case, we need to calculate the postpulse phase,
i.e., the contribution to the phase (11) accumulated in the
asymptotic interval [t f ,∞]. Indeed the phase of Eq. (11) can
be decomposed as


(t0, �v0)

= Ipt0 −
∫ t f

t0

dt

{
v2

x (t )

2
− x2

(x2 + a2)3/2
− 1√

x2 + a2

}

+
V
f , (13)

where the postpulse phase 
V
f reads


V
f

(
t f

) = −
∫ ∞

t f

(
E − x2(t )

[x2(t ) + a2]3/2

)
dt (14)

with total energy E . As in Ref. [29], we separate the phase
(14) into parts with time-independent and time-dependent
integrand. The first part yields the linearly divergent contri-
bution

lim
t→∞(t f − t )E (15)

that is to be disregarded, since it results in the zero phase
difference for the trajectories leading to the same momentum
cell. Therefore, the postpulse phase is determined by the time-
dependent contribution


̃V
f =

∫ ∞

t f

x2(t )

[x2(t ) + a2]3/2
dt . (16)

Although the integral (16) diverges, we can isolate the diver-
gent part as follows:


̃V
f =

∫ ∞

t f

[
x2

(x2 + a2)3/2
− 2Et2

(2Et2 + a2)3/2

]
dt

+
∫ ∞

t f

2Et2

(2Et2 + a2)3/2
dt . (17)

The divergent contribution, i.e., the second term of Eq. (17),
depends only on the electron energy E and parameter a and,
therefore, is equal for all the trajectories leading to a given bin
on the px axis. Since we are interested in the relative phases
of the interfering trajectories, this common divergent part can
be omitted, and the postpulse phase can be calculated as

≈



V

f =
∫ ∞

t f

[
x2

(x2 + a2)3/2
− 2Et2

(2Et2 + a2)3/2

]
dt . (18)

The integral in Eq. (18) converges and can be easily calculated
numerically. It depends on the electron position x(t f ) and
velocity vx(t f ) at the end of the pulse. In practice, we calculate
this integral on a grid in the (x(t f ), vx(t f )) plane and use
bilinear interpolation, in order to find its values for x(t f ) and
vx(t f ) that correspond to every electron trajectory.

C. Semiclassical two-step model with quantum input

Combination of the exact solution of the TDSE with a
trajectory-based model is not a simple task. In order to calcu-
late a classical trajectory, both the starting point and the initial
velocity are needed. However, in accord with Heisenberg’s
uncertainty principle, there is a fundamental limit to the
precision with which canonically conjugate variables such as
position and momentum can be known. Information about
both the position and momentum of a quantum particle can be
obtained using a position-momentum quasiprobability distri-
bution, e.g., the Wigner function or Husimi distribution (see,
e.g., Ref. [52] for a textbook treatment). Here we employ
the Gabor transformation [53], which is widely used for the
analysis of the HHG and ATI (see, e.g., Refs. [54–57]). The
Gabor transformation of a function �̃(x, t ) near the point x0

is defined by

G(x0, px, t ) = 1√
2π

∫ ∞

−∞
�̃(x′, t ) exp

[
− (x′ − x0)2

2δ2
0

]

× exp(−ipxx′)dx′, (19)

where the exponential factor exp [− (x′−x0 )2

2δ2
0

] is a window with
the width δ0. The squared modulus of G(x0, px, t ) describes
the momentum distribution of the electron in the vicinity
of x = x0 at time t . In fact, |G(x0, px, t )|2 is nothing but
the Husimi distribution [58], which can be obtained by a
Gaussian smoothing of the Wigner function. In contrast to
the Wigner function, the Husimi distribution is a positive-
semidefinite function, which facilitates the interpretation as a
quasiprobability distribution. In our SCTSQI model, we solve
the TDSE in the length gauge:

i
∂

∂t
�(x, t ) =

{
−1

2

∂2

∂x2
+ V (x) + Fx(t )x

}
�(x, t ). (20)

We introduce two additional spatial grids consisting of N
points in the absorbing regions of the computational box:

x j
0,± = ∓(xb + 	x · j), (21)

where 	x = (xmax − xb)/N and j = 0, . . . , N . At every
step of the time propagation of the TDSE (20) we cal-
culate the Gabor transform (19) of the absorbed part
�̃(x, t ) = [1 − M(x)]�(x, t ) at the points x j

0,− and x j
0,+ [see

Fig. 1(a)]. The TDSE is solved in the computational box x ∈
[−xmax, xmax], whereas the Gabor transforms are calculated
only for x ∈ [−xmax, xb] and x ∈ [xb, xmax]. However, in the
SCTSQI model the size of the computational box can be
chosen much smaller than the one required to obtain accurate
electron momentum distributions (see Sec. III). As a result, at
every time instant t we know G(x, px, t ) on the grids in the
rectangular domains D1 = [−xmax,−xb] × [−px,max, px,max]
and D2 = [xb, xmax] × [−px,max, px,max] of the phase space.
Here pmax is the maximum momentum, i.e., pmax = π/	x,
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FIG. 1. (a) Scheme illustrating the structure of the computational
box in the SCTSQI model. The mask function [Eq. (4)] is shown
by the thick blue curve. The vertical lines correspond to the internal
boundaries of the mask region. The thin black curves show the win-
dows of the Gabor transform centered at the points xi

0,± [Eq. (21)].
(b) The Husimi quasiprobability distribution |G(x, px, 3t f /2)|2 cal-
culated at t = 3t f /2 for the laser pulse defined by Eq. (1) with a
duration of n = 4 cycles, intensity of 2.0 × 1014 W/cm2, phase ϕ =
0, and a wavelength of 800 nm. The Husimi distribution is calculated
in the domains D1 and D2 of the phase space (see text). A logarithmic
color scale is used. P1–P3 represent the three main spots of the Husimi
distribution. The maxima of these spots are depicted by a (green)
circle, (magenta) square, and (cyan) rectangle, respectively. (c) The
final electron momentum −Ax (t ) in the potential-free classical model
as a function of the time of ionization. The parameters of the laser
pulse are the same as in (b). The vicinities of the time instants t1,
t2, and t3 make the main contribution to the spots P1, P2, and P3,
respectively [see (b)].

if the fast Fourier transform is used to calculate Eq. (19).
An example of the corresponding Husimi quasiprobability
distribution calculated at t = 3t f /2 is shown in Fig. 1(b).
At this time instant the quasiprobability distribution consists
of the three main spots P1, P2, and P3, whose maxima are
indicated by a (green) circle, (magenta) square, and (cyan) tri-
angle, respectively. These maxima correspond to the electron
momenta kx equal to 0.37, −0.17, and −0.48 a.u., respectively
[see Fig. 1(b)]. According to the two-step model, a final
electron momentum kx corresponds to the ionization times t0
satisfying the equation

kx = −Ax(t0). (22)

Depending on the momentum value, this equation can have
several solutions, and therefore, several different ionization
times can lead to a given kx; see Fig. 1(c), which shows the
final electron momentum as a function of the ionization time.
The analysis of the time evolution of the electron probability
density reveals that every spot in Fig. 1(b) is mainly created
within a narrow time interval that is close to only one of

the solutions of Eq. (22). The solutions of Eq. (22) that
make the main contributions to the maxima of P1, P2, and
P3 are shown in Fig. 1(c). This fact is easy to understand,
if we take into account that Fig. 1(b) is a snapshot of the
dynamic quasiprobability distribution in the absorbing mask
regions. Indeed, at a given time instant the contributions to
the Husimi distribution from the vicinities of other solutions
of Eq. (22) are either already absorbed by the mask or have
not reached the absorbing regions yet. We note that aside from
P1, P2, P3 some other less pronounced spots are also seen in
Fig. 1(b). These latter spots correspond to the contributions
that by the given time instant are already mostly absorbed. The
slight slope of the whole Husimi distribution that is visible in
Fig. 1(b) is due to the fact that the contributions corresponding
to the high values of |kx| travel larger distances before being
absorbed than the ones with smaller |kx|.

The value of the Gabor transform at an arbitrary point that
belongs to the domain D1 or D2 can be obtained by a two-
dimensional interpolation. We note that the application of the
additional grids (21) in combination with the two-dimensional
interpolation provides a computationally cheap alternative to
the calculation of the Gabor transform at all the points of
the main spatial grid that fall within the absorbing regions.
The accuracy with which the function G(t, x, px ) is calculated
depends on the number of points, N , in the grids (21) and,
therefore, the convergence of the results with respect to this
number must be checked.

Let NT be the number of time steps used to solve the
TDSE. At every time point tm

0 (m = 1, . . . , NT ) used for the
time propagation of the TDSE we randomly distribute initial
positions x j

0 and momenta pj
x,0 ( j = 1, . . . , np) of np classical

trajectories in the domains D1 and D2. These trajectories
are propagated according to Newton’s equation of motion
(10). Every trajectory is assigned with the quantum amplitude
G(t0, x j

0, pj
x,0) and the phase


0
(
t0, x j

0, pj
x,0

)
= −

∫ ∞

t0

dt

{
v2

x (t )

2
− x2

(x2 + a2)3/2
− 1√

x2 + a2

}
. (23)

We note that the SCTSQI phase (23) corresponds to the
phase of the matrix element of the semiclassical propagator
that describes a transition from momentum pj

x,0 at t = t0
to momentum k j

x = k j
x (x j

0, pj
x,0) at t → ∞. The ionization

probability in the SCTSQI model is given by

R(kx ) =
∣∣∣∣∣∣

NT∑
m=1

nkx∑
j=1

G
(
tm
0 , x j

0, pj
x,0

)
exp

[
i
0

(
tm
0 , x j

0, pj
x,0

)]∣∣∣∣∣∣
2

,

(24)

where nkx is the number of trajectories reaching the same
bin centered at kx [cf. Eq. (8)]. It should be stressed that the
Gabor transform G(tm

0 , x j
0, pj

x,0) is a complex function with
both absolute value and phase. In order to ensure that ionized
parts of the wave function reach the absorbing regions, we
propagate the TDSE up to some time t = T , where T > t f .
For this reason, in the SCTSQI model we calculate classical
trajectories till t = T and replace t f by T in Eq. (18) for the
postpulse phase. In our simulations we have used T = 4t f .
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FIG. 2. Comparison of the semiclassical models with the TDSE.
The parameters are the same as in Fig. 1(b). (a) The photoelectron
momentum distributions for ionization of a one-dimensional model
atom obtained from the SCTS model (thin magenta curve) and the
solution of the TDSE (thick light blue curve). The distributions are
normalized to the total ionization yield. (b) The electron momentum
distributions calculated using the present SCTSQI model (dashed
dark green curve) and the TDSE (thick light blue curve). The
distributions are normalized to the peak values. (c) Electron energy
spectra obtained from the TDSE (thick light blue curve), SCTSQI
(dashed dark green curve), and the SCTS (thin magenta curve). The
spectra are normalized to the peak values.

III. RESULTS AND DISCUSSION

For our numerical examples we use the intensity of 2.01 ×
1014 W/cm2 (F0 = 0.0757 a.u.) and the wavelength 800 nm
(ω = 0.057 a.u.). This corresponds to the Keldysh parameter
γ = ω

√
2Ip/F0 (see Ref. [6]) equal to 0.87. For simplicity, we

set the absolute phase of the pulse (1) equal to zero: ϕ = 0.
We benchmark our SCTSQI approach against the SCTS

model and the exact numerical solution of the TDSE. We
implement the SCTS by solving Newton’s equation of mo-
tion using a fourth-order Runge-Kutta method with adaptive
step size [51]. In order to fully resolve the rich interference
structure, we need to use the a momentum-space bin size of
	kx = 0.0019 a.u. For this value of 	kx the convergence
of the interference oscillations is achieved for an ensemble
consisting of 1.2 × 107 trajectories. At first, we consider pho-
toelectron momentum distributions. In Fig. 2(a) we compare
the SCTS model with the solution of the TDSE. The TDSE
photoelectron momentum distribution has a rather compli-
cated structure. This is due to the fact that the laser pulse

used in calculations is neither long nor very short. The side
maxima at kx = −1.35 a.u. and kx = 1.33 a.u. are created due
to the interference of contributions from times near the central
maximum and minimum of the vector potential, respectively
[see Fig. 1(c)]. The central minimum of the vector potential is
also responsible for the formation of the maximum at kx =
1.0 a.u. On the other hand, the ATI peaks in the electron
momentum distributions are most pronounced in the range
of kx from −1.0 to −0.25 a.u. The SCTS model predicts a
caustic of the momentum distribution around kx = 0.38 a.u.
For this reason, we normalize the distributions of Fig. 2(a)
to the total ionization yield. Figure 2(a) shows that there is
only a qualitative agreement between the SCTS approach and
the TDSE result. Indeed, the SCTS model underestimates the
width of the momentum distribution.

In Fig. 2(b) we compare the SCTSQI model with the
TDSE. In our SCTSQI simulations we have used N = 50,
xmax = 500 a.u., and xb = 70 a.u. We note that in the SCTSQI
approach, as well as in the SCTS model, the convergence
of the electron momentum distributions must be achieved
with respect to both the size of the bin and the number of
trajectories. In order to achieve convergence of the momentum
distribution, the bin size was chosen to be 1.5 × 10−4 a.u.,
and np = 106 trajectories were launched at every time step of
the TDSE propagation. We note that in the mask method it
is difficult to achieve full convergence of the TDSE momen-
tum distribution for small momenta. The distribution in the
vicinity of kx = 0 is formed by the slow parts of the electron
wave packet. A long propagation time is needed in order to let
these parts reach the absorbing mask and, therefore, to obtain
converged distribution for small kx. Thus we do not consider
the region of small kx when comparing the SCTSQI model
with the TDSE. It is clearly seen from Fig. 2(b) that for |kx| �
0.15 a.u. the SCTSQI model provides quantitative agreement
with a fully quantum-mechanical result. This applies to both
the width of the momentum distribution and the positions
of the interference maxima (minima). The small remaining
discrepancy in the heights of some of the interference maxima
is caused by the fact that, similar to the SCTS, the SCTSQI
model does not account for the preexponential factor of the
semiclassical matrix element [30].

In Fig. 2(c) we present the photoelectron energy spectra
obtained from the SCTS, the solution of the TDSE, and
the present SCTSQI model. It is seen that the SCTSQI and
the TDSE spectra are almost identical, while the spectrum
predicted by the SCTS model falls off too rapidly with the
increase of the electron energy. This is a direct consequence
of the fact that the SCTS model underestimates the width of
the electron momentum distribution [see Fig. 2(a)].

In order to further test the SCTSQI model, we calculate
the electron momentum distributions for different positions
of the mask xb and fixed xmax of the computational box [see
Fig. 3(a)]. The distributions corresponding to different values
of xb are in good quantitative agreement with each other. The
same is also true for momentum distributions obtained for
fixed xb and different values of xmax [see Fig. 3(b)]. Here, we
have used the two values xmax = 500 a.u. and xmax = 200 a.u.
It should be stressed that it is impossible to obtain accurate
electron momentum distributions for the small value xmax =
200 a.u. using the mask method. We also note that for the 1D
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FIG. 3. The outcomes of the SCTSQI model for different internal
boundaries of the absorbing mask and lengths of the computational
box. The distributions are normalized to the peak values. (a) The
one-dimensional momentum distributions calculated within the SCT-
SQI model for the absorbing mask beginning at xb = 50 a.u. (thick
light blue curve) and xb = 100 a.u. (dashed dark green curve). The
parameters are the same as in Fig. 1(b), and the size of the compu-
tational box is xmax = 500 a.u. (b) The one-dimensional momentum
distributions obtained from the SCTSQI model for xmax = 500 a.u.
(thick light blue curve) and xmax = 200 a.u. (dashed dark green
curve). The parameters are the same as in Fig. 1(b). The absorbing
mask begins at xb = 50 a.u.

soft-core Coulomb potential used in this work, the smallest
allowed xb should exceed 30–40 a.u., to be outside of the re-
gion where the bound-state wave function is localized. Indeed,
due to the large number of time steps, even the absorption
of a small fraction of the bound-state wave function at each
step will result in a severe distortion of the final momentum
distribution.

Finally, we check how important is the phase of the factor
G(x, px, t ) in Eq. (24). To this end, in Fig. 4 we compare
the photoelectron momentum distribution calculated using the
formula

R(kx ) =
∣∣∣∣∣∣

NT∑
m=1

nkx∑
j=1

∣∣G(
tm
0 , x j

0, pj
x,0

)∣∣ exp
[
i
0

(
tm
0 , x j

0, pj
x,0

)]∣∣∣∣∣∣
2

,

(25)

instead of Eq. (24). We find that neglecting the phase of the
Gabor transform is severe: The SCTSQI distribution cannot
even be qualitatively reproduced when using Eq. (25). This
result could be expected. Indeed, the factor G(x, px, t ) con-
tains all the information about the quantum dynamics of the
absorbed part of the wave packet prior to its conversion to
the ensemble of classical trajectories. In a sense the Ipt0 term
in the SCTS phase [see Eq. (11)] plays the role of the phase
G(t, x, px ) of the Gabor transform in Eq. (24).

We also study the role of the maximal allowed initial
momentum px,max. To this end, we perform the SCTSQI
simulations for px,max = 1.0 a.u. and px,max = 0.5 a.u. [see
Fig. 4(b)]. This should be compared with px,max = 2.0 a.u.
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FIG. 4. (a) The photoelectron momentum distributions obtained
from the SCTSQI model (thick light blue curve) and using Eq. (25),
i.e., neglecting the phase of the Gabor transform (dashed dark green
curve). The parameters are the same as in Figs. 1(b), 2, and 3. The
size of the computational box is xmax = 500 a.u., and the absorbing
mask begins at xb = 50 a.u. The distributions are normalized to
the peak values. (b) The one-dimensional momentum distributions
obtained from the SCTSQI model for px,max = 1.0 a.u. (thick light
blue curve) and px,max = 0.5 a.u. (dashed dark green curve). The thin
magenta curve shows the result of the SCTS model. The parameters
are the same as in Figs. 1(b), 2, and 3. The distributions calculated
within the SCTSQI model are normalized to the peak values, whereas
the one obtained from the SCTS model is normalized to the value at
kx = 0.35 a.u. for visual convenience.

used above. It is seen that the width of the photoelectron
momentum distribution decreases with decreasing px,max.
However, reducing the D1 and D2 domains in the px direction
does not make the SCTSQI approach coincide with the SCTS
model [see Fig. 4(b)]. This result could be expected. Indeed,
electron trajectories start at different points in the SCTSQI and
the SCTS models. The SCTS model relies on an expression
for the tunnel exit point, whereas in the SCTSQI model every
trajectory can start at any point of space in the absorbing
regions. Figures 4(a) and 4(b) indicate that the phase of the
Gabor transform and the maximal allowed initial momentum
are equally important for reproducing of the TDSE result.

As other trajectory-based approaches, our SCTSQI model
can help to illustrate the physical mechanisms underlying the
strong-field process under investigation in terms of classical
trajectories. In order to illustrate this point, we analyze the
formation of the maximum of electron momentum distribution
at kx = 0.35 a.u. [see Figs. 2(a) and 2(b)]. We note that
the SCTS model reproduces the position and the width of
this peak, but not its relative height. First, we identify the
trajectories leading to this final momentum in accord with the
SCTSQI model. The analysis reveals that there are four main
groups of these trajectories. In Fig. 5 we show one typical
trajectory from each group (thick curves). The SCTS model
also predicts four different groups of trajectories leading to
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FIG. 5. Four characteristic electron trajectories leading from the
SCTSQI and the SCTS models to the same final momentum kx =
0.35 a.u. The parameters are the same as in Figs. 1(b), 2, and 3. The
thick curves show the trajectories predicted by the SCTSQI model.
The thin curves correspond to the trajectories obtained within the
SCTS model. The horizontal dotted lines depict the boundaries of
the absorbing regions.

kx = 0.35 a.u. The corresponding characteristic trajectories
are shown in Fig. 5 by thin curves. We note that the SCTS
trajectories start closer to the origin and at earlier times
than the trajectories in the SCTSQI model. This is easy to
understand, since classical trajectories in the SCTSQI model
can start only within the absorbing regions, i.e., for |x| > xb,
and it takes some time for the ionized part of the electron
wave function to reach these regions. It is seen from Fig. 5 that
the characteristic trajectories are different in the two models.
In the SCTSQI model the initial conditions for the electron
trajectories are determined from the solution of the TDSE.
Therefore, we can expect that the SCTSQI model provides
a more accurate trajectory-based picture of the formation of
the electron momentum distribution than the SCTS model.
This advantage of the SCTSQI approach should be used in the
future for the analysis of more complex strong-field processes.

We believe that the SCTSQI model can also be applied
to rescattering-induced processes, i.e., high-order ATI, HHG,
and NSDI. Knowing the Gabor transform and the phases of
the classical trajectories, we can reconstruct the electron wave
function in both coordinate and momentum representation
not only at t → ∞ [see Eq. (24)], but at any time t . This
wave function can be used for calculation of the elastic
scattering of the electron wave packet, which is formed in an
ionization process, on the parent ion, i.e., for description of
the high-order ATI. Alternatively, it can be used, after adding
the bound-state wave function, to calculate the expectation
values of the electron dipole moment, velocity, or acceleration
and, therefore, it allows us to obtain the HHG spectra. The
application of the SCTSQI model to the NSDI process is more
involved, since it requires solution of the two-electron TDSE,
although in a smaller area of space compared to the fully
quantum approach.

Finally, we discuss the computational performance of the
SCTSQI approach. It should be noted that in the 1D case the

SCTSQI model is computationally more expensive than the
numerical solution of the TDSE. This is easy to understand
taking into account that at every time step the SCTSQI model
requires calculation of a number of Gabor transforms, as well
as the time propagation of a large ensemble of classical trajec-
tories. The latter is the performance bottleneck of the method.
In the present 1D implementation of the SCTSQI model we
use about 2 × 1010 trajectories in total. This estimate is done
based on the number of time steps needed for the propagation
of the TDSE and amount of trajectories launched at every time
step.

Nevertheless, we can expect that for the two-dimensional
(2D) and three-dimensional (3D) cases the computational
complexity of the SCTSQI model will not be higher than the
one of the numerical solution of the TDSE. Indeed, for higher
dimensionalities the computational costs of the solution of the
TDSE increase dramatically. We note that in our SCTS model
these costs can be substantially reduced using a smaller com-
putational box compared to the one that is typically needed for
solution of the TDSE. On the other hand, computational loads
required for integration of Newton’s equation of motion are
comparable in the 1D, 2D, and 3D cases. Therefore, for higher
dimensionalities numerical costs needed for calculation of
the ensemble of classical trajectories become less important.
In addition to this, an approach similar to the one used in
the 1D case can be applied for calculation of the Gabor
transform for higher dimensionalities: The Gabor transform
can be first calculated on a sparse grid, and its value at any
intermediate point is found using linear interpolation. We also
note that the number of trajectories required for convergence
of electron momentum distributions depends on the size of the
bin, observable of interest, and the method used for sampling
of initial conditions.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have developed a trajectory-based ap-
proach to strong-field ionization: the semiclassical two-step
model with quantum input. In the SCTSQI model every
trajectory is associated with the SCTS phase and, therefore,
the SCTSQI model allows us to describe quantum interference
and account for the ionic potential beyond the semiclassical
perturbation theory. Furthermore, the SCTSQI model corrects
the inaccuracies of the SCTS model in treating the tunneling
step. This has been achieved by the numerical solution of
the TDSE with absorbing boundary conditions in a restricted
area of space, applying the Gabor transform to the part of
the wave function that is absorbed at each time step, and
transforming this absorbed part into classical trajectories. The
Gabor transform determines quantum amplitudes assigned
to trajectories of the ensemble. Therefore, in the SCTSQI
model the initial conditions of classical trajectories are gov-
erned by the exact quantum dynamics rather than by the
quasistatic or SFA-based expressions as in other semiclassical
approaches.

We have tested our SCTSQI model by comparing its
predictions with the numerical solution of the 1D TDSE.
We have shown that the SCTSQI model yields quantitative
agreement with the fully quantum results. This is true not
only for the widths of the electron momentum distributions,
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but also for the positions of the interference maxima and
minima. The model can be straightforwardly extended to the
three-dimensional case. Most importantly, the SCTSQI model
circumvents the nontrivial problem of choosing the initial
conditions for classical trajectories. This makes the SCTSQI
model extremely useful for study of strong-field ionization of
molecules.
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Paulus, and H. Walther, Above-threshold ionization: From clas-
sical features to quantum effects, Adv. At. Mol. Opt. Phys. 48,
35 (2002).
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Abstract. What is the nature of tunnelling? This yet unanswered question is as pertinent today as it was
at the dawn of quantum mechanics. This article presents a cross section of current perspectives on the
interpretation, computational modelling, and numerical investigation of tunnelling processes in attosecond
physics as debated in the Quantum Battles in Attoscience virtual workshop 2020.

1 Introduction

The discovery of the quantum tunnelling phenomenon
almost 100 years ago has not only opened up many
new avenues and applications. It has also kept quantum
physics researchers busy since then, trying to define the
temporal resolution of the process [1,2]. Early exper-
iments were focused on photons tunnelling through
potential barriers, such as Ref. [3] for example. But
with the advent of attosecond science [4] the question
“Does tunnelling take time, and if yes, how much?” has
gained a lot of new interest, since electron dynamics
often include quantum tunnelling portions, be that in
biological processes such as photosynthesis [5] or charge
transport in semiconductors [6], tunnelling ionisation
as the first step for high-order harmonic generation
(HHG) spectroscopy [7], photoelectron holography [8],
laser induced electron diffraction (LIED) [9] or many
more.

The temporal resolution of quantum tunnelling is still
heavily debated [10–13] and thus presented an inter-
esting topic for a debate at the Quantum Battles in
Attoscience virtual workshop 2020 [14]. The aim of the
Battle sessions was “an open debate on a contentious
topic involving several early career researchers (‘com-
batants’) and the entire audience of attendees” [15]. To
that effect, the combatants prepared a scaffolding struc-
ture of the debate on “tunnelling”, defining three main
topics: (a) Physical observables and typical experiments
(presented in Sect. 2 of this article), (b) Nature of Tun-
nelling (see Sect. 3), and (c) Theoretical approaches to
quantum tunnelling time (in Sect. 4). Each topic was
introduced with an overview presentation, followed by a

a e-mail: c.hofmann@ucl.ac.uk (corresponding author)

free debate among all combatants, moderated by Prof.
Jonathan Tennyson, UCL, and included both questions
among the combatants as well as live audience ques-
tions. The result was a highly interactive and lively
debate [16].

This perspective article offers a text-form of the live
debate [17], supplemented with additional references
and explanations.

2 Physical observables and typical
experiments

The guiding questions for this first topic are:

What are physical observables, typical measure-
ments, and what are the characteristic physical sys-
tems under investigation?
What other aspects of these particular systems
influence the interpretation of tunnelling time stud-
ies?

2.1 Overview

When it comes to experiments investigating the tem-
poral resolution of a quantum tunnelling particle, there
are typically two kinds of experiments: (a) Bose–
Einstein-Condensates (BEC) of atoms trapped in opti-
cal lattices, with various manipulations on them to
measure tunnelling from one lattice site to the next
[13,18]. Since the particles in question are entire atoms,
their temporal resolution for the dynamics is in the
range of microseconds. And (b) attosecond angular
streaking (also known as attoclock) type [19–21] exper-
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Fig. 1 Idealised sketch of a wave packet hitting and par-
tially tunnelling through a potential barrier

iments, a technique developed in strong-field attosec-
ond physics, where electrons tunnel ionise from a bound
state through the potential barrier which is created by
the interaction of the strong laser field with the binding
Coulomb potential of atoms. These are on the attosec-
ond regime since electrons are tunnelling, and the main
focus of the here following debate.

On a fundamental level, what we are interested in
is the temporal resolution of a wave packet hitting a
potential barrier, and then a part of that wave packet
tunnelling through, such as schematically illustrated in
Fig. 1. However, this exactly creates several challenges
in trying to time this process compared to other timings
of wave packets, such as for example group delay in pho-
tonics. The peak of the wave packet is not conserved,
since the incoming (or bound state) wave packet is split
into a reflected and a transmitted part. The potential
barrier essentially acts as an energy-dependent filter,
such that the spectra of the two resulting wave pack-
ets are significantly different [10]. A wave packet also
always corresponds to a probability distribution, and in
consequence it is difficult to define a clear starting and
ending (or entrance and exit) point, more on that in
Sect. 3. Furthermore, in strong-field attoscience scenar-
ios we are tunnel ionising from a bound state, where of
course parts of the wave function even in its field-free
ground state always are “under” the barrier, without
any tunnelling occurring. Additionally, approaches such
as Wigner-like, scattering and resonance phase times
[22] which are commonly applied to single-photon ion-
isation [23] are not applicable either, again because of
the chirped propagation of the electron wave packet and
the energy filtering of the potential barrier. While we
are on the topic of potential barriers, it is also worth-
while noting that this classical picture of the potential
barrier only emerges if the laser field is treated in the
length gauge [24–27].

The physical observable for measurements (and cal-
culations often, too) of strong-field tunnel ionisation are
momentum distributions of photoelectrons [20,21,28]
or momenta of atoms [13,18]. Momentum is of course
a standard quantum mechanical observable correspond-
ing to a unitary operator, whereas time itself is a param-
eter of the Schrödinger equation and thus not an observ-
able as such. Therefore, a relation between measured
(or calculated) momenta and the timing of the tun-
nelling process needs to be established through theoret-
ical understanding of the quantum tunnelling process.

In the experiment by Fortun and co-workers a rubid-
ium BEC is oscillating in an optical lattice. In a pump-
probe-type approach, the lattice is turned off at differ-
ent intervals after the initiation of the oscillation and
the instantaneous momentum of the atoms carried them
flying towards a position-sensitive detector. The tun-
nelled wave packets appeared delayed with respect to
the reflected wave packets [18]. In the experiment by
Ramos and co-workers, a quantum simulation of the
Larmor clock [29–31], one of the well-known theoreti-
cal approaches to predicting the tunnelling time [32],
was realised causing precession of the spin of the rubid-
ium atoms while traversing a potential barrier. This
spin precession was then mapped onto different states
according to the angle of rotation and separated by a
Stern–Gerlach measurement [13].

In attoscience experiments utilising the attoclock
method [33,34], the rotation of the nearly circularly
polarised vector potential A mimics the hand of a clock.
The path of a photoelectron after tunnel ionisation is
dominated by the interaction with the laser field [35],
and thus neglecting all other corrections and perturba-
tions, the final asymptotic momentum pf is determined
by the vector potential at the time when it first exits the
potential barrier and enters the continuum t0, through
the conservation of canonical momentum

pf = p0 − A(t0), (1)

where p0 denotes a possible initial momentum. Hence,
the final momentum angle acts as a clock for the exit
moment in time. However, this angle to time map-
ping is subject to several corrections, some easy to
describe and include in calculations, others more elusive
to quantify and thus the topic of ongoing research. A
non-exhaustive list of corrections, approximations, and
other issues include: the Coulomb force of the parent ion
induces an angular shift [11,21,36,37]; the ellipticity,
pulse envelope, pulse duration, and carrier-envelope-
offset phase are wave form parameters which affect
the photoelectron trajectories; and depletion mixes in
with pulse duration and the intensity of the applied
field [38,39] for topics which mostly have been dealt
with in great detail and comparable results; the exper-
iment does not have access to any “start” signal of
the tunnelling process, only the exit point [10,28]; non-
adiabatic effects influence the ionisation rate, energy at
tunnel exit, initial momentum p0 distribution, and the
location of said tunnel exit itself [39–43]; multi-electron-
effects are ignored in most calculations [44–48]; models
including non-classical characteristics of the trajectory
which can be compared against experimental data are
still being developed [20,38,49]; and the orbital angu-
lar momentum of the bound state has an effect on the
strong-field ionisation [50–53] for issues which are more
elusive (although this categorisation is not definite).

There is still a lot of work necessary to properly disen-
tangle the different contributions which lead to various
angular shifts, sketched in Fig. 2 of the measured Photo-
electron Momentum Distribution (PMD), until we can
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Fig. 2 Illustration of photoelectron momentum distribu-
tion for ellipticity 0.87, clockwise helicity, projected to the
plane of polarisation. Single Classical Trajectory (SCT)
models assuming instantaneous tunnelling predict an angle
offset away from the pure −A(tmax), but the measured angle
offset might be even larger than that. Adapted from [10]

Fig. 3 Time-dependent Schrödinger equation (TDSE) cal-
culation of photoelectron momentum distributions for
hydrogen ionisation. Left: idealised attoclock with a sin-
gle cycle pulse and circular polarisation leads to a unique
final momentum probability distribution peak. Pulse dura-
tion ≈ 1.6 fs FWHM, peak intensity 0.86 × 1014 W/cm2,
wavelength 800 nm, with clockwise helicity. Right: A multi-
cycle pulse yields two main blobs with Above Threshold Ion-
isation (ATI) rings from the inter-cycle-interference. Pulse
duration ≈ 6 fs FWHM, peak intensity 1.5 × 1014 W/cm2,
wavelength 770 nm, with clockwise helicity. Adapted from
[11,54]

be sure of the remaining angle offset and it’s relation
to tunnelling time.

2.2 Debate

– Figure 3 exemplifies the pulse duration and wave
form dependence, as well as an energy dependence
between the different ATI rings in the long pulse
case, which show different angular maxima [55–

57]. This raises concerns about the validity of one
single time (rather than a distribution of times)
extracted typically from data, thus averaging over
the energy dependence. In attoclock experiments,
the carrier-envelope-offset phase (CEP) was not sta-
bilised [20,21,28]. Additionally, the orientation of
the polarisation ellipse in the lab frame was cho-
sen such that the observable of interest (angular
shift mostly parallel to the major axis of polari-
sation) was orthogonal to the direction with the
biggest experimental noise (along the gas jet direc-
tion, thus chosen for the minor axis of polarisation)
[58]. Both of these effects wash out ATI interfer-
ence. For the CEP influence in particular, the inter-
play between ellipticity and pulse duration is crit-
ical. For the largest field strength to be following
the polarisation ellipse (desired in attoclock experi-
ments [10]) rather than the CEP [33,34], the pulse
envelope must be long enough relative to the ellip-
ticity reducing the field strength within a quarter
cycle. Furthermore, ATI rings result from interfer-
ence created by many laser optical cycles, highlight-
ing the difficulty of defining a “single time”, or even
relative time intervals with respect to local maxima
of the field strength or other possible references.

– Most often, tunnelling time calculations tend to use
only a single peak point in the momentum distribu-
tion [12,38,59]. However, based on this discussion
it would seem more appropriate to extract the tun-
nelling time from the full momentum distribution,
which contains much more information regarding
the tunnelling process [32,39]. We note that such
work has been carried out in a recent publication
[60], which assesses the whole momentum distribu-
tion instead of just a single offset angle.

– An audience question is brought in: How is the peak
of the PMD determined precisely, since the maxi-
mum in a 2D distribution is not the same as the
maximum in the 1D angular distribution? Of course
the strictly linear angle-time relationship is only
exact for circular polarisation. For any other polari-
sation, the elliptical geometry introduces corrections
and needs to be taken into consideration [61]. These
effects as well as the influence of integrating over
the radial component in the 2D distribution were
double-checked against. The resulting shifts in the
extracted values were smaller than or of the order of
the reported error bars for experimental data. Nev-
ertheless, it is important to keep in mind that dif-
ferent coordinate system transforms and peak angle
extraction methods lead to significant shifts in the
extracted angle and thus the interpreted delay time
[62]. Regarding the third component, the laser prop-
agation direction, so far no significant difference has
been found between a projection to or a cut along
the polarisation plane. Of course this requires that
no extra physics becomes important along this third
component, for example the influence of the mag-
netic field must be negligible [26,63].
Of course, an energy-resolved angular distribution
would avoid the integration over at least one of
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Fig. 4 A central conundrum of quantum tunnelling: Wave
functions tunnel naturally but have no clear tunnel entry
or exit. Real valued trajectories allow for a clearly defined
tunnel entry and exit criterion but can not tunnel without
excursions into the complex plane. Which of the two per-
spectives is the better choice?

the components and thus make the peak search less
dependent on geometry and coordinate choices.

3 Nature of tunnelling

The guiding questions for the second topic are:

What is the nature of tunnelling at the classi-
cal/quantum intersection?
What is the “beginning” and “end” of tunnelling,
and how do we define it?
What are classical or quantum trajectories?

3.1 Overview

Quantum tunnelling is a wave phenomenon, and the
time-dependent Schrödinger equation (TDSE) is an
equation for the probability amplitude wave (wave func-
tion). But this description makes it difficult to define
where and when tunnelling exactly starts. Tunnelling
itself is natural in quantum mechanics, it is only when
we look at it from a classical perspective that there
is a “forbidden” region in the potential barrier. In the
classical domain, trajectories are well defined in space
and time, but can they tunnel? The semiclassical mod-
els typically use classical trajectories to describe the
motion of an electron after it has been released from an
atom, usually by tunnelling ionisation.

Is a synthesis of these two worlds like the sketch in
Fig. 4, aiming to retain the quantum physics behaviour
with the clarity of trajectories, possible? It is clear that
such a synthesis is not a simple task. Indeed, in order
to calculate the classical trajectory, i.e., to integrate
Newton’s equation of motion, both starting point and
the initial velocity are needed. However, Heisenberg’s
uncertainty principle imposes a fundamental limit to
the accuracy with which the values of the position and
momentum, as well as of any other canonically conju-
gate variables, can be simultaneously determined. Nev-

ertheless, the application of the quasiprobability dis-
tribution allows to obtain information about both the
position and momentum from the wave function. The
most widely known examples of quasiprobability dis-
tributions are the Wigner function and Husimi distri-
bution. We note that the Wigner function has already
been used for description of strong-field processes, see,
e.g., Refs. [64–66]. However, to the best of our knowl-
edge, the Wigner function has not yet been applied to
the combination of the quantum and trajectory-based
description in strong-field tunnel ionisation, although
a similar method has been proposed for the case of
attosecond pulse single-photon ionisation with subse-
quent streaking of the photoelectron wave function [67].
A recent and successful attempt of such combination
was made in Ref. [49] using Gabor transform.

Doing so still begs the question, which quantity best
characterises the onset of tunnelling?

3.2 Debate

– Quantum particle description is necessary for tun-
nelling to occur in the first place, but the potential
barrier defines local properties which are significant
for classical systems. So we need a combination of
both, quantum tunnelling feature with the classi-
cal flavour of understanding if we aim for any kind
of temporal resolution of a tunnelling process. The
challenge is then to find one single picture for the
entire process. Instead of relying on real-space tra-
jectories, including complex space and time enables
the tunnelling phenomenon, resulting in a quantum
trajectory with clearly defined entry and exit to the
barrier [68], as well as corresponding times (more on
this method in Sect. 4).
On the other hand, measurements can always only
find real observables, thus fully complex calcula-
tions must find their way to the real axis some-
how, where the propagation of a photoelectron wave
packet is very well described by classical methods
[69]. But since the experimental observables typi-
cally are momenta, purely quantum models which
operate in complex space and time can still be used
for the purpose of comparison, as long as they can
predict a final momentum distribution.

– One huge assumption in experimental approaches
based on the “attoclock” principle is the “starting
time”, relative to which the tunnelling delay is cal-
culated. This is typically chosen to be the maxi-
mum of the electric field, since that moment corre-
sponds to the highest probability of tunnelling [10].
However, this assumption might be missing out on
half of the effect [41], and the tunnelling process in
strong-field ionisation might be a symmetric prob-
lem relative to the (local) field maximum [70]. Publi-
cations which attempted to identify a physical start-
ing point have found other values, typically before
the maximum is reached [41,42,71,72].

– If we consider fully quantum models which describe
both the tunnelling transition from bound to ionised
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state and the propagation afterwards in one, it
becomes important to distinguish tunnelling from
over-the-barrier (OBI) ionisation. In experimen-
tal approaches it is generally not possible to a-
posteriori separate these two contributions to the
total momentum distribution, and the same limita-
tion is also true for numerical solutions of the TDSE
[73].
However, in theoretical calculations based on trajec-
tories, these two processes can easily be differenti-
ated. The semiclassical models naturally distinguish
between the tunnelling through a potential barrier
and the over-barrier-ionisation. Indeed, when the
field strength is so high that the potential barrier
formed by the laser field and the ionic potential is
suppressed, it is impossible to find the starting point
of the electron trajectory using field direction model
(see, e.g., Refs. [74–77]) or the separation of the
static tunnelling problem in parabolic coordinates
[78]. In this case it is usually assumed that the elec-
tron starts at the top of the suppressed potential
barrier, and the difference between the ionisation
potential and the energy at the top of the barrier
ΔE = −Ip −Vmax is transferred to the initial longi-
tudinal velocity of the departing electron:

v0,‖ =
√

2ΔE. (2)

Non-adiabatic effects, i.e. effects beyond the qua-
sistatic approximation which are due to the time-
dependent changes in the strong field, also play into
these definitions. For example, at which energy or
distance can a photoelectron exit the potential bar-
rier [43,79] or when does the onset of OBI occur?
The so-called backpropagation method [39,42,43] is
one hybrid approach which utilises the full quantum
power of the TDSE for the tunnel ionisation but
then retroactively adds the power of classical tra-
jectories to also distinguish between OBI and tun-
nelling (more on this method in Sect. 4).

– An audience member suggests that localised posi-
tion measurements would be able to distinguish
tunnelling and OBI, since only OBI would be
detectable.
This gedanken experiment however would require
a detector positioned at the atomic potential bar-
rier, which is unfeasible in any kind of experimen-
tal setup since detectors require some time-of-flight
information and are placed a significant distance
away from the interaction region, of the order of sev-
eral centimetres at least [58,80]. There have been
some theoretical studies using virtual detectors in
combination with TDSE solutions [71,72], but those
again can not distinguish of course. This is because
both under-the-barrier and over-the-barrier trans-
mission causes a probability flux of the wave func-
tion, which a hypothetical detector would be able to
pick up without being able to distinguish between
those two types of transmission. This remains the
case also in different tunnelling scenarios such as in

a tunnelling junction where a macroscopic, position
resolving detector might be feasible.

– The last point for this topic is concerning represen-
tation of a quantum wave function by using tra-
jectories. Fundamentally, we are trying to study the
behaviour of a wave function doing something inter-
esting. In the most simple trajectory approach, the
entire wave function is represented by a single sim-
plified wave packet (i.e. a Gaussian) with the associ-
ated trajectory of its wave packet peak mapping the
motion of the expectation value of the wave function
(similar to a group velocity approach) [81]. How-
ever, this approach can not describe a wave packet
being split into a reflected and a transmitted part,
and thus would either always remain bound or the
bound state is fully depleted. Trajectories represent-
ing a skewed wave packet [82] would present a more
generalised version.
Even more accurate are descriptions that employ a
large ensemble of trajectories following the proba-
bility distribution of the underlying wave function
[83].
The question is then: Will an ensemble of (classi-
cal or quantum) trajectories not only represent an
instantaneous probability distribution derived from
a wave function, but also its dynamics over time?
This question was addressed in Ref. [84] that stud-
ies the validity of the two-step semiclassical model
disregarding quantum interference but accounting
for the Coulomb field for strong-field ionisation.
The Ehrenfest theorem [69] (see, e.g., Ref. [85] for
a textbook treatment), which establishes quantum
mechanical analogues of classical Hamiltonian equa-
tions, was applied in Ref. [84]. Furthermore, the
analysis of Ref. [84] is based on a quantitative
comparison of the electron momentum distributions
obtained within the two-step model and by numeri-
cal solution of the TDSE. Reference [84] introduces
the measure for the deviation of the dynamics of an
ensemble of classical trajectories from the Ehren-
fest’s theorem. This measure is the relative devia-
tion between the force at the average position of the
ensemble of trajectories and the average of the forces
on the ensemble. A correlation was found between
the invalidity of the two-step model and the devia-
tion of the dynamics from the Ehrenfest’s theorem.
The general trends for the applicability of the two-
step model in terms of laser intensity, wavelength,
ellipticity, as well as in terms of the potential prop-
erties are identified in [84]. However, this study is
done in the two-dimensional (2D) case and needs to
be extended to the 3D one.

4 Theoretical approaches to quantum
tunnelling time

The guiding questions for the third and last topic are:
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What are theoretical approaches used to investigate
quantum tunnelling times?
What are their various characteristics, advantages
and disadvantages?

4.1 Overview

For the overview, a brief and non-exhaustive list of dif-
ferent calculation approaches to the tunnelling time are
given. They are categorised with regards to their theo-
retical foundation.

4.1.1 Quantum methods based on time-dependent
Schrödinger equation

First are numerical solutions to TDSE. A common
advantage of all these methods is that they are fully
quantum calculations for the entire process. Further
individual characteristics, advantages and disadvan-
tages can be summarised as follows.

TDSE calculations which employ Coulomb vs Yukawa
potentials [21,38] found that attoclock signal shows a
prominent offset angle with Coulomb binding potential,
while the offset angle vanishes for a Yukawa potential.
This comparison offered an indirect proof of instanta-
neous tunnelling by comparing the results depending
on the two different binding potential of the parent ion.

The numerical saddle-point method [62] uses a
trajectory-free language and establishes a connection
between the final momentum of the photoelectron and
the numerical saddle-point time for the full Hamilto-
nian including the Coulomb potential. It supports the
conclusion of instantaneous tunnelling. However, this
method is gauge dependent.

The functional derivative method [70] investigates
the instantaneous ionisation probability as a functional
derivative of the total ionisation with respect to the
wave form of the ionising field, but does not map
directly to any experimental observables. It is gauge
independent, and found vanishing delay (or vanishing
delay asymmetry with respect to the local peak in the
field).

Bohmian mechanics [86] present a mapping from the
quantum world to the trajectory language. However,
the calculation is guided by a pilot wave not pertain-
ing solely to the (eventually) ionised part of the wave
packet near the tunnel exit, thus potentially giving false
tunnelling information. A separation of the (eventually)
ionised part and bound part of the wave packet near the
tunnel exit is, unfortunately, impossible, due to quan-
tum nonlocality.

4.1.2 Quantum methods based on strong-field
approximation

Strong-field-approximation (SFA) [87–89] based quan-
tum methods describe ionisation as a transition from
an initial state unaffected by the laser field to a Volkov
state, i.e., the free electron wave function in an elec-
tromagnetic field. Therefore, the SFA disregards the

Fig. 5 Separation of space into inner (close to parent ion)
and outer (far away) regions of space. Adapted from [36]

Fig. 6 Illustration of rescattering and transmitting quan-
tum trajectories under the potential barrier. Adapted from
[90]

intermediate bound states and the ionic potential (e.g.,
Coulomb interaction) in the final state. Presently, sev-
eral SFA-based quantum approaches are developed.
Typically, these approaches decide which force domi-
nates the trajectory of a photoelectron based on its
position in space and use the corresponding approxima-
tions. This separation and reduction of the acting forces
allows for analytic calculations. The imaginary part of
the saddle-point time in SFA calculations relates to the
inverse tunnelling rate, while the real part in these mod-
els is often taken as the tunnel exit time.

The analytic R-Matrix (ARM) method [36,38] sep-
arates space into an inner region (Coulomb & Laser
field considered) and an outer region (Coulomb field
neglected, eikonal-Volkov approximation), as illustrated
in Fig. 5. The disadvantage of this method is the chal-
lenge of choosing proper integration contours for each
trajectory.

The under-barrier recollision theory [90] specifically
includes interference between under-barrier rescattered
and direct trajectories, as shown in Fig. 6. This leads to
a shift in the momentum wave packet peak, which can
be interpreted as a delay. However, this method ignores
Coulomb corrections.

4.1.3 Hybrid quantum-classical method

The backpropagation method [39,42,43] is a hybrid
quantum-classical approach offering a unique perspec-
tive on the tunnelling process. It combines a fully
quantum calculation of the ionisation process with for-
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Fig. 7 Concept of the backpropagation method

ward propagation utilising TDSE solution, followed
by a transcription of the resulting ionised quantum
wave packet into classical trajectories, and a subsequent
propagation of the trajectories backward in time, see
Fig. 7 for a sketch. Another variant of the backpropaga-
tion method would be putting a sphere of virtual detec-
tors [91–96] around the target, where the flux is con-
verted into classical trajectories during the laser pulse
on the fly [53,97].

Why backpropagation? Firstly, as everyone agrees,
tunnelling is a purely quantum process. Introducing a
tunnelling barrier into the description of tunnelling ion-
isation, however, brings in clearly classical elements into
the picture. Namely, tunnelling is now depicted with
local tunnelling exit positions and momenta, which calls
for a classical formulation. Secondly, due to quantum
nonlocality, the portion of the wave packet that would
eventually be freed and the portion that would finally
remain bound can not be separated during the tun-
nelling process. A separation is only possible in the far
field, when these two portions are spatially detached.
These are exactly the design philosophy of the back-
propagation method, a hybridisation of quantum for-
ward and classical backward propagation. It combines
the advantages of the quantum and classical methods
by offering the capability to include the full Hamilto-
nian and quantum tunnelling dynamics while retaining
the local information from the classical trajectories. It
also naturally includes nonadiabatic tunnelling effects,
automatically remove the offset angle from Coulomb
effects, and retrieves the electron characteristics at the
tunnel exit.

The classical backpropagating trajectories may be
stopped whenever a certain condition is met, which
defines the tunnel exit, yielding highly differential infor-
mation of the tunnel exit. In this manner, the back-
propagation method may act as a common ground to
compare different definitions of tunnelling. It was found
that a vanishing tunnelling time results if the tunnel
exit is defined in the momentum space when the veloc-
ity of the trajectory vanishes in the instantaneous field
direction (the velocity criterion), while defining the tun-
nel exit as a certain position in the coordinate space
(the position criterion) gives rise to a finite tunnelling
time [39,43]. Different definitions of the tunnel exit were
thus believed to be the origin of the tunnelling time
debate. It was further argued that the position crite-
rion leads to inconsistencies and difficulties and thus
the velocity criterion is favoured as the definition of
the tunnel exit, and the tunnelling time delay should
thus vanish [39,43].

The backpropagation method has further enabled a
study of the tunnelling time delay induced by orbital
deformation [53] and a subcycle time resolution of
the linear laser momentum transfer, where a cou-
pling between the nondipole and nonadibatic tunnelling
effects was found [97].

4.1.4 Semiclassical methods

Semiclassical methods apply classical trajectories to
describe the motion of an electron after it has been
released from an atom or molecule by the laser pulse.
The two-step [98–100] and the three-step [101,102]
models are the most widely known examples of the
semiclassical approaches. These models do not account
for the effect of the ionic potential on the electron
motion in the continuum. Presently there are many
trajectory-based models that do account for the ionic
potential in the classical equations of motion. Among
these are: Trajectory-based Coulomb SFA (TCSFA)
[103,104], Quantum trajectory Monte-Carlo method
(QTMC) [105], Coulomb quantum orbit strong-field
approximation (CQSFA) [106–111], semiclassical two-
step model (SCTS) [112], Quasistatic Wigner method
[20], etc. The three-step model using complex classical
trajectories [68] and the classical Keldysh-Rutherford
model [37] are closely related to this group of models.

Using a purely classical description of the electron
motion it is not possible to describe the quantum inter-
ference effect in the photoelectron momentum distribu-
tions and energy spectra. Recently substantial progress
has been achieved along these lines. Along with some
other approaches, the TCSFA, QTMC, CQSFA, and
SCTS models account for interference effects. In these
approaches every classical trajectory is assigned to a
certain phase, and the contributions of different trajec-
tories leading to a given final electron momentum are
added coherently.

The TCSFA extends the well-known Coulomb-
corrected strong-field approximation (CCSFA) [113,
114] by treating the laser field and the Coulomb force
acting on the electron from the ion on an equal foot-
ing. The TCSFA accounts for the Coulomb potential
in the phase of every trajectory within the semiclassi-
cal perturbation theory. The same approach is used in
the QTMC model. In contrast to this, the SCTS and
the CQSFA models account for the Coulomb potential
beyond the semiclassical perturbation theory.

The quasistatic Wigner method [20] employs the con-
cept of the dominant quantum path. Using the space-
time propagator, the quasistatic Wigner method con-
siders the propagation of the electron wave function
that originates from the initial bound state in the clas-
sically forbidden domain. The quasistatic description
of the laser field is used in Ref. [20]. The phase of the
quantum mechanical propagator determines the most
dominant path along the tunnel channel, and therefore,
determines the Wigner trajectory. The Wigner trajec-
tory is merged with the corresponding classical trajec-
tory in the continuum, see Ref. [20]. In this way the
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Fig. 8 Schematic depiction of trajectories in complex
space surrounding the singularity of the 1D radial Coulomb
potential. Note the repulsive nature of the potential in the
negative half of the plane. Orbiting trajectories result from
propagation in complex time prior to ionisation [68]

quasistatic Wigner method determines the initial con-
ditions for the classical trajectory. It should be empha-
sised that the initial conditions include not only an ini-
tial momentum, but also a time delay. However, this
method reduces the wave packet to a single trajectory.
It should also be noted that the Wigner time is ill-
defined in the tunnelling process [10].

Since real-valued trajectories are not able to describe
tunnel ionisation, the complex-time-and-space model
[68] employs complex trajectories, as illustrated in
Fig. 8. This approach was applied to the HHG process
in Ref. [68]. All components of the three-step model
are described in Ref. [68] within a single consistent tra-
jectory framework. The trajectories are sampled from
an initial Coulomb eigenstate, and the time propaga-
tion is performed using the final value coherent state
propagator (see Ref. [115]). As a result, the model pro-
vides a unified and seamless trajectory description of
the ground state, tunnelling, and collision process. The
model shows quantitative agreement with fully quan-
tum results. However, the contour in the plane of com-
plex time, which is necessary to implement the model,
has to be chosen manually.

4.1.5 Classical methods

And finally, purely classical models are still also devel-
oped and used often. The Keldysh-Rutherford model
[37] applies the famous Rutherford scattering formula
taking the vector potential of the laser pulse as the
asymptotic electron velocity and the Keldysh tunnelling
width as the impact parameter. The model was tested
by comparison of its predictions with the numerical
solution of the TDSE using the hydrogenic potential
and the screened (Yukawa) potential. In the latter case
the action of the Coulomb field was gradually switched
off. The striking similarity between the attoclock offset
angle and the Rutherford scattering angle was revealed
in Ref. [37]. The Keldysh-Rutherford model suggests
that the offset angle has a largely Coulombic origin
[37]. Therefore, the model is questioning the inter-
pretation of this angle in terms of a finite tunnelling

time. However, the Keldysh-Rutherford model com-
pletely neglects nonadiabatic effects, and is also limited
in its validity to short pulse durations and (relatively)
weak intensities which are outside the typical parameter
range of experiments to date. Therefore, some further
work along this direction is needed.

Classical trajectory Monte Carlo (CTMC) methods
[28,45] are the classical cousin of QTMC, and often
employed where interference effects are not of any
key interest. Since the calculations are computationally
cheap compared to TDSE solutions and fewer trajecto-
ries are needed than in QTMC to reach similar statisti-
cal quality, these methods are able to fully include the
ion Coulomb potential together with the laser field dur-
ing the propagation after the tunnel exit, as well as var-
ious non-adiabatic effects [116], certain multi-electron
effects [47] including Stark shift and an induced dipole
in the parent ion [45].

4.2 Debate

– Regarding the complex-time-and-space method [68],
the question is raised how exactly the integration
contour is chosen manually. Every time a trajec-
tory orbits the singularity at the nucleus, there is
a possibility for the quantum trajectory to be emit-
ted from the bound wave packet and leave as part
of the ionisation wave packet. The exact choice for
after how many orbits an ionisation event happens
is done by comparing to the full quantum result, for
sections of initial coordinate space. Observables are
then computed from the resulting trajectories. The
number of loops is a discrete choice and not a fully
tunable parameter. While there is a choice to match
the quantum result, each discrete choice yields sig-
nificantly different results, so the agreement with
TDSE calculations is not entirely by construction.
The interpretation of this choice is not clear yet from
a physical point of view.
When it comes to separating the eventually bound
from the eventually ionised part of the wave packet,
trajectories far from the core in the long time
limit are considered ionised. Searching for condi-
tions (zero momentum for example) along those
eventually ionised trajectories yields two complex
times, labelled as tunnel entry and exit, where the
difference can be interpreted as tunnelling time, see
Fig. 9a. Alternatively, the difference to the field
maximum can be computed, as shown in Fig. 9b.
This may be required to compare the results to
experiments where tunnel entry times may not be
accessible but it does ignore a significant contribu-
tion to the total tunnelling time. As Fig. 9 shows,
the time required for tunnelling is nonzero in both
real and imaginary components. Furthermore, a sin-
gle averaged result may be insufficient to charac-
terise the tunnelling process as the distribution of
times is wide and asymmetric.
Two distinct classical processes are found, and the

123

8. Publications 205



Eur. Phys. J. D          (2021) 75:208 Page 9 of 13   208 

Fig. 9 Tunnelling time distribution extracted from the
complex-time-and-space method for a half cycle pulse, with
wavelength λ = 1033 nm, ionisation potential Ip = 13.6 eV
(hydrogen), intensity I = 1.9 × 1014 W/cm2, resulting in a
Keldysh parameter of γ = 0.6. Brightness encodes probabil-
ity magnitude and colour encodes phase of the trajectory.
Two distinct distributions belonging to two separate classi-
cal processes in the trajectory ensemble are visible in both
plots

two references (entry point or field maximum) for
the tunnelling delay time differ significantly.

– An audience member asks what the effect of excited
states on an attoclock measurement is. This was
dealt with in the [21] study since molecular hydro-
gen had to be split into atomic hydrogen. In their
extended data figures & tables, it is shown how
initial bound states 1s or 2s result in completely
different final momentum distributions. Photoelec-
trons ionised from 2s have much smaller absolute
momenta, their distribution shows a different struc-
ture, and the event is less likely to happen. There-
fore, contributions from different initial states can
be separated.

– Already in Sect. 3, combined approaches which offer
quantum behaviour with trajectory insight have
been identified as beneficial for many strong-field
(tunnelling) phenomena models.
Typically, the SCTS model requires large ensembles

of classical trajectories to resolve fine interference
details. These trajectories are propagated, and their
final momenta are binned in cells in momentum
space. This is often referred to as “shooting method’
[103], although this approach has nothing to do with
the shooting method for solving a boundary value
problem. In contrast to the TCSFA, QTMC, and
SCTS, the CQSFA method finds all the trajectories
corresponding to the given final momentum. This
approach is often called the solution of the “inverse
problem” and it allows to bypass the necessity of
large ensembles of trajectories. However, the solu-
tion of the inverse problem is a non-trivial task,
and, furthermore, is generally less versatile than the
“shooting method”.
Any trajectory-based model requires specification of
initial conditions, i.e., the initial electron velocity
and the starting point of the classical trajectory.
Indeed, these initial conditions are needed to inte-
grate the Newton’s equations of motion. The start-
ing point, i.e., the tunnel exit, is found using the sep-
aration of the tunnelling problem in parabolic coor-
dinates [78]. The Stark shift of the energy level that
has an effect on both the tunnel exit and ionisation
probability was also taken into account in the SCTS.
It is generally considered in the semiclassical models
that the electron departs with zero initial velocity
along the laser polarisation direction v0,‖ = 0 and
an arbitrary initial velocity v0,⊥ in the perpendic-
ular direction. The ionisation times and the initial
transverse velocities are distributed in accord with
the static ionisation rate:

w (t0, v0,⊥) ∼ exp

(
− 2κ3

3F (t0)

)
exp

(
−

κv2
0,⊥

F (t0)

)
(3)

with κ =
√

2Ip. The quasistatic approximation is
used in Eq. (3), i.e., the static field strength F is
replaced by the instantaneous value F (t0). The qua-
sistatic approximation is used in both QTMC and
the SCTS.
We note that many trajectory-based models use the
SFA formulas instead of Eq. (3) to distribute the
initial conditions of classical trajectories, see, e.g.,
Refs. [103,116–119]. This allows to investigate nona-
diabatic effects in above-threshold ionisation and
often leads to a better agreement with the numeri-
cal solution of the TDSE.
Recently, the SFA-based formulas as distributions
of the initial conditions have been validated in a
systematic way [60]. It is found that a combination
of SFA initial conditions with complex weight and
a trajectory model of SCTS provides the best solu-
tion for obtaining the most accurate attoclock sig-
nal [60]. The SCTS model has not been extended to
the over-the-barrier ionisation (barrier-suppression
regime) yet. Such an extension can be easily done
as discussed above, see Eq. (2).
Recently an efficient extension and modification of
the SCTS model was proposed [119]. In its orig-
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inal formulation the SCTS model uses the phase
of the semiclassical matrix element [120–122] (see
Refs. [123,124] for a textbook treatment), but com-
pletely disregards the pre-exponential factor of the
bound-continuum transition matrix element. The
influence of this pre-exponential factor was for the
first time studied in Ref. [119]. The modulus of
the pre-exponential factor corresponds to the map-
ping from initial conditions for electron trajecto-
ries to the components of the final momentum.
It affects the weights of classical trajectories. The
phase of the pre-exponential factor modifies the
interference structures. This phase is known as a
Maslov phase and can be viewed as a case of Gouy’s
phase anomaly, see Ref. [119]. Furthermore, a novel
approach to the inverse problem applying a cluster-
ing algorithm was proposed in [119]. The modified
version of the SCTS demonstrates excellent agree-
ment with numerical solution of the TDSE for both
photoelectron momentum distributions and energy
spectra. It was found that the account for the pre-
exponential factor is crucial for the quantitative
agreement with the TDSE. This novel version of the
SCTS can be applied not only to linearly polarised
laser fields, but also to non-cylindrically-symmetric
ones, e.g., bicircular laser pulses [119].
The recent semiclassical two-step model with quan-
tum input (SCTSQI) [49] is a mixed quantum-
classical approach that combines the SCTS with the
numerical solution of the TDSE. To perform the
synthesis of the trajectory-based approach with the
TDSE, the Gabor transformation of the wave func-
tion Ψ (x, t)

G (x0, px, t) =
1√
2π

∫ ∞

−∞
Ψ(x′, t) exp

[
− (x′ − x0)

2

2δ2
0

]

× exp (−ipxx′) dx′, (4)

was used in the SCTSQI [49]. Here x0 is the point in
the vicinity of which the Gabor transform is calcu-

lated and exp

[
− (x′−x0)

2

2δ2
0

]
is a Gaussian window of

the width δ0. The quantity |G (x0, px, t)|2 describes
the momentum distribution of the electron near the
point x0 at time t. This is nothing just the Husimi
distribution, which can be also obtained by Gaus-
sian smoothing of the Wigner function.
In Ref. [49] the Gabor transform (4) was used in
combination with the absorbing boundaries that
prevent the unphysical reflections of the wave func-
tion from the grid boundary. More specifically, the
Gabor transform was applied to the part of the wave
function that is absorbed at every time step of the
solution of the TDSE. Figure 10 shows an exam-
ple of the corresponding Husimi distribution cal-
culated at the end of a few-cycle laser pulse. This
absorbed part is transformed in the ensemble of clas-
sical trajectories that is propagated using classical
equations of motion. Therefore, initial positions and
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Fig. 10 The Husimi distribution |G (x,px, t)|2 in the
absorbing mask regions calculated for ionisation of 1D
model atom at the end of the laser pulse with a duration of
4 optical cycles, intensity of 2.0 × 1014 W/cm2, and a wave-
length of 800 nm. A logarithmic colour scale is used. The
three main maxima of the Husimi distribution are shown by
white circles

momenta of classical trajectories used to simulate an
electron wave packet are extracted from the exact
quantum dynamics. It is clear that the convergence
with respect to the position of the absorbing bound-
aries and the number of trajectories launched at
every time step should be checked in this approach.
The absorbing boundaries must be far enough to
not affect the bound part of the wave function. The
SCTSQI yields quantitative agreement with quan-
tum results [49]. What is even more important, it
corrects the inaccuracies of the standard trajectory-
based approaches in description of the ionisation
step and circumvents the complicated problem of
choosing the initial conditions.
However, future work is needed to turn the SCT-
SQI model in a powerful tool for studies of tun-
nelling. First, the model formulated for the one-
dimensional (1D) model atom should be generalised
to the three-dimensional case (3D). To describe fine
details of interference patterns accurately enough,
large numbers of classical trajectories are needed
in the SCTSQI. In addition to this, the ensembles
of trajectories are launched at every step of the
time propagation. As the result, the SCTSQI model
includes all possible trajectories, and it is not always
easy to distinguish between them. This hampers the
understanding of the strong-field phenomena that
is expected to be provided by the SCTSQI model
and its future extensions. Therefore, the number
of trajectories has to be reduced in the SCTSQI
approach, e.g., by using more sophisticated sam-
pling techniques.

– A mask function which is absorbing the wave func-
tion over a spatial extension, such as in the SCTSQI
method for example, will lead to a decreasing total
probability of the wave packet. This must be mon-

123

8. Publications 207



Eur. Phys. J. D          (2021) 75:208 Page 11 of 13   208 

itored over the course of the calculation to ensure
it does not introduce unwanted artefacts through
the choice of position or steepness of the absorb-
ing mask. The efficiency of this also depends on the
ionisation probability which determines how much
of the wave function is going to hit the absorbing
boundary.

5 Outlook

It is evident that much remains to be done to further
improve our general understanding of the tunnelling
process as well as the interaction between the strong
laser light and the target atom (or molecule, surface,
liquid, . . . ) in order to tackle the underlying reasons for
why so many approaches reach opposing conclusions.
Given the lack of a clear, agreed upon definition of the
onset and conclusion of tunnelling, it is perhaps unsur-
prising that there is also not a clear pattern between
classical or quantum methods in their various predic-
tions regarding instantaneous or finite tunnelling time,
let alone numerical values. More than anything, this
debate has demonstrated the need to find a common
ground on which to compare the vast range of theo-
retical approaches and experimental setups. One of the
few prevailing themes of this debate that most everyone
could agree on is that a combination of classical and
quantum theory is required for describing tunnelling
processes in order to be able to interpret the experi-
mental evidence.
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Multielectron polarization effects in strong-field ionization: Narrowing of momentum distributions
and imprints in interference structures
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We extend the semiclassical two-step model [Phys. Rev. A 94, 013415 (2016)] to include a multielectron
polarization-induced dipole potential. Using this model we investigate the imprints of multielectron effects in the
momentum distributions of photoelectrons ionized by a linearly polarized laser pulse. We predict narrowing of
the longitudinal momentum distributions due to electron focusing by the induced dipole potential. We show that
the polarization of the core also modifies interference structures in the photoelectron momentum distributions.
Specifically, the number of fanlike interference structures in the low-energy part of the electron momentum
distribution may be altered. We analyze the mechanisms underlying this interference effect. The account of the
multielectron dipole potential seems to improve the agreement between theory and experiment.

DOI: 10.1103/PhysRevA.98.023406

I. INTRODUCTION

Advances in laser technologies, especially the advent of
table-top intense femtosecond optical laser systems have led to
the remarkable progress in strong-field physics that studies the
interaction of strong laser radiation with atoms and molecules.
This interaction results in such phenomena as above-threshold
ionization (ATI), high-order harmonic generation (HHG),
nonsequential double ionization (NSDI), etc. (see Refs. [1–4]
for reviews). In atomic ATI an electron absorbs more photons
than necessary for ionization. The kinetic-energy spectrum
generated by the ATI process consists of two distinct parts: a
rapidly decaying low-energy part of the spectrum that ends at
an energy around 2Up , where Up = F 2/4ω2 is the ponderomo-
tive energy (atomic units are used throughout the paper unless
indicated otherwise); this part is followed by the high-energy
plateau extending up to ∼10Up, which is often several orders
of magnitude less intense than the maximum of the low-energy
part. The part of the spectrum below 2Up is mainly formed by
electrons that do not undergo hard recollisions with their parent
ions. These electrons are usually referred to as direct electrons.
The spectrum of the direct electrons can be described by the
two-step model for ionization [5–7]. In the first step of this
model an electron is promoted to the continuum by tunneling
ionization [8–10], and in the second step it moves along a
classical trajectory in the laser field. In contrast to this, the
high-energy plateau arises due to rescattered electrons that are
driven back by the laser field to their parent ions and scatter
by large angles. The qualitative description of the rescattering
processes is provided by the three-step model [11,12], which
includes the interaction of the returning electron with the parent
ion as the third step. The concept of rescattering also provides
the basis of the mechanisms responsible for HHG and NSDI.
Indeed, the returning electron can recombine with the residual

*n79@narod.ru

ion, resulting in emission of high-frequency radiation, or as
an alternative, if the energy of the rescattered electron is high
enough, it can liberate another electron from the parent ion.

The main theoretical approaches to strong-field phenomena
include the direct numerical solution of the time-dependent
Schrödinger equation (TDSE) (see, e.g., Refs. [13–21]), the
strong-field approximation (SFA) [22–25], and semiclassical
models employing classical equations of motion to describe
the electron motion in the continuum (see, e.g., Refs. [26–
35]). The two- and the three-step models are the most well-
known examples of the semiclassical approaches. All these
theoretical methods are usually based on the single-active-
electron approximation (SAE). Within the SAE, the ionization
is considered as a one-electron process, i.e., an atom (or
molecule) in the laser field is replaced by a single electron that
interacts with the laser field and an effective potential. The
latter is optimized to reproduce the ground state and singly
excited states. Although SAE allows an understanding of the
major features of ATI and HHG (see, e.g., Refs. [1,36]), the role
of multielectron (ME) effects in these processes has recently
been attracting considerable attention (see recent Refs. [37,38]
and references therein).

Among the theoretical approaches capable to account
for ME effects in strong-field processes are the time-
dependent density-functional theory [39] (see Ref. [40] for
a textbook treatment), multiconfiguration time-dependent
Hartree-Fock theory [41,42], time-dependent restricted-
active-space self-consistent-field theory [43], time-dependent
complete-active-space self-consistent-field theory [44], time-
dependent R-matrix theory [45,46], R-matrix method with
time dependence [47,48], time-dependent configuration-
interaction-singles [49,50], time-dependent restricted-active
space configuration-interaction methods [51,52], time-
dependent analytical R-matrix theory [53], and various semi-
classical models (see, e.g., Refs. [31–35,37]). The advantages
of the semiclassical approaches, such as their relative nu-
merical simplicity and the ability to provide an illustrative

2469-9926/2018/98(2)/023406(10) 023406-1 ©2018 American Physical Society

8. Publications 211

8.11 Multielectron polarization effects



N. I. SHVETSOV-SHILOVSKI, M. LEIN, AND L. B. MADSEN PHYSICAL REVIEW A 98, 023406 (2018)

physical picture of the phenomena under study, are particularly
important in investigations of complex ME dynamics.

Laser-induced polarization of the ionic core is one of the
well-known examples of ME effects. During the last years,
significant progress has been achieved in studies of the polar-
ization effects in ATI (see Refs. [54], [31–35], and [37]). The
effective potential for the outer electron that takes into account
the laser field, the Coulomb potential as well as the polarization
effects of the inner core [see Eq. (2) in Sec. II] was found in
Refs. [55,56] and [54] within the adiabatic approximation. It
was shown that the Schrödinger equation with this effective
potential and accounting for the Stark shift of the ionization
potential can be approximately separated in the parabolic
coordinates [31]. This separation procedure results in a certain
tunneling geometry. The corresponding physical picture was
named tunnel ionization in parabolic coordinates with induced
dipole and Stark shift (TIPIS). The semiclassical model based
on the TIPIS approach was validated by comparison with
ab initio results [31,32] and experiments [26–31,33–35]. It
was shown that for different atoms and molecules (Ar, Mg,
naphthalene, etc.) the photoelectron momentum distributions
are highly sensitive to ME effects as captured by the induced
dipole of the atomic core [31–35].

Most of the studies mentioned here deal with circularly or
close to circularly polarized laser fields. The reason is that
the potential of Refs. [54,55] that is used in semiclassical
simulations is valid at large and intermediate distances and
not at short distances. It is well known that the rescattering
processes are suppressed in close to circularly polarized laser
fields [57], and, therefore, the vast majority of the electron
trajectories do not return to the vicinity of the ionic core.
However, this is certainly not the case for linearly polarized
field. This raises the question regarding the applicability of
the TIPIS model for linear polarization of the laser field.
As a result, there is a lack of theoretical studies of the ME
polarization effects in ATI with linearly polarized field.

To the best of our knowledge, Ref. [37] is the only
application of the potential of Refs. [54,55] to semiclassical
simulations of ATI processes in linearly polarized fields. That
study focuses on the modification of the low-energy structures
[58,59] and the very low-energy structures [59,60] due to
polarization effects. It was shown that the relative yields
of LES and VLES are enhanced due to the effect of the
polarized ionic core on the recolliding electrons [37]. To the
best of our knowledge, the impact of the polarization of the
ionic core on the whole direct part of the spectrum has not
been investigated so far. Furthermore, the applicability of the
semiclassical model with the potential of Refs. [54,55] was
not discussed in Ref. [37]. Finally, quantum interference was
disregarded in all the trajectory-based studies of Refs. [31–
35,37]. Since the ME potential affects both the tunnel exit point
and the electron dynamics in the continuum [32], an imprint
of the polarization effects in the interference patterns of the
momentum distributions can be expected.

In this paper we apply the TIPIS model to ATI and
momentum distributions in linearly polarized laser fields and
analyze the applicability of this model. In order to study
the interference effects due to the polarization of the ionic
core, we combine the TIPIS approach with the semiclassical
two-step model (SCTS) [61]. The SCTS model describes

quantum interference and accounts for the ionic potential
beyond semiclassical perturbation theory. Recently this model
was applied to the study of the intra-half-cycle interference
of low energy photoelectrons [62], to the analysis of the
interference patterns emerging in strong-field photoelectron
holography (see Refs. [63,64]), and to the investigation of the
subcycle interference upon ionization by counter-rotating two-
color fields [65]. Using the semiclassical approach we calculate
the photoelectron momentum distributions and energy spectra
of the ATI in linearly polarized laser field with the account
for the ME polarization potential and interference. We then
analyze both the dynamic and interference effects induced by
the polarization of the ionic core.

The paper is organized as follows. In Sec. II we briefly
review the TIPIS model, discuss its application to the case
of linear polarization, and formulate our combined model. In
Sec. III we calculate photoelectron momentum distributions
and energy spectra, identify the imprints of the ME polar-
ization effect, and reveal by trajectory analysis the physical
mechanisms underlying the formation of these imprints. The
conclusions are given in Sec. IV.

II. MODEL

A detailed derivation of the TIPIS model as well as its
applications to simulations of the photoelectron momentum
distributions in elliptically polarized fields are presented in
Ref. [32]. Here we repeat the main points to make the
presentation self-contained. We next combine the TIPIS ap-
proach with the SCTS model. By doing so we develop a
two-step semiclassical model for strong-field ionization with
the inclusion of the Stark shift, the Coulomb potential, and the
polarization induced dipole potential, capable of describing
quantum interference.

A. TIPIS model and its application to linearly
polarized laser fields

In semiclassical simulations the trajectory of an electron
�r (t ) is calculated using Newton’s equation of motion:

d2�r
dt2

= − �F (t ) − �∇V (�r, t ), (1)

where �F (t ) is the electric field of the laser pulse, and the ionic
potential V (�r, t ) is given by

V (�r, t ) = −Z

r
− αI

�F (t ) · �r
r3

. (2)

Here Z is the ion charge. In Eq. (2) the ME effect is taken into
account through the induced dipole potential [ αI

�F ·�r
r3 ], where αI

is the static polarizability of the ion. As in Ref. [32], we refer
to the second term of Eq. (2) as the ME term. It is important
to stress that the potential of Eq. (2) is valid only at large and
intermediate distances (see Refs. [54–56]).

In order to integrate Eq. (1), we need the starting point
of the trajectory and the initial velocity of the electron. To
obtain the former, i.e., the tunnel exit point, the approximate
separation of variables in the static tunneling problem in
parabolic coordinates is used in the TIPIS model. If the
static field acts along the z axis, we define the parabolic
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coordinates as ξ = r + z, η = r − z, and φ = arctan (y/x).
Then the approximate separation is valid in the limit ξ/η << 1
[31]. The tunnel exit point ze is then found as ze ≈ −ηe/2,
where ηe is the solution of the following equation:

−β2(F )

2η
+ m2 − 1

8η2
− Fη

8
+ αIF

η2
= −Ip(F )

4
, (3)

where Ip(F ) is the ionization potential, m is the magnetic
quantum number of the initial state, and

β2(F ) = Z − (1 + |m|)
√

2Ip(F )

2
(4)

is the separation constant [32]. The TIPIS model accounts for
the Stark shift of the ionization potential:

Ip(F ) = Ip(0) + ( �μN − �μI ) · �F + 1

2
(αN − αI )F 2, (5)

where Ip(0) is the field-free ionization potential, �μN and �μI

are the dipole moments of an atom (molecule) and of its ion,
respectively, and αN is the static polarizability of an atom
(molecule). For atoms the term linear in �F is absent in Eq. (5).
The static field F in Eqs. (3), (4), and (5) should be interpreted
as the instantaneous value of the laser field F (t0) at the time
of ionization denoted by t0.

We assume that the electron starts with zero initial velocity
along the direction of the laser field: v0,z = 0. It can, however,
have a nonzero initial velocity �v0,⊥ in the perpendicular
direction. The ionization time t0 and the initial transverse
velocity �v0,⊥ completely determine the electron trajectory. We
distribute t0 and �v0,⊥ according to the static ionization rate [66]:

w(t0, v0,⊥) ∼ exp

[
− 2κ3

3F (t0)

]
exp

[
−κv2

0,⊥
F (t0)

]
(6)

with κ = √
2Ip(F ). We omit the preexponential factor in

Eq. (6), since for atoms it only slightly affects the shape of the
photoelectron momentum distributions that we are interested
in.

As the ME term of the potential Eq. (2) vanishes at t � tf ,
where tf is the time at which the laser pulse terminates, after
the end of the pulse an electron moves in the Coulomb field
only. The asymptotic momentum of the electron �k can be found
from its momentum �p(tf ) and position �r (tf ) at the end of the
laser pulse (see Refs. [32,67]):

�k = k
k( �L × �a) − �a

1 + k2L2
. (7)

Here �L = �r (tf ) × �p(tf ) and �a = �p(tf ) × �L − Z�r (tf )/r (tf )
are the angular momentum and Runge-Lenz vector, respec-
tively. The magnitude of the asymptotic momentum can be
found from energy conservation

k2

2
= p2(tf )

2
− Z

r (tf )
(8)

at the end of the laser pulse. Equipped with the ensemble
of (t0, v0,⊥), and the corresponding values of the asymptotic
momenta, we are now ready to combine the TIPIS approach
with the SCTS model.

B. Combination of the TIPIS approach with the SCTS model

In order to study the ME polarization-induced interference
effects, we combine the TIPIS approach with the SCTS model.
In the SCTS model every classical trajectory is associated
with a phase. The latter is calculated using the semiclassical
expression for the matrix element of the quantum mechanical
propagator [68–70]. For an arbitrary effective potential V (�r, t )
this phase is given (see Ref. [61]):

�(t0, �v0) = −�v0 · �r (t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t )

2
+ V [�r (t )] − �r (t ) · �∇V [�r (t )]

}
.

(9)

If V (�r, t ) is set to the potential of Eq. (2), the expression for
the phase �(t0, �v0) reads as

�(t0, �v0) = −�v0 · �r (t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t )

2
− 2Z

r
− 3αI

�F (t ) · �r
r3

}
.

(10)

For our simulations we use an importance sampling imple-
mentation of the SCTS model. In this approach we distribute
ionization times t

j

0 and initial velocities v
j

0 (j = 1, . . . , np )
according to the square root of the tunneling probability
[Eq. (6)]. We solve the equations of motion (1) and find the final
(asymptotic) momenta of all np trajectories in the ensemble.
Then we bin the trajectories in cells in momentum space
according to their final momenta. The amplitudes associated
with the trajectories reaching the same bin that is centered
at a given final momentum �k are added coherently, and the
ionization probability is given by (see Ref. [61]):

dR

d3k
=

∣∣∣∣∣∣
np∑

j=1

exp
[
i�

(
t
j

0 , �vj

0

)]∣∣∣∣∣∣
2

. (11)

We note that convergence both with respect to the size of
the momentum bin and the number of the trajectories must
be achieved. The bin size and the number of trajectories in
the ensemble needed for convergence strongly depend on the
laser-atom parameters. All results provided below have been
checked for convergence and the computational parameters are
explicitly given in the illustrative examples.

III. RESULTS AND DISCUSSION

In our simulations we use a few-cycle laser pulse linearly
polarized along the z axis and defined in terms of a vector
potential:

�A(t ) = (−1)n+1 F0

ω
sin2

(
ωt

2n

)
sin (ωt )�ez, (12)

where �ez is a unit vector, F0 is the field strength, ω is the
angular frequency, and n is the number of cycles within the
pulse present between t = 0 and t = tf , where tf = 2πn/ω.

The electric field is obtained from Eq. (12) by �F (t ) = − d �A
dt

. We
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FIG. 1. (a) The two-dimensional photoelectron momentum dis-
tribution [Eq. (11)] for the Mg atom ionized by a laser pulse with an
intensity of 3.0 × 1013 W/cm2, wavelength of 1600 nm, and duration
of n = 8 cycles. The white curve shows the boundary of the domain
that can be reliably calculated using the TIPIS model. The laser field
is linearly polarized along the z axis. The distribution is normalized to
the total ionization yield. A logarithmic color scale in arbitrary units is
used. (b) Electron energy spectra calculated without any restriction on
the electron trajectories [thick (green)] curve and with the exclusion of
the trajectories that approach to the parent ion to the distances less than
5.0 a.u. [thin (blue) curve]. The slope of the spectra is qualitatively
shown by the thin black line.

solve the equations of motion (1) using a fourth-order Runge-
Kutta method with adaptive stepsize control [71].

Here we restrict ourselves to the case of atoms. Apart
from the fact that the potential of Eq. (2) is inapplicable
at small distances, the range of applicability of the TIPIS
model is restricted by two conditions (see Ref. [32]). First, the
field-induced term of Eq. (5) should not exceed 10–20% of the
first term, and this introduces an upper bound for the magnitude
of the laser intensity. At the same time, the intensity must not
be too low: since in the TIPIS model the ionization probability
is described by the tunneling formula [Eq. (6)], the Keldysh
parameter γ = ωκ/F [22] should be less or of the order of
one. We also note that the using of static polarizabilities is
justified for large wavelengths λ. The choice of the atomic
species and the laser parameters for which (i) the ME effects
are more pronounced and (ii) the TIPIS model is applicable, is
thoroughly discussed in Ref. [32].

We perform our simulations for Mg and Ca. For the Mg
atom, Ip = 0.28 a.u., αN = 71.33 a.u., and αI = 35.00 a.u.,
whereas for Ca Ip = 0.22 a.u., αN = 169.0 a.u., and αI =
74.11 a.u. (see Ref. [72] for the values of polarizabilities).
Note that these atoms have similar ionization potentials, but
for Ca the static ionic polarizability that enters the ME term
is approximately two times larger than the one for Mg. We do
the simulations for the intensities of 3.0 × 1013 W/cm2 (Mg)
and 1.0 × 1013 W/cm2 (Ca) and use the wavelength 1600 nm
for both atoms. The corresponding Keldysh parameters for Mg
and Ca are equal to γ = 0.73 and γ = 1.13, respectively.

First, we analyze the applicability of the TIPIS model to the
case of linear polarization. In Ref. [37] a cutoff was introduced
at a radial distance where the core polarization cancels the laser
field. At the distances smaller than the cutoff radius the electron
does not experience polarization effects. This approach follows
the reasoning of Ref. [56], which was based on considerations
of a behavior similar to that of a large metallic-like system.

Here we also introduce a cutoff radius rC . However, in
contrast to Ref. [37], we disregard all the trajectories entering

the sphere r � rC . By doing so we prevent the electron
trajectories from reaching the vicinity of the residual ion. The
elimination of the returning trajectories leads to the depletion
of some parts of the photoelectron momentum distributions. It
is clear that these depleted parts cannot be reliably calculated
within the TIPIS model. However, these domains usually
correspond to the upper boundary of the direct ionization
spectrum and do not involve its main part containing most of the
yield. This point is illustrated by Figs. 1(a) and 1(b). In Fig. 1(a)
we show the photoelecton momentum distribution calculated
taking into account all the trajectories of the ensemble. The
white curve in Fig. 1(a) shows the boundary of the part of the
momentum distribution that is reliably reproduced when the
trajectories entering the area r � rC are excluded. The electron
energy spectra calculated with and without the elimination
of the returning trajectories are compared in Fig. 1(b). If the
photoelectron momentum distribution [Eq. (11)] is available,
the energy spectrum can be calculated as

dR

dE
= 2π

√
(2E)

∫ π

0
dθ sin θ

dR

d3k
[�k(θ )]. (13)

For the parameters of Fig. 1 we need the bin size equal to
6.25 × 10−4 a.u. and an ensemble of 3.2 billion trajectories to
achieve convergence. The latter was controlled by comparison
of the energy spectra within the energy range in which signal
decreases to 10−5 of its maximum. In our simulations we have
chosen the cutoff radius equal to rC = 5.0 a.u., but for the
parameters considered here the results only weakly depend
on the particular value of rC in the range from 3.0 to 7.0
a.u. Figure 1(b) clearly shows that almost the whole direct
part of the electron spectrum is unaffected by the exclusion of
the returning trajectories. Taking into account these findings,
in what follows we do not impose the condition r < rC .
We note, however, that at different laser-atom parameters
the applicability of the TIPIS model to the case of linear
polarization may be not as favorable as in Figs. 1(a) and 1(b).
An analysis similar to the one presented here is, therefore,
needed for any set of laser parameters before application of
the TIPIS model to linearly polarized fields.

In Figs. 2(a) and 2(b) we present the two-dimensional
photoelectron momentum distributions in the (kz, k⊥) plane
calculated within the semiclassical model accounting for laser
and Coulomb field only [panels (a) and (c)] and with account of
the ME potential [panels (b) and (d)]. The first and the second
row of Fig. 2, i.e., panels [(a), (b)] and [(c), (d)] show the results
for Mg and Ca, respectively. The size of the bin and the number
of trajectories are the same as for Fig. 1. We note that the lack
of the inversion symmetry of the two-dimensional momentum
distributions that can be seen in Figs. 1(a) and 2 (as well as
in Figs. 6 and 7) results from the finite duration of the laser
pulse. Careful analysis of the results shown in Fig. 2 reveals
that the presence of the ME term leads to two different effects:
a narrowing of the longitudinal momentum distributions and a
modification of the interference patterns. As we shall describe
in detail later, the ME-induced dipole potential can alter the
fanlike interference structures in the momentum distributions
at low energy [Fig. 7(c) and 7(d)].

We first consider the narrowing effect. In order to illus-
trate this effect, we calculate the longitudinal momentum
distributions dR/dkz with and without the ME term [see
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FIG. 2. The two-dimensional photoelecton momentum distribu-
tions for Mg [(a), (b)] and Ca [(c), (d)] ionized by a laser pulse with a
duration of n = 8 cycles at a wavelength of 1600 nm. Panels (a, b) and
(c, d) correspond to the intensities 3.0 × 1013 W/cm2 and 1.0 × 1013

W/cm2, respectively, implying the Keldysh parameters 0.71 and 1.13.
The left column [panels (a) and (c)] show the distributions calculated
ignoring the ME terms in Eqs. (2), (3), and (10). The right column
[panels (b) and (d)] displays the distributions obtained with account
of the ME terms in all equations. The distributions are normalized to
the total ionization yield. A logarithmic color scale in arbitrary units
is used. The laser field is linearly polarized along the z axis.

Figs. 3(a) and 3(c)]. The widths of the longitudinal momentum
distributions are insensitive to the interference terms, which
are, therefore, not included in Figs. 3(a) and 3(c). Furthermore,
the narrowing of the two-dimensional distributions leads to the
change of the slope of the electron energy spectra [Fig. 1(b)].
The spectra calculated with account of the ME term fall off
more rapidly with electron energy than the ones calculated
neglecting the polarization effects [see Figs. 3(b) and 3(d)]. It
is also seen from Figs. 3(a) and 3(c) that the account of the
ME term leads to partial filling of the dip at zero longitudinal
momentum.

In order to understand the mechanism responsible for the
narrowing of the longitudinal momentum distributions, we
analyze electron trajectories ending up in a bin centered at
some final momentum �k = (kz, k⊥). We consider ionization
of Mg [see Figs. 2(a) and 2(b)], and we choose �k to be equal
to �k0 = (0.86, 0.31) a.u. In the importance sampling approach,
where the weight of every trajectory is accounted for already at
the sampling stage and the photoelectron distribution is given
by Eq. (11), the presence of the ME term reduces the number
of trajectories reaching this bin by a factor of five. Therefore,
the ionization probability at �k = �k0 is substantially decreased
due to the polarization of the residual ion. First we consider
the trajectories leading to this bin neglecting the ME effect,
i.e., when the electrons move in the laser and Coulomb fields.
The analysis of these trajectories shows that there are three
main groups of them starting from three different domains of
the (t0, v0,⊥) space. We refer to these trajectories as no. 1, no.
2, and no. 3, respectively. In Fig. 4 we plot one characteristic
trajectory from each group when the ME term is disregarded
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FIG. 3. Longitudinal momentum distributions [panels (a) and (c)]
and energy spectra [panels (b) and (d)] of the photoelectrons for
ionization of Mg [panels (a) and (b)] and Ca [panels (c) and (d)].
Red (thin) and blue (thick) curves correspond to the semiclassical
simulations with and without ME term, respectively. The panels [(a)
and (b)] and [(c) and (d)] correspond to the intensities 3.0 × 1013

W/cm2 and 1.0 × 1013 W/cm2, respectively. The wavelength and
pulse durations are as in Figs. 1 and 2. The energy spectra and the
longitudinal distributions are normalized to the peak value.

in Eq. (1) (dashed curves). In the same plot we show the
trajectories resulting when the ME term is taken into account
while the initial conditions are unchanged (solid curves).
Table I presents detailed quantitative information about these
trajectories: Their times of start t (j )

0 , initial transverse velocities
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FIG. 4. Three characteristic electron trajectories leading in the
absence of the ME potential to the same final momentum �k0 =
(0.86, 0.31) a.u. The parameters correspond to the ionization of
Mg by a laser pulse with a duration of n = 8 cycles, intensity of
3.0 × 1013 W/cm2, and wavelength of 1600 nm. The dashed curves
show the trajectories calculated ignoring the ME potential, i.e., when
accounting for only the laser and Coulomb fields. The solid curves
depict the trajectories moving in the laser field and the full potential
of Eq. (2) including the ME term. The inset shows a zoom-in of the
initial part of the electron trajectories.
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TABLE I. The kinematic characteristics of the trajectories shown in Fig. 4. The table presents the times of start ωt
j

0 , initial transverse
velocities v

(j )
0,⊥, starting points z

(j )
0 , and the final asymptotic momenta �k(j )

L , �k(j )
CL, and �k(j ) that correspond to the motion in the laser field only, in

the laser and Coulomb fields, and in the laser field and the full potential of Eq. (2), respectively.

j ωt
(j )
0 (rad) v

(j )
0,⊥ (a.u.) z

(j )
0 (a.u.) �k(j )

L (a.u.) �k(j )
CL (a.u.) �k(j ) (a.u.)

1 19.49 − 0.10 − 10.78 (0.54, −0.10) (0.84, 0.31) (0.81, 0.26)
2 25.50 − 0.14 − 7.78 (0.37, −0.14) (0.86, 0.31) (0.70, 0.09)
3 25.86 0.46 − 10.49 (0.67, 0.46) (0.86, 0.31) (0.84, 0.32)

v
(j )
0,⊥, the tunnel exit points z

(j )
0 , as well as the corresponding

asymptotic momenta of the electron moving in the laser field
only �k(j )

L , in both laser and Coulomb fields �k(j )
CL, and, the

asymptotic momentum �k(j ) that corresponds to the case when
the entire potential of Eq. (2) is included into the equations
of motion (1) [here j = 1, 2 and 3]. It is seen from Table I
and Fig. 1 that, in contrast to the trajectories no. 1 and no.
3, trajectory no. 2 is strongly affected by the ME potential.
The reason is that this trajectory has the smallest exit point
(see Table I and inset in Fig. 1) and, simultaneously, its initial
transverse velocity v0,⊥ = −0.14 a.u. is not large (comparable
to the value v0,⊥ = −0.10 a.u. for the trajectory no. 1). Indeed,
the force acting on the electron due to the ME polarization
effect decays as 1/r2 with increasing r [see Eq. (2)]. For
brevity, we call this force the ME force. It is clear that the ME
force can affect the electron motion only at the initial parts of
the electron trajectory close to its starting point (i.e., close to
the tunnel exit). The smaller the distance to the tunnel exit, the
stronger the effect of the ME force on the trajectory.

It is seen that for trajectory no. 2 both longitudinal and
transverse components of the asymptotic momentum �k are
reduced due to the ME force when compared to the correspond-
ing components of the momenta �k(1) and �k(3). As the result,
trajectory no. 2 will not end up in any bin of the momentum
space close to �k0. Instead, it will lead to another bin with smaller
kz. It is worth noting that for close to circularly polarized
fields the ME effect manifests itself in the rotation of the
two-dimensional momentum distribution towards the minor
axis of the polarization ellipse [31].

If the Coulomb and the ME forces are small compared
to the laser field, these forces can be considered as small
perturbations. Based on this idea analytical estimates of the
effects of the Coulomb and ME forces were obtained in
Ref. [32] for the asymptotic electron momenta by integrating
both Coulomb and ME forces along the trajectory generated
by a constant field �F (t0) at the time of ionization. In linearly
polarized fields these estimates may be inapplicable even
for the trajectories that are not substantially affected by the
ME force (e.g., trajectory no. 1). This becomes clear already
from the fact that the Coulomb potential changes the sign
of the transverse momentum component (cf. �kC and �k for
the trajectory no. 1). We note, however, that the sign of the
ME contribution to the final electron momentum is predicted
correctly by the estimates of Ref. [32].

As the narrowing of the momentum distributions due to
the polarization of the ionic core is a pronounced effect,
we may expect that the inclusion of the ME term will be
important to explain experimental data. In Figs. 5(a) and 5(b)
we show the results of our semiclassical simulations for Ar

(Ip = 0.58 a.u., αI = 7.2 a.u.) by the eight-cycle laser pulse
with intensity 5.0 × 1014 W/cm2 and wavelength 800 nm.
These parameters are close to those used in the experiment of
Ref. [73]. Convergence was achieved at 1.6 billion trajectories
and the bin size equal to 1.3 × 10−3 a.u. Since the interference
oscillations are strong and the narrowing effect is weaker for
Ar than for Mg or Ca, we again neglect quantum interference
when calculating the longitudinal momentum distributions [see
Fig. 5(a)]. The narrowing of the longitudinal distribution and
the change of the slope of the energy spectra are clearly
seen from Figs. 5(a) and 5(b). The experimental photoelectron
momentum distributions of Ref. [73] are narrower than the
corresponding theoretical results based on the solution of
the TDSE within the SAE (see Refs. [74,75]). This suggests
that polarization effects may be important in resolving the
remaining subtle discrepancy between the experiment [73] and
theory.

Let us finally discuss the interference effects caused by the
laser-induced polarization of the atomic residual. It is seen from
Figs. 2(a) and 2(b) that the changes of the interference patterns
due to the ME terms in the equations of motion [Eq. (1)]
and phase [Eq. (10)] are not very strong. These changes are
only visible in the first and partially the second ATI peaks, as
well as in the vicinity of the kz axis. In order to understand
the mechanism of the ME polarization-induced interference
effect, we compare the photoelectron momentum distributions
calculated without considering the ME effects [Fig. 6(a)], with
the account of the ME term only in the equations of motion
[Fig. 6(b)], and with the full account of the ME effects, i.e.,
by including the ME terms in the equations of motion and in
the phase of Eq. (10) [Fig. 6(c)]. It is seen that the interference
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FIG. 5. Longitudinal momentum distributions (a) and electron
energy spectra (b) calculated for ionization of Ar by a Ti:sapphire
laser pulse (800 nm) with a duration of eight cycles and intensity
5.0 × 1014 W/cm2. Red (thin) and blue (thick) curves correspond to
the semiclassical simulations with and without ME term, respectively.
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FIG. 6. The two-dimensional photoelectron momentum distribu-
tions for ionization of Mg calculated (a) ignoring ME polarization
potential, (b) accounting for the ME force in the equations of motion
[Eq. (1)], but disregarding the ME potential in the phase [Eq. (10)],
and (c) with the full account of the ME term. The laser parameters are
as in Figs. 1(a) and 1(b). The distributions are normalized to the total
ionization yield. A logarithmic color scale in arbitrary units is used.

structures change mainly due to the presence of the ME term
in the Newton’s equations (1), i.e., due to the change of the
electron trajectories caused by the polarization of the core.

At first glance, the facts that for Mg and Ca the polarization-
induced changes of the interference patterns (i) are relatively
weak and (ii) originate due to the dynamic effect may appear
counterintuitive. Indeed, due to the relatively high values
of αI for Mg and Ca, the ME term in the integrand of
Eq. (10) seems to have a sufficiently large value to produce
substantial contribution to the phases of trajectories shown in
Fig. 1. Therefore, we could expect substantial modification of
the interference patterns for the parameters of Fig. 2 when
including the ME potential. The detailed analysis of the
trajectories interfering in different bins shows, however, while
the ME phases are large, they have very similar magnitudes
and, hence, they do not change the interference. The reason for
this is the following. In order for two trajectories to interfere
maximally, they must have comparable weights. Since the
tunneling probability [Eq. (6)] is a sharp function of the electric
field F (t0) at the time of start, the interfering trajectories start
at the time instants that correspond to similar values of the
instantaneous field. Furthermore, the contribution of the ME
term to the phase (10) is mostly created on the initial part
of the electron trajectory close to the tunnel exit. The latter
depends only on the parameters of the atomic (molecular)
species and the laser field at the time of ionization [see Eq. (3)].
As a result, the interfering trajectories have similar values of
the ME contributions to the phase, − ∫ ∞

t0
αI

�F · �r/r3 dt , and
the difference of these contributions, which is the quantity
relevant for the interference, is small. Nevertheless, for atoms
and molecules with larger values of the ionic polarizability
αI this difference can reach significant values, and, therefore,
produce considerable changes of the interference patterns.
To illustrate this point, in Figs. 7(a) and 7(b) we show the
two-dimensional photoelectron momentum distributions for
ionization of Ba (αI = 124.15 a.u., see Ref. [72]) calculated
without considering the ME term in the phase and with
[Eq. (10)] account of this term, respectively. The bin size and
the number of trajectories in the ensemble are the same as for
Fig. 1. In order to enhance intracycle interference, we consider
here a shorter pulse with a duration of n = 4 cycles (cf. to n = 8
in Figs. 1–6). It is seen from Figs. 7(a) and 7(b) that the presence
of the ME term in the phase of Eq. (10) leads to changes in the
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FIG. 7. Two-dimensional electron momentum distributions for
the Ba atom ionized by a laser pulse with a duration of n = 4
cycles, wavelength of 1600 nm, and an intensity of 3.0 × 1013 W/cm2

calculated [(a) and (c)] disregarding the ME term in the phase
[Eq. (10)], and [(b) and (d)] with the account of this term. Panels
(c) and (d) show the magnification for kz � 0.3 a.u and k⊥ � 0.25
a.u. of the distributions shown in (a) and (b), respectively. For both
distributions the ME force is included in the equations of motion. The
distributions are normalized to the total ionization yield. A logarithmic
color scale in arbitrary units is used.

interference pattern. For example, the number of radial nodal
lines in the fanlike interference structure for |k| � 0.25 a.u. is
different in the distributions calculated without and with the
ME term in the phase [cf. Figs. 7(c) and 7(d)]. In Fig. 7(c), we
see six fanlike structures for k⊥ > 0, while the presence of the
ME contribution reduces the number of such structures to five
in Fig. 7(d).

IV. CONCLUSIONS AND OUTLOOK

We have investigated ME effects as described by a laser-
induced dipole polarization potential on photoelectron mo-
mentum distributions from strong-field ionization in a linearly
polarized laser field. To this end, we have applied semiclassical
simulations based on the TIPIS model [31]. We have analyzed
the applicability of the TIPIS approach to the case of linear
polarization. We have proposed a simple procedure that allows
to find the domain in the photoelectron momentum distribu-
tions that can be reliably calculated by the TIPIS model. For
the atomic species and laser parameters considered here this
domain includes the whole direct part of the ATI spectrum. In
order to study the polarization-induced interference efffects,
we have combined the TIPIS approach with the SCTS model
[61].

We predict a pronounced narrowing of the photoelectron
momentum distributions in the longitudinal direction parallel
with the laser polarization. By analyzing the characteristic elec-
tron trajectories we have studied the mechanism underlying the
narrowing effect. We have shown that the narrowing is caused
by the polarization-induced dipole force on electrons that start
relatively close to the origin.

023406-7

8. Publications 217



N. I. SHVETSOV-SHILOVSKI, M. LEIN, AND L. B. MADSEN PHYSICAL REVIEW A 98, 023406 (2018)

We have also revealed the polarization-induced modifica-
tion of interference effects in the photoelectron momentum
distributions. This effect is found to be pronounced for atoms
with relatively high static polarizabilities, and it was found to
change the number of fanlike interference structures at low en-
ergy in the two dimensional electron momentum distribution.
Due to the rapid progress in experimental techniques, it is now
possible to study photoelectron momentum distributions with
high resolution (see, e.g., Ref. [76]), and, therefore, ME effects
will have to be taken into account for accurate description of

experimental data, in particular for larger molecules with large
polarizabilities.
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Abstract
We present a method for retrieving of single-active electron potential in an atom or molecule
from a given momentum distribution of photoelectrons ionized by a strong laser field. In this
method the potential varying within certain limits is found as the result of the optimization
procedure aimed at reproducing the given momentum distribution. The optimization using
numerical solution of the time-dependent Schrödinger equation for ionization of a model
one-dimensional atom shows the good accuracy of the potential reconstruction method. This
applies to different ways used for representing of the potential under reconstruction, including
a parametrization and determination of the potential by specifying its values on a spatial grid.

Keywords: strong-field ionization, derivative-free optimization, photoelectron momentum
distributions, single-active electron potential

(Some figures may appear in colour only in the online journal)

1. Introduction

The advances in laser technologies during the last decades
have allowed to study the variety of phenomena arising from
the interaction of strong laser radiation with matter, see, e.g.
[1, 2] for recent reviews. These phenomena include above-
threshold ionization (ATI), formation of the high-energy
plateau in the ATI spectrum (high-order ATI), generation of
high-order harmonics (HHG), nonsequential double ionization
(NSDI), etc (see [3–6] for reviews). It was shown in the studies
of the ATI process that the vast majority of the photoelec-
trons do not recollide with their parent ions. These electrons
are referred to as direct electrons. They are detected with the
energies below 2Up, where Up = F2

0/ω2 is the ponderomotive

∗ Author to whom any correspondence should be addressed.
Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

energy. Here F0 is the field strength and ω is the angular fre-
quency (atomic units are used throughout the paper). There are
also rescattered electrons that due to oscillations of the laser
field come back to their parent ions and rescatter on them by
large angles. The rescattered electrons form the high-energy
plateau in the ATI spectrum, i.e. they are responsible for the
high-order ATI.

The development of laser technologies has also given rise
to a number of techniques aimed at time-resolved molecular
imaging, including, laser-induced Coulomb explosion imag-
ing [7–10], laser-assisted electron diffraction [11, 12], high-
order harmonic orbital tomography [13, 14], laser-induced
electron diffraction [15–17], strong-field photoelectron holog-
raphy [18], see [19] for review. The correct interpretation of the
imaging experiments, as well as the understanding of the HHG,
NSDI, and other phenomena in intense laser fields, requires an
accurate description of strong-field ionization of various quan-
tum systems. Among the main theoretical approaches used to
describe ionization of atoms by strong laser pulses are the
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strong-field approximation [20–22], the semiclassical mod-
els [23–27], and the direct numerical solution of the time-
dependent Schrödinger equation (TDSE) (see, e.g. [28–31])
in single-active electron (SAE) approximation [32, 33]. Within
the SAE the strong-field ionization of many-electron atom or
molecule is described as an interaction of only one active elec-
tron with the laser radiation. This active electron moves in the
combined effective potential and the electric field of the laser
pulse. In many cases the solution of the TDSE within the SAE
gives good agreement with experimental data. In situations
where the multielectron effects are important, the SAE is still
valuable, since it provides a necessary benchmark for the anal-
ysis of the results of multielectron calculations. On the other
hand, if the multielectron simulations are not feasible, the SAE
remains the only possible approach. Therefore, it is important
to obtain suitable SAE potentials for various systems.

In this paper we focus on the atomic case only. The SAE
potential designed for a multielectron atom should account for
the presence of the atomic nucleus and approximately describe
the effect of other electrons. The calculation of such a poten-
tial is a non-trivial task. Indeed, the widely used potential by
Tong and Lin [34] was obtained using density-functional the-
ory. This potential has a singularity at r → 0. The same is true
for the other well-known potential [35] and the SAE potentials
obtained recently by fitting to the effective Kohn–Sham poten-
tials [36]. However, the presence of this singularity causes
problems, if the TDSE is solved with the split-operator method
[37] employing fast Fourier transform. To avoid this singular-
ity, the SAE potential can be converted into a pseudo poten-
tial using an approach developed by Troullier and Martins
[38]. Nevertheless, while the pseudopotential can be success-
fully applied to description of the direct electrons, it faces
challenges in describing the rescattering process (see [39]
for details). Therefore, development of approaches aimed at
calculation of the SAE potentials is of great interest.

The SAE potentials are often constructed as analytic func-
tions that depend on one or a few parameters. While one
parameter of the potential allows to reproduce only one bound-
state energy, the presence of several parameters makes it
possible to recover the predefined energies of few different
bound states. Usually, the parameters of a model potential
are adjusted using an optimization technique. This suggests to
obtain the SAE potential as a result of some optimization pro-
cedure. Indeed, in reference [40] the atomic potentials were
retrieved from differential electron scattering cross section
using genetic algorithm. The differential cross sections can in
turn be extracted from momentum distributions of the rescat-
tered electrons. Nevertheless, since the potential experienced
by the ionized electron is encoded in the measured photoelec-
tron momentum distribution (PMD), it should be possible to
optimize the unknown SAE potential in order to directly repro-
duce a given PMD generated by strong-field ionization of an
atom.

In this paper we develop such an approach to retrieval of
the SAE potentials. We assume that the given momentum dis-
tribution is measured in an experiment and refer to it as the
target PMD (TPMD). The TPMD is considered as a goal that
is to be achieved by an optimization algorithm considering the

unknown values of the potential (or expansion coefficients of
the potential in a given basis) as parameters that are optimized.
It should be stressed that there is a substantial difference
between the approach proposed here and the quantum optimal
control theory (QOCT), see [41, 42] for reviews. The latter
provides a powerful theoretical approach to the optimization
and control of various quantum phenomena, including those
in strong laser fields (see, e.g. [43–46]). Indeed, the QOCT
treats the electric field of the laser pulse as a control function,
whereas the effective potential experienced by an electron is
to be predefined and does not change in optimization.

Any optimization requires a specification of a measure that
allows to identify whether the optimization target is achieved.
Since a PMD is a picture, it is natural to specify such a measure
using tools employed in image analysis and pattern recogni-
tion. Therefore, the measures applied to compare different dig-
ital images or videos (see, e.g. [47, 48]) can be used to estimate
the similarity of the two PMD’s: the result of current iteration
of an optimization algorithm and the target distribution. How-
ever, a valid choice of the specific measure and its application
to comparison of the PMD’s require thorough studies. For this
reason, we leave the application of image recognition tools for
future investigations. In this paper we retrieve the SAE poten-
tial from momentum distribution produced in ionization of a
one-dimensional (1D) model atom. The 1D momentum dis-
tribution is a function of only one variable (momentum com-
ponent along one spatial axis). Therefore, the widely-known
measures used in variation calculus and functional analysis
(see, e.g. [49]) can be applied for comparison of different
PMD’s. In our optimization-based approach only momentum
distributions of the direct electrons are used. The optimization
technique relying on the distributions of rescattered electrons
will be the subject of further studies.

The paper is organized as follows. In section 2 we briefly
discuss our approach to solve the 1D TDSE, measures used to
compare electron momentum distributions, and derivative-free
optimization algorithms. In section 3 we apply our method to
retrieve the soft-core Coulomb potential from the PMD’s pro-
duced by ionization of a 1D model atom. We test our approach
for two different ways of representing the unknown potential
and discuss various optimization strategies. The conclusions
and outlook are given in section 4.

2. Comparison of electron momentum
distributions and optimization

2.1. Numerical solution of the TDSE

We define a few-cycle laser pulse linearly polarized along the
x-axis by specifying its vector-potential:

A (t) = (−1)np+1 F0

ω
sin2

(
ωt
2np

)
sin (ωt + ϕ) ex , (1)

where np is number of optical cycles within the pulse, ϕ is the
carrier envelope phase, ex is a unit vector, and the laser pulse is
present between t = 0 and T =

(
2π/ω

)
np. The electric field

can be calculated from vector-potential (1) by F = −dA/dt.
In the velocity gauge, the 1D TDSE for an electron interacting

2
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with the lase pulse is given by

i
∂

∂t
Ψ (x, t) =

[
1
2

(
−i

∂

∂x
+ Ax (t)

)2

+ V (x)

]
Ψ (x, t) , (2)

where Ψ (x, t) is the time-dependent wave function in coor-
dinate representation and V (x) is the SAE potential. In the
absence of the electric field, the time-independent Schrödinger
equation reads as

[
−1

2
d2

dx2
+ V (x)

]
Ψ (x) = EΨ (x) , (3)

where Ψ (x) and E are the eigenfunction and the correspond-
ing energy eigenvalue, respectively. The eigenvalue problem
(3) is solved on a grid using the three-step formula to approxi-
mate the second derivative. Hence, the diagonalization routine
developed for sparse matrices [50] can be used. Alternatively,
the ground state and the first few excited states can be found
by imaginary time propagation (see, e.g. [51, 52]). The com-
putational box is centered at x = 0 and extends to ±xmax, i.e.
x ∈ [−xmax, xmax]. Typically, we set xmax = 250.0 a.u. and use
a grid consisting of N = 4096 points, what corresponds to the
grid spacing dx = 0.1225 a.u.

The well-known split-operator method [37] is used to solve
the TDSE (2). The time step is Δt = 0.055 a.u.. We prevent
unphysical reflections from the boundary of the grid by using
absorbing boundaries, i.e. at every step of the time propagation
we multiply the wave function in the region |x| > xb by the
mask:

M (x) = cos1/6

[
π

(
|x| − xb

)

2 (xmax − xb)

]
(4)

with xb = 3xmax/4. Hence, x = ±xb correspond to the inter-
nal boundaries of the absorbing regions. As the result, at every
time step the part of the wave function in the mask region is
absorbed without any effect on the |x| < xb domain. We cal-
culate the electron momentum distributions using the mask
method [53].

2.2. Comparison of electron momentum distributions and
optimization algorithms

The optimization procedure developed here is based on com-
parison of the 1D electron momentum distributions, which are
functions of one variable. The following metrics are widely
used to calculate the distance between continuous functions
f (x) and g (x) defined for x ∈ [a, b]:

ρ1 [ f (x) , g (x)] = max
x∈[a,b]

| f (x) − g (x)| (5)

and

ρ2 [ f (x) , g (x)] =

{∫ b

a
dx[ f (x) − g (x)]2

}1/2

, (6)

see, e.g. [49] for a textbook treatment. We use metric (6)
as a measure of difference between two PMD’s. We note
that before calculating the distance (6) we normalize electron
momentum distributions to the total ionization yield (i.e. the

area under the graph of the PMD). Therefore, our optimization
procedure relies only on the shape of momentum distributions,
but not on the ionization probabilities. We believe that similar
approach when applied to the 3D case will help to facilitate the
retrieval of the unknown potential from experimental electron
momentum distributions.

Since the derivatives of the similarity measure with respect
to unknown potential values (or any other parameters used to
represent the potential) can be calculated only numerically, it
is not practical to use any gradient-based optimization method.
Instead, it is appropriate to use a derivative-free optimization
technique, see [54, 55] for recent reviews. We apply parti-
cle swarm optimization method [56, 57], surrogate optimiza-
tion technique [58], and pattern search method [59–61]. The
MATLAB system [62] is used for simulations.

3. Results and discussion

3.1. Reconstruction of SAE potential on a grid

In this work we reconstruct the soft-core Coulomb potential:

V (x) =
Z√

x2 + a
(7)

with Z = 1.0 and a = 1.0, see [63]. At first, we do not use
any parametrization to represent the potential (7). Instead, we
determine the potential that is to be retrieved by specifying
its values in certain points of the x-axis. The potential values
in any other points are found by interpolation. Here we use
cubic spline interpolation [64]. As many other SAE potentials
the potential V (x) changes more rapidly for small values of x.
Therefore, it is natural to use a non-uniform grid to represent
the potential (7).

Here we apply the following grid used for development of
generalized pseudospectral methods:

x = γ
1 + x0

1 − x0 + xm
0

, (8)

where xm
0 = 2γ/xmax and γ is the mapping parameter

[65–67]. Equation (8) transforms a uniform grid within the
domain x0 ∈ [−1.0, 1.0] to a nonuniform grid in the domain
x ∈ [0, xmax]. The points of this grid are to be reflected with
respect to x = 0 and thus a nonuniform grid in the whole
range x ∈ [−xmax, xmax] is obtained. Then the question arises:
how many points of the grid (8) are required to represent the
potential with sufficient accuracy? To answer this question,
we choose different numbers of points for the uniform grid
in the range [−1.0, 1.0], find the corresponding point of the
nonuniform grid (8), and calculate the potential values at these
points. For each number of points of the nonuniform grid we
interpolate the potential V (x) at every point of the dense uni-
form grid with N points. For this interpolated potential we
find energy eigenvalues and the corresponding eigenfunctions,
solve the TDSE for a given laser pulse, and calculate electron
momentum distributions. We next compare these PMD’s with
the reference momentum distribution obtained in the case that
the potential (7) is directly calculated on the dense uniform
grid consisting of N points, see figure 1. It is seen that about
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Figure 1. The electron momentum distributions for ionization of a 1D atom by a laser pulse with a duration of np = 4 cycles, wavelength of
800 nm, phase ϕ = 0, and intensity of 2.0 × 1014 W cm−2. The distributions are obtained from the solution of the TDSE (2) with the
potential (7) calculated on a uniform grid consisting of N = 4096 points (thick light-blue curve), as well as with the same potential
determined by its values on the non-uniform grid (8) with γ = 20.5 consisting of 10 (dashed green curve), 15 (dotted black curve), and 20
(thin magenta curve) points.

20 points of the nonuniform grid (8) is sufficient to reproduce
the reference PMD accurately enough. Indeed, the difference
between these distributions calculated in accord with the mea-
sure (6) is about 0.01. Taking into account that the potential
V (x) is an even function, the number of the points can be
reduced by a factor of two, i.e. only 10 points are needed.

Using the nonuniform grid we first attempt to reconstruct
the unknown potential using the ground state and the first
excited state energies only. Such an attempt may raise ques-
tions. Indeed, it is well-known that even in the 1D case the
potential cannot be unambiguously determined from one or
a few energy eigenvalues. Only a symmetric reflectionless
potential can be restored based on its complete set of the bound
state energies [68]. However, it is evident that the optimization
of a ‘black-box’ function that depends on 10–20 parameters is
a difficult numerical problem. An optimization algorithm used
to solve this problem requires an initial approximation to the
maximum (minimum). The success of the optimization and the
convergencespeed critically depend on the quality of the initial
approximation. It turns out that satisfactory initial approxima-
tions can often be obtained as a result of optimization of only
a few bound state energies.

The optimization methods also require the specification of
the boundaries, within which the optimization parameters (in
this case, the values of the potential in the grid points) can
vary. We specify these ranges by sandwiching the unknown
potential between the two known potential functions. As these
functions we use

V1,2 (x) =
Z1,2√

x2 + a1,2
. (9)

At first, we chose Z1,2 = 1.0 and a1 and a2 equal to 0.4 and
1.5, respectively. Therefore, V1 (x) is the lower boundary for
the potential V (x) that is to be retrieved, whereas V2 (x) is the
upper boundary. The SAE potential reconstructed by optimiza-
tion the ground state energy is shown in figure 2(a) together
with the boundaries V1 (x) and V2 (x). For the optimization we
use the particle swarm method. It is seen that the obtained

potential is in a good quantitative agreement with the one
that we wanted to reconstruct. However, the situation changes
dramatically, if the boundaries for the potential values under
reconstruction are not as tight as in the example shown in
figure 2(a). In figure 2(b) we display one of the potentials that
can be obtained by optimization of the bound state energy in
the case where the lower boundary for the potential values is
again given by V1 (x), but the upper boundary is chosen to be
zero: V2 (x) = 0. It should be stressed that the optimization
result is not unique for the chosen boundaries. The succes-
sive runs of the optimization algorithms lead to a whole family
of the potentials with very close ground state energies. This
agrees with the conclusions of [68]. It is seen that there is
even no qualitative agreement between the potential shown in
figure 2(b) and the soft-core Coulomb potential (7) that is to
be reconstructed.

We now turn to the retrieval of the potential from the
electron momentum distributions. At first, we use the same
boundaries for the unknown potential values as in the example
shown in figure 2(a). We minimize the difference as defined
by the measure (6) between the PMD calculated for a potential
defined by its values in the grid points and the PMD obtained
for the potential (7) with the same laser pulse. The minimum
value of the metric ρ2 [PMD, TPMD] obtained in optimization
is 0.019. The potential retrieved in the optimization procedure
is shown in figure 3(a). It is seen that the obtained potential
almost coincides with the soft-core Coulomb potential (7) we
wanted to reconstruct. The same is true for the distributions
calculated for the retrieved potential and the potential (7), see
figure 3(b).

The question arises how sensitive is the optimization result
to a change in the boundaries V1 (x) and V2 (x). To answer
this question, we perform another optimization with the
broader boundaries for the allowed potential values. Specif-
ically, we sandwich the potential that is to be retrieved by
V1 (x) and V2 (x) with a1,2 = 1.0 and Z1 and Z2 equal to 2.0
and 0.5, respectively. The optimization result for these broader
boundaries quantitatively agrees with the potential (7), see
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Figure 2. The values of the SAE potential on the non-uniform grid (8) (magenta circles) reconstructed by optimization of the bound state
and first excited states energies only, boundaries for the potential values (dashed blue curves), the potential obtained by spline interpolation
based on the reconstructed values (thin magenta curve), and the soft-core Coulomb potential (thick black curve). Panel (a) shows the
optimization result for the case where the optimized potential values are bounded by the potentials (9) with Z1,2 = 1.0 and a1 and a2 equal to
0.4 and 1.5, respectively. Panel (b) displays the potential obtained for the optimization parameters restricted by V1 (x) calculated from
equation (9) with Z1 = 1.0 and a1 = 0.4 and V2 (x) = 0. The parameters are the same as in figure 1.

Figure 3. (a) and (c) The values of the SAE potential (magenta circles) reconstructed by optimization of the electron momentum
distribution, boundaries for the potential values (dashed blue curves), the potential obtained by spline interpolation using the reconstructed
values (thin magenta curve), and the soft-core Coulomb potential (thick black curve). (b) and (d) The PMD calculated using the optimized
potential (thin magenta curve) and the TPMD (thick light-blue curve). Panels (a) and (b) show the optimization results for the case where the
allowed potential values are bounded by the potentials V1,2 (x) (equation (9)) with Z1,2 = 1.0 and a1 and a2 equal to 0.4 and 1.5, respectively.
Panels (c) and (d) correspond to the boundaries V1,2 (x) for the potential values given by (9) with a1,2 = 1.0 and Z1 and Z2 equal to 0.5 and
2.0, respectively. The potential under reconstruction is determined by its values on the grid (8) with 20 points. The laser parameters are the
same as in figures 1 and 2.

figure 3(c). The same is also true for the electron momentum
distributions, see figure 3(d). The minimum value of the metric
(6) obtained in optimization with these broader boundaries is
0.03, which is only slightly higher than in the previous case.

We are now able to address the more important questions
to the optimization-based approach, namely, how vulnerable

is it to intensity fluctuations that are inevitable in an exper-
iment? Can the actual laser intensity be restored by apply-
ing the optimization technique? In order to answer the first
question, we try to retrieve the potential at the intensity of
1.0 × 1014 W cm−2 using the TPMD calculated for the higher
intensity of 2.0 × 1014 W cm−2. The potential obtained in such
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Figure 4. (a) and (c) The values of the SAE potential on the non-uniform grid (8) with 20 points (magenta circles) reconstructed by
optimization of the PMD, boundaries for the potential values (dashed blue curves), the potential obtained by spline interpolation based on
the reconstructed values (thin magenta curve), and the soft-core Coulomb potential (thick black curve). (b) and (d) The PMD calculated
using the optimized potential (thin magenta curve) and the TPMD (thick light-blue curve). Panels (a) and (b) correspond to the case where
the TPMD is calculated for the intensity of 2.0 × 1014 W cm−2 and the optimization of the momentum distributions is performed at the
intensity of 1.0 × 1014 W cm−2. Panels (c) and (d) show the results obtained treating the field strength F0 as an additional parameter that is
to be optimized. The boundaries for the optimized potential values are given by equation (9) with Z1,2 = 1.0 and a1 and a2 equal to 0.4 and
1.5, respectively. The parameters are the same as in figures 1–3.

an optimization is shown in figure 4(a). It is seen that this
potential substantially differs from the potential (7) we expec-
ted to reconstruct. Indeed, the minimum obtained value of the
metric (6) is 0.61, and the PMD calculated for the retrieved
potential does not agree with the target one, see figure 4(b).
To generalize our approach to the case where the TPMD is
obtained at different laser intensity, we add the field strength
to the parameter set that is to be optimized. This allows us to
reconstruct the actual value of the laser intensity, at which the
TPMD that we want to reproduce in optimization is obtained.
In this case, the surrogate optimization turns out to be slightly
more efficient than the particle swarm method. The results of
this modified approach are shown in figures 4(c) and (d). It is
seen from figure 4(c) that the retrieved potential is in a quan-
titative agreement with the soft-core Coulomb potential (7)
used to calculate the TPMD. The same is true for the resulting
electron momentum distribution, see figure 4(d). The differ-
ence between the momentum distributions ρ2 [PMD, TPMD]
comes to only 0.032. The optimized value of the field strength
is 0.0763 a.u., whereas the exact value of F0 equals to
0.0755 a.u.. Although these results are encouraging, it is clear
that further studies are needed to completely tackle the ques-
tion regarding the intensity fluctuations. To mimic a real exper-
imental situation, it is necessary to average the PMD over the
intensity distribution within the focal volume at every iteration
of the optimization process. We leave this modification of the
proposed method for further studies implying the generaliza-
tion to the 3D case.

The results shown in figures 2–4 were obtained for the
non-uniform grid (8) in the range [−xmax, xmax]. However, the

typical molecular potential we intend to reconstruct has a long-
range Coulomb asymptotic at large distance: V (r) → 1/r at
r → ∞. Therefore, there is no need to find the values of the
potential at large x, and an optimization of the potential val-
ues at x → ∞ leads to a waste of computational resources. At
the same time, it is highly desirable to have a denser grid for
small x, where the potential can vary significantly. To address
both these issues, from this point on we use a smaller com-
putational box [−xC, xC] setting V (x) = 1/ |x| for |x| > xC.
Typically, we chose xC = 10.0 a.u. and use uniform grid within
the range [−xC, xC]. The optimization results are shown in
figures 5(a) and (b). It is seen from figure 5(a) that retrieved
potential agrees well with the soft-core Coulomb potential (7).
The optimization results in a measure (6) equal to 0.04 what
corresponds to a good agreement between the obtained and
target electron momentum distributions, see figure 5(b). A dif-
ferent optimization method was used here. At first, we per-
formed an optimization of the bound state and first excited
state energies. As mentioned above, such optimization results
in a family of different potentials, unless the boundaries for the
potential values are close to each other. Some of these poten-
tials resemble the desired potential (7), whereas the others are
very different from it and do not match the Coulomb asymp-
tote at x = ±xC. Then we use all the obtained potentials as
an initial approximation for the second optimization procedure
that minimize the difference between the corresponding PMD
and the target one. For the second optimization we use the
pattern search algorithm (Hook–Jeeves method [59]), see, e.g.
[60, 61] for reviews. This combined two-step approach to opti-
mization of the PMD turns out to be computationally more
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efficient than particle swarm optimization we used before
and many other gradient-free optimization methods, includ-
ing simulated annealing, genetic algorithms, and surrogate
optimization, if these methods start from a random initial
approximation.

The optimization results presented in figures 5(a) and (b)
were obtained for 20 grid points in the range [−xC, xC] (i.e.
for 10 grid points for x ∈ [0, xC]). This corresponds to the grid
spacing dx = 1.0 a.u.. Suppose that we need better resolution
along the x axis, e.g. dx = 0.5 a.u., what corresponds to 20
grid points between 0 and xC. The most efficient way to per-
form the optimization of the PMD on a denser grid is to use
the results obtained for a sparser grid as an initial approxima-
tion. In doing so the potential values in the points of a denser
grid can be restored by interpolation. The results of the appli-
cation of this approach are shown in figures 5(c) and (d). Note
that for dx = 0.5 a.u. we achieve a perfect agreement between
the retrieved potential and the desired soft-core Coulomb
potential (7). The corresponding PMD’s are also almost indis-
tinguishable from each other, see figure 5(d). The optimiza-
tion algorithm terminates when the distance ρ2 [PMD, TPMD]
reduces to 0.0042.

3.2. Reconstruction of parametrized potential

Up to this point we have not used any parametrization to rep-
resent the unknown SAE potential. It is clear, however, that
this parametrization-free approach being extended to the two-
dimensional and especially the 3D case will become a very
difficult computational task. Indeed, such an extension will
lead to a necessity of optimization of a function that depends
on hundred of variables. We note that this task is feasible with
modern computational facilities and optimization algorithms.
Such problems arise, for example, in research on magneti-
cally confined plasmas for fusion energy, see, e.g. [69, 70].
It is nevertheless of interest to test the optimization-based
algorithm in the case where the unknown potential is in some
way parametrized. It is natural to express the SAE potential as

V (x) = V0 (x)
[
1 + V1p (x)

]
, (10)

where V0 (x) is a known potential with correct asymptotic
behavior and the potential V1 (x) is to be parametrized and

determined. Here we choose V0 (x) = Z0/
(
x4 + a0

) 1
4 with

Z0 = 1.0 and a0 = 1000.0 what corresponds to a very shal-
low and wide potential well, which is substantially different
from the potential (7) that should be restored. The question
thus arises how to parametrize the potential V1 (x) in the best
possible way.

Since we know the potential V (x) we want to reconstruct,
this question is easy to answer. Indeed, by trying different
options and applying standard curve fitting routines [62], we
find that the rational interpolation can be used to approximate
the function V1p (x) = V (x) /V0 (x) − 1 with a good accuracy.
Therefore, the potential V1p (x) can be represented as a quotient
of two polynomials Pm (x) and Qn (x):

V1p (x) =
Pm (x)
Qn (x)

. (11)

It is clear that since V1p (x) → 0 at x → 0, the inequality m < n
should be fulfilled. It is easy to see that the measure ρ2 of the
difference between the corresponding momentum distribution
and the target one dramatically changes for different choices
of the m and n. If, for example, m = 0 and n = 2, the min-
imum value of the ρ2 that can be achieved is equal to 0.29.
This corresponds to V1p (x) = p1/

(
x2 + q1

)
with p1 = 29.99

and q1 = 3.62. The linear function in the nominator (m = 1)
and the quadratic function in the denominator (n = 2), i.e.
V1p (x) = (p1x + p2) /

(
x2 + q1x + q2

)
, allow to reduce the

measure (6) to 0.047. This value is achieved for p1 = −1.15,
p2 = 36.90, q1 = 0.92, and q2 = 23.95. The minimum value
of the ρ2 we have obtained using the equation (11) is equal
to 0.01. It corresponds to the constant in the numerator and
the fourth-order polynomial in the denominator of the quotient
(11):

V1p (x) =
p1

x4 + q1x3 + q2x2 + q3x + q4
, (12)

where p1 = 1261.0, q1 = −9.747, q2 = 66.5, q3 = 10.4, and
q4 = 138.7. It should be noted that not all of the coefficients
in the denominator of this formula are positive. When using
the optimization-based method in practice, a series of opti-
mizations applying different ways to parametrize the unknown
potential should be performed. This will allow to compare
the optimization results and to choose the best way of the
parametrization similarly to what we do here with the fitting
of the known potential.

We now try to recover the parameter values in the
parametrization (12) by optimizing the PMD. At first glance
it would seem that optimization of function (12) depending
on only 5 parameters is a simple task compared to the one
performed in section 3.1. But this is not the case, since neg-
ative values of the parameters qi (i = 1, . . . , 4) may lead to
1 + V1p (x) < 0 and, therefore, V (x) > 0 for certain ranges of
x. To prevent this situation, we use constrained optimization.
Specifically, instead of minimizing the measure (6) alone, we
now look for a minimum of

ρ2 [PMD, TPMD] + w · V2
m

[
1 + sgn (Vm)

]
, (13)

where Vm is the maximum value of V (x) in the interval [0, x0],
and w is some weight factor. Typically, we use w in the range
between 5.0 and 20.0. We allow for the following ranges of
the optimization parameters: p1 ∈ [−2000.0, 2000.0] and qi ∈
[−100.0, 100.0] (i = 1, . . . , 4). To speed up the simulations,
we again perform the optimization in two steps, i.e. we use
the results obtained in optimization of the ground state, first,
and second excited states energies as initial approximations
for the optimization of the PMD. The retrieved potential and
the corresponding electron momentum distribution are shown
in figures 6(a) and (b), respectively. The following parameter
values were obtained: p1 = 403.44, q1 = 3.08, q2 = 17.03,
q3 = 35.57, and q4 = 80.45. The difference ρ2 between the
resulting PMD and the TPMD is 0.0164, what is higher than
the one corresponding to the parameters obtained by approx-
imation of the known function V1p (x). Therefore, some local
minimum, albeit quite close to the desired global one, is found
in optimization. It is seen that the retrieved potential agrees
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Figure 5. Panels (a) and (b) show the same as figures 3(a) and (b) for the optimization parameters varying in wider ranges and the potential
determined by the values on the uniform grid consisting of 10 points between 0 and 10.0 a.u.. Panels (c) and (d) display the optimization
results for the same grid consisting of 20 points. The optimization parameters are bounded by the potential V1 (x) calculated from
equation (9) with Z1 = 1.0 and a1 = 0.4 and V2 (x) = −0.09 a.u.. The parameters are the same as in figures 1–3.

Figure 6. Optimization results for parametrized SAE potential. Panels (a) and (c) show the reconstructed potentials (thin magenta curve)
and the soft-core Coulomb potential (thick black curve). Panels (b) and (d) display the comparison of the PMD’s obtained from the TDSE
with the retrieved (thin magenta curve) and the exact (thick light-blue curve) SAE potentials. Panels ((a), (b)) and ((c), (d)) correspond to the
parametrization (12) and (14), respectively. The laser parameters are the same as in figures 1–3.

well with the exact result, see figure 6(a). The same is also
true for the electron momentum distributions (see figure 6(b)).
As a next step in testing the method, we represent our potential
as a sum of a few Gaussian functions:

V1p (x) =

kmax∑

k=1

ak exp

[
− (x − bk)2

c2
k

]
. (14)

The representation (14) is obviously more flexible, i.e. it
allows for finer variations of the potential function, as com-
pared to the one applying rational function. Here we choose
kmax = 5 what corresponds to 15 parameters to be optimized. It
should be stressed that in contrast to all other examples shown
in this paper, here we do not assume any symmetry of the
potential V (x). Indeed, the allowed values of the optimiza-
tion parameters are: ak ∈ [−4.0, 4.0], bk ∈ [−20.0, 20.0], and
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ck ∈ [0, 100.0] (k = 1, . . . , 5). As an initial approximation for
the optimization of the PMD’s we use the potential shown in
figure 6(a), i.e. the one obtained with parametrization (11).
The optimization results are presented in figures 6(c) and (d).
As expected, a better agreement between the retrieved poten-
tial and the exact one can be achieved with parametrization
(14). However, the measure (6) remains practically unchanged:
ρ2 [PMD, TPMD] = 0.0159.

The examples above demonstrate that in the 1D case the
parametrization of the potential does not offer any deci-
sive advantages compared to the direct representation on a
grid. Nevertheless, it is shown that the optimization-based
method also works in the case, where the potential is deter-
mined by a number of parameters. This is essential in view
of the possible extension of the approach onto the 3D case,
where parametrization of the unknown potential is expected to
become particularly important.

4. Conclusions and outlook

In conclusion, we have developed a method capable to retrieve
the SAE potential in an atom from a given momentum dis-
tribution of photoelectrons ionized by a strong laser pulse.
In this method the potential is found by minimization of the
difference between the given momentum distribution and the
one obtained from the solution of the TDSE with the SAE
potential that varies in the optimization process. The unknown
potential is either represented by a set of its values in points
of a spatial grid, or by a set of parameters. We have shown
that the optimization can be performed using a number of
different derivative-free techniques, including particle swarm
method, surrogate optimization, and pattern search. It is found
that the most efficient approach is based on the use of poten-
tials obtained in optimization of a few bound-state energies as
initial approximations for the optimization of the PMD.

We have tested our method by reconstructing of the soft-
core Coulomb potential from the corresponding PMD gener-
ated in ionization of a 1D atom by a strong few-cycle laser
field. It is shown that the retrieved SAE potential is in a quan-
titative agreement with the potential we aimed to reconstruct.
This is true for both ways used to represent the potential under
reconstruction. In the case where the potential is represented
by its values on a grid the spatial resolution can be effec-
tively improved by using the optimization results on a sparse
grid as an initial approximation for optimization on the dense
grid. This allows to avoid severe computational costs when
optimizing a function depending on a few dozens of variables.

It is clear that the measured electron momentum distribu-
tions are affected by focal averaging. We have shown that the
actual laser intensity can be restored together with the SAE
potential in the optimization approach. Nevertheless, further
work is needed to fully explore the question how sensitive
is the proposed method to the focal averaging. Furthermore,
extension of the method to the real 3D case require a reliable
measure used to compare different momentum distributions.
To this end, the tools of image analysis and pattern recogni-
tion can be applied. It remains to be studied which of these
tools are the most appropriate for the problem at hand.

Furthermore, we have restricted ourselves by the optimiza-
tion of only one part of the PMD created by the direct electrons.
However, our preliminary results show that the momentum dis-
tribution of the rescattered photoelectrons are more sensitive
optimization target that can be used for the retrieval of the
potential. This suggests to develop a method optimizing the
distributions of the rescattered electrons. It is obviously more
difficult to obtain suitable SAE potentials for molecules than
for atoms. To the best of our knowledge, the SAE potentials
are presently available only for some simple molecules (see,
e.g. [71–76]). Therefore, it would be of interest to extend the
proposed optimization technique to the molecular case. Future
studies are required to address the issues listed here. Devel-
opments in these directions have already begun. We believe
that the advent of the method for retrieval of the SAE potential
from the electron momentum distribution will be an important
step forward in the studies of strong-field ionization.
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At the core of attosecond science lies the ability to generate laser pulses of subfemtosecond duration. In
tabletop devices the process relies on high-harmonic generation, where a major challenge is to obtain high
yields and high cutoff energies required for the generation of attosecond pulses. We develop a computational
method that can simultaneously resolve these issues by optimizing the driving pulses using quantum optimal
control theory. Our target functional, an integral over the harmonic yield over a desired energy range, leads
to a remarkable cutoff extension and yield enhancement for a one-dimensional model H atom. The physical
enhancement process is shown to be twofold: the cutoff extension is of classical origin, whereas the yield
enhancement arises from increased tunneling probability. The scheme is directly applicable to more realistic
models and, within straightforward refinements, also to experimental verification.

DOI: 10.1103/PhysRevA.90.053402 PACS number(s): 32.80.Rm, 42.65.Ky, 42.65.Re, 42.79.Nv

The revolution of attosecond science, i.e., monitoring and
controlling the dynamics of electrons in their native time scale,
relies on the generation of laser pulses with duration of a
few dozen attoseconds [1]. Such pulses can be generated by
using large-scale free-electron laser facilities [2] or in tabletop
devices using high-harmonic generation (HHG), an ultrafast
frequency conversion process [1]. Using tabletop devices,
however, comes with a price: the generated attosecond pulses
are often too long and they suffer from low intensity [1].

A high-harmonic spectrum has an energy range of nearly
constant intensity (plateau), which ends in a distinctive
cutoff [3]. Attosecond pulses are formed from the harmonics
on the plateau [1]. Hence, the low amplitude of the pulses is
due to low harmonic yield and the pulse duration is determined
by the cutoff energy (the higher the energy, the shorter the
pulse) [1]. The objectives of increasing the yield and reducing
the pulse duration can be addressed by temporal shaping of the
driving pulse—already experimentally realizable either with
multicolor fields or with more sophisticated techniques [4].
Yet a crucial question remains unanswered: how to find the
optimal shape of the driving pulse to enhance HHG.

Numerous previous studies have tackled the issues of cutoff
and yield; for a recent review see, e.g., Refs. [5,6]. The main
scheme behind the cutoff extension has been using two-color
laser fields [7,8] or chirped pulses [9–11], but also steepening
of the carrier wave [12] or even using a sawtooth pulse
should extend the cutoff [13]. In addition, combined temporal
and spatial synthesis of the driving field has been shown to
extend the cutoff [14]. A previous study based on quantum
optimal control theory (QOCT), for example, demonstrated
some cutoff extension, albeit with a low yield, by maximizing
the ground-state occupation at the end of the pulse [15].

*janne@solanpaa.fi
†esa.rasanen@tut.fi

Yield increase of the plateau has been accomplished, e.g.,
by two-color fields [16–21] and also by using a mixture of two
target gases [22]. In a separate work [23], some of the authors
of the present work addressed the selective enhancement of
harmonic peaks; selective harmonic enhancement has been
studied using QOCT also in Ref. [24], and experimentally, e.g.,
in Ref. [25]. Recently also the attosecond pulse generation has
been optimized using genetic algorithms [26].

In this paper, we provide an efficient computational method
to simultaneously enhance both the yield and the cutoff energy
of the harmonic plateau by optimizing the driving pulses with
QOCT [27–29]. The optimal pulses are found by maximizing
the target functional, an integral over the harmonic yield over
a desired energy range. Surprisingly, the enhancements are
achieved with fixed-fluence pulses; i.e., the search is performed
over the set of pulses with equal duration and fixed fluence
(integrated intensity). We examine in detail the physical origin
behind the enhancement, which is found to be of classical
nature to a significant extent.

To demonstrate our method, we use one-dimensional hydro-
gen with the soft-Coulomb potential [30] V(x) = −1/

√
x2+1

as our model system and the laser-electron interaction is
calculated in the dipole approximation. The harmonic spectra
are calculated from the Fourier transform of the dipole accel-
eration d̈(ω) as S(ω) = |d̈(ω)|2/ω2 as suggested in Ref. [31].
Unless otherwise specified, Hartree atomic units (a.u.) are used
throughout the paper, i.e., � = qe = me = 1/(4πε0) = 1. The
time-evolution operator is calculated using the exponential
midpoint rule [32] with the Lanczos algorithm [33] for the
operator exponential; during time propagation we also use
imaginary absorbing boundaries. We use box sizes of 4000–
6000, grid spacings of 0.2–0.3, and time steps of 0.03–0.05;
the parameters have been checked to ensure full convergence.
Most of the calculations—including QOCT discussed
below—are done in length gauge using the OCTOPUS code [34].

In QOCT one solves for a laser pulse ε(t) that maximizes
a target functional J1[ε]. To optimize the harmonic spectrum,

1050-2947/2014/90(5)/053402(5) 053402-1 ©2014 American Physical Society
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we have implemented a target of the form

J1[ε] =
∫ ωb

ωa

|d̈[ε](ω)|2 dω, (1)

where [ωa,ωb] is the frequency range for the desired en-
hancement of the HHG spectrum. The field ε is represented
by a set of parameters, and maximization of the functional
defined in Eq. (1) amounts to a function maximization for
those parameters. We have used both a gradient-free algorithm
(NEWUOA [35]) and the gradient-based Broyden-Fletcher-
Goldfarb-Shannon (BFGS) algorithm [36] (the expression for
the gradient is supplied by the QOCT). As we will see, both
algorithms provide similar enhancements in the harmonic
spectrum. The optimized pulses are constrained by (i) a finite
number of frequencies with the maximum frequency ωmax,
(ii) a fixed pulse length, and (iii) a fixed fluence which is set
to that of a single-frequency reference pulse, whose shape is
shown in the figures below. For each set of pulse constraints,
we begin the optimization from several (5–10) random initial
pulses and report here the best result; it is important to note
that QOCT always converges into a local maximum in the
parameter space.

First we apply the NEWUOA algorithm to optimize a laser
pulse for HHG in the target interval ω ∈ [1.3,4] a.u. The pulse
length is fixed to T = 1104 (26.7 fs) and the carrier frequency
of the reference pulse is ω = 0.0569 a.u. (wavelength λ ≈
800 nm corresponding to the typical range of Ti:sapphire
lasers), which we choose to keep as the maximum allowed
frequency of the optimized pulse to prevent the formation
of complicated pulses with high-frequency components. The
peak intensity of the reference pulse is 6 × 1013 W/cm2, and
the fluence is kept constant in the optimization. The reference
and optimized pulses are shown in Fig. 1(a) as red (light
gray) and blue (dark gray) lines, respectively. The optimized
harmonic spectrum in Fig. 1(b) completely fulfills the desired
target, and in addition to the cutoff extension, the yield is also
increased by several orders of magnitude.

Next we comment on the two most obvious characteristics
of the optimized pulse in Fig. 1(a). First, it is important
to note that the high-intensity half cycle in the beginning
is not responsible for the significant increase in the HHG
yield and cutoff. If this part were later in the pulse, the
cutoff would be at ω ≈ 2.5 a.u. A similar effect is seen
if, e.g., the last low-intensity peak is missing. Second, as
shown in the inset of Fig. 1(a), the optimized pulse contains
lower-frequency components. Indeed, the standard theoretical
HHG considerations predict that lower frequencies should lead
to higher cutoff energy due to higher ponderomotive energy.
However, merely using low-frequency single-color pulses
produces very low yields. It is the shaped multifrequency
pulses that produce both the large cutoff and high intensities.
Furthermore, in the case of HHG resulting from pulses that
have a single carrier frequency, the harmonic peaks are equally
separated by twice the carrier frequency. In the case of
optimized pulses, however, we find no connection between
the frequency components in the pulse and the HHG peak
separations. This is expected in view of the complexity of the
optimized pulse in the time-frequency plane, even though we
applied rather simple pulse constraints as explained above.
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FIG. 1. (Color online) Optimization results for the HHG spec-
trum with the target range ω ∈ [1.3,4] a.u. The pulse length is
T = 1104 a.u. and the frequency of the reference pulse is ω = 0.0569
a.u., equal to the maximum frequency in the optimization. The fluence
is kept constant. (a) Optimized [red (light gray)] and reference [blue
(dark gray)] pulses and their frequencies (inset). (b) High-harmonic
spectra for optimized [red (light gray)] and reference [blue (dark
gray)] pulses. The target range is shown with vertical dashed lines.
(c) Quantum-mechanical time-dependent harmonic spectrum in log
scale [color (gray scale)] and return energies calculated from the
semiclassical model (solid line). Spurious branches from a uniform
tunneling rate are shown with dashed lines (see text).

The emission process is further demonstrated in Fig. 1(c),
where the color (gray scale) image shows the time-frequency
map of the quantum dipole acceleration, d̈(t,ω). The time-
frequency map is calculated as a discrete short-time Fourier
transform (STFT) [37] using the Blackman window func-
tion [38]. In essence, the time axis is split into multiple
overlapping windows, and the dipole acceleration is Fourier
transformed in each window. Finally, we plot the quantity
S(t,ω) = |d̈(t,ω)|2/ω2 in log scale in analog with the harmonic
yield; here t corresponds to the middle of each time window of
the STFTs. S(t,ω) essentially describes HHG in time. Bicubic
interpolation is used for slight visual improvements. The cutoff
extension up to ω � 2.5 a.u. occurs throughout the pulse as it
is the effect of the high-intensity peak. The full extension up to
ω = 4 a.u., however, occurs only at the end of the pulse. This
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clarifies the above-mentioned fact that the complete structure
of the optimized pulse is important.

Next we examine the physical origin of the cutoff extension
in more detail by employing semiclassical simulations. An
ensemble of classical trajectories is propagated with initial
times t0 distributed according to either a uniform tunnel-
ing rate w(t0) ∼ 1 or exponential tunneling rate w(t0) ∼
exp{−[2(2Ip)3/2]/[3|ε(t0)|]} [39–41], where Ip = 0.669 a.u.
is the ionization potential of our system. At the tunnel exit
obtained from the classical turning point equation V (x) +
Fx(t)x = −Ip, the velocity is set to zero and the electron is
propagated classically. Upon return of the tunneled electron to
the origin, a photon is emitted with frequency corresponding
to the kinetic energy of the electron; also later returns are
recorded and taken into account. Note that in contrast to
the three-step (simple man) model [42], where the electron
starts from the origin and moves in the laser field only, the
electron in our model starts at the tunnel exit and moves in the
combined force field of the laser and the atomic potential. It
should be noted that in contrast to our semiclassical simulation
taking the atomic potential into account, the three-step model
underestimates the cutoff energy. For the parameters of Fig. 2
the cutoff calculated from the three-step model corresponds
to 3.2 a.u. (compare to 4.2 a.u. predicted by semiclassical
simulations with binding potential shown in Fig. 2).

The return energy maps of the semiclassical model as a
function of the return time (solid curves) are compared with
the time-dependent harmonic spectrum in Fig. 1(c). Due to
the pulse shape, the electron can return only once to the
origin. With uniform tunneling distribution, the semiclassical
model exhibits a few spurious branches (dashed black curves),
which are suppressed when using the exponential tunneling
rate. The remarkable agreement between the semiclassical
and quantum descriptions highlights the classical origin of
the cutoff extension.

In Fig. 2(a) we show a BFGS-optimized pulse [red (light
gray)] with the same reference pulse [blue (dark gray)]
as in Fig. 1. The target range is now ω ∈ [1,5] a.u., i.e.,
considerably larger than in the previous case. Despite a slightly
more complicated temporal shape of the optimized pulse, the
resulting HHG spectrum [Fig. 2(b)] is similar to the first case.
Now, however, the optimized pulse allows multiple returns of
the electron to the origin as shown in Fig. 2(c) when using an
exponential tunneling rate. Not all of the quantum-mechanical
harmonic emissions can be found in the semiclassical model
with exponential tunneling distribution. They are, however,
allowed by the semiclassical model and visible when using
a uniform tunneling rate. Therefore, the semiclassical picture
does agree with the quantum description, but the exponential
tunneling distribution does not produce all tunneling events.

Next we double the pulse length while keeping the peak
intensity of the reference pulse, the maximum frequency, and
the target HHG range the same (note that the fluence is also
doubled). The BFGS-optimized pulse of Fig. 3(a) now leads to
complete extension of the cutoff all the way up to ω = 5 a.u., as
demonstrated in Fig. 3(b). This is likely due to higher fluence
and more freedom in the shaping of the longer pulse.

The effect of late returns [see, e.g., Fig. 2(c)] can be
analyzed in the semiclassical picture. The harmonic spectrum
can be calculated as a histogram of the electron energies

0 250 500 750 1000
time (a.u.)

−0.1

0.0

0.1

(a
.u

.)

(a)

optimized
reference

0 0.05 0.1
ω (a.u.)

|(
ω
)|

0 1 2 3 4 5 6
ω (a.u.)

10−9

10−3

103

y
ie

ld
(a

rb
.

u
n
it

s)

target(b)

opt.
ref.

0 200 400 600 800 1000
time (a.u.)

0

2

4

6

ω
(a

.u
.)

(c)

min

max

y
ie

ld

FIG. 2. (Color online) Same as Fig. 1 but for an extended
target range (up to ω = 5 a.u.) and for the gradient-based BFGS
optimization algorithm. In (c), energies of an electron calculated
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upon return to the origin with weights from the exponential
tunneling rate (see above). The resulting spectra demonstrate
varying contributions of late returns between different pulses.
Even in the case of pulse of Fig. 2(a), where late returns are
evident, their contributions to the spectra in the semiclassical
models are minimal. In contrast, for the optimal pulse of Fig. 3,
also the second return plays an important role in enhanced
HHG.

The yield increase can be attributed to the increased tunnel-
ing probability compared to the reference pulses. Indeed, the
yield increase of comparable, albeit slightly larger, magnitude
can be found when using single-frequency pulses with the
same maximum amplitude as in the optimized pulses, but
the extension of the cutoff does not reach the optimized
results. Sensitivity of HHG to the pulse amplitude has been
previously reported in, e.g., Refs. [18,43]. The sensitivity is
also obvious from the analytic factorization of the HHG rates in
Ref. [44]. We emphasize that the yield increase of the presented
optimized HHG arises from an increased tunneling rate, not
from resonances as, e.g., in Ref. [16]: in our case a minimum
of seven-photon absorption would be required, which is highly
unlikely.

Finally, we verify which stationary states are involved in
the enhanced HHG process. For this purpose, we solve the
time-dependent Schrödinger equation in momentum space
and velocity gauge by expanding the state in terms of the
eigenstates of the field-free Hamiltonian [45]. Note that the
occupations are gauge dependent. We find that approximately
four lowest bound states are essential for the enhanced HHG,
but ten are required for (nearly) full convergence of the spec-
trum; the numbers are similar for reference pulses. However,
in the optimized HHG much of the electron density reaches
high-energy continuum states, whereas for the reference pulse
the electron occupation is mostly in the bound states and in
the low-energy continuum (see Fig. 4).

To summarize, we have developed an optimal-control
scheme to simultaneously enhance both the yield and the
cutoff energy of HHG. Our target functional, an integral
over the harmonic yield in a desired energy range, leads to
a significant increase in the HHG yield and cutoff energy
within two different optimization algorithms. Furthermore, we
have shown through semiclassical studies that the extension
of the cutoff is of classical origin. Instead, the increase
in the harmonic yield is found to be due to increased
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FIG. 4. (Color online) Occupations (log scale) of stationary
states in velocity gauge for the reference (gray bulb-shaped structures
at the bottom) and optimized (colored structures elsewhere) pulse of
Fig. 1.

tunneling probability arising from increased peak amplitudes,
while the fluence is kept constant in the optimization. We note
that in higher-dimensional models, the harmonic yield will be
affected by transversal spreading of the electron wave packet.
However, our preliminary results (not shown here) demon-
strate even the one-dimensional-optimized pulses provide
qualitatively similar cutoff extension and no significant loss of
yield also when applied to a two-dimensional model; we expect
a similar tendency also for three dimensions. In addition, by
doing the optimization within the same dimensionality, there
can be additional degrees of freedom in the pulse regarding,
e.g., polarization, number of frequency components, and pulse
sources, which will help counter the issue of wave packet
spreading.

We leave the detailed analysis of realistic pulse constraints
to three-dimensional and many-electron models, where such
analysis will be more relevant. With such refinements, we
expect our method to be usable also in experimental applica-
tions, which can have direct implications in the development of
efficient, flexible, and tunable light-emitting tabletop devices.
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Suppression of strong-field ionization by optimal pulse shaping:
Application to hydrogen and the hydrogen molecular ion
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We investigate the ability of quantum optimal control theory to shape pulses suppressing strong-field ionization
of a hydrogen atom and a H2

+ molecule. We show that considerable suppression of the ionization yield can be
achieved for both H and H2

+ with optimal pulse shaping for a fixed fluence and pulse length. The mechanisms
responsible for ionization suppression and the shape of the optimized pulse are different for infrared and ultraviolet
laser fields. In the low-frequency regime the optimized pulse reduces the ionization yield by suppressing the
highest peaks of the laser field. For the higher laser frequencies considered the ionization yield of H can be
decreased by exciting low-lying resonances.

DOI: 10.1103/PhysRevA.91.023425 PACS number(s): 32.80.Qk, 32.80.Rm, 32.80.Fb, 42.50.Hz

I. INTRODUCTION

The remarkable progress in laser technology during the
last two decades has made it possible to monitor, manipulate,
and control electron dynamics in real time. Weak extreme
ultraviolet laser pulses with a duration of several dozens of
attoseconds, as well as strong infrared pulses of femtosec-
ond duration, are extensively used for these purposes [1].
Recently it was demonstrated that few-femtosecond pulses
of a predefined shape can be synthesized using several control
knobs, including beam sizes, chirps, and time delays in the
respective frequency ranges [2,3]. The use of these tailored
pulses opens up new prospects for manipulation of the electron
motion on the atomic scale. The control of electron dynamics
on its natural time scale implies a great diversity of possible
applications, e.g., in femtochemistry, where some reactions
occur on the femtosecond and, in some cases, the attosecond
time scale [4].

One of the most challenging problems in femtochemistry is
the laser control of chemical dynamics (see, e.g., Ref. [5] for a
recent review). This problem has a variety of applications and
perspectives, including photoassociation [6], enhancement of
molecular bond breaking in the electronic ground state [7,8],
control of the branching ratio in photofragmentation (see, e.g.,
Refs. [9–11]), and possible creation of molecules which cannot
be created by other means. It is customary to distinguish
between weak-field and strong-field laser control. Strong-
field control is often more efficient than control using weak
laser fields [5]. For example, laser intensities higher than
1013 W/cm2 are required to control branching ratios in
photofragmentation of CH2BrCl more efficiently than is
possible using weak fields [5,11,12]. However, it was ex-
perimentally found in Ref. [12] that the fragments of the
molecule resulting from photofragmentation are ionized when
using a strong field. The same problem arises in the control
of electron localization in molecular dissociation [13], where
undesired ionization limits the outcome. Hence, we face a
situation where the strong field is desirable because of the
potentially larger degree of control in a given process. At the
same time the use of a strong field has the undesirable side
effect of increased ionization, impeding control. Therefore,
suppression of undesired ionization produced by a strong laser

pulse is an important step towards establishing laser control as
a versatile tool in femtochemistry and strong-field physics.

A powerful theoretical approach to the control of quantum
phenomena also in a strong field is provided by the quantum
optimal control theory (QOCT) [14,15] (see Refs. [16] and [17]
for recent reviews). For example, very recently QOCT was
successfully applied to extend the cutoff energy and the
yield of high-order harmonics [18] and to control electric
dipole transitions in a real multilevel system consisting of
hyperfine levels in the electronic ground state of the OH
molecule [19]. The inverse problem to the one we discuss
here, i.e., enhancement of the ionization yield, was studied in
Ref. [20] by applying QOCT to H2

+ with a fixed internuclear
distance. The duration of the laser pulse and its total energy
(fluence) were fixed in the optimization process to the same
values as in the initial (nonoptimized) pulse. Considerable
enhancement of ionization was achieved for both parallel and
perpendicular orientations of the molecular axis with respect
to the laser polarization. It was shown that the magnitude
of the obtained enhancement and the shape of the optimized
pulse depend on the constraints imposed on the laser frequency
during optimization. When only low frequencies are allowed,
the optimized pulse simply increases the field strength in one of
its half-cycles and, in order to keep the fluence fixed, decreases
the field strength of other half-cycles. If higher frequencies
are allowed in the QOCT procedure, the optimized field has
a more complicated structure and, as a consequence, drives
the molecule through intermediate states [20]. As a result,
ionization can be enhanced by resonance transitions.

Ionization suppression by pulse shaping for a fixed fluence
and duration of the pulse was analyzed in Ref. [21] for a
one-dimensional (1D) model H atom on the basis of QOCT.
From here on we refer to the (near-) infrared fields as low-
frequency and the ultraviolet fields as high-frequency fields.
Significant suppression of ionization yield was achieved in
Ref. [21] in both low-frequency and high-frequency regimes
with respective physical mechanisms: in the first case, the
ionization dynamics takes place in the tunneling regime and
the suppression was achieved by a reduction of the peak
laser intensity, which significantly decreases the probability
of tunneling ionization [22]. This mechanism is opposite to
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the one revealed in Ref. [20] for maximizing ionization in
the tunneling regime. In contrast to this, complex excitation
and de-excitation processes during the action of laser pulses
prevent ionization efficiently in the high-frequency regime. To
the best of our knowledge, studies on ionization suppression
for three-dimensional (3D) atoms or molecules have not
been carried out so far, and a quantitative assessment of the
ionization suppression and its controllability in a real system
is the topic of the present work.

In this paper we investigate the ability of the QOCT to
suppress the ionization of H and H2

+ by optimization of the
shape of the laser pulse while keeping the pulse energy and
duration fixed to some initial reference values. In the case
of H we focus on both low-frequency and high-frequency
regimes. Due to the numerical complexity of the application
of the QOCT, we restrict our consideration of H2

+ to the
case of a fixed internuclear distance as in Ref. [20]. Since
we fix the internuclear distance, the results of our simulations
are applicable only for ultrashort laser pulses, so that nuclear
motion can be neglected.

The paper is organized as follows. In Sec. II we briefly dis-
cuss the QOCT and its application to ionization suppression.
In Sec. III we investigate suppression of the ionization yield in
H. We analyze the physical mechanisms underlying ionization
suppression by pulse shaping. In Sec. IV we study suppression
of the ionization process in H2

+. The conclusions of the paper
are given in Sec. V. Atomic units (� = m = e = 1) are used
throughout unless indicated otherwise.

II. QUANTUM OPTIMAL CONTROL THEORY AND ITS
APPLICATION TO IONIZATION SUPPRESSION

Before presenting and discussing the results of our sim-
ulations, we briefly sketch the numerical technique used.
The main question that is addressed in the QOCT can be
formulated as follows: What is the external time-dependent
field that maximizes the transition probability to a prescribed
final state from the given initial state? The usual formulation
of the problem in QOCT is to find extremal points of the
functional consisting of three terms (see, e.g., Ref. [16]). The
first term is the target functional, which can be expressed as
the expectation value of the so-called target operator being
maximized at the end of the laser pulse. The second term of
the functional is a constraint imposed on the field (a fixed
fluence in our case), and the third one is a Lagrange multiplier
that ensures the fulfillment of the time-dependent Schrödinger
equation (TDSE).

Since our goal is to suppress the ionization yield, we need
to maximize the population in the bound states of the system
of interest at the end of the laser pulse. However, optimization
in this formulation often becomes numerically difficult [20].
Following Ref. [21], we define the ionization yield as unity
minus the projection onto several of the lowest eigenstates.
In most cases this yield is very close to the one calculated
taking into account only the ground state in the optimization.
The exception is provided by H in the high-frequency regime
(see Sec. III A). But even in this case the difference between
the ground-state occupation and the total occupation of all
the bound states does not exceed 10%–20%. In view of the
above, we use a projection onto the ground state |�0〉 as a

target operator Ô = |�0〉〈�0|, and hence, the first term of the
functional maximized in the QOCT is given by

J1 = 〈�(T )|Ô|�(T )〉 = |〈�(T )|�0〉|2, (1)

where |�(t)〉 is the time-dependent wave function, and the
laser pulse ends at t = T .

Several QOCT algorithms have been developed (see, e.g.,
Refs. [15–20], and [23–26]). The applicability and efficiency
of these schemes crucially depend on the specific target
functional and constraints put on the laser field. When the
maximal allowed frequency of the field is relatively high, the
scheme of Werschnik and Gross [26], WG05, is very efficient.
Therefore, we use this scheme for ionization suppression of H
in the high-frequency regime. The WG05 scheme is based on
multiple forward-backward propagations of the TDSE. This
scheme does not use an expansion of the laser field in a basis:
The temporal shape of the pulse is varied freely during the
optimization process. The frequency constraints are expressed
in the WG05 scheme using a filter function [16]. Note that
the condition

∫ T

0 F (t)dt = 0 for physically meaningful laser
fields, F (t) (see, e.g., Refs. [27] and [28]), is not automatically
fulfilled in the WG05 algorithm: The scheme can sometimes
result in a nonzero integral of the optimized laser field. In this
case the optimized pulse has to be modified by adding some
function ε(t) such that

∫ T

0 [F (t) + ε(t)]dt = 0. However, this
modification generally worsens the optimization result as
pointed out in Sec. III B.

For H in the tunneling regime and for H2
+ at high laser

intensities we are interested in relatively low frequencies and
we use the direct optimization scheme [20]. In this scheme, a
merit function,

M(p) = 〈�p(T )|Ô|�p(T )〉, (2)

is maximized in the set of parameters of the laser pulse
p using a derivative-free algorithm (e.g., the Nelder-Mead
algorithm [29]), and the laser field F (t) is expressed in the
Fourier basis,

F (t) =
N∑

n=1

[
αn

√
2

T
cos(ωnt) + βn

√
2

T
sin(ωnt)

]
, (3)

where ωn = 2πn/T . The condition
∫ T

0 F (t)dt = 0 is auto-
matically fulfilled for the field given by Eq. (3). Moreover, by
imposing the constraint

∑N
n=1 βn = 0, we set F (0) = F (T ).

The sum over n in Eq. (3) is truncated with the maximum
allowed frequency, which, in turn, has to be chosen from
physical considerations.

The QOCT schemes discussed here are based on the ab
initio numerical solution of the TDSE; i.e., no approximations
are done to obtain the time-dependent wave function |�(t)〉.
The TDSE is solved in the length gauge using the OCTOPUS

code [30]. By using sufficiently large simulation boxes we
ensure that only a negligible fraction of the electron density
reaches the box boundaries. Nevertheless, we used the sin2

absorbing potential in order to absorb this small fraction. The
size and shape of the simulation box, the grid spacing, and
the time step are tailored for each specific case to ensure
convergence and are given below.
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III. SUPPRESSION OF IONIZATION YIELD OF H

A. Reference data and the high-frequency regime

Before we present and discuss the QOCT results, we
produce an extensive set of reference data on ionization of
H using nonoptimized pulses. To this end, we solve the TDSE
for an H atom irradiated with a single-frequency laser pulse
with the sinusoidal envelope,

F (t) = −F0 sin

(
πt

2τ0

)
cos(ωt), (4)

where F0 is the field strength, ω is the carrier angular
frequency, and τ0 = 103.35 a.u., corresponding to the pulse
duration of T = 2τ0 = 206.71 a.u. (5 fs). The TDSE is solved
on a 3D Cartesian grid. The Coulomb singularity is avoided by
using the Troullier-Martins pseudopotential [31] with a core
radius equal to 1.25 a.u. This leads to the correct ground-state
energy of −0.5 a.u. For the simulations we use a sphere with
radius 18 a.u., grid spacing 0.3 a.u., and time step 0.04 a.u.
We calculate the occupations of the 20 lowest eigenstates and
define the ionization yield as 1 minus the total occupation of
these states. The frequencies ω under consideration do not
exceed the ionization potential (0.5 a.u.), so we are not in the
stabilization regime [32,33].

The total bound-state occupation and the occupation of the
ground state at the end of the laser pulse given by Eq. (4) as a
function of the field strength F0 are shown over the range of
frequencies between ω = 0.2 a.u. (228 nm) and ω = 0.5 a.u.
(91 nm) in Figs. 1(a) and 1(b), respectively. Figure 1(c)
presents ionization yields as functions of F0 over the same
range of laser frequencies.

As expected, at a fixed frequency the total bound-state
occupation decreases with the field strength, and hence, the
ionization yield increases. However, the frequency dependence
of both the total bound-state and the ground-state occupations
is not monotonic. Before we proceed further, recall that the
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FIG. 1. (Color online) (a) Total bound-state occupation, (b)
ground-state occupation, and (c) ionization yield (arbitrary units) of
an H atom at the end of the laser pulse given by Eq. (4) as functions
of the pulse amplitude F0 and the frequency ω. The pulse length is
T = 206.71 a.u. (5 fs), and the number of cycles ranges from 7 to 16
for ω = 0.2 a.u. and ω = 0.5 a.u., respectively.
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FIG. 2. (Color online) (a) Total bound-state [dashed (red) curve]
and ground-state [solid (blue) curve] occupations in H at the end of the
laser pulse as a function of the pulse frequency. (b) Ionization yield
as a function of pulse frequency. The field strength is F0 = 0.15 a.u.,
and the pulse length is as in Fig. 1. Dashed vertical lines indicate the
frequencies studied in Fig. 3.

tunneling and the multiphoton regimes correspond to γ � 1
and γ � 1, respectively. Here γ = ωκ/F0 is the Keldysh
parameter [34], where, in turn, κ = √

2Ip, with Ip being the
ionization potential. For F0 = 0.4 a.u. the range of frequencies
0.2 � ω � 0.5 a.u. (see Fig. 1) corresponds to the following
range of Keldysh parameters: 0.5 � γ � 1.24. Note that for
F0 = 0.05 a.u. the same frequency range corresponds to
4.0 � γ � 10.0. The variation of the ground-state occupation
for fixed ω and increasing F0 indicates that intermediate
resonances play a role in the ionization process when γ > 1.

The dependence of the occupations and the ionization
yield on the laser frequency is further illustrated in Fig. 2,
obtained by a cut of Figs. 1(a)–1(c) at F0 = 0.15 a.u. (shown
by dashed lines). Both occupations demonstrate oscillating
behavior as functions of the laser frequency and have their
two highest local maxima in the range between ω = 0.35 a.u.
and ω = 0.45 a.u. The local maxima of the total bound-state
occupation are larger and more pronounced than those of the
ground-state occupation. Note that for the frequencies and
pulse durations used the changes in the number of photons
required for ionization (channel closings) are not visible in the
results.

In order to understand these frequency dependencies, we
can analyze the occupations of all the bound states for several
laser pulses with fixed amplitude F = 0.15 a.u. and different
frequencies in the range of 0.2 � ω � 0.5 a.u. The occupations
of some of the bound states during the pulses given by Eq. (4),
with F = 0.15 a.u. and ω = 0.33, 0.4, 0.45, and 0.5 a.u. (see
dashed lines in Fig. 2), are shown in Figs. 3(a), 3(c), 3(e),
and 3(g), respectively. The corresponding total bound-state
occupations along with the continuum populations are shown
in Figs. 3(b), 3(d), 3(f), and 3(h). Note that it is physically
meaningful to calculate the population in the continuum during
the laser pulse using the length gauge [35]. It is clear that two
resonances are excited within the frequency range discussed
here: Rabi-like oscillations are seen in all the figures, but they
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FIG. 3. (Color online) Occupations of some of the lowest states
[(a), (c), (e), and (g)], and total bound-state occupations along with
continuum populations [(b), (d), (f), and (h)] in H during a laser pulse
with F0 = 0.15 a.u. for four laser frequencies: (a, b) 0.35 a.u., (c, d)
0.4 a.u., (e, f) 0.45 a.u., and (g, h) 0.5 a.u. The pulse length is as in
Figs. 1 and 2.

are most pronounced for ω ≈ 0.40 a.u. [Figs. 3(c) and 3(d)]
and for ω ≈ 0.45 a.u. [Figs. 3(e) and 3(f)].

The first resonance, at ω ≈ 0.40 a.u. [Fig. 3(c)], cor-
responds to the 1s ↔ 2p transition. The difference in the
resonant frequency from the energy gap between the 1s and
the 2p levels (0.375 a.u.) is due to the ac Stark shift (see
Ref. [36] for a review). Indeed, the ac Stark shift of the 1s

state is negative, while the 2p state is shifted upwards; see
Ref. [37], where these shifts are calculated from the real parts
of complex Floquet energies [38] over a range of frequencies
for a long pulse with amplitude F0 = 0.12 a.u., somewhat
lower than that of interest here. The imaginary parts of the
Floquet energies give the corresponding ionization rates. The
second resonance, at ω ≈ 0.45 a.u. [Fig. 3(e)], corresponds
to the 1s ↔ 3p transition. Separate calculations (not shown
here) reveal that the oscillations of both the ground-state and
the total bound-state occupations for ω � 0.3 a.u. are absent
for a many-cycle rectangular pulse and the field strengths
considered here. Therefore, the oscillations clearly visible in
Figs. 2(a) and 2(b) for ω � 0.3 a.u. are produced by the pulse
envelope.

The ionization probability of the 1s state is higher than
those of the 2p and 3p states for the frequencies considered
in Fig. 3 (see Ref. [37]). For this reason, the excitation of
resonances with these states allows an increase in the ground-
state population at the end of the laser pulse, provided that
the electron density is transferred back to the 1s state [see

Figs. 3(a), 3(c), 3(e), and 3(g)]. The numerical solution of the
TDSE shows that, due to the presence of the pulse envelope,
this is always the case in our study. It should be stressed that
the absolute maximum of the total bound-state occupation at
ω = 0.42 a.u. [Fig. 2(a)] corresponds to the situation when
substantial occupations of both the 2p and the 3p states are
observed during the laser pulse. Indeed, the frequency ω =
0.42 a.u is confined between the resonant frequencies ω ≈
0.40 a.u. and ω ≈ 0.45 a.u., which are close to each other. It
would appear natural that (i) the QOCT algorithm will shape
the pulse in order to excite both resonances, and (ii) the total
bound-state population at the end of the optimized pulse will
be larger than the maximum of the curve shown in Fig. 2(a),
which is equal to 0.74.

B. Ionization suppression in the high-frequency regime

Application of the WG05 algorithm starting from several
initial pulses with different frequencies and equal amplitudes
shows that the optimized pulse does excite both resonances.
However, the total bound-state population at the end of this
pulse does not exceed the maximum of the corresponding curve
in Fig. 2. As an initial guess we use the laser pulse of Eq. (4)
with ω = 0.4 a.u., which is very close to the resonant frequency
of the 1s ↔ 2p transition. The occupations of the ground state
and the total bound state at the end of the initial pulse are equal
to 0.50 and 0.61, respectively. Using a filter function we restrict
frequencies allowed in the optimization process to ω � 0.5 a.u.
The initial and optimized laser pulses and their Fourier spectra
are shown in Figs. 4(a) and 4(b), respectively. It is noteworthy
that the peak intensity of the optimized field is higher than that
of the initial field [see Fig. 4(a)].

The populations of several bound states at the end of the
optimized pulse are depicted in Fig. 4(c). It is seen that the
optimized pulse enhances population transfer between the 1s

and the 3p states and suppresses the 1s ↔ 2p transition, es-
pecially after the maximum of the pulse envelope. Figure 4(d)
shows the total bound-state occupation and the population
in the continuum during the optimized pulse. Although the
ground-state occupation (0.69) [see Fig. 4(d)] at the end
of the optimized pulse is higher than the maximum of the
corresponding frequency dependence (0.65; see Fig. 2), the
total bound-state occupation after the optimized field, 0.72,
is less than the maximum value, 0.74, accessible simply by
changing the frequency of the initial pulse to ω = 0.42 a.u.
Significantly stronger suppression of the ionization yield has
been obtained for a 1D model atom [21].

In order to further test the ability of the QOCT to suppress
ionization in the high-frequency regime, we changed the target
operator Ô to a local one [16] in order to maximize the electron
density in the vicinity of the atomic core. This leads to results
(not shown) similar to those in Fig. 4(a) with a total bound-state
occupation, again less than 0.74.

The above results may be summed up as follows: The
QOCT identifies and exploits the correct physical mechanism
that needs to be used in order to suppress ionization for
high laser frequencies, which couple resonantly to excited
states. However, it is sometimes difficult with the QOCT to
improve the result of the brute force optimization (e.g., of a
simple frequency scan). In this respect, the practical benefit
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FIG. 4. (Color online) (a) Initial laser pulse with F0 = 0.15 a.u.
and ω = 0.4 a.u. [dashed (blue) curve] and optimized pulse [solid
(red) curve] with a fixed fluence equal to 1.16 a.u. (b) Fourier spectra
of the pulses. (c) Occupations of some of the bound states during the
optimized pulse. (d) Total bound-state occupation and the population
in the continuum during the optimized pulse.

of the QOCT scheme is questionable, at least in the applied
high-frequency regime.

C. Ionization suppression in the low-frequency regime

In the low-frequency (tunneling) regime, the ionization
suppression for 3D H is numerically a tedious task due to the
use of a direct optimization scheme (see Sec. II) that typically
requires hundreds (500–800) of TDSE solutions. For example,
a single optimization for a 20-fs laser pulse takes about 30 days
of parallel work for eight modern CPUs with the parameters
of the simulation box as in Sec. III B and a time step of
0.1 a.u. For this reason, we present only one example of the
application of the QOCT to ionization suppression of H in
this regime. The laser field is now given by Eq. (3), and the
amplitude and the frequency of an initial pulse are equal to 0.1
and 0.0459 a.u., respectively. This corresponds to the Keldysh
parameter γ = 0.46. As in the high-frequency regime, we keep
the fluence of the pulse fixed to

∫ T

0 F 2(t)dt = 2.07 a.u. The
threshold frequency was set to ωmax = 1.4ω = 0.0659 a.u.

The initial and optimized laser pulses and their Fourier
spectra are shown in Figs. 5(a) and 5(b), respectively.
Figure 5(c) presents the time dependencies of the corre-
sponding ground-state occupations. The populations in the
continuum during both initial and optimized pulses are shown
in Fig. 5(d). It is seen that in the tunneling regime the ionization
yield can be considerably suppressed: The yield produced
by the initial pulse is about 0.76, whereas the same yield
for the optimized pulse is about 0.20. This performance can
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FIG. 5. (Color online) (a) Initial laser pulse with F0 = 0.1 a.u.
and ω = 0.0459 a.u. [dashed (blue) curve] and optimized pulse [solid
(red) curve]. The pulse fluence is fixed to 2.07 a.u. (b) Fourier spectra
of the pulses. (c) Time dependence of the ground-state occupation in
an H atom for the initial pulse [dashed (blue) curve] and the same
dependence for the optimized pulse [solid (red) curve]. (d) Continuum
occupation during the initial [dashed (blue) curve] and the optimized
[solid (red) curve] laser pulses.

be qualitatively compared with the result for a 1D model
atom in Ref. [21], where the ionization yield dropped in the
optimization process from an initial value of 0.37 down to 0.06.

The ionization rate in the tunneling regime is given to the
exponential accuracy by [22]

w(t0) ∼ exp

(
−2κ3

3F

)
, (5)

with F = F (t0), where t0 is ionization instant. It is seen from
Eq. (5) that a lower field amplitude leads to a smaller ionization
yield in an exponentially sensitive manner. This clarifies the
physical mechanism responsible for ionization suppression in
the tunneling regime. The mechanism is similar to the case of
a 1D model atom in Ref. [21]. In essence, QOCT decreases
the peak intensities of the pulse [see Fig. 5(a)], leading to a
flatter overall pulse profile. Since the fluence of the pulse is
fixed, the peaks at t � 200 a.u. and t � 650 a.u. become larger.
Consequently, the Fourier spectrum of the pulse shifts to lower
frequencies [Fig. 5(b)].

IV. IONIZATION SUPPRESSION IN THE H2
+ MOLECULE

In this section we consider ionization suppression in H2
+.

We set the internuclear distance to the equilibrium value of
2.0 a.u., where the electronic binding energy is equal to
−0.6 a.u. We consider the pulse length ≈5 fs. In order to have
reasonable values for the initial ionization yields produced
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FIG. 6. (Color online) Intensity dependence of the ionization
yield of an H2

+ molecule for the initial [dashed (blue) curve] and
optimized [solid (red) curve] laser pulses. The internuclear axis is
parallel to the polarization direction. The frequency of all initial pulses
is ω = 0.114 a.u. The fluence and the pulse duration are fixed to 3.1
and 206.71 a.u. (5 fs), respectively. The maximum frequency allowed
in the optimization is (a) ωmax = 0.23 a.u. and (b) ωmax = 0.114 a.u.

by such short pulses [see Eq. (5)], we set the peak intensity
range of the initial pulse as high as 1.25 × 1015−3.0 × 1015

W/cm2. For the frequency of the initial pulse ω = 0.114 a.u.,
the chosen intensity range corresponds to the tunneling regime
with γ = 0.66–0.43.

As for H in the low-frequency regime, we apply the
direct optimization scheme in order to suppress ionization
of H2

+. We consider the case where the internuclear axis is
parallel to the polarization direction. A combination of two
Troullier-Martins pseudopotentials [31] was used in order to
model the potential experienced by an electron in an H2

+ ion.
For the simulations we used a cylindrical box with the length
of 30 a.u. along the polarization direction and the radius
R = 12 a.u. The grid spacing and the time step are 0.3 and
0.03 a.u., respectively.

In Fig. 6(a) we show the intensity dependence of the ion-
ization yield for the nonoptimized and optimized pulses. The
maximum frequency allowed in the optimization is ωmax =
2ω = 0.23 a.u. Figure 7 shows the pulses at the intensity
2.25 × 1015 W/cm2. It is seen in Fig. 6(a) that considerable
suppression of the ionization can be achieved at most of the
intensities. For example, at the intensity of 2.0 × 1015 W/cm2

the ionization yield produced by the nonoptimized pulse is
0.53, whereas the same yield for the optimized pulse is only
0.08. It is seen that for optimized pulses the dependence of
the ionization yield on the intensity is not monotonic. The
nonmonotonic behavior arises from the fact that QOCT always
converges to a local extremum in the parameter space. To find
a “better” result, several optimizations with different initial
conditions should be tried as, e.g., in Ref. [18]. In the present
case, we were restricted to only one optimization with each
laser intensity due to computational limitations.

In Fig. 6(b) we show the optimization results for a lower
maximal allowed frequency, ωmax = ω = 0.114 a.u. Figure 7
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FIG. 7. (Color online) Initial laser pulse [dashed (blue) curve] for
ω = 0.114 a.u. and two optimized pulses [dash-dotted (green) curve
and solid (red) curve] that suppress the ionization of the H2

+ molecule
at the intensity of 2.25 × 1015 W/cm2. Dash-dotted (green) and solid
(red) curves correspond to ωmax = 0.23 a.u. and ωmax = 0.114 a.u.,
respectively.

shows the nonoptimized and optimized pulses at the intensity
2.25 × 1015 W/cm2. The generally better results in this case
[Fig. 6(b)] can be understood if we take into account that the
mechanism underlying the ionization suppression in H2

+ is the
same as the one discussed in Sec. III B; i.e., QOCT decreases
the intensity of the main peaks of the laser pulse. A larger
ωmax allows for additional freedom in the pulse shaping for
the purpose of maximizing the target functional. However, this
additional freedom in the optimization process may sometimes
result in other local maxima corresponding to less efficient
suppression of the high peaks of the laser pulse and, as a
consequence, to larger ionization (see Fig. 7). Similar results
(not shown here) are found if the H2

+ molecule is oriented
perpendicularly to the polarization direction.

Because of the numerical complexity here we do not
consider ionization suppression in the H2

+ molecule in the
high-frequency regime. However, the shape of the optimized
pulse as well as the mechanism underlying the ionization
suppression in the high-frequency regime may differ for the
H2

+ molecule compared to the H atom. The reason is that
for high frequencies the suppression of the ionization yield is
very sensitive to the resonances (see Sec. III A), and they are
different in H2

+ and H. The ionization suppression for high
laser frequencies along with the consideration of the movement
of the nuclei in H2

+ will be the subject of future studies.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have applied QOCT to tailor short, strong
laser pulses to suppress strong-field ionization of H and H2

+.
The possibility of suppressing ionization is of importance
for femtochemistry and strong-field physics, since undesired
ionization produced by strong laser pulses used, e.g., to control
the electron density in molecular dissociation or the branching
ratio in photofragmentation, may seriously limit the ability
to obtain the desired degree of control and experimental
outcomes. The experimental realization of the pulses needed
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seems within reach in view of the remarkable technological
progress that has been achieved in the generation of strong
few-cycle laser pulses with a predefined shape [2,3].

Suppression of tunneling ionization was investigated for
H2

+, whereas for H we have considered both low-frequency
(tunneling), and high-frequency regimes. We have shown that
a significant decrease in the ionization yield can be achieved
in both cases by varying the temporal shape of the laser pulse
while keeping the fluence and pulse duration fixed. The shape
of the optimized pulse and the physical mechanism responsible
for the ionization suppression are different in low-frequency
and high-frequency regimes. In the low-frequency regime, a
decrease in the ionization yield for both H and H2

+ can be
achieved by suppression of the highest peaks of the laser pulse,
for which the tunneling probability is maximal.

It is shown that for H in the high-frequency regime the
optimized pulse suppresses the ionization by using a resonant
population transfer between the ground state (1s) and some
of the excited states (2p and 3p). However, it is difficult
to improve the result of a brute force “single-frequency”
optimization by using the QOCT in an attempt to maximize

the ground-state occupation or the electron density near the
atomic core at the end of the pulse.

The results of our fully 3D real-space calculations can be
used as a benchmark for further studies of the suppression of
strong-field ionization by optimal pulse shaping. A natural,
albeit challenging next step could be the inclusion of the
nuclear motion in order to better mimic, e.g., pump-probe
experiments. Developments in this direction are on the way.
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Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are

two powerful emerging methods for probing the ultrafast dynamics of molecules. However,

both of them have remained restricted to static systems and to nuclear dynamics induced
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T
ime-resolved measurements of molecular dynamics have
made substantial progress over the past years. In particular,
electronic dynamics in atoms and molecules have become

accessible through recent developments in attosecond and strong-
field science1–10. This fundamental progress has so far remained
restricted to methods relying on spectroscopy, rather than
diffraction. In other words, electronic dynamics have been
recorded by measuring either the time-dependent populations
of electronic eigenstates or their accumulated phase differences,
which does not provide any structural information about
electronic wave functions. However, the interaction of a
molecule with a strong laser field naturally provides access to
structure by inducing rescattering between the laser-driven
photoelectron wave packet and the parent ion. This so-called
laser-induced electron diffraction (LIED)11,12 has been used to
probe the structure of static atoms and molecules13–20, and to
obtain evidence of nuclear dynamics following strong-field
ionization21. Photoelectron holography, which results from
interference between electrons that have scattered from the
parent ion and electrons that have not, has also been used to
interrogate the structure of static atoms and molecules22–24, and
to reveal nuclear dynamics following ionization25. Although the
imprint of electronic dynamics on photoelectron distributions has
been reported for neutral atoms26, it is not obvious whether the
distributions can be interpreted in terms of LIED or holography.
As far as molecules are concerned, electronic dynamics have so
far escaped observation by any of these powerful methods. As
LIED and holography rely both on the wave nature of the electron
and on rescattering, they are expected to be sensitive to small
variations of the molecular structure. Earlier work on electron
interference without rescattering27–30 has already revealed the
sensitivity to the symmetry of the bound state.

In this study, we transpose photoelectron holography and
LIED from static systems to probing coupled electronic and
nuclear dynamics in molecules. We first concentrate on purely
electronic dynamics and show that a valence-shell electron wave
packet leads to a very strong contrast modulation of the
holographic fringes. Our calculations trace the origin of this
effect to the time dependence of the momentum-space electron
wavefunction, which modulates the amplitude ratio and the
relative phases of scattering and non-scattering trajectories. We
then investigate the manifestation of coupled electronic and
nuclear dynamics taking place on similar time scales. We
find signatures of both types of dynamics in photoelectron
holography, but LIED is found to be almost exclusively sensitive
to the nuclear dynamics. These results suggest avenues for
disentangling electronic and nuclear dynamics in molecules,
which is particularly interesting in the case of non-adiabatic
dynamics, such as those occurring at conical intersections31.

Results
Experiment. We use impulsive stimulated Raman scattering
to prepare a coupled electronic and rotational wave packet in
the neutral NO molecule. A supersonic molecular beam was
formed by expanding a 1% mixture of NO with helium through
a pulsed Even–Lavie valve. Several rotational states within the
2P1/2 ground electronic state and the 2P3/2 first excited electronic
state (separated by 15 meV) are impulsively prepared by a
non-resonant laser pulse (800 nm, 145 fs, 4� 1013 W cm� 2 peak
intensity). The long duration of the laser pulse is chosen to avoid
the preparation of vibrational wave packets in NO and NOþ

(periods of 17 and 14 fs, respectively). The wave packet is
subsequently probed by strong-field ionization (800 nm, 35 fs,
2.3� 1014 W cm� 2) and the photoions and photoelectrons are
detected by a velocity-map-imaging spectrometer32,33. We also

recorded ion time-of-flight measurements (Fig. 1a) by adding
o1% Xe to the NO/He mixture and the NOþ signal was
normalized to the Xeþ signal, to eliminate fluctuations of laser
parameters and gas-jet density.

Figure 1a shows the normalized NOþ yield as a function of the
pump–probe delay. The rapid regular oscillation originates from
the electronic dynamics, illustrated in the inset, whereas the two
features around 5 and 10 ps correspond to rotational revivals.
The amplitude modulations observed around 8–9.5 ps are a
characteristic signature of multi-level quantum beats34,35.
Figure 1b shows a cut through the three-dimensional
photoelectron momentum distribution recorded at a delay of
1.56 ps. Details about the processing of the photoelectron
momentum images are given in the Methods section.
Figures 1c,d show normalized differences, defined as S(t1, t2)¼
2(D(t2)�D(t1))/(D(t2)þD(t1)) of photoelectron momentum
distributions D recorded at the local minimum (delay t1) and
maximum (delay t2) of the photoelectron (or NOþ ) yield that are
dominated by either purely electronic or electronic and rotational
dynamics, respectively. The corresponding values of t1 and t2 are
given in the caption of Fig. 1. The purely electronic valence-shell
dynamics (Fig. 1c) appears as a pronounced modulation of a
holographic pattern, whereas the rotational dynamics manifests
itself by additionally modifying the angular distribution of
rescattered photoelectrons, clearly visible at the highest
momenta of Fig. 1d.

Electronic dynamics. We first concentrate on the purely
electronic dynamics. Figure 2a (reproduced from Fig. 1c) shows
stripes of alternating orange and yellow colours extending from
the centre towards the border of the momentum distribution.
We attribute these structures to photoelectron holography,
previously observed for stationary states of atoms22,23,36.
This assignment is substantiated by comparing the observed
fringe pattern with the quantitative prediction of holography.
Using the vertical ionization potential of NO and the conditions
of our experiments leads to the prediction of regions of
constructive (black) and destructive (white) interference
calculated following the simple model outlined in ref. 36. These
fringes arise from the interference between quantum trajectories
of (signal) electrons that have scattered forward from the parent
ion and (reference) electrons that have passed by the parent ion
without scattering. The lack of quantitative agreement between
the experiment and the simple model mainly originates from the
absence of the Coulomb potential in the latter, as we further
discuss below.

The sudden loss of fringe visibility with increasing momentum
constitutes further evidence of the holographic origin of the
fringes. The green circle in Fig. 2a marks the maximal
momentum that can be acquired by electrons that do not scatter.
The blue line represents the 1/e2 full width of the tunnelling filter,
defined by

G p2
xþ p2

y

� �
¼ e�

p2
x þ p2

yð Þt
2 ; ð1Þ

where px and py are momentum components perpendicular to the
laser-field direction and t¼

ffiffiffiffiffiffi
2Ip

p
=F, where Ip represents the

ionization potential and F is the instantaneous field strength at
the moment of ionization. The fringes are only observed within
the area defined by the green circle, showing that they involve
non-scattered electrons. More precisely, we find that the fringes
are even limited to the area within the blue curve, showing that
the maximal lateral momentum of the electron wave packet is
indeed limited by the tunneling filter, lending support to the
concept proposed in refs 15,37. We emphasize that the
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holographic fringes observed in Fig. 2a are barely visible in the
inverted photoelectron momentum distributions themselves
(Fig. 1b). They only become visible in the normalized differences.
Figure 2b shows how the contrast of the holographic fringes
evolves in time over one period of the electronic dynamics.
The holographic fringes in the normalized-difference images
modulate with a contrast close to 100%.

A weak signature of the electronic dynamics can also be observed
outside the green circle of Fig. 2a, that is, in the region dominated
by the electrons that have scattered backwards from the parent ion.
We note that the noise along the central vertical line is an artifact of
the inversion procedure. The nearly constant value of the difference
signal observed in this region shows that the electronic dynamics
does not change the angular distribution function of the rescattered
electrons. However, the total signal of the rescattered electrons
modulates in time with approximately the same contrast as the total
signal. We thus conclude that the electronic dynamics in NO causes
a variation of the rescattering probability, but it hardly affects the
shape of the photoelectron distribution in the rescattering region. In
contrast, the shape of the holographic pattern shows a strong
signature of the electronic dynamics.

Model for time-dependent photoelectron holography. We now
introduce a model for time-dependent photoelectron holography
and use it to explain our observations. Figure 3a shows the temporal

evolution of the time-dependent orbital describing the unpaired
electron of NO. The displayed orbital wavefunction corresponds to
one of two possible values of the spin projection quantum number
(S¼ þ 1/2). The orbital corresponding to the opposite value of
S rotates in the opposite direction8 and is omitted here for clarity.
As holography results from the interference of scattered and
non-scattered trajectories, we focus on the momentum distribution
of electrons perpendicular to the direction of tunnelling, also called
lateral momentum distribution. We determine this quantity for the
time-dependent electronic wave packet by building on the concept
of partial-Fourier transformation for strong-field ionization38. The
laser field is linearly polarized along the z axis. A cut through the
one-electron density in the xy plane at the distance z0¼ � 1.83 Å
from the origin is shown on the front face of each cube in Fig. 3a. z0

corresponds to the position of the local maximum of the combined
Coulomb and laser-field potentials using the peak electric field
strength. The two-dimensional Fourier transform of the wave
function at z¼ z0, multiplied by the tunnelling filter (equation 1)
leads to the lateral-momentum distribution of the continuum
photoelectron wave packet after tunnelling, shown in Fig. 3b:

F px; py; z0; t
� �

� 1
2p

ZZ
C x; y; z0; tð Þeixpx þ iypy dxdy
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Figure 1 | Discerning electronic and nuclear dynamics. (a) The top panel illustrates the prepared electronic and rotational dynamics with the left part

showing the time-evolution of the one-electron wave function in NO and the right part illustrating the molecular-axis distribution. The wave function can be

chosen real-valued with opposite signs (red and blue) by multiplication with a global phase factor that corresponds to a physically irrelevant shift of the

absolute energy scale. The middle panel shows the time-dependent normalized NOþ yield (blue line) and a sine function with a period of 277 fs (red line).

The lowest panel shows the calculated alignment dynamics expressed by hcos2yi (including volume averaging). (b) Photoelectron momentum distribution

of excited NO molecules recorded at a delay of 1.56 ps. Normalized difference S(t1, t2) (defined in the text) of momentum distributions measured at the

minimum and maximum of the NOþ signal dominated by electronic dynamics (c, t1¼ 1.56 ps and t2¼ 1.72 ps, respectively) or around the rotational revival

(d, at t1¼4.91 ps and t2¼ 5.10 ps, respectively). a.u., atomic units.
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The corresponding angle-averaged distribution function M(pr, t),
shown in Fig. 3c, is defined by

M pr; tð Þ¼ F0 pr; z0; tð Þ
F0 pr¼0; z0; t¼t0ð Þ ; ð3Þ

where

F0 pr; z0; tð Þ¼
H

pr
F px; py; z0; t
� �

dsH
pr

ds
ð4Þ

and p2
r¼p2

x þ p2
y .

The time-evolving lateral-momentum distribution shown in
Fig. 3b has a transparent physical interpretation. As time evolves,
the orbital wave function of the unpaired electron shown in
Fig. 3a rotates around the molecular axis, leading to the periodic
appearance and disappearance of a nodal plane containing the
direction of tunnelling (z).

We further support the interpretation of the observed
holographic fringes by turning to classical-trajectory
calculations39 that are described in more detail in the Methods
section. We consider the two cases where the one-electron density
is aligned either parallel to the polarization direction of the
ionizing laser pulse (t¼ t0) or perpendicular to it (t¼ t0þT/2).
We propagate classical trajectories in the combined Coulomb and
laser field, using the experimental parameters for the latter. The
initial momenta sample the distribution function derived above
for the highest-occupied molecular orbital of NO obtained from
quantum-chemical calculations using the GAMESS package.
Figure 4 shows the calculated final momentum distributions at
the detector for (a) the electron density being aligned along the
direction of the ionizing laser polarization, (b) the electron
density being aligned perpendicular to this direction and (c) the

normalized difference of (a) and (b). The momentum distribution
(a) shows the characteristic features of strong-field ionization by a
near-infrared laser pulse, that is, the above-threshold ionization
peaks, which extend up to 2Up and the holographic fringes.
The momentum distribution (b) is significantly weaker in
amplitude (note the different colour scales), broader in the
lateral-momentum direction and additionally displays a node at
px¼ 0. This feature reflects the nodal plane of the molecular
orbital, which contains the laser polarization in this specific
configuration. This feature is not visible in the experimental data,
because the fraction of excited molecules is on the order of 1%
(refs 34,35) and the molecules are not aligned at the considered
delays, whereas 100% excitation and perfect alignment was
assumed in the calculations.

Figure 4c shows the normalized difference of Fig. 4a,b and is in
excellent agreement with the experimental result (Fig. 2a). In
particular, the calculation nicely displays all characteristic
properties of the experimentally observed holographic structures.
Interestingly, the comparison of these calculations with the
simple model from ref. 36 shows the same discrepancies as
Fig. 2a, that is, the model overestimates the spacing of the
holographic fringes along the lateral-momentum direction. The
improved agreement between the experiment and our trajectory
calculations must therefore originate from the inclusion of the
Coulomb potential in the latter.

These complete three-dimensional trajectory calculations
further show that the electronic dynamics indeed modulate the
contrast of the holographic fringes. As the calculations were done
using a purely Coulombic potential, the observed time-dependent
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holography can be uniquely attributed to the time-dependent
momentum-space structure of the outermost orbital of NO as
illustrated in Fig. 3. The time dependence of the orbital is
translated into a time-dependent lateral-momentum distribution
of the photoelectron wave packet after tunneling, which results in
a high contrast modulation of the holographic fringes. The good
agreement between theory (Fig. 4c) and experiment (Fig. 2a) also
shows that the molecular properties of the potential seen by the
continuum electron are not crucial in defining the observed
holographic pattern. This insensitivity may turn out to be an
advantageous filter that makes time-dependent photoelectron
holography specifically sensitive to a particular aspect of the
electronic dynamics that it records, that is, the lateral momentum
distribution.

Coupled electronic and nuclear dynamics. We now turn to the
observation of coupled nuclear and electronic dynamics occurring
around a rotational revival. Figure 1a compares the measured
NOþ signal with calculations of the rotational dynamics of NO.
At the early delays discussed so far (1–4 ps), rotational dynamics
can be neglected, because the axis distribution does not change
over the period of the electronic dynamics. In contrast, electronic
and nuclear dynamics occur on similar time scales around a
rotational revival, which offers the opportunity to study the
manifestation of coupled electronic and nuclear dynamics.
Figure 5a compares the photoelectron yield integrated over all
momenta around the revival of the rotational dynamics (top)
with the extrapolated electronic quantum beat (centre) and the

calculated rotational dynamics (bottom) taken from Fig. 1a.
These calculations have been done with the methods described in
refs 34,35. They include the rotational levels of both populated
electronic states of NO and fully account for the coupled
electronic and rotational dynamics on the relevant time scales.

Figures 5b–d show normalized differences of photoelectron
momentum distributions S(t2, t1), S(t2, t3) and S(t2, t4),
respectively. These delays were chosen to highlight the different
manifestations of coupled electronic and nuclear dynamics. The
delays t1 and t2 both lie close to the minimum of cos2yh i,
which means that the axis distribution undergoes little
change within this time interval. However, the interval [t1, t2]
samples a significant fraction of the electronic quantum beat.
Between t2 and t3, both electronic and nuclear dynamics evolve.
Between t2 and t4, the electronic dynamics have evolved for half
of a period and the rotational dynamics have undergone their
maximal evolution, from anti-alignment to alignment.

We first note that the minimum of the photoelectron and
NOþ yield (t2) lies between the minima of cos2yh i (close to t1)
and that of the extrapolated purely electronic quantum beat (close
to t3). This is a first indication that both electronic and nuclear
dynamics influence the ionization probability. Much more details
are visible in the photoelectron images. We focus our discussion
on three aspects of these images. First, Fig. 5b–d all display
holographic signatures similar to those of Fig. 2a. These features
coincide with the location of the measured main holographic
maxima in Fig. 2a, which are reproduced here as black dashed
lines. The excellent agreement shows that the structures observed
in Fig. 5b–d also correspond to photoelectron holography. These
holographic fringes are not unexpected because all three intervals
sample substantial fractions of an electronic quantum beat.

Second, each of these six main holographic fringes displays an
additional extremum in the radial dimension, which was not
observed in Fig. 2a. Comparing Fig. 5b with Fig. 5c,d, we observe
a maximum along the radial dimension in the case of Fig. 5b and
a minimum in Fig. 5c,d. These radial extrema cannot be
explained by purely electronic dynamics because of the
differences observed in comparison with Fig. 2a. We note
that normalized-difference images evaluated between delays
sampling fractions of the purely electronic quantum beat in the
range of 1–2 ps all look qualitatively identical to Fig. 2a
(not shown). The additional structures on top of the holographic
fringes can therefore only originate from the simultaneous effect
of electronic and nuclear dynamics, which is thus found to leave a
characteristic imprint on time-dependent photoelectron
holography.

Third, Fig. 5d additionally shows pronounced structures in the
region of the rescattered photoelectrons (outside the green circle).
This shows that the distribution shape of the rescattered electrons
with energies above 2Up is also modulated, which was clearly not
observed during the purely electronic dynamics (compare Figs 2a
and 5d). We further investigate this aspect by analysing the
rescattered electrons. Outside the green circle in Fig. 5d,
alternating regions of negative (blue) and positive (red) colour
are observed. We analyse this region using the LIED approach
illustrated with a black circle and arrow21,40,41. Electrons that
have elastically scattered with the momentum |ps| in the direction
a acquire the additional momentum pL¼ �A(tr) from the laser
field, equal to the opposite value of the vector potential at the
moment of rescattering (tr). The value of the normalized
difference along such circles is displayed in Fig. 5f and
compared with calculations (Fig. 5e). We use the variational
Schwinger method implemented in ePolyScat42,43 to accurately
solve the scattering problem of electrons from aligned NOþ

molecules. Our calculations also take into account the
angle-dependent strong-field ionization rate of NO44 and the
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molecular-axis distribution corresponding to our experimental
conditions. The prediction shown in Fig. 5e qualitatively agrees
with the experimental result in Fig. 5f. Both the general shape of
the curves and the shift of the minimum to larger angles for
increasing scattering momenta are well reproduced. The
calculation however overestimates the contrast of the
normalized difference, which can originate from the limited
accuracy of the electron-molecule scattering calculations and/or
the strong-field ionization rates. We have verified that
uncertainties in the molecular axis distributions cannot explain
the observed discrepancy.

Discussion
We have reported on the observation of valence-shell electron
and coupled electronic-nuclear dynamics using strong-field
photoelectron holography and rescattering. We will separate
our conclusions into two parts, that is, conclusions that we expect
to be general and conclusions that we view as specific to the broad
class of radicals (such as NO, NO2, OH and so on). We have
shown that photoelectron holography can be used as a probe of
valence-shell dynamics in molecules, and that it is particularly
sensitive to the components of the momentum wave function
perpendicular to the direction of tunnelling. These components
indeed control the relative probability and phase of rescattering
relative to non-rescattering trajectories, which directly control the
contrast and structure of the holographic pattern, respectively.
We have further shown that coupled electronic and nuclear
dynamics leave a characteristic imprint on the holographic
pattern. This suggests the application of photoelectron hologra-
phy to probe coupled electronic and nuclear dynamics in
polyatomic molecules. We expect these two conclusions to be
general. As NO has a single unpaired electron, we expect some of

our observations to apply to radicals. Specifically, we have
observed that the electronic dynamics leave no signature on
the angular-distribution shape of the rescattered electrons (see
Fig. 2a), such that LIED provides a virtually background-free
measurement of nuclear dynamics. This observation constitutes
an experimental demonstration of the fundamental
quantum-mechanical principle that the laser-driven electron
wave packet must be described as scattering from its parent
ion, rather than from the neutral molecule. In systems featuring a
single unpaired electron, such as NO, the parent ion does not
display electronic dynamics, resulting in a delay-independent
LIED. In the more frequent case of closed-shell molecules, the
returning electron will scatter off an ion supporting electronic
dynamics, such as charge migration10. Our results suggest that in
this case, the electronic dynamics of the neutral molecule will be
observable in holography, which will however additionally
contain signatures of the ionic dynamics (both electronic and
nuclear), contributed by the rescattering quantum trajectories. In
contrast to holography, LIED will mainly reflect the dynamics of
the ion, because the angle dependence of the rescattered electrons
is dominated by the elastic-scattering cross-section41. More
broadly, these considerations show how the fundamental
principles uncovered in our pump–probe experiment can be
transferred to the regime of sub-cycle temporal resolution to
observe, for example, coupled structural and electronic
rearrangements on femtosecond to attosecond timescales.

Methods
Data processing. The two-dimensional photoelectron momentum images were
processed as follows. A constant background was subtracted from the entire
image to account for dark counts and residual stray light. Then, the images were
symmetrized. Finally, two-dimensional momentum distributions were obtained
by iterative Abel inversion using a computer program developed in our group33.
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The black circle indicates the final momentum of photoelectrons with a scattering momentum |ps| and scattering angle a (a¼0 corresponds to

back-scattering). (e) Calculated normalized difference of rescattered electron distributions for different scattering momenta. (f) Experimental normalized

differences as a function of the scattering angle for the same scattering momenta as in e, smoothed over a 10� range, using the same colour coding as in e.
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A typical photoelectron momentum distribution is shown in Fig. 1b. The
momentum distributions shown in Figs 1c,d,2a and 5b–d are normalized
differences between distributions measured at two different pump–probe delays, as
defined in the text. The analysis of the LIED signals proceeded as follows. For a
given photoelectron momentum at rescattering ps, the corresponding time of
rescattering ts was determined using the long trajectories in the classical recollision
model (see, for example, ref. 41). The short trajectories were discarded, because
they are suppressed by the lower strong-field ionization rate at the corresponding
times of ionization. The additional momentum shift pL that the electrons acquire
from the laser field after rescattering was calculated according to pL¼ �A(tr),
using the vector potential corresponding to the laser field used in our experiment.

Trajectory calculations. We calculate photoelectron momentum distributions
for different times during the electronic wave-packet dynamics using the
semiclassical two-step model for strong-field ionization39, which is a Monte-
Carlo method involving interfering trajectories. Electron trajectories are
launched throughout the laser pulse with probabilities corresponding to the
instantaneous tunnel ionization rate. As initial conditions we use the lateral
momentum distributions derived above (see equation 3) in combination with
zero initial momentum along the field and initial electron position at the tunnel
exit of a triangular barrier determined by the instantaneous electric field. As the
method39 is based on Newtonian trajectories moving in a cylindrically
symmetric potential formed by the laser field and a Coulomb potential, the
simulation can be restricted to trajectories in a plane containing the field
direction. However, electrons departing towards opposite sides at the time of
ionization may end up with the same final momentum and interfere. Thus,
initial conditions for both negative and positive lateral momenta must be
defined. The lateral distribution is chosen to be symmetric in both cases that we
consider, t¼ t0 and t¼ t0þT/2. In the former case, the initial phases are taken
equal on both sides, but in the latter case a p phase difference is used, in view of
the orbital symmetry (see Fig. 3a,b). Similarly, in the former case, the initial
phases have a p difference for opposite directions of the ionizing field and they
are taken equal for both field directions in the latter case. The laser parameters
for the simulation are the experimental ones except that a short sin2-shaped
envelope with total length of eight optical cycles is used instead of the longer
experimental pulses.

Data availabilty. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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Effects of the Coulomb potential in interference patterns of strong-field
holography with photoelectrons

N. I. Shvetsov-Shilovski* and M. Lein
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Using the semiclassical two-step model for strong-field ionization we investigate the interference structures
emerging in strong-field photoelectron holography, taking into account the Coulomb potential of the atomic core.
For every kind of the interference pattern predicted by the three-step model, we calculate the corresponding
structure in the presence of the Coulomb field, showing that the Coulomb potential modifies the interference
patterns significantly.

DOI: 10.1103/PhysRevA.97.013411

I. INTRODUCTION

Development of techniques capable of tracing molecular
dynamics involves fundamental and technological problems
of great complexity that need to be solved. The reason is that
the dynamic imaging techniques are to operate at subangstrom
spatial scales with femtosecond time resolution. The contin-
uous progress in laser technologies, especially the advent of
the technology of pulse compression, as well as the advances
in the development of free-electron lasers, have given rise
to a variety of techniques aimed at time-resolved molecular
imaging. Among these are optical pump-probe spectroscopy,
time-resolved electron and x-ray diffraction, and ultrafast x-ray
spectroscopy (see Ref. [1] for recent review).

During the last three decades a breakthrough in laser
technology has been achieved: table-top intense femtosecond
laser systems operating at various wavelengths have become
available in many laboratories all over the world. This has led
to the emergence of such fields of research as strong-field, ul-
trafast, and attosecond physics (see Ref. [2] for review). It was
found that the interaction of intense laser radiation with atoms
and molecules leads to a plethora of highly nonlinear phe-
nomena. Among these are above-threshold ionization (ATI)
and the formation of the high-energy plateau in the electron
energy spectrum (high-order ATI), generation of high-order
harmonics (HHG), nonsequential double ionization (NSDI),
etc. (see Refs. [3–6] for recent reviews). The main theoretical
approaches used in strong-field physics are the direct numerical
solution of the time-dependent Schrödinger equation (TDSE)
(see, e.g., Refs. [7–9] and references therein), the strong-field
approximation (SFA) [10–12], and semiclassical models using
classical description of the electron after it has been promoted
to the continuum, typically by tunneling ionization [13–15].
The widely known semiclassical approaches are the two-step
[16–18] and the three-step models [19,20].

The studies of ATI have shown that the vast majority of
electrons reach the detector without recolliding with their

*n79@narod.ru

parent ions. These electrons are referred to as direct ones
and they have energies below 2Up, where Up = F 2/4ω2 is
the ponderomotive energy (atomic units are used throughout
the paper unless indicated otherwise). There are also electrons
that are driven back to their parent ions and scatter off them
by angles close to 180◦. The high-energy plateau in the ATI
spectrum is created due to these rescattered electrons. The
rescattering scenario led to an understanding of the physical
mechanisms responsible for HHG and NSDI. The returning
electron can recombine with the parent ion and emit high-
order harmonics [20,21]. As an alternative, if this electron has
enough energy, it can release another electron from the atomic
ion (see Ref. [22] for review). These rescattering-induced
processes can be qualitatively described within the three-step
model. In the first step of this model an electron tunnels out
of an atom, and in the second step it moves along a classical
trajectory in the laser field only. The third step involves the
interaction of the returning electron with the parent ion.

Some of the phenomena mentioned here may be used for
the development of new ways of time-resolved molecular
imaging. Indeed, new ultrafast laser-based imaging techniques
have been proposed recently: laser-assisted electron diffraction
[23,24], laser-induced Coulomb explosion imaging [25–28],
laser induced electron diffraction [29–32], high-order har-
monic orbital tomography [33,34], and strong-field photoelec-
tron holography (SFPH) [35].

Using the full coherence of the electron motion after ioniza-
tion, the SFPH method puts into practice the idea of holography
[36]. It was shown in Ref. [35] that a photoelectron holographic
pattern can be clearly recorded in experiment. The hologram
is created by the interference between a reference (direct)
electron and a signal (rescattered) one. The SFPH method
of molecular imaging has several important advantages. First,
although free-electron lasers were used in some of the SFPH
experiments (see Refs. [35,37]), this method can be realized in
a table-top experiment. Second, the hologram that is recorded
in SFPH encodes temporal and spatial information not only
about the ion but about the recolliding electron as well. Last
but not least, attosecond time resolution can be achieved for
the photoelectron dynamics. Indeed, the signal and reference
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electronic wave packets that produce the holographic patterns
can be ionized in the same quarter cycle of the oscillating laser
field. As a result, subcycle time resolution can be achieved
even for long laser pulses.

For these reasons, the SFPH has been studied exten-
sively in the last few years, both experimentally (see, e.g.,
Refs. [38–42]) and theoretically [35,37–39,41,43–49]. Among
the theoretical approaches used to analyze the holographic
structures are the semiclassical model that accounts for the
laser field only [41,43–46], direct numerical solution of the
TDSE [35,38,39,41,43], the modified version of the SFA that
accounts for the rescattering [35,37], the Coulomb-corrected
strong-field approximation (CCSFA) [35,37], and the Coulomb
quantum orbit strong-field approximation (CQSFA) [48,49]
(see Ref. [50] for the foundations of the CQSFA method). The
holograms obtained from the solution of the TDSE agree with
the experimental data. This is particularly true for the spacing
between the side lobes (fringes) of the holographic structure
emerging when both the signal and reference electrons are
generated on the same quarter of cycle. However, it is difficult
to interpret the hologram from the solution of the TDSE.

The three-step semiclassical model was adapted for cal-
culation of the SFPH (see Refs. [43–46]). Different types of
subcycle interference structures were predicted by this model
[43]. Indeed, while the first studies of the SFPH considered
only the interference of the reference and signal waves that are
born in the same quarter cycle of the laser field, the signal and
reference electrons can also originate from different quarter
cycles, leading to different holographic patterns. Despite the
appealing physical picture of the SFPH provided by the three-
step model, it is well known that neglecting the Coulomb
potential is severe (see, e.g., Refs. [51–53]). Note that the same
is true for the modified version of the SFA. Furthermore, the
simulations of the SFPH within the three-step model were
performed assuming that the starting point of the classical
trajectory is independent of the field strength [43–46]. In
contrast to this, it is natural to assume that electrons tunnel
through a potential barrier with time-dependent width due to
the oscillations of the laser field. It is known that the proper
choice of the initial conditions for classical trajectories is
important [54,55].

The study of the electron trajectories calculated within the
CCSFA showed that the trajectories responsible for the emer-
gence of the interference structure can indeed be considered
as reference and scattered wave packets [35]. The CCSFA ap-
proach reproduces the shape of the interference fringes and the
spacing between them. Finally, the CCSFA simulations have
given important insight into the role of the Coulomb potential in
the SFPH [35,37]. The same is also true for the CQSFA theory
that has allowed for the identification and isolation of many
types of interference patterns in the photoelectron momentum
distributions. The distortion of different kinds of interfering
trajectories along with the change of the phase difference
between them due to the presence of the ionic potential were
studied in Ref. [49]. However, no direct comparison of the
interference structures predicted by the three-step model with
those calculated taking the Coulomb potential into account has
been made so far.

Moreover, not all the principal types of interference struc-
tures predicted by the three-step model were considered in

Refs. [35,37,49]. To the best of our knowledge, the effects of
the Coulomb potential in the interference structures emerging
due to the hard collisions of the signal electron with the
atomic core have not been analyzed so far. Recall that hard
collisions require small impact parameters and result in large
changes of electron momenta including backward scattering.
The interference of direct with backscattered electrons has
been proposed in Ref. [44] as a particularly sensitive probe
of the molecular structure. The holograms for H2 and N2

measured recently in Ref. [41] revealed a fishbonelike structure
that was claimed to originate from backward scattering.

In this paper we revisit the holographic interferences calcu-
lated using the three-step model, in order to (i) understand
how the time-dependent exit point affects the interference
patterns and (ii) obtain a benchmark for comparison with
the case when the Coulomb field is taken into account. We
then calculate all major types of interference structures in the
presence of the Coulomb potential, including those that involve
hard collisions of the signal electron (backward scattering).
Our analysis is based on the semiclassical two-step model
(SCTS) that describes quantum interference and accounts for
the Coulomb potential beyond the semiclassical perturbation
theory (see Ref. [56]).

The paper is organized as follows. In Sec. II we discuss
the three-step model and its application to the SFPH when the
starting point of the classical trajectories is time independent,
and when it depends on time. We formulate our approach to
calculation of the SFPH with the Coulomb field in Sec. III. In
Sec. IV we analyze formation of the interference structures in
the presence of the Coulomb potential. The conclusions of the
paper are given in Sec. V.

II. STRONG-FIELD PHOTOELECTRON HOLOGRAPHY
IN THE THREE-STEP MODEL

A. Application of the three-step model to strong-field
photoelectron holography

The application of the three-step model to the SFPH is
reported in Refs. [43–47]. Here we repeat the main points that
are important for the following discussion. For simplicity, and
in order to be consistent with Refs. [43–45], in this section
we consider only one cycle of a linearly polarized cosinelike
laser field: �F (t) = F0 cos (ωt)�ex between ωt = 0 and 2π . Here
�ex is the unit vector in the polarization direction, F0 is the
field strength, and ω is the frequency. Newton’s equation of
motion for an electron moving in this field can be easily
solved analytically. The velocity �v(t) and the position �r(t) of
an electron launched at time t0 are given by

�v(t) = {vx(t0) + pF sin (ωt0) − pF sin (ωt)}�ex

+ vy(t0)�ey + vz(t0)�ez, (1)

and

�r(t) =
{
x0(t) + F0

ω2
(ωt − ωt0) sin (ωt0)

+ F0

ω2
[cos (ωt) − cos (ωt0)]

}
�ex

+ vy(t0)(t − t0)�ey + vz(t0)(t − t0)�ez. (2)
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Here �v(t0) = vx(t0)�ex + vy(t0)�ey + vz(t0)�ez, �r(t0) = x(t0)�ex +
y(t0)�ey + z(t0)�ez, and pF = F0/ω. Due to the cylindrical
symmetry with respect to the polarization direction, we leave
out the z component of both �r(t) and �v(t) in what follows and
consider electron motion in two spatial dimensions.

We assume that the electron starts with zero initial velocity
along the laser field vx(t0) = 0, but its initial transverse velocity
vy(t0) ≡ v0,⊥ can be arbitrary. An electron starting with zero
initial transverse velocity at a time instant t

sig
0 within a certain

fraction of the laser period can return to the parent ion [i.e., to
the point (x = 0,y = 0)]. Upon its return this signal electron
is elastically scattered from the atomic core by an angle
θ0 (see, e.g., Ref. [57]). The scattering event is assumed to
be instantaneous, and the scattering angle θ0 is randomly
distributed between 0 and 360◦.

The time of return t1 of the signal electron can be found
from the equation

x
(
t

sig
0

) + F0

ω2

(
ωt1 − ωt

sig
0

)
sin

(
ωt

sig
0

)
+ F0

ω2

[
cos(ωt1) − cos

(
ωt

sig
0

)] = 0. (3)

Since the signal electron returns to the core with the velocity

V1 = −pF

[
sin(ωt1) − sin

(
ωt

sig
0

)]
, (4)

its velocity at time t > t1 is given by

�V (t) = [V1 cos θ0 + pF sin (ωt1) − pF sin (ωt)]�ex

+V1 sin θ0�ey. (5)

From Eq. (5) we obtain the asymptotic (final) momentum of
the signal electron:

�p = [V1 cos θ0 + pF sin (ωt1)]�ex + V1 sin θ0�ey. (6)

The asymptotic momentum of a reference electron starting at
time t ref

0 with initial transverse velocity v0,⊥ reads as

�p = pF sin
(
ωt ref

0

)�ex + v0,⊥�ey. (7)

For both signal and reference trajectories to lead to the same
final momentum �p = (px,py), their velocities at any time t >

t1 must be equal [43]. Indeed, from Eqs. (5) and (6) it follows
that for t > t1

�V (t) = [px − pF sin (ωt)]�ex + py �ey. (8)

The same expression is also valid for the reference electron
[cf. Eqs. (1) and (7)].

When the three-step model is applied to the SFPH, the phase
associated with an electron trajectory starting at time t0 is
determined by the classical action (see Refs. [43–47])S(t0,t) =∫ t

t0
(�v2(t ′)/2 + Ip)dt ′, where Ip is the ionization potential.

Therefore, the phases of the signal and reference electrons are
given by

Ssig(t) = 1

2

∫ t1

t
sig
0

v2
x(t ′)dt ′ + 1

2

∫ t

t1

[px − pF sin(ωt ′)]2dt ′

+ Ip

(
t − t

sig
0

) + p2
y

2
(t − t1) (9)

and

Sref(t) = 1

2

∫ t1

t ref
0

v2
x(t ′)dt ′ + 1

2

∫ t

t1

[px − pF sin(ωt ′)]2dt ′

+ Ip

(
t − t ref

0

) + p2
y

2

(
t − t ref

0

)
, (10)

respectively. Finally, the phase difference between the signal
and reference waves reads as (see Refs. [43–47])

�S = 1

2

∫ t1

t
sig
0

v2
x(t ′)dt ′ − 1

2

∫ t1

t ref
0

v2
x(t ′)dt ′

− Ip

(
t

sig
0 − t ref

0

) − p2
y

2

(
t1 − t ref

0

)
. (11)

In order to calculate the phase difference (11) at a given
final momentum �p, it is necessary to find the corresponding
values of t ref

0 , t
sig
0 , and t1. For |px | < pF the equation px =

pF sin (ωt ref
0 ) [see Eq. (7)] has two solutions in the range

0 � ωt ref
0 < 2π . For px � 0 we have ωt ref

0,1 = arcsin (px/pF )
and ωt ref

0,2 = π − arcsin (px/pF ). For negative px the solutions
are given by ωt ref

0,1 = π + arcsin (|px |/pF ) and ωt ref
0,2 = 2π −

arcsin (|px |/pF ).
Retrieving the corresponding t

sig
0 and t1 is more cumber-

some. It is worthwhile to solve Eq. (3) first, i.e., to find the
function t1 = t1(t sig

0 ) at every point of some grid for the time
of start t

sig
0 . For some values of ionization time Eq. (3) has

multiple solutions, which correspond to so-called late returns
of the ionized electron to the ion. Knowing t1 = t1(t sig

0 ) on some
grid we can calculate V1(t sig

0 ) on the same grid [see Eq. (4)].
Then the values of t1 and V1 at any intermediate point can be
found by interpolation. From Eqs. (4) and (8) it follows that{

px − pF sin
[
ωt1

(
t

sig
0

)]}2 + p2
y

= p2
F

{
sin

[
ωt1

(
t

sig
0

)] − sin
[
ωt

sig
0

]}2
. (12)

By solving this equation numerically we can find the time
of start t

sig
0 that leads to a given �p, and then evaluate the

corresponding values of t1(t sig
0 ) and V1(t sig

0 ,t1). Finally, Eq. (6)
allows us to determine the instantaneous scattering angle.

The algorithm described here is not the only possible
approach to calculation of interferometric structures. An alter-
native method treats t

sig
0 and θ0 as new independent variables.

For every time of start t
sig
0 the corresponding recollision time

is again found from Eq. (3). Then for any pair (t sig
0 ,θ0) the

asymptotic momentum can be found from Eq. (6). By doing
so for a sufficiently large number of trajectories specified by
t

sig
0 and θ0, we can obtain reliable statistics in the (px,py) plane.

Finally, these signal trajectories with the corresponding phases
are binned according to their asymptotic momenta in cells in
momentum space. After the phase of the reference electron
leading to a given cell is found, we can calculate the phase
difference �S associated with this cell.

Instead of dividing the (px,py) plane into cells, interpola-
tion on the nonuniform grid can be applied to find the value of
Ssig for any given momentum �p. However, for the laser-atom
parameters used in this paper, the results of such interpolation
converge slowly with increasing number of sets (t sig

0 ,θ0).
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FIG. 1. Asymptotic electron momentum components as functions
of the ionization time and the instantaneous scattering angle for the H
atom ionized by the first quarter of a cosinelike field with a wavelength
of 800 nm (Ti:sapphire laser) polarized along the x axis. The left
column, that is, panels (a) and (c), shows the px component. The
right column [panels (b) and (d)] shows the py component. Panels (a,
b) and (c, d) correspond to the intensities of 2.0 and 6.0×1014 W/cm2,
respectively.

Moreover, before convergence is achieved, the interferometric
structures calculated within this approach show some spurious
structures, which could be confused with the true interference
patterns. For this reason, we use bins on the (px,py) plane when
implementing the second approach with t

sig
0 and θ0 being the

independent variables. We have used both approaches to check
the consistency. The results obtained within both methods are
in agreement.

Four major different types of interference structures are usu-
ally discussed (see Ref. [43]). Two of these types correspond
to forward scattering of a signal electron, whereas two other
types involve its backward scattering. Nevertheless, in all these
four types the signal electron starts from the first quarter of the
laser period 0 � ωt0 � 90◦. Therefore, we start our analysis
with the kinematics of the signal electron launched in the first
quarter of the cycle.

B. Interference structures for the time-independent exit point

Let us first consider the simplest case that is usually assumed
when the three-step model is used to calculate holographic
interference patterns [43–46]: the tunnel exit is equal for all
ionization times and it is determined by the amplitude of the
laser field: x0 = Ip/F0. Figure 1 shows the asymptotic momen-
tum components of such a signal electron as functions of the
start time and instantaneous scattering angle for ionization of
the H atom at a wavelength of 800 nm and two laser intensities:
2×1014 and 6×1014 W/cm2. For most values of the scattering
angle θ0, the px component of the asymptotic momentum has
a minimum as a function of ωt0. This minimum (maximum of
the absolute value) is particularly pronounced for the backward
scattered electrons: 90 � θ0 � 270◦. Nevertheless, it may also
exist for forward scattered electrons, i.e., for 0 � θ0 < 90◦
(or 270 < θ0 � 360◦). The presence of this minimum implies
that for some values of the final momentum �p there are two

0 10 20 30 40 50 60 70 80 90
−6
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0

1

ωt
0
 (deg)

p x (
a.

u.
)

 

 

2×1014 W/cm2

6×1014 W/cm2

ωt
 0
 long ωt

 0
 short

FIG. 2. The px component of the asymptotic electron momentum
as a function of ionization time for the scattering angle θ0 = 180◦

(backward scattering). The parameters are as in Fig. 1. The blue (solid)
and green (dashed) curves correspond to the intensities of 2.0 and
6.0×1014 W/cm2, respectively.

different ionization times corresponding to this angle θ∗
0 [see

Fig. 2 where the cuts of Figs. 1(a) and 1(b) at θ0 = 180◦ are
shown]. These two ionization times correspond to different
electron trajectories. Depending on whether the signal electron
is ionized before the minimum or after it, we refer to the
corresponding trajectory as a long or short one. Therefore, it
is necessary to distinguish the interference structures created
by reference and long signal trajectories from those produced
by reference and short signal trajectories. This issue was also
discussed in Ref. [46].

The first and widely discussed type of the holographic
interference emerges when both reference and signal electrons
are launched in the first quarter of the optical cycle [see
Fig. 3(a)]. For brevity, we refer to this kind of interference
as type A. Usually it is also assumed that the signal electron
is scattered forward. The interference pattern of the second
kind [type B, Fig. 3(b)] is produced when the signal electron is
launched on the first quarter of the cycle, whereas the reference
electron is generated in the second quarter. The interference
structures [i.e., cos (�S), where �S is given by Eq. (11)]
of types A and B are shown in Figs. 3(c) and 3(d). For the
cosinelike field discussed here they emerge in the half plane
px > 0. In contrast to Refs. [43–46], we do not restrict our
consideration to forward scattered electrons only. Instead, we
allow for all instantaneous scattering angles θ0. The short and
long signal trajectories should be separated in calculations. The
averaging over the phase differences that correspond to the long
and short trajectories ending up at a given �p leads to the results
shown in Figs. 3(e) and 3(f): the false substructures are clearly
visible on the edges of the interference patterns. In contrast to
this, Figs. 3(c) and 3(d) were obtained by considering only the
long trajectories for the momenta at the edges of the structure.

When the reference electron is launched in the third quarter
of the cycle, we refer to the corresponding structure as interfer-
ence type C. In the case when the reference trajectory starts in
the fourth quarter, we classify the interference structure as type

013411-4

8. Publications 255



EFFECTS OF THE COULOMB POTENTIAL IN … PHYSICAL REVIEW A 97, 013411 (2018)

p
x
 (a.u.)

p y (
a.

u.
)

0 0.4 0.8 1.2

−1

−0.5

0

0.5

1

p
x
 (a.u.)

0 0.4 0.8 1.2

p
x
 (a.u.)

p y (
a.

u.
)

0 0.4 0.8 1.2

−1

−0.5

0

0.5

1

p
x
 (a.u.)

0 0.4 0.8 1.2

−1.0

−0.5

0

0.5

1.0

π
2

π 3π
2 2πF

(t
)/

F 0

sig
ref
ωt

(a)

π
2 π 3π

2 2π

sig

ref

ωt

(b)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

(c) (d)

(e) (f)

Type A Type B

FIG. 3. Forward scattering holographic interference patterns cal-
culated within the three-step model for ionization of the H atom
by the laser field with a wavelength of 800 nm and intensity of
2.0×1014 W/cm2. Panels (a) and (b) illustrate formation of the
interferences of types A and B, respectively. Panels (c) and (d) present
the interference structure of types A and B, respectively. The same
structures calculated without separation of different forward scattered
signal trajectories leading to the same final momenta are shown in
panels (e) and (f), respectively.

D. In order to distinguish between the patterns created by long
and short signal trajectories, we add the word “long” or “short.”
Thus we consider the following types of holographic patterns:
C-long, C-short, D-long, and D-short [see Figs. 4(a), 4(b)
4(e), and 4(f), respectively]. The corresponding interference
structures calculated at the intensity of 2.0×1014 W/cm2 are
shown in Figs. 4(c), 4(d), 4(g), and 4(h). Note that, in contrast to
Refs. [43–46], when calculating the structures of types C-long
and D-long we do not restrict ourselves to backward scattered
electrons only, i.e., we assume 0 � θ0 � 360◦. However, only
the backward scattered electrons are taken into account in
calculations of the patterns of types C-short and D-short. This
is due to the fact that the interference of the short forward
scattered electrons with the reference ones results in a different
kind of interference structure emerging in a small part of the
(px,py) plane. This structure is outside of the scope of the
present paper.

Special attention must be given to the area of the (px,py)
plane in Figs. 4(d) and 4(h), where the interference structure
is absent. The vanishing of the interference structure occurs
due to the fact that not all the values of the px component
can be reached by short trajectories [see Figs. 1(a) and 1(b)].
This effect is particularly pronounced at lower intensities and
disappears with increasing field strength. Interference struc-
tures of all six types discussed here are shown in Fig. 5 at the
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FIG. 4. Backward scattering holographic interferences predicted
by the three-step model. Panels (a), (b), (e), and (f) show schematic
illustration of the structures of types C-long, C-short, D-long, and
D-short, respectively. Panels (c), (d), (g), and (h) present the corre-
sponding interference patterns. The parameters are as in Fig. 3.

higher intensity 6.0×1014 W/cm2. With increasing intensity
the interference stripes become narrower and their number
increases dramatically. At this higher intensity the holographic
structures of types C-short and D-short fill the half of the plane
−F0/ω < px < 0 completely.

C. Interferometric structures for the time-dependent exit point

Next, we analyze the interference structures calculated as-
suming that the starting point of the trajectory depends on time
x0(t) = −Ip/F (t). First, we recalculate px and py components
as functions of ωt

sig
0 and θ0 [see Figs. 6(a) and 6(b)]. The results

differ dramatically from the case of constant x0 [cf. Figs. 1(c)
and 1(d)]. Indeed, the function px = px(ωt0,θ0) has now two
minima. Accordingly, the py component has two maxima for
0 � θ0 � 180◦ and two minima for 180 � θ0 � 360◦. The
second extremum of px and py in the vicinity of ωt0 = 90◦
gives rise to another kind of interference structures. Here we
do not consider this second extremum and, therefore, account
only for the electrons launched at ωt0 � 67◦.

The corresponding interference patterns are shown in
Figs. 7(a)–7(f). It is seen that the structures of types A and
B occupy a larger area on the (px,py) plane compared to those
shown in Figs. 5(a) and 5(b). The caustics that are hardly
visible in Fig. 7(a) and better seen in Fig. 7(b) arise due to
the discontinuity of the ωt0(px,py) found from Eq. (3) for x0
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FIG. 5. Holographic interference patterns obtained from the
three-step model for ionization of H by a Ti:sapphire laser (800 nm)
at the intensity 6.0×1014 W/cm2. Panels (a), (b), (c), (d), (e), and
(f) show the interference structures of types A, B, C-long, C-short,
D-long, and D-short, respectively.

depending on t0. The time-dependent exit point leads to the
decrease of the area occupied by the interference structures
of types C-short and D-short [see Figs. 7(d) and 7(f)]. In this
respect, the account for the time dependence in the expression
for the exit point has a similar effect as the decrease of the laser
intensity. This result is expected, because the maximum value
F0 of the laser field F (t) was used when calculating Fig. 1 with
fixed x0.

III. CALCULATION OF THE HOLOGRAPHIC
INTERFERENCE PATTERNS WITH COULOMB

POTENTIAL

In order to calculate the holographic interference patterns in
the presence of the Coulomb field, we use an adapted version
of the SCTS model. Here we sketch the main points of our
approach focusing on the differences in the implementation
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FIG. 6. Same as Fig. 1 for the time-dependent exit point and
intensity 6.0×1014 W/cm2.

p
x
 (a.u.)

p y (
a.

u.
)

0 0.5 1 1.5 2
−2

−1

0

1

2

p
x
 (a.u.)

0 0.5 1 1.5 2

p
x
 (a.u.)

−2 −1.5 −1 −0.5 0
p

x
 (a.u)

p y (
a.

u.
)

−2 −1.5 −1 −0.5 0
−2

−1

0

1

2

p
x
 (a.u.)

p y (
a.

u.
)

−2 −1.5 −1 −0.5 0
−2

−1

0

1

2

p
x
 (a.u.)

−2 −1.5 −1 −0.5 0

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
(f)

(d)

(b)(a)

(e)

(c)

FIG. 7. Same as Fig. 5 for the time-dependent exit point.

compared to Ref. [56]. As in any semiclassical approach, the
trajectory �r(t) and momentum �p(t) of an electron in the SCTS
model are calculated using Newton’s equation of motion:

d2�r
dt2

= − �F (t) − Z�r(t)

r3(t)
, (13)

where Z is the ionic charge (Z = 1 for the H atom). In our
simulations we solve Eq. (13) for the electrons launched on
the central period of the Ti:sapphire laser pulse (800 nm)
with the full duration of eight optical cycles. In order to
integrate Eq. (13), we need to specify initial conditions, i.e.,
the initial velocity and position. To this end, one could use
the separation of the static tunneling problem in parabolic
coordinates [13,58,59]. However, in the present paper we use
the simplest formula for the tunnel exit neglecting the Coulomb
potential: x0 = −Ip/F (t0) to allow for direct comparison with
the results of the three-step model.

We assume that the electron starts with zero initial velocity
along the laser polarization vx(t0) = 0 and nonzero initial
velocity v0,⊥ in the transverse direction. The SCTS considers
an ensemble of classical trajectories with different t0 and v0,⊥.
Since in this paper we are interested in the holographic inter-
ference structures rather than in calculation of the momentum
distributions, we disregard trajectory weights and distribute the
trajectories uniformly.

Following the SCTS model we associate every trajec-
tory with the phase of the semiclassical propagator (see
Refs. [60–62]). For the Coulomb potential this phase is given
by

�(t0,�v0) = −�v0 · �r(t0) + Ipt0 −
∫ ∞

t0

dt

{
p2(t)

2
− 2Z

r(t)

}
(14)
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FIG. 8. Interference pattern for intracycle interference obtained
(a) from the three-step model and (b) in the presence of the Coulomb
potential. The parameters are as in Fig. 5.

(see Ref. [56]). Once the asymptotic momenta of all the
trajectories in the ensemble are found, we bin them in cells in
momentum space. Finally, the amplitudes exp [i�(t j0 ,�vj

0 )] with
j = 1, . . . ,np associated with all np trajectories ending up in
a given bin located at �p = (px,py) can be added coherently.
However, it is easy to see that the quantity

Q =
∣∣∣∣∣∣

np∑
j=1

exp
[
i�

(
t
j

0 ,�vj

0

)]∣∣∣∣∣∣
2

, (15)

which is similar to the ionization probability calculated ac-
cording to the importance sampling implementation of the
SCTS model, is not sufficient to obtain the phase difference
between signal and reference electrons we are interested in.
Indeed, for calculation of interference patterns similar to those
shown in Figs. 3, 4, 5, and 7, we have to isolate only one
kind of rescattered and only one kind of direct trajectories.
In the presence of the Coulomb field this is not an easy task.
Nevertheless, this objective can be accomplished by careful
choice of initial conditions, i.e., of t0 and v0,⊥.

Once the necessary isolation of different kinds of trajecto-
ries is achieved, in any bin of the momentum space we have
N trajectories of one kind with phases �i

0 (i = 1, . . . ,N) and
M trajectories of another kind with phases �k

1 (k = 1, . . . ,M).
Then we calculate the average cosine of the phase difference
〈cos (�0 − �1)〉 in every bin of the momentum plane.

IV. STRONG-FIELD PHOTOELECTRON HOLOGRAPHY
WITH THE COULOMB POTENTIAL

We begin our analysis of effects of the Coulomb potential
with the intracycle interference, i.e., the interference of refer-
ence (direct) electrons starting from two different quarters of
the laser period (see, e.g., Refs. [63–66] and [43,49]). This type
of interference does not belong to the category of holography as
it does not require rescattering. For this reason it is not shown in
Figs. 3–5. The corresponding interference patterns produced
by the reference electrons launched on the first and on the
second quarter of the period calculated within the three-step
model and with the account for the Coulomb field are shown in
Figs. 8(a) and 8(b), respectively. It is apparent that the Coulomb
field creates characteristic kinks in the vicinity of py = 0. The
interference pattern of Fig. 8(b) is similar to the structures that
are seen in the momentum distributions calculated in Ref. [49].

To understand the formation of the interference patterns
in the presence of the Coulomb field, one must note that the
reference trajectories are considered to be those that pass the

core at large distances and undergo small-angle scattering,
whereas the signal trajectories are those that pass the parent
ion at small distances and undergo large-angle scattering
causing a sign change of the momentum in the y direction.
Therefore, it appears natural to consider the electrons obeying
the condition v0,⊥py � 0 as reference electrons and to use only
these when calculating the intracycle interference structure
shown in Fig. 8(b). However, this restriction is not sufficient
to calculate interference patterns properly. The reason is the
nontrivial dependence of the final electron momentum on the
initial conditions in the presence of the Coulomb field. Indeed,
the calculation of the py component as a function of t0 and
v0,⊥ shows that for each time of start t0 there is a smallest
positive initial transverse velocity v+

0,⊥(t0) [largest negative
v−

0,⊥(t0)] leading to py � 0 [py � 0]. This implies that py � 0
[py � 0] for any v0,⊥ > v+

0,⊥(t0) [v0,⊥ < v−
0,⊥(t0)]. Moreover,

for certain ranges of ionization time t0, the y component of
the final momentum is not a sign-constant function over the
intervals v−

0,⊥(t0) < v0,⊥ � v+
0,⊥(t0). As a result, some trajecto-

ries launched with 0 < v0,⊥ � v+
0,⊥(t0) [0 > v0,⊥ � v−

0,⊥(t0)]
are detected with py � 0 [py < 0]. These trajectories interfere
with those starting from another quarter of the cycle with
v0,⊥ > v+

0,⊥(t0) [v0,⊥ < v−
0,⊥(t0)] and, therefore, create an ad-

ditional interference pattern in some part of the (px,py) plane.
This pattern should not be mixed with the main one created
solely by the electrons with v0,⊥ > v+

0,⊥(t0) [v0,⊥ < v−
0,⊥(t0)].

Accordingly, from this point on we exclude the reference
trajectories not obeying the condition v0,⊥ > v+

0,⊥(t0) [v0,⊥ <

v−
0,⊥(t0)].

Another significant point is that the first quarter of the
laser cycle alone is no longer sufficient to produce the whole
interference pattern when the Coulomb field is taken into
account. The interference structure shown in Fig. 8(b) was
calculated by considering the range of ionization times ωt0
between −10 and 90◦. This shift of the left boundary compared
to the case of the three-step model is caused by the change of
the final electron momentum due to the Coulomb potential. The
magnitude of this shift can be easily estimated by treating the
Coulomb field as a perturbation. Its contribution to the asymp-
totic momentum is calculated by integrating the Coulomb
force along the trajectory governed by the laser field only
[53,67]. For not very large transverse velocities v0,⊥ <

√
2Ip

the corresponding integral can be evaluated analytically. As
a result, for the cosinelike field �F (t) = F0 cos (ωt)�ex the x

component of the final momentum �p can be estimated as
(see Ref. [67] for details)

px ≈ F0

ω
sin(ωt0) + π

F0 cos(ωt0)

(2Ip)3/2
. (16)

It is easy to see that Eq. (16) can be rewritten as

px ≈ F0

√
1

ω2
+ π2

(2Ip)3
cos(ωt0 − α), (17)

where

α = arctan

[
(2Ip)3/2

ωπ

]
. (18)
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The left edge of the intracycle interference structure in the
three-step model is located at px = 0 [see Fig. 3(a)], corre-
sponding to ωt0 = 0. In the presence of the Coulomb potential,
it follows from Eq. (17) that for px to be equal to zero
ωt0 = α + π

2 + πk, where k is an integer number. Therefore,
the ionization time closest to ωt0 = 0 that leads to px = 0 is
estimated as

ωt�0 ≈ −π

2
+ arctan

[
(2Ip)3/2

ωπ

]
= − arccot

[
(2Ip)3/2

ωπ

]
.

(19)

For the parameters of Fig. 8 this estimate yields ωt�0 = −10.2◦.
Note that Eq. (19) does not depend on the field strength.
More accurate expressions for the asymptotic momentum of
a direct electron moving in laser and Coulomb fields were
obtained recently [68,69]. Furthermore, analytical estimates
for the final momenta of different kinds of rescattered electrons
were also derived in Refs. [68,69]. However, the simple
formula (16) is sufficient to understand the formation of the
holographic interference patterns. Note that the vast majority
of the reference trajectories starting in the vicinity of ωt0 = π

2
are only weakly affected by the Coulomb field. For this reason,
we do not shift the right boundary of the first quarter (the left
boundary of the second quarter) of the cycle.

In the three-step model, the interference structure of type A
corresponds to the situation when both signal and reference
electrons are launched within the first quarter of the laser
period. In contrast to type A, the structure of type B is created
by the signal electrons launched on the first quarter of the cycle
and the reference trajectories starting on the second quarter.
When the Coulomb field is taken into account, the signal
trajectories must obey the condition v0,⊥py < 0. Furthermore,
the x component of the final momentum must be positive, since
the interference patterns of type A and B emerge in the half
plane px > 0. However, these conditions are not sufficient
to produce the proper interference pattern (similarly to the
case of the intracycle interference). The reason is that the
mapping from the (t0,v0,⊥) plane to the (px,py) plane is not
a one-to-one function in the domain where the condition for
the signal trajectories v0,⊥py < 0 is fulfilled. Different initial
conditions (t0,v0,⊥) can lead to the same final momentum �p.
As the result, several different interference patterns can emerge
in the same area of the (px,py) plane. These patterns must
be separated. Note that already in the three-step model it is
necessary to restrict the initial conditions in order to ensure
a one-to-one mapping to the final momentum and, hence, to
separate different interference patterns emerging for the same
final momenta �p. Within the three-step model this restriction is
achieved by considering different quarters of the optical cycle
(see Sec. II B).

In order to separate different interference patterns in the
presence of the Coulomb field, we identify the domains of
initial conditions, where the mapping (t0,v0,⊥) → (px,py) is
a one-to-one function. As a result, we find that interference
patterns similar to those obtained within the three-step model
also emerge when the Coulomb field is taken into account.
Figures 9(a) and 9(b) show the x and y components of the
final electron momentum as functions of t0 and v0,⊥ � 0,
respectively. The domain of the (t0,v0,⊥) plane that gives rise
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FIG. 9. Asymptotic electron momentum components as functions
of the ionization time and the initial transverse velocity calculated in
the presence of the Coulomb potential. The parameters are as in Fig. 5.
Panels (a) and (c) show the px component. Panels (b) and (d) display
the py component. The blue (dashed) curves in panels (a) and (b)
show the boundary of the domain that gives rise to the signal electrons
responsible for the lower half (py < 0) of the interference patterns of
types A and B. The letters “L” and “R” in panels (c) and (d) mark
the domains responsible for the long and short signal trajectories,
respectively. The boundaries of these domains are indicated by blue
(dashed) curves.

to the relevant interference patterns similar to the one predicted
by the three-step model is shown by the blue (dashed) curves in
Figs. 9(a) and 9(b). The corresponding interference patterns of
types A and B at the intensity of 6.0×1014 W/cm2 are shown
Figs. 10(a) and 10(b). It is apparent that the Coulomb potential
changes the interference structure substantially. This is true for
the positions of the interference maxima and minima, as well
as for their spacing. For type B the interference stripes show
kinks at py = 0, similar as in intracycle interference, Fig. 8(b),
but pointing in the opposite direction.

To obtain the interference structures of types C and D, we
calculate the interference of the signal electrons with v0,⊥py <

0 starting from the first quarter with the reference electrons
starting from the third or the fourth quarter of the cycle. The
interference patterns of types C and D correspond to negat-
ive px .

The x and y components of the final electron momentum
as functions of ωt0 ∈ [−10◦,90◦] and small positive v0,⊥ are
shown in Figs. 9(c) and 9(d). It is seen that both px and
py components have two pronounced minima as in the case
of the electron motion in the laser field only. The second
minimum close to ωt0 = 90◦ is due to the time-dependent
exit point [see Fig. 6]. Here we again consider only the left
minimum of px and py . The position of this minimum weakly
depends on the initial transverse velocity. For the parameters
considered the minimum is achieved at ωt0 ≈ 18.3◦. Thus,
by analogy with the electron kinematics within the three-step
model, we can again distinguish between long and short
signal trajectories. The corresponding domains on the (t0,v0,⊥)
plane are marked in Figs. 9(c) and 9(d) by the letters “L”
and “R”, respectively. The boundaries of these domains are
shown by blue (dashed) curves. With signal trajectories from
these domains, we calculate interferences of types C-long,
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FIG. 10. Holographic interference patterns of types A (a), B (b),
C-long (c), C-short (d), D-long (e), and D-short (f) in the presence of
the Coulomb potential. The parameters are as in Fig. 5.

C-short, D-long, and D-short. As for the reference electrons,
we proceed similarly to the cases of the intracycle interference
and types A and B. Note that we shift the left boundary of
the third quarter of the cycle by 10.2◦ to earlier times when
calculating the structure of type C. The results are presented in
Figs. 10(c)–10(f). The patterns shown here should be compared
with those presented in Figs. 7(c)–7(f). It is seen that the
Coulomb potential has three main effects on the interference
patterns. First, it shifts the interference pattern as a whole.
Second, it fills the parts of the interference structures that
are absent when the Coulomb field is neglected. Third, the
presence of the Coulomb potential results in the characteristic
kinks of the interference stripes at py = 0. We attribute these
kinks to the Coulomb focusing effect (see Ref. [70]).

Finally, we have checked the sensitivity of the results to
changes in the exit point. To this end, we have recalculated
the results shown using the expression for the tunnel exit that
results from the separation of the time-independent
Schrödinger equation in parabolic coordinates. For the

parameters under investigation, the corresponding interference
structures are almost identical to those presented here.

V. CONCLUSIONS

In conclusion, we have investigated subcycle interference
structures emerging in strong-field photoelectron holography
using semiclassical approaches. First, we have calculated these
structures within the three-step model. Following Ref. [43] we
assumed initially that all classical electron trajectories start at
the same point, which is determined as the tunnel exit at the
maximum of the field. We found it important to distinguish be-
tween long and short rescattered trajectories when calculating
the interference structures involving backscattering. This is in
agreement with the conclusion of Ref. [46].

We have found that the interference structures change sig-
nificantly when the time dependence of the tunnel exit is taken
into account. Specifically, some interference patterns expand,
whereas others may shrink compared to those calculated with
the time-independent exit point. This is due to the substantial
change in kinematics of the signal electron.

In order to calculate the interference patterns in the presence
of the Coulomb potential, we have developed a computa-
tional approach based on the SCTS model, which describes
quantum interference including the Coulomb potential beyond
the semiclassical perturbation theory. We have identified the
specific groups of trajectories responsible for each kind of
holographic structure. Finally, for every type of interference
structure predicted by the three-step model we have presented
its counterpart emerging in the presence of the Coulomb poten-
tial. In addition to changing the positions and the widths of the
interference stripes, the Coulomb potential can manifest itself
in three other effects. These are the shift of the interference
pattern as a whole, the filling of the parts of the interference
structure that are missing when the Coulomb potential is
neglected, and the characteristic kink of the interference stripes
at zero transverse momentum. In measurable momentum
distributions, several of the interference structures will usually
be overlaid on top of each other. Furthermore, it remains to be
studied which of the holographic structures are less vulnerable
to focal averaging and thus more visible under experimental
observation. Therefore, future work is needed to shed light on
the question of which of the Coulomb effects are observable
in momentum distributions.
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We use a convolutional neural network to retrieve the internuclear distance in the two-dimensional H+
2

molecule ionized by a strong few-cycle laser pulse based on the photoelectron momentum distribution. We show
that a neural network trained on a relatively small dataset consisting of a few thousand images can predict the
internuclear distance with an absolute error less than 0.1 a.u. Deep learning allows us to retrieve more than one
parameter from a given momentum distribution. Specifically, we used a convolutional neural network to retrieve
both the internuclear distance and the laser intensity. We study the effect of focal averaging, and we find that
the convolutional neural network trained using the focal averaged electron momentum distributions also shows
a good performance in reconstructing the internuclear distance.

DOI: 10.1103/PhysRevA.105.L021102

I. INTRODUCTION

Development of techniques aimed at visualization of elec-
tronic and molecular dynamics in real time will open new
horizons in many branches of modern science and technology.
Many different techniques for time-resolved molecular imag-
ing have been proposed thus far (see Ref. [1] for a review).
The emergence and availability of table-top intense fem-
tosecond laser systems has led to several new time-resolved
imaging techniques using the highly nonlinear phenomena
originating from interaction of strong laser pulses with atoms
and molecules (see, e.g., Refs. [2,3] for review of these phe-
nomena and the whole field of strong-field physics). Examples
are laser-assisted electron diffraction [4,5], laser induced
Coulomb explosion imaging [6–9], high-order harmonic or-
bital tomography [10,11], laser-induced electron diffraction
(LIED) [12–15], and strong-field photoelectron holography
(SFPH) [16]. The two latter methods analyze momentum
distributions of electrons from strong-field ionization. The
recent experimental achievements in LIED and SFPH (see,
e.g., Refs. [17,18]) suggest that future experiments will aim at
extracting the information about nuclear motion in a molecule
from electron momentum distributions.

The understanding of the outcomes of these forthcom-
ing experiments requires thorough theoretical studies of the
effects of nuclear motion on the photoelectron momentum dis-
tributions. Such theoretical studies are already on the way. For
instance, it was shown in Ref. [17] that the different nuclear
wave packet dynamics in hydrogen and deuterium molecules
leads to a difference in bond length, which, in turn, transforms
into a shift of the holographic fringe at certain electron mo-
menta. Before analyzing the imprints of the nuclear motion
in momentum distributions, it is useful to study the distribu-
tions for fixed nuclei with varying internuclear distance. In
the present paper we address this problem using methods of

*n79@narod.ru

machine learning, which is “a subfield of Computer Science
wherein machines learn to perform tasks for which they were
not explicitly programed” [19].

Machine learning, and more specifically deep learning
(see, e.g., Refs. [20,21] for textbook treatments), has been
successfully applied to the prediction of the flux of high-order
harmonics for different experimental parameters [22], the pre-
diction of the ground-state energy of an electron in various
two-dimensional (2D) confining potentials [23], and the re-
construction of the intensity and the carrier-envelope phase
(CEP) of ultrashort laser pulses from 2D images, namely
from frequency-resolved optical gating traces [24] and from
dispersion scan traces [25]. Recently a deep neural network
was also applied to develop an efficient numerical implemen-
tation of the trajectory-based Coulomb-corrected strong-field
approximation (TCSFA) (see Refs. [26,27] for the foundations
of the TCSFA method) [28]. In all these examples the appli-
cation of machine learning allowed the avoidance of heavy
computational costs that would be inevitable when solving
these problems using traditional ways.

Very recently the convolutional neural networks (CNN)
were used to predict high-order harmonic generation (HHG)
spectra for model di- and triatomic molecules for randomly
chosen parameters. The latter include laser intensity, in-
ternuclear distance, and orientation of the molecule [29].
Furthermore, it was shown in Ref. [29] that the CNN can be
used for solving inverse problems: determination of molecular
and laser parameters, as well as classification of molecules
based on their HHG spectrum (or time-dependent dipole
acceleration) alone. These problems are hard to solve by man-
ually inspecting a variety of complex spectra. On the other
hand, classification is one of the typical tasks of machine
learning. A similar situation is found for the problem of the
present work. In this paper we train a CNN to predict the in-
ternuclear distance in the 2D model H+

2 molecule from a given
photoelectron momentum distribution (PMD). Application of
a CNN is not the only possible way to retrieve the internuclear
distance from electron momentum distributions. This problem
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can be also solved by directly comparing the given PMD with
a precalculated set of momentum distributions corresponding
to various internuclear distances. However, the direct compar-
ison is not expected to perform well when used on momentum
distributions that it has not explicitly trained for. Therefore,
we focus on the CNN in this paper. Although the CNN will
also face problems when tested on distributions it has not
been trained for, it is of interest to address this question
quantitatively.

The momentum distributions that are needed to train the
CNN are calculated from the direct numerical solution of
the time-dependent Schrödinger equation (TDSE). We show
that a good accuracy of the predictions can be achieved even
for relatively small sets of training data. We then study the
effect of the focal averaging on the retrieval of the internuclear
distance with the CNN.

II. MODEL

A. Solution of time-dependent Schrödinger equation

For the calculations we use a few-cycle linearly polarized
laser pulse that is defined in terms of the vector-potential and
present between t = 0 and t f = (2π/ω)np:

�A(t ) = (−1)np
F0

ω
sin2

(
ωt

2np

)
sin (ωt + ϕ)�ex. (1)

Here �ex is a unit vector in the polarization direction (x axis),
np is the number of optical cycles within the pulse, and ϕ is
the CEP. The electric field is to be obtained from Eq. (1) as
�F (t ) = −d �A/dt . We do our simulations for ϕ = 0.

In the velocity gauge, the 2D TDSE for an electron inter-
acting with the laser pulse is given by

i
∂

∂t
�(x, y, t ) =

{
−1

2

(
∂

∂x2
+ ∂

∂y2

)

− iAx(t )
∂

∂x
+ V (x, y)

}
�(x, y, t ), (2)

where �(x, y, t ) is the coordinate-space wave function and
V (x, y) is the soft-core binding potential of the model H+

2
molecular ion in the frozen nuclei approximation:

V (x, y) = − 1√
(x − R/2)2 + y2 + a

− 1√
(x + R/2)2 + y2 + a

. (3)

Here, R is the internuclear distance and a = 0.64 is the soft-
core parameter. We use the Feit-Fleck-Steiger split-operator
method [30] to solve the TDSE Eq. (2). The ground-state
wave function was obtained by imaginary time propagation.
Our computational box was centered at (x = 0, y = 0) and
extends over x ∈ [−400, 400] a.u. and y ∈ [−200, 200] a.u.
We use equal grid spacings for x and y coordinates, �x =
�y = 0.1954 a.u.

The wave function was propagated from the beginning
of the laser pulse t = 0 to t = 4t f with the time step �t =
0.0184 a.u. We apply absorbing boundaries to prevent unphys-
ical reflections of the wave packet from the boundary of the
computational grid, i.e., at every time step the wave function

is multiplied by the mask:

M(x, y) =
{

1 for r � rb

exp[−β(r − rb)2] for r > rb
. (4)

Here, r =
√

x2 + y2, rb = 150 a.u. and β = 10−4. We note
that at the intensity of 4.0 × 1014 W/cm2 and for the
wavelength of 800 nm, the characteristic amplitude of the
laser-induced electron quiver motion is F0/ω

2 = 32.8 a.u.
Therefore, the position of the absorbing boundary rb exceeds
this value by a factor of 4.5. The photoelectron momentum
distributions are calculated by using the mask method [12,31].

B. Architecture of convolutional neural network

The choice of architecture of a neural network should ac-
count for the structure of the data used for learning and the
desired output. In our case the data used for learning are the
pairs consisting of the PMD (image) and the corresponding
internuclear distance R (label). Bearing in mind that the H+

2
molecule is ionized by a laser field linearly polarized along the
internuclear axis, we assume that every PMD has the aspect
ratio 2 : 1. The details of the necessary image preprocessing
are given in Sec. III. We train the neural network to solve the
regression problem, i.e., to predict the internuclear distance R
from a given PMD.

The deep neural network that we use for the problem at
hand consists of five nonreducing convolutional layers, each
followed by a reducing average pooling layer. Each of the
nonreducing convolutional layers operates with 32 filters with
sizes of 3 × 3 pixels. These convolution layers produce new
images “feature maps” (see, e.g., Ref. [21]). The number of
these new images equals the number of filters. The values of
the filter matrices are to be determined through the training
process, i.e., they play the same role as the trainable weights
of an ordinary artificial neural network. After performing
the convolution operation, all the convolutional layers apply
the rectified linear unit (ReLU) activation function, which is
defined as ReLU(x) = max(0, x). The average pooling layers
divide the images they get into pooling regions with sizes of
2 × 2 pixels and calculate averaged values in every region.
Therefore, each average pooling layer reduces the size of the
image by a factor of 2. The last average pooling layer is
connected to the dropout layer that randomly sets its input
elements, i.e., output of the preceding layer, to zero with a
certain probability. This probability is chosen to be equal to
0.2. The dropout layer allows us to avoid overfitting. The
output of the dropout layer is fed to a fully connected layer
that produces only one single value: the internuclear distance
R. This is the output value of the whole neural network.

III. NUMERICAL EXPERIMENTS AND RESULTS

The photoelectron momentum distributions calculated
from the solution of the TDSE (2) for three different inter-
nuclear distances are shown in Figs. 1(a), 1(c), and 1(e). It is
seen that the shape of the distribution changes considerably
with increasing R. However, the quantification of the corre-
sponding changes in the PMDs is a nontrivial task. This makes
application of neural networks particularly appropriate. In
order to train the neural network, we first need to produce a
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FIG. 1. Electron momentum distributions for ionization of the H+
2 molecule by a laser pulse with a duration of np = 2 cycles and

wavelength of λ = 800 nm obtained from numerical solution of the TDSE. (a), (b) correspond to the internuclear distance 2.0 a.u.; (c),
(d) correspond to the internuclear distance 5.0 a.u.; (e), (f) correspond to the internuclear distance 6.0 a.u. The left column [(a), (c), and (e)]
show the distributions calculated at fixed intensity of 4.0 × 1014 W/cm2. The right column [(b), (d), and (f)] displays the distributions averaged
over the focal volume for the same peak intensity of 4.0 × 1014 W/cm2. The laser field is linearly polarized along the x axis. The distributions
are normalized to the maximum value. Shown is the decimal logarithm of the distribution, see text.

set of training data. To this end, we solve the TDSE, Eq. (2),
for N random internuclear distances Rk ∈ [1.0, 8.0] a.u. and
peak laser intensities Ik ∈ [1.0, 4.0] × 1014 W/cm2, where
k = 1, ..., N , and we calculate the corresponding electron mo-
mentum distributions. Since the solution of the 2D TDSE
takes a few hours on four to eight modern cores working in
parallel, the formation of a large training set is computation-
ally expensive. Here we use N = 3000. About one week is
needed to create such a data set using a computer cluster.
We note that our data set is relatively small (compared with
N = 200000 and N = 30000 used in Refs. [23] and [29],
respectively). Nevertheless, for the problem at hand even such
a modest data set allows us to obtain satisfactory results.

The PMD calculated from the solution of the TDSE is a
matrix of size 4096 × 2048. The usage of matrices of such
sizes as an input for a convolutional neural network will lead
to a slow training process. For this reason, we first modify the
matrix of the PMD as follows.

We find the absolute maximum PMDmax of the distribution
and calculate the decimal logarithm of the normalized PMD:
W = log10(PMD/PMDmax). We set W = −5 for all values
that are smaller than -5. We note that in doing so we consider
not only the low-energy part of the distribution created by
the electrons that do not experience hard recollisions with
their parent ions, but also the beginning of the high-energy
part of the PMD. This high-energy part is formed due to
electrons that are driven back by the laser field to their par-
ent ions and rescatter from them. Classically, the boundary
between low- and high-energy parts of the PMD corresponds
to the momentum k = 2

√
Up, where Up is the ponderomotive

potential. For the parameters of Fig. 1, this estimate yields
k ≈ 1.87 a.u. Then we find a rectangular area such that the
values of W at the boundary of the rectangle are just above -5.
This rectangle is shown by the dashed lines in Fig. 1(a). The
image within the rectangle is resized to 256 × 128 by using
bicubic interpolation. Finally, all the elements of the matrix
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FIG. 2. Plot of predicted vs true internuclear distances illustrating the performance of neural networks. (a) Neural network trained on a
set of distributions that were calculated with fixed laser intensities (not focal averaged), see text. (b) The same neural network as in (a), but
receiving focal averaged momentum distributions as test images. (c) The neural network trained on a set of focal averaged distributions and
tested on another independent set of focal averaged distributions.

are rescaled so that the minimum value corresponds to zero
and the maximum one is mapped to 255. The resulting matrix
of the size of 256 × 128 is used as an input for the CNN.

We split our data set into training and test sets in the
ratio 0.75:0.25. Only data from the training set were used for
training of the neural network. The goal of training is the mini-
mization of the loss function, i.e., the measure of deviation (in
our case the mean squared error) between predictions of the
neural network and expected outcomes for the training set.
The MATLAB package [32] is used for the calculations. The
training of a neural network is performed on a modern PC
using a graphic processing unit and takes only a few minutes.
The prediction of the internuclear distance from one single
image when the CNN is fully operational takes us about 0.024
sec on a PC. Therefore, the validation procedure for a test set
consisting of 750 images requires only 18 sec.

The results of the application of the trained neural network
to the test data are presented in Fig. 2(a). It is clearly seen that
the neural network can successfully predict the internuclear
distance. We characterize the quality of the neural network
by the mean absolute error (MAE) between the predicted
and true values of R over the test data set - a measure,
which is different from the loss function (mean squared error)
used in the training process. The neural network predicts
the internuclear distance with the MAE of 0.07 a.u. We
have found that another neural network that uses solely the
low-energy part of the PMDs (0 < kx <

√
2Up, |ky| <

√
Up)

shows slightly worse results: the corresponding MAE of R
is equal to 0.12 a.u. This implies that the recognition of the
internuclear distance with the neural network relies mostly on
the interference patterns in the low-energy part of the momen-
tum distributions, i.e., on the holographic patterns [16], but the
accuracy can be enhanced by including high-energy electrons.

It is clear that the shape of the PMDs depends not only
on R, but also on the laser parameters, especially on the
intensity I . Deep learning allows us to retrieve more than one
parameter from a given PMD. Using the same training data
set, we have trained another CNN that is able to retrieve both
the internuclear distance and the laser intensity. The MAEs
provided by this neural network for R and I are equal to 0.07
a.u. and 0.05 × 1014 W/cm2, respectively. It is seen that the
error for R coincides with the one obtained using the very first
neural network aimed at the retrieval of only the internuclear

distance. We therefore conclude that the ability of the CNN
to retrieve both parameters does not affect the accuracy with
which the internuclear distance is retrieved.

It is well-known that the intensity fluctuates in an ex-
periment. This raises the question: How vulnerable is the
performance of the trained neural network to the effect of fo-
cal averaging? To answer this question, we calculate a number
of electron momentum distributions averaged over the focal
volume and use them to test our neural network trained on
the distributions obtained for fixed laser intensities. For a peak
intensity I0, the focal-volume averaged distribution dP/d�k can
be calculated as [35]

dP

d3k
=

∫ I0

0

dP(I )

d3k

(
−∂V

∂I

)
dI, (5)

where dP(I )/d3k is the momentum distribution for a fixed
intensity I , and (∂V/∂I )dI is the focal volume element that
corresponds to intensities between I and I + dI . We as-
sume that the laser beam has Lorentzian spatial distribution
of the intensity along the propagation direction and Gaus-
sian intensity profile in the transverse direction (see, e.g.,
Refs. [3,33,34]). The focal volume element for such a beam
is given by [35]:

(
−∂V

∂I

)
dI ∼ I0

I

( I0

I
+ 2

)√
I0

I
− 1dI. (6)

Obviously, the calculation of the focal-volume averaged dis-
tribution requires a number of TDSE solutions for different
intensities I < I0, and therefore is computationally demand-
ing. For this reason, we calculate only Na = 100 focal
volume averaged PMDs for random internuclear distances
Rk ∈ [1.0, 8.0] a.u. and peak intensities Ik ∈ [1.0, 4.0] × 1014

W/cm2 (k = 1, ..., Na).
Figure 2(b) illustrates the performance of the neural net-

work on this test set. We see that the performance of the
CNN for the averaged PMDs is not as good as for the non-
averaged PMDs. The MAE on this test set reaches the value
of 0.83 a.u., which is still better than the value 1.4 a.u. that
we find in an approach based on direct comparison with the
training set. However, it is seen that the neural network works
relatively well for PMDs that correspond to the internuclear
distances less than 5.0 a.u. Indeed, the MAE calculated for the
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focal-volume averaged PMDs with R < 5.0 a.u. is equal to
0.24 a.u. The unsatisfactory performance of the CNN for focal
averaged PMDs with R > 5.0 a.u. can be understood from a
close inspection of Figs. 1(a)–1(f). It is seen that the aver-
aged distributions for R = 5.0 a.u. and R = 6.0 a.u. shown
in Figs. 1(d) and 1(f), respectively, are similar to each other,
especially in their low-energy parts, i.e., for 0 < kx <

√
2Up

and |ky| <
√

Up. Simultaneously, these distributions are not
too similar to their counterparts calculated for fixed laser
intensity [cf. Figs. 1(c) and 1(d), as well as Figs. 1(e) and 1(f)].
In contrast to this, the averaged distributions corresponding to
smaller values of R resemble the PMDs for same internuclear
distances and fixed intensities [cf. Figs. 1(a) and 1(b)]. All
this explains why the CNN trained with the distributions for
fixed intensities underestimates large internuclear distances
by treating them as R � 5.0 a.u. Aiming at a CNN that is able
to map different PMDs (averaged and unaveraged) to the same
R would indeed imply a non-bijective mapping.

In order to understand whether the internuclear distance
can be reliably retrieved from the focal averaged momentum
distributions using deep learning, we train another CNN. This
second neural network has the same architecture as the first
one, but it is trained on a set of averaged PMDs. A set of
Na = 100 distributions is too small to train a neural network.
Therefore, the data set should be augmented. To this end,
we apply 2D interpolation on an irregular grid (see, e.g.,
Ref. [36]) in the (R, I0) plane formed by the Na points. As
a result, we produce a set of 6000 focal averaged electron
momentum distributions and use them to train our new CNN.
In order to have a test set independent of the initial Na focal
averaged momentum distributions, we produce another Na =
100 of averaged PMDs for random internuclear distances and
peak laser intensities using direct numerical solution of the
TDSE and Eq. (5). We find that the CNN trained on the set of
intensity averaged PMDs shows a rather good performance,
see Fig. 2(c). It it also seen from Fig. 2(c) that the performance
of the CNN is slightly worse for small internuclear distances
as compared to larger values of R. We attribute this to the fact
that the interpolation accuracy for the focal volume averaged
momentum distributions is slightly worse for small internu-
clear distances. Nevertheless, the MAE on the independent
test set is about 0.14 a.u. This result clearly shows that neural
networks can be used to retrieve the unknown internuclear
distance from a given electron momentum distribution even
if the latter is affected by focal averaging.

When applied to a real experimental situation it would be
desirable for a neural network to possess some transferabil-
ity, i.e., to predict correct results even for PMDs obtained at
parameters that are beyond the range of the training data. The
neural networks trained here show only limited transferability.
This is seen from the example of our first neural network
trained on nonaveraged PMDs. The application of this neural
network to a new set of PMDs obtained for internuclear dis-
tances 8.0 < R � 12.0 a.u., i.e., outside of the training range
1.0 � R � 8.0 a.u., leads to an MAE of 3.0 a.u. If our neural
network is applied to images reflected about the vertical axis
(corresponding to a change of the CEP by π ), we find an MAE
of 1.4 a.u. Slightly better results are achieved in the case where
the neural network is applied to distributions obtained for a
nonzero angles between the molecular axis and polarization

direction. The corresponding MAE is 0.9 a.u. We note that an
approach based on the direct comparison of a given PMD with
a precalculated set of the distributions shows worse results in
terms of transferability. Here we find MAEs of 5.1, 1.6, and
1.4 a.u., respectively. The transferability problem of the neural
network can be solved by the transfer learning technique (see,
e.g., Ref. [37] for details). This approach was successfully
used in Ref. [29]. The application of this technique to the re-
trieval of the internuclear distance will be a subject of further
studies.

It should also be noted that the application of the neural
network to the problem at hand is not without shortcomings.
Since any neural network works as a “blackbox”, i.e., it is
not clear how the neural network takes its decisions, it is
often difficult to assess whether it works properly for a given
input image. On the other hand, the so-called visualization
methods of deep neural networks that allow to explain the
decisions of the CNNs are being actively developed nowadays
(see, e.g., Ref. [38] for a review). Overall, there are reasons
to believe that CNNs have a high potential for extracting
various molecular properties from the electron momentum
distributions produced by strong-field ionization.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have investigated the capabilities of deep
learning for retrieval of the internuclear distance in the H+

2
molecule from a given 2D electron momentum distribution
generated by a strong laser pulse. We have shown that the
neural network trained on a few thousand images is able to
predict the internuclear distance with a MAE less than 0.1 a.u.
In addition to this, the CNN can be trained to retrieve more
than one parameter from a given PMD. We have used the
neural network to predict both the internuclear distance and
the intensity of the laser pulse. Furthermore, we have studied
the effect of focal averaging on the retrieval of the internuclear
distance with a neural network. It is shown that the CNN
trained on a set of focal averaged distributions also performs
well.

The electron momentum distributions are sensitive not only
to intensity fluctuations, but also to the changes of other laser
parameters. For short laser pulses the variations of the CEP
can change the resulting PMDs significantly. Therefore, the
effect of the CEP on the retrieval of the internuclear distance
needs to be studied. Moreover, it is of interest to look “inside”
the CNN and analyze what features of the holographic struc-
tures allow the network to classify the images. This can be
done by application of the visualization methods developed
for the CNNs. Finally, the transferability of the neural net-
works designed for the problem at hand should be improved.
These questions will be the subject of further studies. Progress
in these directions is important for the development of SFPH
and for the whole field of time-resolved molecular imaging.
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