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Energy scaling of the product state distribution for three-body recombination of ultracold atoms
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Three-body recombination is a chemical reaction where the collision of three atoms leads to the formation
of a diatomic molecule. In the ultracold regime it is expected that the production rate of a molecule generally
decreases with its binding energy Eb, however, its precise dependence and the physics governing it have been left
unclear so far. Here we present a comprehensive experimental and theoretical study of the energy dependency
for three-body recombination of ultracold Rb. For this, we determine production rates for molecules in a state-to-
state resolved manner, with the binding energies Eb ranging from 0.02 to 77 GHz × h. We find that the formation
rate approximately scales as E−α

b , where α is in the vicinity of 1. The formation rate typically varies only within a
factor of two for different rotational angular momenta of the molecular product, apart from a possible centrifugal
barrier suppression for low binding energies. In addition to numerical three-body calculations we present a
perturbative model which reveals the physical origin of the energy scaling of the formation rate. Furthermore,
we show that the scaling law potentially holds universally for a broad range of interaction potentials.
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I. INTRODUCTION

When a molecule is formed in a chemical reaction there are
often thousands of quantum states it can end up in, due to the
various electronic, vibrational, rotational, and spin degrees of
freedom. Generally, the product population is not uniformly
distributed over these possible product states, but rather fol-
lows characteristic propensity rules. Finding and identifying
propensity rules can provide deep insights on the basic princi-
ples which drive and govern specific reactions. Furthermore,
the propensity rules can be used to develop predictions and
approximations, especially when full detailed calculations are
highly complex, such as, e.g., for reactions involving more
than two atoms.

Propensity rules can be extracted experimentally from
state-to-state measurements where the reactants are prepared
in well defined quantum states and product states are detected
in a quantum state resolved way. In recent years, there has
been rapid progress in the methodology of state-to-state chem-
istry using atomic and molecular beams [1–4] or ultracold
samples [5,6]. Individual partial waves of product states have
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been resolved (see, e.g., [7–9]) and spin conservation propen-
sity rules have been observed with hyperfine and rotational
states [10–14].

Three-body recombination is one of the most fundamental
and ubiquitous chemical reactions. In a collision of three
atoms, two combine to form a molecule and the third atom
enables the dissipation of the released energy. The released
energy consists of the initial collision energy plus the molec-
ular binding energy Eb and is converted into relative motion
between the molecule and the third atom. Experiments have
shown that three-body recombination at ultracold tempera-
tures generally produces the most weakly bound molecular
state (see, e.g. [11,15–17]). Semiclassical and fully quantum
mechanical treatments have been carried out. They generally
indicate that there is a propensity towards weakly bound
molecular product states [11,18–20]. However, precisely how
the molecular production rate decreases with the binding en-
ergy has not been clarified yet. Reference [21], e.g., suggested
the suppression to be exponential in triatomic reactions. A
recent calculation of three-body recombination of hydrogen
atoms at room temperature predicted a molecular produc-
tion rate ∝ E−1.5

b for recombination towards deeply bound
molecules, which was enhanced by the Jahn-Teller effect [20].

Here we investigate the rate decrease both experimentally
as well as theoretically by studying three-body recombination
of 87Rb atoms at ultralow collision energies. We find a E−α

b
power law for the molecular production rate where the expo-
nent α is close to 1. This result differs from a previous scaling
estimate of α = 1/2 which was based on studying bound
states in a limited range of binding energies [11]. We have
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FIG. 1. (a) Two-color REMPI scheme for state-selective detection of molecules. Probe and ionization lasers have a wavelength of 1065 nm
and 544 nm, respectively. (b) Rotational level structure of the relevant molecular states with negative parity. (c) Various segments of REMPI
detection signals of (υ, LR = 0, 2) product molecules as a function of the probe laser frequency ν. Here ν0 = 281445.045 GHz, corresponding
to the transition from the 5s + 5s asymptote to υ ′ = 66, J ′ = 1. The vibrational quantum numbers υ are given on the top of the figure and
the rotational quantum numbers LR are indicated by the color coding of the dashed vertical lines (LR = 0 and 2 in blue and red, respectively).
These dashed lines are expected frequency positions for the given states obtained from coupled-channel calculations. For smaller signals
(υ = −6, −7, −8) magnifications by a factor of 10 are also shown. The data for the most weakly bound state υ = −1, LR = 0 are not
presented, because the corresponding line is largely drowned by a neighboring photoassociation line [11].

now extended this range by roughly a factor of ten, on both
the experimental and theoretical side. Our experimental data
comprise 30 final quantum channels of detected molecules
with binding energies of up to Eb = 77 GHz × h.

Our numerical calculations for the three-body recombi-
nation rates L3(Eb) are in remarkable agreement with our
measurements, especially for those product channels where
molecules with low rotational angular momentum LR are
formed. Besides the general E−α

b trend of L3(Eb) the calcu-
lations also reproduce prominent deviations from this trend
at particular binding energies Eb. These deviations might be
interpreted as interference effects of various kinds.

Our perturbative model indicates that for each angular mo-
mentum LR > 0 there is a critical binding energy Ec(LR) so
that for Eb > Ec(LR) the trend of the partial recombination
rate will be described by L3(Eb, LR) = cE−α

b , where c is a
constant. We find that the factor c is roughly independent
of LR. For Eb < Ec(LR) there is a suppression of L3(Eb, LR)
which can be explained as the effect of an angular momentum
barrier in the exit channel. As a result, this suggests that only
molecular states with small LR will significantly contribute to
molecular production at low binding energies Eb.

Finally, we show that the E−α
b scaling law can be also

derived theoretically in an analytic, perturbative approach. We
find that within this approach the E−α

b scaling is quite indepen-
dent on the long-range behavior of the interaction potential
between two atoms. Specifically, potentials with a power-law
tail −Cn/rn for n = 3, 4 or 6, or the Morse potential, as well
as the contact potential have α values in the range [0.91, 1].

Within the framework of the perturbative calculations the
scaling of the rate constant L3(Eb) is largely determined by
|φd (

√
Eb m/3)|2, where φd is the diatomic molecular wave

function in momentum representation and m is the atomic
mass. It turns out that this part of the momentum wave func-
tion is linked to the molecular wave function in real space

in the vicinity of the classical outer turning point of the
molecular potential (at energy −Eb). This indicates that the
outer classical turning point marks a typical distance for the
recombination to occur.

II. EXPERIMENT

In our experiments we prepare an ultracold cloud of 5 ×
106 87Rb atoms in a far-detuned 1D optical lattice trap (λ =
1064 nm, trap depth ≈10 μK × kB) combined with an optical
dipole trap so that we obtain a trap frequency of 2π × 23Hz
in the transverse direction. The atoms are spin-polarized in
the hyperfine state f = 1, m f = −1 of the electronic ground
state and have a temperature of about 750 nK. Our measure-
ments are carried out at a low external magnetic field of about
4 G. We hold the atom cloud in the trap for a duration of
500 ms during which Rb2 molecules are spontaneously pro-
duced via three-body recombination in the coupled X 1�+

g −
a3�+

u molecular complex, below the 5S1/2 + 5S1/2 atomic
asymptote. The molecules are state-selectively ionized via
resonance-enhanced multiphoton ionization [REMPI] [see
Fig. 1(a) and Appendix A for details], and then trapped and
detected as ions in a Paul trap at a distance of 50 μm (see
Appendix B for details). In brief, a first REMPI laser (the
probe laser) resonantly excites such a molecule to the interme-
diate level υ ′ = 66, J ′ of the state A1�+

u using a wavelength
of about 1065 nm [22,23]. Here υ ′ is the vibrational quan-
tum number and J ′ is the total angular momentum quantum
number excluding nuclear spin. From the intermediate level
a second laser (the ionization laser) at a wavelength of about
544 nm resonantly excites the molecule to a state above the
Rb+

2 ionization threshold, so that the molecule can autoion-
ize. In one experimental run we can detect and count up to
≈ 70 ions in the Paul trap. The ion number scales linearly
with the molecule number. The corresponding scaling factor
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η is the detection efficiency of a molecule. As discussed in
Appendixes A and C, η is roughly constant over the range
of bound states investigated in this work, and its value is
η ≈ 4.8 × 10−3. A REMPI spectrum of a particular product
state is obtained by scanning the probe laser frequency in steps
of typically 5 MHz. Our setup features an improvement of the
product state signals and the sensitivity by a factor of ≈25
as compared to previous work [11], extending our detection
range of binding energies to about 80 GHz × h, which was in-
strumental for the present work (for details, see Appendix D).

In the following we specify molecular states by their vi-
brational quantum number υ and their rotational quantum
number LR only, which is sufficient due to the conserva-
tion of the hyperfine spin state in the reaction process [24].
Figure 1(c) shows product state spectra for molecules with
LR = 0 or 2, and with υ ranging from −2 to −8. We note
that whenever υ is negative, it is counted downwards from
the atomic fa = fb = 1, m f a = m f b = −1 asymptote, starting
with υ = −1 for the most weakly bound vibrational level. The
most deeply bound state, (υ = −8, LR = 0), has a binding
energy of 77 GHz × h. Here all signals are obtained using
the same intermediate state J ′ = 1 for REMPI. The frequency
reference ν0 corresponds to the photoassociation transition
towards this intermediate state such that, at a resonance po-
sition, (ν − ν0) × h directly represents the binding energy of
the initially produced molecular state. Our data clearly show
that the production rate of molecules for a given rotational
level LR generally drops with the binding energy Eb. The drop
is significant over the investigated range of Eb. The relative
strength of LR = 0 and 2 signals, however, can vary for differ-
ent vibrational levels υ. Large molecular signals such as, e.g.,
obtained for υ = −2 correspond to 63(3) produced ions per
run whereas typical background signals are 0.69(0.15) ions
per run (see also Fig. 11 in Appendix D). In the measure-
ments of Fig. 1(c) the number of repetitions of the experiment
per data point was gradually increased from 5 to 40 for in-
creasing binding energy, in order to improve the visibility of
smaller signals. We assign the signals in our REMPI spec-
tra by comparing their frequency positions to those obtained
from close-coupled channel calculations (see, e.g., [10,11])
and by observing characteristic rotational ladders, since any
molecular state with LR > 0 can be detected via two different
rotational states J ′ = |LR ± 1| [see Appendix E, not shown in
Fig. 1(c)]. The deviations between calculated [dashed vertical
lines in Fig. 1(c)] and measured resonance frequency posi-
tions are typically smaller than ∼30 MHz and arise mainly
from daily drifts of our wavelength meter.

III. QUANTITATIVE ANALYSIS

We now carry out a quantitative analysis of the observed
population distribution. Figure 2 shows measured (scaled) and
calculated partial rate constants L3(Eb) ≡ L3(υ, LR) for the
production of (υ, LR) molecules at a temperature of 0.8 μK.
The experimental values for L3(υ, LR) were obtained by mul-
tiplying the measured ion numbers with a single calibration
factor for all detected (υ, LR) states. This factor was chosen
to optimize the agreement between experiment and theory
(Appendix C). As can be seen from Fig. 2, the theoretical
predictions reproduce remarkably well the relative strengths

FIG. 2. Measured (scaled) and calculated rate constants
L3(υ, LR) for product molecules (υ, LR ) as a function of their
binding energy Eb. The rotational quantum numbers LR are indicated
by different plot symbols (black: calculations; colors: experiment).
For each sequence of states with the same LR the vibrational quantum
number υ is given below the data points. For better visibility the
data for each LR are shifted in vertical direction by multiplying
them with 10−LR . The gray solid lines show the energy scaling
(Eb/GHz × h)−0.8 × 0.2 × 10−29 cm6/s.

of the state dependent rates L3(υ, LR) obtained from the exper-
iments. The calculations are based on solving the three-body
Schrödinger equation in an adiabatic hyperspherical repre-
sentation [18,25], using a single-spin model as described in
Appendix F (see also Ref. [11]). Within our model the 87Rb
atoms interact via pairwise additive long-range van der Waals
potentials with a scattering length of 100.36 a0 [26]. The po-
tentials are truncated and support 15 LR = 0 molecular bound
states, and a total of 240 bound states. We calculated the
theory data point for LR = 8, υ = −3 using a model potential
with 12 s-wave bound states because for 15 s-wave bound
states a numerical instability occurs specifically for this level.

Figure 2 reveals that the L3(υ, LR) rate roughly follows the
overall scaling of E−α

b for all rotational states. A fit analysis to
the experimental data yields a scaling factor α = 0.80(±0.14)
(see gray solid lines), while the fit to the theoretical data yields
α = 0.77(±0.10). We point out that all gray solid lines in
Fig. 2 correspond to exactly the same function, (Eb/GHz ×
h)−0.8 × 0.2 × 10−29 cm6/s. For better visibility these lines
along with the respective data points have been shifted in
vertical direction by multiplying them with 10−LR . We no-
tice that the measured data for LR = 2 are all located above
the gray line while the data for LR = 4 or 10 are all below the
gray line. This indicates that there is a systematic dependence
of L3(Eb) on LR, as already discussed in [11]. Nevertheless,
considering the overall range of L3 and LR in our data, this
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variation of L3(Eb) with LR is still comparatively small, typi-
cally within a factor of 2. Therefore, to a first approximation,
the production rate does seem to be quite independent of the
molecular rotation LR. This fact might be somewhat counter-
intuitive given that the atoms initially collide with vanishing
angular momenta, and therefore products with small angular
momenta would seem to be naturally preferable.

We note that there are considerable variations around the
general E−α

b scaling trend. For example, the rate for the
state υ = −3, LR = 0 is significantly lower than the rate for
the more-deeply bound state υ = −4, LR = 0. Remarkably,
even such individual variations are largely reproduced by
our numerical calculations. In general, the theoretical and
experimental data curves are very similar, especially for the
low rotational states LR = 0 and LR = 2. This suggests that
our three-body model is quite accurate and that it should in
principle be capable to track down how the deviations from the
general scaling come about in individual cases. For example,
we point to the experimental and theoretical data points for
υ = −2 and LR = 4, which are located below the E−α

b scaling
trend. This suppression may be due to an angular momentum
barrier effect which we will discuss in Sec. V B.

IV. PERTURBATIVE APPROACH

In order to gain a deeper insight into the observed energy
scaling we discuss in the following a perturbative model for
the partial three-body recombination rates L3(υ, LR). Gen-
erally, the rates L3(υ, LR) towards each specific molecular
product d = (υ, LR) are given by [27] (see also Appendix G)

L3(υ, LR) = 12πm

h̄
(2π h̄)6qd |〈ψ f |U0(E )|ψin〉|2, (1)

where m represents the mass of an atom. |ψin〉 is the initial
state, consisting of three free atoms each propagating as a
plane wave with essentially vanishing momentum. |ψ f 〉 is
the final state of a free atom and a free molecule. Atom and
molecule are asymptotically propagating as plane waves with
relative momentum qd which is fixed by the molecular binding
energy Eb and the total energy E of the three-body system via
3q2

d
4m − Eb = E , where we use the center of mass system as a
reference. In Eq. (1), U0(E ) represents a three-body transi-
tion operator which describes the transition process between
the states. It can be approximated by a perturbative expan-
sion (Appendix G) derived from the Alt-Grassberger-Sandhas
(AGS) equation [27–29]. To the leading order of the expan-
sion, we have a process where atoms a and b of the three free
atoms a, b, and c collide to exchange a momentum qd . During
this collision atom b is scattered into a molecular bound state
with atom c. This is shown schematically in the inset of Fig. 3.
The initial momenta of the atoms are 0. After the collision
atom a remains free and carries away the momentum qd

and a corresponding part of the released binding energy. The
formed molecular bound state φ has a total momentum −qd

and the relative momentum between its atomic constituents is
(−qd/2). Apart from constants, the result of the calculation is

L3(υ, LR) ∝ qd

∣∣∣∣φd

(
1

2
qd

)∣∣∣∣
2

|th(qd )|2. (2)

FIG. 3. Plot of |φd (
√

Eb m/3)|2 ∝ L3(Eb)/
√

Eb vs Eb for various
two-body potentials. These are the potentials with the power-
law tail, ∼ − Cn/rn for n = 3, 4 or 6, and the Morse potential
De[e−2a(r−re ) − 2e−a(r−re )] (see legend). We use Ē = h̄/mr̄2, with
r̄ = 1

2 (mCn/h̄2)1/(n−2) for the power-law potentials and r̄ = a for the
Morse potential, respectively. The values for λn and De are chosen
such that the potentials have 14 or 15 s-wave bound states. The shown
points correspond to bound states with υ � −13. In order to map
out the function |φd (

√
Eb m/3)|2 better we show data points for four

different values for λn (for each n) or for De (see text). The dotted
line is a power-law fit to the upper envelope of the data points for
the −C6/r6 potential as well as the other potentials. The dashed line
represents the scaling for contact interactions. For n = 6 the energy
range considered in this figure corresponds to [0.01 . . .100] GHz × h
for 87Rb atoms. The inset describes the scattering process in the
perturbative approximation (see Appendix G). Horizontal lines rep-
resent atoms and the numbers above these lines denote single-atom
momenta. The relative momentum between two atoms is indicated
by a number that connects to the corresponding horizontal lines by
arrows.

Here φd (p = 1
2 qd ) corresponds to the radial part of the molec-

ular wave function in momentum space. It is normalized
according to

∫ |φd (p)|2 p2 d p = 1. The factor th(p′ = qd ) ≡
〈p′ = qd |t s(0)|p = 0〉 is the matrix element of the s-wave
component t s of the two-body transition operator t for the two-
body collision and we have set E = 0. Here p (p′) represent
the relative momenta of the incoming (outgoing) two colliding
atoms, respectively. Within the perturbative approximation,
the Eb scaling of L3(υ, LR) can result only from two-body
quantities, i.e., Eb, φd and th. Since E ≈ 0, one obtains qd ≈
2
√

Eb m/3.
In order to analyze the scaling of L3(υ, LR) with the

molecular binding energy Eb, we discuss φd (
√

Eb m/3) and
th(2

√
Eb m/3) separately. We find that th(p) oscillates but its

amplitude varies only gently with p until the deeply bound
states are reached [see Fig. 13(a) in Appendix G]. Therefore,
th(2

√
Eb m/3) cannot strongly contribute to an overall scaling

with Eb for the three-body recombination rate. In contrast to
that, φd (

√
Eb m/3) which is obtained from two-body bound

state calculations, vanishes quickly with increasing Eb. This
is shown in Fig. 3 (yellow data points) for atoms interacting
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via the van der Waals potential. Besides the overall decrease
of |φd (

√
Eb m/3)|2 for growing Eb, there are also oscillations.

The sharp drops in these oscillations correspond to the nodes
of the various momentum wave functions φd for the bound
states with energy Eb. While the oscillations lead to some
scatter of the data, the upper envelope of the data points in-
dicates an overall power-law scaling of the amplitude. A fit to
this envelope (dotted line in Fig. 3) gives |φd (

√
Eb m/3)|2 ∝

E−1.44±0.03
b which yields L3 ∝ E−0.94±0.03

b . This result agrees
quite well with our full calculations from Fig. 2. We note that
in the shown energy range there are only 13 bound states in the
van der Waals potential, resulting in 13 data points. In order to
map out in more detail the functional form of |φd (

√
Eb m/3)|2

in Fig. 3 we have slightly varied λ6 over four different values
(while keeping the number of bound states in the potential
constant). The variation in λ6 leads to variations of Eb and
therefore also of φd and the scattering length a. When we
present all these data points together, a quasicontinuous curve
is obtained. We note that the oscillating amplitude of th(p),
which is nearly constant for a fixed scattering length a, can
depend on a.

V. ENERGY SCALING FOR GENERAL
LONG-RANGE POTENTIALS

Remarkably, we find that the scaling law is similar for
a range of different two-body interaction potentials, such
as the Morse potential and potentials of the form V (r) =
−Cn/rn(1 − λn

n/rn). Here the parameter n is typically n = 3, 4
or 6, and λn is a short-range parameter which defines the
inner barrier. The case n = 6 corresponds to the Lennard-
Jones potential which was already discussed in the previous
section. The corresponding functions |φd (

√
Eb m/3)|2 are

shown in Fig. 3. Clearly, their envelopes roughly decrease
in a similar manner, i.e., ≈ E−1.44±0.03

b . Furthermore, we
also consider contact interactions between the atoms. For
these we use φd (p) = 2√

π

(m Eb)1/4

p2+m Eb
and analytically obtain from

Eq. (2) the scaling to be exactly |φd (
√

Eb m/3)|2 ∝ 1/E3/2
b

(see black dashed line in Fig. 3), corresponding to L3(Eb) ∝
1/Eb. Therefore, even the results for contact interaction are in
relatively good agreement with our other numerical and the
experimental results.

In the following we discuss how this similar scaling for
the different long-range potentials can be explained. We make
use of approximate analytical wave functions for the molec-
ular bound state. Let ψ (r) = u(r)/r be the radial part of the
molecular wave function with rotational angular momentum
LR. Here r is the internuclear distance between the two atoms.
A typical example of the reduced radial wave function u(r) is
shown in Fig. 4(a). The Fourier transform of u(r)/r generates
the molecular wave function in momentum space

φd (p) =
√

2

π

∫ ∞

0
r jLR (pr/h̄)u(r) dr, (3)

where jLR is the spherical Bessel function of the first kind
of order LR. A numerical analysis shows that the domi-
nant contribution to φd (

√
Ebm/3) comes from the last lobe

of u(r), which is located around the classical outer turn-
ing point r0. In Fig. 4(b) we show the Fourier integral

FIG. 4. (a) Typical example for a molecular wave function (red
solid line) located in the −C6/r6 van der Waals potential (black solid
line). The blue horizontal dotted line and the blue circle indicate
the molecular level position −Eb and the corresponding classical
outer turning point, respectively. The vertical dashed line shows
the starting position of the last lobe of the molecular wave func-
tion. (b) The accumulated Fourier integral φacc

d (
√

mEb/3; r); see
text. EvdW = h̄2/mr2

vdW is the van der Waals energy, and rvdW =
1
2 (mC6/h̄2)1/4 is the van der Waals length.

for the case LR = 0 in an accumulated fashion φacc(p; r) =∫ r
0 sin(pr/h̄)u(r) dr/

∫ ∞
0 sin(pr/h̄)u(r) dr, which verifies the

dominant contribution of the last lobe. The turning point of the
level [blue circle in Fig. 4(a)] is determined by Ṽ (r0) + Eb =
0, where Ṽ (r) = V (r) + h̄2LR(LR + 1)/(mr2). The reduced
radial wave function u(r) = rψ (r) in this region is approxi-
mated by ũ(r) = N 1/2Ai[s(r − r0)], where Ai(x) is the Airy
function, s = (mD/h̄2)1/3, D = dṼ (r)/dr|r=r0 , and N is a
normalization factor that ensures that ũ(r) best matches u(r)
in the region. It turns out that to a good approximation N =
sN , where N is a constant independent of Eb [30]. We Fourier
transform ũ(r) and obtain

φ̃d (p) =
√

2Nh̄2

πsp2
gd (p), (4)

where

gd (p) =
∫ ∞

0

pr̃

sh̄
jLR (pr̃/sh̄)Ai(r̃ − r̃0) dr̃. (5)

Here r̃ = sr, r̃0 = sr0. At p = √
Ebm/3, we get

|φ̃d (
√

Ebm/3)|2 = 6Nh̄2

πsmEb
g2

d (
√

Ebm/3), (6)

which approximates |φd (
√

Ebm/3)|2.
After this general discussion we now discuss the cases for

LR = 0 and LR > 0.

A. Case: LR = 0

For a LR = 0 molecular state and Ṽ (r) = −Cn/rn the clas-
sical outer turning point is given by r0 = (Cn/Eb)1/n. From
the derivative of the potential Ṽ (r) we obtain for the param-
eter s (which we defined earlier in connection with the Airy
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FIG. 5. (a) Plot of gd (
√

Ebm/3) as a function of Eb for the partial
waves LR � 10 [see legend in (b)]. The gray area highlights the range
of the oscillation for LR = 0. (b) Plot of 1/(sEb). For both (a) and
(b) we use the −C6/r6 potential.

function)

s = (mn/h̄2)1/3E (n+1)/3n
b C−1/3n

n . (7)

Thus, the factor 6Nh̄2/(πsmEb) in Eq. (6) scales as
E−(4n+1)/3n

b . The other factor in Eq. (6), gd (
√

Ebm/3), is plot-
ted in Fig. 5(a) for n = 6, (blue line). gd (

√
Ebm/3) oscillates

between 1 and −1 with a constant amplitude, as indicated by
the gray area. Therefore, gd (

√
Ebm/3) does not contribute to

an overall scaling of |φd (
√

Ebm/3)|2 with Eb. This is simi-
lar as for th(qd ) as mentioned in Sec. IV. The variation of
gd (

√
Ebm/3) merely leads to some scatter of L3. Therefore,

we ignore gd (
√

Ebm/3) in the following discussion on scaling
and obtain

|φd (
√

Ebm/3)|2 ∝ E−(4n+1)/3n
b = E−β

b . (8)

For n = 3, 4 and 6, the exponent β = (4n + 1)/3n takes the
values of 1.44, 1.42, and 1.39, which agree very well with
our numerical results in the perturbative approach. For the
scaling of L3 we have L3 ∝ E−α

b , where α = β − 0.5. It is
remarkable that for any positive integer n the exponents are
constrained to a narrow range, i.e., β ∈ [1.33, 1.67] and α ∈
[0.83, 1.17]. Considering that a real interaction potential can
typically be expanded in terms of the −Cn/rn functions, these
ranges should be valid quite generally. In fact, the range of
α ∈ [0.83, 1.17] agrees with the exponent α = 0.8 ± 0.14 ex-
tracted from our experimental measurements within the range
of uncertainty.

B. Case: LR > 0

We now consider the case of rotational angular momentum
LR > 0. Because for this case we do not obtain a simple
analytical expression for s as in Eq. (7), we present only
numerical results. Figure 5(b) shows a plot of 1/(sEb) for
various LR (and using the −C6/r6 potential as a typical

FIG. 6. Power-law scaling of |φd (
√

Eb m/3)|2 ∝ L3(Eb)/
√

Eb for
various rotational angular momenta LR. The data points are a full
calculation for the Lennard-Jones potential (−C6/r6)(1 − λ6

6/r6). As
in Fig. 3 and Sec. IV, we have slightly varied λ6 over seven different
values while keeping the number of bound states in the potential
constant. This helps to map out |φd (

√
Eb m/3)|2 in detail. Therefore,

although there are only eight bound states in the shown energy
range, we obtain 55 data points. The solid lines are calculations for
the Lennard-Jones potential using Eq. (6). The dashed lines show the
E−1.45

b energy scaling for |φd |2, as determined by a fit to the upper
envelope of the data set. For better visibility the data for LR > 0
are shifted in vertical direction by multiplying them with 10−LR . We
define Ec to be the energy at which the curve |φd |2 (for a given LR)
has its first maximum (coming from low energy). The inset shows
Ec as a function of LR (diamonds). The data are well described by
Eq. (9) (solid line).

example). Clearly, all curves are quite similar, especially for
large Eb. The functions gd (

√
Ebm/3) are shown in Fig. 5(a),

as discussed before. They oscillate with a constant amplitude
and therefore do not contribute to the energy scaling for large
energies Eb. As a consequence, the energy scaling is quite in-
dependent on the rotational state LR of the molecule. Figure 6
shows calculations for |φd (

√
Eb m/3)|2 for various rotational

angular momenta of the molecule. As a typical example we
use the Lennard-Jones potential. Similar as for Fig. 3 we
have slightly varied λ6 over four different values in order
to increase the number of data points and to better map out
|φd (

√
Eb m/3)|2. The sudden drops in |φd (

√
Eb m/3)|2 reflect

nodes of the molecular wave function. For large enough bind-
ing energy Eb all curves for the different values of LR follow
the same power law E−1.45

b corresponding to an energy scaling
of the partial rate constants (for fixed LR) of L3(Eb) ∝ E−0.95

b .
We note, however, that for LR > 0 and small enough

binding energies, our calculations in Fig. 6 reveal a strong
suppression of |φd |2 and therefore of L3(Eb). This effect is
due to the function gd (

√
Ebm/3). As shown in Fig. 5(a), for

LR > 0, gd (
√

Ebm/3) increases gradually with Eb starting
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from 0. When it reaches its first maximum, it goes over
to the previously discussed oscillatory behavior in the gray
area, similar to the case of LR = 0. As a consequence,
|φd (

√
Ebm/3)|2 is increasingly suppressed for Eb → 0, as

observed in our numerical results. This suppression can be
understood as an effect of the angular momentum barrier.
In a simple picture, in order to create a molecule rotating
with angular momentum LR at interparticle distance r0 of the
outer turning point, a minimal momentum pc needs to be
supplied of the order pc ≈ h̄LR/r0. The minimal momentum
pc translates into a minimal binding energy Ec = 3p2

c/m ≈
h̄2LR(LR + 1)/(mr2

0 ). At the same time we have Ec ≈ C6/r6
0 −

h̄2LR(LR + 1)/(mr2
0 ). Combining these two equations to elim-

inate r0 one can estimate the critical energy Ec to be

Ec/EvdW ≈ cc[LR(LR + 1)]3/2, (9)

where cc = 1.5 and EvdW = 4h̄3/(m3/2C1/2
6 ) is the van der

Waals energy. Reading off Ec(LR) from our numerical results
in Fig. 6 as the first maximum of |φd (

√
Ebm/3)|2 we find

that the data points are well described by Eq. (9) when we
use cc = 2.12; see inset of Fig. 6. This validates our simple
interpretation of the angular momentum suppression.

VI. DISCUSSION

We now compare and discuss the results of our theoretical
and experimental approaches. The suppression effect for large
LR and small Eb, which is so clearly visible in Fig. 6 is not so
obvious in Fig. 2 where we present our experimental data and
our full coupled channel calculations. A small suppression ef-
fect might only be recognizable for the state υ = −2, LR = 4
in Fig. 2. In practice, the observation of suppressed low-
energy high-LR molecular signals can be hampered by various
issues. By accident it can occur that no weakly bound molec-
ular level with Eb < Ec exists for a given rotational angular
momentum LR. In fact, quantum defect theory predicts for a
van der Waals potential that if the most weakly bound state for
a partial wave LR is not close to threshold, then also the most
weakly bound state for the partial wave LR + 4 will not [31].
Alternatively, the level can be overlooked experimentally, if
its signal is too weak. It will be overlooked theoretically if
the level has a vibrational quantum number beyond the limits
of the model potential. It should be, however, clear that the
suppression mechanism must exist. Indeed, in a recent exper-
iment on diatomic molecular reactions, a similar suppression
mechanism has been identified [14].

When comparing Fig. 6 with Fig. 2 it is evident that the
distinct drops of |φd (

√
Ebm/3)|2 in Fig. 6 do not clearly

appear in Fig. 2. There are several possible explanations for
this. First, the data sampling in Fig. 2 is seven times smaller
than for Fig. 6. Therefore, it is likely that a narrow drop is not
encountered in Fig. 2. Second, the calculations in Fig. 6 cor-
respond to the leading order of an expansion. Including higher
orders might wash out the sudden drops, as other pathways for
the molecular formation can be taken.

Concerning the full model and the experiment, we ex-
pect that the scaling exponent α of the E−α

b scaling law
is prone to changes for deeper binding energies than the
ones considered here. As recently discussed in [10], for 87Rb
and Eb > 150 GHz × h the spin conservation propensity rule

which allows for working with a single spin channel should
break down, affecting the scaling law. In addition, the short-
range three-body interaction, which is ignored so far in our
treatment, should play an increasingly important role when
forming more tightly bound molecular states. Recent work
on three-body recombination of hydrogen [20] has already
found evidence for this, as the Jahn-Teller effect substantially
enhances recombination rates into tightly bound molecular
states.

VII. SUMMARY AND OUTLOOK

To summarize, we have experimentally and theoretically
investigated how the three-body recombination of an ultracold
gas scales with the molecular binding energy Eb, detecting
bound levels from 0.02 to 77 GHz×h, thus spanning an energy
range of more than three orders of magnitude. This became
possible by applying improved experimental schemes for the
state-to-state detection of molecules and by carrying out large
scale numerical calculations. Besides these numerical calcu-
lations an analytical perturbative model was developed which
gives deep physical insights into the recombination process
and can explain the observed scaling law. In particular, the
perturbative model shows that to a large part the scaling
law can be extracted from two-body quantities such as the
molecular wave function. Our experimental and theoretical
approaches show that the three-body recombination exhibits
a propensity towards weakly bound product molecules. The
recombination rate follows a E−α

b scaling law where α is
in the vicinity of 1. Remarkably, we find that this scaling
law is quite universal as it should hold for a range of dif-
ferent potentials such as the Morse potential, potentials of
type −Cn/rn with n = 3, 4, 6, as well as the contact poten-
tial. In addition, apart from a centrifugal barrier suppression
at low enough binding energies, our results indicate that
the three-body recombination populates molecular quantum
states with different rotational angular momenta quite evenly,
within about a factor of two.

In the future it will be interesting to explore how the scaling
law evolves for deeper binding energies and what physical
mechanisms will lead to its breakdown. On the experimen-
tal side, the detection sensitivity must be enhanced and the
spectroscopic data will be expanded for reliable quantum state
identification. On the theory side, short-range three-body in-
teractions which are ignored so far in our treatment will be
taken into account.

Moreover, it will be insightful to explore how deviations of
individual reaction channels from the E−α

b scaling law can be
explained on a microscopic level, e.g., as interference effects
of collision pathways. In fact, our perturbative calculations
already produce tell-tale oscillations, and it will be interesting
whether we can match up these oscillations with the ones from
the hyperspherical approach. This might give deeper insights
into the reaction process.

We expect that our results on the scaling of the reaction rate
with energy are not restricted to the recombination process
of neutral atoms alone, but they can also be applied to other
systems and processes. For example, these systems could in-
volve molecules or ions as collision partners and they might
also comprise a range of collisional relaxation processes. We
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expect these process rates to be governed by a E−α
b scaling

law, where α should always be in the vicinity of unity.w
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APPENDIX A: THE (1,1) REMPI

Our (1,1) REMPI scheme consists of two excitation steps
which are described in the following. The overall ionization
efficiency η is given by the product of the efficiencies of the
first and the second (1,1) REMPI step. We achieve η ≈ 4.8 ×
10−3 (see also Appendix C) for all (υ, LR) product molecules
that we probe in the experiment. This is about an order of
magnitude larger as compared to our previous work [11,12].

1. First REMPI step

The first REMPI step resonantly excites a molecule to-
wards the intermediate level υ ′ = 66, J ′ of the state A1�+

u
using a wavelength of about 1065 nm [22,23]. For this excita-
tion we use a cw external-cavity diode laser with a short-term
linewidth of about 100 kHz. It has a waist (1/e2-radius) of
≈280 µm and an intensity of ≈12 W cm−2 at the position of
the atomic cloud. The laser is frequency-stabilized to a wave-
length meter achieving a shot-to-shot and long-term stability
of a few megahertz. The laser beam polarization has an angle
of about 45◦ with respect to the B field and can therefore drive
σ and π transitions.

We estimate that the first REMPI step is saturated for
the molecular states considered in this work. This means a
molecule is resonantly excited to the intermediate level J ′
with nearly unit probability when probed. In order to derive
this we consider the following quantities: The transition elec-
tric dipole moment, the limited time to optically excite the
product molecule, and a detuning due to the Doppler shift. In
Fig. 7 we show calculated squared reduced transition electric
dipole moments D2 for transitions from (υ, LR) product states
towards the vibrational level υ ′ = 66 within A1�+

u (green
columns). For convenience, D2 is normalized by a global
factor so that its value for (υ = −2, LR = 0) equals to 1. As a
general pattern, D2 increases with binding energy in the range
between the threshold and the vibrational quantum number
υ = −9. This is, however, partially compensated by the fol-
lowing kinetic effects. In the formation of the molecule by
three-body recombination the binding energy is converted into
kinetic energy of the products. Neglecting the energy of the
ultracold atoms, the velocity υRb2 of the molecule is ∝ E1/2

b .
This velocity has two effects. First, it limits the time scale ∝
1/E1/2

b for the molecule to be located in the detection region,
as determined by the size of the REMPI laser beams. Second,
the velocity will on average lead to Doppler-broadening and to

FIG. 7. Calculations for the squared reduced transition elec-
tric dipole moment D2 and relative transition probability KI ∝
D2 fD/E 1/2

b for the transitions from the product states (υ, LR) towards
the intermediate states J ′, υ ′ = 66 of A1�+

u . Both, D2 and KI are
normalized by a global factor, respectively, so that their values for
the state υ = −2, LR = 0 are 1 (see arrow). The plot is logarithmic.

a reduction of the on-resonance photoexcitation rate by a fac-
tor given by fD = (2vRb2/(λγ ))−1 arctan(2vRb2/(λγ )), where
λ is the transition wavelength and γ ≈ 2π × 15 MHz is the
linewidth of the excited state. Therefore, the optical excitation
probability KI of the molecules approximately scales as KI ∝
D2 fD/E1/2

b . In Fig. 7 we plot KI , which is also normalized
so that for (υ = −2, LR = 0) it equals to 1 (blue columns).
Again, down to υ = −9 there is a tendency that the ionization
efficiency increases for increasing binding energy. In [11] we
have found that for the given parameters of the probe laser
beam the transitions from υ = −2, LR = 0, 2 towards the
intermediate state are driven in a strongly saturated regime.
Since all transitions for the product molecules in Fig. 7 have
a KI close or larger than the ones for υ = −2, LR = 0, 2, we
can expect saturation of the first step of the (1,1) REMPI for
all considered product levels.

2. Second REMPI step

For the second step of the REMPI we use the ionization
laser at 544 nm to resonantly drive a transition from the inter-
mediate state to a probably autoionizing molecular Rb2 level
[see Fig. 1(a)]. The laser is a cw, frequency-doubled OPO
system from Hübner Photonics. It has a short-term linewidth
on the order of 1 MHz. At the position of the atomic cloud the
beam waist is 240 µm, and we typically work with an intensity
of 110 W cm−2. As the probe laser, it is frequency-stabilized
to a wavelength meter achieving a shot-to-shot and long-term
stability of a few megahertz. The laser polarization is at an
angle of about 45◦ with respect to the B field and can therefore
drive σ and π transitions. When the excited Rb2 molecule
autoionizes it produces a deeply bound Rb+

2 molecular ion.
Figure 8 shows resonance lines when scanning the frequency
νI of the ionization laser and starting from the intermedi-
ate state A1�+

u , υ ′ = 66, J ′ = 1 which has been populated
via photoassociation. These lines are spectroscopically not
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FIG. 8. Resonance spectrum when scanning the frequency νI of
the ionization laser, starting from the intermediate level A1�+

u , υ ′ =
66, J ′ = 1. Here produced ions are detected by induced loss in an
atom cloud (see Appendix B). The strongest line is marked by an
arrow and has the center frequency νres = 551 422.660 GHz.

yet assigned. For REMPI via J ′ = 1 we use the resonance
line centered at νI = νres = 551 422.660 GHz (marked by an
arrow).

Regarding the intermediate states with J ′ > 1, we carry out
similar spectroscopy as for Fig. 8 and identify the strongest
resonance, respectively, which is then used for REMPI. Since
photoassociation cannot produce a molecule with J ′ > 1 in
our cold sample, we instead populate such a state by res-
onantly exciting suitable product molecules (υ, LR) after
three-body recombination with the probe laser. Table I lists
the optimal ionization laser frequencies for various rotational
levels J ′ of the intermediate state υ ′ = 66. From additional
spectroscopic measurements we extract a rotational constant
Bυ ′=66 = 443(2) MHz × h, in agreement with the value re-
ported in [23]. For completeness, we present in Table I also the
measured level energies EJ ′ for the various detected rotational
states J ′ within υ ′ = 66 of A1�+

u .
The second REMPI step is generally not saturated in our

experiment. This is shown in Fig. 9 for the case of initial

TABLE I. REMPI paths. Column 2 lists the energies EJ ′ of the
intermediate levels J ′ in the state υ ′ = 66 of A1�+

u , with respect to
the (5s, f = 1) + (5s, f = 1) atomic asymptote. In the third column
we list the frequencies νres of the ionization laser which are used in
the (1,1) REMPI scheme for the second transition starting from the
intermediate levels J ′ = 1, 3, 5, 7, 9 in the state υ ′ = 66 of A1�+

u .

EJ ′ νres

J ′ GHz × h GHz

1 281 445.045 551 422.66
3 281 449.481 551 420.70
5 281 457.442 551 419.30
7 281 468.987 551 423.10
9 281 484.065 551 421.60

FIG. 9. Ion number as a function of the intensity of the ionization
laser beam in the (1,1) REMPI scheme. These data are obtained for
(υ = −2, LR = 2) molecules which are ionized via the intermediate
state J ′ = 1. Here νI = 551422.66 GHz, see Table I. The dashed blue
line is a linear fit to the data.

(υ = −2, LR = 2) molecules and the intermediate level J ′ =
1, υ ′ = 66 of A1�+

u . The detected number of ions increases
linearly with laser intensity. We have, however, verified that
ionization of a given initial state via different intermedi-
ate rotational states J ′ = LR ± 1 provides similar ion signal
strengths. Furthermore, the reduction fD due to the Doppler
effect (as discussed for the REMPI step 1) should be negligi-
ble here, since the linewidth γ is about 200 MHz according to
Fig. 8. We note that γ corresponds to an approximate measure
of the autoionization width.

APPENDIX B: COUNTING REMPI IONS VIA ATOM LOSS

We detect and count ions in the Paul trap via atom loss
which the ions inflict on neutral atoms due to elastic atom-ion
collisions. The basic method has been developed in previous
work [6,11,32]. Here we use a modified scheme, which is
described in the following.

Ion-inflicted atom loss: After the 500 ms phase of three-
body recombination, the REMPI lasers are switched off and
the optical lattice trap with the atom cloud is adiabatically
moved over a distance of 50 μm to the center of the Paul
trap, in order to immerse the ions which have been produced
during the 500ms time into the atom cloud. At the same time
the optical lattice trap is adiabatically converted into a crossed
dipole trap, by turning off one of the 1D lattice beams. The
trap frequencies of the crossed optical dipole trap are ωx, y, z =
2π × (23, 180, 178) Hz, where z represents the vertical di-
rection. In this trap the atom cloud is Gaussian-shaped with
widths of σx, y, z ≈ (58.6, 7.5, 7.5) µm, and it still consists of
about 4 × 106 atoms, corresponding to a peak atomic density
of about n0 = 0.9 × 1014 cm−3. In the Paul trap the ions have
typical kinetic energies on the order of mK × kB or larger
as a result of, e.g., excess micromotion. Therefore, in elastic
atom-ion collisions one atom after the next is kicked out of the
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FIG. 10. Remaining atom fraction as a function of the initially
prepared number of ions Ni (Rb+ and Rb+

2 ) after an interaction time
of 500 ms. The dashed line is a fit of the function ( Ni

c1
+ 1)c2 to the

data (see text).

comparatively shallow (9 μK × kB) optical dipole trap while
the ions remain confined in the 2.5 eV deep Paul trap.

Converting atom loss signals into ion numbers: In order
to extract ion numbers from atom loss signals we carry out
the following, independent calibration. We start using a con-
figuration where the ion trap and the optical dipole trap are
spatially separated from each other so that atoms and ions
cannot collide. We prepare a well-defined number of laser-
cooled 138Ba+ ions forming an ion crystal in the Paul trap.
Using fluorescence imaging the number of ions in the crystal
is counted. In parallel, we prepare a dense Rb atom cloud
in the optical dipole trap. Afterwards, the centers of the ion
trap and the optical dipole trap are quickly overlaid so that
the Ba+ ions are immersed into the atom cloud, where they
undergo chemical reactions. This leads almost exclusively to
the formation of Rb+ and Rb+

2 ions [33]. The number of ions
remains constant because of the large depth of the Paul trap.
Subsequently the traps are again separated from each other
and a new atom cloud is prepared in the optical dipole trap,
while the ions remain confined in the Paul trap. The properties
of this new atom cloud are adjusted to match the cloud that
was used for atom loss measurements as described in the
previous paragraph. Once again the ions are immersed into
the atom cloud by overlapping the traps. After an atom-ion
interaction time of 500 ms the remaining number of atoms is
measured. In Fig. 10 we show data for different numbers Ni

of prepared ions. The blue dashed line represents a fit using
the empirical function ( Ni

c1
+ 1)c2 , where the fit parameters are

c1 = 8.6 and c2 = −1.6. This function serves as reference to
convert measured atom loss in the three-body recombination
experiment into ion numbers.

APPENDIX C: CONVERSION OF REMPI ION NUMBERS
TO MOLECULE NUMBERS AND L3 RATE COEFFICIENTS

As discussed in Appendix A, the number of formed
molecules in a final channel is given by the measured ion
number NIon after REMPI divided by a global ionization
efficiency factor η. Similarly, the L3(υ, LR) rate coefficients

are given by the measured ion numbers multiplied with a
proportionality factor κ . We note that each three-body re-
combination experiment has a run time of 500 ms, and after
this time the atomic density of the sample has dropped by
13% due to collisional and reactive loss. Taking this loss into
account we estimate the ion number N∗

Ion = NIon × 1.22 for
the case that the density stayed constant. To determine the
proportionality factor κ , we sum over all channels accord-
ing to κ

∑
υ,LR

N∗
Ion(υ, LR) = ∑

υ,LR
L3(υ, LR) = L3, where

L3(υ, LR) and L3 are the calculated partial and total recom-
bination rate constants, respectively. We obtained κ = 1.92 ×
10−32 cm6 s−1. From an additional measurement of the initial
atom number and the temperature of the atom cloud and using
the molecular production rate

Ṁ = L3

3
√

27

(
mω̄2

2πkB

)3 N3

T 3
(C1)

we determined η to be η ≈ 4.8 × 10−3. Here M is the
number of produced molecules, m is the atomic mass, and
ω̄ = (ωxωyωz )1/3 is the geometric mean of the trapping
frequencies.

APPENDIX D: BOOSTING THE MOLECULE SIGNALS

Compared to our previous work [11,12] the product state
signals and the sensitivity were boosted by a factor of ≈25 as
a result of two improvement steps.

The first improvement step is working with an optical
lattice trap instead of a plain crossed dipole trap. This in-
creases the atomic density n and therefore improves the signal
compared to the background since the three-body recom-
bination rate scales nonlinearly with n as Ṅat = ∫

ṅ d3r =
−L3

∫
n3 d3r, whereas background signals scale less strongly

with n. In total, switching to the optical lattice configuration
in our set up increased the signal by a factor of 2.5. This
improvement is shown in Fig. 11 for the detection signals
of the υ = −2, LR = 0, 2 product molecules when using the
intermediate state J ′ = 1. We plot the ion number (i.e., the
molecular (1,2) REMPI signal) as a function of the probe laser
frequency ν for different experimental settings. The black data
points are the signals for the settings in [11]. For the green data
points we have replaced the crossed dipole trap as used in [11]
by the optical lattice.

The second improvement step is an enhancement of the
REMPI efficiency. In [11,12] only the first REMPI step in a
(1,2) REMPI configuration was resonantly driven. In our new
(1,1) scheme [see Fig. 1(a) and Appendix A] both REMPI
steps are resonantly driven and the last excitation step is
resulting in a molecular state which is probably autoionizing.
Switching to the (1,1) REMPI increased the signals by a factor
of 10. For comparison, in Fig. 11, the blue and orange data
give the signals for (1,1) REMPI with and without lattice,
respectively.

In order to optimize REMPI we have also experimentally
tested several vibrational levels around υ ′ = 66 within A1�+

u
as intermediate level, but obtained the best results for υ ′ =
66 in terms of efficiency and suppressing background signals.
The level υ ′ = 66 has essentially a simple rotational ladder
structure, as it has unresolved hyperfine splittings of less than
3 MHz × h [22,23].
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FIG. 11. Boost of the molecular detection signal. Shown are
measured ion numbers after REMPI of (υ = −2, LR = 0, 2) prod-
uct molecules as a function of the probe laser frequency ν. ν0 =
281 445.045 GHz is the resonance frequency for photoassociation
towards the J ′ = 1 intermediate state. The different colors indicate
different measurement configurations as detailed in the legend.

APPENDIX E: CONSISTENCY CHECKS FOR
LINE ASSIGNMENTS

In general, we observe each molecular level with LR > 0 in
terms of two transition lines, LR → J ′ = LR ± 1. This greatly
helps to verify the consistency of the line assignment. As
an example, we provide in Fig. 12 the collection of REMPI
detection signals for υ = −4 molecules with rotational states
LR ranging from LR = 0 to 10.

APPENDIX F: THREE-BODY MODEL FOR 87Rb ATOMS

Our three-body calculations for 87Rb atoms were per-
formed using the adiabatic hyperspherical representation
[18,25] where the hyperradius R determines the overall size of
the system, while all other degrees of freedom are represented
by a set of hyperangles �. Within this framework, the three-
body adiabatic potentials Uα and channel functions �α are
determined from the solutions of the hyperangular adiabatic
equation⎡

⎣�2(�) + 15/4

2μR2
h̄2 +

∑
i< j

V (ri j )

⎤
⎦�α (R; �)

= Uα (R)�α (R; �), (F1)

which contains the hyperangular part of the kinetic energy,
via the grand-angular momentum operator �2, and the three-
body reduced mass μ = m/

√
3. To calculate the three-body

recombination rate we solve the hyperradial Schrödinger
equation,[
− h̄2

2μ

d2

dR2
+ Uα (R)

]
Fα (R) +

∑
α′

Wαα′ (R)Fα′ (R) = EFα (R),

(F2)

FIG. 12. Consistency of assignments of product molecular states
to REMPI detection signals. The vertical dashed lines mark the bind-
ing energies of the molecules with quantum numbers υ = −4, LR

as obtained from coupled channel calculations. The rotational quan-
tum number LR is shown on top of the figure. For each level with
LR > 0 we observe two resonance lines, corresponding to REMPI
via the intermediate levels J ′ = LR ± 1. The resonance lines are
plotted as a function of the probe laser frequency and are arranged
such that the frequency position of each resonance peak is given by
ν − ν0 − Bυ ′=66 × [J ′(J ′ + 1) − 2], ideally corresponding to the
molecular binding energy. The rotational constant is Bυ ′=66 =
443 MHz. ν0 is the photoassociation resonance frequency towards
J ′ = 1. In vertical direction the lines are arranged according to J ′.
The match in frequency position of the two measured resonance lines
and the calculated binding energy for a level indicates consistency of
the assignment.

where α is an index that labels all necessary quantum num-
bers to characterize each channel, E is the total energy, and
nonadiabatic couplings are given by

Wαα′ (R) = − h̄2

2μ

(〈
�α

∣∣∣∣ d2

dR2
�α′

〉
+ 2

〈
�α

∣∣∣∣ d

dR
�α′

〉
d

dR

)
.

(F3)

Solving Eq. (F2) numerically [18] we determine the S-matrix
and the recombination rate L3 via

L3 =
∑

f ,i

96π2(2J + 1)h̄

μk4
i

|S f i|2 =
∑

f

L3( f ), (F4)

where i and f ≡ (υ, LR) represent the initial and final states
and L3( f ) is the corresponding partial recombination rate for
a given final state.

In this present study, the interaction between 87Rb atoms is
modeled by the same potential used in Ref. [11], and is given
by the Lennard-Jones potential,

V (r) = −C6

r6

(
1 − λ6

r6

)
, (F5)

where C6 = 4710.431Eha6
0 is the van der Waals dispersion

coefficient from Ref. [26]. Here Eh denotes the Hartree en-
ergy. We adjust the value of λ to have different numbers
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of diatomic bound states supported by the interaction, while
still reproducing the value of the scattering length for 87Rb
atoms, a = 100.36a0 [26]. Our calculations were performed
using λ ≈ 15.5943a0, producing 15 s-wave (LR = 0) molec-
ular bound states, and a total of 240 bound states including
higher partial-wave states, LR > 0.

Our numerical calculations for three-body recombination
through the solutions of Eq. (F2) have included up to 300 hy-
perspherical channels leading to a total rate converged within
a few percent. The calculated total recombination rate con-
stant at 0.8 μK (including thermal averaging) is L3 ≈ 0.91 ×
10−29 cm6/s. We note that there is an unresolved discrepancy
between this calculated total three-body recombination rate
constant and the corresponding experimental value for Rb
in the spin state f = 1, m f = −1. The experimental value
is L3 = (4.3 ± 1.8) × 10−29 cm6s−1, [34]. This discrepancy,
however, does not affect the analysis of the overall scaling
behavior of L3(υ, LR) with binding energy.

APPENDIX G: INTERPRETING THE 1/Eb SCALING LAW
VIA A PERTURBATIVE APPROACH

The Alt-Grassberger-Sandhas (AGS) equation is an effi-
cient approach for solving three-particle collision problems
[28], and for identical particles it reads [27,29]

U0(E ) = 1
3 G−1

0 (E )[1 + P+ + P−]

+ [P+ + P−]T (E )G0(E )U0(E ). (G1)

Here the three-body transition operator U0 describes the
transition process from the initial state of three free, nonin-
teracting atoms to product states of a molecule of the atom
pair (a, b) plus a free atom c. E denotes the total energy of
the three-body system, G0(E ) = (E + iε − H0)−1 is the free
Green’s operator corresponding to the noninteracting three-
body Hamiltonian H0, and ε is a small quantity to shift the
energy away from the real axis. T (E ) = ∫

dq|q〉t (E2b)〈q|
represents the generalized two-body transition operator for the
interacting pair (a, b) [27,29]. Here t (E2b) is the pure two-
body transition operator at two-body energy E2b = E − 3q2

4m , q
is the three-dimensional relative momentum between atom c
and the center of mass of the pair (a, b), m is the mass of an
atom and q is the absolute value of q. P+ = PbcPab and P− =
PacPab denote the cyclic and anticyclic permutation operators
for the atoms (a, b, c), respectively. The partial three-body
recombination rate L3(υ, LR) towards each specific molecular
product d is given by [27]

L3(υ, LR) = 12πm

h̄
(2π h̄)6qd |〈ψ f |U0(E )|ψin〉|2, (G2)

where |ψin〉 and |ψ f 〉 represent the initial and prod-
uct states, respectively. Here qd denotes the absolute
value of the asymptotic momentum of the molecule
which is fixed by the molecule binding energy Eb and

the total energy E via 3q2
d

4m − Eb = E . Iteratively plug-
ging Eq. (G1) into its right side, one gets a series
expansion U0(E ) = ∑∞

n=0 U (n)
0 (E ) with U (n)

0 (E ) = {[P+ +
P−]T (E )G0(E )}n 1

3 G−1
0 (E )[1 + P+ + P−]. We assume that

the three-body recombination process can be reasonably well
described by the leading order contribution for U0 [27].

Since U (0)
0 (E )|ψin〉 = 1

3 [1 + P+ + P−](E − H0)|ψin〉 = 0 due
to energy conservation, U (0)

0 (E ) has no contribution to the
three-body recombination rate according to Eq. (G2). There-
fore, we approximate U0(E ) by U (1)

0 (E )

U0(E ) ≈ [P+ + P−]T (E ) 1
3 [1 + P+ + P−]. (G3)

Since the three-body recombination rate is usually quite en-
ergy independent in the ultracold regime [35], we take the zero
energy limit E → 0 to simplify the derivation. In this limit,
the initial free atom state is |ψin〉 = |p = 0, q = 0〉, where p
describes the relative momentum between atoms a and b. We
note that, for identical particles, neither the result of L3(υ, LR)
nor the derivation procedure associated to this quantity should
depend on the choice of pair (a, b). Plugging the expression
of Eq. (G3) into Eq. (G2) we obtain

L3(υ, LR)

≈ 12πm

h̄
(2π h̄)6qd |〈ψ f |[P+ + P−]T (E )

× 1

3
[1 + P+ + P−]|ψin〉|2 (G4)

= 12πm

h̄
(2π h̄)6qd |〈ψ f |2P+T (E )|ψin〉|2, (G5)

where we have replaced P+ + P− by 2P+ because the term
of P+ will contribute equally as the term of P− to L3(υ, LR),
[29,36]. For similar reasons [1 + P+ + P−]/3 is replaced by
1. In the plane wave basis, P+ is given by

P+ =
∫

dq′
∫

dq′′|p′, q′〉〈p′′, q′′|, (G6)

where p′ = q′′ + 1
2 q′ and p′′ = −q′ − 1

2 q′′. To derive
Eq. (G6), we let the single atom momenta be {k′′

a = k1, k′′
b =

k2, k′′
c = k3} and by definition we have {p′′ = (k2 − k1)/2,

q′′ = 2k3/3 − k1/3 − k2/3}. The permutation operator P+
changes the atom indices according to (a, b, c) → (c, a, b)
and therefore {k′′

a = k1, k′′
b = k2, k′′

c = k3} → {k′
a = k2,

k′
b = k3, k′

c = k1}, which leads to {p′′ = (k2 − k1)/2, q′′ =
2k3/3 − k1/3 − k2/3} → {p′ = (k3 − k2)/2, q′ = 2k1/3 −
k2/3 − k3/3}, or equivalently, {p′′ = −q′′/2 − q′, q′′} →
{p′ = q′/2 + q′′, q′}. It is then straightforward that P+ =∫

dq′ ∫ dq′′|p′ = q′/2 + q′′, q′〉〈p′′ = −q′′/2 − q′, q′′|. Us-
ing the previous expressions for P+ and T (E ), and |ψin〉 =
|p = 0, q = 0〉, we find

〈ψ f |P+T (E )|ψin〉 = 〈ψ f |
∫

dq′
∫

dq′′|p′, q′〉〈p′′, q′′|

×
∫

dq̃|q̃〉t
(

E − 3q̃2

4m

)
〈q̃|ψin〉

=〈ψ f |
∫

dq′
∫

dq′′|p′, q′〉

× 〈q′′|0〉〈p′′|t (0)|p = 0〉

=
∫

dq′〈ψ f |p′, q′〉〈p′′|t (0)|p = 0〉,
(G7)
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where we have used 〈q′|q̃〉 = δ(q′ − q̃), and in the last line we
have p′ = 1

2 q′ and p′′ = −q′. We now switch from the plane
wave basis to a partial wave basis by using

|p〉 = |p〉
∑
l,m

Y ∗
l,m(ep)|l, m〉, (G8)

where p = |p|, ep = p/p and the normalization of |p〉 is given
by 〈p′|p〉 = δ(p−p′ )

p2 . The expression 〈p′′|t (0)|p = 0〉 in the last
line of Eq. (G7) can be expressed as

〈−q′|t (0)|p = 0〉 = 1
4π

〈q′|t s(0)|p = 0〉, (G9)

where t s is the s-wave component of the two-body transition
operator t . Here we have used that according to the Wigner
threshold law at low collision energies only s-wave collisions
can contribute. Furthermore, we assume that the interaction
between two atoms conserves angular momentum.

Next we consider the expression 〈ψ f |p′ = 1
2 q′, q′〉. For

|ψ f 〉 we make the ansatz |ψ f 〉 = |φd〉|qd , l̂, m̂〉. Here |φd〉 =
|LR, mLR〉

∫
d p p2φd (p)|p〉 is the internal wave function of the

molecule with rotational angular momentum quantum num-
bers LR, mLR . φd (p) is normalized via

∫ |φd (p)|2 p2d p = 1.
The state |qd , l̂, m̂〉 ≡ |qd〉|l̂, m̂〉 describes the relative motion
between molecule and atom. It corresponds to a partial wave
with rotational quantum numbers l̂, m̂. Next, we calculate that〈

φd

∣∣∣∣1

2
q′

〉
= φ∗

d

(
1

2
q′

)
Y ∗

LR,mLR
(eq′ ), (G10)

〈qd , l̂, m̂|q′〉 = δ(qd − q′)
q2

Y ∗
l̂,m̂

(eq′ ). (G11)

Plugging the results of Eqs. (G9) to (G11) into Eq. (G7) and
carrying out the integration over q′ we obtain

〈ψ f |P+T (E )|ψin〉 = (−1)m

4π
φ∗

d

(
1

2
qd

)
〈qd |t s(0)|p = 0〉

× δLR,l̂δmLR ,−m̂, (G12)

where we have used
∫

d�qY ∗
lm(eq)Y ∗

l ′m′ (eq) =
(−1)mδl,l ′δm,−m′ . We then define

th(qd ) = 〈qd |t s(0)|p = 0〉 (G13)

and use Eq. (G12) to rewrite Eq. (G4) as

L3(υ, LR) ≈12πm

h̄
(2π h̄)6qd (2LR + 1)

×
∣∣∣∣ 1

2π
φd

(
1

2
qd

)
th(qd )

∣∣∣∣
2

. (G14)

FIG. 13. (a) Two-body half-shell t-matrix th as a function of
the relative two-body momentum p. The vertical lines indicate the
momentum values 2

√
mEb/3 corresponding to s-wave (black solid)

and d-wave (red dotted) molecules where th needs to be evalu-
ated. (b) Momentum space wave functions of the four most shallow
s-wave molecules. The dots indicate the momentum values

√
mEb/3

where φd needs to be evaluated. These results are obtained from a
Lennard-Jones potential with 15 s-wave molecular states and a
scattering length a = 1.21 rvdW. Here rvdW = 1

2 (mC6/h̄2)1/4 is the
characteristic length scale of the van der Waals interaction. Given
rvdW = 82.64 a0 for 87Rb, this scattering length corresponds to a =
100.36 a0.

Here we have summed over the 2LR + 1 equal contributions
corresponding to the available md -channels for a given LR

quantum number. th(qd ) has momentum p = 0 fixed on the
energy shell p2/m = E2b = 0, and is commonly referred to as
half-shell t-matrix in nuclear physics [37,38].

In order to analyze the scaling of L3(υ, LR) with the molec-

ular binding energy Eb, we use the relation 3q2
d

4m − Eb = 0 and
ignore all coefficients independent on qd in Eq. (G14) to
obtain

L3(υ, LR) ∝ (Eb)1/2|φd (
√

mEb/3)|2|th(2
√

mEb/3)|2.
(G15)

In Fig. 13(a) we show th(p). It oscillates but the amplitude
varies only slowly with the two-body momentum p. Of course,
this holds only until the bottom of the interaction potential
(corresponding to the most deeply bound states) is reached, as
the bottom leads to a momentum cutoff. Figure 13(b) shows
φd (p), which is discussed in the main text.
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