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Abstract: The automation of inspections in aircraft engines is an ever-increasing growing field of
research. In particular, the inspection and quantification of coating damages in confined spaces,
usually performed manually with handheld endoscopes, comprise tasks that are challenging to
automate. In this study, 2D RGB video data provided by commercial instruments are further analyzed
in the form of a segmentation of damage areas. For this purpose, large overview images, which are
stitched from the video frames, showing the whole coating area are analyzed with convolutional
neural networks (CNNs). However, these overview images need to be divided into smaller image
patches to keep the CNN architecture at a functional and fixed size, which leads to a significantly
reduced field of view (FOV) and therefore a loss of information and reduced network accuracy. A
possible solution is a downsampling of the overview image to decrease the number of patches and
increase this FOV for each patch. However, while an increased FOV with downsampling or a small
FOV without resampling both exhibit a lack of information, these approaches incorporate partly
different information and abstractions to be utilized complementary. Based on this hypothesis, we
propose a two-stage segmentation pipeline, which processes image patches with different FOV and
downsampling factors to increase the overall segmentation accuracy for large images. This includes
a novel method to optimize the position of image patches, which leads to a further improvement
in accuracy. After a validation of the described hypothesis, an evaluation and comparison of the
proposed pipeline and methods against the single-network application is conducted in order to
demonstrate the accuracy improvements.

Keywords: semantic segmentation; damage inspection; CNN; DeeplabV3+; endoscopic inspection;
transfer learning

1. Introduction

The inspection of aircraft engines is often an extensive and time-consuming task,
which is usually carried out manually by trained personnel. In particular, the inspection in
confined spaces is in many cases performed manually using handheld video endoscopes
and is based on subjective assessments, which may depend on their respective inspector.
Therefore, such applications can benefit significantly from automated assistance systems,
that enable defined and objective assessments. In this study, a coating damage inspection,
which outputs 2D RGB video data from the manual inspection process, is automated
by the application of convolutional neural networks (CNNs) for the segmentation of
these damages.

The software application comprises a pipeline, which processes the inspection videos
and outputs quantified and visualized damage assessments. This pipeline is depicted in
Figure 1. To enable an adequate quantification of the coating damages, an overview image
is generated depicting the whole coating area to be analyzed. For this, the relevant area
showing the potential coating area in the video frames is detected and masked. Subse-
quently, feature tracking, registration and stitching algorithms are applied on the video
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frames to generate the overview image. After these preprocessing steps, the damage seg-
mentation is performed. This task comprises the application of a CNN or methods applying
several CNNs to achieve adequate segmentation results. This damage segmentation thus
represents the focus of this study. After the postprocessing steps, the software provides the
relative detected damage area and a visualization of the segmentation results. In the end,
this software tool can then be utilized within the current inspection process to assist the
personnel with the coating analysis and further decision making.

Masking of relevant video area

Feature tracking

Stitching

Generation overview image

Segmentation
Post-

processing

Figure 1. Visualization of the pipeline implemented in the resulting software tool. Here, the video
(on the left) is inserted, processed and evaluated by the segmentation algorithms. After a subsequent
postprocessing, a relative damage quantification and a visualization of the whole coating area and
the detected damages are provided. The overview image (center) is depicted considerably smaller in
height than originally. The proposed methods are implemented in the Segmentation block (green).

Due to considerable effort in annotating the data, the quantity of image data available
for training and validation is limited. Additionally, the image data exhibit significant
variations in feature characteristics (e.g., damage and coating) and interference caused by
stray light, varying camera positions, motion blur and image compression. Considering the
application in aircraft maintenance, this use case demands a robust and adaptive segmenta-
tion algorithm. Since conventional computer vision algorithms could not sufficiently detect
the coating damages due to the described challenges (evaluated in preliminary investiga-
tions), CNNs are implemented. These are particularly suitable due to their adaptability and
robustness to environmental influences in the image data. Therefore, different methods are
proposed in this study to increase the segmentation accuracy and certainty, by combining
the advantages of two CNNs in a pipeline. Specifically, both networks are trained each for
a different field of view (FOV), to address the segmentation of the large overview images
at different scales. To combine the differing advantageous properties of both CNNs, a
two-stage segmentation pipeline is proposed where the first network provides an initial
segmentation which is further optimized by a second network at another scale range. The
focus of this study is therefore on the methodical application of both networks to generate
an optimized segmentation mask and therefore increase the overall accuracy and certainty.

The application of segmentation networks in several stages and different field of
views (FOVs) has already been examined in different ways. Wang et al. [1] proposed a
two-stage 3D U-Net framework which defined a region of interest (ROI) in a first stage
using downscaled images. In the second stage, a detailed segmentation of the image data in
the detected ROI was performed. A similar approach was proposed by Amiri et al., where
a comparable two-stage method was applied with U-Nets on breast ultrasound images [2].
All these approaches aimed for an ROI detection followed by a detailed segmentation of
the relevant objects. For the application on which this study is based, these approaches are
not applicable since a detailed segmentation of the whole high-resolution image is required.
Zhao et al. [3] introduced a method which evaluated the whole image by two consecutive
networks. In a first stage, an attention network was applied. The resulting output, an
attention map of the whole image, was then forwarded to a U-Net-like segmentation
network. Huang et al. [4] proposed a novel network structure which created a segmentation
and distance map in a first stage. Subsequently, these outputs were concatenated and
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forwarded into a second segmentation network. Another approach for combining several
networks is given by ensemble learning. For instance, Guo et al. [5] proposed an ensemble
learning method, where a weighted voting was implemented to create an ensemble from
the segmentation results of several CNNs with different encoder–decoder structures. For
this, the networks were applied on the same image data and the results were combined
by a weighted voting algorithm. Another ensemble learning technique was proposed by
Liu et al. [6], where an ensemble of several CNNs with identical network architecture but
different loss functions applied in training was created. Additionally, a preceding network
was used on a large FOV to determine the ROI for the subsequent ensemble application.
Setting the whole overview image as the input of the first network is not beneficial nor
applicable for the task presented in this study. This is due to the high resolution of the
overview images (approx. 1024 × 50,000 pixels), which would require either a considerable
downscaling or a large network size. In both cases, preliminary investigations revealed
that the accuracy was reduced significantly. Additionally, the overview images differ in
width and height, which would complicate an analysis without any loss of information
with respect to the downscaling. Therefore, this study proposes a novel method, where
the whole area of large individual high-resolution images is analyzed in detail without
focusing on one specific region (e.g., ROI).

2. Problem Definition and Hypothesis

The task of a damage inspection using handheld endoscopes poses different challenges
when considering a robust automation while a wide range of environmental perturbations
are present. The inspection is based on video endoscopes with a chip-on-the-tip design
of two different manufacturers. In both devices, the image sensor has a resolution of
1024 × 768 pixels. The other specifications differ.

The tip is manually fixed inside the aircraft engine, which results in differing camera
positions. The coating area is located around the circumference of the rotor, which is rotated
by hand or semiautomatically during the recording of the video. Due to the large radius of
the rotor, this rotation results in an approx. translational motion with a differing velocity
of the coating area through the FOV of the camera. The recorded video contains at least
a full rotation of the rotor. The camera position is fixed during this process. Since the
segmentation of the coating damage area in the video frames does not lead to a precise
quantification of the whole area, this entire coating area must be stitched together from the
video frames first (refer to Figure 1). Due to the varying camera position and uncertainties
in the stitching process, the resulting overview images differ in shape and size. Therefore,
these overview images, which are stitched out of approx. 5000 video frames, have a height
ranging from approx. 40,000 to 60,000 pixels. The underlying video data exhibit highly
varying properties due to changing environmental variables as well as diverse damage
and coating feature occurrences. The environmental variables comprise differing lighting
conditions (inhomogeneous illumination of the FOV), camera positions (angle of view,
FOV) and movement speed of the coating area, which results in a varying motion blur effect.
Additionally, the images feature MP4-compression artifacts due to the restricted video
export settings of the applied commercial instrument [7]. Finally, potential registration or
stitching uncertainties as well as the inhomogeneous lighting lead to artifacts in the stitched
overview image [8]. These perturbations result in an increased difficulty for computer
vision algorithms and can lead to reductions in segmentation accuracy.

The basis of the quantifiable inspection of the coating area is a binary semantic seg-
mentation task, since only the classes coating damage and intact coating are distinguished.
A further specification of damage class or intensity is not useful, as examinations of all
available video data have indicated that only one damage class is present, and varying
intensities does not provide any further information (e.g., cause of damage). For the con-
sidered task, CNNs are particularly suitable, especially due to the challenging fluctuations
within the environmental conditions. Therefore, an established encoder–decoder structure
was used to predict a binary segmentation mask from an RGB input image with a fixed
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size. Due to the differing shape of the coating area and its large size, the overview image
has to be divided into smaller patches [8].

All image data used in this work were annotated by trained personnel to allow an
accurate evaluation regarding the optimal damage detection. Furthermore, a state-of-the-
art encoder and network structure was used to allow a comparison to established baseline
methods. Therefore, in all evaluations, the proposed method was compared to the baseline,
which was the application of this single-network structure. In order to set the scope of this
study specifically on the methodical network application, only this one exact architecture
and input size were considered in the proposed method. As a result, the FOV of the input
image could only be increased while downscaling the image patch accordingly. Preliminary
investigations showed that the FOV and an eventual downscaling of the image data had a
significant impact on the resulting accuracy of an applied CNN. Specifically, at different
damage and coating properties, these parameters resulted in significant accuracy variations.
When further investigated, the following hypothesis could be made: networks achieved
higher accuracies if both classes (coating damage and intact coating) were present with
a significant number of pixels. This applied especially for networks without a preceding
downscaling and thus a smaller FOV, which in turn increased the probability of having
only one class present. These networks (without any downscaling) are later referred to
as small-scale networks. On the other hand, networks with an input downscaled from
larger image patches (later referred to as large-scale networks) featured a larger FOV.
This led to a higher probability of both classes being present in an input image, as well
as a potentially greater diversity of features needed for a precise prediction. However,
details such as fine surface structures were omitted due to the downscaling. Additionally,
the resulting segmentation mask had the same downscaled resolution, which may evoke
further inaccuracies. Therefore, this study proposes the integration of the two network
types into a coherent pipeline for the detailed segmentation of overview images in order to
incorporate the mentioned advantages of both types (small-scale and large-scale). Within
this pipeline, the overview image is analyzed in different patch sizes with respect to the FOV.
The pipeline is designed to directly address the hypothesis that the number of pixels per
class has an influence on the segmentation accuracy. For this, by utilizing the segmentation
result of a large-scale network, the application of a small-scale network can be optimized
to maximize the accuracy. This optimization specifically comprises methods to receive
patches with an adequate number of pixels of both classes.

3. Materials and Methods

This section presents prerequisite information for the following experiments regarding
the underlying configurations and proposed methods. This comprises the properties of the
dataset, experimental settings and a broad description of the proposed methods.

3.1. Dataset

The video data in this study were obtained from handheld endoscopes applied in the
confined spaces of aircraft engines. Therefore, the videos differed significantly regarding
lighting conditions, endoscope type and camera/tip position. Additionally, the video data
featured noise and artifacts due to an inevitable MP4-compression [7]. As stated in the
previous section, the video frames were stitched together to generate a large overview
image of the whole coating area to enable an adequate quantification of the damage area.
These overview images had a resolution of approx. 1024 × 50,000 pixels (width × height).
However, the applied segmentation networks required smaller input images and therefore,
the overview images were divided into smaller image patches. In preliminary investiga-
tions, an input resolution of 384× 256 pixels was proven to be optimal regarding the overall
accuracy. This investigation was conducted with the same experimental settings as stated
in the following. Additionally, a downscaling factor could be applied to get an increased
FOV while keeping the same input image resolution. Since in this work, the proposed
two-stage pipeline analyzed the overview images with different downscaling factors, the
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datasets were built accordingly. In total, four configurations were evaluated in this study.
These were, on the one hand, a configuration without any downscaling, and on the other
hand three configurations with considerable downscaling factors to achieve a significant
distinction in the respective FOVs between the small-scale network and large-scale network.
All three downscaling factors were selected so that the whole width of the overview image
was covered and, depending on the target input image aspect ratio and orientation, a
differing height of the overview image was covered. In all configurations the input image
size (number of pixels) was the same. The exact parameters are listed in Table 1. Example
images of all used configurations are depicted in Figure 2.

Table 1. Patch sizes to be evaluated. All scaling factors (lower than 1.0) and input image sizes
were selected to achieve an identical number of input pixels while covering the whole width of the
overview images. For example images, see Figure 2.

Scaling Factor
Patch Size

(Width × Height)
(Px)

Input Image Size
(Width × Height)

(Px)

Dataset Size (No. of
Images)

1.0 384 × 256 384 × 256 11,047
0.375 1024 × 682 384 × 256 1729
0.25 1024 × 1536 256 × 384 784
0.125 1024 × 6144 128 × 768 208

Figure 2. Example images of the used datasets with the different downscaling factors (see Table 1).
Upper left: 384 × 256 pixels (rotated) without downscaling; center: 384 × 256 pixels (rotated)
with a scaling factor of 0.375; upper right: 256 × 384 pixels with a scaling factor of 0.25; bot-
tom: 128 × 768 pixels (rotated) with a scaling factor of 0.125.

In total, there were 26 annotated overview images resulting in 11,047 image patches
of the nonscaled dataset. The number of image patches for the downscaled datasets
continuously decreased with their downscaling factor (refer to Table 1). The overview
images were assigned to either the training & validation or the test dataset. The overview
images in the training & validation dataset were bisected horizontally and assigned to
either the training or validation dataset. Then, the resulting image patches of the sorted
overview images were extracted for the application in training. The images used for testing
were only seen by the CNN in a separate test procedure, where images and network were
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loaded independently. In all training processes in this study, 20 overview images (approx.
77%) were assigned to the training & validation dataset and 6 overview images to the test
dataset. With the subsequent patching of these overview images, it should be considered
that approx. 50% of the patches regarding each overview image for training & validation
were used for training while the others were used for validation. This whole procedure
was developed in preliminary investigations and succeeded over a standard randomized
distribution of the extracted image patches.

The image data were normalized and augmented during the training process. The
normalization was performed with respect to the mean and standard deviation of the whole
training dataset for each channel separately. The data augmentation comprised typical
geometric transformations, noise, blurring, color channel manipulations and the CutMix
operation, where random regions were cut out and inserted randomly over the images
of one batch [9]. The geometric transformations included flipping, rotating, shifting and
cropping operations. The color channel manipulations comprised a randomly applied his-
togram equalization and value shifts within each color channel. The applied augmentations
are exemplarily depicted in Figure A1.

3.2. Experimental Settings

All networks, training and evaluation methods were executed with the same con-
figurations and hyperparameters, if not stated otherwise. In particular, the networks,
regardless of their input image properties, had the same size and structure to set the focus
on the hypothesis and the proposed methods. Therefore, DeeplabV3+ [10] was used with
a RegNetY-120 encoder [11]. With the standard input image size, this network structure
had 53,000,762 trainable parameters, which were initialized with ImageNet weights in
all training processes. The network output had per default no activation layer to receive
the logit values of each class as the output. Subsequently, the binary segmentation could
be extracted.

The used datasets in this study only had a few image data (refer to Table 1). Further,
the available image data had a high diversity regarding the relevant features and possible
perturbations. This led to high fluctuations of the resulting accuracy measurement evoked
by, e.g., the distribution of the overview images into training and test datasets. Therefore,
all experiments in this study were executed with 30 iterations to consider and identify
these influences. Additionally, the experiments and evaluations conducted in this study
were fully reproducible and deterministic due to the seeding of every function and ran-
domized calculation (including calculations executed on the GPU). The code was written
in Python using the PyTorch framework and the Segmentation Models Pytorch repository by
Iakubovskii et al. [12].

As the loss function, a compound function of the binary cross-entropy and the dice
similarity coefficient was used in all training procedures [13,14]. On the one hand, the
binary cross-entropy, which is typically used in most training procedures of segmentation
networks, provides continuous and smooth gradients of the prediction error [15,16]. With
the dice loss, on the other hand, the input class imbalance problems can be handled [15,16].
The class distribution in the present dataset equaled approx. 23.97% (of class coating
damage in terms of the relative number of pixels of the relevant area). The dice loss is
defined as follows:

LDice = 1− 2 ∑N
i=1 giσ(si)

∑N
i=1 gi + ∑N

i=1 σ(si)
. (1)

Here, N is the number of images in the respective batch, g is the ground truth, s is the
prediction and σ is the sigmoid activation function [13,17]. Accordingly, the binary cross-
entropy loss is defined as [13,16]:

LBCE = − 1
N

N

∑
i=1

giln(σ(si)) + (1− gi)ln(1− σ(si)). (2)
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The weighted sum or compound loss function is then defined as follows [13]:

LDiceBCE = 0.60 · LBCE + 0.40 · LDice. (3)

The setup of the described loss function and its weights was based on results of preliminary
investigations, where the weights were determined iteratively regarding a baseline training
of a single segmentation network with the described experimental settings. For all accuracy
calculations, the standard dice coefficient was used. In all experiments, the accuracy was
measured on the stitched segmentation mask with respect to the full overview image. This
ensured a correct comparison between the proposed pipeline and the single networks.
Segmentation masks obtained from downscaled images were always upscaled again to
execute the accuracy calculation with the same resolution. Finally, the same optimizer
with the following initialization parameters was used in all training procedures: AdaBelief
(learning rate (α): 1× 10−3, weight decay: 1× 10−3, ε: 1× 10−8) [18].

3.3. Two-Stage Network Pipeline

In the following subsections, the proposed methods are introduced. They comprise a
first description of the full pipeline used in the experiments, as well as a detailed overview
of the relevant methods inside this pipeline.

The methods regarding the pipeline are based on the hypothesis stated in Section 2.
This involved especially the properties and advantages of both networks, large-scale and
small-scale. The large-scale network was utilized to achieve an adequate first prediction
since it had a better overview and therefore a sense of damage locations and occurrences
compared to the small-scale network. However, the utilization of image details such as
surface structures is only possible with the small-scale network. As stated in the hypothesis,
the small-scale network had the disadvantage of a significant decrease in accuracy if one of
the classes was not present in the input image. This disadvantage had to be addressed in
the application of the small-scale network in the pipeline and was further expressed with
the class proportion φcp for each patch:

φcp =
nd

w · h . (4)

Here, nd is the number of pixels labeled with coating damage inside this patch, w is the
width of the image patch and h is the height. φcp had to be in a certain range to ensure a
high performance of the small-scale network. This range was determined to be 1–99% in
preliminary investigations, so an adequate number of pixels per class was ensured while
most patches were still marked as valid. Additionally, the application of both networks
had to be managed adequately to achieve a high accuracy while keeping the compute time
at a reasonable level.

For this, the pipeline depicted in Figure 3 was developed, which describes the algo-
rithms applied on an input overview image (RGB Image) to generate a final segmentation
mask (Final Prediction). Firstly, a single-network application is described by the dark gray
box. There, an overview image is inserted and divided into patches by the Standard Patching
algorithm, which is explained later in detail. These patches are eventually downscaled and
sequentially forwarded to the respective network. In a single-network application (without
the rest of the pipeline), this can also be a small-scale network. In the proposed pipeline in
Figure 3, this is the large-scale network as stated. The output of this network application
is a binary segmentation mask of the overview image, which is stitched together from
the output patches (Prediction). In a next step, this segmentation mask is again divided
into smaller patches, which are later forwarded to the small-scale network. This patching
algorithm works with one of four later introduced techniques: Standard Patching (SP), Global
Coordinate Optimization (GCO), Local Coordinate Optimum (LCO) or a Combined Method (CM)
of the two latter techniques. Depending on the technique, the binary mask information is
utilized to overcome the described disadvantage of the small-scale network. Subsequently,
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a decision block is inserted to decide for each of these small patches, if it should be for-
warded to the small-scale network. This is based on the defined class proportion and its
valid range for each small patch and therefore also works towards a performance increase
of the small-scale network. If valid, the patch is forwarded to the small-scale network
and inferred. If nonvalid the existing segmentation mask of this patch is forwarded to the
Confidence Comparison (CC) block.

Large-scale segmentation

Small-scale segmentation

Confidence
Comparison

GCO

RGB image Final prediction

Prediction

Standard Patching
Small Patching

higher

Optional

Single network application

or,

,

for patch S1,...,M

y

Standard Large Patching

for patch L1,...,K
⊂ image

⊂ image
⊂ prediction

Class prop.
valid?

LCO CM

Figure 3. Visualization of the full pipeline starting with the RGB overview image (orange, upper
left) and finishing with the final stitched segmentation mask (red, upper right). The light gray boxes
represent the iterative execution over the patches defined beforehand (green boxes). Blue boxes
depict the execution of CNNs; yellow boxes represent a decision or comparison based on the input
data or initially defined thresholds. Dark gray boxes represent optional or separately executable
algorithm steps.

This CC block is an optional decision block (dark gray box in Figure 3) so that, if not
active, the class proportion block decides whether the small-scale network output or the
existing segmentation mask of the respective patch is used in the subsequent stitching of
the final binary segmentation mask. Otherwise, if active, the CC block re-evaluates the
network output of the small-scale network and the large-scale network. For this, the logit
output is used to determine the confidence of both networks and forwards the output
with the higher confidence. This is further explained in Section 3.6. Finally, the whole
binary segmentation mask is stitched together. This mask consists of segmentation patches
predicted by one of the two networks and has the same size and shape as the overview
image given as the input (see Final Prediction and RGB Image in Figure 3). The segmentation
mask (“Prediction” in Figure 3) received from the first network application also has this
same size and shape.

The patching algorithms, which are applied a priori to the segmentation networks,
are an essential part of the proposed methods. The position and size of the patches may
pose a significant impact on the accuracy of the networks. Therefore, different patching
algorithms were evaluated, to acquire a comprehensive insight about the correlations and
interdependencies. The Standard Patching algorithm (SP) was the baseline of this evaluation.
Here, patches of the exact size and shape, regarding the subsequent applied network, were
arranged to cover the whole area to be analyzed. This was typically the whole RGB image
but could be a smaller proportion of it, if the surface area did not cover the whole RGB
image (see Figure 2, images with irrelevant black areas). The patches were arranged in
a grid and did not have overlapping regions in the y-direction (except the last row of
patches). In the x-direction, the patches featured a uniform overlap, so that the left and



Aerospace 2023, 10, 245 9 of 22

right patches of each patch row covered the left and right borders. The SP was also used
a priori in the large-scale network, since at this state of the pipeline no metainformation
was available on which one of the more elaborate methods could be based on. A priori, to
the small-scale network, a first binary mask was available and could be utilized to execute
advanced patching techniques, which eventually contributed to an increase of accuracy
with the subsequent network. These methods are introduced in the next subsections.

3.4. Global Coordinate Optimization (GCO)

The Global Coordinate Optimization (GCO) algorithm utilized cost functions, which were
developed based on the assumptions made in the hypothesis, to optimize the patch loca-
tions via differential evolution [19]. This patching method as well as the other algorithms
are depicted in Figure 4. In this method, the patch’s shape and size were fixed to the input
size of the small-scale network. The problem to be optimized was multidimensional (the
x- and y-coordinates of each patch) and nonlinear due to the cost functions. Additionally,
the differentiation of the problem could not be ensured. Therefore, the global optimization
method of differential evolution was selected, because it did not use the gradient of the
problem and thus did not require any overall differentiation [19].

Patches with correct size
- Overlap in x-direction
- No overlap in y-direction

Standard Patching with
smaller patch size

Set patches with smaller size
by Global Coordinate
Optimization

Matrix: class prop. over x-,
y-coordinates for possible
patch positions with:
- Correct size
- Enclosing patch Oi

Standard Patching (SP) Local Coordinate Optimum Combined Method (CM)

Optimization of all x- and
y-coordinates by
Differential Evolution

Standard Patching with
correct size

Division into large parts

Select coordinates with
best class prop.Select valid coordinates

for patch O1,...,N for patch O1,...,N
for part P1,...,R

Global Coordinate

Matrix: class prop. over x-,
y-coordinates for possible
patch positions with:
- Correct size
- Enclosing Patch Oj

Select coordinates with
best class prop.

Optimization (GCO) (LCO)

Figure 4. Visualization of the different patching methods applied in the full pipeline (see Figure 3).
The input is defined as the respective overview image and a first binary segmentation (not necessary
for the first method). All methods return the entire patch coordinates. In green, the algorithm steps
are depicted; the blue boxes represent common or previously defined algorithms; the yellow boxes
are filters or decision-making blocks based on initially defined cost functions, thresholds or criteria.

The cost function consisted of two basic principles for this optimization. On the one
hand, the coverage of the binary segmentation edges was utilized to describe a necessary
criterion while on the other hand, the class proportion of each patch was used to find the
optimal configuration for the subsequently applied network. The edge coverage was based
on the detected edges gained by a canny edge detector applied on the binary segmentation
mask [20]. The goal and therefore lowest cost was reached when all detected edge pixels
were covered by one of the arranged patches. The resulting cost function εec could therefore
be described with the following equation:

εec = 1−
|Ae ∩

(
∑N

i=1 Ap,i
)
|

Ae
. (5)

Here, N is the number of patches, Ae is the total set of edge pixels resulting from the
preceding canny edge detection, and Ap,i is the area covered by the respective image
patch Si. This cost function ensured a coverage of all areas to be further analyzed by the
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second small-scale network. The second principle addressed the assumption made in
Section 2, that class proportions unequal to zero or one and especially tending to 0.5 were
advantageous for the subsequently applied small-scale network. This assumption resulted
in the following cost function εcp:

εcp =
1
N

N

∑
i=1

∣∣φcp,i − 0.5
∣∣ · 2, (6)

where φcp,i is the calculated class proportion of the respective patch i. Next, both functions
were combined to formulate one cost function to be minimized by differential evolution.
Here, εec was the necessary criterion for a valid patch configuration. Therefore, if a certain
threshold of 0.1% was not met, εec was the function to be optimized, otherwise εcp was
optimized. This was expressed with the combined cost function εo as follows:

εo =

{
1 + εec, if εec > 0.001
εcp otherwise

. (7)

The threshold of 0.1% was determined iteratively in preliminary investigations so that a
stable convergence of the optimization was ensured while keeping the threshold as low as
possible. To maintain a valid comparison of the different solution vectors in the differential
evolution process, a value greater or equal to one (highest cost of εcp) had to be added to
the cost value for the unmet criterion in case one (εec > 0.001).

As it is depicted in Figure 4, the optimization was initialized with the SP algorithm to
achieve a fast convergence by already meeting the necessary edge coverage criterion. The
SP therefore set the number of patches to be optimized and thus the number of dimensions
of the optimization problem. Since the number of patches for the whole overview image
exceeded 600 (which would result in a 1200-dimensional problem) the overview image
was divided into smaller parts Pi, where each part was optimized separately. These parts
were sections with the whole width and were vertically arranged without overlap. The
optimization could then be parallelized to minimize computation time.

Finally, for each optimized patch configuration, a filter was applied to remove invalid
patch locations (see Figure 4, GCO, yellow box). This was based on two principles. First,
patches having a large overlap with others were removed to spare unnecessary computation
time. Second, patches with a class proportion not in the valid range were sorted out. This
second filter condition was identical to the class proportion block of the full pipeline (see
Figure 3, yellow box, bottom right).

3.5. Local Coordinate Optimum (LCO) and Combined Method (CM)

Another patching technique evaluated in this study was the Local Coordinate Optimum
(LCO). This method was based on two concepts, where the first comprised the described
optimal class proportion of each patch. The second concept was that specific metadata
were useful to maximize the prediction accuracy of a certain area. In other words, the
surrounding image data of a patch were vital for the optimal prediction. Therefore, in this
method, smaller patches (smaller than the default input size of the subsequent network)
were arranged by the SP algorithm and sequentially analyzed (see Figure 4, LCO, blue box).
These smaller patches are referred to as LCO patches in the following. For each of these
LCO patches Oi, the patch with the default input size was placed to enclose the respective
LCO patch. This input patch could then be shifted to minimize the class proportion cost
εcp (see Figure 4, LCO, yellow box). Eventually, this input patch was forwarded to the
class proportion validation and the small-scale segmentation (see Figure 3), from which
the resulting prediction was cropped to the required smaller LCO patch size and finally
forwarded to the next pipeline block (CC).

This method is visualized on an exemplary overview image section in Figure 5. Here,
a LCO patch size of 192 × 128 pixels was selected (compared to the original input image
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size of 384 × 256 pixels). The SP of these LCO patches is depicted in Figure 5a. For one of
these patches, the subsequent input patch placement is depicted in Figure 5c. The input
patch (red) was shifted to minimize the class proportion cost while still enclosing the LCO
patch (gray). This resulted in an upper right shift towards the damage area since the class
proportion was generally too low at the other positions. In this method, an optimization
algorithm of the x- and y-shifts was obsolete since the search space regarding these shift
parameters was of a reasonable size. One of the most crucial parameters regarding the
performance of the LCO was the size and shape of the LCO patches. Therefore, this
parameter is evaluated in detail in Section 4.

(a) (b) (c)
Figure 5. Visualization of the algorithm steps for methods LCO and CM. (a) SP result with smaller
patches (LCO patches with a shape of 192 × 128 pixels). (c) Selection of the best patch location by
shifting, depicted for one patch Oi (refer to Figure 4, LCO, green and yellow box). Here, the gray
patch was fixed while the red patch was shifted to achieve a low class proportion cost. Thereafter,
the red patch was forwarded towards the small-scale segmentation. (b) Result of the applied GCO
method with LCO patches in the CM algorithm (see Figure 4, CM, blue box). The patches were
arranged to achieve a low class proportion cost while covering all edges of the existing binary
damage segmentation.

The last patching method proposed in this study is the combined method (CM), which
was a combination of GCO and LCO. Based on the idea of the LCO algorithm, the SP of
the LCO patches was replaced with the GCO method (see Figure 4, CM, blue box). Here,
the LCO patches were already optimized to patch locations with low class proportion
costs and a high coverage of the segmentation edges. Subsequently, the LCO method set
the input patches (see Figure 4, CM, green and yellow box). The optimized LCO patches
in this method are exemplary depicted in Figure 5b. It can be observed that the patches
tended to scatter around the damage edges with an approx. class proportion of 0.5. Patches
placed completely on the intact coating area (for example on the left side of the image) were
filtered out since the valid class proportion range was not met. Again, for each of these
LCO patches, the input patch was placed (see Figure 5c).

A variant of the CM algorithm is a combined method without the x-coordinate optimiza-
tion of the LCO patch coordinates (CM-Y). This reduced compute time and forced the patch
arrangement to equally spread over the whole width of the overview image.

3.6. Confidence Comparison

The Confidence Comparison block (CC) in the pipeline (see Figure 3) represents the
decision concerning which patch has the higher mean confidence and is therefore selected
for the final prediction mask to be stitched. Here, the confidence was defined as the
probability of correctness and was calculated based on the nonprobabilistic output or logit
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of the respective networks [21]. Usually, only the binary classification of each pixel is used
in such a semantic segmentation task. This can be described as follows:

Ŷi = argmax
k

(zi)
(k), (8)

where Ŷi is the pixelwise class prediction or binary segmentation result of the respective
sample i, zi is the logit matrix or network output and k is the respective class. Thus, this
equation reflects the typical pixelwise selection of the class with the larger logit value. This
binary segmentation output does not allow any description of the network’s confidence for
the respective prediction. Therefore, a different approach was followed, where the sigmoid
function σ was first applied on the logit. Subsequently, the maximum class sigmoid was
selected pixelwise to gain a description of the network confidence P̂. This can be described
with the following equation:

P̂i = max
k

σ(zi)
(k). (9)

By combining Equations 8 and 9, the general application of a network h with an input
Xi could be described as h(X) = (Ŷ, P̂). The confidence P̂ was then used in the pipeline
to decide between the existing binary segmentation result and the new prediction to be
inserted into the final segmentation mask (see Figure 3). For this, both mean confidences of
the respective patch were compared. This comparison of the confidence of two different
networks could lead to complications, since the described uncalibrated approach of the
confidence definition did not take this into account.

A possible solution could be the usage of (local) temperature scaling, which was
proposed by Guo et al. [21]. With this temperature scaling (or Platt scaling) approach
applied, the logit zi in Equation 9 would first be divided by a single scalar parameter T
(temperature), which was calibrated a priori using the validation dataset. In an advanced
development of this approach, the local temperature scaling proposed by Ding et al., the
temperature was defined as a matrix instead of a scalar. Here, a separate neural network
was needed to calibrate these temperature values based on the validation dataset [22].
Both approaches were evaluated in preliminary investigations by applying an additional
calibration step between the training of the networks and the subsequent test phase. A
short analysis showed that the temperature values were optimized close to one, while
resulting in a minor decrease in overall accuracy. A temperature equal to one would be
the equivalent to omitting the method. Since the analysis did not result in significant
improvements of the accuracy in confidence description, these methods were not applied
in the further progress of this study. A detailed analysis of these approaches is beyond the
scope of this work.

4. Results

In the following section, all experimental results are presented. First, the results
of the single networks are shown and decisions for further analysis steps and pipeline
configurations are derived. Subsequently, the proposed whole pipeline is analyzed in
different configurations regarding their accuracy and compute time.

4.1. Analysis of the Single Networks

In this subsection, the application of single segmentation networks with a Standard
Patching are evaluated (refer to Figure 3, single-network application). The networks were
configured with the different input image shapes and patch sizes as described in Table 1.
The training of each network was executed with 60 epochs and a batch size of 16. The results
regarding the different scaling factors are visualized side by side in Figure 6 as boxplots.
The data points represent a single iteration of a training and test process. The accuracy was
calculated on the test dataset of each iteration. The first network with a scaling factor of 1.0
achieved a median accuracy of 94.08%. When comparing the networks with a scaling factor
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lower than 1.0, the network with the lowest scaling factor achieved the overall poorest
accuracy of 49.98%. The overall best accuracy with 95.31% was exhibited by the network
with the highest scaling factor of 0.375. Higher scaling factors were not considered to obtain
a significant difference in FOV between the two networks to be applied, although these
could possibly achieve higher accuracies (regarding the single-network application). A
possible explanation for the decreasing performance with heavier downscaling, on the one
hand, can be the increasing loss of information. On the other hand, the respective dataset
size equaled approx. 25% of the preceding configuration resulting in approx. 77 images for
training for the last configuration.

1.0 0.375 0.25 0.125
Scaling factor

0.28
0.32
0.36
0.40
0.44
0.48
0.52
0.56
0.60
0.64
0.68
0.72
0.76
0.80
0.84
0.88
0.92
0.96
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ac

y

Figure 6. Boxplots depicting the test accuracy of networks with different scaling factors of the image
patch to be inserted. The x-axis is not proportional. Network input size, network size and number of
parameters are identical for every configuration.

According to the proposed pipeline, a large-scale network had to be selected in
addition to the small-scale network with a scaling factor of 1.0. The second network
depicted in Figure 6 featured the highest median accuracy. Although the lower whisker of
the third network also indicated robust results, there were various lower outliers compared
to the second network. Therefore, the second network with a scaling factor of 0.375 was
selected as the large-scale network for the whole pipeline and all further evaluations. This
first approach of the single-network application is referred to as single-network small scale
(1S SS) in the following for a scaling factor of 1.0 and single-network large scale (1S LS) for a
scaling factor of 0.375.

Additionally, a confusion matrix was calculated for the selected network configu-
rations 1S SS and 1S LS (refer to Table 2). While both networks handled true positive
values almost identically, 1S LS achieved less false predictions overall. Furthermore, 1S LS
performed better at intact coating (ground truth negative) compared to 1S SS, which can be
explained with the advantageously larger FOV. The recall equaled 95.65% for 1S SS and
96.73% for 1S LS, which was consistent with the median accuracies [23].
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Table 2. Confusion matrix for 1S SS and 1S LS calculated over the single-image-patch predictions
from the single-network application on the test datasets in 30 iterations.

Predicted
1S SS (1S LS) Positive Negative

Ground Truth Positive 27.06% (27.03%) 1.23% (0.91%)
Negative 1.29% (1.05%) 70.41% (71.00%)

Next, the hypothesis formulated in Section 2 was evaluated on the small-scale net-
work. Thus, the accuracy in each predicted input image was analyzed regarding the class
proportion of the respective input image. This is depicted in Figure 7, where test accuracy
(blue) and number of image patches (red) are visualized over the class proportion of each
image patch. With the approach 1S SS, 30 iterations were executed, where each patch in the
test dataset was evaluated separately. The resulting violin plot was then generated with
the number of patches available. This number of patches is depicted in the histogram for
each class proportion (red). In total, 92,838 patches were analyzed. For low decreasing class
proportions (approx. < 0.20), the mean accuracy decreased continuously down to 88.4%
for class proportions between 0.00 and 0.05. A similar behavior was observed for high
increasing class proportions (approx. > 0.70), where the mean accuracy also decreased
down to 72.2% for class proportions between 0.90 and 0.95. One outlier was present at a
class proportion between 0.95 and 1.00, where the mean accuracy equaled 99.6%. A possible
explanation for this was the disproportionately low number of image patches in that range
with only 90 images. This equaled approx. 0.097% of the evaluated image patches and
therefore indicated a strongly declined significance. Especially the class proportion range
between 0.00 and 0.05 had a high impact on the overall accuracy of an analyzed overview
image, since it covered approx. 54.4% of all image patches.
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Figure 7. Accuracy (violin plot with mean value, blue) and number of images (histogram, red)
over the class proportion regarding all tested image patches. The data depict the application of the
small-scale network in 30 iterations on the test datasets. All predicted image patches were analyzed
separately (not gathered in batches or overview images). It can be observed that the mean accuracy
significantly decreases for low (approx. <0.20) and high (approx. >0.70) class proportions.

With these results, the hypothesis that the “networks achieve higher accuracies, if both
classes (coating damage and intact coating) are present with at least a significant amount of
pixels” could therefore be validated by this evaluation. Further, the highest accuracy with
over 98.00% could only be achieved with class proportions near 0.50, or more specifically
in the range of 0.45 and 0.65, if the outliers at 0.55 to 0.60 and 0.95 to 1.00 were neglected.
With these insights, the proposed pipeline and patching methods can be configured and
evaluated in the next subsections.
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4.2. Analysis of the Two-Stage Pipeline

In this subsection, the application of both networks as it is visualized in Figure 3 is
analyzed. In all following evaluations, the two networks were identical in each iteration as
they were presented in the last subsection. This implied that for the following experiments,
only evaluations on the test dataset were executed without any training of the networks.
The whole pipeline configuration is referred to as two-stage (2S) in the following.

Before comparing the two-stage approaches to each other, the best patch size for
the patching of the LCO patches in LCO, CM and CM-Y had to be identified. This was
done by evaluating the whole pipeline configured with LCO patching and without CC.
The LCO patch’s height and width were changed in different combinations. The results
were compared based on the overall median accuracy of the 30 iterations, which is listed
in Table 3. Here, the configuration with a resolution of 384 × 128 pixels achieved the
highest median accuracy. This shape had the same width as the original input image
patch shape. Therefore, in the LCO method as well as in the CM method, the optimum
search regarding the input patch position only had one degree of freedom (y) instead of
two (x, y). However, the results in Table 3 indicated a continuous decrease in accuracy
for patch widths lower than 384 pixels. This could be observed for all patch heights. The
configuration 384 × 256 pixels corresponded to the SP algorithm, since the evaluated LCO
patch size must be smaller than the input image patch in LCO, CM or CM-Y to enable the
required shifting of the input patch. In the following, these methods were configured with
the LCO patch size of 384 × 128 pixels.

Table 3. Median accuracy calculated over 30 iterations on the test datasets for different LCO patch
size configurations. Tested with patching method LCO without CC. (* at that patch size, only the SP
was applied).

Height \Width (Px) 384 192 96 48

256 96.25% * 95.41% 95.42% 95.42%
170 96.57% 95.62% 95.84% 95.90%
142 96.55% 95.57% 95.76% 95.90%
128 96.67% 95.51% 95.79% 95.95%
85 96.62% 95.62% 95.80% 96.01%
64 96.61% 95.36% 95.78% 95.99%
51 96.59% 95.39% 95.77% 96.04%
32 96.53% 95.40% 95.80% 96.06%

With the crucial parameters adjusted in the above investigations, the two-stage configu-
rations were evaluated. They comprised the different patching algorithms SP, GCO, LCO,
CM and CM-Y each with or without Confidence Comparison. The results with these two-stage
configurations as well as the initially presented single-network applications 1S SS and 1S
LS are listed in Table 4 regarding the overall median accuracy over 30 iterations. Here, it
can be observed that the additional Confidence Comparison improved the median accuracy
of every configuration resulting in an average accuracy improvement of approx. 0.6%. The
overall highest median accuracy was achieved by the 2S LCO and CC with 97.07%. This
same approach also exhibited the highest accuracy regarding the methods without CC.
The application of GCO both individually and within CM and CM-Y yielded worse results
than the application of a simple SP, if CC was enabled. With CC disabled, SP achieves the
poorest results regarding the two-stage approaches.
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Table 4. Median accuracy calculated over 30 iterations on the test datasets for the different approaches.
The methods using an additional LCO patching were configured with the best patch size stated
in Table 3.

Patching Method With Confidence Comparison Without Confidence Comparison

1S SS - 94.08%
1S LS - 95.09%
2S SP 96.92% 96.25%

2S GCO 96.41% 95.61%
2S LCO 97.07% 96.67%
2S CM 96.69% 95.78%

2S CM-Y 96.79% 96.57%

In addition to Table 4, the best two-stage approaches were further compared to the
single-network applications as boxplots in Figure 8. It can be seen that the box and
therefore the certainty of the methods was improved significantly with all compared two-
stage approaches. Additionally, the lower whisker could be increased drastically. This
resulted in improvements of 3.83% to 11.48% in accuracy depending on the methods
compared. In particular, the method 2S LCO w/ CC achieved a high lower whisker, albeit
with several critical outliers. Regarding the already high upper whisker, the two-stage
approaches achieved only a minor increase from 98.1% (1S LS) or 98.6% (1S SS) to approx.
98.8% (all two-stage).
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Figure 8. Boxplots depicting the overall results compared amongst the different methods. The highest
overall median accuracy is achieved by the 2S LCO w/ CC method, where the full pipeline with Local
Coordinate Optimization and Confidence Comparison was applied.

Overall, the median accuracy could be increased by approx. 1.98% resulting in a final
median accuracy of 97.07% with method 2S LCO w/ CC. This same method also achieved
the best results when comparing the mean accuracy. Here, an improvement of 2.25% in
mean accuracy was observed when comparing method 2S LCO w/ CC (93.91%) to the best
single-network application (1S LS, 91.66%). Thus, when outliers were taken into account
to a greater extent (when analyzing the mean value), the proposed methods also exhibited
advantageous results. The recall, which was similarly calculated using the method described
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in Section 4.1, equaled 97.70% for method 2S LCO w/ CC. Thus, an improvement of 0.97%
could be achieved. Another improvement could be seen when comparing the worst-case
scenario, thus the worst iteration. Here, 1S LS achieved approx. 78.23% while method 2S
LCO w/ CC, with approx. 81.04%, increased the accuracy by approx. 2.81%. With all these
statistical characteristics, the increased overall robustness of the damage segmentation using
the proposed pipeline was demonstrated.

Finally, example segmentation results are depicted in Figure 9, where the single
networks 1S SS and 1S LS are compared to the proposed method 2S LCO w/ CC. Here, two
example parts of an overview image (top and bottom row) were analyzed. In the first row,
it can be observed that the small-scale network (left) achieved an adequate accuracy since
the damage in the right of the image was fully masked (depicted with blue overlay color).
The large-scale network (center) exhibited partly false segmentation results. Method 2S
LCO w/ CC (right) resulted in a similar mask as that of 1S SS indicating the improvement
of the initial large-scale segmentation by the small-scale segmentation in the pipeline (see
Figure 3). In the second row, a false segmentation mask was predicted by the 1S SS, since
no damage was present in this image part. However, method 1S LS resulted in the correct
segmentation. Again, method 2S LCO w/ CC interpreted both segmentation results correctly
and output the segmentation result of the large-scale segmentation.

1S SS 1S LS 2S LCO w/ CC

Figure 9. Example segmentation results on two parts of one overview image from the test dataset (top
and bottom). The applied networks are all from the same iteration. The final binary segmentation
mask of each method is visualized with a blue overlay.

4.3. Analysis of the Computational Time

In a final experiment, the computational time of the proposed methods was analyzed.
Therefore, after two warm-up runs, six runs of feed-forward predictions of the full overview
images were timed. These multiple runs were conducted to average several side effects in
this experiment. First, each overview image featured a different size and therefore different
numbers of patches. Second, for the two-stage approaches, the number of predicted patches
differed according to the damage occurrences and depending on the pipeline decision
blocks. The experiment was executed on similar hardware as the previous training and
evaluation processes, which was an NVIDIA GeForce RTX 3090 GPU (NVIDIA Corporation,
Santa Clara, CA, USA) and an AMD Ryzen 5950X CPU (Advanced Micro Devices Inc., Santa
Clara, CA, USA). The memory size of the segmentation models (small-scale and large-scale)
was the same in all approaches.

The results for the single networks as well as several two-stage methods are listed
in Table 5. The 1S LS method achieved the lowest computational time, since there were
only few patches with a large FOV to be predicted. The other single-network method,
required more than twice the time for predicting more than twice the number of patches.
The simplest two-stage method, 2S SP w/o CC, was basically a full large-scale segmentation
1S LS, a selective 1S SS and an algorithm overhead leading to an increase in time. This
resulted in a computational time of 50.01 s. The integration of the LCO method further
increased the computational time by approx. 50 s. Finally, the additional implementation of
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the GCO method posed a significant load on the compute resources. This resulted in a major
increase of approx. 5594 s, if the x- and y-coordinates were optimized for each patch. The
optimization of the y-coordinates only, which reduced the dimensions to be optimized by
50%, still led to an increase in compute time of 4132 s. Although the optimization method
was parallelized, significant resources were required due to the high number of dimensions.
It must be taken into account that the absolute computational times only applied to this
specific hardware and may be different in a real-world application depending on the
hardware and software implementation of the algorithms.

Table 5. Computational time (feed-forward time) of the used models with two warm-up predictions
and six timed predictions of overview images. Tested on a GeForce RTX 3090 GPU and a Ryzen
5950X CPU.

Approach Time (s)

1S SS 35.12
1S LS 13.35

2S SP w/o CC 50.01
2S LCO w/ CC 108.49
2S CM w/ CC 5702.78

2S CM-Y w/ CC 4240.41

5. Discussion

The datasets of this study comprised a low number of image data with a wide range
of environmental perturbations. This posed the challenge of an adequate training and
application of CNNs to achieve high accuracies despite low training data. Since the target
image data in this study had a high resolution and size, the proposed methods utilized
the advantageous properties of CNNs trained with image patches at different scales. Ac-
cordingly, the hypothesis stated in Section 2 therefore referred to the beneficial application
of CNNs in terms of patch position and FOV regarding the different classes present in an
image patch to be inserted into the networks. This hypothesis could successfully be proven
by the results depicted in Figure 7. The derived methods and pipeline were evaluated in the
subsequent experiments. The goal here was the successful combination of the advantages of
both networks applied (small-scale and large-scale). In particular, the Confidence Comparison
proved to be effective by ensuring a correct replacement and a prevention of false decisions
based on unknown network application properties, as it was depicted in the results in Table
4. In other words, without the CC block, the replacement of the segmentation results from
the preceding network was only based on statistical findings and not individual results and
confidences. The proposed pipeline in its simplest form, 2s SP w/o CC, already achieved
an improvement of 1.16% in median accuracy (see Table 4). With the proposed patching
methods implemented, this could be further increased by 0.42%. With the additional CC
block, the median accuracy was also increased by 0.4% for the 2S LCO method resulting in
the overall best median accuracy of 97.07%.

The improvement in accuracy gained by the two-stage approaches highly differed
between the single-overview images. This uncertainty was also evident in the boxplots
of all methods (see Figure 8). There, the range between lower and upper whiskers high-
lighted that uncertainty and the crucial influence of the image distribution on the datasets.
When analyzing the average performance of all methods on the single-overview images, it
was observed that on individual overview images, the accuracy was significantly lower
(<70%). The distribution of these critical images into the datasets therefore led to significant
fluctuations depending on whether these images were sorted into the test dataset. These
fluctuations, among others, evoked the uncertainty observed in the boxplots.

Among the proposed patching methods, GCO exhibited the poorest median accuracy,
which evoked several possible explanations. First, the implemented class proportion cost
function led to an optimization of the patch location towards a class proportion of 0.5,
compared to the simple threshold of 1% of each class present, which was implemented in
the pipeline. The simple threshold already covered the majority of cases, which was why
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the cost function was not expected to have a large impact. Second, the optimized patch
positions excluded a significant amount of surface area, while covering other areas several
times (by various overlapping patches). This was due to the edge coverage cost function
focusing only on edges and not on overall coverage. The effect could be partially solved by
adjusting the cost function of the optimization by an additional cost of the overall coverage,
which however did not achieve better results in preliminary investigations.

The evaluation of the computational time compared the feed-forward time of each
method regarding a specific hardware setup used in this study. Nevertheless, assuming
an application with this hardware setup, method 2S LCO w/ CC, which achieved the high-
est performance in accuracy, required 108.49 s in the evaluation and therefore approx.
18.1 s per overview image. This is a reasonable computational time regarding the intro-
duced a posteriori application in inspection software, which does not require an execution
in-process.

All methods proposed in this study were developed and evaluated only on the pre-
sented image dataset. A possible transfer of this method on other domains or segmentation
tasks was not covered in this study. However, a suitable new domain generally has to
comprise high-resolution images on the one hand. On the other hand, the class occurrences
must consist of wide coherent areas. Otherwise, the patching methods do not have a suit-
able pattern or gradient for optimization. Further, a successful application of the proposed
methods is indicated if the hypothesis is validated on the respective domain.

6. Conclusions and Future Works

Within the scope of this study, the application of CNNs within an automated inspec-
tion of coating damages in aircraft engines was analyzed and improved to overcome the
challenges posed by limited image data and environmental perturbations. Therefore, a
viable method was proposed and validated to improve the segmentation accuracy of CNNs
trained on a low number of diverse 2D image data. Specifically, it comprised the analysis
of high-resolution images requiring a sequential processing of image patches. The pro-
posed methods therefore introduced a pipeline implementing two segmentation networks,
which worked on different scales of the image data to improve the overall accuracy on the
large overview images to be analyzed. For this, a hypothesis was formulated regarding
the efficient application of CNNs in the present domain, which could be proven in first
experiments. Based on this hypothesis, the pipeline and patching methods were developed.
It could be shown that each block of the presented pipeline contributed to an increase
in accuracy. However, the proposed patching methods exhibited varying results. Never-
theless, the best approach could be identified with method 2S LCO w/ CC, where patch
locations were optimized for a beneficial application of the segmentation networks. This
result further supported the stated hypothesis and posed a viable method of combining
segmentation networks of different properties to overcome a low number of training data
in an abstract domain and ensure high accuracies.

As stated in Section 5, the proposed methods were only evaluated on the domain
present in this study. To investigate the generalizability of the methods, further exper-
iments on other domains must be performed. This respective domain should meet the
characteristics specified in Section 5 to ensure a successful implementation. In this study,
only one network structure and size was investigated to keep the hyperparameter space at
a reasonable size and the network applications comparable. However, for the different net-
work applications (SS and LS), other network structures could be more efficient regarding
their accuracy and size, which could be investigated in future studies. Another possible
investigation addressed the optimization methods (LCO, GCO and CM), which currently
only considered the x- and y-coordinates of the image patches. The additional optimization
of the individual patch size could yield further advantages. However, this entails that
the CNNs would have to be adjusted. A possible extension of the proposed methods is
the implementation of multiclass semantic segmentation. Since the segmentation task
evaluated here did not cover such a case, this was not further investigated. Nevertheless,
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an extension of the two-stage pipeline to multiclass segmentation is especially worthwhile
for other domains.

7. Patents

The automation of the inspection process and underlying algorithms of the presented
software pipeline in Section 1 and Figure 1, specifically the masking, feature tracking,
registration and stitching to an overview image, are stated and specified in a pending
patent. The scientific research presented here is therefore based on the data generated by
the methods of this patent. However, the methods and scientific results of this study are
not covered in the patent nor will be covered in the future. The corresponding patent is
published in Germany under the title “Verfahren zum Abbilden einer Oberfläche einer
Strömungsmaschine und Detektieren einer Schädigung” (DE102021120899.8).
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Appendix A

(a) (b) (c) (d)
Figure A1. Visualization of exemplary images (upper row) and labels (lower row) from the training
dataset with applied augmentations. On the patch depicted in (a) a color channel shift is applied.
In (b), the application of a rotation and histogram equalization can be seen. The patch depicted in
(c) shows, among others, an applied CutMix operation, where an ROI of another patch from the same
batch is inserted into the shown patch on the upper right. The label is adjusted accordingly. The
image patch depicted in (d) is rotated and additionally mirrored in places where black areas would
appear otherwise (see lower right corner of the depicted image patch).
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