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Abstract
In this study, the thermal conductivity (κ) of Al–Cu eutectics were investigated
by experimental and computational methods to shed light on the role of these
compounds in thermal properties of Al–Cu connections in compound cast-
ing. Specifically, the nonequilibrium molecular dynamics (MD) method was
utilized to simulate the lattice thermal conductivity (κl) of six compositions
of Al–Cu with 5–30 at.% Cu. To extend the results of the MD simulations to
bulk materials, instead of using conventional linear extrapolation methods, a
machine learning approach was developed for the dataset acquired from the
MD simulations. The bootstrapping approach was utilized to find the most
suitable method among the support vector machine (SVM) with polynomial
and radial basis function (RBF) kernels and the random forest method. The
results showed that the SVM model with RBF kernel performed the best, and
thus was used to predict the bulk κl. Subsequently, the chosen compositions
were produced by induction casting and their electrical conductivities were
measured via eddy current method for calculating the electronic contribution
of κ using the Wiedemann–Franz law. Finally, the actual κ of the alloys were
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measured using the xenon flash method and the results were compared with
the computational values. It was shown that the MD method is capable of
successfully simulating the thermal conductivity of this system. In addition,
the experimental results demonstrated that the κ of Al–Cu eutectics decreases
almost linearly with formation of the Al2Cu phase due to increase in the Cu
content. Overall, the current findings can be used to enhance the κ of cooling
devices made via Al–Cu compound casting.

Supplementary material for this article is available online

Keywords: thermal conductivity, molecular dynamics, machine learning,
Al–Cu eutectics, Wiedemann–Franz law

(Some figures may appear in colour only in the online journal)

1. Introduction

Cooling efficiency is of utmost importance for the design of electronic components with super-
ior performance [1]. One of the essential parameters affecting the cooling performance is the
thermal conductivity (κ), and copper is the material of choice for this purpose due to its high
κ; however, the high density of copper (8.96 g cm−3) and material costs restrict its utility for
monolithic components. As a result, cooling components are made by coupling copper with
aluminum that has a lower density (2.7 g cm−3) at the expense of lowering the overall κ. Pre-
vious studies showed that poor connection at the Al and Cu component surfaces is one of the
main issues that decrease the overall cooling capability of the components [2]. Currently, vari-
ous thermal interface materials (TIMs) such as polymer-based composites containing copper
or alumina are used between the components in the form of pads, gels or adhesives to reduce
contact resistance [1, 3, 4]. However, such materials have substantially lower κ than the bulk
Al and Cu [5], and thus significantly decrease the efficiency of the cooling component. A solu-
tion to this problem is to replace the TIMs with compound casting of Al on Cu components.
With this approach, the molten Al is cast on the copper component, forming a metallic bond,
eliminating the need for TIMs, and lowering the contact resistance. Although this process is
deemed simple, the natural oxides on the surface of the components suppress wetting and
work as a barrier, resulting in a poor connection, and thereby leading to undesirable mechan-
ical properties and limited thermal conductivity [2, 6].

In order to eliminate the adverse effect of natural oxides on parts manufactured by com-
pound casting, a new approach has been proposed, where the casting process is performed
under extremely high vacuum (XHV) adequate atmosphere using silane gas to remove the
residual oxygen present in the environment [7–9]. Since the partial pressure of the oxygen is
extremely low in such atmospheres, the formation of natural oxides on the cleaned surfaces of
copper is inhibited, enhancing the metallic bond formation [7, 8]. As expected, during solidi-
fication and formation of such bonds, diffusion of atoms would create a compositional gradient
at the connection interface. Previous studies showed that under XHV atmosphere, the inter-
face, where Al–Cu connection takes place, is mainly composed of the Al-rich eutectic range
of the Al–Cu phase diagram and the θ-phase (Al2Cu), followed by thin layers of intermetallic
compounds such as AlCu(η) and Al4Cu9 (γ) [8]. Considering that the compositional gradient
of these layers could significantly affect the overall κ of the cooling component, it is crucial
to optimize the casting parameters so that the relative fraction of each phase can be controlled
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to obtain the best thermal conductivity. However, this goal is not achievable without a proper
understanding of κ in this region.

The thermal conductivity of metals and alloys is made of two components κ = κe +κl ,
where κe is the electronic and the κl is the lattice contribution to κ. The component κe is com-
monly calculated via the Wiedemann–Franz law (WFL) equation that converts the electrical
conductivity (σ) to κe:

κe = σ×T×L (1)

where T is the absolute temperature, and L is a constant known as the Lorenz number.
The substantial contribution of electrons to κ is known for materials with high electrical

conductivity, such as pure Cu, Al, and Au [10]. Therefore, the WFL is a common method to
estimate the κ since the σ is readily available for many materials. Also, if σ is not available,
its experimental measurement is simple and less complicated than the direct measurement of
κ. Although some studies approved this estimation for some alloys and intermetallics, such as
Sn–37 Pb, Cu3Sn and Cu6S5 [11], several other studies showed that this equation does not hold
for other alloy systems and intermetallic compounds. The shortcoming of the WFL method
is a consequence of the change in the electrons’ mean free path, which is affected by crystal
defects and scattering of electrons. In addition, the higher contribution of κl in such materials
is discarded by the WFL, which can result in some deviation from the actual value of κ [12,
13]. Therefore, it can be deduced that by complementing the κe calculated using the WFL
by κl, the overall κ can be calculated with enhanced accuracy. However, the calculation of κl

demands a good understanding of the thermal conduction through the crystal lattice.
The κl is generated from the transfer of vibrational energy of atoms by progressive waves,

also known as phonons. These phonons propagate through materials and have a mean free path
that is governed by interactions with the other phonons, free electrons, and defects [14]. Such
scatterings, also known as Umklapp scatterings, are more pronounced in impure materials
and it is necessary to consider them when calculating the κl [15]. Some studies have tried
the calculation of the κl via analytical methods [16]; however, due to the complex behaviors
of such scatterings, an accurate calculation of the κl is only possible through computational
methods that consider the vibration of atoms.

One of the methods to calculate the κl is atomistic simulations, and for this purpose, one
of the strongest candidates in terms of accuracy is density functional theory (DFT). However,
the computational cost of employing DFT simulations in the solution of problems involving
numerous compositions is significant. A more efficient solution for calculating κl is molecular
dynamics (MD), where κl can be simulated via equilibrium or nonequilibrium approaches. In
an equilibrium approach, heat flux is applied to the system, and the resulting thermal gradient
until equilibration is used for calculating the κl. As an example, the Green–Kobo method uses
an equilibrium approach that has proved to be successful in predicting κl of various materials
[17, 18]. However, in some materials, this method has the disadvantage of slow convergence,
as it is necessary to simulate periods several times longer than the longest phonon relaxation
time to achieve accurate results [19]. Another approach is to use nonequilibrium methods
such as the Müller-Plathe method, also known as reverse nonequilibrium molecular dynamics
(NEMD). As opposed to the Green–Kobo method, this method applies the thermal gradient
in the system and measures the resulting heat flux to calculate the κl. As a result, it provides
several advantages, such as substantially lower computational cost, faster convergence, and
better compatibility with periodic boundary conditions. It should be noted that the relative
efficiency of the equilibrium and nonequilibrium methods are dependent on the properties of

3



Modelling Simul. Mater. Sci. Eng. 31 (2023) 045001 A Nazarahari et al

the material, and since the Al–Cu system studied in this work is isotropic, the NEMD method
can be a useful and efficient tool to simulate κl for this system [20, 21].

With this motivation, the Müller-Plathe method was employed to determine the κl of six
Al–Cu compositions with 5, 10, 15, 20, 25, and 30 at.% Cu in the current study investigating
the thermal conductivity of Al–Cu eutectic compounds. In order to adapt the computed values
to bulk materials, a machine learning (ML) approach was utilized to predict the bulk κl as
several recent studies suggest the use of ML to predict the thermal transport properties of
materials with enhanced accuracy [22–24]. Subsequently, to validate the results, samples with
the aforementioned compositions were cast utilizing vacuum induction melting, heat treated
for recrystallization and growth, and their electrical conductivity was measured utilizing an
eddy current method, such that it could be incorporated into the WFL equation to calculate
their κe. Finally, their thermal conductivities were directly measured using the xenon flash
method and were compared with the sum of κe and κl. The results suggested that the use ofML
in conjunction with MD simulations for predicting κl for bulk materials is a promising method
that can eliminate the problems associated with linear extrapolation. Moreover, the addition of
κl to the values acquired from the WFL equation can enhance the accuracy of the calculated
κ, providing a replacement for the direct measurement of κ. Finally, both the experimental
and computational results suggest that decreasing the fraction of the θ phase in the eutectic
compounds increases the overall κ of the Al–Cu connection, which can be exploited further
for enhancing the overall thermal conductivity of cooling devices.

2. Materials and methods

2.1. Numerical techniques

In order to simulate the κl of the Al–Cu system, a 10× 10× 10 face centered (fcc) single crys-
tal Al cube (40.4 Å width) was constructed via Atomsk [25]. Next, Al atoms were randomly
substituted with Cu atoms based on the desired atomic percentage of 5, 10, 15, 20, 25 and
30. The interatomic potential used in this study was obtained by a second nearest-neighbor
modified embedded atoms method (2NN MEAM) that already showed its ability to predict
different phases of the Al–Cu system and their properties with acceptable accuracy [26]. In
addition, this type of interatomic potential has shown better accuracy for κl prediction [27]. To
find out the preferred position of atoms, the systems were initially relaxed at 300 K for 20 ps
via a Canonical (NVT) ensemble, then an isothermal–isobaric (NPT) ensemble for 20 ps. Sub-
sequently, to imitate the effect of heat treatment at the temperature that the eutectic compounds
form, a Monte Carlo algorithm was run for 200 ps. This algorithm switched the position of
atoms to minimize the system’s potential energy while the system evolved at 773 K (500 ◦C)
under the NPT ensemble [28]. This method has already proven successful in predicting ther-
modynamically stable phases at desired temperatures for other materials [29]. Subsequently,
the systems were cooled down to 300 K in 100 ps and were reproduced in the [001] direction to
2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, and 25 times the original length of the system to incorporate the
effect of system size on the thermal conductivity. The acquired systems were again relaxed via
NVT and NPT ensembles before measuring the thermal conductivity. Notably, all MD simula-
tions were performed utilizing the large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS, 23 June 2022 version) [30].

A reverse NEMD method proposed by Müller-Plathe and implemented in LAMMPS
[20, 31] was utilized to calculate the thermal conductivity of the systems. In this method,
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the systems were equilibrated in a microcanonical (NVE) ensemble for 100–250 ps and were
divided into ten bins in the z direction. Every 50 fs, the kinetic energy of the five atoms with the
lowest kinetic energy at the center bin was swapped with the five atoms possessing the highest
kinetic energy in the bin at the end of the system. To increase the accuracy of the temperature
sampling, overlapping bins half the size of previous bins were utilized. After the equilibra-
tion, the temperature gradient and the energy accumulation were measured for 100 ps, then
converted to thermal conductivity.

Previous studies have shown a significant size effect on the predicted κl, which is due to
the sample length being smaller than the bulk mean free path of phonons. More specifically, if
a phonon is emitted from the hot reservoir of the sample (here the central bin) and the length
it travels is smaller than its mean free path, it would pass through without scattering, which is
also referred to as ballistic transportation. However, as the sample size is increased, the chance
of phonon scattering will increase, thus transforming the ballistic to diffusive transport. This
transformation is essential as the phonons of ballistic transport contribute less to the κl, which
leads to an underestimation as compared to the bulk material (κl, bulk) [32, 33]. The primary
constraint in simulating the full mean free path of phonons is their large size, which demands
extensive MD simulations. To solve this issue, Sellan et al [32] proposed an analytical solution
establishing a relationship between the κl and the sample length L:

κl (L) =
∑
ν

∑
K

cphυ
2
g,z (K,ν)τ∞ (K,ν)×

[
1+

2 |υg,v (K,ν)|τ∞ (K,ν)

L

]−1

(2)

where cph is the volumetric specific heat of each mode, K is the wave vector, ν is the disper-
sion branch, and υg (K,ν) is the group velocity vector and τ is the relaxation time. It is pos-
sible to describe the above relationship via 1

κl
= χ × 1

L in which χ is the unknown function

describing the relationship. Therefore, it can be argued that as 1
L → 0, L → ∞ and κl → κ∞,

which is the bulk value κl, bulk. Thus, using a Taylor-series expansion, this relationship can be
approximated:

1
κ∞

= χ (0) = χ

(
1
L

)
+

χ ′ ( 1
L

)
1!

[
−1
L

]
+

χ ′ ′ ( 1
L

)
2!

[
−1
L

]2
+ . . . . (3)

Based on this approach, a method has been proposed to predict κl via truncating the terms
after the first order, i.e. using a linear extrapolation to predict bulk thermal conductivity. A
noticeable number of works have already used this method to simulate the κl [19, 34–38].
However, several studies pointed out possible issues with this method. One problem is that, as
this method truncates some of the parameters of the relationship, it loses accuracy if the rela-
tionship between the κl and the sample length deviates from linearity [32, 39]. In addition, if
the κl values collected for the linear extrapolation do not represent a sufficient length, it might
misrepresent a non-linear behavior as linear. To solve this issue, ML methods were implemen-
ted in the current study as a replacement for linear extrapolation. Specifically, support vector
machine with radial basis function (SVM-RBF) kernel, SVM with polynomial (SVM-POLY)
kernel, and the random forest (RF) algorithm were trained utilizing the data acquired from the
MD simulations. Subsequently, the accuracy of the models was evaluated via a test dataset3

using the root mean squared error (RMSE). To increase the prediction power of the mod-
els, their hyperparameters were optimized utilizing the grid search method and bootstrapping.

3 The datasets utilized in this study are provided in supplementary material table S1.
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Figure 1. Positions of samples machined from the cast ingot for thermal conductivity
(TD) and scanning electron microscopy (SEM) with an example of a machined sample
shown in the photo on the right-hand side.

Table 1. Chemical compositions of cast samples and their measured densities.

Sample name Al (at.%) Cu (at.%) Density (g cm−3) at 25 ◦C

Al5Cu 95 5 2.91
Al10Cu 90 10 3.15
Al15Cu 85 15 3.38
Al20Cu 80 20 3.65
Al25Cu 75 25 3.89
Al30Cu 70 30 4.16

Finally, the best model was chosen to predict κbulk for each composition. All the ML methods
were implemented in Python programming language using sci-kit learn libraries [40].

2.2. Experimental methods

In order tomeasure the thermal diffusivity of the eutectic Al–Cu samples, pellets of high-purity
aluminum (Hydro Aluminium High Purity GmbH, Grevenbroich, Germany) with a purity of
>99.87% and copper pieces of 99.65% purity (Hans-Erich Gemmel & Co. GmbH, Berlin,
Germany) were weighted via a laboratory scale for each composition as shown in table 1.
A vacuum induction melting device (MC50, Indutherm GmbH, Walzbachtal, Germany) was
utilized to melt and mix the elements via inductive stirring for 5 min before casting them
into a cylindrical cavity of a steel die. To increase the homogeneity of the ingots in terms
of chemical composition and grain size of the samples, the ingots were homogenized inside
a furnace at 500 ◦C for 48 h in air atmosphere. To incorporate the effect of gravity on the
composition of the ingots, four cylindrical samples were sectioned from the top, middle, and
bottom parts of the ingots as shown in figure 1. Subsequently, these samples were machined
down to 10 mm diameter and 3 mm thickness. Their average densities were measured at room
temperature (table 1) using the Archimedes principle via a density measurement scale (2200,
MK Industrievertretungen, Germany).

To measure the thermal diffusivity of each composition, the sample surfaces were ground
employing a 200-grit emery paper to remove the oxide layers, cleaned via ethanol, and spray-
coatedwith a thin layer of graphite. This black graphite layer was applied to increase the energy
absorption by the samples ensuring a homogeneous distribution of the energy in the samples.
Subsequently, the xenon flash pulsemethodwas used (Netzsch, LFA447NanoFlash), where an
instantaneous pulse of energy is radiated to the sample, causing a temperature gradient detected
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via an infrared camera tomeasure the thermal diffusivity [41, 42]. The thermal diffusivity value
can be converted to thermal conductivity utilizing equation (4):

K= α×Cp × ρ (4)

where α is the thermal diffusivity, Cp is the specific heat and ρ is the density. For each sample,
five shots of the xenon flash were used to calibrate the device at room temperature, and then
three shots were applied at higher temperatures of 50 ◦C, 100 ◦C, and 150 ◦C. The aver-
age diffusivities of these measurements are reported for each composition. For measuring the
electrical conductivity of the samples, their surfaces were cleaned with ethanol and ten meas-
urements were carried out on each sample by a portable eddy current device (SIGMATEST
2.069, Institut Dr Foerster GmbH & Co, Germany) at room temperature.

To investigate the chemical composition and surface morphology of the samples, following
metallographic preparation of the samples, scanning electron microscopy (SEM, Zeiss Supra
55 VP) and energy dispersive x-ray (EDX) analysis (Bruker AXS GmbH, Karlsruhe, Ger-
many) were carried out. For detecting grain boundaries and evaluating the grain size, electron
backscatter diffraction (EBSD, Zeiss Auriga with Oxford detector) was utilized.

3. Results and discussion

Figure 2(a) presents results of the NEMD simulations of the κl for eutectic compositions of
the Al–Cu compounds with various sample lengths. Accordingly, the κl of the compounds
decreases notably with increasing Cu content, with a more pronounced change from 5 to
15 at.%. However, for the samples with a Cu content higher than 15 at.%, the decrease in
κl is not substantial. When the change of the simulated 1/κl with 1/L is compared for the
six Al–Cu compounds (figure 2(b)), two regions with different slopes are prominent: one for
the shorter and one for the longer samples. Implementing the conventional linear extrapola-
tion method to predict the κl, bulk would result in an inaccurate prediction due to high fitting
error, and thus a different approach should be taken. However before performing any fitting
or prediction, it was necessary to ensure that the change in the slope was not an artifact of the
simulations.

There are three possible reasons for the observed changes induced by varying the Cu content
of the compounds (figure 2), and the first one might be associated with the divergent term of
the κl as proposed by Hu et al [39]. In particular, for one-dimensional samples with small sizes,
the divergent term of the κl is negligible. However, as the length of the samples increase, κl

approaches infinite thermal conductivity, such that the intercept of the extrapolation on the 1/κl

would be negative. In contrast to one-dimensional samples, for nanowires, the long wavelength
phonons result in higher scattering that prevents divergence in infinite length limit. Therefore,
the values of κl converge to finite values [39], which is the case for all the present compositions.
Thus, the change in the slope cannot be due to the divergent term of the κl.

The second possible reason could be the dependence of κl on temperature along the sample
length, which was proposed by Talaat et al [38]. Specifically, in NEMD methods, materials
with κl highly dependent on temperature, would possess different κl values along the length
of a sample. This difference would increase as the length of the sample increases, resulting
in a non-linear temperature gradient along the sample length. This non-linearity would cause
longer samples to have higher κl as a simulation artifact [38]. However, in the present samples,
the magnitude of the temperature gradient was linear even for the longest Al30Cu samples
(figure 3), which corresponds to the composition with the highest change in the slope of the

7



Modelling Simul. Mater. Sci. Eng. 31 (2023) 045001 A Nazarahari et al

Figure 2. (a) κl values acquired from the NEMD simulations for different sample
lengths, and (b) 1/κl values vs inversed length of the samples, highlighting the devi-
ation from linear behavior.

simulated 1/κl with the 1/L curve (figure 2(b)). Thus, the effect of temperature dependence
of κl can be ruled out as a potential reason for the observed changes in the current study.

The third possible reason is the incorporation of the contribution of phonons with a long
mean free path to the κl value of the samples, which has been previously suggested as a reason
for the increase in the κl values of the longer samples [19, 32, 37, 39]. As a result, one can
deduce that the difference in the slope was not an artifact of simulation and the values of κl

calculated via the NEMD method can be used for accurate prediction of the bulk κl in the
Al–Cu eutectic system.

To extrapolate the simulated κl and predict the κl, bulk, three different ML methods, namely
the SVM-RBF, SVM-POLY, and RF, were implemented on the dataset constructed with the
MD simulation results. This dataset included the Cu at.% and 1/L as the input features, and the
1/κl as the output. In the first step, a grid search method was used to find the optimal hyper-
parameters for each of these methods4. In order to compare the performances of the models,
a bootstrapping approach was used. This approach was utilized to establish the effect of the

4 The optimal hyperparameters are provided in supplementary material table S2.
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Figure 3. Temperature distribution within the longest Al30Cu sample; the magnitude of
the measured thermal gradient exhibits linear behavior along the length of the sample.

Figure 4. Comparison of the performance of three different ML methods employed,
namely the SVM-RBF, SVM-POLY, and RF, based on bootstrap analysis.

training dataset on the performance of the models. Thus, the accuracy of the models can be
assessed over different portions of the dataset, minimizing the bias caused by data sampling
[43]. The three models were bootstrapped 100 times, and their RMSEs5 were determined util-
izing different test datasets. As a result, the SVM-RBF exhibited the lowest average RMSE of
0.056 with the least standard deviation of 0.018 (figure 4), and therefore, it was chosen for the
prediction of κl.

Subsequently, the data were randomly separated into training and test datasets with a 20%–
80% ratio to assess the ability of the SVM-RBFmodel to predict the unseen data. After training
the model with the training dataset, both training and test datasets were predicted (cf. figure 5),
and the SVM-RBF model could predict the unseen data of the test dataset with high accuracy,
such that the RMSE was only 0.0121. This, indeed, demonstrates the ability of the SVM-
RBF model to extrapolate and interpolate the values of 1/κl. Therefore, the SVM-RBF model
was run on a synthetic dataset that incorporated 1/L values of 0 (for bulk samples) to 0.01
(10 Å), where 1/κl was predicted for different compositions. The results presented in figure 6
demonstrate that the model could capture the behavior of the 1/κl for both interpolation and
extrapolation, which permits the use of the model to predict the κl, bulk from the intercept of

5 Please refer to the supplementary material equation S1 for the mathematical definition of the RMSE.
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Figure 5. The performance diagram of the SVM-RBF model and the R2 score values
demonstrate the model’s good fit and its predictive capability.

the predicted 1/κl with the y-axis. The values of the intercepts and their inverted values, i.e.
κl,bulk, are tabulated in table 2 for each composition. The results presented herein are in good
agreement with the values suggested by [10]. However, the present results also indicate the
effect of Cu content on the κl, which follows the expected behavior of substitutional elements
on the thermal conductivity [44, 45].

The actual chemical composition of the samples taken from the middle part of each ingot
was measured utilizing EDX, and the measured values that are presented in table 3 are close
to the intended compositions. Subsequently, the microstructures of the samples were investig-
ated further utilizing backscattered electron microscopy (figure 7), revealing the change in the
microstructure of samples with the increase in the Cu content. To be more specific, figure 7
shows that the point EDXmeasurements from the dark regions correspond to a composition of
98.5 at.% Al–1.5 at.% Cu, which is attributed to α-aluminum, while the bright areas represent
a chemical composition of about 66.5 at.% Al–33.5 at.% Cu, which is attributed to the θ phase
(Al2Cu). Therefore, the Al30Cu sample contains mostly the θ phase, in addition to a small
volume of α-Al, while the other compositions exhibit a rather mixed microstructure contain-
ing both α-Al and θ phases of different ratios. As a result of the difference in the amount of θ
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Figure 6. (a) The results of inverse κl predicted by the SVM-RBF model for Al–Cu
samples with different inversed lengths, and (b) the corresponding actual κl values for
different length of the samples.

Table 2. The values of the predicted y-axis intercepts for Al–Cu samples and the
corresponding κl, bulk.

Sample Intercept (1/κl) κl,bulk(W (m·K)−1)

Al5Cu 0.177 5.640
Al10Cu 0.249 4.016
Al15Cu 0.289 3.457
Al20Cu 0.312 3.205
Al25Cu 0.329 3.037
Al30Cu 0.349 2.866

phase, it is expected that the Al30Cu sample would have low thermal and electrical conduct-
ivity due to the fact that the θ phase has a higher amount of substitutional defects, promoting
different scattering of phonons and electrons.

In addition to the chemical composition, grain boundaries also have a substantial effect on
the thermal conductivity of materials [46]. Therefore, before cutting the cast ingots, they were
heat treated in the furnace for 48 h at 500 ◦C for recrystallization and grain growth. To ensure
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Table 3. Chemical compositions of the heat treated Al–Cu samples as measured by
EDX.

Sample Al (at.%) Absolute error (%) Cu (at.%) Absolute error (%)

Al5Cu 95.77 2.5 4.23 0.3
Al10Cu 91.59 2.4 8.32 0.5
Al15Cu 86.71 2.3 13.07 0.7
Al20Cu 81.09 2.2 18.55 0.9
Al25Cu 75.50 2.0 23.98 1.1
Al30Cu 69.08 2.3 30.39 1.6

Figure 7. The microstructure of the Al–Cu samples following a heat treatment for 48 h
at 500 ◦C.

the success of minimizing the grain boundaries, EBSD analysis was conducted on the samples
prepared for SEM. Analyzing the EBSD images with the ImageJ software, it was deduced that
each grain had an average area of 1 mm2. Exemplary EBSD images of the surfaces of Al25Cu
and Al30Cu are presented in figures 8 (a) and (b)6. The apparent grain sizes of the samples are
larger than the ASTM G number of 0 [47], and thus, the grain boundaries are few enough to
have a minimal effect on thermal conductivity.

The results of thermal diffusivity (α)measurements conducted with the xenon flash method
at 25 ◦C and 100 ◦C are summarized in figure 9. The error bars shown in the figure include both
the sampling position effect and α for several xenon shots, implying that varying the sample
position causes statistically insignificant differences in thermal diffusivity.

A sharp decrease in α is noted when the Cu content increases from 0 at.% (i.e. pure Al) to
5 at.% (Al–5Cu), which is attributed to the introduction of both phonon and electron scattering

6 EBSD images of other samples are provided in supplementary material figure S1 for the sake of brevity.

12



Modelling Simul. Mater. Sci. Eng. 31 (2023) 045001 A Nazarahari et al

Figure 8. EBSD images of (a) Al25Cu and (b) Al30Cu samples following heat treatment
at 500 ◦C for 48 h, demonstrating the presence of large grains in both compounds.

Figure 9. Thermal diffusivity of Al–Cu samples and pure aluminum (0 at.% Cu, used
as reference material) at (a) 25 ◦C and (b) 100 ◦C.
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Figure 10. Electrical conductivity of post-heat treatment Al–Cu samples measured
using the eddy current method; the error bars are hardly visible due to the negligible
error of the measurements.

of Cu atoms as substitutional defects [48, 49]. For the remaining samples, α decreases almost
linearly concomitant with increasing the Cu content. In addition, there is a minor temperature
effect on α (roughly a 1% increase from 25 ◦C to 100 ◦C); however, such an increase can be
ignored within the temperature range intended for cooling devices: although not shown herein
for the sake of brevity, similar measurements at 50 ◦C and 150 ◦C support this argument.
Using the experimentally determined thermal diffusivity values (calibrated by pure aluminum
thermal diffusivity), the ρ from table 1, and the extrapolation of specific heat data acquired
from the literature [50, 51], the experimental values of κ were calculated, and are presented in
figure 11.

In order to evaluate the accuracy of theWFL equation for Al–Cu eutectics, it is necessary to
measure the electrical conductivity of samples using a method that is not affected by contact
resistance. Therefore, the σ of the samples were measured by the eddy current method and
the results are presented in figure 10. Accordingly, the Cu addition significantly decreased
the σ of the samples, reducing the σ to roughly half in the inspected range. Therefore, it is
concluded that the increase in the θ phase, which results from increased Cu content as shown
in figure 7, significantly decreases the σ. In addition, unlike the effect of increased Cu content
on α, the values of σ do not decrease linearly, exhibiting a higher rate of decrease as the Cu
content increases. Thus, the formation of the θ phase has a more pronounced effect on the σ as
compared toα. This can be interpreted as κe being more affected by the θ phase formation than
the overall κ. To calculate the κe, the σ values shown in figure 10 and the Lorenz value from
the literature [52] were used in the WFL equation and the results are presented in figure 11.

A comparison of the κl calculated with MD simulations, the κe calculated using the WFL
and the κ acquired via the xenon flash method (figure 11) revealed that the addition of κl to
the κe enhances the accuracy of the WFL method with errors less than 10% for all composi-
tions. If a measurement of the thermal conductivity via experimental methods is not possible,
calculation of κl via MD simulations and calculation of κe via WFL equation can be a use-
ful replacement. In addition, although the contribution of κe is the dominating factor of κ in
Al–Cu system, in other systems with lower electronic and higher lattice contributions, κl cal-
culated via MD simulations is indispensable for accurate prediction. The acquired results are
also helpful in optimizing the parameters of the compound casting to enhance the overall κ of
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Figure 11. Comparison of the results acquired using the xenon flash method (κexp) and
those obtained by the MD simulations (κl) and upon conversion of electrical conduct-
ivity utilizing the WFL (κe).

a cooling device. For instance, a previous study by Fromm et al showed that the connection
made by compound casting under an XHV atmosphere mainly consists of a eutectic composi-
tion with about 17 at.% Cu and θ phase, followed by a small zone of Cu-rich intermetallics [8].
Based on both the experimental and the simulated results of this study, for an enhanced κ of an
Al–Cu connection, increasing the portion of the Al-rich eutectic region would be beneficial.
This is due to the fact that regions with compositions close to the θ phase (such as the Al30Cu
sample) have roughly 50% less κ than the Al-rich ones. However, since in compound casting
of Al–Cu, the connection relies on diffusion of elements, a short diffusion duration, resulting
in a lower amount of Cu content, would cause a connection with insufficient mechanical prop-
erties. Considering the outcome of this study that suggests the minimization of the θ phase,
and the fact that the elimination of the θ phase will deteriorate the mechanical properties of
the Al–Cu bonds, superior Al–Cu connections could be achieved through the optimization of
compound casting parameters to control the diffusion of Cu during the casting process.

4. Conclusions

In this study, the thermal conductivity (κ) of Al–Cu eutectic compositions was determined
utilizing a combined computational and experimental approach with the aim of enhancing the
overall κ of parts made with compound casting. In particular, using reverse NEMD, the lattice
thermal conductivity (κl) of six Al–Cu eutectic compounds with 5–30 at.% Cu was simulated
for various sample lengths. Subsequently, three ML models (SVM-RBF kernel, SVM-POLY
kernel, and RF), were developed to predict the bulk κl. The performances of these models
were compared using the bootstrap method, and the SVM-RBF kernel was found to have the
best predicting capabilities. Employing this model, the bulk κl was predicted for the samples,
with results showing that the addition of Cu has a significant effect on the κl of the Al–Cu
compounds. In addition, these results remained in good agreement with those of the previous
studies. To validate the computational approach and enhance the knowledge of the κ in Al–Cu
eutectics, the samples were produced by the induction melting method and heat-treated for
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48 h at 500 ◦C for recrystallization and growth. Three samples were machined from the heat-
treated ingots’ top, middle, and bottom parts to measure the thermal diffusivity for increased
accuracy and carry out microstructural characterization. The experimental results showed a
similar decrease in the κ due to an increased amount of Cu. In addition, it was demonstrated
that utilizing the MD simulations to calculate κl can enhance the estimations made by WFL,
presenting a new approach in cases where the measurement of κ via experimental methods is
not possible. Moreover, the present results suggest the importance of elemental diffusion on
κ, as the compounds with higher Cu content and θ phase can have less than 50% κ compared
to the Al-rich eutectics. Overall, in addition to providing a novel approach to determine κ,
the results of this study also warrant further investigation of the compound casting parameters
influencing the diffusion in the Al–Cu connections.

Data availability statement

The data cannot be made publicly available upon publication because they are not available in
a format that is sufficiently accessible or reusable by other researchers. The data that support
the findings of this study are available upon reasonable request from the authors.

Acknowledgments

This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)—Project-ID 394563137—SFB 1368. D Canadinc acknowledges the financial
support provided by the Alexander von Humboldt Foundation within the Humboldt Research
Award program.

ORCID iDs

A Nazarahari https://orcid.org/0000-0002-8430-6941
A C Fromm https://orcid.org/0009-0008-7209-4436
H C Ozdemir https://orcid.org/0000-0001-6763-5770
H J Maier https://orcid.org/0000-0003-2119-824X
D Canadinc https://orcid.org/0000-0001-9961-7702

References

[1] Razeeb K M, Dalton E, Cross G L W and Robinson A J 2018 Present and future thermal interface
materials for electronic devices Int. Mater. Rev. 63 1–21

[2] Guan F, Jiang WM, Li G Y, Jiang H X, Zhu J W and Fan Z T 2019 Interfacial bonding mechanism
and pouring temperature effect on Al/Cu bimetal prepared by a novel compound casting process
Mater. Res. Express 6 096529

[3] Zhang Y, Ma J, Wei N, Yang J and Pei Q-X 2021 Recent progress in the development of thermal
interface materials: a review Phys. Chem. Chem. Phys. 23 753–76

[4] Chung D D L 2022 Performance of thermal interface materials Small 18 2200693
[5] Razeeb K M, Dalton E, Cross G L W and Robinson A J 2017 Present and future thermal interface

materials for electronic devices Int. Mater. Rev. 63 1–21
[6] Nolte N, Lukasczyk T and Mayer B 2022 Investigation of the microstructure and properties

of aluminum–copper compounds fabricated by the high-pressure die casting process Metals
12 1314

16

https://orcid.org/0000-0002-8430-6941
https://orcid.org/0000-0002-8430-6941
https://orcid.org/0009-0008-7209-4436
https://orcid.org/0009-0008-7209-4436
https://orcid.org/0000-0001-6763-5770
https://orcid.org/0000-0001-6763-5770
https://orcid.org/0000-0003-2119-824X
https://orcid.org/0000-0003-2119-824X
https://orcid.org/0000-0001-9961-7702
https://orcid.org/0000-0001-9961-7702
https://doi.org/10.1080/09506608.2017.1296605
https://doi.org/10.1080/09506608.2017.1296605
https://doi.org/10.1088/2053-1591/ab2d8f
https://doi.org/10.1088/2053-1591/ab2d8f
https://doi.org/10.1039/d0cp05514j
https://doi.org/10.1039/d0cp05514j
https://doi.org/10.1002/smll.202200693
https://doi.org/10.1002/smll.202200693
https://doi.org/10.1080/09506608.2017.1296605
https://doi.org/10.1080/09506608.2017.1296605
https://doi.org/10.3390/met12081314
https://doi.org/10.3390/met12081314


Modelling Simul. Mater. Sci. Eng. 31 (2023) 045001 A Nazarahari et al

[7] Holländer U, Wulff D, Langohr A, Möhwald K and Maier H J 2020 Brazing in SiH4-doped inert
gases: a new approach to an environment friendly production process Int. J. Precis. Eng. Manuf.
7 1059–71

[8] Fromm A C, Barienti K, Selmanovic A, Thurer S E, Nurnberger F, Maier H J and Klose C
2022 Oxygen-free compound casting of aluminum and copper in a silane-doped inert gas
atmosphere: a new approach to increase thermal conductivity Inter. Metalcast. (https://doi.org/
10.1007/s40962-022-00910-w)

[9] Raumel S, Barienti K, Luu H T, Merkert N, Dencker F, Nurnberger F, Maier H J and Wurz M C
2023 Characterization of the tribologically relevant cover layers formed on copper in oxygen
and oxygen-free conditions Friction 1–17

[10] Ho CY, AckermanMW,WuKY, Oh SG and Havill T N 1978 Thermal conductivity of ten selected
binary alloy systems J. Phys. Chem. Ref. Data 7 959–1178

[11] Yao Y, Fry J, Fine M E and Keer L M 2013 The Wiedemann–Franz–Lorenz relation for lead-free
solder and intermetallic materials Acta Mater. 61 1525–36

[12] Macia E 2009 Thermal conductivity in complex metallic alloys: beyond Wiedemann-Franz law
Phys. Rev. B 79 245112

[13] Zheng X, Cahill D, Krasnochtchekov P, Averback R and Zhao J 2007 High-throughput thermal
conductivity measurements of nickel solid solutions and the applicability of the Wiedemann–
Franz law Acta Mater. 55 5177–85

[14] Stojanovic N, Maithripala D H S, Berg J M and Holtz M 2010 Thermal conductivity in metallic
nanostructures at high temperature: electrons, phonons, and the Wiedemann-Franz law Phys.
Rev. B 82 075418

[15] Maznev A A and Wright O B 2014 Demystifying umklapp vs normal scattering in lattice thermal
conductivity Am. J. Phys. 82 1062–6

[16] Kagaya H-M, Serita E-I, Sato M and Soma T 1996 Lattice dynamics and Debye temperature of
Al-Cu, Al-Si and Al-Ge alloy systems Solid State Commun. 100 727–30

[17] Turney J E, Landry E S, McGaughey A J H and Amon C H 2009 Predicting phonon properties and
thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics
simulations Phys. Rev. B 79 064301

[18] Dongre B, Wang T and Madsen G K H 2017 Comparison of the Green–Kubo and homogeneous
non-equilibrium molecular dynamics methods for calculating thermal conductivity Modelling
Simul. Mater. Sci. Eng. 25 054001

[19] Severin J and Jund P 2017 Thermal conductivity calculation in anisotropic crystals by molecular
dynamics: application to alpha-Fe2O3 J. Chem. Phys. 146 054505

[20] Müller-Plathe F 1997 A simple nonequilibrium molecular dynamics method for calculating the
thermal conductivity J. Chem. Phys. 106 6082–5

[21] Xu K, Fan Z, Zhang J, Wei N and Ala-Nissila T 2018 Thermal transport properties of single-layer
black phosphorus from extensive molecular dynamics simulationsModelling Simul. Mater. Sci.
Eng. 26 085001

[22] Ouyang Y, Yu C, He J, Jiang P, Ren W and Chen J 2022 Accurate description of high-order
phonon anharmonicity and lattice thermal conductivity from molecular dynamics simulations
with machine learning potential Phys. Rev. B 105 115202

[23] Ouyang Y, Yu C, Yan G and Chen J 2021 Machine learning approach for the prediction and optim-
ization of thermal transport properties Front. Phys. 16 43200

[24] Jin S, Zhang Z, Guo Y, Chen J, Nomura M and Volz S 2022 Optimization of interfacial thermal
transport in Si/Ge heterostructure driven by machine learning Int. J. Heat Mass Transfer
182 122014

[25] Hirel P 2015 Atomsk: a tool for manipulating and converting atomic data files Comput. Phys. Com-
mun. 197 212–9

[26] Mahata A, Mukhopadhyay T and Asle Zaeem M 2022 Modified embedded-atom method
interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: from room temperature to melt-
ing point Comput. Mater. Sci. 201 110902

[27] Abs Da Cruz C, Termentzidis K, Chantrenne P and Kleber X 2011Molecular dynamics simulations
for the prediction of thermal conductivity of bulk silicon and silicon nanowires: influence of
interatomic potentials and boundary conditions J. Appl. Phys. 110 034309

[28] Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E and Zepeda-Ruiz L 2012 Scalable par-
allel Monte Carlo algorithm for atomistic simulations of precipitation in alloys Phys. Rev. B
85 184203

17

https://doi.org/10.1007/s40684-019-00109-1
https://doi.org/10.1007/s40684-019-00109-1
https://doi.org/10.1007/s40962-022-00910-w
https://doi.org/10.1007/s40962-022-00910-w
https://doi.org/10.1007/s40544-022-0695-5
https://doi.org/10.1063/1.555583
https://doi.org/10.1063/1.555583
https://doi.org/10.1016/j.actamat.2012.11.030
https://doi.org/10.1016/j.actamat.2012.11.030
https://doi.org/10.1103/PhysRevB.79.245112
https://doi.org/10.1103/PhysRevB.79.245112
https://doi.org/10.1016/j.actamat.2007.05.037
https://doi.org/10.1016/j.actamat.2007.05.037
https://doi.org/10.1103/PhysRevB.82.075418
https://doi.org/10.1103/PhysRevB.82.075418
https://doi.org/10.1119/1.4892612
https://doi.org/10.1119/1.4892612
https://doi.org/10.1016/0038-1098(96)00388-2
https://doi.org/10.1016/0038-1098(96)00388-2
https://doi.org/10.1103/PhysRevB.79.064301
https://doi.org/10.1103/PhysRevB.79.064301
https://doi.org/10.1088/1361-651x/aa6f57
https://doi.org/10.1088/1361-651x/aa6f57
https://doi.org/10.1063/1.4974933
https://doi.org/10.1063/1.4974933
https://doi.org/10.1063/1.473271
https://doi.org/10.1063/1.473271
https://doi.org/10.1088/1361-651x/aae180
https://doi.org/10.1088/1361-651x/aae180
https://doi.org/10.1103/physrevb.105.115202
https://doi.org/10.1103/physrevb.105.115202
https://doi.org/10.1007/s11467-020-1041-x
https://doi.org/10.1007/s11467-020-1041-x
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122014
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122014
https://doi.org/10.1016/j.cpc.2015.07.012
https://doi.org/10.1016/j.cpc.2015.07.012
https://doi.org/10.1016/j.commatsci.2021.110902
https://doi.org/10.1016/j.commatsci.2021.110902
https://doi.org/10.1063/1.3615826
https://doi.org/10.1063/1.3615826
https://doi.org/10.1103/PhysRevB.85.184203
https://doi.org/10.1103/PhysRevB.85.184203


Modelling Simul. Mater. Sci. Eng. 31 (2023) 045001 A Nazarahari et al

[29] Huang X S, Liu L H, Duan X B, Liao W B, Huang J J, Sun H B and Yu C Y 2021 Atomistic
simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-
developed interatomic potential Mater. Des. 202 109560

[30] Thompson A P et al 2022 LAMMPS—a flexible simulation tool for particle-based materials mod-
eling at the atomic, meso, and continuum scales Comput. Phys. Commun. 271 108171

[31] Zhang M, Lussetti E, de Souza L E and Muller-Plathe F 2005 Thermal conductivities of molecular
liquids by reverse nonequilibrium molecular dynamics J. Phys. Chem. B 109 15060–7

[32] SellanD P, Landry E S, Turney J E,McGaugheyA JH andAmonCH2010 Size effects inmolecular
dynamics thermal conductivity predictions Phys. Rev. B 81 214305

[33] Bao H, Chen J, Gu X and Cao B 2018 A review of simulation methods in micro/nanoscale heat
conduction ES Energy Environ. 1 16–55

[34] Lee Y, Lee S and Hwang G S 2011 Effects of vacancy defects on thermal conductivity in crystalline
silicon: a nonequilibrium molecular dynamics study Phys. Rev. B 83 125202

[35] Li K, Cheng Y, Wang H, Guo Y, Zhang Z, Bescond M, Nomura M, Volz S, Zhang X and Xiong S
2022 Phonon resonant effect in silicon membranes with different crystallographic orientations
Int. J. Heat Mass Transfer 183 122144

[36] ZhouM, Liang T,Wu B, Liu J and Zhang P 2020 Phonon transport in antisite-substituted hexagonal
boron nitride nanosheets: a molecular dynamics study J. Appl. Phys. 128 234304

[37] Krishnamoorthy A, Rajak P, Norouzzadeh P, Singh D J, Kalia R K, Nakano A and Vashishta P
2019 Thermal conductivity of MoS2 monolayers frommolecular dynamics simulations AIP Adv.
9 035042

[38] Talaat K, El-GenkMS andCowenB 2020 Extrapolation of thermal conductivity in non-equilibrium
molecular dynamics simulations to bulk scale Int. Commun. Heat Mass Transfer 118 104880

[39] Hu L, EvansW J and Keblinski P 2011 One-dimensional phonon effects in direct molecular dynam-
ics method for thermal conductivity determination J. Appl. Phys. 110 113511

[40] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R and Dubourg V 2011 Scikit-learn: machine learning in Python J. Mach. Learn. Res.
12 2825–30

[41] Parker W J, Jenkins R J, Butler C P and Abbott G L 2004 Flash method of determining thermal
diffusivity, heat capacity, and thermal conductivity J. Appl. Phys. 32 1679

[42] Cowan R D 2004 Pulse method of measuring thermal diffusivity at high temperatures J. Appl. Phys.
34 926

[43] Kulesa A, Krzywinski M, Blainey P and Altman N 2015 Sampling distributions and the bootstrap
Nat. Methods 12 477–8

[44] Zhao M, Pan W, Wan C, Qu Z, Li Z and Yang J 2017 Defect engineering in development of low
thermal conductivity materials: a review J. Eur. Ceram. Soc. 37 1–13

[45] Shen J, Zhang X, Chen Z, Lin S, Li J, Li W, Li S, Chen Y and Pei Y 2017 Substitutional defects
enhancing thermoelectric CuGaTe2 J. Mater. Chem. A 5 5314–20

[46] Sood A et al 2018 Direct visualization of thermal conductivity suppression due to enhanced phonon
scattering near individual grain boundaries Nano Lett. 18 3466–72

[47] International A 2015 ASTM E112-13 Standard Test Methods for Determining Average Grain Size
(West Conshohocken, PA: ASTM International) pp 19428–2959

[48] Edwards S F 1958 A new method for the evaluation of electric conductivity in metals Philos. Mag.
Lett. 3 1020–31

[49] Callaway J and von Baeyer H C 1960 Effect of point imperfections on lattice thermal conductivity
Phys. Rev. 120 1149–54

[50] Song Z-X, Li Y-D, Liu W-J, Yang H-K, Cao Y-J and Bi G-L 2021 Effect of La and Sc co-addition
on the mechanical properties and thermal conductivity of As-cast Al-4.8% Cu alloys Metals
11 1866

[51] Wei G, Huang P, Xu C, Liu D, Ju X, Du X, Xing L and Yang Y 2016 Thermophysical property
measurements and thermal energy storage capacity analysis of aluminum alloys Sol. Energy
137 66–72

[52] Hust J G and Sparks L L 1973 Lorenz Ratios of Technically Important Metals and Alloys (Technical
Note 634) (National Bureau of Standards)

18

https://doi.org/10.1016/j.matdes.2021.109560
https://doi.org/10.1016/j.matdes.2021.109560
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1021/jp0512255
https://doi.org/10.1021/jp0512255
https://doi.org/10.1103/PhysRevB.81.214305
https://doi.org/10.1103/PhysRevB.81.214305
https://doi.org/10.30919/esee8c149
https://doi.org/10.30919/esee8c149
https://doi.org/10.1103/PhysRevB.83.125202
https://doi.org/10.1103/PhysRevB.83.125202
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122144
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122144
https://doi.org/10.1063/5.0025402
https://doi.org/10.1063/5.0025402
https://doi.org/10.1063/1.5085336
https://doi.org/10.1063/1.5085336
https://doi.org/10.1016/j.icheatmasstransfer.2020.104880
https://doi.org/10.1016/j.icheatmasstransfer.2020.104880
https://doi.org/10.1063/1.3660234
https://doi.org/10.1063/1.3660234
https://doi.org/10.1063/1.1728417
https://doi.org/10.1063/1.1728417
https://doi.org/10.1063/1.1729564
https://doi.org/10.1063/1.1729564
https://doi.org/10.1038/nmeth.3414
https://doi.org/10.1038/nmeth.3414
https://doi.org/10.1016/j.jeurceramsoc.2016.07.036
https://doi.org/10.1016/j.jeurceramsoc.2016.07.036
https://doi.org/10.1039/c6ta10770b
https://doi.org/10.1039/c6ta10770b
https://doi.org/10.1021/acs.nanolett.8b00534
https://doi.org/10.1021/acs.nanolett.8b00534
https://doi.org/10.1080/14786435808243244
https://doi.org/10.1080/14786435808243244
https://doi.org/10.1103/PhysRev.120.1149
https://doi.org/10.1103/PhysRev.120.1149
https://doi.org/10.3390/met11111866
https://doi.org/10.3390/met11111866
https://doi.org/10.1016/j.solener.2016.07.054
https://doi.org/10.1016/j.solener.2016.07.054

	Determination of thermal conductivity of eutectic Al–Cu compounds utilizing experiments, molecular dynamics simulations and machine learning
	1. Introduction
	2. Materials and methods
	2.1. Numerical techniques
	2.2. Experimental methods

	3. Results and discussion
	4. Conclusions
	References


