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Abstract. As a tradeoff between efficiency and costs modern
communication systems contain a variety of components that
can at least be considered weakly nonlinear. A critical el-
ement in evaluating the degree of nonlinearity of any un-
derlying nonlinear system is the amount of undesired signal
strength or signal power this system is introducing outside
the transmission bandwidth. This phenomenon called spec-
tral regrowth or spectral broadening is subject to stringent re-
strictions mainly imposed by the given specifications of the
particular communication standard. Consequently, achiev-
ing the highest possible efficiency without exceeding the lin-
earity requirements is one of the main tasks in system de-
sign. Starting from this challenging engineering problem
there grows a certain need for specialized tools that are ca-
pable of predicting linearity and efficiency of the underlying
design. Besides a multitude of methods aiming at the pre-
diction of spectral regrowth a statistical approach in model-
ing and analyzing nonlinear systems offers the advantage of
short processing times due to closed form mathematical ex-
pressions in terms of input and output power spectra and is
therefore further examined throughout this article.

1 Introduction

This article focuses on the derivation and analysis of a fre-
quency domain model capable of predicting and estimating
the degree of nonlinearity for a wide class of nonlinear sys-
tems by means of its self-induced nonlinear distortion. Be-
sides the variety of already well established approaches, like
the transient analysis or the harmonic balance analysis, the
model presented in this article bears the advantage of a direct
mathematical relation between input and output quantities in
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terms of closed form expressions. Therefore it is basically
applicable in system-level simulations.

Historically this modeling approach has grown by the need
for evaluating the spectral regrowth or spectral broadening
caused by power amplifiers in classical wireless RF (Ra-
dio Frequency) transmission (see Gard, 2003; Raich, 2004).
Driven at highest possible output power levels especially the
power amplifier reveals nonlinear transmission behaviour,
which is crucial regarding vicinal communication systems in
RF transmission. Due to the fact that initial results in this
area of research have been obtained by modeling classical
RF transmission modules, fundamental contributions mainly
deal with the modeling of nonlinear systems assuming a nar-
rowband excitation stimulus, i.e., narrowband signalling, fur-
thermore supposing the nonlinear system to be memoryless
or static (see Gard et al., 1999).

Starting from these results the intention of this article is
to adapt the present narrowband modeling approach and to
modify it in a way, so that it is applicable for wideband com-
munication systems as well. This effort not only requires
the pure extension of the existing mathematical approach but
also the consideration of a certain system dynamics, often
called system memory, that is immediately associated with
the given bandwidth the system is being probed with. The
article is structured as follows: In Sect.2 we introduce the
classical narrowband nonlinear system modeling approach,
also known as the bandpass approach, mainly based on the
work of Gard(2003) andRaich(2004). Assuming the non-
linear system to occupy static temporal behaviour, we de-
rive the systems time-domain output signal in terms of the
narrowband input stimulus. Exploiting given inherent sig-
nal statistics it is then possible to derive the systems output
autocorrelation function by means of the analytical expan-
sion of so-called statistical higher order moments (see Dav-
enport and Root, 1997). A subsequent Fourier transform fi-
nally yields the systems output PSD (Power spectral density)
in terms of the input PSD allowing for an accurate estimation
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Fig. 1. Quadrature modulator and bandpass nonlinearity.

of the systems nonlinearity.
In Sect.3 we modify the mathematical approach given in

Sect.2. Contrary to the classical narrowband assumption, we
presume a broadband input signal requiring the expansion of
additional higher order moments for the derivation of the au-
tocorrelation function. As before in Sect.2 the output PSD is
obtained by applying the Fourier transform to the output au-
tocorrelation. With regard to the input signal bandwidth we
furthermore present the so-called generalized Hammerstein
modeling approach, accounting for the temporal characteris-
tics of the underlying broadband nonlinear system.

In Sect. 4 the derived frequency-domain modeling ap-
proaches are verified by time-domain simulations. For this
purpose we compare mean distortion spectra computed ac-
cording to the derived mathematical expressions as well
as averaged distortion spectra taken from subsequent time-
domain iterations for subset static and dynamic nonlinear
systems.

Finally, in Sect.5 we resume the presented results and
draw essential conclusions.

2 Narrowband modeling of nonlinear systems

In this section we introduce the so-called bandpass model-
ing approach, mainly established by the work ofGard et
al. (1999), Gard et al.(2001) and Zhou and Raich(2004).
Fig. 1 therefore depicts a general digital transmission sys-
tem followed by a static nonlinearity and a bandpass filter,
whereas the combination of nonlinear system and bandpass
filter is called bandpass nonlinearity for the following con-
siderations.

At the output of the quadrature modulator the carrier signal
modulated in ampltitude and phase can be stated as

w(t) = A(t) cos(ωct + 2(t)) (1)

whereA(t) denotes the time varying amplitude,2(t) the
time varying phase angle andωc the carrier frequency of the
modulated signal in the bandpass domain. In terms of its
complex envelopẽz(t) we can rewrite Eq. (1)

w(t) =
1

2
z̃(t)ejωct +

1

2
z̃∗(t)e−jωct (2)

with the complex envelope expressed by its in-phase compo-
nentx(t) and quadratue componenty(t) according to

z̃(t) = A(t)ej2(t)
= x(t) + jy(t). (3)

The modulated carrier is applied to a nonlinear circuit with
nonlinear gain characteristic̃G[w(t)] which is assumed to be
a static nonlinearity containing no significant memory within
the bandwidth of modulation. Generally, a complex power
series is used to model the input output relations:

G̃[w(t)] = ã1w(t) + ã2w
2(t) + · · · + ãNwN (t) (4)

=

N∑
n=1

ãnw
n(t),

where the factors̃a1 to ãN represent the generally complex
coefficients taken from aN -th degree taylor series expan-
sion of a nonlinear input-output characteristic for instance.
Due to the subsequent bandpass zonal filtering depicted in
Fig. 1 only those nonlinear terms have to be considered, that
contribute to distortion components at the fundamental fre-
quency. Since even order nonlinear terms induce distortion
at baseband as well as at even multiples of the fundamental
frequencies, they do not have to be considered when apply-
ing the classical narrowband bandpass analysis. Thus Eq. (4)
turns into

G̃[w(t)] = ã1w(t) + ã3w
3(t) + · · · + ãNwN (t) (5)

=

(N−1)/2∑
n=0

ã2n+1w
2n+1(t),

whereN in this case denotes the highest odd-order power
contained in the polynomial description. In order to simplify
the analysis a binomial expansion is applied to compute the
m-th power ofw(t), yielding

wm(t) =
1

2m

m∑
k=0

(
m

k

)
z̃(t)k z̃∗(t)m−kejωc(2k−m)t . (6)

According to the bandpass filtering depicted in Fig.1, only
the terms centered at the carrier frequency have to be taken
into account. This implies 2k−m=±1 for oddm only. Sub-
stitutingk=(m+1)/2, the terms centered around the carrier
frequency are

wm
ωc

(t) =

{
1

22m−1

(
m

m+1
2

)
z̃(t)

m+1
2 z̃∗(t)

m−1
2

}
e±jωct . (7)

It is convenient to express Eq. (7) in terms of odd-order pow-
ersm=2n+1 with n=0 . . . (N−1)/2:

w2n+1
ωc

(t) =

{
1

22n

(
2n + 1

n + 1

)
z̃(t)n+1z̃∗(t)n

}
e±jωct . (8)

The time-domain signal at the output of the bandpass nonlin-
earity can now be written as

G̃ωc [w(t)] =

[
(N−1)/2∑

n=0

ã2n+1w
2n+1
ωc

(t)

]
e±jωct . (9)
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Furthermore, in terms of the input signals complex envelope
z̃(t) Eq. (9) can be stated as

G̃ωc [z̃(t)] =

(N−1)/2∑
n=0

ã2n+1

22n

(
2n + 1

n + 1

)
z̃(t)n+1z̃∗(t)n. (10)

The expression in Eq. (10) describes the complex envelope
of the first harmonic of a modulated carrier signal passed
through a bandpass nonlinear circuit described by a complex
power series. Originally this kind of description is based on a
certain type of characterization of nonlinear systems. Within
a so called AM-AM and AM-PM measurement campaign the
amplitude of an unmodulated carrier signal is swept and the
corresponding change in gain and phase at the output port of
the circuit are measured at the input frequency. The ampli-
tude gain response is known as the amplitude modulation to
amplitude modulation transfer characteristic (AM-AM) and
the amplitude phase response is the amplitude modulation to
phase modulation characteristic (AM-PM). The fact that this
way of modeling considers the determination of a complex
large signal input output response clarifies the need for in-
tegrating a bandpass filter in the formal model depicted in
Fig. 1.

In order to transfer the time-domain relation between input
and output quantities according to Eq. (10) into a frequency-
domain representation combining input and output PSDs, it
is initially necessary to compute the output autocorrelation
function in terms of the input autocorrelation. However,
the straightforward approach we are aiming at in this arti-
cle requires the assumption of certain signal statistics, that
are inherently occupied by the input signal, assuming cer-
tain transmission schemes. By means of the the central limit
theorem, which states that the sum of identically distributed,
zero mean, independent random processes tends towards a
zero mean Gaussian distribution (see Davenport and Root,
1987), it is possible to consider the input signal to be Gaus-
sian distributed in case of multitone transmission. Hence the
assumption of Gaussian statistics is quite common when fo-
cusing on multitone transmission schemes such as OFDM
(Othogonal Frequency Division Multiplex) or DMT (Dis-
crete Multitone Transmission) (see Zhou and Raich, 2004).

For further investigations the input signals complex enve-
lope is therefore assumed to be accurately modeled by a real
gaussian random processx(t). The bandpass stimulus can
then be expressed as

w(t) =
1

2
x(t)ejωct +

1

2
x(t)e−jωct . (11)

The modulated carrier is applied to the input of a nonlin-
ear system represented by the complex power series given by
Eq. (5), finally yielding the time-domain output signal

G̃ωc [z̃(t)] =

(N−1)/2∑
n=0

ã2n+1

22n

(
2n + 1

n + 1

)
x(t)2n+1. (12)

The output autocorrelation is then found by the expectation
of the output signal

R̃gg(τ ) = E[G̃ωc (z̃1)G̃
∗
ωc

(z̃2)], (13)

wherez̃1=z̃(t1) and z̃2=z̃(t2)=z̃(t1 − τ). After combining
Eq. (12) and Eq. (13) we obtain the expression given by
Eq. (14) for the output autocorrelation.The expectation in
Eq. (14) can only be evaluated if the moments of the random
variablex(t) are known.

R̃gg(τ ) =

N−1
2∑

n=0

N−1
2∑

m=0

ã2n+1ã
∗

2m+1

22(n+m)

(
2n + 1

n + 1

)
. . . (14)

. . . ×

(
2m + 1

m + 1

)
E[x2n+1

1 x2m+1
2 ].

In case of a zero mean real Gaussian process the moments
are given by

E[x1x2 . . . xs] =

{
0 s odd∑ ∏
E[xixj ] s even

(15)

whereas the summation given in Eq. (15) has to be performed
over all distinct pairs of subscriptsi andj of x.

For many cases it is sufficient to consider the nonlinear
terms of an underlying nonlinear system up to the order of
N=7, allowing for an accurate approximation of the non-
linear transmission behaviour. However, before the relevant
moments evaluated for a seventh-order power series expan-
sion are presented, we start by denoting the statistical as-
sumptions and having a closer look on the applied nomen-
clature. Assume the random variablesx1 andx2 (whereasx2
is a time shifted instance ofx1) to be Gaussian distributed
with zero mean, which implies

E[x1] = E[x2] = 0

E[x2
1] = E[x2

2] = σ 2
x1

= σ 2
x2

= Rxx(0) = Rx0.

(16)

The expectation of the product of these two random variables
is defined by the autocorrelation function

E[x1x2] = Rxx(τ ). (17)

Using these abbreviations Table1 lists the moments evalu-
ated for a seventh-order power series expansion, where only
the odd-order powers corresponding to the presented band-
pass approach are considered. If the Fourier transform is fi-
nally applied to the terms listed in Table1, we obtain the out-
put PSD in terms of its input PSD, remembering that the n-
fold potentiation of the autocorrelation function in the time-
domain turns out to be the n-fold convolution of the PSD in
the frequency-domain.

A verification of the derived relations in terms of simula-
tion results is given in Sect.4.
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Table 1. Odd order moments evaluated for a seventh order power
series expansion.

Subscr. Eq. (14) Expanded moment

n = 0; m = 0 Rxx(τ )

n = 0; m = 1 3Rx0Rxx(τ )

n = 1; m = 1 9R3
x0Rxx(τ ) + 6R3

xx(τ )

n = 0; m = 2 15R2
x0Rxx(τ )

n = 1; m = 2 45R3
x0Rxx(τ ) + 60Rx0R3

xx(τ )

n = 2; m = 2 225R4
x0Rxx(τ ) + 600R2

x0R3
xx(τ )+

120R5
xx(τ )

n = 0; m = 3 105R3
x0Rxx(τ )

n = 1; m = 3 315R4
x0Rxx(τ ) + 630Rx0R3

xx(τ )

n = 2; m = 3 1575R5
x0Rxx(τ ) + 6300R3

x0R3
xx(τ )+

2520Rx0R5
xx(τ )

n = 3; m = 3 11025R6
x0Rxx(τ ) + 66150R4

x0R3
xx(τ )+

52920R2
x0R5

xx(τ ) + 5040R7
xx(τ )

Fig. 2. Static Nonlinear system followed by an ideal low-pass filter.

3 The broadband extension

In case of a broadband input stimulus it is no longer suffi-
cient to consider only the odd-order terms of a given nonlin-
ear system, as indicated by Eq. (5). For considering even-
order terms of a power series nonlinearity as well as odd-
order terms, again, we have to pick up the term denoted by
Eq. (6). In contrast to the previous section we now only focus
on contributions that mix into the baseband. This assumption
corresponds to the idea that an ideal lowpass filter is placed
right behind the nonlinear system as indicated by Fig.2.

That means instead of setting 2k−m=±1 we set 2k−m=0
in Eq. (6), which yields

wm
0 (t) =

1

2m

(
m
m
2

)
z̃(t)

m
2 z̃∗(t)

m
2 . (18)

Due to the assumption thatm can only represent even values,
we can statem=2n where n=1, 2, 3, . . . , N

2 , providedN

representing the highest even-order power within the power
series polynomial. Thus Eq. (18) turns into

wm
0 (t) =

1

22n

(
2n

n

)
z̃(t)nz̃∗(t)n. (19)

After passing through the nonlinear circuit the even-order
contributions in terms of the complex envelope can be stated

Table 2. Even order moments evaluated for a sixth order power
series expansion.

Subscr. Eq. (21) Expanded moment

n = 1; m = 1 2R2
xx(τ ) + R2

x0
n = 1; m = 2 12R2

xx(τ )Rx0 + 30R3
x0

n = 1; m = 3 90R2
x0R2

xx(τ ) + 15R4
x0

n = 2; m = 2 24R4
xx(τ ) + 72R2

xx(τ )R2
x0 + 9R4

x0
n = 2; m = 3 360Rx0R4

xx(τ ) + 540R3
x0R2

xx(τ )+

45R5
x0

n = 3; m = 3 720R6
xx(τ ) + 5400R2

x0R4
xx(τ )+

4050R2
xx(τ )R4

x0 + 225R6
x0

as

G̃0[z̃(t)] =

N
2∑

n=1

ã2n

22n

(
2n

n

)
z̃(t)2nz̃∗(t)2n. (20)

Again assuming a real gaussian random processx(t) modu-
lating the carrier amplitude, the output autocorrelation func-
tion can be written as

R̃gg(τ ) =

N
2∑

n=1

N
2∑

m=1

ã2nã
∗

2m

2n+m

(
2n

n

)(
2m

m

)
E[x2n

1 x2m
2 ]. (21)

As can easily be seen from Eq. (21), corresponding to the
expectation value a lot of additional statistical moments have
to be evaluated when accounting for even-order distortion.
As previously done in Sect.2 the additionally expanded mo-
ments are listed in Table2. However, in contrast to the odd
order considerations Table2 indicates that the even order
terms cause a remarkable amount of distortion power at DC
(Direct Current) represented by the time-domain constants
given by arbitrary powers ofRx0. In most practical appli-
cations these terms are not of considerable concern, as most
transmission systems reveal an inherent highpass characteris-
tic, therefore automatically rejecting these kind of distortion
terms.

Again, as explained in the section before, the application
of the Fourier transform to the specified moments given by
Table2 in combination with Eq. (21) yields the output PSD
in terms of its input PSD. The employment of both mathe-
matical approaches, therefore accounting for even and odd-
order nonlinear terms, is finally capable of estimating the
self-induced distortion of any given input signal, presuming
the nonlinear system to occupy static temporal behaviour in-
sofar as to be approximated according to a polynomial de-
scription.

However, this assumption can not be made in case of a
broadband stimulus. In general the use of frequency selec-
tive circuitry by means of inductors or capacitors within the
nonlinear device and furthermore thermal effects neccesitate
a dynamic consideration of the underlying nonlinear system.
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Since the so called generalized Hammerstein model is ca-
pable of approximating a wide class of nonlinear systems
with an adequate degree of accuracy, while the complexity
in terms of its description parameters is relatively low, this
approach is well suited for an extension of the derived model
regarding the temporal characteristics (see Mathews and Si-
curanza, 2000).

Figure 3 depicts the typical structure of a generalized
Hammerstein system in comparison to the static polyno-
mial model. For the extension from the static polynomial
model to the generalized Hammerstein model the power se-
ries polynomial has to be split up into parallel branches,
each branch representing a homogeneous nonlinearity. The
dynamic behaviour is introduced by linear FIR (Finite Im-
pulse Response) filters that follow the particular homoge-
neous polynomials. Finally, all branches are merged at a
summing element.

Concerning the structure depicted in Fig.3 the mathe-
matical expressions derived previously do not change essen-
tially. Since every branch of the parallel structure represents
a static homogeneous nonlinear system, the frequency- do-
main model for even and odd-order nonlinear polynomials
can be applied directly to the dynamic model. The subse-
quent filtering introduced by the linear FIR filters in every
branch is then implemented in the frequency-domain by the
multiplication of the filter input power spectrum (output PSD
of homogenous nonlinearity) with the squared magnitude of
the filter transfer function. Consequently, ifSn,in(ω) denotes
the output PSD of anth order homogenous nonlinear system
in one branch of the generalized Hammerstein system thus
at the same time representing the filter input PSD, the output
PSDSn,out (ω) of the subsequent linear FIR filter defined by
its transfer functionHn(e

jω) can be obtained by

Sn,out (ω) =

∣∣∣Hn(e
jω)

∣∣∣2 Sn,in(ω). (22)

Thus the extension to the dynamic model does not require ad-
ditional considerable effort regarding the computation of the
output power specral density. Together with the derived ap-
proaches for static nonlinear systems this modeling approach
is verfied in the following section by means of time-domain
simulations.

4 Simulation results

The following section verifies the presented approaches by
comparing output PSDs computed according to the derived
mathematical expressions for given input PSDs with those
taken from time domain-simulations for certain representa-
tive nonlinear systems. Within a time-domain simulation the
given spectral mask in terms of a certain multicarrier alloca-
tion is adopted, while a random phase angle is assigned to
every single tone. The time-domain signal is then obtained
by performing an IFFT (Inverse Fast Fourier Transform) on

Fig. 3. Generalized Hammerstein system.

the given spectrum. The nonlinear system is finally passed
by exponentiation of the time-domain signal according to the
given polynomial description. The output PSD is obtainded
by peforming the FFT (Fast Fourier Transform) operation.
In case of dynamic systems the linear filtering is achieved by
convolution with the filter impulse response.

This procedure is repeated for different choices of car-
rier phase sets in order to approximate a Gaussian “noise-
like” stimulus. Subsequent averaging of the obtained distor-
tion PSDs therefore yields an average output distortion PSD,
comparable with those computed by the derived stochastical
expressions.

First we start with a static polynomial model according to
the classical bandpass approach explained in Sect.2, hence
totally described by its odd power series coefficientsãn. As
in many practical applications, nonlinear effects shall be con-
sidered up to a degree ofN=7. Therefore the polynomial
description is given by

G̃[w(t)] = 10w3(t) + 1000w5(t) + 100000w7(t) (23)

whereas the odd coefficients are all chosen as to induce a
comparable amount of distortion power. The simulation re-
sults obtained for this system are depicted in Fig.4. Herein
the frequency-domain representation of the input signal as
well as the distortion PSDs obtained by time and frequency-
domain simulations are given in a normalized representation.
In case of multitone transmission, single tones are separated
by each other corresponding to a certain carrierspacing. The
normalization of the frequency axis by means of this carri-
erspacing yields the representation of the abscissa in terms
of the depicted carrier index. The input signal (black graph)
is given by two discrete “flat” frequency bands inducing the
distortion PSDs computed by time-domain simulations as
already described previously (blue graph) and the derived
frequency-domain formula presented in Sect.2 (red graph).

As can easily be seen, the distortion PSD obtained by
means of the presented stochastical frequency-domain ap-
proach shows a good matching to the time-domain solution.
The time-domain solution exhibits certain “ripples” that can
be ascribed to the averaging process necessary for the ap-
proximation of a noise-like stimulus. In order to verify the
mathematical modifications carried out in Sect.3, we specify
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Fig. 4. Input signal and distortion PSDs computed in time and fre-
quency domain for static odd-order model.

Fig. 5. Input signal and distortion PSDs computed in time and fre-
quency domain for static even-order model.

a nonlinear polynomial model solely containing even-order
terms. The chosen polynomial description is therefore given
by

G̃[w(t)] = w2(t) + 100w4(t) + 10000w6(t). (24)

Figure5 depicts the results obtained for the given even-order
polynomial.

Again, we find a fairly accurate matching to the time do-
main iteration data. Whereas in case of the odd-order poly-
nomial the induced in-band distortion is dominant, we recog-
nize a remarkable amount of distortion power at the second
harmonic of both input frequency bands as well as at DC for
the even-order polynomial.

Simulation results in case of the dynamic Hammerstein
approach are depicted in Fig.6.

The filter coefficients needed for calculating the filter re-
sponse in the frequency-domain were chosen incidentally,

Fig. 6. Input signal and distortion PSDs computed in time and fre-
quency domain for dynamic model corresponding to a seventh order
generalized Hammerstein system.

while assuming a tap-length ofLtap=5 for every filter
branch. The underlying nonlinear system was assumed to be
of maximum orderN=7. In addition to the results obtained
without the filtering operation, thus reducing the model to
a pure static nonlinearity, Fig.6 depicts the filtered output
PSDs computed in time and frequency-domain. Again, even
in the dynamic case, time and frequency-domain solutions
show a good matching. This is not surprising at all, since
the dynamic model is just adding a frequency dependent
scaling corresponding to the filter response for every single
nonlinear order. Beyond the accuracy achievable with the
presented approaches, the derived stochastical models bear
the advantage of enormously reduced processing times com-
pared to the time domain iteration procedure. In case of
the dynamic model the computation time according to the
stochastic frequency-domain approach reduces by a factor of
185 opposed to time-domain simulations, as the necessity for
averaging the obtained spectra vanishes.

5 Conclusions

In this article we introduced a stochastical frequency-domain
model for the time-efficient analysis and estimation of av-
erage distortion spectra induced by nonlinear systems. In
a first step we therefore presented the classical narrowband
RF modeling approach and derived the fundamental formu-
las, necessary for the closed form analysis of output distor-
tion PSDs in terms of given input PSDs. Furthermore, we
presented a mathematical modification enabling the already
established narrowband approach to cope with broadband in-
put stimuli, accounting for even-order terms as well as for
odd-order terms. Considerations on the temporal character-
istics of nonlinear systems excited by broadband stimuli fi-
nally led to the introduction of the generalized Hammerstein
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system. The verification of the derived mathematical expres-
sions was given for three representative nonlinear systems,
static as well as dynamic, in terms of a comparison to iterated
time-domain solutions. Herein all systems showed an accu-
rate matching between time and frequency-domain solutions.
In case of the dynamic system the required computation time
could be reduced considerably. Thus the presented stochastic
frequency-domain approach is a well suited candidate for the
time-efficient distortion analysis of a wide class of nonlinear
systems, therefore applicable in system top level simulations.
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