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Abstract 

I 

Abstract 

Plant in vitro culture techniques comprise important fundamental methods of modern 
plant research, propagation and breeding. Innovative scientific approaches to further develop the 
cultivation process, therefore, have the potential of far-reaching impact on many different areas. 
In particular, automation can increase efficiency of in vitro propagation, a domain currently con-
strained by intensive manual labor. Automated phenotyping of plant in vitro culture bears the 
potential to extend the evaluation of in vitro plants from manual destructive endpoint  
measurements to continuous and objective digital quantification of plant traits. Consequently, this 
can lead to a better understanding of crucial developmental processes and will help to clarify the 
emergence of physiological disorders of plant in vitro cultures. 

The aim of this dissertation was to investigate and exemplify the potential of  
optical sensing methods and machine learning in plant in vitro culture from an interdisciplinary 
point of view. A novel robotic phenotyping system for automated, non-destructive,  
multi-dimensional in situ detection of plant traits based on low-cost sensor technology was con-
ceptualized, developed and tested. Various sensor technologies, including an RGB camera, a laser 
distance sensor, a micro spectrometer, and a thermal camera, were applied partly for the first time 
under these challenging conditions and evaluated with respect to the resulting data quality and 
feasibility. In addition to the development of new dynamic, semi-automated data processing  
pipelines, the automatic acquisition of multisensory data across an entire subculture passage of 
plant in vitro cultures was demonstrated. This allowed novel time series images of different  
developmental processes of plant in vitro cultures and the emergence of physiological disorders 
to be captured in situ for the first time. The digital determination of relevant parameters such as 
projected plant area, average canopy height, and maximum plant height, was demonstrated, 
which can be used as critical descriptors of plant growth performance in vitro. In addition, a novel 
method of non-destructive quantification of media volume by depth data was developed which 
may allow monitoring of water uptake by plants and evaporation from the culture medium.  

The phenotyping system was used to investigate the etiology of the physiological growth 
anomaly hyperhydricity. Therefore, digital monitoring of the morphology and along with spectro-
scopic studies of reflectance behavior over time were conducted. The new optical characteristics 
identified by classical spectral analysis, such as reduced reflectance and major absorption peaks 
of hyperhydricity in the SWIR region could be validated to be the main discriminating features by 
a trained support vector machine with a balanced accuracy of 84% on test set, demonstrating the 
feasibility of a spectral detection of hyperhydricity. In addition, an RGB image dataset was used 
for automated detection of hyperhydricity using deep neural networks. The high-performance 
metrics with precision of 83.8% and recall of 95.7% on test images underscore the presence of for 
detection sufficient number of discriminating features within the spatial RGB data, thus a second 
approach is proposed for automatic detection of hyperhydricity based on RGB images.  

The resulting multimodal sensor data sets of the robotic phenotyping system were tested 
as a supporting tool of an e-learning module in higher education to increase the digital skills in 
the field of sensing, data processing and data analysis, and evaluated by means of a student survey. 
This proof-of-concept study revealed an overall high level of acceptance and advocacy by students 
with 70% good to very good rating. However, with increased complexity of the learning task, stu-
dents experienced excessive demands and rated the respective session lower.  

In summary, this study is expected to pave the way for increased use of automated sensor-
based phenotyping in conjunction with machine learning in plant research and commercial mi-
cropropagation in the future. 

 

Keywords: In vitro culture, phenotyping, imaging, hyperhydricity,  
   sensors, machine learning, teaching  
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Zusammenfassung 

Die pflanzliche In-vitro-Kultur umfasst wichtige grundlegende Methoden der modernen 
Pflanzenforschung, -vermehrung und -züchtung. Innovative wissenschaftliche Ansätze zur Wei-
terentwicklung des Kultivierungsprozess können daher weitreichenden Einfluss auf viele unter-
schiedliche Bereiche haben. Insbesondere die Automatisierung kann die Effizienz der In-vitro-
Vermehrung steigern, die derzeit durch die intensive manuelle Arbeit beschränkt wird. Automa-
tisierte Phänotypisierung von In-vitro-Kulturen ermöglicht es, die Erfassung von manuellen de-
struktiven Endpunktmessungen auf eine kontinuierliche, objektive und digitale Quantifizierung 
der Pflanzenmerkmale auszuweiten. Dies kann zu einem besseren Verständnis entscheidender 
Entwicklungsprozesse führen und die Entstehung physiologischer Störungen zu klären. 

Ziel dieser Dissertation war es, das Potential optischer Erfassungsmethoden und des  
maschinellen Lernens für die pflanzliche In-vitro-Kultur unter interdisziplinären Gesichtspunk-
ten zu untersuchen und exemplarisch aufzuzeigen. Ein neuartiger Phänotypisierungsroboter zur 
automatisierten, zerstörungsfreien, mehrdimensionalen In-situ-Erfassung von  
Pflanzenmerkmalen wurde auf Basis kostengünstiger Sensortechnik entwickelt. Unterschiedliche 
Sensortechnologien, darunter eine RGB-Kamera, ein Laser-Distanzsensor, ein Mikrospektrometer 
und eine Wärmebildkamera, wurden teils zum ersten Mal unter diesen schwierigen Bedingungen 
eingesetzt und im Hinblick auf die resultierende Datenqualität und Realisierbarkeit bewertet.  
Neben der Entwicklung dynamischer, halbautomatischer Datenverarbeitungspipelines, wurde 
die automatische Erfassung multisensorischer Daten über eine gesamte Subkulturpassage der In-
vitro-Kulturen demonstriert. Dadurch konnte erstmals Zeitrafferaufnahmen verschiedener Ent-
wicklungsprozesse von pflanzlichen In-vitro-Kulturen und das Auftreten von physiologischen 
Störungen in situ erfasst werden. Die digitale Bestimmung relevanter Kenngrößen wie der proji-
zierten Pflanzenfläche, der durchschnittlichen Bestandshöhe und der maximalen Pflanzenhöhe 
wurde demonstriert, die als wichtige Deskriptoren für das pflanzliche Wachstum dienen können. 
Darüber hinaus konnte eine neue Methode für die Pflanzenwissenschaften entwickelt werden, um 
die Wasseraufnahme von Pflanzen und die Verdunstung von Kulturmedien auf der Grundlage  
einer zerstörungsfreien Quantifizierung des Medienvolumens zu überwachen. 

Der Phänotypisierungsroboter wurde zur Untersuchung der Entstehung der Wachs-
tumsanomalie Hyperhydrizität eingesetzt. Hierfür wurden ein digitales Monitoring der Morpho-
logie der Explantate mit begleitenden spektroskopischen Untersuchungen des Reflexionsverhal-
tens im Zeitverlauf durchgeführt. Die durch Spektralanalyse identifizierten optischen Merkmale, 
wie den reduzierter Reflexionsgrad und die Hauptabsorptionspeaks der Hyperhydrizität in der 
SWIR-Region, konnten als die wichtigsten Unterscheidungsmerkmale durch ein Support-Vektor-
Maschine-Model mit einer Genauigkeit von 84% auf dem Testsatz validiert werden und damit 
Machbarkeit der spektrale Identifizierung von Hyperhydrizität aufzeigen. Darüber wurde für die 
automatische Detektion der Hyperhydrizität auf Basis von RGB-Bildern ein neuronales Netz  
trainiert. Die hohen Kennzahlen im Testdatensatz wie die Präzision von 83,8 % und einem Recall 
von 95,7 % unterstreichen das Vorhandensein einer für die Erkennung ausreichenden Anzahl von 
Unterscheidungsmerkmalen innerhalb der räumlichen RGB-Daten. Somit konnte ein zweiter An-
satz der automatischen Detektion von Hyperhydrizität durch RGB-Bilder präsentiert werden. 

Die resultierenden Sensordatensätze des Phänotypisierungsroboters wurden als unter-
stützendes Werkzeug eines E-Learning Moduls zur Steigerung digitaler Kompetenzen im Bereich 
Sensortechnik, Datenverarbeitung und -auswertung in der Hochschulausbildung erprobt und an-
hand der Befragung von Studierenden evaluiert. Diese Machbarkeitsstudie ergab eine insgesamt 
hohe Akzeptanz durch die Studierenden mit 70% guten bis sehr guten Bewertungen. Mit zuneh-
mender Komplexität der Lernaufgabe fühlten sich die Studierenden jedoch überfordert und  
bewerteten die jeweilige Session schlechter. 

Zusammenfassend zielt diese Arbeit darauf ab den Weg für einen verstärkten Einsatz der 
automatisierten, sensorbasierten Phänotypisierung in Kombination mit den Techniken des ma-
schinellen Lernens der Forschung und der kommerziellen Mikrovermehrung zukünftig zu ebnen. 

Schüsselwörter:  In-vitro-Kultur, Phänotypisierung, Bildgebung, Hyperhydrizität,  
    Sensoren, maschinelles Lernen, Lehre  
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Abbreviations 

ANN Artificial neural networks 
CNN Convolutional neural networks 
DNN Deep neural networks 
HH Hyperhydricity 
HTP High-throughput plant phenotyping  
LDA Linear discriminant analysis 
LIDAR Light detection and ranging 
ML Machine learning 
MOOC Massive open online courses 
NIR Near-infrared 
PCA Principal component analysis 
PGRs Plant growth regulators 
PLS Partial least square 
RF Random forest 
SVM Supported vector machines 
SWIR Shortwave infrared 
ToF Time-of-flight 
UV Ultraviolet 
VIS Visible 
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1 General Introduction 

1.1 Hyperhydricity - a major bottelneck in plant in vitro culture 

Plant in vitro culture techniques form the basis of most biotechnological methods 

for plant breeding and propagation. Plant in vitro culture enables clonal mass propagation 

of valuable plants, supports plant breeding by regeneration from single cells, preserves 

endangered plant species in gene banks and allows efficient production of secondary  

metabolites by medical plants, among others (Birnbaum & Alvarado 2008,  

George et al. 2008). Although data on in vitro plant production on a worldwide scale are 

lacking — probably due to the withholding of production data by global players in  

commercial micropropagation, and being composed by different horticultural sectors 

such as ornamental, forestry, fruit and aquatic plants — for Germany, these data are  

available and revealed the main micropropagated plant genera to be Phalaenopsis spp., 

Rubus spp. and Helleborus spp. (Winkelmann et al. 2006, Hutter & Schneider 2019). Other 

globally important micropropagated plant genera are Musa spp., Solanum spp., Fragaria 

spp., Vaccinium spp. and others (Gamborg 2002, Podwyszyńska et al. 2022). 

Plant in vitro propagation can reach high multiplication factors in short time and 

allows to produce genetically uniform and disease-free explants in many plant species. 

However, due to the special conditions of explants cultivated aseptically in closed con-

tainers, under a high relative humidity, with a reduced gas exchange and further stress 

caused by plant growth regulators (PGRs), physiological and morphological  

malformations may occur (Hazarika et al. 2006). In addition to recalcitrant and habitual 

behaviour (Gaspar et al. 2000, Abdalla et al. 2022) of some plant species in response to 

PGRs and other disorders such as shoot-tip necroses, fasciation and somaclonal variation,  

hyperhydricity (HH) is one of the major bottlenecks of efficient micropropagation in ser-

val plant species (Hazarika & Bora 2008, Ruffoni & Savona 2013). 
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This phenomenon also known as vitrification, glassiness or translucency, is char-

acterized by a water-soaked, translucent, curled and fragile appearance. HH negatively 

affects plant quality, propagation rate, adventitious root and shoot formation and ex vitro 

survival rate (Debergh et al. 1992, Gribble 1999, Cardoso et al. 2018). Despite these draw-

backs and the fact that at least 150 plant species can be affected seriously by HH (Kemat 

et al. 2020), the causes and underlying physiological mechanism of HH are still not fully 

understood. However, Rojas-Martínez et al. (2010) and van den Dries et al. (2013)  

provided strong evidence that in HH etiology the flooding of the apoplast, resulting in  

hypoxia and oxidative stress plays a major role. High water availability was identified as 

one of the key triggers of HH in serval studies (Smith & Spomer 1995, Casanova et al. 2008, 

van den Dries et al. 2013, De Klerk et al. 2015, Kemat et al. 2021). This fact drastically 

restricts the usage of liquid culture and bioreactor systems, although they would allow 

very high multiplication rates and saving of cost-intense gelling agents.  

Paques et al. (1985) refer to HH as an inducible and reversible phenomenon and 

demonstrated that Malus sp. ‘M26’ plantlets could return to non-hyperhydric state if the 

induction phase in liquid culture did not exceed five days or the symptoms of HH are not 

too severe. In commercial in vitro laboratories, visual monitoring for contaminations and 

disorders is part of the routine work and therefore a costly and time-consuming  

repetitive matter (Mestre et al. 2017). Automation of processes offers great economic po-

tential for micropropagation laboratories since 60 - 70% of total costs of a  

micropropagated plant is due to manual labor (Chen 2016).  
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1.2 Automated phenotyping in plant in vitro culture 

Plant phenotyping refers to a systematic and quantitative determination of the 

plant’s anatomical, ontogenetic, physiological and biochemical properties  

(Guo & Zhu 2006). High-throughput plant phenotyping (HTP) is often realized by optical 

sensor-based approaches allowing a non-invasive, fast and objective quantification of 

plant traits while replacing time-consuming manual evaluation (Walter et al. 2015). Here, 

automation of data acquisition or processing meets the needs of plant breeding for  

measuring large populations of plants to select superior individuals (Dhondt et al. 2013). 

Recent technological advances in imaging sensors such as LIDAR (light detection and 

ranging) 3D sensors and hyperspectral cameras and in combination with rapid progress 

in machine learning turns automated HTP into a promising tool for plant research and 

production. 

Applications of this discipline range from phenotyping of plant canopies with  

field-based platforms (Busemeyer et al. 2013) down to the phenotyping of tissue, organ 

and cell cultures in laboratory systems (Dhondt et al. 2014). Relevant performance  

metrics of plant in vitro cultures such as multiplication rate, plant quality and biomass are 

usually accessed manually and limited to single endpoint measurements of  

subculture passages. So far, very limited research using automated sensors in plant tissue 

culture has been reported and most are restricted to “plant to sensor” approaches  

(Table 1).  
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Table 1: Summary table of selected literature of phenotyping of plant in vitro cultures, based on internet 
research using a combination of the keywords: plant in vitro culture, image analysis, phenotyping, monitoring 

Automation/ 
Authors 

Imaging  
setup 

Dimension-
ality 

Digital  
parameters 

Plant 
species 

Culture 
phase 

Aim 

Plant to sensor       

Smith et al.  
1989 

Side view 
 camera 

2D- 
Mono-

chrome  

Plant height, 
plant area 

Acer sp. 
Daphne sp. 
Malus sp. 

i.a. 

Shoot  
culture 

Correlating pro-
jected plant area 

to plant height and 
fresh mass 

Aynalem et al. 
2006 

Top view 
 camera 

2D-RGB 
Vegetation 

indices 
Pyrus sp. 

Shoot 
culture 

Monitoring plant 
quality of in vitro 
conserved plants 

Ibaraki & 
Gupta 2011 

Handheld 
 camera 

2D- 
Thermal 

Leaf temper-
ature 

Solanum sp. 
Shoot  

culture 

Prediction of  
wilting after  

acclimatization 

Mansouri et al. 
2016 

Top view 
 camera 

2D-RGB 
Plant area, 

shape analy-
sis 

Cuminum sp. 
Callus  

culture 
Prediction of fresh 
mass and volume 

Gupta & 
Karmakar 

2017 

Top view 
 camera 

2D-RGB 
Plant area, 

shape analy-
sis 

Swertia sp. 
Shoot  

culture 
Computer vision-  

assisted evaluation 

Mestre et al. 
2017 

Top view 
 camera 

2D- 
RGB & NIR  

Plant area, 
vegetation 

indices 
Nandina sp. 

Shoot  
culture 

Monitoring plant 
quality 

Faragó et al. 
2018 

Top view 
camera  

2D-RGB 
Plant area, 

shape analy-
sis 

Arabidopsis sp. 
In vitro  
germi-
nation 

Image processing  
software  

“PlantSize” 

Sensor to plant[1]       

Dhondt et al. 
2014 

Top view 2D 
camera 

with rotary 
carousel for 
petri dishes 

“IGIS” 

2D-NIR 
Plant area, 

shape analy-
sis 

Arabidopsis sp. 
In vitro  
germi-
nation 

Live-monitoring of 
growth curves 

during cultivation 

Barbez et al. 
2017 

Side view 2D 
camera  

with rotary 
carousel for 
petri dishes 

2D-RGB n/a Arabidopsis sp. 
In vitro  
germi-
nation 

Hardware setup 
for live-monitoring  
during cultivation 

Lube et al.  
2022 

Side view 
camera  

with rotary 
carousel for 
petri dishes 

2.5D-RGB 
by stereo 

vision 

Root area 
and length, 
plant area, 

shape analy-
sis 

Arabidopsis sp. 
In vitro  
germi-
nation 

High resolution  
live-monitoring of 

root growth  
during cultivation 

[1]Note: Seleceted literature with closest proximity to “Sensor to plant” approach, albeit with restricted 
transferability for “automated live-monitoring during cultivation”. 

Automated phenotyping approaches with minimal invasiveness allowing a direct 

live-monitoring plant during cultivation are heavily focused on fundamental research in 

Arabidopsis thaliana. Although the importance of A. thaliana as a model plant for research 

is undisputed, A. thaliana is a poor model plant for commercial micropropagation due to 
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the small explant size and height, uniformly structured growth habitus (rosette), presence 

of radicle and lack of adventitious shoots (in vitro seed germination). 

Previous research on automated phenotyping of in vitro plants has primarily  

concentrated on RGB imaging, determining 2D parameters such as projected plant area 

and morphological description of the plant objects. However, over the past two decades, 

several other sensor technologies have gained interest for plant research in field pheno-

typing or HTP under controlled conditions, whether due to cost reductions, advances in 

sensor technology, or the launch of the first commercial products (Fig. 1; Roitsch et al. 

2019). The following sensor technologies are worth mentioning due to their great  

potential for plant research and production, while focusing on small portable sensor  

technology which may have potential application for plant in vitro cultures. 

 
Fig. 1: Evolution in the use of range and artificial vision sensors for morphological characterization and 
fruit/plant detection. The years report the first use of these sensing systems for agricultural purposes  
(Narvaez et al. 2017). 

Biomass quantification and shoot length estimation in field or controlled environ-

ment phenotyping systems are enabled by 2.5/3D-imaging sensors (Li et al. 2014). Light 

detection and ranging (LIDAR) sensors operate by the Time-of-Flight (ToF) principle 

where the distance is calculated by measuring the time of a specific laser pulse required 

to reach an object and be reflected back to the sensor´s detector. In contrast to laser dis-

tance sensors, LIDAR systems differ in their dimensionality of acquiring multiple spatial 
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information at once. Laser distance sensors determine the distance of a single point,  

1D-LIDAR system can be seen a line scanning approach, while 2D-LIDAR systems measure 

a plane by capturing multiple lines. The key features of the technology are the high  

accuracy, robustness and the fast speed while acquiring 2.5D/3D point clouds. In addition, 

the reflectance of the object can be determined by the amount backscattered light  

intensity and used for segmentation of the point cloud (Lin 2015). In contrast to the LIDAR 

system as a sequential scanning approach, ToF-cameras simultaneously illuminate the 

whole image scene at once and detect the backscattered light by an imaging sensor,  

therefore offering real-time 3D sensing but have generally lower spatial resolution and 

lower accuracy. Other principles to be mentioned for generating depth data are i) stereo 

vision, where distance is calculated by triangulating two different views of an object, and 

ii) structured light, where depth data is calculated by deforming a grid of light through the 

object (Narvaez et al. 2017). To date, there are no reports on the application of these  

2.5D/3D-imaging techniques to the quantification of biomass of plant in vitro cultures. 

Plant sensing by optical spectroscopy has demonstrated significant potential for 

stress detection (Lichtenthaler & Rinderle, 1988, Lichtenthaler et al. 1998, Buschmann et 

al. 2000), quantification of plant metabolites (Schulz & Baranska 2007), and plant  

classification (Zomer et al. 2009), as evidenced by numerous publications (reviewed by 

Cavaco et al. 2022). The sub-disciplines of optical spectroscopy can be differentiated 

based on the type of the detected interaction between light and plant tissue, e.g.,  

transmission spectroscopy, reflectance spectroscopy, and fluorescence spectroscopy, or 

by the spectral region in which the detector operates, such as ultraviolet (UV), visible 

(VIS), near-infrared (NIR), shortwave infrared (SWIR), or thermal. Here, each spectral  

region highlights different biochemical plant compounds, based on their specific  

absorption characteristics. 
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In particular imaging spectroscopic sensors based on reflectance such as multi-

spectral cameras — imaging sensors with more than three or different to those of a RGB 

camera— and hyperspectral cameras — imaging sensors with more than 100 spectral 

channels — have gained interest due to their feasibility, wide applicability and huge  

content of information used for disease detection and plant monitoring (Araus et al. 2018, 

Roitsch et al. 2019). Fluorescence imaging sensor are most commonly used to estimate 

the photosynthetic performances of plants based on the detection of chlorophyll fluores-

cence kinetics during the transition from dark to light, also known as Kautsky effect 

(Kautsky & Hirsch 1931). On the other hand, multispectral or hyperspectral fluorescence 

imaging spectroscopy, e.g., excited by UV radiation, is less common, although it holds great 

potential by providing physiological information transported within the autofluorescence 

signals of chlorophyll and phenolic compounds (Pérez-Bueno et al. 2016). Other promis-

ing non-destructive phenotyping sensor technologies such as Raman spectroscopy, tomo-

graphic imaging techniques, were neglected so far due to the lack of portable systems.  

Finally, the emergence of innovative products with sensor fusion approaches such 

as Intel®RealSenseTM (fusion of RGB with depth imaging), or PlantEye  

(Hummel 2012, fusion of multispectral imaging with structured light). Furthermore, there 

are several research activities to fuse the strengths of different sensor technologies such 

as hyperspectral LIDAR (Hakala et al. 2012, Chen et al. 2018) with no commercial product 

launched so far. 

1.3 Challenges of optical sensing methods in plant in vitro culture 

For live-monitoring of the dynamic growth processes of plant in vitro cultures over 

longer periods of time it is essential to maintain the aseptic conditions of the explants — 

ensured by closed culture containers. Otherwise, bacterial and fungal contaminations 

would establish on the sugar containing culture media. Therefore, most imaging 
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approaches following two different strategies, either image acquisition takes place under 

a laminar flow hood (“plant-to-sensor approach”, Table 1) — where explants can be kept 

sterile even if the culture container is opened. However, during image acquisition explants 

are exposed to completely different environmental conditions (active air movement, 

lower relative humidity, different atmospheric composition). Alternatively, image acqui-

sition during cultivation has to happen through the closed culture vessels facing  

numerous challenges, such as specular lighting (Mestre et al. 2017) and water  

condensation (Faragó et. al 2018). 

Plant in vitro cultures are commonly cultivated in multi-layered shelf systems with 

tubular fluorescent lamps or LEDs. A typical distance between the cultivation area and the 

illumination is around 400 mm in each layer. Due to this limitation in space only small 

sensor systems are suitable, and in addition, selection of sensor systems is further re-

stricted as their sensor technology has to perform in a close-range setup. This is of major 

concern for depth sensing sensor e.g., based on stereo vision (Kazmi et al. 2014).  

The rel. humidity inside the culture vessels in general is higher than 95%  

(Kozai 1991). Water condensation occurs predominantly at the coldest surface, which 

is often the lid of the culture vessel due to the heat dissipation of the tubular fluorescent 

lamps below the cultivation area. The complex interaction of light and these condense 

water droplets, such as scattering, diffraction, refraction, dispersion and absorption com-

plicate the imaging of the plant in vitro cultures. Dhondt et al. (2014) prevented the con-

densation of water by a heated air stream that shifted the dew point toward the culture 

medium. Based on the same principle, a so called “bottom-cooling” is well established in 

plant in vitro culture rooms and prevents water condensation (Vanderschaeghe & 

Debergh 1987). 
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Depending on plant species, established laboratory processes and in vitro culture 

phase, various types of culture containers are used in commercial micropropagation and 

plant research. While Petri dishes provide a clear view of the cultured tissue, certain types 

of plastic lids for culture vessels exhibit a degree of opacity despite a high degree of light 

transmission. The decreased visibility interferes with the accurate observation of plant 

tissues by imaging techniques, especially under certain lighting conditions where total 

internal reflection can occur. In addition, the spectral transmittance of the culture  

vessels, which is mainly determined by the plastic material, has to be considered for in 

vitro imaging approaches beyond the VIS region e.g., UV-excited fluorescence imaging. 

In plant in vitro culture high humidity, hetero/mixotrophic growth, low light  

condition, impaired gaseous exchange lead to various physiological and anatomical  

variations compared to ex vitro cultivated plants. Among them are obvious macroscopic 

changes such as smaller and differently shaped leaves, as well as anatomically such as 

very thin or absent cuticle, permanently open stomata, irregular structured spongy pa-

renchyma with larger intercellular air-spaces and others (George et al. 2008). The  

associated multiple scattering processes and differences in light path length call into ques-

tion the transferability of ex vitro results from optical plant spectroscopy to spectroscopic 

monitoring of plants in vitro. 

1.4 Machine learning in plant in vitro culture 

Machine learning (ML) techniques as a generic term for statistical learning models 

are established as a state-of-the-art for processing and analyzing data of high 

dimensionalilty (less observations than describing features), complex interaction and 

non-linear relationships. ML-models applied to in plant tissue cultures were already 

reviewed by Prasad & Gupta (2008) and Hesami & Jones (2020) including, plantlets  

clustering (Mahendra et al. 2004), classification of somatic embryos (Zhang et al. 1999), 
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estimation of shoot length (Honda et al. 1997) and optimizing culture medium (Nezami-

Alanagh et al. 2019, Hameg et al. 2020). ML-models for classification can be grouped into 

two main types: unsupervised and supervised models. Supervised models aim to discrim-

inate between classes based on known class memberships, while unsupervised methods 

attempt to identify underlying patterns or structures in the data without prior knowledge 

of class labels. 

Principal component analysis (PCA, Pearson 1901) is a unsupervised dimension 

reduction method. Reduction of dimensionality is perfomed by the projection of the data 

into a hyperspace (linear combinations of orignal variables named principal components) 

of lower dimension, while maximizing the variance of the whole data set (Ringnér 2008). 

The principal components are uncorrelated and sorted with decreasing captured 

variance, thus the first principal component captures the largest variance (information) 

of the data set. The prinicipal components can be used for outlier detection, noise filtering, 

data visualization, identification of correlated factors or as input with lower 

dimensionality for classification models like linear discriminant analysis.  

Linear discrimant analysis (LDA) as a generalization of Fisher’s linear discriminant 

(Fisher 1936) is a classification method for data of high-dimensionality based on 

supervisied extraction of discriminating features by transformation. Reduction of 

dimensionality is perfomed by the projection of the data into a hyperspace of lower 

dimension, while minimizing intra-class variance and maximizing inter-class variance 

(Du & Wang 2011). 

Partial least square (PLS) is a supervised dimension reduction method  

(Wold 1984). Reduction of dimensionality is perfomed by the projection of the data into 

a hyperspace (linear combinations of original variables named latent variables) of lower 
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dimension, while maximizing the variance of the whole data set and the covariance 

between the dependent variable (labels/class membership) and the latent variable (Lee 

et al. 2018). 

Random Forest (RF) is an ensemble learning method of supervised tree-based 

models such as decision trees (Breiman 2001). With a random sub-selection of the data 

set, multiple tree-shaped models based on sequential decisions are constructed each on 

their subset of the data. The final random forest model aggreates the prediction of the 

decision trees and thus is less sensitive to overfitting. 

Support vector machine (SVM) is supervised classification method  

(Cortes & Vapnik 1995). Following the transformation into a hyperspace, SVMs select the 

best class-separating hyperplane, while maximizing the distance of the two classes. The 

distance in SVM is the width of the margin of the hyperplane and reflects the space 

between the suport vectors. These support vectors are the data points closest to the 

hyperplane and restricting the margin width. 

Neural Networks, also known as Artificial Neural Networks (ANNs), are a family of 

highly flexible models (McCulloch & Pitts 1943). They are typically composed of different 

layers, including the input layer, hidden layer(s), and the output layer. In each layer, the 

output signal of a unit is calculated using the input value, weights, and bias, which are then 

passed on to all connected units in the next layer via an activation function, such as the 

sigmoid function. The model is trained to optimize the weights of each unit in order to 

predict the output with the lowest possible error (e.g. with gradient descent). This is 

achieved by repeatedly presenting the training data to the network, which adjusts its 

parameters through a process called backpropagation.  
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Networks with a certain depth of hidden layers are commonly called deep neural 

networks (DNN, LeCun et al. 2015). Convolutional neural networks (CNN) are DNN 

allowing grid-shaped inputs such as images. In a convolutional layer, additional features 

are extracted from the inputs by applying several different image processing filters, like 

edge detection by a sliding window (kernel). In the pooling layer the spatial information 

is reduced by pooling filters. A CNN has several convolutional layers and pooling layers 

generating features for a final fully connected layer, which can be seen as traditional 

neural network estimating a prediction.  

To ensure strategic use of the potential of digital technologies such as machine 

learning and robotics, 26 European countries signed the 2019 Declaration for  

"a smart and sustainable digital future for European agriculture and rural areas"  

(European Commission 2019), emphasizing the need for strong digital skills in the future. 

1.5 Digital qualification in higher education in plant science 

Along with the increased trend for digitalization and automation of plant  

production processes and in order to be able to understand and use the potential of  

modern machine learning techniques, a need arose to equip the students of "tomorrow" 

with a repertoire of digital competences. This is exemplified by the emergence of courses 

of study such as "precision farming/agriculture" (University of Applied Science  

“Ostwestfalen-Lippe”, Germany) and "Agriculture Informatics" (Shobhit University, India; 

Paul et al. 2020) which incorporate teaching units on topics such as informatics, automa-

tion, robotics, and sensor technology as a common base in addition to biological topics. 

Furthermore, high ranked universities such as the University of Wageningen have also 

introduced a Massive Open Online Courses (MOOCs) "Smart agriculture" to provide a 

globally accessible tool to strengthen participants' digital skills in this highly  

interdisciplinary field. The COVID19 pandemic has caused further acceleration in the use 
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of digital formats such as e-learning, blended learning approaches or MOOCs in higher 

education (Bedenlier et al. 2021). However, digital formats carry the risk that the  

sustainability of knowledge transfer will decrease due to the increasing abstractness and 

the lack of practical application experience. The question therefore arises how the 

strengths of digital formats such as accessibility, flexibility, adaptivity, can be combined 

with other formats that establish personal knowledge and practical relevance in order to 

maintain a sustainable knowledge transfer in higher education. This is especially true for 

areas that are partly still perceived as abstract, such as “machine learning” and  

“sensor technology”. 
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1.6 Thesis objectives 

In order to investigate the potential and the required digital competences for the use of 

automation and optical sensor technology in horticulture using the labor-intensive plant 

in vitro culture as an example, this thesis was subjected to the following objectives: 

I. To develop and establish a low-cost phenotyping robot system suitable for direct 

live-monitoring of plant in vitro cultures during cultivation in an established  

multi-layered shelf system, scalable for high-throughput use in commercial  

laboratories and capable of monitoring a wide range of plant species and various  

different in vitro culture techniques. For this, low-cost sensor systems should be  

evaluated in regards to their feasibility and potential to quantify key growth param-

eters of plant in vitro cultures. 

II. To investigate the spectral fingerprints of hyperhydricity and to identify specific  

absorption features of hyperhydric tissues that are sufficient for discrimination by 

ML techniques. The morphological characteristics of hyperhydric explants in  

time-series image data should be described by in situ monitoring with the developed 

novel phenotyping system. In addition, optical technologies towards automated de-

tection of hyperhydricity should be identified. 

III. To establish and explore the use of an interactive e-learning approach supported by 

low-cost sensor sets and phenotyping data in order to provide students in higher 

education with in-depth digital competence in the field of sensor technology in  

horticulture. 
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Supplementary Information 
 

 

SI. 1: Time lapse video of shoot regeneration of N. tabacum in vitro. Leaf explants were cultivated at MS 
medium supplemented 4.44 µM (BAP). Shoot development were monitored over 32 Days of cultivation. 
Images were segmented with a trained classifier. 
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SI. 2: Time lapse video with original images of A. thaliana growth in vitro. 10 days old seedling were culti-
vated on modified B5 medium (see Methods) and monitored for 16 days.  
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SI. 3: Time lapse video with segmented images of A. thaliana growth in vitro. 10 days old seedling were 
cultivated on modified B5 medium (see Methods) and monitored for 16 days. Images were segmented with 
a trained classifier. 

  



Manuscripts 

44 

 
 

SI. 4: Technical Repeatability of Z-axis repositioning. Five different Z-Axis values were set to the motion 
controller and approached five times with initial zeroing through limit switches each time. Actual height 
changes were recorded by the calibrated laser distance values.  

  

SI. 4 - Table 1: Technical Repeatability of Z-axis repositioning 

Specified Z-axis value [mm] 
Calibrated laser distance sensor 

readout [mm] 
MAE [mm] 

0 0.000 0.000 

0 -0.041 -0.0401 

0 -0.011 -0.0111 

0 -0.037 -0.0373 

0 -0.034 -0.0335 

-6 -6.028 0.0283 

-6 -6.025 0.0246 

-6 -6.021 0.0209 

-6 -6.058 0.0581 

-6 -6.017 0.0171 

-20 -20.078 0.0782 

-20 -20.082 0.0820 

-20 -20.082 0.0820 

-20 -20.097 0.0969 

-20 -20.086 0.0857 

-40 -40.142 0.1416 

-40 -40.138 0.1379 

-40 -40.142 0.1416 

-40 -40.179 0.1788 

-40 -40.183 0.1826 

-50 -50.156 0.1565 

-50 -50.171 0.1714 

-50 -50.171 0.1714 

-50 -50.130 0.1304 

-50 -50.201 0.2012 

Total  0.0923 
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SI. 5: Calibration of laser distance sensor. Linear regression of raw sensor values of the laser distance sensor. 
The reference height was determined with a caliper of a staircase shaped object (RGB and depth image in 
bottom left corner). The regression line is colored black, while the linear regression extrapolation is drawn 
dashed. Gray indicates confidence interval limits at α = 0.95. Adj R² denotes the coefficient of determination 
adjusted according to Yin and Fan (2001), while Pslope and Pinter represent p-values of the coefficients for the 
intercept and slope determined by simple T-test. MAE and RMSE indicate the mean absolute error and the 
root mean square error of calibration. n = 119 
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SI. 6: Technical Repeatability of spatial scanning with laser distance sensor over time. Determination of 
technical repeatability over time was conducted by measuring a reference object with a flat surface and a 
height of 41 mm once per day over 6 days, under the settings that were used in all experiments (Table 3). 
The initial depth measurement (Day 0) of an area of 50 mm × 50 mm was set as the reference for calculation 
of the mean absolute error (MAE) and the root mean square error (RMSE). The daily measurement proce-
dure included an initial zeroing through limit switches, repositioning and depth data acquisition by spatial 
scan. 

  

SI. 6 - Table 2: Technical Repeatability of spatial scanning with laser distance sensor over 
time 

Day [d] MAE [mm] RMSE [mm] Sample number [-] 

1 0.31 0.32 2500 

2 0.49 0.51 2500 

3 0.48 0.5 2500 

4 0.47 0.49 2500 

5 0.37 0.4 2500 

Total 0.42 0.44 12500 
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SI. 7: Random forest classification model features for segmentation of A. thaliana trail A. 
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SI. 8: Experimental and graphical determination of modified spectrometer detection spot size. Image of 
modified spectrometer are shown in upper right corner. A) Experimental determination of spectrometer 
detection spot size by a sequential spectrometer readout every 1 mm, while linear movement in X-axis over 
a grid with black background and white squares of decreasing size and a side length ranging from 30 mm 
to 21 mm. Spectrometer channel readouts with the highest signal were picked from the array and plotted 
over the x axis. We assumed that if the detection spot size diameter is smaller than the side length of the 
square a constant plateau is found in the respective peak. The first square where a sharp maximum was 
identifiable, or in particular its side length of 23 mm determined the spot size diameter. B) Graphical esti-
mation by drawing at a 1:1 scale. Graphical determination found a spot size diameter of 23.5 mm.  

 
  



Manuscripts 

49 

2.2 Towards automated detection of hyperhydricity in plant in vitro 

culture 

Hans Bethge1,2, Zahra Mohammadi Nakhjiri2, Thomas Rath1, Traud Winkelmann2 

1Laboratory for Biosystems Engineering, Faculty of Agricultural Sciences and Landscape Architec-
ture, Osnabrück University of Applied Sciences, 49090 Osnabrück, Germany 

2Institute of Horticultural Production Systems, Section of Woody Plant and Propagation Physiology, 
Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany 

 

 

Type of authorship:    First author 

Type of article:     Research article 

Status of article:     Accepted/In press 

Contribution to the article:  Designed and performed the experi-
ments and analysed the data. Prepared 
the figures and wrote the manuscript. 

Journal:  Plant Cell, Tissue and Organ Culture 
(PCTOC) 

Impact factor: 2.726 (2022-2023) 

DOI: 10.1007/s11240-023-02528-0 

 

Acknowledgment: Reproduced with permission from 
Springer Nature 

 
 
 
 
 
 

  



Manuscripts 

50 



Manuscripts 

51 



Manuscripts 

52 

 



Manuscripts 

53 

 



Manuscripts 

54 
 



Manuscripts 

55 

 



Manuscripts 

56 

 



Manuscripts 

57 

 



Manuscripts 

58 
 



Manuscripts 

59 

 



Manuscripts 

60 

 



Manuscripts 

61 
 



Manuscripts 

62 

 



Manuscripts 

63 

 



Manuscripts 

64 

 



Manuscripts 

65 

 



Manuscripts 

66 

 



Manuscripts 

67 

 



Manuscripts 

68 

 



Manuscripts 

69 

 



Manuscripts 

70 
 



Manuscripts 

71 

 



Manuscripts 

72 

  



Manuscripts 

73 

Supplementary Information 
 

 

SI. 1: Maximum shoot height and shape analysis of explants of A. thaliana Col-0 and Malus ‘G214’ (Mean 
±SD). A) The relative increase in mean maximum shoot height of upper 10th percentile resulted from anal-
ysis of segmented depth data collected with a scanning laser distance sensor and normalized to day 0 max-
imum plant height. B) Shape analysis parameter of single explants. Yellows lines indicates cultivation on 
standard media formulation on Gamborg-B5 (A. thaliana) and MS-Medium (Malus) solidified with 0.8% agar 
(w/v), while blue lines display the cultivation on induction media containing 0.25% (w/v) gelrite, inducing 
HH. Estimated 95th confidence interval was illustrated in light gray. C) Representative images of segmented 
single explants of the different plant species and treatments. Convex hull, longest path, centroid is colored 
in pink, while object area and perimeter are outlined in blue. Sample number (n) indicates A) individual 
culture containers and B) individual explants. Significance stars indicate comparisons of treatments within 
a time point (day) with * p < 0.05, * * p < 0.01, * * *   p < 0.001. Depth data were acquired with the multisen-
sory robot system “Phenomenon” (Bethge et al. 2023). 
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SI. 2: Sample holder for reflectance measurement with Perkin-Elmer Lambda 900 UV-VIS-NIR-SWIR 
spectrometer. Leaf samples were placed with adaxial orientation inside the 3D-printed sample holder. 
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SI. 3: Visual scoring and apoplastic liquid volume of Malus ‘G214’ Experiment IV & V. Samples from 0 
days after transfer (DAT 0) represent the starting plant material cultured on control media. Yellows bars 
indicate cultivation on standard media formulation MS-Medium with 0.8% (w/v) agar, while gray bars dis-
play the cultivation on induction media containing 0.25% (w/v) gelrite. Dashed lines represent the medians 
of each histogram. Sample number (n) indicates the individual explants. Different letters resulting from 
Kruskal-Wallis-Test followed by Fisher´s LSD (P <0.05) indicate significant differences between histograms. 
Different letters resulted from Tukey’s HSD test at P < 0.05 and show significantly different time points 
within one treatment, while asterisks indicate comparisons of treatments within a time point with * = P < 
0.05, * * =  P < 0.01, * * * =    P < 0.001. 
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SI. 4: Hyperhydricity induction time-lapse video in Malus ‘G214’. Left side represents control MS-Me-
dium solidified with 0.8% agar (w/v), while right image displays the cultivation on induction media con-
taining 0.25% (w/v) gelrite. Both media were supplemented with 1 g L-1 titanium dioxide. RGB Images were 
acquired with the multisensory robot system “Phenomenon” (Bethge et al. 2023). 
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SI. 5: Hyperhydricity induction time-lapse video in Arabidopsis. Left side represents control B5-Me-
dium solidified with 0.8% agar (w/v), while right image displays the cultivation on induction media con-
taining 0.25% (w/v) gelrite. Both media were supplemented with 1 g L-1 titanium dioxide. RGB Images were 
acquired with the multisensory robot system “Phenomenon” (Bethge et al. 2023). 
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SI. 6: Similarities in spectral reflectance of Malus sp. “G214“ and A. thaliana “Col-0”. Upper row repre-
sents extracted absorption features after segmented convex-hull removal of raw spectra and bottom row 
demonstrates difference spectrum of the absorption peaks. Normal (NN, colorized in green) and hyperhy-
dric (HH, colorized in blue) spectra membership were based on visual scoring of HH  
(NN, 0-1; HH 2-4). Colorized arrows indicating potential major biochemical leave compounds absorbing in 
the given wavelength region, according to Curran, 1989. Reflection spectra were measured with 
UV/VIS/NIR Spectrometer (PerkinElmer Lambda 950) in wavelength range of 200 – 2000 and a resolution 
of 1 nm. 
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SI. 7: SWIR-Hyperspectral image stack/video of Malus ‘Selection 4’. Image data set were acquired with 
the imaging system developed and described by Thiel (2018). This system consisted of an EVK Helios Core 
NIR Line-scan camera (240 px × 1 px and 252 spectral channels in the wavelength region of 900 nm to 1700 
nm), two 65 W halogen spot lights and a conveyer-belt system to move the sample. Spectral reflectance was 
recorded top-down through the lids of the culture containers. 
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SI. 8: Automated detection of Hyperhydricity via CNN, while the induction of HH in Malus ‘G214’ in 
time-lapse video. Left side represents control MS-Medium solidified with 0.8% agar (w/v), while right im-
age displays the cultivation on induction media containing 0.25% (w/v) gelrite. RGB images were acquired 
with the multisensory robot system “Phenomenon” (Bethge et al. 2023). Class membership predictions re-
sulted from the trained PCTOC_V3 object detection model, available under Bethge (2023).  
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3 Summarizing discussion and further perspective 

Plant phenotyping, performed by satellites, drones, agricultural vehicles, robots or 

ground-based platforms, is a rapidly expanding research area forming a pivotal discipline 

on the journey towards the digitalization of the agricultural and horticultural sector 

(Araus et al. 2018, Roitsch et al. 2019). However, phenotyping of plant in vitro cultures by 

sensor systems is an underrepresented research area with limited reports so far  

(Table 1). Thus, the potential of automated in situ phenotyping of plant in vitro cultures 

has also not been explored in depth. The special conditions of plant in vitro cultures such 

as imaging through closed vessels, specular lighting of vessel material, limited space in 

multi-layer shelf systems and formation of water condensation place highly challenging 

demands on phenotyping in this field. 

3.1 Automated phenotyping in commercial micropropagation 

Considering these specific claims, we have developed a novel robotic system 

named “Phenomenon” enabling multi-sensory in situ phenotyping of plant in vitro  

cultures (Bethge et al. 2023a). This study covered the design and realization of the  

mechatronic backbone, the implementation of the software architecture of the robotic 

system, as well as the creation of automated data acquisition and appropriate data  

processing pipelines. Furthermore, besides the description of the optical properties of 

culture containers, the feasibility of four tested low-cost sensors was investigated and  

unprecedented sensor data from plant in vitro cultures were demonstrated. Here, we 

could show the potential of the RGB-imaging in monitoring the horizontal growth of  

explants inside the culture vessels as well as the application of a laser-distance sensor for 

tracking the vertical growth and the feasibility of a micro spectrometer for sensing of  

chlorophyll fluorescence.  
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Most of the approaches to phenotyping in vitro cultures reported to date (Table 1) 

have either the disadvantage that the "plant-to-sensor" approach limits the automation 

and monitoring of cultivation (Smith et al. 1989, Aynalem et al. 2006, Ibaraki & Gupta 

2011, Mansouri et al. 2016, Gupta & Karmakar 2017, Mestre et al. 2017, Faragó et al. 

2018), or they focused heavily on Arabidopsis research (Dhondt et al. 2014,  

Barbez et al. 2017, Lube et al. 2022). The roboticized Phenomenon phenotyping system 

has several unique features such as the multi-sensory approach, direct in situ monitoring 

during cultivation, and by proposing an approach for solving the challenging imaging sit-

uation such as water condensation, specular lighting and mirroring that set it apart from 

other previously reported systems.  

We claimed that the system is of practical use for plant research and can be scaled 

up from a prototype to a commercial micropropagation system. However, the  

multi-sensory approach of the “Phenomenon” system limited the throughput by an  

increased size of the detection module and by the temporal and spatial boundaries, when 

acquiring multi-dimensional data of each object/explant. Furthermore, the system  

dimensions limited the operation area to 0.6 m². This reduced the system throughput to 

6 data acquisition cycles of 10 culture vessels per day in a multiple sensor mode or up to 

50 culture vessels per day in a single sensor mode. However, an application of  

phenotyping prototype system to commercial micropropagation with thousands to  

millions of vessels in a culture room would drastically change the system demands.  

Therefore, it is expected that a higher throughput, lower spatial and temporal resolution 

would be required in the application to commercial micropropagation. In addition, a  

complete transition to full automation of already partially automated data processing and 

analysis pipelines would be required.   
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Three out of four tested sensors (RGB camera, laser-distance sensor in shifted scan 

mode and micro spectrometer) produced novel, and reasonable data of plant in vitro cul-

tures. Whereas with RGB and depth data, important information about plant growth only 

emerges through their spatiality, chlorophyll fluorescence monitoring with a micro spec-

trometer holds the potential of high throughput and high information density through a 

single point measurement that allows quantification of biomass-correlated signals  

(review in Tremblay et al. 2012, Malapascua et al. 2014) and simultaneous information of 

physiological stress status (Lichtenthaler et al. 1998, Buschmann et al. 2000). Here, most 

studies to date focused either on ex vitro plants (Lichtenthaler et al. 1998, Buschmann et 

al. 2000) or microalgal cell culture (Malapascua et al. 2014), hardly comparable in size, 

habitus and physiological state to explants in micropropagation. Even if not investigated 

in detail, we expect that a spectral differentiating chlorophyll fluorescence sensor such as 

“Closed FluorCam” (Photon System Instruments) would meet the demands of high 

throughput, fast and accurate measurements of biomass and stress indicators. Thus, the 

“Phenomenon” system is suggested to be used for further investigations in this topic, in 

particular if biomass quantification by ground fluorescence signals or stress estimation 

by fluorescence signature can be generalized across multiple influencing factors such as 

plant species, chlorophyll content and explant height. Here, the multi-sensory approach 

of the system could use to fuse the data of projected plant area by RGB data, explant height 

by depth data and fluorescence intensity to robustly predict biomass in regression mod-

els. Furthermore, there is significant scientific interest in investigating the relationship 

between alterations in spectral fluorescence signatures and various stressors  

(Lichtenthaler & Rinderle 1988) encountered in vitro such as imbalanced culture media 

or emergence of disorders. 
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In addition, a scaled-up version of the “Phenomenon” system that achieves high-

throughput data collection could be perfectly used for media optimization of new in vitro 

cultures, which are still time-consuming and a major problem in plant tissue culture of 

some species (Nezami-Alanagh et al. 2019, Hameg et al. 2020, Hesami & Jones 2020). 

Hesami & Jones (2020) pointed out that Hildebrandt (1946) needed 108 different media, 

while Murashige and Skoog (1962) required five years and 81 different combinations to 

determine the balance between macro- and micronutrients in the basal medium. Here, 

projected plant area determined by RGB imaging and average canopy height determined 

by depth imaging could be used as decision variables that are maximized or minimized by 

an optimization algorithm to predict the optimal media composition in terms of nutrients 

and plant growth regulators. 

Furthermore, an industrial application would require implementation in a par-

tially existing database with a unique identifier for each culture vessel — realized, for 

example by automated capturing of barcodes, radio-frequency identification chips (RFID 

chips) or quick response codes (QR code), in agreement with the study of  

Seelye et al. (2014) for in vitro propagation of kiwifruit. Such a traceability would enable 

not only analyses of the tracing of historical performance of plant in vitro cultures, but 

also a deeper investigation on multi-factorial phenomena such as the habitation  

(Gaspar et al. 2000) by ensuring sufficient phenotyped replicates across multiple  

subcultures.  

We were able to demonstrate the successful monitoring of three plant species and 

different stages of plant in vitro culture using the presented method. However, the substi-

tution of the vessel lid by PVC foil and the use of a bottom-cooling system affected the 

growth speed of in vitro cultures by differences in gaseous exchange capacity and water 

vapor permeability. In parts, this can be solved if the Haze index is considered in addition 
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to high transparency and good gaseous exchange capacity when developing “easy to 

phenotype“ culture vessels in future. This creates new requirements for  

culture vessel design, such as complete clarity and high transmittance in different spectral 

regions and in addition to those already existing such as sterility, high gaseous exchange 

capacity, chemical inertness, high stability for transport and others (Chen 2003,  

Prakash et al. 2004). The condensation of water results from the thermal load of the cul-

tivation surface due to the high heat dissipation of the subjacent tubular fluorescent lamps 

in the multi-layer shelf systems. Water condensation was avoided in our study by a bot-

tom  

cooling system — the use of which was often hindered in commercial production by a 

reduction of the growth rate of some plant species— might be solved differently in future. 

On the one hand the whole horticultural sector undergoes a transition from traditional 

light sources to semi-conductor-based light emitting diodes (LEDs), and these are ex-

pected to become mainstream in commercial micropropagation as well, thus producing 

less absolute heat emission due to higher efficiency. On the other hand, with an expected 

increase in energy costs which are mainly caused by the necessity to cool the culture 

rooms, the use of bottom cooling systems could gain new relevance, since excess heat can 

be removed through the water pipes directly from culture rooms to a heat exchanger. 

3.2 Automated detection of morpho-physiological disorders  

in plant in vitro culture 

Plant in vitro culture covers a highly diverse field of research that involves the cul-

tivation of different plant species as cell, protoplast, tissue, or organ cultures using various 

pathways to generate plants undergoing different stages of development  

(Birnbaum & Alvarado 2008, George et al. 2008). Considering the major challenges such 

as shoot-tip necrosis, shoot fasciation, habituation, recalcitrance, albinism, somaclonal 
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variation (Hazarika & Bora 2008, Ruffoni & Savona 2013, Nezami-Alanagh et al. 2019, 

Abdalla et al. 2022) in plant in vitro culture in terms of plant physiological and genetic 

variation, we focused on physiological and morphological malformations in the context of 

hyperhydricity in our study (Bethge et al. 2023b). We were able to report new optical 

characteristics, as such reduced reflectance and major absorption peaks of hyperhydricity 

at 980 nm, 1150 nm, 1200 nm, 1400 nm, 1450 nm, 1520 nm, 1780 nm and higher reflec-

tion at 1930 nm of this disorder, provided new insights into the relationship between two 

established methods for assessing HH, and proposed the first two competing approaches 

for automatic detection of HH using ML techniques. 

While our findings allowed us to temporally narrow down the physiological events 

within the etiology of HH, it is important to note that our understanding of the  

underlying mechanism of hyperhydricity remains limited. Other aspects have been 

highlighted in our study, but in particular the reason for the flooding of the apoplast is not 

yet clear. Similar to many other studies (Pasqualetto et al. 1988, Franck et al. 1998,  

van den Dries et al. 2013), our investigation primarily focused on comparing non-induced 

explants cultivated under conditions of low water availability such as high plant agar con-

centrations with HH-induced explants cultivated in media offering high water availability 

(low plant agar concentration, gelrite, liquid culture). However, it is worth noting that the 

same non-induced explants can also develop HH if exposed to conditions of high water 

availability. Thus, the non-induced explants are already in an “inherent physiological state 

of latent HH”, in other words, the limited water availability prevents the expression of the 

disorder. In order to identify the fundamental cause, it is suggested to compare  

the metabolomic profiles (focused on osmotically active molecules within in apoplastic 

liquid) of multiple non-susceptible to serious affected genotypes of one or more plant spe-

cies in their non-induced state to visualize differences in their physiological  
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preconfiguration responsible for their susceptibility. This hypothesis is currently being 

investigated in parts as a side project examining the osmotic potential of susceptible and 

non-susceptible Malus genotypes in their latent HH state (Mohammadi Nakhjiri et al., un-

published). 

We have presented, to the best of our knowledge, the first application of an 

automated live-monitoring and detection based on computer vision combined with a 

convolutional neural network in plant in vitro culture. Certainly, there is room for 

debate regarding the optimal integration of imaging in the production process of 

commercial micropropagation, whether live-monitoring during cultivation or single 

endpoint imaging on a sterile conveyer belt system after a subculture is most efficient and 

provides sufficient information for the task at hand. As in other areas of horticulture,  

a tremendous potential of machine learning-assisted monitoring in plant in vitro culture 

for various tasks such as determination of optimal transfer time point, media composition, 

environmental conditions for cultivation, early detection of contaminations and 

endophytes, nutrient deficiencies, malformations, estimation of multiplication rate, and 

estimation of transferable explants. Although we have obtained promising results in 

detecting hyperhydricity, more complex taks such as multi-classification approaches  

(for example, specific and early identification between different malformations or culture 

problems) would demand larger data sets covering different domains, imaging systems, 

plant species, media and genotypes. To accelerate technological and scientific progress, 

image datasets should be used in the future to create a common online dataset for 

benchmarking the different tasks. 

Therefore, special attention was paid to the publication of new scientific findings 

under the aspects of unrestricted accessibility, sustainable research and easy 

applicability in accordance to FAIR (findability, accessibility, interoperability, 
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reusability) guiding princples (Wilkinson et al. 2016). Image data sets as well as written 

software modules were uploaded to free online repositories (Bethge 2022, Bethge 2023) 

that allow a permant usage and all scientific articles were published under open access. 

In addition, the weights of trained object detection models are now available online 

(Bethge 2023) and can be reused both, as initial weights to improve similar approaches 

in this area and to directly test model performance as an out-of-the-box feature of the 

hosting platform. 

3.3 Application of automated phenotyping robot in higher education 

At latest since the outbreak of the COVID19 pandemic at the beginning of this thesis 

project, universities worldwide have been forced to critically evaluate their digital 

learning offerings due to the partial or even complete elimination of face-to-face teaching. 

In order to compensate for the lack of practical courses and application relevance in 

digital teaching formats, we have created a concept for knowledge transfer for digital 

competencies in agriculture as a web-based e-learning system "SensX"  

(Bethge et al. 2023c). This approach focused primarily on integrating research data sets, 

small home experimental sensor kits sent to students, and Phenomenon system sensor 

data (Bethge et al. 2023a) into the digital teaching sessions of “SensX”. The evaluation of 

this concept was carried out by an empirical survey, qualitative interviews of the 

participating students by an external institution and the evaluation by the lecturers over 

a two-years periode with agricultural and biotechnology students at the University of 

Applied Sciences Osnabrück. This study revealed an overall high level of acceptance and 

advocacy of the concept by students with 70% good to very good rating. The student sur-

vey showed that as complexity of the learning task increased, students experienced ex-

cessive demands and rated the respective session lower. It therefore remains a fine line 

to provide student with ambitious hands-on exercises that promote a profound and 
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enduring understanding of digital skills, while avoiding overwhelming them with exces-

sive demands. 

While we could demonstrate a successful proof-of-concept of the applied teaching 

concept, in future we are aiming for the implementation of a remote phenotyping work-

shop on “How to remotely program and control a phenotyping robot” in the SensX  

e-learning platform. For this purpose, we draw on the software properties of Phenome-

non phenotyping robot (Bethge et al. 2023a), where a full remote control of all capabilities 

of the system was realized via programming language-independent online access. The 

goal is to i) design a biological experiment, ii) collaboratively program the robot with  

interactive computing notebooks (jupyter notebook or google colab) and iii) design  

suitable data processing and analysis pipelines with a small group of students over the 

course of a semester. In that case, the conceptualized experiment would then be physically 

set up by the instructor. In this way, students will be provided with deep insights into 

sensing, data processing, statistical analysis of biological experiments, programming, and 

skills at the intersection of digital technology and plant biology. 
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3.4 Summary with critical review of the state of fulfillment 

As a critical review of the thesis objectives (Table 2), the state of fulfillment is 

evaluated by the author.  

Table 2: Personal assessment of the thesis objectives 

Nr. Thesis objectives Personal Assessment[1] Comments References 

I.I 
Development of a low-cost phenotyping 
robot system suitable for live-monitoring 
of in vitro cultures during cultivation. 

++ 

Creation of Phenomenon phenotyping 
system. However, a certain degree of 
invasiveness is present due to use bot-
tom-cooling system, PVC film and TiO2 

Bethge et al. 
2023a 

I.II 
Scalable for high-throughput use in  
commercial laboratories. 

++ Scalability provided 
Throughput limited 

Bethge et al. 
2023a 

I.III 
Capable of monitoring a wide range of 
plant species and various developmental 
phases. 

+++ 

Monitoring of in vitro germination, 
shoot regeneration and shoot multi-
plication in Arabidopsis, Nicotiana and 
Malus demonstrated 

Bethge et al. 
2023a 

I.IV 

Low-cost sensor systems should be evalu-
ated in regards to their feasibility and po-
tential to quantify key growth parameters 
of plant in vitro cultures. 

+++ 
Four tested sensors were investigated 
and feasibility were described 

Bethge et al. 
2023a 

II.I 

Investigation of spectral fingerprints of 
hyperhydricity and identification of spe-
cific absorption features that are sufficient 
for discrimination by ML techniques.  

+++ 

Studies were conducted and major 
discriminating spectral features were 
identified: 980 nm, 1150 nm, 1450 
nm, 1520 nm, 1780 nm and 1930 nm 

Bethge et al. 
2023b 

II.II 
Morphological characterization of hyper-
hydric explants in time-series image data 
by Phenomenon phenotyping system. 

+++ 
Quantitative description and qualita-
tive time-lapse video of HH etiology 
were created 

Bethge et al. 
2023b 

II.III 
Identification optical technologies to-
wards automated detection of hyperhy-
dricity should be identified. 

++ 

A SWIR spectral classifier and an RGB 
object recognition model were pro-
posed for HH detection. Validation 
were promising, but also preliminary. 

Bethge et al. 
2023b 

III 

Establish an interactive e-learning ap-
proach supported by phenotyping data to 
provide students in higher education with 
in-depth digital competence in the field of 
sensor technology in horticulture. 

+ 

Proof-of-concept study was promis-
ing, but still needs deeper evaluation, 
fine-tuning, extension and more par-
ticipants 

Bethge et al. 
2023c 

[1]Note: Personal assement ranged from +++ completely fulfilled to — not fulfilled with 4 levels. 

In summary, the majority of the goals were either partially or fully reached. In this 

thesis a novel phenotyping robot for automated multi-sensory in-situ monitoring of plant 

in vitro culture was developed. Although a certain degree of invasiveness in cultivation 

could not be avoided and high throughput has not yet been achieved, a successful imaging 

of a wide range of plant species and developmental phase has been demonstrated.  

The platform was used to investigate the growth anomaly hyperhydricity, and optical 

characteristica of the growth anomaly — mainly located in the SWIR region — were 
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identified and the first approaches based on a spectral classifier and an object detection 

on RGB images for an automated detection of hyperhydricity were developed. However, 

the presented detection approaches require further validation to test their 

generalizability. A concept to use the phenotyping robot to strengthen digital skills in 

plant sciences in higher education was established. 
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4 Outlook 

Automated phenotyping of developmental processes of plant in vitro cultures is an 

intriguing and relatively unexplored research domain. In commercial micropropagation, 

the application of automated phenotyping could help provide continuous real-time data 

on growth performance for efficient use of production capacities. In order to advance the 

field, it is crucial to conduct a comprehensive survey on the necessity and implementation 

of digital phenotyping in commercial propagation and to promote new research projects 

in collaboration with micropropagation companies enhancing the throughput of  

phenotyping systems. By harnessing computer vision, sorting tasks aimed at generating 

uniform, high-quality plant material can be effectively addressed, thereby enhancing 

standardization while simultaneously reducing labor costs. Moreover, computer vision 

coupled with statistical learning methods could facilitate the early detection of  

contaminations, endophytic outgrowths, malformations, and morphological variations. 

Estimating multiplication rates, identifying transferable explants, and quantifying  

biomass are particularly valuable for commercial propagation practices. The integration 

of a high-throughput plant phenotyping system with advanced statistical learning meth-

ods offers the potential to extend the applications of phenomics to plant in vitro culture. 

This combination enables the comprehensive analysis of complex plant traits, facilitating 

large-scale genome-wide association studies and uncovering novel insights into the  

genetic basis of propagation rates and other phenotypic traits.  

Further research is needed to address the new requirements of optical monitoring 

of culture vessels. A temporal and spatial high resolution imaging of the physiological  

processes of plant in vitro cultures will support plant science in overcoming the  

challenges of micropropagation and lead to a better understanding of the development of 

growth anomalies. Here, applied research is needed to evaluate the use of advanced 
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imaging technology such as hyperspectral cameras and 3D-sensing sensors in plant in 

vitro culture. The use of machine learning, advanced imaging technologies and sensor  

fusion approaches in automated phenotyping can further enhance accuracy in detection 

and the prediction of complex phenotypic traits.   



References 

107 

5 References 

Abdalla N, El-Ramady H, Seliem MK, El-Mahrouk ME, Taha N, Bayoumi Y, Shalaby TA, Do-
bránszki J (2022) An academic and technical overview on plant micropropagation 
challenges. Horticulturae. Jul 25;8(8):677. 

Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE (2018) Translating high-through-
put phenotyping into genetic gain. Trends in plant science. May 1;23(5):451-66. 

Aynalem HM, Righetti TL, Reed BM (2006) Non-destructive evaluation of in vitro-stored 
plants: a comparison of visual and image analysis. In Vitro Cellular & Developmental 
Biology-Plant. Nov;42(6):562-7. 

Barbez F, Kleine-Vehn J and Barbez E (2017) Low-Cost Microprocessor-Controlled Rotating 
Stage for Medium-Throughput Time-Lapse Plant Phenotyping. Plant Hormones: 
Methods and Protocols, pp.37-45. 

Bedenlier, Svenja, Marion Händel, Rudolf Kammerl, Michaela Gläser-Zikuda, Bärbel Kopp, 
and Albert Ziegler (2021) "Akademische Mediennutzung Studierender im Corona-Se-
mester 2020: Digitalisierungsschub oder weiter wie bisher?." MedienPädagogik: Zeit-
schrift für Theorie und Praxis der Medienbildung 40. 229-252. 

Bethge H (2022) Phenomenon—low-cost and multi-sensor system for automated phenotyp-
ing of plant in vitro culture. https://github.com/halube/Phenomenon. Accessed 07 
Sept 2022. 

Bethge H (2023) HH Detection in vitro image Dataset. https://universe.ro-
boflow.com/hains/hh-detection-in-vitro/dataset/8.  
Accessed 10 February 2023 

Bethge H, Mählmann T, Winkelmann T, Rath T (2023c) Remote plant sensing and phenotyp-
ing–an e-learning tool in higher education. 43. GIL-Jahrestagung, Resiliente Agri-
Food-Systeme. 

Bethge H, Mohammadi Nakhjiri Z, Rath T, Winkelmann T (2023b) Towards auto-mated de-
tection of hyperhydricity in plant in vitro culture. Manuscript accepted, May 2023 in 
Plant Cell, Tissue and Organ Culture (PCTOC). 

Bethge H, Winkelmann T, Lüdeke P, Rath T (2023a) Low-cost and automated phenotyping 
system “Phenomenon” for multi-sensor in situ monitoring in plant in vitro culture. 
Plant Methods. 2023 Dec;19(1):1-25. https://doi.org/10.1186/s13007-023-01018-
w 

Birnbaum KD, Alvarado AS (2008) Slicing across kingdoms: regeneration in plants and ani-
mals. Cell. Feb 22;132(4):697-710. 

Breiman L (2001) Random forests. Machine learning. Oct;45:5-32. 

Buschmann C, Langsdorf G, Lichtenthaler HK (2000) Imaging of the blue, green, and red flu-
orescence emission of plants: an overview. Photosynthetica. Aug;38(4):483-91. 

Busemeyer L, Mentrup D, Möller K, Wunder E, Alheit K, Hahn V, Maurer HP, Reif JC, Wür-
schum T, Müller J, Rahe F (2013) BreedVision—A multi-sensor platform for non-de-
structive field-based phenotyping in plant breeding. Sensors. Feb 27;13(3):2830-47. 

Cardoso JC, Sheng Gerald LT, Teixeira da Silva JA (2018) Micropropagation in the twenty-
first century. Plant cell culture protocols. 17-46. 

Casanova E, Moysset L, Trillas MI (2008) Effects of agar concentration and vessel closure on 
the organogenesis and hyperhydricity of adventitious carnation shoots. Biologia 
Plantarum. Mar;52:1-8. 

Cavaco AM, Utkin AB, Marques da Silva J, Guerra R (2022) Making Sense of Light: The Use of 
Optical Spectroscopy Techniques in Plant Sciences and Agriculture. Applied Sciences. 
Jan 19;12(3):997. 

https://github.com/halube/Phenomenon


References 

108 

Chen C (2003) Development of a heat transfer model for plant tissue culture vessels. Biosys-
tems Engineering. May 1;85(1):67-77. 

Chen C (2016) Cost analysis of plant micropropagation of Phalaenopsis. Plant Cell, Tissue 
and Organ Culture (PCTOC). 126(1):167-75.  

Chen Y, Jiang C, Hyyppä J, Qiu S, Wang Z, Tian M, Li W, Puttonen E, Zhou H, Feng Z, Bo Y (2018) 
Feasibility study of ore classification using active hyperspectral LiDAR. IEEE Geosci-
ence and Remote Sensing Letters. Jul 31;15(11):1785-9. 

Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning. Sep;20:273-97. 

De Klerk GJ, Van Den Dries N, Krens FA (2015) Hyperhydricity: underlying mechanisms. In: 
VI International Symposium on Production and Establishment of Micropropagated 
Plants 1155 Apr 19 (pp. 269-276). 

Debergh P, Aitken-Christie J, Cohen D, Grout B, Von Arnold S, Zimmerman R, Ziv M (1992) 
Reconsideration of the term ‘vitrification’as used in micropropagation. Plant cell, Tis-
sue and organ culture. Aug;30:135-40. 

Dhondt S, Gonzalez N, Blomme J, De Milde L, Van Daele T, Van Akoleyen D, Storme V, Coppens 
F, TS Beemster G, Inzé D (2014) High-resolution time-resolved imaging of in vitro Ar-
abidopsis rosette growth. The Plant Journal. Oct;80(1):172-84. 

Dhondt S, Wuyts N, Inzé D (2013) Cell to whole-plant phenotyping: the best is yet to come. 
Trends in plant science. Aug 1;18(8):428-39. 

Du M, Wang X (2011) Linear discriminant analysis and its application in plant classification. 
In2011 Fourth International Conference on Information and Computing Apr 25 (pp. 
548-551). IEEE. 

European Commission (2019) A Smart and Sustainable Digital Future for European Agricul-
ture and Rural Areas. https://digital-strategy.ec.europa.eu/en/news/eu-member-
states-join-forces-digitalisation-european-agriculture-and-rural-areas. 

Faragó D, Sass L, Valkai I, Andrási N, Szabados L (2018) PlantSize offers an affordable, non-
destructive method to measure plant size and color in vitro. Frontiers in Plant Science. 
Feb 22;9:219. 

Fisher RA (1936) The use of multiple measurements in taxonomic problems. Annals of Eu-
genics. Sep;7(2):179-88. 

Franck T, Crèvecoeur M, Wuest J, Greppin H, Gaspar T (1998) Cytological comparison of 
leaves and stems of Prunus avium L. shoots cultured on a solid medium with agar or 
gelrite. Biotechnic & histochemistry. 73(1):32-43.  

Gamborg OL (2002) Plant tissue culture. biotechnology. milestones. In Vitro Cellular & De-
velopmental Biology-Plant. Mar;38:84-92. 

Gaspar T, Kevers C, Bisbis B, Franck T, Crèvecoeur M, Greppin H, Dommes J (2000) Loss of 
plant organogenic totipotency in the course of in vitro neoplastic progression. In Vitro 
Cellular & Developmental Biology. Plant. May 1:171-81. 

George EF, Hall MA, De Klerk GJ (2008) Plant propagation by tissue culture. Volume I. The 
background. Plant Propagation by Tissue Culture. Springer, Dordrecht.  

Gribble K (1999) The influence of relative humidity on vitrification, growth and morphology 
of Gypsophila paniculata L. Plant growth regulation. Mar;27:181-90. 

Guo Q, Zhu Z. Phenotyping of plants (2006) Encyclopedia of Analytical Chemistry: Applica-
tions, Theory and Instrumentation. Sep 15:1-5. 

Gupta SD, Karmakar A (2017) Machine vision based evaluation of impact of light emitting 
diodes (LEDs) on shoot regeneration and the effect of spectral quality on phenolic 
content and anti-oxidant capacity in Swertia chirata. Journal of Photochemistry and 
Photobiology B: Biology. Sep 1;174:162-72. 

Hakala T, Suomalainen J, Kaasalainen S, Chen Y (2012) Full waveform hyperspectral LiDAR 
for terrestrial laser scanning. Optics express. Mar 26;20(7):7119-27. 



References 

109 

Hameg R, Arteta TA, Landin M, Gallego PP, Barreal ME (2020) Modeling and optimizing cul-
ture medium mineral composition for in vitro propagation of Actinidia arguta. Fron-
tiers in Plant Science. Dec 23;11:554905. 

Hazarika BN, Bora A (2008) Hyperhydricity-A bottleneck to micropropagation of plants. InIV 
International Symposium on Acclimatization and Establishment of Micropropagated 
Plants. 865 Dec 8 (pp. 95-101). 

Hazarika BN, da Silva JT, Talukdar A (2006) Effective acclimatization of in vitro cultured 
plants: methods, physiology and genetics. Floriculture, ornamental and plant biotech-
nology: advances and topical issues. Dec;2:427-38. 

Hesami M, Jones AM (2020) Application of artificial intelligence models and optimization al-
gorithms in plant cell and tissue culture. Applied Microbiology and Biotechnology. 
Nov;104:9449-85. 

Hildebrandt AC, Riker AJ, Duggar BM (1946) The influence of the composition of the medium 
on growth in vitro of excised tobacco and sunflower tissue cultures. American Journal 
of Botany. Jul 1:591-7. 

Honda H, Takikawa N, Noguchi H, Hanai T, Kobayashi T (1997) Image analysis asso-ciated 
with a fuzzy neural network and estimation of shoot length of regenerated rice callus. 
Journal of Fermentation and Bioengineering. 84(4):342-7. 

Hummel (2012) PlantEye–A novel 3D sensor platform for automated determination of plant 
growth dynamics 

Hutter I, Schneider C (2019) Commercial micropropagation in Germany. Journal of Applied 
Botany and Food Quality. 92:226-31. 

Ibaraki Y, Gupta SD (2011) Thermal imaging of micropropagated plantlets for evaluation of 
possible wilting. Environmental Control in Biology.49(3):141-8. 

Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensäureassimilation. Naturwissenschaf-
ten. 1931 Nov;19(48):964. 

Kazmi W, Foix S, Alenyà G, Andersen HJ (2014) Indoor and outdoor depth imaging of leaves 
with time-of-flight and stereo vision sensors: Analysis and comparison. ISPRS journal 
of photogrammetry and remote sensing. Feb 1;88:128-46. 

Kemat N (2020) Improving the quality of tissue-cultured plants by fixing the problems re-
lated to an inadequate water balance, hyperhydricity (Doctoral dissertation, Wa-
geningen University and Research). 

Kemat N, Visser RG, Krens FA (2021) Hypolignification: A decisive factor in the development 
of hyperhydricity. Plants. Nov 29;10(12):2625. 

Kozai T (1991) Micropropagation under photoautotrophic conditions. Micropropagation: 
technology and application.447-69. 

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature. May 28;521(7553):436-44. 

Lee LC, Liong CY, Jemain AA (2018) Partial least squares-discriminant analysis (PLS-DA) for 
classification of high-dimensional (HD) data: a review of contemporary practice strat-
egies and knowledge gaps. Analyst.143(15):3526-39. 

Li L, Zhang Q, Huang D (2014) A review of imaging techniques for plant phenotyping. Sen-
sors. Oct 24;14(11):20078-111. 

Lichtenthaler HK, Rinderle U (1988) The role of chlorophyll fluorescence in the detection of 
stress conditions in plants. CRC Critical Reviews in Analytical Chemistry. Jan 
1;19(sup1):S29-85. 

Lichtenthaler HK, Wenzel O, Buschmann C, Gitelson A (1998) Plant stress detection by re-
flectance and fluorescence. Annals of the New York Academy of Sciences. 851:271-85. 

Lin Y (2015) LiDAR: An important tool for next-generation phenotyping technology of high 
potential for plant phenomics?. Computers and electronics in Agriculture. Nov 
1;119:61-73. 



References 

110 

Lube V, Noyan MA, Przybysz A, Salama K, Blilou I (2022) MultipleXLab: A high-throughput 
portable live-imaging root phenotyping platform using deep learning and computer 
vision. Plant Methods. Mar 27;18(1):38. 

Mahendra, Prasad VS, Gupta SD (2004) Trichromatic sorting of in vitro regenerated plants 
of gladiolus using adaptive resonance theory. Current Science. 10:348-53.  

Malapascua JR, Jerez CG, Sergejevová M, Figueroa FL, Masojídek J (2014) Photosynthesis 
monitoring to optimize growth of microalgal mass cultures: application of chlorophyll 
fluorescence techniques. Aquatic biology. Nov 20;22:123-40. 

Mansouri A, Fadavi A, Mortazavian SM (2016) An artificial intelligence approach for model-
ing volume and fresh weight of callus–A case study of cumin (Cuminum cyminum L.). 
Journal of Theoretical Biology. May 21;397:199-205. 

McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. 
The Bulletin of Mathematical Biophysics. Dec;5:115-33. 

Mestre D, Fonseca JM, Mora A (2017) Monitoring of in-vitro plant cultures using digital image 
processing and random forests. 8th International Conference on Pattern Recognition 
Systems. 

Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco 
tissue cultures. Physiologia plantarum. 15(3):473-97.  

Narvaez FY, Reina G, Torres-Torriti M, Kantor G, Cheein FA (2017) A survey of ranging and 
imaging techniques for precision agriculture phenotyping. IEEE/ASME Transactions 
on Mechatronics. Oct 9;22(6):2428-39. 

Nezami-Alanagh E, Garoosi GA, Landín M, Gallego PP (2019) Computer-based tools provide 
new insight into the key factors that cause physiological disorders of pistachio root-
stocks cultured in vitro. Scientific Reports. Jul 5;9(1):9740. 

Paques M, Boxus P, Dulos M (1985) " Vitrification": an induceable and reversible 
phenomenon. In: Symposium on In Vitro Problems Related to Mass Propaga-tion of 
Horticultural Plants 212. pp 253-258.  

Pasqualetto PL, Zimmerman RH, Fordham I (1988) The influence of cation and gelling agent 
concentrations on vitrification of apple cultivars in vitro. Plant Cell, Tissue and Organ 
Culture. 14(1):31-40.  

Paul PK, Sinha RR, Baby P, Shivraj KS, Aremu B, Mewada S (2020) Agricultural Informatics 
as a Branch of Study in Information Sciences and Technology Domain-A Proposal to-
wards Digital Agriculture. International Journal of World Policy and Development 
Studies.;6(6):56-65. 

Pearson K. LIII (1901) On lines and planes of closest fit to systems of points in space. The 
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Nov 
1;2(11):559-72. 

Pérez-Bueno ML, Pineda M, Cabeza FM, Barón M (2016) Multicolor fluorescence imaging as 
a candidate for disease detection in plant phenotyping. Frontiers in Plant Science. Dec 
2;7:1790. 

Podwyszyńska M, Orlikowska T, Trojak-Goluch A, Wojtania A (2022) Application and Im-
provement of In Vitro Culture Systems for Commercial Production of Ornamental, 
Fruit, and Industrial Plants in Poland. Acta Societatis Botanicorum Poloniae. Jan 1;91. 

Prakash S, Hoque MI, Brinks T (2004) Culture media and containers. Low cost options for 
tissue culture technology in developing countries, FAO/IAEA Division of Nuclear 
Techniques in Food and Agriculture, Vienna. Feb 1:29-40. 

Prasad VS, Gupta SD (2008) Applications and potentials of artificial neural networks in plant 
tissue culture. Plant tissue culture engineering. pp. 47-67. 

Ringnér M (2008) What is principal component analysis?. Nature Biotechnology. 
Mar;26(3):303-4. 



References 

111 

Roitsch T, Cabrera-Bosquet L, Fournier A, Ghamkhar K, Jiménez-Berni J, Pinto F, Ober ES 
(2019) New sensors and data-driven approaches—A path to next generation phe-
nomics. Plant Science. May 1;282:2-10. 

Rojas-Martínez L, Visser RG, De Klerk GJ (2010) The hyperhydricity syndrome: waterlogging 
of plant tissues as a major cause. Propag Ornam Plants. Dec 1;10(4):169-75. 

Ruffoni B, Savona M (2013) Physiological and biochemical analysis of growth abnormalities 
associated with plant tissue culture. Horticulture, Environment, and Biotechnology. 
Jun;54(3):191-205. 

Schulz H, Baranska M (2007) Identification and quantification of valuable plant substances 
by IR and Raman spectroscopy. Vibrational Spectroscopy. Jan 16;43(1):13-25. 

Seelye JF, Corpe S, Debenham MC (2014) A management system for tracking high health in 
vitro kiwifruit germplasm. InXXIX International Horticultural Congress on Horticul-
ture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): 1113 Aug 17 (pp. 113-
118). 

Smith MA, Spomer LA (1995) Vessels, gels, liquid media, and support systems. Automation 
and environmental control in plant tissue culture.371-404. 

Smith MA, Spomer LA, Meyer MJ, McClelland MT (1989) Non-invasive image analysis evalu-
ation of growth during plant micropropagation. Plant Cell, Tissue and Organ Culture. 
Nov;19:91-102. 

Tremblay N, Wang Z, Cerovic ZG (2012) Sensing crop nitrogen status with fluorescence indi-
cators. A review. Agronomy for sustainable development. Apr;32:451-64. 

van den Dries N, Giannì S, Czerednik A, Krens FA, de Klerk GJ (2013) Flooding of the apoplast 
is a key factor in the development of hyperhydricity. Journal of experimental botany. 
Nov 1;64(16):5221-30. 

Vanderschaeghe AM, Debergh PC (1987) Technical aspects of the control of the relative hu-
midity in tissue culture containers. Mededelingen van de Faculteit landbouwweten-
schappen. Rijksuniversiteit Gent. 52(4a):1429-37. 

Walter A, Liebisch F, Hund A (2015) Plant phenotyping: from bean weighing to image analy-
sis. Plant methods. Dec;11(1):1-1. 

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Bo-
iten JW, da Silva Santos LB, Bourne PE, Bouwman J (2016) The FAIR Guiding Princi-
ples for scientific data management and stewardship. Scientific data. Mar 15;3(1):1-
9. 

Winkelmann T, Geier T, Preil W (2006) Commercial in vitro plant production in Germany in 
1985–2004. Plant cell, tissue and organ culture. Sep;86(3):319-27. 

Wold S, Ruhe A, Wold H, Dunn, Iii WJ (1984) The collinearity problem in linear regression. 
The partial least squares (PLS) approach to generalized inverses. SIAM Journal on Sci-
entific and Statistical Computing. Sep;5(3):735-43. 

Zhang C, Timmis R, Hu WS (1999) A neural network based pattern recognition system for 
somatic embryos of Douglas fir. Plant cell, tissue and organ culture. 56:25-35. 

Zomer RJ, Trabucco A, Ustin SL (2009) Building spectral libraries for wetlands land cover 
classification and hyperspectral remote sensing. Journal of environmental manage-
ment. 90(7):2170-7. 
 

  



Curriculum vitae 

112 

6 Curriculum vitae 

Hans Bethge 
06.10.1989 

Bredenbecker Str. 6 
30449 Hannover 

 

Education 
 

2019 — 2023 

 

Ph.D. student 
Institute of Horticultural Production Systems. 
Department Woody Plant and Propagation Physiology. 
Cooperative: University of Applied Sciences Osnabrück, 
Leibniz University Hannover. 
• „ Towards automated phenotyping in plant tissue 

culture “ 

2016 — 2018 Master studies Horticultural Science M.Sc. 
Institute of Horticultural Production Systems. 
Department Woody Plant and Propagation Physiology. 
Leibniz University Hannover. 
• „Development of a LED-Research-module for  

plant in vitro culture“ 

2012 — 2016 Bachelor studies Horticultural Science B.Sc. 
Wissenschaftszentrum Weihenstephan (WZW). 
Technische Universität München (TUM). 
• „Quality optimization of sports turf through  

different light quality“ 

2010 — 2012 Bachelor studies Brewing and beverage technology 
Wissenschaftszentrum Weihenstephan (WZW). 
Technische Universität München (TUM). 

2009 — 2010 Civilian service 
Haus Tobias, Integrativer Kindergarten Freiburg. 

2009 University Entrance Degree (Abitur) 
Bertha-von-Suttner-Schule 
Agrarwissenschaftliches Gymnasium Ettlingen. 

Work experience 
 

2023 

 

Scientific project assistant 
Leibniz University Hannover. Department Phytophotonic. 
MWK-funded project: “HyperKorr” — Korrelative opti-
sche Erfassung pflanzlicher Krankheitssymptome zur 
Steigerung der Vorhersagegüte hyperspektraler Mess-
syteme in der Landwirtschaft. 

  



Curriculum vitae 

113 

2019-2022 Scientific project assistant 
University of Applied Sciences Osnabrück 
BMEL-funded project: “Agro-Nordwest” — Experimenta-
tion Field for the Digital Transformation in Crop Farming. 

2019 Scientific assistant for writing of a research proposal 
University of Applied Sciences Osnabrück.  
Research proposal: “AgriGain” — Agricultural Gateway for 
Artificial Intelligence”. 

2019 Scientific assistant 
University of Applied Sciences Osnabrück 
Proof study: “UV imaging for plant phenotyping” 
Laboratory for Micro- and Optoelectronics. 

Scholarships 
 

2022-2023 

 

Completion of the doctoral thesis 
University of Applied Sciences Osnabrück. 

Awards & Research activity 
 

2022 

 

Best Poster Award — ISHS Young Minds Award 2022 
“Phenotyping robot for plant in vitro culture”. 
International horticulture congress. IHC, Anger 2022. 

2020-2022 Scientific review activity 
ORCID: 0000-0002-3487-9725. 
Plant Cell, Tissue and Organ Culture (PCTOC) Journal 
Springer Nature. 

2019 TASPO-Award — Junge Wissenschaft 2019 
„Monitoring von Nährstoffmangelerscheinungen, 
Wachstumsanomlien und Kontaminationen  
ausgewählter pflanzlicher In-vitro-Kulturen“. 
Haymarket Media GmbH & Co. KG, Berlin 2019. 

2018 Best Poster Award — ICULTA 2018 
“Design and fabrication of a microcontroller based wire-
less LED-research module for application in in vitro cul-
ture labs”. International Conference on UV LEDs Technol-
ogy and Applications. ICULTA, Berlin 2018. 

Selected certified workshops 
 

2022 

 

Winter School — Image Analysis for Plant Phenotyping. 
5-days online workshop. Wagening University & Re-
search. International Plant Phenotyping Network (IPPN). 

2021 Hackaton — Plant phenotyping with minicomputers and 
low-cost cameras. 3-days online workshop. Anger, France. 
International Plant Phenotyping Network (IPPN). 



List of publications 

114 

7 List of publications 

7.1 Peer reviewed publications 

Steger S, Steinbacher F, Bethge H, Dreier C (2016) Quality optimization of sport 
lawns by LED lighting technology. European Journal of Turfgrass Science, 
47(4), 76-80. 

 

Assou J, Bethge H, Wamhoff D, Winkelmann T (2022) Effect of cytokinins and 
light quality on adventitious shoot regeneration from leaflet explants of 
peanut (Arachis hypogaea). The Journal of Horticultural Science and Bio-
technology, 1-18. https://doi.org/10.1080/14620316.2022.2160382  

 

Bethge H, Winkelmann T, Lüdeke P, Rath T (2023) Low-cost and automated phe-
notyping system “Phenomenon” for multi-sensor in situ monitoring in 
plant in vitro culture. Plant Methods 19, 42. 
https://doi.org/10.1186/s13007-023-01018-w  

 

Bethge H, Mohammadi Nakhjiri Z, Rath T, Winkelmann T (2023) Towards auto-
mated detection of hyperhydricity in plant in vitro culture. Manuscript ac-
cepted/In press, May 2023 in Plant Cell, Tissue and Organ Culture 
(PCTOC). https://10.1007/s11240-023-02528-0  

7.2 Non reviewed publications 

Bethge H, Rath T, Winkelmann T (2018) Entwicklung eines Mikrocontroller-ba-
sierten LED-Belichtungsmoduls für die pflanzliche In-vitro-Kultur. Ver-
suche im deutschen Gartenbau- Zierpflanzen. Hortigate. 

7.3 Conference contributions 

Conference manuscripts 

Bethge H, Mählmann T, Winkelmann T, Rath T (2023) Remote plant sensing and 
phenotyping — an e-learning tool in higher education. Lecture Notes in in-
formatics (LNI), 43. GIL-Jahrestagung, Gesellschaft für Informatik eV (GIL), 
2023 

Oral presentations 

Gesellschaft für Pflanzenzüchtung e.V. GPZ-AG 18 (Zierpflanzen) 
September, 2021, Hann. Münden (Germany) 
Bethge H, Rath T, Winkelmann T: “Chancen und Herausforderungen bei 
der Entwicklung eines In-vitro-Phänotypisierungssystems“ 

 

7th International Plant Phenotyping Symposium (IPPS 2022) 
September, 2022, Wageningen (Netherlands) 
Bethge H, Winkelmann T, Lüdeke P, Rath T: ”In situ monitoring and pheno-
typing of plant in vitro cultures” 

  

https://doi.org/10.1080/14620316.2022.2160382
https://doi.org/10.1186/s13007-023-01018-w
https://10.0.3.239/s11240-023-02528-0


List of publications 

115 

Poster presentations 

International horticulture congress (IHC 2022). 
August, 2022, Angers (France) 
Bethge H, Winkelmann T, Lüdeke P, Rath T: “Phenotyping robot for plant 
in vitro culture”. 

 

7th International Plant Phenotyping Symposium (IPPS 2022) 
September, 2022, Wageningen (Netherlands) 
Bethge H, Winkelmann T, Lüdeke P, Rath T: ”Phenotyping robot for  
everyone”.  



Acknowledgement 

116 

8 Acknowledgement 

First of all, I would like thank Prof. Dr. Traud Winkelmann, who managed to get me 

fascinated to plant in vitro culture and guided me from study to doctorate. Your  

systematic and meticulous scientific work is remarkable and every student gain self-con-

fidence from your unique human mentoring, despite the emotional valleys that must be 

pass on the way of the PhD. I am very thankful that you offered me your high quality  

supervision, even though I was a horticulturist with somehow exotic research interest.  

I would like to express my special appreciation and thanks to Prof. Dr. Thomas 

Rath, who strength my interest to photonics and managed to find the financial backbone 

of my doctoral studies. I always could identify myself with your unconventional point of 

view with simultaneous huge interest in science. I am very grateful for your support and 

tough discussions about technical and methodical details. 

My special thanks go to Prof. Dr. Dag Heinemann, who has granted me the urgently 

needed time to finish my final manuscript and that he has agreed to chair the examination 

committee for the disputation. I look forward to working with you in the new research 

group in the future. 

I would also like to mention Prof. Dr. Arno Ruckelshausen, who gave me the chance 

to gain insights into sensor technology and robotics in agricultural sector. I always  

enjoined being a temporary member of your working group. 

Furthermore, I especially thank Patrick Lüdeke without whom I wouldn´t be able 

to solve all the software issues within the project. Thank you for being a good friend and 

for taking your time. 

Many thanks to David Wamhoff in whom I have found an allied friend, supporting 

me with lots of jokes in the daily struggle of the PhD.  

I would also like to thank Zahra Mohammadi Nakhjiri for being an excellent master 

student, for proof reading and the support in the writing the manuscript. 

Finally, like to express my special thanks to whole research group of the  

department of Woody Plant and Propagation Physiology providing a wonderful working 

environment. In particular, coffee breaks with Bärbel Ernst and Ewa Schneider has 



Acknowledgement 

117 

proven to be essential for me. Thank you for your open ears to subject and non-subject 

related questions, for your daily support in the lab and the time with you. 


