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Abstract

Abstract

Plant in vitro culture techniques comprise important fundamental methods of modern
plant research, propagation and breeding. Innovative scientific approaches to further develop the
cultivation process, therefore, have the potential of far-reaching impact on many different areas.
In particular, automation can increase efficiency of in vitro propagation, a domain currently con-
strained by intensive manual labor. Automated phenotyping of plant in vitro culture bears the
potential to extend the evaluation of in vitro plants from manual destructive endpoint
measurements to continuous and objective digital quantification of plant traits. Consequently, this
can lead to a better understanding of crucial developmental processes and will help to clarify the
emergence of physiological disorders of plant in vitro cultures.

The aim of this dissertation was to investigate and exemplify the potential of
optical sensing methods and machine learning in plant in vitro culture from an interdisciplinary
point of view. A novel robotic phenotyping system for automated, non-destructive,
multi-dimensional in situ detection of plant traits based on low-cost sensor technology was con-
ceptualized, developed and tested. Various sensor technologies, including an RGB camera, a laser
distance sensor, a micro spectrometer, and a thermal camera, were applied partly for the first time
under these challenging conditions and evaluated with respect to the resulting data quality and
feasibility. In addition to the development of new dynamic, semi-automated data processing
pipelines, the automatic acquisition of multisensory data across an entire subculture passage of
plant in vitro cultures was demonstrated. This allowed novel time series images of different
developmental processes of plant in vitro cultures and the emergence of physiological disorders
to be captured in situ for the first time. The digital determination of relevant parameters such as
projected plant area, average canopy height, and maximum plant height, was demonstrated,
which can be used as critical descriptors of plant growth performance in vitro. In addition, a novel
method of non-destructive quantification of media volume by depth data was developed which
may allow monitoring of water uptake by plants and evaporation from the culture medium.

The phenotyping system was used to investigate the etiology of the physiological growth
anomaly hyperhydricity. Therefore, digital monitoring of the morphology and along with spectro-
scopic studies of reflectance behavior over time were conducted. The new optical characteristics
identified by classical spectral analysis, such as reduced reflectance and major absorption peaks
of hyperhydricity in the SWIR region could be validated to be the main discriminating features by
a trained support vector machine with a balanced accuracy of 84% on test set, demonstrating the
feasibility of a spectral detection of hyperhydricity. In addition, an RGB image dataset was used
for automated detection of hyperhydricity using deep neural networks. The high-performance
metrics with precision of 83.8% and recall of 95.7% on test images underscore the presence of for
detection sufficient number of discriminating features within the spatial RGB data, thus a second
approach is proposed for automatic detection of hyperhydricity based on RGB images.

The resulting multimodal sensor data sets of the robotic phenotyping system were tested
as a supporting tool of an e-learning module in higher education to increase the digital skills in
the field of sensing, data processing and data analysis, and evaluated by means of a student survey.
This proof-of-concept study revealed an overall high level of acceptance and advocacy by students
with 70% good to very good rating. However, with increased complexity of the learning task, stu-
dents experienced excessive demands and rated the respective session lower.

In summary, this study is expected to pave the way for increased use of automated sensor-
based phenotyping in conjunction with machine learning in plant research and commercial mi-
cropropagation in the future.

Keywords: In vitro culture, phenotyping, imaging, hyperhydricity,
sensors, machine learning, teaching



Zusammenfassung

Zusammenfassung

Die pflanzliche In-vitro-Kultur umfasst wichtige grundlegende Methoden der modernen
Pflanzenforschung, -vermehrung und -ziichtung. Innovative wissenschaftliche Ansatze zur Wei-
terentwicklung des Kultivierungsprozess konnen daher weitreichenden Einfluss auf viele unter-
schiedliche Bereiche haben. Insbesondere die Automatisierung kann die Effizienz der In-vitro-
Vermehrung steigern, die derzeit durch die intensive manuelle Arbeit beschrankt wird. Automa-
tisierte Phanotypisierung von In-vitro-Kulturen erméglicht es, die Erfassung von manuellen de-
struktiven Endpunktmessungen auf eine kontinuierliche, objektive und digitale Quantifizierung
der Pflanzenmerkmale auszuweiten. Dies kann zu einem besseren Verstandnis entscheidender
Entwicklungsprozesse fithren und die Entstehung physiologischer Stérungen zu klaren.

Ziel dieser Dissertation war es, das Potential optischer Erfassungsmethoden und des
maschinellen Lernens fiir die pflanzliche In-vitro-Kultur unter interdisziplindren Gesichtspunk-
ten zu untersuchen und exemplarisch aufzuzeigen. Ein neuartiger Phanotypisierungsroboter zur
automatisierten, zerstorungsfreien, mehrdimensionalen In-situ-Erfassung von
Pflanzenmerkmalen wurde auf Basis kostenglinstiger Sensortechnik entwickelt. Unterschiedliche
Sensortechnologien, darunter eine RGB-Kamera, ein Laser-Distanzsensor, ein Mikrospektrometer
und eine Warmebildkamera, wurden teils zum ersten Mal unter diesen schwierigen Bedingungen
eingesetzt und im Hinblick auf die resultierende Datenqualitit und Realisierbarkeit bewertet.
Neben der Entwicklung dynamischer, halbautomatischer Datenverarbeitungspipelines, wurde
die automatische Erfassung multisensorischer Daten iiber eine gesamte Subkulturpassage der In-
vitro-Kulturen demonstriert. Dadurch konnte erstmals Zeitrafferaufnahmen verschiedener Ent-
wicklungsprozesse von pflanzlichen In-vitro-Kulturen und das Auftreten von physiologischen
Stoérungen in situ erfasst werden. Die digitale Bestimmung relevanter Kenngrofien wie der proji-
zierten Pflanzenflache, der durchschnittlichen Bestandshohe und der maximalen Pflanzenhohe
wurde demonstriert, die als wichtige Deskriptoren fiir das pflanzliche Wachstum dienen kénnen.
Daruber hinaus konnte eine neue Methode fiir die Pflanzenwissenschaften entwickelt werden, um
die Wasseraufnahme von Pflanzen und die Verdunstung von Kulturmedien auf der Grundlage
einer zerstérungsfreien Quantifizierung des Medienvolumens zu iiberwachen.

Der Phanotypisierungsroboter wurde zur Untersuchung der Entstehung der Wachs-
tumsanomalie Hyperhydrizitit eingesetzt. Hierfiir wurden ein digitales Monitoring der Morpho-
logie der Explantate mit begleitenden spektroskopischen Untersuchungen des Reflexionsverhal-
tens im Zeitverlauf durchgefiihrt. Die durch Spektralanalyse identifizierten optischen Merkmale,
wie den reduzierter Reflexionsgrad und die Hauptabsorptionspeaks der Hyperhydrizitat in der
SWIR-Region, konnten als die wichtigsten Unterscheidungsmerkmale durch ein Support-Vektor-
Maschine-Model mit einer Genauigkeit von 84% auf dem Testsatz validiert werden und damit
Machbarkeit der spektrale Identifizierung von Hyperhydrizitat aufzeigen. Dariiber wurde fiir die
automatische Detektion der Hyperhydrizitit auf Basis von RGB-Bildern ein neuronales Netz
trainiert. Die hohen Kennzahlen im Testdatensatz wie die Prazision von 83,8 % und einem Recall
von 95,7 % unterstreichen das Vorhandensein einer fiir die Erkennung ausreichenden Anzahl von
Unterscheidungsmerkmalen innerhalb der raumlichen RGB-Daten. Somit konnte ein zweiter An-
satz der automatischen Detektion von Hyperhydrizitat durch RGB-Bilder prasentiert werden.

Die resultierenden Sensordatensitze des Phanotypisierungsroboters wurden als unter-
stiitzendes Werkzeug eines E-Learning Moduls zur Steigerung digitaler Kompetenzen im Bereich
Sensortechnik, Datenverarbeitung und -auswertung in der Hochschulausbildung erprobt und an-
hand der Befragung von Studierenden evaluiert. Diese Machbarkeitsstudie ergab eine insgesamt
hohe Akzeptanz durch die Studierenden mit 70% guten bis sehr guten Bewertungen. Mit zuneh-
mender Komplexitdat der Lernaufgabe fiihlten sich die Studierenden jedoch tberfordert und
bewerteten die jeweilige Session schlechter.

Zusammenfassend zielt diese Arbeit darauf ab den Weg fiir einen verstarkten Einsatz der
automatisierten, sensorbasierten Phanotypisierung in Kombination mit den Techniken des ma-
schinellen Lernens der Forschung und der kommerziellen Mikrovermehrung zukiinftig zu ebnen.
Schiisselworter: In-vitro-Kultur, Phanotypisierung, Bildgebung, Hyperhydrizitat,

Sensoren, maschinelles Lernen, Lehre



Abbreviations

Abbreviations
ANN Artificial neural networks
CNN Convolutional neural networks
DNN Deep neural networks
HH Hyperhydricity
HTP High-throughput plant phenotyping
LDA Linear discriminant analysis
LIDAR Light detection and ranging
ML Machine learning
MOOC Massive open online courses
NIR Near-infrared
PCA Principal component analysis
PGRs Plant growth regulators
PLS Partial least square
RF Random forest
SVM Supported vector machines
SWIR Shortwave infrared
ToF Time-of-flight
uv Ultraviolet
VIS Visible
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General Introduction

1 General Introduction

1.1 Hyperhydricity - a major bottelneck in plant in vitro culture

Plant in vitro culture techniques form the basis of most biotechnological methods
for plant breeding and propagation. Plant in vitro culture enables clonal mass propagation
of valuable plants, supports plant breeding by regeneration from single cells, preserves
endangered plant species in gene banks and allows efficient production of secondary
metabolites by medical plants, among others (Birnbaum & Alvarado 2008,
George et al. 2008). Although data on in vitro plant production on a worldwide scale are
lacking — probably due to the withholding of production data by global players in
commercial micropropagation, and being composed by different horticultural sectors
such as ornamental, forestry, fruit and aquatic plants — for Germany, these data are
available and revealed the main micropropagated plant genera to be Phalaenopsis spp.,
Rubus spp. and Helleborus spp. (Winkelmann et al. 2006, Hutter & Schneider 2019). Other
globally important micropropagated plant genera are Musa spp., Solanum spp., Fragaria

spp., Vaccinium spp. and others (Gamborg 2002, Podwyszynska et al. 2022).

Plant in vitro propagation can reach high multiplication factors in short time and
allows to produce genetically uniform and disease-free explants in many plant species.
However, due to the special conditions of explants cultivated aseptically in closed con-
tainers, under a high relative humidity, with a reduced gas exchange and further stress
caused by plant growth regulators (PGRs), physiological and morphological
malformations may occur (Hazarika et al. 2006). In addition to recalcitrant and habitual
behaviour (Gaspar et al. 2000, Abdalla et al. 2022) of some plant species in response to
PGRs and other disorders such as shoot-tip necroses, fasciation and somaclonal variation,
hyperhydricity (HH) is one of the major bottlenecks of efficient micropropagation in ser-

val plant species (Hazarika & Bora 2008, Ruffoni & Savona 2013).
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This phenomenon also known as vitrification, glassiness or translucency, is char-
acterized by a water-soaked, translucent, curled and fragile appearance. HH negatively
affects plant quality, propagation rate, adventitious root and shoot formation and ex vitro
survival rate (Debergh et al. 1992, Gribble 1999, Cardoso et al. 2018). Despite these draw-
backs and the fact that at least 150 plant species can be affected seriously by HH (Kemat
et al. 2020), the causes and underlying physiological mechanism of HH are still not fully
understood. However, Rojas-Martinez et al. (2010) and van den Dries et al. (2013)
provided strong evidence that in HH etiology the flooding of the apoplast, resulting in
hypoxia and oxidative stress plays a major role. High water availability was identified as
one of the key triggers of HH in serval studies (Smith & Spomer 1995, Casanova etal. 2008,
van den Dries et al. 2013, De Klerk et al. 2015, Kemat et al. 2021). This fact drastically
restricts the usage of liquid culture and bioreactor systems, although they would allow

very high multiplication rates and saving of cost-intense gelling agents.

Paques et al. (1985) refer to HH as an inducible and reversible phenomenon and
demonstrated that Malus sp. ‘M26’ plantlets could return to non-hyperhydric state if the
induction phase in liquid culture did not exceed five days or the symptoms of HH are not
too severe. In commercial in vitro laboratories, visual monitoring for contaminations and
disorders is part of the routine work and therefore a costly and time-consuming
repetitive matter (Mestre et al. 2017). Automation of processes offers great economic po-
tential for micropropagation laboratories since 60 - 70% of total costs of a

micropropagated plant is due to manual labor (Chen 2016).



General Introduction

1.2 Automated phenotyping in plant in vitro culture

Plant phenotyping refers to a systematic and quantitative determination of the
plant’s anatomical, ontogenetic, physiological and biochemical properties
(Guo & Zhu 2006). High-throughput plant phenotyping (HTP) is often realized by optical
sensor-based approaches allowing a non-invasive, fast and objective quantification of
plant traits while replacing time-consuming manual evaluation (Walter et al. 2015). Here,
automation of data acquisition or processing meets the needs of plant breeding for
measuring large populations of plants to select superior individuals (Dhondt et al. 2013).
Recent technological advances in imaging sensors such as LIDAR (light detection and
ranging) 3D sensors and hyperspectral cameras and in combination with rapid progress
in machine learning turns automated HTP into a promising tool for plant research and

production.

Applications of this discipline range from phenotyping of plant canopies with
field-based platforms (Busemeyer et al. 2013) down to the phenotyping of tissue, organ
and cell cultures in laboratory systems (Dhondt et al. 2014). Relevant performance
metrics of plant in vitro cultures such as multiplication rate, plant quality and biomass are
usually accessed manually and limited to single endpoint measurements of
subculture passages. So far, very limited research using automated sensors in plant tissue
culture has been reported and most are restricted to “plant to sensor” approaches

(Table 1).
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Table 1: Summary table of selected literature of phenotyping of plant in vitro cultures, based on internet
research using a combination of the keywords: plant in vitro culture, image analysis, phenotyping, monitoring

Automation/ Imaging Dimension- Digital Plant Culture Aim
Authors setup ality parameters species phase
Plant to sensor
2D- Acer sp. Correlating pro-
Smith et al. Side view Plant height, Daphne sp. Shoot jected plant area
Mono- .
1989 camera plant area Malus sp. culture  to plant height and
chrome :
ia. fresh mass
. . Monitoring plant
Aynalem et al. Top view 2D-RGB Ve'get.atlon Pyrus sp. Shoot quality of in vitro
2006 camera indices culture
conserved plants
Ibaraki & Handheld 2D- Leaf temper- Solanum s, Shoot l;:ﬁglncngfri;f
Gupta 2011 camera Thermal ature P culture (g atte
acclimatization
Mansouri et al. Top view 2D-RGB SEE?:E;?‘_ Cuminum s Callus Prediction of fresh
2016 camera psis y p: culture mass and volume
Gupta & . Plant area, -
Karmakar Top view 2D-RGB  shape analy- Swertia sp. Shoot = Computer vision-
2017 camera sis culture  assisted evaluation
Mestre et al. Top view 2D- \ljl:arelztt:triz?{ Nandina s Shoot Monitoring plant
2017 camera RGB & NIR -8et p: culture quality
indices
Faraeé et al Top view Plant area, In vitro Image processing
& ' p 2D-RGB shape analy-  Arabidopsis sp. germi- software
2018 camera . : « N
sis nation PlantSize
Sensor to plantll]
Top view 2D
camera . . o
Dhondt et al. with rotary Plant area, ‘ ‘ In v1tr.o Live-monitoring of
2D-NIR shape analy-  Arabidopsis sp. germi- growth curves
2014 carousel for . . . o
S sis nation during cultivation
petri dishes
“IGIS”
Side view 2D
camera In vitro Hardware setup
Barbez et al. . . . . . L
2017 with rotary 2D-RGB n/a Arabidopsis sp. germi-  for live-monitoring
carousel for nation during cultivation
petri dishes
Side view Root area Hieh resolution
camera 2.5D-RGB and length, In vitro . 8 L
Lube et al. . . . : live-monitoring of
with rotary by stereo plant area, Arabidopsis sp. germi-
2022 . . root growth
carousel for vision shape analy- nation . o
s . during cultivation
petri dishes sis

[(INote: Seleceted literature with closest proximity to “Sensor to plant” approach, albeit with restricted
transferability for “automated live-monitoring during cultivation”.

Automated phenotyping approaches with minimal invasiveness allowing a direct
live-monitoring plant during cultivation are heavily focused on fundamental research in
Arabidopsis thaliana. Although the importance of A. thaliana as a model plant for research

is undisputed, A. thaliana is a poor model plant for commercial micropropagation due to
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the small explant size and height, uniformly structured growth habitus (rosette), presence

of radicle and lack of adventitious shoots (in vitro seed germination).

Previous research on automated phenotyping of in vitro plants has primarily
concentrated on RGB imaging, determining 2D parameters such as projected plant area
and morphological description of the plant objects. However, over the past two decades,
several other sensor technologies have gained interest for plant research in field pheno-
typing or HTP under controlled conditions, whether due to cost reductions, advances in
sensor technology, or the launch of the first commercial products (Fig. 1; Roitsch et al.
2019). The following sensor technologies are worth mentioning due to their great
potential for plant research and production, while focusing on small portable sensor

technology which may have potential application for plant in vitro cultures.

49 { Lab
;oy L PROTO-
e TYPES

ULTRASONIC 3D LIDAR *3; EgSPECTR"L

Provided a first approach for Can provide 3D data Direct 3D reconstruction Fusion of LIDAR and Mul-

volume estimation Versatile Large range tispectral technologies

1967 1985 1988 1989 1990 _1993 2004 2009 2012
° ° @ e ° E) ° ® ® ° °
ER Ny REon . Frgis PR oSN pe < Fovide dolor, wextine, 3D and colox fasion Direct 3D socoustroction Provide color and depth
insights 8 High acouracy information
THERMAL MULTISPEC- STRUCTURED LIGHT
COLOR IMAGERY STEREO VISION TOF CAMERAS i,

i © aP

Fig. 1: Evolution in the use of range and artificial vision sensors for morphological characterization and
fruit/plant detection. The years report the first use of these sensing systems for agricultural purposes
(Narvaez etal. 2017).

Biomass quantification and shoot length estimation in field or controlled environ-
ment phenotyping systems are enabled by 2.5/3D-imaging sensors (Li et al. 2014). Light
detection and ranging (LIDAR) sensors operate by the Time-of-Flight (ToF) principle
where the distance is calculated by measuring the time of a specific laser pulse required
to reach an object and be reflected back to the sensor’s detector. In contrast to laser dis-

tance sensors, LIDAR systems differ in their dimensionality of acquiring multiple spatial

5
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information at once. Laser distance sensors determine the distance of a single point,
1D-LIDAR system can be seen a line scanning approach, while 2D-LIDAR systems measure
a plane by capturing multiple lines. The key features of the technology are the high
accuracy, robustness and the fast speed while acquiring 2.5D /3D point clouds. In addition,
the reflectance of the object can be determined by the amount backscattered light
intensity and used for segmentation of the point cloud (Lin 2015). In contrast to the LIDAR
system as a sequential scanning approach, ToF-cameras simultaneously illuminate the
whole image scene at once and detect the backscattered light by an imaging sensor,
therefore offering real-time 3D sensing but have generally lower spatial resolution and
lower accuracy. Other principles to be mentioned for generating depth data are i) stereo
vision, where distance is calculated by triangulating two different views of an object, and
ii) structured light, where depth data is calculated by deforming a grid of light through the
object (Narvaez et al. 2017). To date, there are no reports on the application of these

2.5D/3D-imaging techniques to the quantification of biomass of plant in vitro cultures.

Plant sensing by optical spectroscopy has demonstrated significant potential for
stress detection (Lichtenthaler & Rinderle, 1988, Lichtenthaler et al. 1998, Buschmann et
al. 2000), quantification of plant metabolites (Schulz & Baranska 2007), and plant
classification (Zomer et al. 2009), as evidenced by numerous publications (reviewed by
Cavaco et al. 2022). The sub-disciplines of optical spectroscopy can be differentiated
based on the type of the detected interaction between light and plant tissue, e.g,
transmission spectroscopy, reflectance spectroscopy, and fluorescence spectroscopy, or
by the spectral region in which the detector operates, such as ultraviolet (UV), visible
(VIS), near-infrared (NIR), shortwave infrared (SWIR), or thermal. Here, each spectral
region highlights different biochemical plant compounds, based on their specific

absorption characteristics.
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In particular imaging spectroscopic sensors based on reflectance such as multi-
spectral cameras — imaging sensors with more than three or different to those of a RGB
camera— and hyperspectral cameras — imaging sensors with more than 100 spectral
channels — have gained interest due to their feasibility, wide applicability and huge
content of information used for disease detection and plant monitoring (Araus et al. 2018,
Roitsch et al. 2019). Fluorescence imaging sensor are most commonly used to estimate
the photosynthetic performances of plants based on the detection of chlorophyll fluores-
cence kinetics during the transition from dark to light, also known as Kautsky effect
(Kautsky & Hirsch 1931). On the other hand, multispectral or hyperspectral fluorescence
imaging spectroscopy, e.g., excited by UV radiation, is less common, although it holds great
potential by providing physiological information transported within the autofluorescence
signals of chlorophyll and phenolic compounds (Pérez-Bueno et al. 2016). Other promis-
ing non-destructive phenotyping sensor technologies such as Raman spectroscopy, tomo-

graphic imaging techniques, were neglected so far due to the lack of portable systems.

Finally, the emergence of innovative products with sensor fusion approaches such
as Intel®RealSense™ (fusion of RGB with depth imaging), or PlantEye
(Hummel 2012, fusion of multispectral imaging with structured light). Furthermore, there
are several research activities to fuse the strengths of different sensor technologies such
as hyperspectral LIDAR (Hakala et al. 2012, Chen et al. 2018) with no commercial product

launched so far.

1.3 Challenges of optical sensing methods in plant in vitro culture

For live-monitoring of the dynamic growth processes of plant in vitro cultures over
longer periods of time it is essential to maintain the aseptic conditions of the explants —
ensured by closed culture containers. Otherwise, bacterial and fungal contaminations

would establish on the sugar containing culture media. Therefore, most imaging

7
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approaches following two different strategies, either image acquisition takes place under
a laminar flow hood (“plant-to-sensor approach”, Table 1) — where explants can be kept
sterile even if the culture container is opened. However, during image acquisition explants
are exposed to completely different environmental conditions (active air movement,
lower relative humidity, different atmospheric composition). Alternatively, image acqui-
sition during cultivation has to happen through the closed culture vessels facing
numerous challenges, such as specular lighting (Mestre et al. 2017) and water

condensation (Farago et. al 2018).

Plant in vitro cultures are commonly cultivated in multi-layered shelf systems with
tubular fluorescent lamps or LEDs. A typical distance between the cultivation area and the
illumination is around 400 mm in each layer. Due to this limitation in space only small
sensor systems are suitable, and in addition, selection of sensor systems is further re-
stricted as their sensor technology has to perform in a close-range setup. This is of major

concern for depth sensing sensor e.g., based on stereo vision (Kazmi et al. 2014).

The rel. humidity inside the culture vessels in general is higher than 95%
(Kozai 1991). Water condensation occurs predominantly at the coldest surface, which
is often the lid of the culture vessel due to the heat dissipation of the tubular fluorescent
lamps below the cultivation area. The complex interaction of light and these condense
water droplets, such as scattering, diffraction, refraction, dispersion and absorption com-
plicate the imaging of the plant in vitro cultures. Dhondt et al. (2014) prevented the con-
densation of water by a heated air stream that shifted the dew point toward the culture
medium. Based on the same principle, a so called “bottom-cooling” is well established in
plant in vitro culture rooms and prevents water condensation (Vanderschaeghe &

Debergh 1987).
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Depending on plant species, established laboratory processes and in vitro culture
phase, various types of culture containers are used in commercial micropropagation and
plant research. While Petri dishes provide a clear view of the cultured tissue, certain types
of plastic lids for culture vessels exhibit a degree of opacity despite a high degree of light
transmission. The decreased visibility interferes with the accurate observation of plant
tissues by imaging techniques, especially under certain lighting conditions where total
internal reflection can occur. In addition, the spectral transmittance of the culture
vessels, which is mainly determined by the plastic material, has to be considered for in

vitro imaging approaches beyond the VIS region e.g., UV-excited fluorescence imaging.

In plant in vitro culture high humidity, hetero/mixotrophic growth, low light
condition, impaired gaseous exchange lead to various physiological and anatomical
variations compared to ex vitro cultivated plants. Among them are obvious macroscopic
changes such as smaller and differently shaped leaves, as well as anatomically such as
very thin or absent cuticle, permanently open stomata, irregular structured spongy pa-
renchyma with larger intercellular air-spaces and others (George et al. 2008). The
associated multiple scattering processes and differences in light path length call into ques-
tion the transferability of ex vitro results from optical plant spectroscopy to spectroscopic

monitoring of plants in vitro.

1.4 Machine learning in plant in vitro culture

Machine learning (ML) techniques as a generic term for statistical learning models
are established as a state-of-the-art for processing and analyzing data of high
dimensionalilty (less observations than describing features), complex interaction and
non-linear relationships. ML-models applied to in plant tissue cultures were already
reviewed by Prasad & Gupta (2008) and Hesami & Jones (2020) including, plantlets

clustering (Mahendra et al. 2004), classification of somatic embryos (Zhang et al. 1999),
9
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estimation of shoot length (Honda et al. 1997) and optimizing culture medium (Nezami-
Alanagh et al. 2019, Hameg et al. 2020). ML-models for classification can be grouped into
two main types: unsupervised and supervised models. Supervised models aim to discrim-
inate between classes based on known class memberships, while unsupervised methods
attempt to identify underlying patterns or structures in the data without prior knowledge

of class labels.

Principal component analysis (PCA, Pearson 1901) is a unsupervised dimension
reduction method. Reduction of dimensionality is perfomed by the projection of the data
into a hyperspace (linear combinations of orignal variables named principal components)
of lower dimension, while maximizing the variance of the whole data set (Ringnér 2008).
The principal components are uncorrelated and sorted with decreasing captured
variance, thus the first principal component captures the largest variance (information)
of the data set. The prinicipal components can be used for outlier detection, noise filtering,
data visualization, identification of correlated factors or as input with lower

dimensionality for classification models like linear discriminant analysis.

Linear discrimant analysis (LDA) as a generalization of Fisher’s linear discriminant
(Fisher 1936) is a classification method for data of high-dimensionality based on
supervisied extraction of discriminating features by transformation. Reduction of
dimensionality is perfomed by the projection of the data into a hyperspace of lower
dimension, while minimizing intra-class variance and maximizing inter-class variance

(Du & Wang 2011).

Partial least square (PLS) is a supervised dimension reduction method
(Wold 1984). Reduction of dimensionality is perfomed by the projection of the data into

a hyperspace (linear combinations of original variables named latent variables) of lower

10
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dimension, while maximizing the variance of the whole data set and the covariance
between the dependent variable (labels/class membership) and the latent variable (Lee

etal. 2018).

Random Forest (RF) is an ensemble learning method of supervised tree-based
models such as decision trees (Breiman 2001). With a random sub-selection of the data
set, multiple tree-shaped models based on sequential decisions are constructed each on
their subset of the data. The final random forest model aggreates the prediction of the

decision trees and thus is less sensitive to overfitting.

Support vector machine (SVM) is supervised classification method
(Cortes & Vapnik 1995). Following the transformation into a hyperspace, SVMs select the
best class-separating hyperplane, while maximizing the distance of the two classes. The
distance in SVM is the width of the margin of the hyperplane and reflects the space
between the suport vectors. These support vectors are the data points closest to the

hyperplane and restricting the margin width.

Neural Networks, also known as Artificial Neural Networks (ANNs), are a family of
highly flexible models (McCulloch & Pitts 1943). They are typically composed of different
layers, including the input layer, hidden layer(s), and the output layer. In each layer, the
outputsignal of a unit is calculated using the input value, weights, and bias, which are then
passed on to all connected units in the next layer via an activation function, such as the
sigmoid function. The model is trained to optimize the weights of each unit in order to
predict the output with the lowest possible error (e.g. with gradient descent). This is
achieved by repeatedly presenting the training data to the network, which adjusts its

parameters through a process called backpropagation.

11
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Networks with a certain depth of hidden layers are commonly called deep neural
networks (DNN, LeCun et al. 2015). Convolutional neural networks (CNN) are DNN
allowing grid-shaped inputs such as images. In a convolutional layer, additional features
are extracted from the inputs by applying several different image processing filters, like
edge detection by a sliding window (kernel). In the pooling layer the spatial information
is reduced by pooling filters. A CNN has several convolutional layers and pooling layers
generating features for a final fully connected layer, which can be seen as traditional

neural network estimating a prediction.

To ensure strategic use of the potential of digital technologies such as machine
learning and robotics, 26 European countries signed the 2019 Declaration for
"a smart and sustainable digital future for European agriculture and rural areas"”

(European Commission 2019), emphasizing the need for strong digital skills in the future.

1.5 Digital qualification in higher education in plant science

Along with the increased trend for digitalization and automation of plant
production processes and in order to be able to understand and use the potential of
modern machine learning techniques, a need arose to equip the students of "tomorrow"
with a repertoire of digital competences. This is exemplified by the emergence of courses
of study such as "precision farming/agriculture" (University of Applied Science
“Ostwestfalen-Lippe”, Germany) and "Agriculture Informatics" (Shobhit University, India;
Paul et al. 2020) which incorporate teaching units on topics such as informatics, automa-
tion, robotics, and sensor technology as a common base in addition to biological topics.
Furthermore, high ranked universities such as the University of Wageningen have also
introduced a Massive Open Online Courses (MOOCs) "Smart agriculture" to provide a
globally accessible tool to strengthen participants' digital skills in this highly

interdisciplinary field. The COVID19 pandemic has caused further acceleration in the use

12
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of digital formats such as e-learning, blended learning approaches or MOOCs in higher
education (Bedenlier et al. 2021). However, digital formats carry the risk that the
sustainability of knowledge transfer will decrease due to the increasing abstractness and
the lack of practical application experience. The question therefore arises how the
strengths of digital formats such as accessibility, flexibility, adaptivity, can be combined
with other formats that establish personal knowledge and practical relevance in order to
maintain a sustainable knowledge transfer in higher education. This is especially true for
areas that are partly still perceived as abstract, such as “machine learning” and

“sensor technology”.
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1.6 Thesis objectives

In order to investigate the potential and the required digital competences for the use of
automation and optical sensor technology in horticulture using the labor-intensive plant

in vitro culture as an example, this thesis was subjected to the following objectives:

[.  To develop and establish a low-cost phenotyping robot system suitable for direct
live-monitoring of plant in vitro cultures during cultivation in an established
multi-layered shelf system, scalable for high-throughput use in commercial
laboratories and capable of monitoring a wide range of plant species and various
different in vitro culture techniques. For this, low-cost sensor systems should be
evaluated in regards to their feasibility and potential to quantify key growth param-

eters of plant in vitro cultures.

II. To investigate the spectral fingerprints of hyperhydricity and to identify specific
absorption features of hyperhydric tissues that are sufficient for discrimination by
ML techniques. The morphological characteristics of hyperhydric explants in
time-series image data should be described by in situ monitoring with the developed
novel phenotyping system. In addition, optical technologies towards automated de-

tection of hyperhydricity should be identified.

[II.  To establish and explore the use of an interactive e-learning approach supported by
low-cost sensor sets and phenotyping data in order to provide students in higher
education with in-depth digital competence in the field of sensor technology in

horticulture.
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monitoring in plant in vitro culture
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Abstract

Background The current development of sensor technologies towards ever more cost-effective and powerful
systems is steadily increasing the application of low-cost sensors in different horticultural sectors. In plant in vitro
culture, as a fundamental technique for plant breeding and plant propagation, the majority of evaluation methods to
describe the performance of these cultures are based on destructive approaches, limiting data to unique endpoint
measurements. Therefore, a non-destructive phenotyping system capable of automated, continuous and objective
quantification of in vitro plant traits is desirable.

Results An automated low-cost multi-sensor system acquiring phenotypic data of plantin vitro cultures was devel-
oped and evaluated. Unigue hardware and software components were selected to construct a xyz-scanning system
with an adequate accuracy for consistent data acquisition. Relevant plant growth predictors, such as projected area of
explants and average canopy height were determined employing multi-sensory imaging and various developmental
processes could be monitored and decumented. The validation of the RGB image segmentation pipeline using a ran-
dom forest classifier revealed very strong correlation with manual pixel annotation. Depth imaging by a laser distance
sensor of plant in vitro cultures enabled the description of the dynamic behavior of the average canopy height, the
maximum plant height, but also the culture media height and volume. Projected plant area in depth data by RANSAC
(random sample consensus) segmentation approach well matched the projected plant area by RGB image processing
pipeline. In addition, a successful proof of concept for in situ spectral fluorescence monitoring was achieved and chal-
lenges of thermal imaging were documented. Potential use cases for the digital quantification of key performance
parameters in research and commercial application are discussed.

Conclusion The technical realization of “Phenomenon”allows phenotyping of plant in vitro cultures under highly
challenging conditions and enables multi-sensory monitoring through closed vessels, ensuring the aseptic status
of the cultures. Automated sensor application in plant tissue culture promises great potential for a non-destructive
growth analysis enhancing commercial propagation as well as enabling research with novel digital parameters
recorded over time.

Keywords Chlorophyll fluorescence, Image analysis, Laser distance sensor, Non-destructive growth analysis, Plant
tissue culture, RGB imaging, Spectrometer, Thermal sensor
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RESTRICTED VISIBILITY
BY LID OPACITY & WATER
CONDENSATION

FULL VISIBILITY
BY LID REMOVAL & CONSEQUENT
LOSS OF ASEPTIC STATUS

RESTRICTED VISIBILITY
BY MIRRORING & TOTAL
INTERNAL REFLECTION

RESTRICTED VISIBILITY
BY LID OPACITY & TOTAL
INTERNAL REFLECTION

Fig. 1 Highly challenging imaging situation of plant in vitro cultures. A Culture vessel lid removal offers a proper imaging, but results in the loss of
aseptic status of the cultures. Problems for optical monitoring arise from B water condensation, C opacity of culture containers and total internal
reflection of ambient or detection light D as well as mirroring of plantlets inside the culture vessel. RGB images were taken from two shoot cultures
of Malus spp. The image pairs A-B and C-D each show one image scene B, C with and A, D without lid, respectively

Background

A bottleneck of the promising discipline “phenom-
ics’, which combines high-throughput phenotyping
with genome and transcriptome analyses, is the auto-
mated acquisition of phenotypic data [1]. Applications
of digital phenotyping range from monitoring individ-
ual plant cells in controlled environments to satellite-
based remote sensing at the plant canopy level using
various ground-based and mobile platforms such as
gantries, agricultural vehicles, drones, and various
sensor technologies such as LIDAR, RGB camera and
spectral devices [1]. Although plant in vitro culture is
the basis of most biotechnological methods for breed-
ing and propagation of disease-free plants, very limited
research using automated sensors in plant tissue cul-
ture has been reported, mainly using “plant to sensor”
approaches [2-7] and thus involved a significant degree
of invasiveness. So far, only few sensor technologies
were used, including monochromatic imaging sensors
[2], RGB cameras [3, 5-7], modified RGB camera setups
with a near infrared (NIR) channel [4, 8] and thermal
imaging sensors [9]. Therefore, most studies (reviewed
by Gupta and Karmakar [5]) focused on image analysis
to estimate parameters like biomass of callus [10], clas-
sification of somatic embryos and regenerated shoots
[11, 12], as well as chlorophyll determination [13]
and growth of embryogenic suspension cultures [14].
A fully automated image acquisition customized for
in vitro cultured plantlets was demonstrated by Dhondt
et al. [4]. The “in vitro growth imaging system” (IGIS)
consisted of a rotating metal platform (carousel) to cap-
ture top-down images of A. thaliana rosettes cultivated
in Petri dishes. However practical usage of the setup
is limited in terms of scalability and it is not suited for

phenotyping of cultures of commercially important
micropropagated species like Phalaenopsis spp., Rubus
spp. and Helleborus spp. [15] due to their larger explant
size and height.

Visual monitoring of the cultures is a costly and time-
consuming repetitive task [8]—typically once a week
in research and depending on the plant species every
2 to 10 weeks in commercial propagation—to assess
the plant quality, the occurrence of contaminations,
the outgrowth of endophytes, and morphophysiologi-
cal disorders in research laboratories and commercial
micropropagation laboratories. Quantitative assess-
ments, such as biomass increase or multiplication rate,
are up to now limited to single point measurements
at the end of a subculture. Automation offers great
potential for increasing efficiency of micropropagation
laboratories since 60-70% of total costs of a micropro-
pagated explant is due to manual labor [16]. According
to Cardoso et al. [17], the high cost of labor for skilled
workers is the most common reason for plant tissue
laboratories to switch from manual to automated pro-
cesses. However, the switch is currently often hindered
by the high initial cost of automation, which increases
the interest in low-cost monitoring systems for com-
mercial use.

Due to the specific in vitro culture conditions in
closed vessels, optical monitoring approaches face a
number of challenges such as water condensation on
the lid, opacity and total reflection of plastic lids or
media surfaces (Fig. 1) [4, 6, 8]. Therefore, most plant
evaluation methods were destructive and non-real-
time methods, while digital phenotyping of in vitro
plants allows objective and continuous quantification
of plant characteristics over time. Important biological
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key parameters for the performance of micropropa-
gated plants include biomass, multiplication rate, shoot
length, plant quality, and the absence of malformations,
contaminations, and outgrowing endophytes.

Here, we describe the development of a low-cost phe-
notyping platform (named “Phenomenon”) suitable for
direct monitoring of plant in vitro cultures while culti-
vation in an established multi-layered shelf system. In
addition, the “Phenomenon” system is scalable for high-
throughput use in commercial laboratories and capable
of monitoring a wide range of plant species and various
different in vitro culture techniques. In the present study,
we aimed (i) to describe in detail the hard- and software
components of the established phenotyping system, (ii)
to validate the four sensor systems and (iii) to demon-
strate the performance of the system for the quantifica-
tion of growth parameters, such as projected plant area,
average canopy and maximum plant height.

Results

Phenotyping system concept

The phenotyping system was design as a scanning imag-
ing system (xyz-gantry) for an autonomously operating
acquisition of multi-sensor data, including RGB, ther-
mal, depth and spectral data with specifically developed
illumination (Fig. 2). Essential steps of continuous data
acquisition with non-imaging and imaging sensor tech-
nologies were developed (Fig. 3). We could experimen-
tally determine the technical repeatability for xy-axis
with a MAE, of 0.23 mm and a MAE, of 0.08 mm of the
repositioning over 16 days via RGB image analysis of a
reference object (described in detail “Methods” section).
For the z-axis, a technical repeatability with a MAE; of
0.09 mm was obtained by using the calibrated laser dis-
tance sensor. For data segmentation a RGB image pro-
cessing pipeline based on a random forest classifier and a
depth image processing pipeline based on RANSAC [18]
were newly established (Fig. 4).

Optical properties of culture vessels

In order to ensure high quality data acquisition for the
four sensors and their respective spectral working ranges,
spectral transmittance measurements were conducted
from the ultraviolet (UV) to the long wavelength infra-
red (LWIR) region of three possible culture vessels and
lids (Fig. 5). The polypropylene lid and the polystyrene
Petri dish represented the standard culture vessels, while
the polyvinyl chloride foil was included as an alternative
sealing.

While all of the three tested sealings had high trans-
mittance (>91%) in the visible spectrum (VIS) (Fig. 5A),
the tested materials differed strongly in the proportion
of transmitted diffuse light (Table 1). The ratio of both is
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described by the Haze index, according to standard test
method ASTM D1003 [19], thus representing an indi-
cator for light scattering effects and visual perception
by camera chips. Haze index should be kept to a mini-
mum in imaging situations to maintain sharpness and
clarity of the monitored object. The high Haze index of
34.2% excluded the standard polypropylene lid for being
used in the phenotyping approach, while the polystyrene
Petri dish and the PVC foil provided a clear VIS trans-
mittance indicated by much lower Haze indices of 0.5%
and 1.4%, respectively. In addition, a low to medium
mean transmittance in the thermal range of 1.9% for the
Petri dish and 50.6% for the polypropylene lid was deter-
mined (Fig. 5B). However, the foil still perceived a mean
transmittance of 78.4% in thermal region. Thus the PVC
foil was most suitable as a sealing system for imaging
approaches for plant tissue culture, neglecting other not
tested physical properties.

Collection of representative phenotypic data of plant

in vitro cultures

The following results derived from automated data acqui-
sition by the phenotyping system “Phenomenon” accord-
ing to Fig. 3, which included an automated sequential
approach of culture vessel positions and acquisition of
multi-sensory data over weeks. Exemplary data analysis
were conducted by automated data processing pipelines
presented in Fig. 4, where automated segmentation of
RGB and depth data were performed.

RGB data—Exemplary data analysis and validation of RGB
image processing pipeline

Several in vitro phenotyping approaches were con-
ducted with the “Phenomenon” system to demon-
strate its full potential, including different plant species
(Arabidopsis thaliana, Nicotiana tabacum and Malus
domestica—data not shown) and developmental phases
(in vitro germination, shoot and root regeneration and
shoot multiplication). Figure 6 demonstrates the regen-
eration of adventitious shoots of N. tabacum from leaf
explants monitored (6 images per day) over 32 days after
treatment (DAT) and the output of the automated RGB
processing pipeline of Fig. 4. This experiment clearly
illustrated the segmentation challenges for image analysis
such as similar color appearance of developing cell and
organ types such as callus or roots and the cultivation
medium, medium adhering to the plant cluster and cam-
era specific changes in color balance. Additional file 1
contains a complete time-lapse video of one of the cul-
ture vessels. Regardless of the challenges mentioned, this
video demonstrates the great potential of “Phenomenon”
in terms of time series observations.
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Fig. 2 Experimental setup of the phenotyping system designed for direct

monitoring of plantlets and explants cultured in vitro. A 3D

representation of the designed robot platform inside a multi-layered shelf system with bottom water cooling. B Closeup of sensor arrangement of
the developed multi-sensor detector head. Four different sensors, including € a laser distance sensor, D RGB camera, E a micro spectrometer and F
a thermal camera defined the multi-sensor detector head. Furthermore, G a ring-light printed circuit board, including UV, white and red LEDs was
added to a purchasable diffuse ring light to meet the highly specific illumination situation of monitoring plant in vitro cultures. Detailed description

in"Methods" section

As second demonstration of the functions of our phe-
notyping system, Fig. 7 shows the whole life-cycle moni-
toring of A. thaliana in vitro (seedling to flowering plant)
and the calculation of growth performance metrics.
Time-lapse videos of A. thaliana monitored over 16 days
are provided in Additional files 2, 3.

The validation of the projected plant area obtained as
one output from the RGB image processing pipeline by
relating it to the projected plant area determined by man-
ual annotation of plant pixels (ground truth) indicated a

high R? of >0.99 (Fig. 8A). The automated classification
approach overestimated the plant area with an average
error of 7591 px. The relative error of the different acqui-
sition time points (Fig. 8B) indicated a slightly higher
overestimation at day time images, while an underestima-
tion occurred for night time images (with highest error
at 23 o'clock), resulting in a mean relative error (MRE) of
0.37% overestimation. To quantify the classification per-
formance, confusions statistics of 221,834,880 pixel pairs
were conducted and disclosed a classification accuracy of
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Fig. 3 Flow chart of the three main steps of the automated phenotypic data acquisition (indicated in gray). In step |, the position of the culture
vessel is determined, while in step Il the initial images and the calculated plant positions are acquired. To determine plant positions, the original
image was transformed to hsv-colorspace and the h-channel was segmented with Otsu-Method [20]. Four largest objects were selected as plant
positions. Step lll includes the actual time-lapse loop (start indicated by asterisk), where data of the four sensors are recorded. Detailed description
in“Methods" section

97.7%, a sensitivity of 97.7%, a specificity of 96.9% and a  Depth data—Exemplary data analysis and validation

precision of 99.9% for the segmentation of the proposed  of depth image processing pipeline

RGB image processing pipeline. The first report of depth data acquisition and analysis
in plant in vitro culture is illustrated in Fig. 9A using

(See figure on next page.)

Fig. 4 Overview of main data processing steps and used software packages to process the different types of acquired data. A A trainable Ilastik
[21] classification model was trained to robustly cover the diversity of background (yellow labels) due to changing background and media color
and diversity of foreground (blue labels) such as different plant species appearance and explant color changes during cultivation. B RGB image
processing pipeline was developed in Python [22] with OpenCv [23] and PlantCv [24] for batch processing and including the ilastik classification
model headless for segmentation. Upper row: RGB image processing workflow included an automated brightness and contrast adjustment by
histogram stretching, down-scaling of image resolution from 4054 px x 3040 px to 1014 pxx 760 px. Lower row: The trained classifier predicted
binary mask of plant pixels rescaled to the original image resolution and applied to the original image for background removal. Exemplary images
from monitoring of A. thaliana (Trial A). C For depth data processing, Python with Open3D [25] was used as an essential component to perform
RANSAC [18]-based segmentation. Depth data of in vitro grown A. thaliana seedlings (Trial A). Upper row: Day 0 (Media with 10 day old, small
seedlings), Hough Transform circle detection [26] and edge-removed depth image. Lower row: Pseudo 3D visualization of depth data of Day 11,
estimated RANSAC plane and plant height surface corrected by estimated RANSAC plane at Day 11. Detailed description in “Methods” section
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Fig. 5 Spectral transmittance of culture vessel closures. Transmittance was measured with A an UV/VIS/NIR spectrometer and B with a FT-IR
Spectrometer. Three independent replicates were measured and mean spectra per lid material are shown. Colored rectangles indicate waveband
regions and spectral sensitivity of the sensors (according to the manufacturer’s specifications) installed in the phenotyping platform (blue, RGB
camera with Sony IMX 477 sensitivity: 400 to 700 nm; green, micro spectrometer sensitivity: 340 to 850 nm; red, L, Laser distance sensor emission

wavelength: 655 nm; brown, thermal camera sensitivity: 8000 to 14,000 nm)

Table 1 Optical characteristics of in vitro culture vessel sealings

Culture vessel sealing Replicates Total transmittance [%] Diffuse transmittance [%] Haze index [%] Thick-
ness
Average sD Average sD Average SD [um]
Standard lid, PP 3 913 03 33 0.9 342 0.9 200
Foil, PVC 3 92.6 03 1.4 0.2 14 0.2 20
Petri dish, PS 1 91.2 06 05 900

PP polypropylene, PVC polyvinyl chloride, PS polystyrene

Measured with UV/VIS/NIR Spectrometer (PerkinElmer Lambda 1050) in 5 nm intervals from 380 to 780 nm according to standard test method ASTM D1003[19]

Haze index [%] = ((Diffuse transmittance/total transmittance) —rel. scattered transmittance by the system)x 100

A. thaliana as an example. It included the calculation
of important biological parameters from the depth
data set to monitor culture medium height, culture
medium volume, mean canopy height, maximum plant
height and degree of coverage (Fig. 9B). Figure 9 clearly
demonstrates a height and volume reduction of cul-
ture media, while in plant growth related parameters
a height increase was notable. Corresponding RGB
images revealed first signs of flower induction of the
A. thaliana seedlings at DAT 12, and an associated
increase in maximum plant height was to be seen in
depth data at DAT 16. In addition, also the variance in
average canopy height increased at DAT 16.

Comparing the projected plant area obtained from the
RGB processing pipeline (assumed as the ground truth)
with the projected plant area as output from the depth
processing pipeline, a high correlation, expressed in an R?
of 0.93 was observed with an average underestimation of
59.7 mm? (MAE) of plant area determined by depth data
(Fig. 10). The mean relative error (MRE) revealed that the
depth data processing pipeline projected the plant area
by 65% compared to RGB processing pipeline, mean-
ing 35% of plant pixels were systematically not detected
by the sensor or have been removed due to segmenta-
tion. This can be considered as a rough estimator of how
accurately the different sensor technologies (RGB camera
vs. scanning laser distance sensor) detect plant pixels,
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Fig. 6 Monitoring of shoot regeneration of N. tabacum leaf explants. A RGB
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000

raw images and B processed images with the RGB imaging processing

pipeline. N. tabacum leaf explants were placed on regeneration medium and developing adventitious shoot clusters were recorded over 32 days
after treatment (DAT). Degree of coverage was calculated as the sum of plant pixels divided by total number of pixels within an image. For
determination of explants area, sum of plant pixels was multiplied by pixel-metric-conversion factor. Time lapse video of N. tabacum regeneration is

provided in Additional file 1
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Fig. 7 Exemplary growth curves of one culture vessel containing five A. thaliana seedlings (Trial B) expressed as projected plant area. Projected
plant area was calculated as the sum of plant pixels divided by total number of pixels within an image. Yellow smoothed line plot, method = logistic
regression, gray indicates confidence interval borders a=10.95. Six images per day over 16 days resulted in a total number of 96 images per growth
curve. Left corner highlights a closeup showing the diurnal rhythm of plant growth. The bottom part contains segmented images of 0, 3,6, 9, 12,

15 DAT (days after treatment). Time-lapse video of A. thaliana (Trial B) is provided in Additional files 2, 3

including the errors derived from segmentation and dif-
ferences in object area representation by the two sensor
technologies.

Spectral data—Exemplary data analysis and validation

of detection spot size

An automated and dynamic monitoring of the chloro-
phyll fluorescence signature of an A. thaliana seedling
cultured in vitro over 21 days is illustrated in Fig. 11.
Excitation light emission maximum at 375 nm as well as a
sequential increase in the fluorescence signal depending
on the plant growth were evident. Typical emission max-
ima derived from the reaction centers of the photosystem

(PS): mainly PSII (F690) and PSII and PSI (F730) were
detected. Furthermore, we have determined the diameter
of the detection spot of the modified spectrometer to be
23 mm (detailed description in “Methods” section).

Thermal data—Exempiary data analysis and validation

Thermal imaging of in vitro cultivated A. thaliana seed-
lings was attempted, but faced the challenges of the spe-
cial imaging situation (Fig. 12). When captured without
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Fig. 8 Characterization of the segmentation performance of the RGB image processing pipeline from 18 randomly selected images of the A.
thaliana Trial A dataset. A Linear regression of projected plant area vs. ground truth plant area. The regression line is colored black, while the angle
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for different acquisition time points (23, 3 and 7 o'clock represented night conditions) calculated from 18 randomly selected images of the A
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the sealing foil, the thermal images (Fig. 12A) of culture
vessels at a room temperature of 25 °C (day) and placed
on a bottom-cooled shelf surface with a temperature of
21.5 °C, revealed reasonable absolute values of ther-
mal data, as indicated in the corresponding histogram.
However, thermal images taken through the sealing foil
(Fig. 12B) only allowed a weak separation between plant
and background pixels and the corresponding histogram
indicated an increase in radiometric data.

Discussion

To the best of our knowledge, this is the first report of
a multi sensor phenotyping system, based on an xyz-
gantry that is capable of autonomous acquisition of rel-
evant sensor data of plant in vitro cultures. The selection
of exclusively low-cost hardware (Table 2) and open-
source software components accessible via the GitHub
repository [28] enables other researchers to rebuild the
“Phenomenon” system and to benefit from it in science,
education and commercial micropropagation.

As proposed by Dhondt et al. [29] phenotyping systems
can be defined by system properties like throughput, res-
olution and dimensionality. With the current setup, we
reached a throughput of multi-dimensional data (RGB,
depth, spectral, thermal) at a macroscopic resolution
for ten culture vessels per day. Therein, the main limit-
ing factor was the time-consuming process of depth data
scans (45 min per vessel; compared to RGB and thermal

image and spectral point measurements with only a few
seconds per vessel) and system dimensions restricting the
working area. Low cost imaging depth sensors based on
“time-of-flight” principle (ToF) such as Pieye Nimbus 3D
or Onion tau could reduce substantially the acquisition
time of depth images. However respective sensors need
to tested how they perform under the highly challeng-
ing imaging conditions (Fig. 1) of plant in vitro cultures.
Nevertheless, a large-scale application can be achieved
with minimal effort and costs if the robot system working
area is scaled up to a whole shelf.

We aimed at monitoring plant in vitro cultures with
minimal invasiveness, consequently phenotyping took
place dynamically within in the cultivation of in vitro
cultures, instead of monitoring open culture containers
under laminar flow to ensure aseptic conditions. Non-
destructive phenotyping approaches where optical sens-
ing happens trough the vessel encounter a challenging
imaging situation (Fig. 1) and could be solved in parts by
the technical design of “Phenomenon” However, three
modifications were necessary to increase sensor data
quality: (i) The culture vessels were placed on a bottom-
cooled surface to avoid condense water formation. Bot-
tom cooling systems are widely applied in tissue culture
to reduce the relative humidity in the vessels and thereby
increasing plant quality, but in case of rose roots also
slowed down the growth of cultures due to the lower
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Fig. 9 Exemplary depth data analysis of a culture vessel with four A. thaliana seedlings grown in vitro for 21 days (Trial A). A Yellow bar plot

displays calculated media height (Mean + SD), while black dots indicate sensor values of plant pixels after segmentation and colored boxplots
indicate values for the calculation of the two digital parameters mean canopy height (green) and maximum plant height as mean of the upper
10 percentile (red). Red dashed line represents the maximum height of the sensor reliable distance (< =72 mm) and the amount of plant pixels
after segmentation was colorized in blue. B Individual plots of the dynamic behavior of the calculated digital parameters with equal color code
and depicted as means + SD. The calculation of medium volume and all other parameters is described in “Methods” section. 10,000 data points for
each date were processed from depth scans of an area of 100 mm x 100 mm with a scan pattern of 1 mmx 1 mm. Depending on the necessary
segmentation for the calculation of the individual parameters, a corresponding proportion of the 10,000 data points was included in the analysis

temperature [30]. (ii) The plastic lid was substituted by
a PVC foil to maintain a clear and undistorted view, evi-
denced by the Haze index (Table 1) and to increase the
spectral transmittance in the thermal region (Fig. 5). This
also affected the gaseous exchange capacity of the culture
containers, which was notable by increased evaporation
of water from the culture media. The use of the foil also
prevented condense water formation, when the bottom
was not cooled. Thus, this intervention might be suf-
ficient. Nevertheless, future research should address an
optimization of the culture vessels/lids to enable proper
imaging sensor application in vitro. (iii) The supplemen-
tation of the culture media with TiO, allowed a detection
of the surface of the normally semitransparent media
with the laser distance sensor (detailed description in
“Methods” section). TiO, had already been used in plant
in vitro culture due to an antimicrobial activity induced
by UV excitation [31]. However, beneficial or cytotoxic
effects of TiO, nanoparticles (NPs) in particular, are cur-
rently under research and most likely will be depending
on the dose and UV exposure time [32]. TiO, NPs had

no negative effect on the growth of soybean seedlings
in vitro at concentrations of 10 and 100 mg L~' TiQ,
NPs, but slightly reduced fresh mass and root growth at
1000 mg L~ TiO, NPs [33], suggesting a reduction of the
TiO, concentration in the culture media for upcoming
experiments.

The automated scanning imaging system “Pheno-
menon” based on a belt-driven xy-gantry and screw-
driven z-axis was specified by the manufacturer to
provide an accuracy of 0.1 to 0.2 mm for the xy-axes and
0.05 to 0.1 mm for the z-axis. Experimentally, we deter-
mined the technical repeatability for MAEy of 0.23 mm,
MAE, of 0.08 mm and MAE; of 0.09 mm. Considering
the fact that an exclusively low-cost phenotyping sys-
tem was intended, a sufficient technical repeatability was
achieved for consistent data acquisition.

RGB data acquisition was conducted with a low-cost
RGB sensor equipped with a low distortion lens to
minimize the error of projection. This error resulted in
a distortion of the projected plant area at the edges of
the image compared to the midpoint. Furthermore, the
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(ground truth). The regression line is colored black, while the angle bisector line is drawn two-dashed. Gray indicates confidence interval limits at
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coefficients for the intercept and slope determined by simple T-test. MAE, MRE and RMSE indicate the mean absolute error, mean relative error and
the root mean square error of projected plant area. Sampling (n) was formed out of 12 images from four different culture containers and 12 time

points respectively (DAT 0-DAT 11)

estimation of plant area, i.e. of an 3D object, with a 2D
sensor without a telecentric lens can be put into question.
However, plant cultivation in multi-shelf systems (Fig. 2)
with a distance between the cultivation area and the illu-
mination of 400 mm, limited not only the application of
optics greater in size but also the selection of other sen-
sor technology by their optical specifications (minimum
working distance; MWD < 150 mm).

In this study, we demonstrated a successful imple-
mentation of a scanning laser distance sensor resulting
in a depth image of plant in vitro cultures for the first
time. Novel relevant traits of micropropagated cultures
like medium height and deduced from this medium vol-
ume, average canopy height and maximum plant height
could be quantified and will be validated in upcoming
experiments. We showed a reliable application of this
technology (Figs. 9, 10, Additional files 4, 5 and 6), but
the reflection-based time-of-flight sensor failed, if the
reflection surface was tilt with a higher angle (upwards

growing leaves) and at the upper part of depth images,
where the emission beam was inside and the detector
side of the sensor still outside of the culture vessel (Fig. 4:
missing part of detected Hough circle). In addition, it is
worth mentioning that the detection error of the reflec-
tion-based sensor could be due to the fact that the emis-
sion wavelength of the laser distance sensor hits the
absorption of the plant pigments at 655 nm. Therefore,
depth sensors with spectral detection range in near infra-
red might be superior due to the higher reflectance signal
derived from the red edge shape of the plant spectra.

The second novelty was the proof-of-concept for apply-
ing a low-cost micro spectrometer to determine spec-
tral signatures, offering great potential for monitoring
the stress status of in vitro cultivated plantlets. The point
measuring device was limited in spatial resolution due
to the detection spot size of around 23 mm (Additional
file 7). Reflection-based measurements were therefore
not exclusively-plant-specific. However, the fluorescence
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Fig. 11 Exemplary determination of dynamic chlorophyll flucrescence monitoring of one of four A. thaliana seedlings grown in vitro for 21 days
(Trial A). The first peak at 375 nm can be assigned to the excitation light provided by UV LEDs imperfectly blocked by the long pass filter at 420 nm
(black long dashed line). The region from 400 to 660 nm has been masked for simplified representation. Emission peaks in the region from 660

to 780 nm indicated the two typical maxima of the chlorophyll fluorescence, derived from PSIl (F&90) and PSIl and PSI (F730). Micro spectrometer

integration time was set to 300 ms

signature reflected plant specific peaks (Fig. 11). Known
stress indices, like F690/F740 as a chlorophyll content
estimator [34, 35]—can be calculated from the fluo-
rescence spectra on an explant base and their potential
use to detect early stress responses opens new ways in
in vitro stress screenings, for example.

Leaf temperature quantification of micropropagated
plants by thermal imaging approach was already inves-
tigated by Ibaraki and Gupta [9], but so far only after
their transfer to ex vitro conditions. Thermal imaging
of plants is widely used to estimate evapotranspiration-
based parameters like water loss, water stress indices or
stomatal conductance [9, 36, 37]. We could disprove the
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Fig. 12 Exemplary thermal imaging of in vitro cultivated A. thaliana seedlings (Trial A). A Left side demonstrates imaging without the foil that
was used to seal the culture vessels, while B the right side shows acquired sensor data through the foil. The respective RGB images are shown and
thermal data are presented as grayscale and false color images and corresponding histograms

Table 2 Main system components and costs

Description Quantity Hardware Price
G420 Long pass filter 1 Dielectric coated long pass filter 40€
PCB manufacturing cost 1 Ring light PCB and a Circuit PCB 40€
Various LEDs 48 Standard 5 mm LEDs (375 nm, 6500 K, 700 nm) 40€
RGB camera 1 Raspberry Pi Camera High quality 50€
3D filament, cable chain, limit switch 1 Small mechatronic parts 100€
Network communication 1 Router & PoE-Switch 100€
Single-board computer 2 Raspberry Pi 4B & PoE-Shield 120€
Z-axis with Nema 23 Stepper motor 1 OpenBuilds Linear Actuator 160 €
Thermal camera 1 PureThermal 2 & Lepton 3.5 250€
Micro spectrometer 1 Mini-Spectrometer C12880MA 350€
Low distortion lens 1 Edmund Optics 6 mm lens 400€
Xy-gantry with 24V power supply and 3xNema 17 1 OpenBuilds ACRO 1515 60" x 60" 410€
Stepper motor

Laser distance sensor 1 OD-Mini OB1-B100 1000 €
Total 3060 €

assumption that thermal imaging of in vitro cultures is
impossible, even if data quality was limited in terms of
contrast (Fig. 12). By using the PVC foil, we improved
the average transmittance in the thermal waveband up to
78.4% (Fig. 5), but still absorption and reflection occurred
and reduced the quality of the sensor data (Fig. 12). The
increased mean temperature of explants imaged through
the foil might be due to sensor self-reflection compared
to the imaging without foil. Whether temperature differ-
ences between plants due to evapotranspiration can be
quantified by thermal imaging of high humidity culture

vessels (93 to 97% RH with bottom cooling [38]) remains
to be answered.

The validation of the RGB image processing pipe-
line demonstrated the power of digital image analysis
accomplished through successful segmentation. Figure 7
could demonstrate the potential for researchers to com-
pare treatments, such as different media compositions,
or to track small leaf movement like the diurnal growth
rhythm. A robust and specific segmentation covering
the required range of the imaging situation was only
possible by a trainable segmentation model. Despite the
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acceptance of evoking errors by the use of reduced reso-
lution images as an input of the segmentation model, a
nearly perfect segmentation was achieved as indicated
by the high coefficient of determination of R* of >0.99
referred to manual annotation of plant pixels. Confu-
sions statistics revealed an even higher accuracy of 97.7%
of classification compared to the study of Mestre et al.
[8] reaching an accuracy of 96.9% although they used
multidimensional data (RGB, NIR) as input for a ran-
dom forest classifier to segment in vitro grown Nandina
domestica explants. Main classification errors originated
from overestimation of leaf borders by the automated
RGB image processing pipeline compared to the ground
truth segmentation and from false-positive classification
due to root greening. The time point-dependent perfor-
mance of the segmentation during the day (Fig. 8B) can
likely be attributed to insufficient illumination of tiny
plant structures such as leaf petioles, where the average
light intensity captured by the camera revealed minimum
residual light at the time point of the greatest underes-
timation (23 o'clock). Interestingly, a correlation coeffi-
cient of 0.75 indicated a strong correlation between the
absolute classification error and the average mean inten-
sity of the RGB images, explaining the difference at night
time points where variations in residual light intensity
occurred due to the switch timing of the tube fluores-
cent lamps (data not shown). Projected plant area can be
used as good estimator for biomass as a key performance
parameter of plant in vitro cultures as shown by Faragé
et al. [6] who identified a coefficient of determination
of R*=0.99 between A. thaliana digital rosette size and
fresh mass. As a common issue of image analysis, it might
be questionable whether the probabilistic based random
forest model or the human labeled classification better
reflect the real ground truth of in particular imperfect-
focused leaf borders. It has to be stressed, that for other
growth habits, such as upright growth with several layers
of overlapping leaves, it will be more difficult to correlate
projected plant area and biomass, but in these cases addi-
tional information from depth data may be used to define
additional covariates.

The depth image processing pipeline showed that
segmentation of plant in vitro depth data over time
requires a dynamic approach to accommodate changing
processes like plant growth or culture media shrinkage
via evaporation. The separation of background, culture
medium and plant pixels was the main objective of the
segmentation for calculating relative plant height, culture
medium height, and accounting for tilts of the cultiva-
tion surface or the medium surface. An image registra-
tion approach of RGB (where a good segmentation was
already achieved) and depth images was not satisfying
due to the too different representation of objects by the
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two sensor technologies. A Random sample consensus
(RANSAC [18]) algorithm fulfilled the requirements
of the task and was able to dynamically and robustly
detect the culture medium surface planes within the
one-dimensional and therefore difficult to segment data.
RANSAC is a robust method for an iterative determina-
tion of outliers from a mathematical model in an overde-
termined data set. The RANSAC approach is commonly
used in depth data segmentation of plants [39-41] and
allowed the determination of relevant and novel digital
features of plant in vitro cultures like culture medium
height, mean canopy height, maximum plant height
and plant area by depth data. However, limitations will
arise when the culture medium surface is fully covered
by plants and therefore, no longer represents the largest
plane. The determination of the height of each explant
inside the culture vessel is to be aimed, but requires con-
nected compounds after segmentation. To estimate the
quality of the representation of plants in depth images
we selected the projected plant area as a basis of com-
parison between RGB and depth sensor data and corre-
sponding pipelines, respectively. The high mean relative
error (Fig. 10) demonstrated the limitations of the scan-
ning laser distance sensor, as only two thirds of the pro-
jected plant area were represented in the depth data
after segmentation. This error could be attributed to
detection errors, unfavorable reflection due to inclined
surfaces (e.g., leaves growing upwards) or water drops
on plants, the low spatial resolution of the scan pattern
(1 mmx 1 mm) or errors caused by segmentation. Never-
theless, depth data of plant in vitro cultures could be used
to estimate plant biomass, especially when combined
with projected plant area by RGB images. Furthermore,
the determination of culture medium volume opens the
possibility to collect new data of plant water uptake and
evaporation from culture medium.

We have designed, constructed and tested a novel
multi-sensor robot platform for phenotyping in plant
in vitro cultures offering great potential for automatiza-
tion of specific tasks in commercial micropropagation,
but also offering new possibilities in research (Fig. 13A—
C). The “Phenomenon” phenotyping system differenti-
ates from existing in vitro monitoring approaches that
focused primarily on shape analysis and the application
of which was limited to A. thaliana, mainly. The system
allows phenotyping of different species and different
developmental phases in in vitro culture due to its cus-
tomized and specific hardware design (Fig. 2). Repeated
monitoring of individual cultures regarding their
growth performance over several culture passages will
reveal new insights into phenomena such as the habitu-
ation against phytohormones or seasonal variation of
growth. Tracing back the development of individual
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Fig. 13 Potential applications of the automated low-cost phenotyping system in plant vitro culture. While the requirements for the use cases fram
A-C, E and H have already been met, further research is required for the use cases D, F to G (External images from Yuan et al. [42] and Quambusch
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explants over time pave the way for improvements in
cultivation. Furthermore, the system could be used to
optimize culture medium compositions like amount of
plant growths regulators via an objective quantification
of the plant phenotypic characteristics. A future per-
spective of sensor application in plant in vitro culture
by automated imaging robots includes the construction
of multi-sensor data sets to benefit from ever easier
access to the power of artificial intelligence such as arti-
ficial neural networks as reviewed in Prasad and Gupta
[12] for complex classification or regression tasks such

as the detection of endophytes or the calculation of
multiplication rates of plant in vitro cultures (Fig. 13D
and F). Furthermore, robots may offer the ability to
identify and treat explants which exhibit a low or high
stress level after certain treatments or to early detect
potential contaminations (Fig. 13E). A marker gene-
free early selection of transgenic plant material as pro-
posed by Yuan et al. [42] with the usage of new reporter
genes such as eYGFPuv could be automated by the pre-
sented low-cost phenotyping system (Fig. 13G). Finally,
we suggest using the system in teaching to promote
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digital skills of plant science students. Since it features
low-cost, stand-alone and portable characteristics, it
may provide students with handling and processing of
multi-sensory phenotypic data (Fig. 13H) [43].

Conclusions

We developed a novel low-cost multi-sensor automated
phenotyping system for application in plant in vitro cul-
tures. The unique hard- and software concept is char-
acterized by using exclusively low-cost compounds and
open-source-based software components. This allows
remote and programming language-independent access
to its functionalities, enabling plant scientists to ben-
efit from the capabilities with minimal financial invest-
ment. Various sensor technologies were applied for the
first time under these challenging culture conditions
and were evaluated with respect to resulting data quality
and feasibility with proposed data processing pipelines.
We demonstrated the digital determination of relevant
parameters such as projected plant area, average canopy
height, and maximum plant height, which can be used as
critical descriptors of plant growth performance in vitro.
The initial exemplary demonstration of resulting data
promises great potential. The technical realization of
“Phenomenon” enabled phenotyping of plant in vitro cul-
tures under highly challenging conditions and will lead to
increased sensor application approaches for research and
commercial propagation in upcoming years.

Methods

Adventitious shoot regeneration from N. tabacum leaf
explants

From in vitro grown Nicotiana tabacum ‘Samsun’ shoot
stock cultures, leaf explants (5 to 6 mm edge length)
were prepared and four each were placed in four 500 mL
polypropylene containers containing 80 mL MS medium
[45] supplemented with 3% (w/v) sucrose, 0.75% Plant
agar (w/v) (Duchefa, Harlem, The Netherlands), 4.44 uM
6-benzylaminopurine (BAP) and 1 g L™! titanium diox-
ide. The pH of the medium was adjusted to 5.8 prior to
autoclaving at 121 °C for 15 min.

Seedling growth of A. thaliana

Arabidopsis thaliana Col-0 seeds stored since 2018 at
4 °C were surface-disinfected using 70% (v/v) isopropanol
for 30 s, followed by 2% (v/v) sodium hypochlorite plus
Tween 20 for 5 min and rinsing three times in water. The

Haze index[%] =

Diffuse transmittance
Total transmittance
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seeds were germinated for 10 days at 24 °C in Petri dishes
containing plant growth regulator-free B5 medium [46]
with 1.5% (w/v) sucrose and 0.8% (w/v) Plant agar at pH
5.8. Ten days old uniform seedling were transferred to
the same medium but supplemented with 0.1% (w/v) tita-
nium dioxide (food dye; Ruth GmbH & Co0.KG, Bochum,
Germany) to achieve an opaque white colored appear-
ance which simplified the detection with optical sensors.
Titanium dioxide is commonly used in food production
[47]. For this cultivation step, ten 500-mL polypropylene
containers containing approximately 80 mL of medium
were used, in each of which four seedlings were placed
for Trial A and five seedlings for Trial B.

Culture conditions

A polyvinyl chloride foil (PVC system foil; Klarsichtpack-
ung GmbH, Hofheim, Germany) sealed each vessel as a
substitution of the lid to provide a fully transparent view
while ensuring the aseptic condition of the cultures for
both experiments. The cultures were incubated for either
21 days (Trial A) or 16 days (Trial B) for A. thaliana and
32 days for N. tabacum at 25 °C with a 16 h photoper-
iod (7 am till 11 pm) and a PPFD (Photosynthetic Pho-
ton Flux Density) of 35 to 40 umol m~? s™', provided by
two tubular fluorescent lamps (Philips MASTER TL-D
58W/865). The lab’s bottom-cooling system—provided
by water-cooled plastic tubes below the shelf—prevented
water condensation due a local shift of dew point (Fig. 2).
Room temperature ranged from 19 °C (night) to 25 °C
(day) with an average of 22 °C, while the average surface
temperature of the cooled cultivation area ranged from
19 °C (night) to 24 °C (day) with an average of 21 °C.

Optical properties of culture vessel

Spectral transmittance was measured with an UV/VIS/
NIR spectrometer (PerkinElmer Lambda 1050) equipped
with 150 mm indium gallium arsenide (InGaAs) inte-
grating sphere in a 1 nm wavelength interval from 250 to
2500 nm and with a FT-IR Spectrometer (PerkinElmer
Spectrum Two) in a 3.75 nm wavelength interval from
2500 to 15,000 nm. Three independent replicates were
measured for transmittance curves (Fig. 5). Additionally
Haze index was measured with an UV/VIS/NIR spec-
trometer (PerkinElmer Lambda 1050) in 5 nm intervals
and in a wavelength interval from 380 to 780 nm, accord-
ing to standard test method ASTM D1003 [18]. Thus, the
Haze index was calculated by the following equation:

— Rel. scattered tranmisstance by the system) x 100 (1)
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Development of the automated phenotyping system
Environmental conditions of the application area

Plant in vitro cultures are usually cultivated in multi-
layered shelf systems equipped with tubular fluores-
cent lamps (TFL) as a light source with a photoperiod
of 16/8 h in a temperature-controlled culture room
(Fig. 2). Plant in vitro culture techniques are character-
ized among others by the potential of cultivating high
numbers of plantlets at minimum space—up to 50 cul-
ture vessels can be placed at a cultivation area of ~ 0.6 m?
(1000 mm x 600 mm) containing multiple explants. The
distances between the different levels of the multi-layer
shelf systems are mainly determined by the heat dissipa-
tion of the fluorescent tubes, which limits the available
space of potential sensor application to 400 mm between
cultivation area and TFL. For the purpose of automated
phenotyping of explants cultured under common in vitro
conditions, we therefore developed a low-cost multi sen-
sor system at minimum space.

Phenotyping platform hardware setup

As backbone of the phenotyping system, a com-
mercially available belt-driven xy-gantry was chosen
(ACRO system; OpenBuilds, Zephyrhills, USA), that
allows direct control of movement via a G-code sent to
the native motion controller. The xy-gantry was speci-
fied with an accuracy of 0.1 to 0.2 mm by manufac-
turer. The dimensions of the xy-gantry were reduced to
1000 mm X600 mm (X, Y) to match the dimensions of
the shelf used in the culture room of Leibniz University
Hannover (Fig. 2A). To fulfill the specific demands of
monitoring in vitro cultures, several hardware compo-
nents were added to the gantry. In order to control the
height of the multi-sensor detector head (Fig. 2), and in
particular to accommodate the variable needs of dynami-
cally monitoring different plant species, we installed an
additional screw-driven z-axis (C-Beam Linear Actua-
tor, OpenBuilds, Zephyrhills, USA; modified to a stroke
length of 60 mm) and connected it to a motion controller.
The linear actuator for the z-axis was specified with an
accuracy of 0.05 to 0.1 mm by manufacturer. The cable
management was ensured by various 3D-printed parts
and common cable chains (GitHub repository [28]). Net-
work connection and power supply of the two single-
board computers (Raspberry Pi 4 Model B), controlling
either the sensors of the detector head or the serial com-
munication of the G-code to the motion controller, were
provided by a router and a Power-over-Ethernet switch

(Table 2).

Detector head hardware setup
The detector head installed at the z-axis of the system
consists of four different sensors (Fig. 2B—F) and diverse
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LED:s for the illumination (Fig. 2G), including a laser dis-
tance sensor (Fig. 2C), a low cost RGB camera (Fig. 2D), a
micro spectrometer breakout board (Fig. 2E) and a ther-
mal camera board (Fig. 2F).

The laser distance sensor (OD-Mini OB1-B100, Sick
AG, Whaldkirch, Germany) used in this setup was speci-
fied by the manufacturer with a power consumption of
<1.92 W, laser emission wavelength of 655 nm, max. out-
put of 390 pW (laser class 1), a measuring range of 50 to
150 mm and a linearity of 100 um as well as spot size
of 700 pm x 600 pm at a measuring distance of 100 mm.
The analog output of the laser distance sensor (10 V) was
connected via a small voltage divider circuit to a high
precision 16-bit A/D-converter (ADS 1115), which com-
municated via Inter-Integral Circuit (I*C) with a micro-
controller board (Wemos D1 Mini). The A/D-converter
gain was set to 2/3 to read a voltage range of +6.144 V
and therefore, cover the analog output range of 0 to 5 V.
Each distance measurement consisted of a up to ten sin-
gle readouts and averaging (excluding default sensor val-
ues), to achieve a robust and low noise measurement. The
microcontroller was powered and read out via USB by
the Raspberry Pi of the detector head (Fig. 14: SensorPi).

The 12.3-megapixel RGB camera (Raspberry Pi Cam-
era HQ, Raspberry Pi Foundation, Cambridge, UK) was
installed in the center of the ring light PCB to capture
top-down images of the in vitro culture vessels (Fig. 2B).
The device was electrically connected to a Raspberry Pi
via CSI (Camera Serial Interface). The RGB camera was
equipped with a 6 mm fixed focal length low-distortion
lens (Table 2: Edmund Optics: 6 mm wide angle lens,
£/1.2, high resolution=120 lp/mm, low distortion <0.5%)
to achieve a field of view (FOV) of >100 mmx 100 mm
at a minimum working distance (MWD) of ~100 mm,
mainly determined by the height of the culture ves-
sels used (500 mL transparent polypropylene contain-
ers with a height of 104 mm). Images of in vitro cultures
were captured with the following camera parameters:
resolution =4054 px %3040 px, shutter speed=2000 ms,
iso =100, autowhite-balance =off and a fixed gain of 3.3,
1.5 (red, blue).

The micro spectrometer board (micro spectrometer
and Breakout Board v2, GroupGets, Reno, USA) allows
an easy application of the ultra-compact Hamamatsu
CMOS image sensor (C12880MA, Hamamatsu Photon-
ics K.K., Hamamatsu, Japan), which has 288 channels
with a spectral range of 340 to 850 nm and a spectral res-
olution of 15 nm. The sensor’s pixel index was converted
to wavelength with the device-specific factory calibra-
tion coefficients and resulting wavelengths were round
to integers. The micro spectrometer board was powered
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Fig. 14 Software design and network communication of the phenotyping system components. Two Raspberry Pis hosting Docker containers
executing scripts for the two main tasks of motion control and sensor control and providing the access over HTTP request via the Python
framework FastAPI by the main script (semi-autonomous mode/local communication) or the user (reliant mode/ wireless communication). Gray
areas represent physically co-located software elements, arrows indicate the direction of data transfer, and black lines mark physically connected

hardware components

and readout by a microcontroller (Wemos D1 Mini) con-
nected via USB to the Raspberry Pi of the detector head
(SensorPi). The analog values of the micro spectrometer
were digitized by the 10-bit internal A/D converter of the
microcontroller. The micro spectrometer was equipped
with a 3D printed tubular aperture (# 5 mm), which
was used to integrate a long pass filter (Table 2: Edmund
Optics: G420; OD>5; transmission>90%) and to limit
the detection spot size of the spectrometer. Due to the
limited signal, an integration time of 300 ms was speci-
fied for fluorescence detection. The dielectric long pass
filter with a cut-on wavelength of 420 +5 nm was used to
separate excitation light of the UV-LEDs (Fig. 2G) from
the chlorophyll fluorescence signal measured in dark
condition (night).

The thermal camera board (PureThermal 2, GroupGets,
Reno, USA) was equipped with the FLIR Lepton 3.5
thermal camera (Lepton 3.5, Teledyne FLIR LLC, Wil-
sonville, USA). This low-cost device is a radiometrically
calibrated thermal camera, sensitive to longwave infra-
red radiation from 8 to 14 pm, with a spatial resolution
of 160 pxx 120 px, a horizontal field of view (FOV) of
57°, a radiometric accuracy of up to £5 °C and a thermal
sensitivity of 0.05 °C. Power supply and data readout was

ensured by a USB connection to one of the Raspberry Pis
(SensorPi). The internal flat field calibration (dark current
correction with closed shutter) was set to be performed
every 90 s.

As an essential requirement of the image acquisition
of plant in vitro culture, the illumination of the detector
head (Fig. 2G) had to limit total reflection, occurring at
the culture media surface and the lid of the culture con-
tainer, to a minimum. Therefore, the illumination setup
mainly included diffuse and non-direct lateral illumina-
tion. To enable various illumination options and to pro-
vide appropriate signal for the spectral measurements,
we designed a ring light printed circuit-board (GitHub
repository [28]), which consists of 24 white standard
LEDs (ROHM Semiconductor: SLA560WBC7T3), 12 UV
standard LEDs with a peak maximum of 375 nm (Nichia:
NSPU510CS) and 12 red standard LEDs (Lumex: SSL-
LX5093HD) with a peak maximum of 700 nm. LEDs
were controlled by a Mosfet circuit connected to one
of the microcontrollers (Wemos D1 mini) and powered
by eight 20 mA micro constant current power supplies.
Additionally, a 24 V diffuse ring light with white LEDs
and a color temperature of 6500 K was added as the main
illumination source for image acquisition.
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Phenotyping platform software setup

The requirements of the software setup comprised (i)
remote and programming language independent access
and control, and (ii) automatic and robust data trans-
fer from the phenotyping system sensors over weeks.
The software design is mainly based on the Python [22]
programming language and includes open-source com-
ponents like Docker [48], FastAPI [49], OpenCV [23]
and PlantCv [24] (Fig. 14). To ensure software reproduc-
ibility and flexibility—independent of framework and
operating system versions—we decided to containerize
the applications with Docker (ServerDocker, Sensor-
Docker and ClientDocker) which contain the Python-
based main scripts, according to respective task (sensor
control, motion control and the fusion of the two tasks).
Network communication between the different contain-
ers is ensured by a Python framework “FastAPI” which
allows the execution of Python functions, provides the
network addressing and the access of sensor data via
HTTP requests of the different physically separated net-
work components, resulting in control of the system via
HTTP independently of programming languages. The
system specific Python library containing all self-defined
functions is accessible at our GitHub repository [28]. The
hardware and software setup yielded a portable and stand-
alone system, allowing a semi-automated sensor data
acquisition.

Automated data acquisition

Step I: Start of the system

Step I included the start of the system and the determi-
nation of culture vessel position (Fig. 3). To run the phe-
notyping system in an autonomous way over weeks of
monitoring, the positions of the to be monitored culture
containers as a single user input had to be initially set
in the Python main script. Alternatively, a vessel detec-
tion algorithm based on Circle Hough Transform imple-
mented in our Python library can be used—if some input
constants are adjusted to the respective imaging situa-
tion. To run the monitoring experiment the started Cli-
entDocker executed the main Python script (Main.py)
and thus the library is included with all necessary func-
tions and system constants.

Step lI: Data structure and capture initial images

for determination of plant positions

Once the system is started, the output directory (256 GB
USB drive connected to ServerPi) is checked for already
existing experiments, then a new experiment folder and
subfolders for each culture vessel are created. The culture
vessel positions are sequentially approached, capturing
initial images and directly determining plant positions
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of the four largest objects, found by image color space
transformation in HSV (hue, saturation and value) and
thresholding of the hue channel with Otsu’s method [20]
(Fig. 3). Plant positions are calculated by deviation of the
centroid of the found objects—converted from pixel to
mm—and the known position of image midpoint (xy-
position of the motion controller).

Step III: Time lapse data acquisition

After the initial steps I and II, the actual time lapse data
acquisition is continuously looped over the time of the
experiment (Fig. 3). In our experiments, RGB image
acquisition was performed sequentially for each culture
vessel at the midpoint every 4 h. Thermal images were
captured simultaneously with the RGB images, with
the thermal sensor shifted to the center point in the xy
direction. To determine whether additional illumina-
tion is required for RGB night shots, the average pixel
intensity of an RGB image previously captured without
system illumination was calculated. Once the system
recognized a night image situation, the estimated plant
positions were sequential approached to capture fluores-
cence spectral information with the micro spectrometer
at the centroid of the found objects and UV excitation
lights turned on (Fig. 3). After that, consequently the
acquisition of depth data with the point-measuring laser
distance sensor was obtained via spatial scan by sequen-
tial readout of the sensor point measurements while
shifting the detector head in xy direction, according to
the scan pattern (e.g., 100 mm X100 mm; with a reso-
lution of 1 mmx1 mm) with a speed around 0.27 s per
point x 10,000 points per vessel (~45 min), which limited
the measurement of depth data to two culture vessels per
4-h cycle. For the experiments conducted in this paper, a
depth measurement for each culture container once per
day was ensured.

Data processing

RGB data processing

Classical image processing approaches—applying thresh-
olds to certain color space channels—failed in different
previously conducted experiments due to a high vari-
ability and diversity in the obtained image data sets, for
instance due to changing illumination situations dur-
ing the day or due to changes in leaf pigment composi-
tion (Fig. 4A). To obtain a robust image classification, we
therefore trained a pixel-wise random forest classifier
with Ilastik [21]. Ilastik is an open-source toolkit offer-
ing machine learning (ML) based image processing for
pixel and object classification and tracking. 50 random
RGB images of the A. thaliana dataset were selected
and partially labeled pixel-wise in either background or
plant pixels. Features selection was limited to a number
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of 14 features to reduce computation time (Additional
file 7). After verification of the classifier, the model was
exported and used in the RGB image processing pipeline
in Python script.

PlantCv [24] was used to set up the image processing
pipeline allowing a uniform batch-processing of hun-
dreds of images. The trained classifier was executed in
the headless mode to obtain the segmentation binary
image containing only plant pixels (Fig. 4B). Image pro-
cessing included an automated brightness and contrast
adjustment by histogram stretching and a temporary
reduction in resolution to reduce computation time
from 4054 px x 3040 px to 1014 pxx 760 px while using
the pixel-wise classifier. After obtaining the binary
plant masks, the connected components analysis was
carried out, mainly with established PlantCv functions.
For single plant analysis, the following parameters
could be calculated: projected plant area, perimeter,
convex hull area to calculate solidity/compactness and
stockiness (data not shown). Additionally, the cumula-
tive projected plant area of all explants could be deter-
mined by the sum of non-zero pixels in the segmented
binary plant mask.

Depth data processing
The level of zero depth was calculated separately for
each culture vessel as the mean of the raw sensor data
from four quadrilaterals (10 pxx10 px) of each corner
of the scan area (100 mm x 100 mm)—where values only
derived from the cultivation surface and not from the
media or plant. To obtain depth data from raw sensor
values of the laser distance sensor, the calibration curve
of a reference object for data conversion was used (Addi-
tional file 5). Circle Hough Transform [26] was employed
to detect the culture medium in the depth data from Day
0 (Fig. 4C). With the radius (r,) of the detected circle, a
circular binary mask was created with r, ., =r,—3 px,
which allowed the removal of disturbing edges of the cul-
ture medium for further determination of plant height
parameters. RANSAC [18]-based plane detection was
therefore applied to the edge-removed point cloud to
dynamically identify the eventually tilted medium sur-
face (Fig. 4C). Here, the following parameters were set
to detect the planes (distance threshold=1.5, sample
size=3, iterations=10,000). The obtained RANSAC
plane of the medium was subtracted from the processed
point cloud, resulting in height correction and segmenta-
tion of the plant depth data. Sum of non-zero pixels of
segmented depth pixels (Background: 0, plant: 1) allowed
the calculation of plant area by depth data.

With the processed depth data, the following param-
eters were calculated:
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— Medium height (mm): Mean of estimated RANSAC
plane

— Medium volume (mm?*: Assuming a circular coni-
cal frustum (V = %nh (r;2 41,1, +1,%); h=medium
height, r,=37 mm; radius of the bottom surface of
the culture vessel (constant)

— Average canopy height (mm): Mean of the height
corrected plant depth data (output)

— Maximum plant height (mm): Mean of the upper 10
percentile of the corrected plant depth data

— Projeceted plant areage,y, gu (mm?): Count of non-
zero pixels of segmented and height corrected plant
depth data

Spectral data processing

For spectral data processing, the analysis focused on
the fluorescence measurement, since, in contrast to the
spectral reflection, the fluorescence spectra were derived
almost exclusively from plant tissue. First, the dark cur-
rent noise was calculated (spectrometer readout at night,
with no excitation light on) as the mean of all dark cur-
rent measurements. From all fluorescence spectra this
mean dark spectrum was then subtracted. For a simpli-
fied visualization, the region between 400—-660 nm was
masked. The masked region contained signals of residual
light of the culture room and excitation light (UV) due to
imperfect blocking properties of the used longwave filter.

Thermal data processing

The image situation in the wavelength region of the
spectral sensitivity of the thermal camera was challeng-
ing due to the optical properties of the culture vessels.
A successful and robust implementation of thermal data
acquisition allowed the readout of the 14-bit raw gray-
scale image by the use of Python library Flirpy. Thermal
data processing included a conversion of 14 bit gray-
scale values to °C by manufacturer-specified conversion
(YCclsius = Yraw/loo - 27315)

Calibration of the “Phenomenon” phenotyping system
Xyz-gantry movement calibration

The motion controller of xy-gantry has been set up with
manufacturer-specificized GRBL settings for each axis
respectively (GitHub repository [28]), that allow the step-
per motor motion to be translated into steps in metric
units.

RGB sensor calibration

A relation between pixel and metric units was established
to express the projected plant area in square millimeters
by counting pixels of a graph paper image at the average
media height of 20 mm (1 mm=37.7 px).
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Laser distance sensor calibration

Laser distance raw sensor data were technically cali-
brated by measuring a staircase shaped reference object.
Therefore, z-axis was set to the same value as used in
later experiments (z-axis=—40 mm=detector head
height ~ 130 mm). Reference heights were obtained by a
caliper for 6 different heights and 119 raw sensor values
were used for calibration. Thus, the zero plane for spe-
cific sensor Z-height (z-axis,,,=19430) as well as the
maximal valid height could be determined (Additional
file 5, maximum height < =72 mm). The obtained linear
regression function determined the metric conversion of
raw sensor data in all conducted experiments.

Spectrometer detection spot size determination

Two approaches were used to estimate the measuring
spot diameter of the micro spectrometer that had to
be modified with a 3D-printed aperture tube (GitHub
repository [28]) to reduce the size of the measurement
spot: a graphical estimation and an experimental deter-
mination. Additional file 8 contains a schematic sketch
for the graphical estimation of the detection spot size
diameter of 23.5 mm. The experimental determina-
tion included a sequential spectrometer readout every
1 mm, while linear movement in x-axis over a grid with
black background and white squares of decreasing size
and a side length ranging from 30 to 21 mm. Spectrom-
eter channel readouts with the highest signal were picked
from the array and plotted over the x axis. We assumed
that if the detection spot size diameter is smaller than the
side length of the square a constant plateau is found in
the respective peak. The first square where a sharp maxi-
mum was identifiable, or in particular its side length of
23 mm, determined the detection spot size diameter of
this approach.

Validation of the “Phenomenon” phenotyping system
Validation of xy and z-axis repositioning accuracy

of the “Phenomenon” phenotyping system

Determination of technical repeatability of xy-axis repo-
sitioning over time was conducted by measuring the
midpoint deviation by RGB images of a reference object
with a flat surface and a height of 41 mm over 16 days for
a certain timepoint (12 o'clock), under the settings that
were used in all experiments. The initial midpoint (Day 0)
of the largest found object in Otsu-binarized L-Channel
of CIELAB colorspace was set as the reference for calcu-
lation of the mean absolute error (MAE) for x- and y-axis
(Table 3). The daily measurement procedure included an
initial zeroing through limit switches, repositioning and
RGB data acquisition. Reference object surface area of
50 mm x50 mm and founded counts of px were related
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Table 3 Technical repeatability of xy-gantry repositioning via
RGB image analysis

Day[d] MAEc[px] MAEg[mm]  MAE,[px]  MAE, [mm]
1 8 0.17 3 0.06
2 10 021 4 009
3 Q.15 2 0.04
4 8 017 7 015
5 9 0.19 5 0.11
6 9 0.19 4 0.09
7 10 021 3 006
8 1 024 4 009
9 11 024 6 013
10 12 026 6 013
1 12 0.26 4 0.09
12 14 03 4 0.09
13 15 032 6 0.13
14 14 03 0 0

15 14 03 0 0
Total 109 0.23 39 0.08

to convert the midpoint deviation of the reference object
in px to metric units at a height of 41 mm of the reference
object (1 mm=46.7 px).

Determination of technical repeatability of z-axis over
time was conducted by setting five different z-axis values
by the motion controller. Each Z step (0 mm, —6 mm,
—20 mm, —40 mm, — 50 mm) was approached five times
with initial zeroing through limit switches each time.
Actual height changes were recorded by the calibrated
laser distance values. Linear regression analysis revealed
an R?>0.99, a MAE, of 0.09 mm and a RMSE of 0.11 mm
(Additional file 4).

Validation of the RGB image processing pipeline

The performance of the RGB image processing pipeline,
in particular the image segmentation part was checked
by manual plant pixel labeling with the annotation soft-
ware “LabelMe” [50]. 18 randomly selected images from
the A. thaliana Trial A dataset were used with 3 images
per time point and including images of 9 different culture
vessels. The 18 binary masks from manual segmentation,
thus forming the ground truth dataset, were matched
against respective binary masks derived from our RGB
image processing pipeline. Plant area was calculated by
the sum of non-zero pixels in binary images (Background:
0, plant: 1), while for confusion statistics a full compari-
son between the two data sets were necessary, revealing
221,834,880 pixel pairs where plant pixels reflected the
true positive class and background pixels represented the
true negative class.
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Validation of depth data processing

To estimate the quality of the representation of plants
in depth images we selected the projected plant area as
a basis of comparison between RGB and depth sensor
data and corresponding pipelines, respectively. There-
fore, we converted projected plant area by the RGB
image processing pipeline from px to square millimeters
(37.7 pxx37.7 px=1 mm?), which allowed comparison
with projected plant area by depth data processing pipe-
line. Projected plant area from RGB and depth data of 4
culture containers at 12 time points (n=48) were submit-
ted to a linear regression analysis, assuming the RGB seg-
mentation as the ground truth data.

Software environment for data acquisition, processing,
analysis and visualization

Data acquisition was done mainly with Python v3.8.8 [22],
using in particular the libraries FastAPI [49], OpenCV
v3.4.9 [23], NumPy v1.20.2 [51], Serial v.3.4 [52], Picam-
era v.1.13 [53], Flirpy v0.3.0 [54] and with Arduino IDE
1.8.19 [55] with the following libraries: arduino-micro-
spec [56], SerialCommand [57] and Adafruit ADS1015
(58]

RGB Image processing and analysis was conducted
with Python v3.8.8 [22] in the Jupyter Notebook v6.3.0
[59] environment using the following packages: PlantCv
v3.11.0 [24], OpenCV v3.4.9 [23], NumPy v1.20.2 [51],
Matplotiib v3.4.1 [60], scikit-image v0.18.1 [61] and the
Software toolkit Ilastik v1.3.3 [26] headless integrated in
the Python script.

Depth data analysis included subsequent additional
Python libraries: Pandas v1.4.2 [62], Open3D v0.15.1 [25],
Pyvista v0.34.0 [63].

For data visualization, spectral data analysis and sta-
tistical analysis, where statistical test assumptions
were proofed graphically, we used R v4.1.2 [64] and the
R-packages dplyr v1.0.8 [65], ggplot2 v 3.3.5 [66], kable-
Extra v1.3.4 [67], purrr v0.3.4 [68], readr v2.1.2 [69],
tidyverse v1.3.1 [70], hyperSpec v0.100.0 [71] and photo-
biology [72].
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Additional file 1. Time lapse video of shoot regeneration of M. tabacum
in vitro. Leaf explants were cultivated at MS medium supplemented

4.44 uM. Shoot development was were monitored over 32 days of cultiva-
tion. Images were segmented with a trained classifier. Uncompressed
video is available from the corresponding author on reasonable request.

Additional file 2. Time lapse video with original images of A. thaliana
growth in vitro. 10 days old seedlings were cultivated on modified BS
mediumand monitored for 16 days. Uncompressed video is available from
the corresponding author on reasonable request.
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Additional file 3. Time lapse video with segmented images of A, thaliana
growth in vitro. 10 days old seedlings were cultivated on modified B5
mediurmand monitored for 16 days. Images were segmented with a
trained classifier. Uncompressed video is available from the corresponding
author on reasonable request.

Additional file 4. Technical repeatability of Z-axis repositioning. Five dif-
ferent z-axis values were set to the motion controller and approached five
times with initial zeroing through limit switches each time. Actual height
changes were recorded by the calibrated laser distance values.

Additional file 5. Calibration of laser distance sensor. Linear regression of
raw sensor values of the laser distance sensor. The reference height was
determined with a caliper of a staircase-shaped object (RGB and depth
image in bottom left corner). The regression line is colored black, while the
linear regression extrapolation is drawn dashed. Gray indicates confidence
interval limits at a = 0.95. Adj R? denotes the coefficient of determination
adjusted according to Yin and Fan [27], while Pslope and Pinter represent
p-values of the coefficients for the intercept and slope determined by
simple T-test. MAE and RMSE indicate the mean absolute error and the
root mean square error of calibration.n=119.

Additional file 6. Technical repeatability of spatial scanning with laser
distance sensor over time. Determination of technical repeatability over
time was conducted by measuring a reference object with a flat surface
and a height of 41 mm once per day over 6 days, under the settings that
were used in all experiments. The initial depth measurementof an area

of 50 mm x 50 mm was set as the reference for calculation of the mean
absolute errorand the root mean square error. The daily measurement
procedure included an initial zeroing through limit switches, repositioning
and depth data acquisition by spatial scan

Additional file 7. Random forest classification model features for seg-
mentation of A. thaliana Trail A.

Additional file 8. Experimental and graphical determination of modified
spectrometer detection spot size. Image of the modified spectrometer
are shown in upper right corner. A) Experimental determination of spec-
trometer detection spot size by a sequential spectrometer readout every
1 mm, while linear movement in x-axis over a grid with black background
and white squares of decreasing size and a side length ranging from 30
to 21 mm. Spectrometer channel readouts with the highest signal were
picked from the array and plotted over the x-axis. We assumed that if

the detection spot size diameter is smaller than the side length of the
square a constant plateau is found in the respective peak. The first square
where a sharp maximum was identifiable, or in particular its side length
of 23 mm determined the spot size diameter. B) Graphical estimation by
drawing at a 1:1 scale. Graphical determination found a spot size diameter
of 23.5 mm.
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Supplementary Information

SI. 1: Time lapse video of shoot regeneration of N. tabacum in vitro. Leaf explants were cultivated at MS
medium supplemented 4.44 uM (BAP). Shoot development were monitored over 32 Days of cultivation.
Images were segmented with a trained classifier.

41



Manuscripts

SI. 2: Time lapse video with original images of A. thaliana growth in vitro. 10 days old seedling were culti-
vated on modified B5 medium (see Methods) and monitored for 16 days.
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SI. 3: Time lapse video with segmented images of A. thaliana growth in vitro. 10 days old seedling were
cultivated on modified B5S medium (see Methods) and monitored for 16 days. Images were segmented with
a trained classifier.
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Adj R2 = 0.999999 Intercept = -0.02037 Slope = 1.003 P = 1.009e-70
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SI. 4: Technical Repeatability of Z-axis repositioning. Five different Z-Axis values were set to the motion
controller and approached five times with initial zeroing through limit switches each time. Actual height
changes were recorded by the calibrated laser distance values.
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Adj R? = 0.9976 Intercept = 19430 Slope = -268.4 P, = 5.392e-190 Psiope = 6.22-155
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SI 5: Calibration oflaser distance sensor. Linear regression of raw sensor values of the laser distance sensor.
The reference height was determined with a caliper of a staircase shaped object (RGB and depth image in
bottom left corner). The regression line is colored black, while the linear regression extrapolation is drawn
dashed. Gray indicates confidence interval limits at « = 0.95. Adj R? denotes the coefficient of determination
adjusted according to Yin and Fan (2001), while Psiope and Pinter represent p-values of the coefficients for the
intercept and slope determined by simple T-test. MAE and RMSE indicate the mean absolute error and the
root mean square error of calibration.n =119
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SL 6 - Table 2: Technical Repeatability of spatial scanning with laser distance sensor over
time

Day [d] MAE [mm] RMSE [mm] Sample number [-]
1 0.31 0.32 2500

2 0.49 0.51 2500

3 0.48 0.5 2500

4 0.47 0.49 2500

5 0.37 0.4 2500

Total 0.42 0.44 12500

SI. 6: Technical Repeatability of spatial scanning with laser distance sensor over time. Determination of
technical repeatability over time was conducted by measuring a reference object with a flat surface and a
height of 41 mm once per day over 6 days, under the settings that were used in all experiments (Table 3).
The initial depth measurement (Day 0) of an area of 50 mm x 50 mm was set as the reference for calculation
of the mean absolute error (MAE) and the root mean square error (RMSE). The daily measurement proce-
dure included an initial zeroing through limit switches, repositioning and depth data acquisition by spatial
scan.
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Model:
Parallel Random Forest (VIGRIA)
Selected Features:

Gaussian Smoothing (0=0.3)
Gaussian Smoothing (0=0.7)
Gaussian Smoothing (0=1.0)
Gaussian Smoothing (0=1.6)
Gaussian Smoothing (0=3.5)
Gaussian Smoothing (0=5.0)
Gaussian Smoothing (0=10.0)
Gaussian Smoothing (0=20.0)

Laplacian of Gaussian (0=10.0)
Laplacian of Gaussian (0=20.0)

Gaussian Gradient Magnitude (0=10.0)
Gaussian Gradient Magnitude (0=20.0)

Difference of Gaussians (0=10.0)
Difference of Gaussians (0=20.80)

SI. 7: Random forest classification model features for segmentation of A. thaliana trail A.
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SI. 8: Experimental and graphical determination of modified spectrometer detection spot size. Image of
modified spectrometer are shown in upper right corner. A) Experimental determination of spectrometer
detection spot size by a sequential spectrometer readout every 1 mm, while linear movement in X-axis over
a grid with black background and white squares of decreasing size and a side length ranging from 30 mm
to 21 mm. Spectrometer channel readouts with the highest signal were picked from the array and plotted
over the x axis. We assumed that if the detection spot size diameter is smaller than the side length of the
square a constant plateau is found in the respective peak. The first square where a sharp maximum was
identifiable, or in particular its side length of 23 mm determined the spot size diameter. B) Graphical esti-
mation by drawing at a 1:1 scale. Graphical determination found a spot size diameter of 23.5 mm.
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Abstract

Hyperhydricity (HH) is one of the most important physiological disorders that negatively affects various plant tissue culture
techniques. The objective of this study was to characterize optical features to allow an automated detection of HH. For this
purpose, HH was induced in two plant species, apple and Arabidopsis thaliana, and the severity was quantified based on
visual scoring and determination of apoplastic liquid volume. The comparison between the HH score and the apoplastic lig-
uid volume revealed a significant correlation, but different response dynamics. Corresponding leaf reflectance spectra were
collected and different approaches of spectral analyses were evaluated for their ability to identify HH-specific wavelengths.
Statistical analysis of raw spectra showed significantly lower reflection of hyperhydric leaves in the VIS, NIR and SWIR
region. Application of the continuum removal hull method to raw spectra identified HH-specific absorption features over
time and major absorption peaks at 980 nm, 1150 nm, 1400 nm, 1520 nm, 1780 nm and 1930 nm for the various conducted
experiments. Machine learning (ML) model spot checking specified the support vector machine to be most suited for classifi-
cation of hyperhydric explants, with a test accuracy of 85% outperforming traditional classification via vegetation index with
63% test accuracy and the other ML models tested. Investigations on the predictor importance revealed 1950 nm, 1445 nm
in SWIR region and 415 nm in the VIS region to be most important for classification. The validity of the developed spectral
classifier was tested on an available hyperspectral image acquisition in the SWIR-region.

Key message
This study provides an approach that paves the way to automatic detection of hyperhydricity by identifying the key spectral
features of this phenomenon.

Keywords Hyperhydricity - Spectral analysis - Phenotyping - Machine learning - Automated object detection

Abbreviations VIS Visible radiation

HH Hyperhydricity NIR Near infrared radiation

ML Machine learning SWIR  Shortwave infrared radiation
uv Ultra violet MWIR Mid-wave infrared radiation

LWIR  Longwave infrared radiation
DAT Days after treatment/transfer

Communicated by Victor M. Jimenez. Ccv Cross validation
CNN Convolutional neuronal network
£ Hans Bethge HSI Hyperspectral imaging

bethge @baum.uni-hannover.de
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using liquid culture or bioreactor systems (Cardoso et al.
2018; Debergh et al. 1992; Gribble 1999). According to
Kemat et al. (2020), at least 200 species are sensitive to
HH and around 150 species can be affected seriously by
HH emphasizing the relevance for commercial micropro-
pagation. HH not only restricts the propagation of in vitro
plants, but also affects the efficiency of genetic transforma-
tion mediated by Agrobacterium (van Altvorst et al. 1996)
and the conservation of important species in germplasm
banks (Lizarraga et al. 2017).

HH is a physiological disorder occurring under the spe-
cific conditions of plant tissue culture such as high humid-
ity, high supplementation of sucrose, impaired gaseous
exchange capacity and consequently low photosynthetic
activity (George et al. 2008; Ziv 1991). The work of van
den Dries et al. (2013) and Rojas-Martinez et al. (2010)
provided strong evidence that the underlying mechanism of
the HH etiology is the flooding of the apoplast, resulting
in hypoxia and causing oxidative stress. This in turn leads
to the macroscopic symptoms of water-soaked, wrinkled,
curled, brittle and translucent tissue. The occurrence of HH
was shown to be increased when the water availability for
the in vitro explant was increased (Smith and Spomer 1995),
e.g., by reduced concentration of the gelling agent (Ivanova
and Van Staden 2011), or by the type of the gelling agent
used (Pasqualetto et al. 1988; Tsay et al. 2006). The gelling
agent gelrite induced HH in a wide range of plant genera
(e.g., Arabidopsis sp., van den Dries et al. 2013, Malus sp.
Pasqualetto et al. 1988, Prunus sp. Franck et al. 1998), even
though the same gel strength as agar was used.

In addition to the anatomical changes of hyperhydric tis-
sue which include larger intercellular spaces in the meso-
phyll and a drastically reduced number of palisade cells
(Vieitez et al. 1985), several biochemical changes of hype-
rhydric tissue such as decreased chlorophyll contents (Phan
and Letouze 1983; Franck et al. 1998), hypolignification
(Kevers et al. 1987; Kemat et al. 2021), and high apoplastic
water volume (Dries et al. 2013; Tian et al. 2015; de Klerk
and Pramanik 2017) were reported. Paques et al. (1985)
refer to HH as an inducible and reversible phenomenon and
demonstrated that Malus sp. ‘M26’ plantlets could return
to non-hyperhydric state if the induction phase in liquid
culture did not exceed five days or if the symptoms of HH
were not too severe. Recently, there were reports that hype-
rhydricity can be reversed by supplementation of agents to
media such as silver nitrate and trichloroacetate (Gao et al.
2017; de Klerk and Pramanik 2017) or by controlling the
environmental conditions in addition to media optimization
(Mohamed et al. 2023), but no general countermeasure has
been derived up to now. In commercial in vitro laboratories
visual monitoring for contaminations and disorders are part
of the routine work and therefore a costly and time-consum-
ing repetitive matter (Mestre et al. 2017).
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Nowadays, digitalization enters the horticultural sector,
driven by digital solutions to increasingly complex work
processes achieved through technological advances in sen-
sors, automation and robotization, as well as data analysis
through classical and advanced machine learning (ML)
techniques. Automation of processes offers great economic
potential for micropropagation laboratories since 60-70%
of total costs of a micropropagated plant is due to manual
labor (Chen 2016). An increasing number of reports on auto-
mating micropropagation processes such as explant cutting
(Huang and Lee 2010), the commercial laser-based robotic
cut and transplanting system RoBo®Cut (Bock Biosciences
GmbH 2018), monitoring of cultures (Dhondt et al. 2014,
Bethge et al. 2023) and transplanting of explants (Lee et al.
2019) were published within the recent years. In addition,
there are several studies on the application of computer
vision to micropropagation (Smith et al. 1989; Aynalem
et al. 2006; Dhondt et al. 2014; Gupta and Karmakar 2017;
Mestre et al. 2017) with imaging sensors being the crucial
technology. Imaging sensors used in horticulture consist of
affordable RGB cameras, multispectral cameras, thermal
cameras, expensive hyperspectral imaging (HSI) systems,
ToF (Time of Flight), LIDAR systems (Light Detection and
Ranging) and more. The different sensor systems can be
discriminated by their operating spectral range (UV, VIS,
NIR, SWIR, MWIR, LWIR/Thermal-IR), spectral resolu-
tion from one (monochrome) to> 100 (hyperspectral) chan-
nels and cost of purchase. For example, the price of silicon
(Si)-based hyperspectral cameras rise by a factor of 2 to 20
when switching the operating spectral range from VIS/NIR
(400-1000 nm) to SWIR (900-1700 nm) with an Indium-
Galium-Asenide (InGaAs) camera chip (Tisserand 2021).
This needs to be considered, when selecting the appropriate
spectral range and corresponding imaging technology. While
computer vision coupled with ML offers already great poten-
tial to solve complex detection task in agriculture (reviewed
in Patricio and Rieder 2018), for application in plant tissue
culture only few reports are available up to now (reviewed
in Prasad and Gupta 2008; Hesami and Jones 2020). How-
ever, these are limited in terms of live-monitoring, since
they followed the “object to sensor” approach for plantlet
clustering (Mahendra et al. 2004), classification of somatic
embryos (Zhang et al. 1999) and estimation of shoot length
(Honda et al. 1997).

The visual appearance of plants, and in particular leaf
pigments, can be estimated by spectroscopic approaches
based on their interaction with electromagnetic radiation.
Single biochemical plant metabolites can be associated with
specific wavelengths based on their major absorption peaks
(Table 1).

Univariate data analysis, e.g., spectral indices or multi-
variate data analyses like partial least square (PLS), allows
the prediction of leaf pigments’ concentrations and can be
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Table 1 Selected reported symptoms of hyperhydric tissues (HH) and corresponding expected major changes in optical absorbance features

Reference Plant species

Observation

Deduced optical absorbance
features in VIS-SWIR [nm]*

Phan and Letouze (1983) P. avium

Van den Dries et al. (2013) A. thaliana
Phan and Letouze (1983) P avium
Kemat et al. (2021) A. thaliana
Saher et al. (2005) D. caryophyllus
Van den Dries et al. (2013) A. thaliana

Lower chlorophyll content in HH
Higher apoplastic water volume in HH
Less protein content in HH
Hypolignification in HH

Higher sugar content in HH

430, 460, 640, 660
970, 1200, 1400, 1450, 1940
910, 1020, 1510, 1940, 1980
1200, 1420, 1450, 1690, 1940
1450, 1490, 1580, 1780, 1960

Anthocyanins accumulation in HH 550

*Absorptions peaks according to Curran (1989) in a wavelength range of 400 to 2000 nm. Bold wavelength indicating stronger absorption of the

respective chemical compound

used for classification. These techniques also enable the
discrimination of different plant species or the identifica-
tion of growth anomalies by specific spectral features (Shaw
and Kelley 2005). According to Hesami and Jones (2020),
ML techniques applied to plant tissue culture problems will
help in future to solve classification and regression problems
and can be employed for automation and mechanization of
in vitro propagation, genetic engineering and genome edit-
ing technologies. In addition, Nezami-Alanagh et al. (2019)
demonstrated the positive impact of ML models in optimiz-
ing culture media in terms of time, cost and the occurrence
of physiological disorders in the propagation of pistachio
rootstocks. Prasad and Gupta (2008) proposed that an auto-
mated decision-making system based on computer vision
coupled with ML. models and combined with a robotic sys-
tem will result in the mechanization of commercial mass
propagation and help in evaluating various aspects of plant
quality such as HH status, which might be difficult to deter-
mine by human visual inspection. To our knowledge, the
spectral properties of HH have not yet been studied or used
as a distinguishing feature for ML classification of in vitro
cultured explants.

The objective of this study was to investigate the spectral
fingerprints of hyperhydric tissue in two different plant spe-
cies (Malus sp. and Arabidopsis thaliana) after forced induc-
tion of the growth anomaly and subsequent spectral analysis
of the explants. Here, we selected Malus as a representa-
tive of classical in vitro shoot cultures and Arabidopsis as a
model plant for the underlying mechanism of HH. A novel
phenotyping system was tested to monitor the morphological
characteristics of hyperhydric explants in time-series image
data. Furthermore, we aimed at identifying specific absorp-
tion features of hyperhydric tissues that are sufficient for
discrimination by ML techniques and to locate them within
in the electromagnetic radiation spectrum. Putative discrimi-
nating models should be validated and discussed in terms of
their feasibility in plant tissue culture. The findings of this
study should pave the way for an automatic detection of HH
by live-monitoring of in vitro cultures.

Material and methods
Plant material and experimental setup
Morphological characteristics of hyperhydricity

From in vitro apple shoot cultures (Malus sp. ‘G214’) uni-
form shoots of 10-15 mm length were prepared and culti-
vated on modified MS medium (Murashige and Skoog 1962)
containing 2.2 uM 6-benzylaminopurine (BAP), 0.5 uM
indole-3-butyric acid (IBA), 3% (w/v) sucrose and solidified
with either 0.8% (w/v) agar (Plant agar, Duchefa, Haarlem,
The Netherlands) for the control variant (“MS + agar”) or
with 0.25% (w/v) gelrite (Duchefa, Haarlem, The Nether-
lands) for the HH induction variant (“MS + gelrite”). The
pH of the medium was adjusted to 5.8 prior to autoclaving
at 121 °C for 15 min.

Arabidopsis thaliana ‘Col-0’ seeds which had been stored
at 4 °C, were surface-disinfected using 70% (v/v) isopro-
panol for 30 s, followed by 2% (v/v) sodium hypochlorite
plus Tween 20 for 5 min and then rinsed thoroughly three
times using sterile deionized water. The seeds were germi-
nated for 10 days at 24 °C in 9 cm-Petri dishes (polysty-
rene) on modified plant growth regulator-free BS medium
(Gamborg et al. 1968), containing 1.5% (w/v) sucrose with
0.8% (w/v) Plant agar and pH 5.8. Uniform 10 day-old seed-
lings were selected and five seedlings per 500 mL-vessel
were transferred to modified plant growth regulator-free
B5 medium (Gamborg et al. 1968), containing 1.5% (w/v)
sucrose and either 0.8% (w/v) Plant agar for the control vari-
ant (“B5+agar”) or 0.25% (w/v) gelrite (“B5 + gelrite™) to
induce HH. The pH of the medium was adjusted to 5.8 prior
to autoclaving at 121 °C for 15 min.

Ten 500 mL polypropylene vessels were prepared for
Experiment I (Table 2) and Experiment II, each with four
plantlets and containing ~ 80 mL of one of the two dif-
ferent media (“B5/MS + agar”/*B5/MS + gelrite” supple-
mented with 1 g L-1 titanium dioxide). Titanium dioxide
(food dye; Ruth GmbH & Co.KG, Bochum, Germany)
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Table 2 Overview of conducted experiments and measurements ten

Experiment Plant species Time series [day] Evaluations Determination/Device
I Arabidopsis thaliana 0-20 RGB growth curve RGB image sensor of Phenomenon*
RGB shape analysis RGB image sensor of Phenomenon®
Depth mean canopy height Laser distance sensor of Phenomenon®
Depth maximum plant height Laser distance sensor of Phenomenon®
I Malus sp. 0-27 RGB growth curve RGB image sensor of Phenomenon®
RGB shape analysis RGB image sensor of Phenomenon®
RGB image data set RGB image sensor of Phenomenon®
Depth mean canopy height Laser distance sensor of Phenomenon®
Depth maximum plant height Laser distance sensor of Phenomenon®
111 Malus sp., 0,5, 10, 15,20 HH Score Visual scoring
Arabidopsis thaliana Apoplastic liquid volume Apoplastic liquid volume
Reflection spectra UV-VIS Spectrometer Perkin-Elmer
IV Malus sp. 14, 21, 28 HH Score Visual scoring
Apoplastic liquid volume Apoplastic liquid volume
Reflection spectra UV-VIS Spectrometer Perkin-Elmer
Vv Malus sp. 0,4,8,12,16 HH Score Visual scoring

Apoplastic liquid volume
Reflection spectra

Apoplastic liquid volume
UV-VIS Spectrometer Perkin-Elmer

“The multisensory robot system “Phenomenon” developed by Bethge et al. (2023), consisting of 4 sensors (RGB camera, laser distance sensor,
thermal camera and a microspectrometer), was used to enable in-situ measurement of the morphology through the lid of the culture vessels

was used to add a white color to the medium, because
this enabled the height measurements of the robot system
due to increased reflection of the culture media. A plastic
film (PVC system foil; Klarsichtpackung GmbH, Hofheim,
Germany) sealed the containers as a substitution of the
lid of the containers to provide a fully transparent view
while ensuring the aseptic condition of the cultures. These
cultures were cultivated at 22 °C with a 16 h photoperiod
and under a PPFD (Photosynthetic Photon Flux Density)
of 35-40 pmolm~2s~!, provided by two tubular fluores-
cent lamps (Philips MASTER TL-D 58W/865). The lab’s
bottom-cooling system—provided by water-cooled plastic
tubes below the shelf—prevented water condensation due
a local shift of dew point. Room temperature ranged from
19 (night) to 25 °C (day) with an average of 22 °C over
24 h, while the average surface temperature of the cooled
cultivation area ranged from 19 (night) to 24 °C (day)
with an average of 21 °C over 24 h. In addition to the
non-destructive monitoring approach (Exp. I & II), three
experiments (Exp. III, Exp. IV, Exp. V; Table 2) were con-
ducted with different evaluation time points. The evalua-
tion time points were chosen based on the key events in
the dynamic etiology of hyperhydricity during a culture
passage (~4-5 weeks for Malus). Important morphological
changes were observed during the first two weeks, so Exp.
IIT and V covered this time span, while measurements in
Exp. IV were undertaken to cover the second half of the
culture passage.
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Hyperhydricity induction

For Malus shoot cultures, 500 mL polypropylene containers
containing 80 mL of the two different media were used and
each container was inoculated with five shoots. Cultivation
took place for 20 days (Table 2; Exp. I1I), 28 days (Exp. V)
and 16 days (Exp. V) at 22 °C (room temperature ranged
from 19 (night) to 25 °C (day) with an average of 22 °C
over 24 h) with a 16 h photoperiod and under a PPFD (Pho-
tosynthetic Photon Flux Density) of 35—40 pmol m™2 57!,
provided by tubular fluorescent lamps (Philips MASTER
TL-D 58W/865). Arabidopsis plantlets were cultivated as
described above for 20 days (Exp. III).

Evaluations

Morphological characteristics of hyperhydricity via image
analysis

For visualization of the etiology of HH, the multisensory
robot system “Phenomenon’ (Bethge et al. 2023) was used.
RGB images were captured in Exp. [ and Exp. Il every 4 h
with a 12.3-megapixel RGB camera (Raspberry Pi Camera
HQ, Raspberry Pi Foundation, Cambridge, UK) equipped
with a 6 mm fixed focal length low-distortion lens (Edmund
Optics: 6 mm wide angle lens, /1.2, high resolution=120
Ip mm™! (Ip=line pairs), low distortion <0.5%) and with the
following camera parameters: resolution =4054 px x 3040
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px, shutter speed =2000 ms, iso =100, autowhite-bal-
ance = off and a fixed gain of 3.3, 1.5 (red, blue).

Sensor data from the multisensory robot system “Phe-
nomenon” (Bethge et al. 2023) were processed, segmented,
and various parameters were calculated. RGB image analysis
was performed in Python (Van Rossum and Drake 2009),
using the following packages: OpenCV v3.4.9 (Bradski
2000), NumPy v1.20.2 (Van Der Walt et al. 2011) and
PlantCv v3.11.0 (Gehan et al. 2017) and the Software toolkit
llastik v1.3.3 (Sommer et al. 2011) headless integrated in
the Python script. RGB image analysis included a histogram
stretching for normalization, segmentation via a trained ran-
dom forest classifier, normalization to the day 0 plant area
and calculation of projected plant area (37.7 px=1 mm).
Shape analyses were performed on the four largest objects
by area and limited to the first nine days to avoid errors from
overlapping explants. We used the installed shape function
of PlantCv to calculate solidity (measure of density as the
ratio between object area and area of the convex hull of the
object) and eccentricity (measure of deviation of an ellipse
to a circle (eccentricity =0) as the ratio between major and
minor axis).

Depth data were acquired once per day for each culture
container with the point-measuring laser distance sensor as a
spatial scan by sequential readout of the sensor while shifting
the detector head of the “Phenomenon” robot system in xy
direction, according to the scan pattern (100 mm x 100 mm;
with a resolution of 1 mmx 1 mm). The laser distance sen-
sor (OD-Mini OB1-B100, Sick AG, Waldkirch, Germany)
used in this setup was specified by the manufacturer with a
power consumption of < 1.92 W, laser emission wavelength
of 655 nm, max. output of 390 uyW (laser class 1), a measur-
ing range of 50 to 150 mm and a linearity of + 100 um as
well as spot size of 700 pm x 600 um at a measuring distance
of 100 mm. The analog output of the laser distance sensor
(10 V) was connected via a small voltage divider circuit to
a high precision 16-bit A/D-converter (ADS 1115), which
communicated via Inter-Integral Circuit (T>C) with a micro-
controller board (Wemos D1 Mini). Each distance measure-
ment consisted of a up to ten single readouts and averaging
(excluding default sensor values), to achieve a robust and
low-noise measurement. A detailed description of the robot
system “Phenomenon” can be found in Bethge et al. (2023).

Depth data of explants were obtained by measuring
10,000 data points of each culture vessel once a day with
a scanning laser distance sensor. The depth data processing
pipeline included the segmentation of culture media by a
RANSAC (random sample consensus, Fischler and Bolles
1981) segmentation approach, subtraction of RANSAC
plane, normalization to the day 0 plant height with the
Python libraries: Open3D v0.15.1 (Zhou et al. 2018) and
Pyvista v0.34.0 (Sullivan et al. 2019). Pipelines construction
is described in detail in Bethge et al. (2023).

Statistical analysis of repeated measures data was per-
formed using R software. Data were transformed, if neces-
sary, with the R package bestNormalize vi.8.2 (Peterson and
Peterson 2020). Different linear mixed-effect models from
nlme v3.1-153 package (Pinheiro et al. 2017) were fitted to
the data with different covariance structures: scaled identity,
first-order autoregressive, first-order heterogeneous autore-
gressive, compound symmetry, Toeplitz and heterogenous
Toeplitz. The mean model consisted of the fixed effects
treatment/medium type and time and their interaction terms.
An extra random effect was included in the model to account
for the dependencies between measurements from the same
culture container or in SI. 1 for shape analysis from the same
explant (as nested random effect). We also included linear
models with random intercept (CulturecontainerID) and
random slope (Time). The respective best model (Fig. 1A:
linear mixed model with scaled identity covariance struc-
ture and random slope; Fig. 1B and SI. 1A: linear mixed
model with heterogenous Toeplitz covariance structure and
random slope; SI. 1B: linear mixed model with heteroge-
nous Toeplitz covariance structure and random intercept)
was selected based on the Akaike Information Criterion
(AIC, Sakamoto et al. 1986) values and residual analysis
(QQ-plot). Pairwise comparisons using Tukey’s HSD test
at p<0.05 was performed and show significant differences
between treatments within a time point.

Visual scoring of hyperhydricity severity level

In the Experiments III to V, the severity of HH was assessed
for each explant and at every time point (Exp. III: 0, 5, 10,
15, 20 days; Exp. IV: 14, 21, 28 days; Exp. V: 0, 4, 8, 12,
16 days) according to Tian et al. (2015) with minor modi-
fications (Table 3). The starting plant material cultivated
on control media represented the samples of 0 days after
transfer (DAT 0).

Determination of apoplastic liquid volume

Per time point at least 10 samples per treatment were col-
lected for the determination of apoplastic liquid volume,
with DAT 0 samples representing the starting material.
Apoplastic liquid was extracted from leaf tissue by mild
centrifugation according to van den Dries et al. (2013) and
Terry and Bonner (1980): Leaves (50-150 mg FM) from
a single explant were excised, weighed, and placed into a
2 mL tube microcentrifuge filter without membrane (Clear-
Line®; Kisker Biotech GmbH & Co, Steinfurt, Germany).
Samples were centrifuged at 3000 g for 20 min at 4 °C.
Immediately after centrifugation, the leaves were reweighed
to determine the apoplastic liquid volume (V) in L g~
fresh mass (FM) using the Eq. 1.
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Fig.1 Morphological differences in growth patterns of explants of
A. thaliana Col-0 and Malus ‘G214’ cultivated on either agar or gel-
rite solidified media (Mean+SD). A The curve for the increase in
the projected plant area was calculated from the analysis of the seg-
mented RGB images normalized to the plant area of day 0 and pre-
sented as projected plant area [cm”]. Since flower initiation started at
later time points for A. thaliana and thus an error in the estimation of
projected plant area might occur, the analysis of growth curves was
limited to the first ten days. B The relative increase in mean canopy
height resulted from analysis of segmented depth data collected with
a scanning laser distance sensor and normalized to day 0 plant height.

Table 3 Scoring of hyperhydricity by visual observation (Tian et al.
2015, with minor modifications)

Hyperhydricity score Symptoms

0 No visual symptoms

1 < 50% curled leaves

2 > 50% curled leaves

3 > 50% curled and thickened leaves

4 Curled, thickened, translucent, fragile leaves
@ Springer

9 12 15 18 21 24 27
Time [DAT]

Yellows lines indicates cultivation on standard media formulation
on Gamborg-B5 (A. thaliana) and MS-Medium (Malus) solidified
with 0.8% agar (w/v), while dark gray lines display the cultivation
on induction media containing 0.25% (w/v) gelrite, inducing HH. C
Representative images at the endpoint of the experiments. Sample
number (n) indicates the individual culture containers. Significance
stars indicate comparisons of treatments within a time point (day)
with *p<0.05, ##p <0.01, ***p <0.00l. RGB and depth data were
acquired with the multisensory robot system “Phenomenon” (Bethge

et al. 2023). (Color figure online)

(FM - Mac) . pHZO
FM

v, = )
where FM = fresh mass of leaves in mg, M, = mass of leaves
after centrifugation and pyy,o = water density (the water den-
sity was taken as equal to 1 g mL™" assuming the apoplastic
liquid is mainly water and has a temperature of 4 °C).

Spectral data acquisition and analysis
Prior to the quantification of apoplastic liquid volume, one
fully expanded leaf per explant under study was collected.

The leaf was then placed in a 3D printed sample holder
(SL. 2) in an adaxial position that allowed for flat clamping
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without exerting too much pressure on the leaf (with a cav-
ity of 1 mm). The curled hyperhydric leaves were handled
with care to obtain reflection spectra from a planar surface.
The leaf reflectance spectra were examined with a Perkin-
Elmer Lambda 900 UV-VIS-NIR-SWIR spectrometer
(Perkin-Elmer Instruments, Norwalk, USA) equipped with
150 mm Indium-Gallium-Arsenide (InGaAs) integrating
sphere. The reflectance intensity was measured in steps of
I nm in the wavelength range between 200 and 2000 nm,
and the reflectance was calculated using the reflection
spectrum of the white reference standard Spectralon®.
Raw spectra were pre-processed in R v4./.2 using Rstudio
(RStudio Team 2015) with the hsdar vi.0.4 package (Leh-
nert et al. 2018) allowing the cleaning of device errors,
trimming to spectral range of 400 mn to 2000 nm and
smoothing with the Savitzky-Golay filter at a window size
of 25 data points of third-degree polynomials to remove
noise from data.

Spectra of leaves obtained from three experiments
(Exp. III: 147, Exp. IV: 39 spectra, Exp. V: 51) were
divided into two groups based on the significance level
of the apoplastic liquid volume and the HH score of the
whole explant was assessed by visual observation. Here,
the explants with a HH score of 0 and 1 were classified as
normal explants while the explants with a HH score of 2
to 4 represented hyperhydric explants. This resulted in 100
and 137 spectra of normal and hyperhydric leaves, respec-
tively, covering the two plant species Malus *G214° (187
spectra) and A. thaliana (50 spectra). For visualization
and isolation of the HH-specific absorption features, leaf
spectra were further processed with the segmented upper
hull continuum removal method described in detail in Leh-
nert et al. (2018). This normalization method allowed a
comparison of individual absorption features on a com-
mon baseline formed by a segmented upper hull of local
maxima and resulted in absorption features spectra. In
addition, difference spectra of absorption feature spectra
were calculated by subtracting normal leaf spectra from
hyperhydric leaf spectra.

In addition, we defined three spectral ranges based on
the sensitivity of the state-of-the-art sensor technologies
such as standard RGB camera systems with silicon sensor
chips (3 channels: B: 400 nm to 500 nm, G: 500 nm to
600 nm and R: 600 nm to 700 nm), multispectral camera
systems with silicon sensor chips (4 channels: B: 400 nm
to 500 nm, G: 500 nm to 600 nm, R: 600 nm to 700 nm and
NIR: 750 nm to 850 nm) and SWIR-HSI camera systems
with Indium-Gallium-Arsenide (InGaAs) sensor chips
(SWIR: 900 nm to 1700 nm). This division was made as a
decision support for assessing the potential of the candi-
date detection systems to detect HH based on their spectral
sensitivity range and considering their affordability.

Identification of hyperhydricity-specific absorption features

Different ML models were trained with the caret v6.0-90
package (Kuhn 2008) in the R software to identify the
key absorption features that discriminate between nor-
mal and hyperhydric explant leaf spectra. Here, pre-pro-
cessed spectral data sets (237) were centered and scaled
and divided into a training set (178 spectra; Malus: 143,
A. thaliana: 35, with 103 normal and 75 hyperhydric
explants, in total) and a test set (59 spectra; Malus: 44,
A. thaliana: 15, with a total of 34 normal and 25 hype-
rhydric explants). All classification models were trained
with the same resampling procedure consisting of a 10
times tenfold repeated cross validation (CV). The tenfold
repeated CV divides the training data into 10 equal parts
(10 subsamples with a size of 178/10). These parts are
iterated 10 times, during each iteration, 9 of the 10 parts
serve as training data, and the remaining 10th part as the
validation set to calculate model performance metrics. In
10 times repeated tenfold CV this process is repeated 10
times; therefore, performance of training was validated on
100 validation subsamples consisting of 17-18 individual
spectra.

In the confusion metrics, correctly classified normal
and hyperhydric leaves formed the true-positive (TP)
and the true-negative (TN) class, while false classified
ones constituted the false-positive (FP) and false-negative
(FN) class, respectively. For evaluation of model valida-
tion performance, the sensitivity (Eq. 2; TPR: true posi-
tive rate) and the specificity (Eq. 3; TNR: true negative
rate) were calculated with normal explants as the positive
class and the area under the curve (AUC) of the receiver-
operator-characteristics (Eq. 4; AUCgge), while for evalu-
ation of model test performance, the accuracy (Eq. 5) was
determined. Here, misclassifications are described by the
false negative rate (FNR) and false positive rate (FPR).
Balanced accuracy (Eq. 6) and F, score (Eq. 7) were calcu-
lated to account for putative class imbalances. To find the
best suitable model for discriminating between normal and
hyperhydric leaf spectra, different ML model structures
were tested, including a neuronal net with the maximum
allowable number of weights set to 2000 (“nnet” from nnet
v7.3-16 package; Ripley et al. 2016), a linear discriminate
analysis (“lda” from carer package), a supported vector
machine (“svmLinear” from caret package), a random for-
est (“rf” from carer package), a high dimensional discrimi-
nate analysis (*hdda” from carer package) as well as a
linear discriminate analysis (“lda” from caret package with
PCA-preprocessed data set) with an upstream principal
component analysis (PCA). Based on their resampled per-
formance metrics, the best model was selected to identify
its most relevant features/wavelengths on the basis of the
underlying variable importance in the model.
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Sensitivity = TPR = 1 — FNR = _w )
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Automated hyperhydricity detection

To test the validity of the developed spectral classifier, an
HSI-system operating in the shortwave infrared (SWIR)
region was used to acquire a single HSI data cube from a
culture vessel containing a HH-sensitive apple genotype
(Malus *Selection 4’). The imaging system that was devel-
oped and described by Thiel (2018) consisted of an EVK
Helios Core NIR Line-scan camera (240 px X1 px and 252
spectral channels in the wavelength region of 900 nm to
1700 nm), two 65 W halogen spot lights and a conveyer-
belt system to move the sample. Image acquisition was
performed in closed polypropylene culture vessels, so that
sterile conditions could be maintained inside the vessel and
water condensation was prevented by heat radiation from
the halogen lamps. Since only one HSI data cube could be
acquired, these results were considered to be an exemplary
and preliminary validation test.

The developed spectral classifier was retrained with a
reduced number of features to match the spectral channels
of the imaging system (Features/wavelengths: 252 channels
in the range between 900 and 1700 nm). Due to the binary
classification output of the classifier, most of the background
pixels were removed by creation of a binary mask with
simple thresholding of the image slice at a wavelength of
1000 nm. Then each pixel of the segmented hyperspectral
data cube was inserted as an input to the spectral classifier
and class membership was predicted.

As a more affordable approach and as a proof of con-
cept, an object detection model based on annotated RGB
images acquired by the robot system was trained. Therefore,
250 images were randomly selected and annotated with the
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graphical user interface Roboflow® (Dwyer et al. 2022).
The image data set consisted of 200 annotated images of
eight culture containers from Experiment II and 50 images
from a comparable experiment to increase variance in the
number of explants, background colour, and colour of cul-
ture media. A total of 504 normal explants and 545 hype-
rhydric explants were included. The image data set was
divided into 175 images as training set, 50 images as vali-
dation set and 25 images as test set. Data augmentation of
annotated bounding boxes increased the training set to 1800
images and included: horizontal and vertical flip, rotation
by 90° (clockwise, counter-clockwise, upside down), rota-
tion by +5°, brightness by + 10%, exposure by + 7%, blur
with 2px and noise with 2% of pixels. The data set (Bethge
2023) is publicly accessible via Roboflow® universe. Time
series images of two culture vessels from Experiment I were
retained and used to visualize the trained model. Object
detection models perform attempts to identify and locate
objects in images while assigning them to the appropriate
classes. We selected YOLOvVS8 (Jocher et al. 2023) archi-
tecture as the latest versions of the YOLO (“You only look
once”, Redmond et al. 2016) family. YOLO is a single-stage
object detector, consisting of three parts in its architecture:
backbone, neck and head. The backbone is defined by sev-
eral convolutional layers which extract key features from
the images, the neck uses the features and forms the feature
pyramid by fully connected layers and the head is the final
output layer for prediction of bounding boxes and classifi-
cation. The training process was performed in the Google
Colaboratory (Colab/Colab Pro) environment on a NVIDIA
A100-SXM4-40 GB graphical processing unit (GPU) ser-
viced by Google. In addition, the model was trained with
the following parameters: epochs =250 (early stopping
occurred after 188 epochs), batch size= 16 images, image
size =640 px, patience = 100 epochs, learning rate=0.01,
momentum = 0.94, intersection over union (IoU)=0.7. We
let Roboflow train two object detection models, one from
scratch and one with weights from a previously trained
model (additional 125 images from the same experiment) to
see the full potential of the dataset with the optimized pipe-
line. Evaluation of model performance was based on preci-
sion (Eq. 8), recall (Eq. 9), average precision (AP; Eq. 10)
and mean average precision (mAP; Eq. 11) of the validation
set. Here true positive (TP) indicate a correct detection and
classification, false negative (FN) describes cases where the
prediction missed the detection contained in the ground truth
data, while in a false positive (FP) case a bounding box was
predicted on a location not contained in the ground truth
data. Thereby, AP represents the area under the precision-
recall-curve across a range of probability confidence thresh-
old values from 0 to 1. The mAP is the sum of AP of each
class (k) divided by the number of classes (n) at a given
intersection over union (IuO) threshold of 0.5. Intersection
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over union is defined as ratio between the overlap area to the
united area of the predicted and ground truth bounding box.
After the training process predications were obtained using
the Python library roboflow v0.2.25 (Dwyer et al. 2021) with
TuO threshold and confidence threshold set to 0.5.

Precision = L 8
" TP + FP ®)
TP
Recall = ———
= TPy AN ©)
1
AP = [ Precision(Recall) d (Recall) (10)
0
1 k=n
mAP = ~ > AP(K) (11)
k=1

Morphological characteristics of hyperhydricity
via image analysis

Studying the morphology of the shoots of the two treatments
revealed major differences in horizontal and vertical growth.
Significantly stronger growth, quantified as projected plant
area, was observed for the gelrite treatment at early time
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Fig.2 Visual scoring of hyperhydricity of A Malus ‘G214’ and B
A. thaliana Col-0 in vitro cultures over 20 days (DAT, Days After
Treatment). Samples from 0 days after transfer (DAT 0) represent
the starting plant material cultured on control media. Yellows bars
indicate cultivation on standard media formulation A MS-Medium,
B Gamborg-B5 solidified with 0.8% (w/v) agar, while gray bars dis-
play the cultivation on induction media containing 0.25% (w/v) gel-
rite. Dashed lines represent the medians of each histogram. Sample

points (5 days) for both plant species (Fig. 1A). After
4 weeks of cultivation, shoots of Malus in culture vessels
with gelrite medium had with 24.5 cm? a 2.4 times greater
increase in projected plant area than shoots in vessels with
agar medium with 10.3 cm®. Here, 65% of the explants of
Malus had a HH score >2 in the gelrite treatment compared
to 0% for agar treatment. For A. thaliana we evaluated the
projected plant area only until day 10 to avoid distorting
effects on projected plant area due to flower initiation start-
ing at day 12. Shape analysis of single explants showed sig-
nificant differences in solidity at day 3 and in eccentricity
at day 6 for A. thaliana, whereas the shape differences of
Malus explants were not significant (SI. 1). Vertical growth
analysis, quantified as mean canopy height (Fig. 1B) and
maximum shoot height as mean of upper 10® percentile (SI.
1), showed a significantly higher mean canopy height of
Malus for the gelrite treatment at day 18 and of A. thaliana
at day 16. An even earlier distinction was recorded for the
maximum shoot height, i.e. at day 11 and 14 for A. thaliana
and Malus, respectively.

Hyperhydricity induction

Visual scoring of HH revealed the dynamics of HH induc-
tion using gelrite in the two plant species under investiga-
tion. Anthocyanin accumulation was noted within the first
4 days in both treatments for Malus. However, it persisted
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number (n) indicates the individual explants. The different sample
numbers result from the combined evaluation with different methods
(apoplastic liquid evaluation, reflection spectroscopy) of the same
samples. Different letters resulting from Kruskal-Wallis test followed
by Fisher’'s LSD (p <0.05) indicate significant differences between
histograms. Kruskal-Wallis effect size could be determined to be
very strong with A n*=0.62 and B >=0.65. (Color figure online)
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only in the gelrite treatment until the end of the experiment
in most explants. In Malus, severe symptoms of HH were
induced even on the agar control medium in 12.5% of the
shoots (Fig. 2A). In two experiments, significant differences
in the HH score and the occurrence of severe symptoms
(curled, thickened and translucent leaves =level 4 of the
HH score) between the agar control and the gelrite induction
treatment were identified 10 days (Fig. 2A) and 8 days (SIL.
3) after transfer. When performing this experiment under a
novel phenotyping system, time-lapse videos were taken.
They confirmed these observations and visualized the tem-
poral development of HH in the two plant species (Malus:
SI. 4 and A. thaliana: S1. 5). Three of four apple shoots
turned into a hyperhydric status and formed first hyperhy-
dric leaves (SI. 4: arrows) on gelrite at 5 DAT (SI. 4: 100 h).
They started to curl at 8 DAT and also became much larger
than those on agar. After 27 days, severe symptoms appeared
on dark green to reddish explants that exhibited compact
growth with curled, epinastic, and brittle leaves.

For A. thaliana, there was already a significant increase
in the HH score after 5 days of treatment (Fig. 2B). Fur-
thermore, decolorization of leaves was the predominating
symptom of HH in A. thaliana on gelrite induction medium.
For A. thaliana seedlings, first signs of HH (SI. 5: arrows)

became visible at 5 DAT (SI. 5: 100 h) on gelrite-solidified
medium and shoots developed longer petioles and much
larger leaves with severe HH symptoms.

The apoplastic liquid volume increased steadily for Malus
(Fig. 3A) until 15 DAT, while Experiment IV (SI. 3) demon-
strated a decrease at later time points: 21 days and 28 days.
A significant difference in apoplastic liquid content in both
plant species was detected at the earliest time point: 4 DAT
(SIL. 3) and 5 DAT (Fig. 3A and B), where the apoplastic
liquid volumes of explants on gelrite induction media were
already twice as high as those of explants on agar control
media. In Malus, three independent experiments (Fig. 3A
and SI. 3) allowed us to confine the time of peak in apo-
plastic liquid volume at 12 to 16 DAT. Apparently, up to
this timepoint, quantification of apoplastic liquid volume
reflected the HH score well—even the occurrence of some
hyperhydric explants on the agar control medium was also
reflected in the increase in apoplastic water volume (Fig. 3A
vs. SI. 3). However, at later time points, the severity of HH
symptoms steadily increased, while apoplastic liquid volume
stayed constant.

To prove the relation between the objective quantification
of apoplastic liquid volume and the HH score determined
by visual scoring, data pairs of a total of 349 measurements
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Fig.3 Apoplastic liquid volume of A Malus ‘G214’ and B A. thali-
ana Col-0 in vitro cultures over time (DAT, Days After Treatment).
Samples from O days after transfer (DAT 0) represent the starting
plant material cultured on control media. Yellow lines indicate cul-
tures on standard media A MS-Medium, B Gamborg-B5 solidified
with 0.8% (w/v) agar, while gray dashed lines display the cultures
on HH induction media containing 0.25% (w/v) gelrite (Mean+SD).
The values of A. thaliana at DAT 0 B were masked in gray to indicate

@ Springer

the authors’ uncertainty, because the plants were very small when
the apoplastic water volume was determined at this time, and there-
fore a large influence of adhering water could not be excluded. Rep-
licate number (n) indicates the individual explants. Different letters
resulted from Tukey’s HSD test at p<0.05 and indicate significant
differences when comparing time points within one treatment, while
asterisks indicate comparisons of treatments within a time point with
*=p <0.05, ¥*=p <0.01, ¥*=p <0.001. (Color figure online)
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Fig.4 Relation between visual scoring of hyperhydricity and apo-
plastic liquid volume of Malus G214’ (Mean+SD). Data obtained
from three different induction experiments (Exp. I1I-V) covering time
points from 0 to 28 DAT. Replicate number (n) indicates the indi-
vidual explants. Different letters resulted from Tukey’s HSD test at
p <0.05 and show significant differences between score levels

from both treatments of Malus were used (Fig. 4). We found
the highest correlation between HH score and apoplastic
volume to be p(18)=0.83 (p<0.001) 12 DAT using spear-
man’s rank correlation for all acquired time points for Malus.
Interestingly, only three groups could be distinguished

significantly by apoplastic liquid volume. Explants with a
HH score of two had more than >50% curled leaves and
in average a double amount of apoplastic liquid volume.
We therefore restricted the three significant groups to two
classes (HH score 0—1: normal explants and HH score 2—4:
hyperhydric explants) in further analysis, regardless of the
treatment in order to exclude treatment-depended effects on
the spectral analysis.

Spectral analysis of hyperhydricity

The evaluation of leaf explants via UV-VIS-NIR-SWIR
spectroscopy (Fig. 5) revealed the first major difference in
significantly reduced reflectance in the RGB (400 nm to700
nm) region of 6.5 +3.2% for the hyperhydric explants com-
pared to 8.7+3.9% for normal explants. The largest dif-
ference in reflectance was recorded for NIR (750 nm to
850 nm) region with a reflectance of 20.5 +9.0% hyperhy-
dric explants and normal explants with 28.3 +9.5%. Also,
for the SWIR (950 nm to 1700 nm) region the overall reflec-
tance was lower in hyperhydric explants (13.8 +8.2% for
hyperhydric and 21.4 +8.7% for normal explants). Differ-
ences in average reflectance were most significant in the blue
(p<2.2e-16) region followed by SWIR (p<4.3e-14), green
(p<1.1e-12), red (p<2.5e-11) and the NIR region (p<2.0e-
09) according to the results of a Mann—Whitney test.

The emergence of HH-specific absorption features
over time was recorded applying the continuum removal
method to pre-processed spectra of Experiment V and the
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Fig.5 Raw reflectance spectra of Malus ‘G214’ and A. thaliana
Col-0 in vitro leaves. Mean (solid) + SD (dashed) spectra of normal
leaves (N, in green) and hyperhydric leaves (HH, in blue). The dis-
tinction was based on visual scoring of HH (N: 0-1 HH score; HH:
2-4 HH score). Wavebands represent different spectral regions,
defined by the sensitivity of silicon-based (Si) cameras, such as

affordable RGB and RGB-NIR multispectral cameras, and a more
expensive Indium-Galium-Asenide-based (InGaAs) detection sen-
sor. Reflectance spectra were measured with an UV-VIS-NIR-SWIR
spectrometer (PerkinElmer Lambda 950) in a wavelength range of
200 nm to 2000 nm and at a resolution of 1 nm. (Color figure online)
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Fig.6 Spectral contrasting reflectance of Malus ‘G214’ normal and
hyperhydric explants over time (DAT, Days After Treatment). The
spectral data used originate from Experiment V. Upper row: Raw
reflection spectra; middle row: extracted absorption features after
segmented convex-hull removal of raw spectra; bottom row: differ-
ence spectrum of the absorption peaks, where the absorption features
spectra of normal explants were subtracted from absorption features
spectra of hyperhydric explants. Mean (solid) +SD (dashed) spectra
of normal explant leaves (N, in green) and hyperhydric explant leaves
(HH, in blue). Distinction of N and HH was based on visual scoring

formation of difference spectra of the isolated band depth
spectra, where the absorption features spectra of normal
explants were subtracted from absorption features spectra
of hyperhydric explants (Fig. 6). Greater absorption of hype-
rhydric explants was observed as early as 8 DAT, with a
maximum at 1402 nm and a full width at half maximum of
157 nm. At later time points the difference in absorbance at
around 980 nm, 1150 nm, 1400 nm, 1520 nm and 1780 nm
increased negatively, while at around 1930 nm the difference
positively increased. In the VIS region, two further local
maxima arose at 460 nm and 695 nm at DAT 10, which were
also detected at the later time points. However, these peaks
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of HH (N: 0-1 HH score; HH: 2—4 HH score). Arrows indicate puta-
tive major biochemical compounds absorbing in the given wavelength
region, according to Curran (1989). Colored arrows represent: "Chl"
= chlorophyll (dark green), "Antho" = anthocyanin (red), "H,0" =
water (dark blue), "L" = lignin (dark red), "P" = protein (green), "S"
= sugar (yellow). Reflection spectra were measured with an UV-VIS-
NIR-SWIR spectrometer (PerkinElmer Lambda 950) in a wavelength
range of 200 mn to 2000 and at a resolution of 1 nm. Absorption fea-
tures spectra of the other conducted experiments, showing similar
results, can be found in SI. 6. (Color figure online)

can be considered as artefacts of the reduced reflection in the
green region due to the continuum removal method based
on connection of local maxima. In addition, a consistent
positive peak indicating less absorption or higher reflec-
tion of hyperhydric explants was found with a maximum
around 1930 nm, besides the two local minima at 1400 nm
and 1520 nm. When combining data from all experiments
(SL. 6), including different time points and the two differ-
ent plant species, we identified reliable minima (arrows) at
980 nm, 1150 nm, 1400 nm, 1520 nm, and 1780 nm, indicat-
ing stronger absorption of the hyperhydric explants, and a
reliable maximum at 1930 nm.
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Table 4 Performance metrics of machine learning (ML)-based spectral classifiers. Bold letters indicate the value for the best performing model

in each column

ML model Training
Data set [No. of Train time [s] AUCgq¢" [Mean + SD] Sensitivity" Specificity®
spectra] [Mean +SD] [Mean +SD]
NNET 178 761.7 0.93+0.07 0.89+0.10 0.83+0.13
LDA 178 115.2 0.87+0.09 0.82+0.12 0.74+0.16
SVM 178 42.2 0.93+0.07 0.91 +0.08 0.79+0.15
RF 178 819.5 0.92+0.06 0.84+0.11 0.80£0.15
PLS 178 5.6 0.94 + 0.06 0.90+0.09 0.82+0.13
HD.DA 178 38.0 0.83+0.09 0.83+0.12 0.78+0.14
PCA.LD* 178 14 0.94 1+ 0.06 0.89+0.09 0.82+0.13
NDRI® - - -
Test
ML model Data set [No. of  Accuracy Accuracy [95% CI] Balanced Sensitivity” F, score Specificity®
spectra] accuracy

NNET 59 0.81 0.69-0.90 0.81 0.85 0.84 0.76

LDA 59 0.73 0.59-0.84 0.72 0.79 0.77 0.64

SVM 39 0.85 0.82-0.93 0.84 091 0.87 0.76

RE 59 0.71 0.58-0.82 0.72 0.68 0.73 0.76

PLS 59 0.69 0.56-0.81 0.70 0.68 0.72 0.72
HD.DA 39 0.61 0.47-0.73 0.62 0.53 0.61 0.72
PCA.LD* 39 0.69 0.56-0.81 0.70 0.68 0.72 0.72

NDRI? 59 0.63 0.51-0.77 0.66 0.47 0.59 0.84

“Principal component analysis (PCA) was performed prior to linear discriminate analysis (LD), therefore the training time should be considered

slightly higher

“Note: AUCp. sensitivity and specificity were calculated with normal explants as the positive class

"Note: Normalized difference ratio index with a threshold of 0.35

To demonstrate whether the observed differences in
reflectance spectra are sufficient to reliably discriminate
between hyperhydric and non-hyperhydric explants, while
generalizing plant species and time points, we performed
a model spot checking for several ML models with whole
spectral data sets as input (Table 4). The models spot check
based on AUCyqe metrics identified partial least square
(PLS) and linear discriminate analysis with upstream prin-
cipal component analysis (PCA.LD) with 0.94 to be superior
in the training step when classifying the explants against
the other models, while supported vector machine (SVM),
neutral net (NNET) with 0.93 and random forest model (RF)
with 0.92 performed only slightly worse. High dimensional
linear discriminate analysis (HD.LD) showed the lowest per-
formance and was therefore excluded. Furthermore, SVM
was best in classifying normal explants as expressed in the
sensitivity metrics with 0.91 +0.08, while NNET reached
with 0.93 +0.13 the highest specificity indicating the best
performance in identifying hyperhydric explants. On the
test set consisting of 59 unseen spectra, SVM outperformed
the other models with the highest accuracy with 0.85, the

highest balanced accuracy with 0.84, the highest sensitivity
with 0.91 and the highest F1 score of 0.87 and was therefore
selected as final model, besides for its low training time and
its better human interpretability. As a reference of a classical
approach, we checked the classification performance of a
two-band normalized difference ratio index using a threshold
of 0.35, which resulted in a low accuracy of 0.63.

The evaluation of the predictor importance based on
ROC-curve importance of SVM revealed the most impor-
tant wavelength for classification (Fig. 7). The most relevant
wavelength for classification was found at 1949 nm, followed
by the peak at 1445 nm in the SWIR region, 424 nm in the
blue region and 676 nm in the red region. The wavelength
region from 700 to 900 nm, including the NIR region, con-
tained the least essential information for the classification. In
the green region, 500 nm was most important, while in the
SWIR region two further peaks were identified at 975 nm
and 1202 nm.

The 237 acquired spectra of the two species were further
used to simulate three in literature stated HH-affected leaf
compounds over time (anthocyanin, water, lignin) via
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Fig.7 Variable importance of spectral classification of hyperhydric-
ity using a support vector machine approach. Classification classes
consisted of reflection spectra from either normal or hyperhydric
leaves based on visual scoring of HH (N: 0-1 HH score; HH: 2-4 HH

score). Wavebands representing different spectral regions, defined by
the sensitivity of silicon-based (Si) cameras, such as affordable RGB
and RGB-NIR multispectral cameras, and more expensive Indium-
Galium-Asenide-based (InGaAs) sensors as candidates for detection
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Fig.8 Selection of contrasting vegetation indices to hyperhydricity
inducing cultivation of Malus 'G214" and A. thaliana 'Col-0'. Vegeta-
tion indices were calculated from spectra from three different experi-
ments (Exp. III-V). Data points from normal explants are indicated in
green (N: 0-1 HH score), while the blue color represents data from

described vegetation indices (Fig. 8; mARI, Gitelson
et al. 2006; NDWI, Gao 1996; NDLI, Serrano et al. 2002).
Hyperhydric explants of A. thaliana showed a relatively
small increase in ARI, high increase in NDWI and nota-
ble reduction in NDLI compared to normal explants. All
three vegetation indices simulated using spectra of Malus
“G214” classified as hyperhydric, revealed a strong change
over time compared to normal spectra.
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hyperhydric tissue (HH: 2-4 HH score). Estimated 95% confidence
interval was colorized in light gray, while lines illustrate the locally
weighted data trend by 2°¢ order polynomial regression. ARI/mARI
defined according to Gitelson et al. (2006), NDWI from Gao (1996)
and NDLI according to Serrano et al. (2002). (Color figure online)

Automated detection of hyperhydricity

To test the validity of the SWIR region of the trained spec-
tral classifier as spectral region with high importance for
discrimination of HH and to see the generalization to a
new domain, the classifier was applied on a previously
acquired SWIR-HSI data set from culture vessels contain-
ing normal (N, green) and hyperhydric explants (HH, blue)
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Fig.9 Validation test of major absorption features by hyperspectral
imaging. A Reference RGB image of a Malus ‘Selection 4’ vessel
with normal (N, green) and hyperhydric (HH, blue) explants used
for hyperspectral imaging of the SWIR region with the EVK Helios
Core NIR Line-scan camera (240 pxx1 px and 252 spectral chan-
nels in the wavelength region of 900 nm to 1700 nm, according to
Thiel 2018). B SWIR reflectance spectra of normal leaf, hyperhydric
leaf and culture media (CM) pixels (green, blue and orange) with
the dashed vertical lines indicating spectral locations of selected
wavelengths. C and D False-color images of selected wavelengths

of Malus *Selection 4* (Fig. 9A). From the spectral signa-
tures (Fig. 9B), a normalized difference ratio index (NDRI,
Fig. 9C-E) as a two-band index with a HH-insensitive
wavelength at 1086 nm (Fig. 9C) and a HH-responsive
wavelength at 1432 nm (Fig. 9D) was derived. Hyperhy-
dric explants became almost invisible due to their high
absorption/ reduced reflection (R) at 1432 nm (Fig. 9D
and SI. 7). Based on the acquired spectral signature a nor-
malized difference ratio index (NDRI) could be derived
(Eq. 12), which is formed by two wavelengths, an HH-
insensitive correction wavelength at 1086 nm and a HH-
sensitive at 1432 mn.

(R1086mn - Rl432nm)
(Ri0semm + Rig32m)

NDRI = (12)

The NDRI image (Fig. 9E) was segmented with a mask
for plant pixels (Fig. 9F) and a threshold was applied to
produce the classification image (Fig. 9G). For the ML
approach that included the application of the spectral clas-
sifier (Fig. 9H), some modifications were made to the trained
spectral classifier, such as spectral resampling to fit the spec-
tral sensor channels and segmentation to limit the task to
a two-class problem (see Materials and Methods section).
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at 1086 nm and 1432 nm. E Normalized difference ratio of selected
wavelengths used to illustrate classical discriminating approach via F
segmentation of plant pixels and G binarization by thresholding. Pro-
posed discriminating approach by application of H ML model “Sup-
port vector machine” (ML-SVM) on segmented plant pixels of the
SWIR-Hyperspectral-Image-Cube (SWIR-HSI-Cube). ML-SVM was
laboratory-trained with single leaf reflection spectra and is presented
as the predicted probability images of plant pixels. Hyperspectral
imaging was performed through the lid of theculture vessel. (Color
figure online)

As a more affordable approach of HH detection—SWIR
camera systems can cost hundred to thousand times more
than an RGB camera system—three different object detec-
tion models were trained based on RGB image time series
data sets to determine if the information contained in the
three spectral channels of the RGB images (in addition to
the observed morphological differences in the shape of the
explants) was sufficient to correctly classify the hyperhy-
dric explants. With all three trained models (Table 5) a high
mAP of > 88% was observed for the validation set, indicat-
ing a high accuracy in localization and correct classification
of the explants in the images. Highest precision of 86.8%
in validation set was reached with the model PCTOC_V?2.
For this model, we used the Roboflow Train option to train
an object model from scratch. The model PCTOC_V3 per-
formed best in terms of the recall metric with 95.7% and
mAP with 95.6% in the validation set. In an unseen test data
set PCTOC_V3 outperformed the other models in mAP with
97.0% and highest recall 89.0% and was therefore selected
to visualize its performance on a selection of test set images
(Fig. 10) and on unseen time-series data from two culture
vessels of the same experiment (SI. 8).

The PCTOC_V3 model identified multiple objects on
the selection of test set images (Fig. 10) with only slightly
greater predicted bounding boxes compared to ground truth.
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Table 5 Performance metrics of object detection models trained on RGB images. Bold letters indicate the value for the best performing model in

each column

Name Model archi- Training Validation Test
tect
eeture Data set  Description Dataset mAP  Precision Recall Dataset mAP  Precision® Recall®
[No. of [No.of [%] [%] [%] [No.of [%] [%] [%]
images] images] images]
PCTOC_  YOLOVS 250 Colab with weights 50 884  83.0 82.1 25 NYI* 944 49.5
Vi from scratch
PCTOC_ Roboflow 2.0 250 Weights from scratch 50 935 86.8 86.4 25 95.0 904 87.6
V2 oD
PCTOC_ Roboflow 2.0 375" Weights from 50 95.6 838 95.7 25 97.0 937 89.0
V3 OD PCTOC_V2

“Note: Not yet implemented in Ultralytics YOLOv8.0.20

"Note: Trained with weights from PCTOC_V2 (based 250 images) and additionally 125 images

“Note: Precision and recall on test set were calculated with IoU and confidence threshold of 0.5

A supposedly perfect classification could be reached with
the prediction settings used. However, severely hyperhy-
dric explants (Fig. 10B1) received a lower class member-
ship probability then explants with developing HH symp-
toms (Fig. 10B2). Class membership probability of normal
explants was generally high on the test set (Fig. 10B3) and
seemed to be stable even on the time-series RGB image data
set (SI. 8, left image). For hyperhydric explants, prediction
confidence increased until day 10 and decreased at day 16
in the time-series RGB image data set (SI. 8, right image).

Discussion

Time-lapse videos enable insights into early phases
of HH development

HH is a serious limitation of plant tissue propagation affect-
ing multiple phases of in vitro cultivation. The use of the
novel monitoring system “Phenomenon” capturing time
series image data (SI. 4 and SI. 5) identified (i) the first
visual symptoms of HH to occur 5 DAT and (ii) an acceler-
ated and higher growth of shoots of the gelrite treatment
(Fig. 1A). Thereby, significant differences in the projected
plant area between the two treatments were found already
5 days after transferring to the culture media in both species.
As discussed previously by Kevers et al. (1984), HH may
be considered as morphological response to waterlogging,
which in turn induces ethylene synthesis. For A. thaliana, we
observed a higher vertical growth (Fig. 1B) with hyponasty
(SI. 5), which was described as ethylene-triggered strategy
of ex vitro plants in waterlogging conditions to re-estab-
lish contact with air and restore successful gas exchange
(Voesenek and Blom 1989). Furthermore, Vreeburg et al.
(2005) described a flooding-induced petiole elongation in a
two-stage process, starting with acidification of the apoplast
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followed by cell wall expansion. This is in agreement with
our observation of a significantly higher eccentricity (devia-
tion of the ellipse to circle) and significantly less solidity
(density of the object) for explants in the gelrite treatment
(SI. 1B). A more pronounced curling of the leaves was
observed in Malus (SI. 4) which also resulted in epinastic
leaf growth. In addition, a significant higher mean canopy
height (Fig. 1B) and maximum shoot height of Malus shoots
on gelrite medium (SI. 1A) indicated a more pronounced
vertical orientation of growth.

Hyperhydricity induction by increased water
availability

Although HH symptoms vary between different plant spe-
cies and cultivars, and several factors have been described
to trigger HH, a putative common underlying mechanism
of apoplast flooding has been described (van den Dries
et al. 2013). Several studies showed that increasing the
water availability by decreasing the concentration of
gelling agent, changing the type of gelling agent or the
cultivation in liquid media induced HH in a large set of
plant species (Dianthus sp., Casanova et al. 2008; Aloe
sp., Ivanova and Van Staden 2011, Malus sp. Chakrabarty
et al. 2003).

In our study, we demonstrated the HH-inducing effects
of gelrite for Malus and Arabidopsis indicated by the
overall increase in HH scores (Fig. 2 and SI. 3) and apo-
plastic liquid volume (Fig. 3 and SI. 3) over time. Gelrite
differs from agar in terms of consistency and purity and
resulted in a superior growth of explants at a comparable
gel strength (Scherer 1987; Tsay et al. 2006; Pasqualetto
et al. 1988). However, gelrite induced HH in several spe-
cies (Arabidopsis sp., van den Dries et al. (2013), Malus
sp. Pasqualetto et al. 1988, Prunus sp. Franck et al. 1998)
limiting the use of this gelling agent. Scherer et al. (1988)
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Fig. 10 Object detection performance of the PCTOC_V3 model on
an image selection of the test set. (A) Ground truth RGB image of
the Malus ‘G214’ test set annotated with normal (Normal, green)
and hyperhydric (HH, blue) explants (A1-A3). (B) Predicted objects

could show that there is no difference in the osmotic and
water potential of gelrite compared to agar. Van den Dries
et al. (2013) suspected therefore a local dissolution of the
culture medium due to the excretion of chelators by the
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(B1-B3) and class membership probability (0 to 1 corresponds 0 to
100%). Prediction was performed with confidence threshold and
intersection of union threshold of 0.5. (Color figure online)

explants and thus a higher water availability and water
uptake. This higher water availability in gelrite-solidified
media most likely explains HH-induction and acceler-
ated growth, but other putative factors like differences in
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uptake of nutrients or plant hormones were also found:
Higher contents of magnesium (Mg) and a higher ratio of
potassium (K) to sodium (Na) were detected in the leaves
of walnut explants grown on gelrite medium compared
to agar, which can affect stomatal function (Barbes et al.
1993). Furthermore, Arthur et al. (2004) found a lower
concentration of IAA-like compounds in gelrite than in
different types of agar powder.

With the collected data and the time-lapse videos, we
could narrow down crucial key points within the develop-
ment of HH of the two species in time. First visual identifi-
able symptoms (SI. 4 and SI. 5) and significant increases in
apoplastic liquid volume were observed already after 5 days
of cultivation on gelrite media in both species. Time series
dynamics of apoplastic liquid volume confirmed previous
data for A. thaliana (van den Dries et al. 2013)—in both
studies hyperhydric explants of A. thaliana had an apoplas-
tic liquid volume of around 300 uL g~! FM 15 days after
treatment, but were carried out for the first time for Malus.
Quantification of apoplastic liquid volume of A. thaliana
seedlings at very early time points was limited by the very
small amounts of apoplastic liquid and the distorting effect
of adhering water (Fig. 3B). For Malus, the highest increase
in apoplastic liquid volume for the gelrite treatment was
detected within the first 4-5 days in two independent experi-
ments (SI. 3, Fig. 3B). Furthermore, a different behavior of
the HH score and the apoplastic liquid volume was found
after 21 days of cultivation in Malus: While the severity
of HH symptoms steadily increased over time, the apoplas-
tic liquid volume seemed to reach saturation at later time
points (SI. 3, Fig. 4). Therefore, we suggest the HH score
to be useful to determine the symptoms of HH, whereas the
quantification of apoplastic liquid volume better reflects the
physiological state of the explants.

Identification of HH-specific spectral absorption
features

Despite the fact that clear visible symptoms (Table 1) of HH
were reported and still are the major distinguishing param-
eter for classification, spectroscopic analysis of HH is lim-
ited. Only Marques et al. (2021) using Fourier-transform
infrared spectroscopy in attenuated total reflectance mode
(FTIR-ATR), evaluated chemical properties of prepared
cell walls of hyperhydric Arbutus unedo. Assuming HH as
a consequence of flooding of the air-filled apoplast by water,
UV-VIS-NIR-SWIR reflection spectroscopy was expected
to detect these physiological changes due to higher light
absorption of water compared to air. Therefore, we applied
this technique to identify specific absorption features of HH
essential for designing an automated detection system. How-
ever, we excluded the UV region (<400 nm) from further
analysis due to the low penetration depth of UV light in plant
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tissue (Qi et al. 2010), since most reflection signals can only
be attributed to anatomical and biochemical properties of
cuticle, trichomes and the upper epidermis.

The observed overall reduction in reflectance of hyperhy-
dric explants (Fig. 5) compared to normal ones is consistent
with the visual appearance of the observed darkening of the
affected explants (SI. 4 and SI. 5). The visualization of iso-
lated absorption features over the time course of the develop-
ment of HH in Malus (Fig. 6) should give insights whether
there is at least a trend in the time course of the presumed
absorption characteristics. We used the continuum removal
method to exclude the observed overall absolute reduc-
tion in reflection and to compare all spectra on a common
base. This allowed an automated extraction of absorption
peaks for the SWIR region with predominant absorptions
valleys, however, produced artefacts in the VIS region. In
the SWIR region, a consistent difference between absorp-
tion of normal and hyperhydric leaves was observed for the
wavelengths 980 nm, 1150 nm, 1400 nm, 1520 nm, 1780 nm
and 1930 nm, both over time (Fig. 6) and in the different
experiments (SI. 6). Most likely, the absorption of water
in the plant tissue is most responsible for the wavelengths
980 nm, 1150 nm, 1400 nm. Curran et al. (1989) described
the intense absorption of liquid water at 970 nm, 1200 nm,
1400 nm and 1450 nm due to the fundamental O-H bend-
ing vibrations of the first overtone. Thus, the tendency of an
increase in water absorption (970 mn, 1200 nm, 1400 nm,
1450 nm) within time is in accordance with the increase
in apoplastic liquid volume over time. However, absorption
bands of other compounds like proteins, lignins and sug-
ars are located within the peak between 1300 to 1600 nm
and contribute to the total absorption in this region. Curran
et al. (1989) associated the absorption at 1780 nm to cel-
lulose, sugars and starch. Since for this wavelength a higher
absorption in hyperhydric leaves was observed in our study,
this is in line with the detection of a higher sugar content
(sucrose, glucose and fructose) in hyperhydric explants of
Dianthus (Saher et al. 2005), but contradicting Kevers et al.
(1987) who reported less lignin and cellulose in hyperhydric
Dianthus.

Simulation of vegetation indices (Fig. 8) demonstrated
traceable trends, that closely match the dynamics of the
physiological reference data (Fig. 3 & SI. 3) and support
the observation of time-series data (SI. 4 & SI. 5). Overall,
the vegetation indices from normal explants exhibited low
variance, although they were derived from different experi-
ments. The high variance of hyperhydric explants indicated
by the confidence interval can be explained by different
physiological states of explants with different degrees of
hyperhydricity. The simulation of a modified anthocyanin
index, indicated a higher anthocyanin content in hyperhydric
leaves of Malus, but not Arabidopsis, supporting our RGB
image time series. The normalized difference water index
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(NDWI) displayed higher water contents for hyperhydric
explants of both species and supported our observation that
apoplastic liquid volume did not increase any more after
4 weeks of cultivation. The normalized difference lignin
index (NDLI) showed in both species less lignin for hype-
rhydric leaves. However, the trend of the NDLI curves in
both species followed inversely that of the NDWI indicat-
ing a putative dependency on plant water content. Marques
et al. (2021) found no significant difference in the lignin
content per dry weight of hyperhydric and normal leaves of
Arbutus, whereas Kevers et al. (1987) reported a lower lignin
content per fresh weight of hyperhydric tissue. It remains to
be clarified, whether these divergent results are due to differ-
ent species or to the fact that the fresh mass of hyperhydric
explants is much higher.

Automated detection of HH by machine learning

In order to evaluate the performance of the spectral data
in the classification of hyperhydric and normal leaves, we
trained different ML models (Table 4), investigated the
most important wavelengths of the best model (Fig. 7) and
compared them against a novel vegetation index as the clas-
sical approach (Fig. 9). The ML models differed in their
architecture, complexity, performance, prediction time and
interpretability (Singh et al. 2016; Liakos et al. 2018; and
Hesami and Jones 2020). All ML models reached a high
AUCpoc>0.83 in training, however only SVM and NNET
had a high accuracy > 0.80 on test data. Both ML models
outperformed with an accuracy of 0.81 for NNET (balanced
accuracy of 0.81) and 0.85 for SVM (balanced accuracy of
0.84) the univariate vegetation index approach with a lower
accuracy of 0.63 (balanced accuracy of 0.66). Furthermore,
SVM was best in classifying normal spectra indicated by
highest sensitivity of 0.91 on the test set. The two-band veg-
etation index NDRI reached the highest specificity of 0.84
in the test data, followed by SVM with 0.76, meaning high-
est ratio in the identification of hyperhydric tissue, however,
low sensitivity of 0.47, low accuracy of 0.63 and low F,
score of 0.59 indicated a conservative behavior of classifica-
tion towards hyperhydric explants. SVM was selected due
to its high performance on training and testing datasets, low
training data volume requirements, performance on high-
dimensional datasets, low risk of overfitting, good gener-
alization ability, and its advantages over NNET in terms
of training time, simplified structure, and interpretability
(Singh et al. 2016; Liakos et al. 2018). The evaluation of
the feature importance of SVM for classification (Fig. 7)
supported our findings that bands (peaks with maxima at
1949 nm, 1445 nm, 1202 nm and 975 nm) associated with
water absorption were crucial to distinguish between hype-
rhydric and normal leaves. However, the method indicated
essential features importance in the VIS region with maxima

at 424 nm and 676 nm. In regard of an automated HH detec-
tion system, we further evaluated two different approaches
(i) HH detection based on an HSI-SWIR camera system
(Fig. 9) and (ii) HH detection based on RGB camera system
coupled with a deep neuronal network (DNN) to provide two
putative solutions for commercial plant propagation based
on our findings (Table 5, Fig. 10, SI. 8).

Following the HSI-SWIR camera system approach, we
could only test the validity of our spectral classifier as a
proof of concept because we only had a single HSI acquisi-
tion (SL. 7), so these results should be interpreted with cau-
tion. In addition, our analysis followed a two-class classifica-
tion problem, but under the assumption that an automated
HH detection system monitors explants on culture media
during cultivation, culture media spectra could presumably
interfere with the other classes within classification. There-
fore, for further studies, we propose to include the acquisi-
tion of reflectance spectra of the culture media in the dataset.
Nevertheless, we could test our ML-SVM classifier, trained
on spectra from Malus ‘G214’ and A. thaliana, on the single
SWIR-HST acquisition of Malus ‘Selection 4’ segmented
plant pixels, indicating the generalization ability of the clas-
sifier with respect to experimental setup and plant species/
genotype. The NDRI and ML-SVM both classified most
pixels correctly, however, ML-SVM segmented the borders
of different classes much sharper. These preliminary results
demonstrated that classification of HH is possible during
in vitro cultivation and through the lid of the vessel with
either an expensive SWIR-HSI system classifying with our
novel ML-SVM classifier or more cost-effectively with a
two-channel SWIR camera system using a novel vegetation
index.

Alternatively, an RGB camera setup coupled with con-
volutional neural network (CNN) can be the most cost-
effective solution for an automated HH-detection. Since
we had identified feature importance also in the VIS
region, a proof-of-concept study was conducted to dem-
onstrate object detection via CNN. Therefore, we used
the Roboflow® pipeline, which allowed an easy access to
these tools and provided an interface for data annotation,
pre-processing, data augmentation, training, data avail-
ability and deployment of the trained models. Comparing
a self-trained YOLOv8 with the unknown object detec-
tion algorithms of Roboflow Train (Table 5), we did not
reach the performance of their optimized model, which
was particularly evident in the performance on test set,
where PCTOC_V1 reached the highest precision with
94.4%, but with low recall of 49.5%—indicating only half
of all explants could be detected. The best trained model
PCTOC_V3, however had a precision of 83.8% on valida-
tion and of 97.0% on test set, indicating that prediction
was mostly correct (Table 5, Fig. 10, SI. 8). In addition
the explants were reliably detected (recall of 95.7% on
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validation set and 89.0% on test set). By using the rela-
tively new Python library roboflow, we encountered some
unsolved issues as seen in SI. 8 where non-maximum-
suppression only works so far within one class, resulting
in multiple predictions per object. Considering the prop-
erties of the dataset, the low amount of data (250 to 375
images), resulting from time series images (1049 explants)
of only 32 individual explants, we could see already good
performance on the test set and the time-series set (Fig. 10
& SI. 8).

Conclusions

To our knowledge this study is the first report of (i) iden-
tifying discriminating wavelengths in the VIS-NIR-SWIR
region for the detection of HH, (ii) application of short
wave infrared hyperspectral imaging to detect growth
anomalies in vitro, (iii) proposing a spectral classifier
for hyperhydricity. Wavelength bands (around 1940 nm,
1450 nm, 1200 nm and 970 nm) associated with absorp-
tion of water are the most distinguishable between hype-
rhydric and normal leaves within the analyzed spectral
data set (400 nm to 2000 nm). In addition, minor impor-
tant wavelengths were found in the RGB region (around
430 nm and 680 nm), whereas the NIR region seemed to
be less important. Furthermore, RGB images of hyperhy-
dric explants contain sufficient morphological and spectral
features to allow a reliable detection of HH in an afforda-
ble manner via convolutional neuronal networks. However,
this needs to be proven in an in-depth study. Nonetheless,
these results can serve as a proof-of-concept for CNN-
assisted live monitoring of plant tissue cultures and pave
the way for increased use of CNN to estimate other key
parameters such as multiplication rate, nutrient deficiency,
and contamination.
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SI. 1: Maximum shoot height and shape analysis of explants of A. thaliana Col-0 and Malus ‘G214’ (Mean
+SD). A) The relative increase in mean maximum shoot height of upper 10t percentile resulted from anal-
ysis of segmented depth data collected with a scanning laser distance sensor and normalized to day 0 max-
imum plant height. B) Shape analysis parameter of single explants. Yellows lines indicates cultivation on
standard media formulation on Gamborg-B5 (4. thaliana) and MS-Medium (Malus) solidified with 0.8% agar
(w/v), while blue lines display the cultivation on induction media containing 0.25% (w/v) gelrite, inducing
HH. Estimated 95t confidence interval was illustrated in light gray. C) Representative images of segmented
single explants of the different plant species and treatments. Convex hull, longest path, centroid is colored
in pink, while object area and perimeter are outlined in blue. Sample number (n) indicates A) individual
culture containers and B) individual explants. Significance stars indicate comparisons of treatments within
a time point (day) with * p < 0.05,** p < 0.01, *** p < 0.001. Depth data were acquired with the multisen-
sory robot system “Phenomenon” (Bethge et al. 2023).
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SI. 2: Sample holder for reflectance measurement with Perkin-Elmer Lambda 900 UV-VIS-NIR-SWIR
spectrometer. Leaf samples were placed with adaxial orientation inside the 3D-printed sample holder.
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SI. 3: Visual scoring and apoplastic liquid volume of Malus ‘G214’ Experiment IV & V. Samples from 0
days after transfer (DAT 0) represent the starting plant material cultured on control media. Yellows bars
indicate cultivation on standard media formulation MS-Medium with 0.8% (w/v) agar, while gray bars dis-
play the cultivation on induction media containing 0.25% (w/v) gelrite. Dashed lines represent the medians
of each histogram. Sample number (n) indicates the individual explants. Different letters resulting from
Kruskal-Wallis-Test followed by Fisher’s LSD (P <0.05) indicate significant differences between histograms.
Different letters resulted from Tukey’s HSD test at P < 0.05 and show significantly different time points
within one treatment, while asterisks indicate comparisons of treatments within a time point with * = P <
0.05,**= P<0.01,***= P<0.001.
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SI. 4: Hyperhydricity induction time-lapse video in Malus ‘G214’. Left side represents control MS-Me-
dium solidified with 0.8% agar (w/v), while right image displays the cultivation on induction media con-
taining 0.25% (w/v) gelrite. Both media were supplemented with 1 g L-! titanium dioxide. RGB Images were
acquired with the multisensory robot system “Phenomenon” (Bethge et al. 2023).
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SI. 5: Hyperhydricity induction time-lapse video in Arabidopsis. Left side represents control B5-Me-
dium solidified with 0.8% agar (w/v), while right image displays the cultivation on induction media con-
taining 0.25% (w/v) gelrite. Both media were supplemented with 1 g L-1 titanium dioxide. RGB Images were
acquired with the multisensory robot system “Phenomenon” (Bethge et al. 2023).
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SI. 6: Similarities in spectral reflectance of Malus sp. “G214" and A. thaliana “Col-0". Upper row repre-
sents extracted absorption features after segmented convex-hull removal of raw spectra and bottom row
demonstrates difference spectrum of the absorption peaks. Normal (NN, colorized in green) and hyperhy-
dric (HH, colorized in blue) spectra membership were based on visual scoring of HH
(NN, 0-1; HH 2-4). Colorized arrows indicating potential major biochemical leave compounds absorbing in
the given wavelength region, according to Curran, 1989. Reflection spectra were measured with
UV/VIS/NIR Spectrometer (PerkinElmer Lambda 950) in wavelength range of 200 - 2000 and a resolution
of 1 nm.
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SI. 7: SWIR-Hyperspectral image stack/video of Malus ‘Selection 4’. Image data set were acquired with
the imaging system developed and described by Thiel (2018). This system consisted of an EVK Helios Core
NIR Line-scan camera (240 px x 1 px and 252 spectral channels in the wavelength region of 900 nm to 1700
nm), two 65 W halogen spot lights and a conveyer-belt system to move the sample. Spectral reflectance was
recorded top-down through the lids of the culture containers.
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SI. 8: Automated detection of Hyperhydricity via CNN, while the induction of HH in Malus ‘G214’ in
time-lapse video. Left side represents control MS-Medium solidified with 0.8% agar (w/v), while right im-
age displays the cultivation on induction media containing 0.25% (w/v) gelrite. RGB images were acquired
with the multisensory robot system “Phenomenon” (Bethge et al. 2023). Class membership predictions re-
sulted from the trained PCTOC_V3 object detection model, available under Bethge (2023).
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Remote plant sensing and phenotyping — an e-learning tool
in higher education

Hans Bethge !, Thomas M#&hlmann?, Traud Winkelmann = and Thomas Rath"~*

Abstract: Within the consortium “Experimentation Field Agro-Nordwest”, a practical concept for
knowledge and technology transfer of digital competence in agriculture was created. For this
purpose. the web-based e-learning system “SensX™ was set up, consisting of videos, presentations
and instructions. In addition, the classical e-learning concept was extended by data sets, student
experiments and sensor data of plants acquired by a remote phenotyping robot. This resulted in a
massive open online course (MOOC), which was tested with agricultural and biotechnology students
in higher education at the University of Applied Sciences Osnabriick over two years. The evaluation
process of “SensX"” included an empirical survey, qualitative interviews of the participating students
by an external institution and an evaluation of the concept by the lecturers.

Keywords: agriculture, digital competence, e-learning concepts, remote experiments, sensors in
teaching

1 Introduction

In higher education, the number of teaching modules based on e-learning systems, blended
learning systems (traditional teaching combined with e-learning) or MOOCs (massive
open online courses) is steadily increasing, both nationally (Germany) and internationally
[L120; Al18]. The majority of these (approx. 30%) are offered in the computer sciences,
but almost 6% are part of the agricultural and life sciences curricula, worldwide [Al18].
The COVID19 pandemic has caused further acceleration in the use of e-learning, blended
learning approaches or MOOC:s in higher education [Be21]. Yet the terms used to describe
the use of computer technologies in education (here e-learning, blended learning, MOOCs)
vary widely and are not coherent. In many publications and reports, the methods are
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grouped under terms such as “digital education” or “e-learning”. Defined competences
should be specified and consolidated. In contrast to the original intention of the Bologna
process to focus academic education very strongly on vocational training, digital education
in particular is based on four (or even more) areas of competence acquisition: (i) self-
competence: ability to act on one's own responsibility, (ii) subject-matter competence: the
ability to be able to make judgments and take action in specific areas, (iii) time
competence: the ability to plan and carry out actions and intellectual achievements in a
chronological sequence, (iv) social competence: ability to make judgements and act in a
complex society [Arl18]. When evaluating digital education with regard to the criteria and
competences listed above, digital education is sometimes seen as having a disruptive
character [Kil9], since universal access makes it possible to support any university. Thus
knowledge and methods are, at least in theory, available to many institutions and locations.
On the other hand, difficulties are also seen that ultimately cause high dropout rates, e.g.
with MOOCs [Ki19]. Empirical studies do not show a uniform picture of the educational
success of digital higher education. In an analytical-theoretical study, it was demonstrated
that there is only a slight correlation between digital and classic teaching methods in higher
education with regard to learning success [Sc20]. In contrast, specific digital evidence-
based and tested teaching concepts in the agricultural sector showed the superiority of
digital teaching concepts to classical teaching in terms of learning success [We22; Kel6].

Of course, it should also be noted that the use and success is largely dependent on the
users, i.e. the learners themselves. Thus, Kahan et al. differentiated users of MOOC:s into
five categories: (i) tasters, (ii) downloaders, (iii) disengagers, (iv) offline engagers and (v)
online engagers [Kal7]. Each of these groups handles digital education differently and
presumably, this leads to strong dispersion in learning success or in other evaluation
parameters of digital teaching. On closer inspection, the teaching concepts and methods
used in digital education or e-learning are also complex, and the terms used for them are
multifaceted, not clearly demarcated, and only partially defined (see the comprehensive
table of terms in [Lii20]). [Ca20] distinguished only three teaching approaches: (i) e-
learning by distributing, (ii) e-learning by interacting and (iii) e-learning by collaboration.
They were able to show that e-learning in higher education is still largely dominated by e-
learning by distribution (uploading texts, graphics, PDFs, etc.), while more far-reaching
approaches such as e-learning by interacting or e-learning by collaboration often remain
largely unexplored [Ca20]. Approaches that go beyond this, such as e-learning supported
by self-performing experiments, do not appear at all in the considerations and therefore,
seem to be so far unconsidered in digital education and literature. The need to develop
educational concepts that go beyond the three approaches of [Ca20] in order to provide
efficient and successful academic training in as many areas of competence as possible is
becoming increasingly evident.

In agriculture, the field of sensor technologies is very suitable for this purpose, as it is a
subject with constantly evolving contents. Additionally, it is gaining increasing
importance in all areas of agribusiness, and already plays a dominant role in practice,
research, and development (see [Hal9] and [Yi21]). Moreover, students of agricultural
sciences usually have little affinity for sensor technologies prior to their studies. So for
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many of them, a deeper engagement in sensor topics with new e-learning methods can
lead to new knowledge, skills and competences. Therefore, the aim of our project is to
establish and explore the use of sensor technology in agriculture using an interactive e-
learning approach in order to provide students with in-depth digital competence.

2 SensX

2.1 Concept and categories

Within the consortium, “Experimentation Field Agro-Nordwest” a proof-of-concept
project called “SensX” was initiated to promote and establish the use of sensor technology
in the plant sector at university and college level. For that purpose, a MOOC e-learning
system was developed that extends classical e-learning concepts by using sensor data,
sensor kits, and, as a future perspective, fully remote and collaborative teaching with a
robotic sensor demonstrator (Fig. 1). We have structured the features of the e-learning
system into four categories, as described in detail in the following subchapters.

E-Learning
- Supported by remote data
and remote experiments -

E-Learning . E-Learning E-Learning
- Classical - - Supported by data - - Supported by experiments -

Lecture scripts

Videaos D ‘Tasks 55”‘ | ] | @ P
| b «
> = Y= %

SensX SensX SensX SensX
-E-Learning Platform- ’ -E-Learning Platform- -E-Learning Platform- . __-E-Learning Platform-

nemote

Practical experience

Com;alex&} '
Fig. 1: Supported e-learning concepts of the MOOC platform “SensX”
Classical e-learning

Up to now, SensX contains 12 sessions (see Tab. 1 at the end of this chapter), four of
which were structured according to basic/classical e-learning concepts following e-
learning by distribution. The transfer of knowledge took place through the exchange of
information by uploading lecture scripts, explanatory videos and exercises about
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agricultural engineering topics, for instance operating principles of specific sensors used
in crop production and research, such as ultrasonic and spectral sensors, RGB, NIR and
IR cameras, fluorescence spectroscopy, LIDAR (light detection and ranging), soil
moisture, temperature and humidity sensors.

E-learning supported by sensor data

Two of the 12 SensX sessions (see Tab. 1) were conceptualized according to e-learning
supported by RGB sensor data sets to demonstrate the measurement of spatially resolved
data and their processing with current approaches of artificial intelligence. Based on this,
image-processing algorithms were developed to evaluate the generated feature vectors
with a neural network.

E-learning supported by sensor experiments

Since SensX is a hands-on online course, each participant received a sensor kit (worth
about € 30) for the session categorized as e-learning supported by experiments at the
beginning of the module. The kit consisted of a microcontroller platform, electronic
components and various sensors. This enabled the participants to carry out their own
experiments at home and to collect data of plants and other real objects. In addition, for
specific tasks, participants carried out exercises with smartphone-based sensors.

E-learning supported by remote sensor data and remote sensor experiments

In order to also enable multisensory applications at a high academic level, the novel low-
cost demonstrator “Phenomenon” was developed [Be22], by which different sensory
information from real plants was obtained (Fig. 2). It consists of exclusively low-cost
hardware and open-source software components, which were selected to construct a xyz-
scanning system with an adequate accuracy for consistent data acquisition and total costs
of around € 3000. The developed device allows remote control via HTTP of all the
functions such as motion control, data acquisition and access of sensor data due to its
unique software design. We have installed four different sensors inside the robot, (RGB
and thermal camera as imaging sensors, laser-based depth sensor and spectrometer as point
measuring sensor) that correspond to the current sensor technologies used in modern
agriculture. The resulting data sets provide students with multisensory data acquired
remotely from real phenotypic experiments that they learned to handle and process. We
already included the resulting data sets of the system in two modules of SensX.
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Agritechnical content Category Hardware
Analog sensor data acquisitions Basic/Classical PG
Thermodynamics in greenhouses Basic/Classical PC
COg-tracer gas method Basic/Classical PC
Computer vision (CV) and machine-learning Basic + data sets PC + RGB data
Plant classification, CV and neural networks Basic + data sets PC + RGB data

Optoacoustic signals

Basic + experiments

PC + Microcontroller

Radiometry & spectroscopy

Basic + experiments

PC + Smartphone

Temperature and spectral data acquisition,
analysis and visualization with R/Rstudio

Basic + (rem.) exp. +
(remote) data sets

PC + Demonstrator +
MCont. + sensor data

Tab. la: Sessions and categories in SensX for Sensor control and analysis
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Agritechnical content Category Hardware
Randomization of experiments in controlled . . .
xp Basic/Classical PC
environment
. _— Basic + .
Moisture sensor data acquisition . PC + Microcontroller
experiments
Basic +

Determination of crop performance traits PC + Smartphone

experiments

Basic + (remote) PC + Demonstrator
Spectroscopic Methods and data visualization experiments + and Microcontroller
(remote) data sets sensor data

Tab. 1b: Sessions and categories in SensX for Applied technology in crop experimentation

2.2 Evaluation methods and statistics

The 12 application sessions of SensX were evaluated internally with surveys within two
university lectures (“Sensor control and analysis” with 18 participants and “Applied
technology in crop experimentation” with 16 participants) addressing agriculture and
biotechnology students over two semesters (winter 20/21 and summer 21) at the
University of Applied Sciences Osnabriick. Within the surveys, the students have to rank
a) the different sessions in general (scale: very good, good, average, bad, very bad) and b)
the difficulty level of the sessions (scale: very easy, easy, average, heavy, extreme heavy).
Because of different semesters, different survey years, different studies and different prior
knowledge of the students, the results were not statistically condensed. Additionally, the
students were asked to rank every session, which was integrated into their course, with a
German grading scale from 1 (excellent) to 6 (very poor). These rankings were combined
with categories (see above) and statistically analysed with Kruskal-Wallis rank sum test
with Fisher’s Least Significant Difference using R.

In the following year (summer semester 22, “Sensor control and analysis” with 9
participants), the courses were evaluated externally as qualitative interview by the Institute
for Futures Studies and Technology Assessment [ZT, Berlin.

3 SensX evaluation

3.1 Internal empirical survey

The internal empirical survey with the participating students revealed that over 90% rated
SensX as very good, good or average. However, only 65-70% of the students were
satisfied with the clarity and design of the Moodle-based web interface of SensX (data not
shown). Participants were highly satisfied with subject-specific content of SensX in
general, regardless of the teaching concept (Fig. 3) and there was no significant difference
in the overall rating of SensX in terms of the defined teaching concepts (Tab. 2).
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Fig. 3: Internal evaluation of SensX by participants

Concepts Mean+sd Median | Count | Rank
Classical 2.13+£0.95a 2 70 94.6
Supported by data 2.34+1.19a 2 35 103.1
Supported by experiments 2.27+1.13a 2 66 99 4
Sup. by rem. data and rem. experiments | 2.68+1.25a 2 31 119.6

(German grading scale, Kruskal-Wallis rank sum test with Fisher’s Least Significant Difference, o = 0.05)

Tab. 2: Statistical summary of participants' overall rating of SensX by in the internal evaluation

Further analyses by the students regarding the developed sessions showed that there were
no difficulties with regard to the usability and the clarity of the presentation of the
individual subject contents. This was of great importance, as it was the basic prerequisite
for quantitatively evaluating the students' further statements regarding the sessions. In
terms of difficulty level, the optimum was exceeded for some participants, in particular
when complexity and abstractness (Fig. 1) were increased due to the teaching method.
Nevertheless, that also indicated the need for specific teaching tools addressing those
skills. This was particularly evident in the sessions with remote data of the “Phenomenon”
robot, where 70% of the participants rated the content of the sessions as very good to good
(Fig. 3), but at the same time 70% of the participants rated the difficulty level as heavy to
very heavy.
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The motivation of the students to engage with the sessions of SensX as well as the results
achieved in the exams were rated as very good by the lecturers. These evaluations showed
that especially the e-learning sessions, which were based on the analysis of data and simple
experiments, received very good ratings from the students. The more complex the
applications became, the more critically the students rated the individual sessions (see
Tab. 2). These evaluations are understandable, as individual modules with a high degree
of complexity demanded a lot from the students, especially methodological and procedural
expertise and competence orientation.

3.2  External qualitative interview by IZT

The post hoc analysis of the interviews, conducted and reported by the 1ZT, revealed that
participants rated SensX an average of 7.9 in terms of overall satisfaction on a scale from
1 (low satisfaction) to 10 (high satisfaction). It should be noted that this survey was
conducted a year later with other participants of the module and slightly optimized
contents of the sessions. The students surveyed the gain in their own digital competence
particularly positive being achieved through the independently performed experiments
with microcontrollers and sessions regarding computer vision. However, the surveys also
indicated that there is a strong desire for more collaboration.

Representative statement from students:

. ”I would definitely also say that [ was able to take away a lot of digital skills in this
module and that will continue.”

° ”What disappointed me a little bit: I thought we would be standing together more in
the greenhouse looking at plants.”

3.3  Evaluation by lecturers
In the first six columns, Figure 4 shows the main characteristics and criteria of the

developed sessions in relation to the four e-learning categories (lines) that were considered
and implemented in the module design.
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Fig. 4: Criteria of SensX sessions based on experiences of module creators and lecturers and the
competence output profile within two years (four semesters) of application

It should be emphasized that the information on the module properties in Figure 4 refers
exclusively to the sessions created and the concepts behind them. Nevertheless, Figure 4,
columns 1 to 6 provide important information about the general concept of SensX. In
contrast, the last four columns represent the actual competences achieved within the
sessions based on the evaluations (see chapters 3.1 & 3.2), but also based on the oral and
written examination results and the statements made by the students. A summary of the
different evaluations indicated that the new e-learning concept supported by experiments
and data analysis mainly raised plant sensor expertise and methodological competence and
skills of the participants.

3.4 General discussion

The SensX system presented in this study goes beyond the classical e-learning concepts
[see Ca20] and uses technical tools that meet today's digital potential and requirements for
higher education. Our teaching concept successfully demonstrated the proof-of-concept
that an extension of classical e-learning systems by action-oriented methods in the field of
agricultural engineering is possible and reasonable.

However, the extension of e-learning requires considerable additional technical and
financial effort for higher education institutions. The hardware used (microcontrollers,
sensors) must be provided as a kit to each student for home work and should be in the low-
cost range so that students can experiment with it freely and without prior knowledge.
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The additional more complex systems required, such as the “Phenomenon” robot in our
case, which enables remote experiments at the educational institution, must also meet low-
cost conditions. Our “Phenomenon” system fulfils this criterion, costing less than € 3000
[Be22]. It should be noted, however, that remote access to “Phenomenon” requires an open
IT structure of the educational institution that is freely accessible from outside. Usually
this is not the case, or only to a limited extent. Also in our case, we had to provide students
with the data collected on site without direct students’ access to the sensor system.
Although this limitation can be reduced by video presentations (in our case) or similar
documentation, a free remote access from outside is actually necessary, or at least
desirable, for the complete implementation of our teaching concept. We were therefore
only able to show the perspective of our remote experimental concept, where students will
be taught how to remotely program, control and use a remote robot to phenotype a small
biological experiment through a collaborative online programming workshop. We are
convinced that this will address the identified students’ demand for collaborative work.

At this point, we would like to once again highlight the different e-learning types of
students [Kal7]. Possibly, here lies a problem of the created system: due to the high
technology employment, for individual students, e.g. the group designated as
downloaders, the study within a technical unknown field (developing circuits, calling
sensor data with programmed scripts etc.) may need too much time and self-initiative so
that no new knowledge or new method competences can be gained. On the other hand, the
complex sessions forced students to interact with each other, which is otherwise
considered difficult and critical in e-learning systems [Ca20]. Despite the very high
content-related, methodical and self-organizational requirements, the students rated our
new e-learning concept as efficient and useful in the overall evaluation. Understandably,
sessions with their own (easy) experiments tended to score best. Analysis of complex
remote data sets was rated as very difficult and was obviously at the learning limit of the
students involved. Nevertheless, these sessions were generally not devalued significantly,
supporting that an appropriate methodological teaching approach was chosen. A direct
comparison of the final grades of SensX participants with the final grades of students from
the previous five years, which had the same content but no e-learning components, showed
a better final grade on average (data not shown). In the evaluations of our overall concept,
it is essential to take into account that the newly designed teaching units have so far only
been used in the period affected by the COVIDI19 pandemic, where the boundary
conditions were difficult due to the temporary closure of the university and were uncharted
territory for all involved. The clarification of possible correlations is still pending and can
only be answered after several runs of SensX in different study programs and at different
educational institutions.

4 Conclusions

In this article, we have demonstrated the feasibility of a new e-learning approach that
addresses the need of modern agriculture for high digital competences in higher education.
We propose that a deep understanding of sensor technologies and methods of digital data
processing can only be obtained when higher education, which has been dominated by e-
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learning concepts in the last 2 years due to pandemic circumstances, includes hands-on
sessions and is supported by self-performing experiments. Further expansion of SensX
will accommodate even more collaborative opportunities for participants and forces to
prepare tomorrow's plant sciences students for the challenges of digitized modern
agriculture.
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3 Summarizing discussion and further perspective

Plant phenotyping, performed by satellites, drones, agricultural vehicles, robots or
ground-based platforms, is a rapidly expanding research area forming a pivotal discipline
on the journey towards the digitalization of the agricultural and horticultural sector
(Araus et al. 2018, Roitsch et al. 2019). However, phenotyping of plant in vitro cultures by
sensor systems is an underrepresented research area with limited reports so far
(Table 1). Thus, the potential of automated in situ phenotyping of plant in vitro cultures
has also not been explored in depth. The special conditions of plant in vitro cultures such
as imaging through closed vessels, specular lighting of vessel material, limited space in
multi-layer shelf systems and formation of water condensation place highly challenging

demands on phenotyping in this field.

3.1 Automated phenotyping in commercial micropropagation

Considering these specific claims, we have developed a novel robotic system
named “Phenomenon” enabling multi-sensory in situ phenotyping of plant in vitro
cultures (Bethge et al. 2023a). This study covered the design and realization of the
mechatronic backbone, the implementation of the software architecture of the robotic
system, as well as the creation of automated data acquisition and appropriate data
processing pipelines. Furthermore, besides the description of the optical properties of
culture containers, the feasibility of four tested low-cost sensors was investigated and
unprecedented sensor data from plant in vitro cultures were demonstrated. Here, we
could show the potential of the RGB-imaging in monitoring the horizontal growth of
explants inside the culture vessels as well as the application of a laser-distance sensor for
tracking the vertical growth and the feasibility of a micro spectrometer for sensing of

chlorophyll fluorescence.
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Most of the approaches to phenotyping in vitro cultures reported to date (Table 1)
have either the disadvantage that the "plant-to-sensor" approach limits the automation
and monitoring of cultivation (Smith et al. 1989, Aynalem et al. 2006, Ibaraki & Gupta
2011, Mansouri et al. 2016, Gupta & Karmakar 2017, Mestre et al. 2017, Farag6 et al.
2018), or they focused heavily on Arabidopsis research (Dhondt et al. 2014,
Barbez et al. 2017, Lube et al. 2022). The roboticized Phenomenon phenotyping system
has several unique features such as the multi-sensory approach, direct in situ monitoring
during cultivation, and by proposing an approach for solving the challenging imaging sit-
uation such as water condensation, specular lighting and mirroring that set it apart from

other previously reported systems.

We claimed that the system is of practical use for plant research and can be scaled
up from a prototype to a commercial micropropagation system. However, the
multi-sensory approach of the “Phenomenon” system limited the throughput by an
increased size of the detection module and by the temporal and spatial boundaries, when
acquiring multi-dimensional data of each object/explant. Furthermore, the system
dimensions limited the operation area to 0.6 m?. This reduced the system throughput to
6 data acquisition cycles of 10 culture vessels per day in a multiple sensor mode or up to
50 culture vessels per day in a single sensor mode. However, an application of
phenotyping prototype system to commercial micropropagation with thousands to
millions of vessels in a culture room would drastically change the system demands.
Therefore, it is expected that a higher throughput, lower spatial and temporal resolution
would be required in the application to commercial micropropagation. In addition, a
complete transition to full automation of already partially automated data processing and

analysis pipelines would be required.
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Three out of four tested sensors (RGB camera, laser-distance sensor in shifted scan
mode and micro spectrometer) produced novel, and reasonable data of plant in vitro cul-
tures. Whereas with RGB and depth data, important information about plant growth only
emerges through their spatiality, chlorophyll fluorescence monitoring with a micro spec-
trometer holds the potential of high throughput and high information density through a
single point measurement that allows quantification of biomass-correlated signals
(review in Tremblay et al. 2012, Malapascua et al. 2014) and simultaneous information of
physiological stress status (Lichtenthaler et al. 1998, Buschmann et al. 2000). Here, most
studies to date focused either on ex vitro plants (Lichtenthaler et al. 1998, Buschmann et
al. 2000) or microalgal cell culture (Malapascua et al. 2014), hardly comparable in size,
habitus and physiological state to explants in micropropagation. Even if not investigated
in detail, we expect that a spectral differentiating chlorophyll fluorescence sensor such as
“Closed FluorCam” (Photon System Instruments) would meet the demands of high
throughput, fast and accurate measurements of biomass and stress indicators. Thus, the
“Phenomenon” system is suggested to be used for further investigations in this topic, in
particular if biomass quantification by ground fluorescence signals or stress estimation
by fluorescence signature can be generalized across multiple influencing factors such as
plant species, chlorophyll content and explant height. Here, the multi-sensory approach
of the system could use to fuse the data of projected plant area by RGB data, explant height
by depth data and fluorescence intensity to robustly predict biomass in regression mod-
els. Furthermore, there is significant scientific interest in investigating the relationship
between alterations in spectral fluorescence signatures and various stressors
(Lichtenthaler & Rinderle 1988) encountered in vitro such as imbalanced culture media

or emergence of disorders.
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In addition, a scaled-up version of the “Phenomenon” system that achieves high-
throughput data collection could be perfectly used for media optimization of new in vitro
cultures, which are still time-consuming and a major problem in plant tissue culture of
some species (Nezami-Alanagh et al. 2019, Hameg et al. 2020, Hesami & Jones 2020).
Hesami & Jones (2020) pointed out that Hildebrandt (1946) needed 108 different media,
while Murashige and Skoog (1962) required five years and 81 different combinations to
determine the balance between macro- and micronutrients in the basal medium. Here,
projected plant area determined by RGB imaging and average canopy height determined
by depth imaging could be used as decision variables that are maximized or minimized by
an optimization algorithm to predict the optimal media composition in terms of nutrients

and plant growth regulators.

Furthermore, an industrial application would require implementation in a par-
tially existing database with a unique identifier for each culture vessel — realized, for
example by automated capturing of barcodes, radio-frequency identification chips (RFID
chips) or quick response codes (QR code), in agreement with the study of
Seelye et al. (2014) for in vitro propagation of kiwifruit. Such a traceability would enable
not only analyses of the tracing of historical performance of plant in vitro cultures, but
also a deeper investigation on multi-factorial phenomena such as the habitation
(Gaspar et al. 2000) by ensuring sufficient phenotyped replicates across multiple

subcultures.

We were able to demonstrate the successful monitoring of three plant species and
different stages of plant in vitro culture using the presented method. However, the substi-
tution of the vessel lid by PVC foil and the use of a bottom-cooling system affected the
growth speed of in vitro cultures by differences in gaseous exchange capacity and water

vapor permeability. In parts, this can be solved if the Haze index is considered in addition
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to high transparency and good gaseous exchange capacity when developing “easy to
phenotype“ culture vessels in future. This creates new requirements for
culture vessel design, such as complete clarity and high transmittance in different spectral
regions and in addition to those already existing such as sterility, high gaseous exchange
capacity, chemical inertness, high stability for transport and others (Chen 2003,
Prakash et al. 2004). The condensation of water results from the thermal load of the cul-
tivation surface due to the high heat dissipation of the subjacent tubular fluorescent lamps
in the multi-layer shelf systems. Water condensation was avoided in our study by a bot-
tom

cooling system — the use of which was often hindered in commercial production by a
reduction of the growth rate of some plant species— might be solved differently in future.
On the one hand the whole horticultural sector undergoes a transition from traditional
light sources to semi-conductor-based light emitting diodes (LEDs), and these are ex-
pected to become mainstream in commercial micropropagation as well, thus producing
less absolute heat emission due to higher efficiency. On the other hand, with an expected
increase in energy costs which are mainly caused by the necessity to cool the culture
rooms, the use of bottom cooling systems could gain new relevance, since excess heat can

be removed through the water pipes directly from culture rooms to a heat exchanger.

3.2 Automated detection of morpho-physiological disorders
in plant in vitro culture
Plant in vitro culture covers a highly diverse field of research that involves the cul-
tivation of different plant species as cell, protoplast, tissue, or organ cultures using various
pathways to generate plants undergoing different stages of development
(Birnbaum & Alvarado 2008, George et al. 2008). Considering the major challenges such

as shoot-tip necrosis, shoot fasciation, habituation, recalcitrance, albinism, somaclonal
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variation (Hazarika & Bora 2008, Ruffoni & Savona 2013, Nezami-Alanagh et al. 2019,
Abdalla et al. 2022) in plant in vitro culture in terms of plant physiological and genetic
variation, we focused on physiological and morphological malformations in the context of
hyperhydricity in our study (Bethge et al. 2023b). We were able to report new optical
characteristics, as such reduced reflectance and major absorption peaks of hyperhydricity
at 980 nm, 1150 nm, 1200 nm, 1400 nm, 1450 nm, 1520 nm, 1780 nm and higher reflec-
tion at 1930 nm of this disorder, provided new insights into the relationship between two
established methods for assessing HH, and proposed the first two competing approaches

for automatic detection of HH using ML techniques.

While our findings allowed us to temporally narrow down the physiological events
within the etiology of HH, it is important to note that our understanding of the
underlying mechanism of hyperhydricity remains limited. Other aspects have been
highlighted in our study, but in particular the reason for the flooding of the apoplast is not
yet clear. Similar to many other studies (Pasqualetto et al. 1988, Franck et al. 1998,
van den Dries et al. 2013), our investigation primarily focused on comparing non-induced
explants cultivated under conditions of low water availability such as high plant agar con-
centrations with HH-induced explants cultivated in media offering high water availability
(low plant agar concentration, gelrite, liquid culture). However, it is worth noting that the
same non-induced explants can also develop HH if exposed to conditions of high water
availability. Thus, the non-induced explants are already in an “inherent physiological state
of latent HH”, in other words, the limited water availability prevents the expression of the
disorder. In order to identify the fundamental cause, it is suggested to compare
the metabolomic profiles (focused on osmotically active molecules within in apoplastic
liquid) of multiple non-susceptible to serious affected genotypes of one or more plant spe-

cies in their non-induced state to visualize differences in their physiological
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preconfiguration responsible for their susceptibility. This hypothesis is currently being
investigated in parts as a side project examining the osmotic potential of susceptible and
non-susceptible Malus genotypes in their latent HH state (Mohammadi Nakhjiri et al., un-

published).

We have presented, to the best of our knowledge, the first application of an
automated live-monitoring and detection based on computer vision combined with a
convolutional neural network in plant in vitro culture. Certainly, there is room for
debate regarding the optimal integration of imaging in the production process of
commercial micropropagation, whether live-monitoring during cultivation or single
endpoint imaging on a sterile conveyer belt system after a subculture is most efficient and
provides sufficient information for the task at hand. As in other areas of horticulture,
a tremendous potential of machine learning-assisted monitoring in plant in vitro culture
for various tasks such as determination of optimal transfer time point, media composition,
environmental conditions for -cultivation, early detection of contaminations and
endophytes, nutrient deficiencies, malformations, estimation of multiplication rate, and
estimation of transferable explants. Although we have obtained promising results in
detecting hyperhydricity, more complex taks such as multi-classification approaches
(for example, specific and early identification between different malformations or culture
problems) would demand larger data sets covering different domains, imaging systems,
plant species, media and genotypes. To accelerate technological and scientific progress,
image datasets should be used in the future to create a common online dataset for

benchmarking the different tasks.

Therefore, special attention was paid to the publication of new scientific findings
under the aspects of unrestricted accessibility, sustainable research and easy

applicability in accordance to FAIR (findability, accessibility, interoperability,
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reusability) guiding princples (Wilkinson et al. 2016). Image data sets as well as written
software modules were uploaded to free online repositories (Bethge 2022, Bethge 2023)
that allow a permant usage and all scientific articles were published under open access.
In addition, the weights of trained object detection models are now available online
(Bethge 2023) and can be reused both, as initial weights to improve similar approaches
in this area and to directly test model performance as an out-of-the-box feature of the

hosting platform.

3.3 Application of automated phenotyping robot in higher education

At latest since the outbreak of the COVID19 pandemic at the beginning of this thesis
project, universities worldwide have been forced to critically evaluate their digital
learning offerings due to the partial or even complete elimination of face-to-face teaching.
In order to compensate for the lack of practical courses and application relevance in
digital teaching formats, we have created a concept for knowledge transfer for digital
competencies in agriculture as a web-based e-learning system "SensX"
(Bethge et al. 2023c). This approach focused primarily on integrating research data sets,
small home experimental sensor Kkits sent to students, and Phenomenon system sensor
data (Bethge et al. 2023a) into the digital teaching sessions of “SensX”. The evaluation of
this concept was carried out by an empirical survey, qualitative interviews of the
participating students by an external institution and the evaluation by the lecturers over
a two-years periode with agricultural and biotechnology students at the University of
Applied Sciences Osnabriick. This study revealed an overall high level of acceptance and
advocacy of the concept by students with 70% good to very good rating. The student sur-
vey showed that as complexity of the learning task increased, students experienced ex-
cessive demands and rated the respective session lower. It therefore remains a fine line

to provide student with ambitious hands-on exercises that promote a profound and
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enduring understanding of digital skills, while avoiding overwhelming them with exces-

sive demands.

While we could demonstrate a successful proof-of-concept of the applied teaching
concept, in future we are aiming for the implementation of a remote phenotyping work-
shop on “How to remotely program and control a phenotyping robot” in the SensX
e-learning platform. For this purpose, we draw on the software properties of Phenome-
non phenotyping robot (Bethge et al. 2023a), where a full remote control of all capabilities
of the system was realized via programming language-independent online access. The
goal is to i) design a biological experiment, ii) collaboratively program the robot with
interactive computing notebooks (jupyter notebook or google colab) and iii) design
suitable data processing and analysis pipelines with a small group of students over the
course of a semester. In that case, the conceptualized experiment would then be physically
set up by the instructor. In this way, students will be provided with deep insights into
sensing, data processing, statistical analysis of biological experiments, programming, and

skills at the intersection of digital technology and plant biology.
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3.4 Summary with critical review of the state of fulfillment

As a critical review of the thesis objectives (Table 2), the state of fulfillment is

evaluated by the author.

Table 2: Personal assessment of the thesis objectives

Nr. Thesis objectives Personal Assessment[!] Comments References
Development of a low-cost phenotyping Creation of Phenomenon phenotyplng
. . O system. However, a certain degree of  Bethge etal.
LI robot system suitable for live-monitoring ++ . . :
of in vitro cultures during cultivation invasiveness is present due to use bot- 2023a
' tom-cooling system, PVC film and TiO:
1 Scalable for high-throughput use in o Scalability provided Bethge et al.
’ commercial laboratories. Throughput limited 2023a
- . Monitoring of in vitro germination,
Capable Of monltorln'g a wide range of shoot regeneration and shoot multi-  Bethge etal.
LIII  plant species and various developmental — +++ 2 ) e
hases plication in Arabidopsis, Nicotiana and 2023a
P ’ Malus demonstrated
Low-cost sensor systems should be evalu-
LV ated in regards to their feasibility and po- e Four tested sensors were investigated = Bethge et al.
’ tential to quantify key growth parameters and feasibility were described 2023a
of plant in vitro cultures.
Investigation of spectral fingerprints of Studies were conducted and major
I hyperhydricity and identification of spe- t discriminating spectral features were  Bethge etal.
’ cific absorption features that are sufficient identified: 980 nm, 1150 nm, 1450 2023b
for discrimination by ML techniques. nm, 1520 nm, 1780 nm and 1930 nm
Morphological characterization of hyper- Quantitative description and qualita-
. o - X : . : Bethge etal.
ILIl  hydric explants in time-series image data  +++  tive time-lapse video of HH etiology 2023b
by Phenomenon phenotyping system. were created
Identification optical technologies to- A S.WIR spectr_a! classifier and an RGB
: object recognition model were pro-  Bethge etal.
ILIII  wards automated detection of hyperhy- ++ . .
. : o posed for HH detection. Validation 2023b
dricity should be identified. - L
were promising, but also preliminary.
Establish an interactive e-learning ap- .
. Proof-of-concept study was promis-
proach supported by phenotyping data to . ) .
. L > . ing, but still needs deeper evaluation,  Bethge etal.
I11 provide students in higher education with + ) : .
fine-tuning, extension and more par- 2023c

in-depth digital competence in the field of
sensor technology in horticulture.

ticipants

[INote: Personal assement ranged from +++ completely fulfilled to — not fulfilled with 4 levels.

In summary, the majority of the goals were either partially or fully reached. In this
thesis a novel phenotyping robot for automated multi-sensory in-situ monitoring of plant
in vitro culture was developed. Although a certain degree of invasiveness in cultivation
could not be avoided and high throughput has not yet been achieved, a successful imaging
of a wide range of plant species and developmental phase has been demonstrated.
The platform was used to investigate the growth anomaly hyperhydricity, and optical

characteristica of the growth anomaly — mainly located in the SWIR region — were
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identified and the first approaches based on a spectral classifier and an object detection
on RGB images for an automated detection of hyperhydricity were developed. However,
the presented detection approaches require further validation to test their
generalizability. A concept to use the phenotyping robot to strengthen digital skills in

plant sciences in higher education was established.
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4 Outlook

Automated phenotyping of developmental processes of plant in vitro cultures is an
intriguing and relatively unexplored research domain. In commercial micropropagation,
the application of automated phenotyping could help provide continuous real-time data
on growth performance for efficient use of production capacities. In order to advance the
field, itis crucial to conduct a comprehensive survey on the necessity and implementation
of digital phenotyping in commercial propagation and to promote new research projects
in collaboration with micropropagation companies enhancing the throughput of
phenotyping systems. By harnessing computer vision, sorting tasks aimed at generating
uniform, high-quality plant material can be effectively addressed, thereby enhancing
standardization while simultaneously reducing labor costs. Moreover, computer vision
coupled with statistical learning methods could facilitate the early detection of
contaminations, endophytic outgrowths, malformations, and morphological variations.
Estimating multiplication rates, identifying transferable explants, and quantifying
biomass are particularly valuable for commercial propagation practices. The integration
of a high-throughput plant phenotyping system with advanced statistical learning meth-
ods offers the potential to extend the applications of phenomics to plant in vitro culture.
This combination enables the comprehensive analysis of complex plant traits, facilitating
large-scale genome-wide association studies and uncovering novel insights into the

genetic basis of propagation rates and other phenotypic traits.

Further research is needed to address the new requirements of optical monitoring
of culture vessels. A temporal and spatial high resolution imaging of the physiological
processes of plant in vitro cultures will support plant science in overcoming the
challenges of micropropagation and lead to a better understanding of the development of

growth anomalies. Here, applied research is needed to evaluate the use of advanced
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imaging technology such as hyperspectral cameras and 3D-sensing sensors in plant in
vitro culture. The use of machine learning, advanced imaging technologies and sensor
fusion approaches in automated phenotyping can further enhance accuracy in detection

and the prediction of complex phenotypic traits.
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