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• The trained neural network directly
connects the bandgap characteristics
with the geometric parameters.

• The neural network finds out the object
parameters accurately for inversely de-
signing topological edge states.

• Multiple scattering method is applied to
simulate the direction selective topolog-
ical edge states with wide bandgap.

• The inverse design method has great
potential applications for signal pro-
cessing, sensing, and energy harvesting.
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The mechanical analog to the topological insulators brings anomalous elastic wave properties which diversifies
classic wave functions for potential broad applications. To obtain topological mechanical wave states with
good quality at desired frequency ranges, it needs repetitive trials of different geometric parameters with tradi-
tional forward designs. In this work, we develop an inverse design of topological edge states for flexural wave
using machine learning method which is promising for instantaneous design. Nonlinear mapping function
from input targets to output desired parameters are adopted in artificial neural networks where the data sets
for training are generated by the plane wave expansion method. Topological edge states are then realized and
compared for different bandgapwidth conditionswith such inverse designs, proving that wide bandgap can pro-
mote the confinement of the topological edge states. Finally, direction selective propagationswith sharp turns are
further demonstrated as anomalous wave behaviors. The machine learning inverse design of topological states
for flexural wave provides an efficient way to design practical devices with targeted needs for potential applica-
tions such as signal processing, sensing and energy harvesting.
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1. Introduction

Topological insulators are an emerging topic in condensed matter
physics [1–3] that can provide anomalous properties like direction se-
lective propagation, back scattering free and high robustness. In recent
years, it has been successfully extended to classical systems such as pho-
tonics [4–7], plasmonics [8,9], acoustics [10–13] andmechanics [14,15],
boosting the development of new manipulations for classical waves.
When confined in elastic plates, mechanical waves present three polar-
izations, also named the symmetric (S), shear-horizontal (SH) and anti-
symmetric (or flexural) modes. In the low frequency limit, the S and SH
modes present a linear dispersion relationwhile the flexuralmodehas a
parabolic dispersion [16,17]. The mechanical analogs to the quantum
spin Hall effect and the quantum valley Hall effect have been applied
mainly to the flexural mode to design topologically protected states in
nontrivial bandgaps opened from Dirac cones [18–20].

The original Dirac frequency and the width of the opened nontrivial
bandgap are the two main parameters to design the topological states.
Most works in the literature reported a forward design approach
where certain geometric parameters are firstly chosen and then
followed by the computation of the Dirac frequency and the opened
bandgap. However, from application point of view, it is more likely to
be given a desired frequency and bandgap width, and then the goal is
tofindoutwhat are the geometric parameters to achieve the topological
states. Such a process belongs to an inverse design approach. It should
be noted that topological edge states will infiltrate into the bulk struc-
tures widely or even disappear if the bandgap width is too small. Such
problem can be better handled through an inverse design strategy
with constraints on the bandgap with, so that it can be used to solve
this issue.

Nowadays, based on optimization techniques, many popular algo-
rithms are used in the inverse design such as topology optimization
[21,22], genetic algorithm [23], particle swarming optimization [24],
among others. With desired functions, these algorithms develop a
space with full parameters and then obtain nonmonotonic designs,
being an obvious advantage of these techniques. Inspired by the neural
networks in biology, artificial neural networks have revolutionized
many disciplines in science and engineering, or even in art and litera-
ture. The subfield machine learning technique can work in a smarter
strategy by data-driven learning to provide a solution instantaneously
with a best fit of the needed performance. Machine learning technique
has been considered an excellent candidate for the inverse design of
nanophotonic [25–27], plasmonics [28,29], metamaterials [28],
metasurfaces [30]. Recently, it is also reportedmachine learning inverse
design for acoustic imaging [31], band structure [32], cluster topological
phononics [33], plate's vibration analysis [34–36], and so on.

In this work, machine learning technique is adopted to inversely de-
sign a metaplate to achieve topological edge states for flexural wave. In
the employed artificial neural network, continuous mapping function
from input vector to output vector is highly nonlinear and its informa-
tion processing ability comes from the multiple compounding of linear
functions. The metaplate consists of honeycomb arrangement of reso-
nators deposited on a thin elastic plate. Two neural networks are
established for the forward and the backward prediction of bandgap
width and the geometric parameters. Topological edge states are further
designed and the influence of the bandgap width is detailed discussed,
which help to realize directional selective propagation in a complex
cross structure. The outline of thework is as follows: After the introduc-
tion in this section, we introduce the plane wave expansion method
(PWE) to calculate the dispersion relation and the Dirac frequency of
the metaplates in Section 2; In Section 3, we employ the PWE method
to generate sufficient data sets, then establish two neural networks for
the forward and the backward prediction of bandgap width and geo-
metric parameters; In Section 4, we use the trained neural network to
predict the resonators arrangement parameter with different desired
2

bandgap widths and further construct topological edge state modes;
In Section 5, we demonstrate the designed topological edge states
with multiple scattering simulation; Finally we summarize this work
in Section 6.

2. Methodology of the meta-plate

In this section, we briefly introduce the classical thin plate theory
for flexural wave propagation and describe the methodology. The con-
sidered meta-plate unit is placed in Fig. 1(b), consisting of six resona-
tors connected to a thin aluminum plate through thin necks. The
resonators are designed in a honeycomb lattice, as shown by the blue
dots in Fig. 1(a). Two kinds of unit cells, namely the blue and red
units, contain two and six resonators, respectively, with their corre-
sponding Brillouin zones shown at right. We set the thickness of the
metal aluminum plate h to 1 mm (E = 77.6 GPa, Poisson ratio ν =
0.352 and density ρ = 2730 Kgm−3) with a lattice constant a =
50 mm. The resonator neck is made of plastic with hneck = 1.5 mm
and dneck =2mm (Eneck =3.2 GPa, Poisson ratio νneck = 0.35 and den-
sity ρneck=1190 Kgm−3). The resonator head is made of tungsten alloy
(Ehead = 334.6 GPa, νhead = 0.28 and ρhead = 19,260 Kgm−3) with
hhead = 44 mm and dhead = 8 mm.

According to Kirchhoff plate theory, the equation of motion for flex-
ural waves in the meta-plate can be written as [37].

D∇4−ω2ρh
� �

w rð Þ ¼ ∑
Ri ,α

ω2mRw1 Riαð Þδ r−Riαð Þ ð1Þ

where D= Eh3/12(1− ν2) represents the flexural stiffness of the plate,
∇4 the biharmonic operator, r = (x,y) the position vector of any point
on the plate, ω the angular frequency and w is the out-of-plane dis-
placement. The position of the resonators in each honeycomb lattice
can be described as Riα = Ri + Rα, where i runs for all the direct lat-
tice vectors and α runs for all the six resonators within the unit cell.
The resonator and the neck can be simplify regarded as a mass
mR = πd2headhhead/4 and a linear spring with a stiffness constant
kα = πEneckd2neck/4hneck, respectively [19]. According to Newton's sec-
ond law and the coordination equation of the lattice, the equation of
motion for each resonator is

ω2mRw1 Riαð Þ ¼ −knα w Riαð Þ−w1 Riαð Þð Þ ð2Þ

The solution for the displacement field w can be expanded using
Bloch theorem as

w rð Þ ¼ ∑
G
w Gð Þ e−j GþKð Þ⋅r ð3Þ

whereK denotes the Blochwave number and G ¼ mg1 þ ng2 the recip-
rocal lattice vector, m and n are integers, g1 and g2 are basis vectors of
the reciprocal lattice which can be used to define the corresponding
Brillouin zones, as shown in Fig. 1(a). The basis vectors of honeycomb
lattice ai and the reciprocal lattice satisfy [38].

ai⋅gj ¼ 2πδij i, j ¼ 1, 2ð Þ

The quasi-periodicity condition of the displacement field imposed
by Bloch theorem implies

w1 Rαð Þ ¼ w1 Rα 0ð Þð Þ e−jK⋅Rα ð4Þ

Then the equation of motion in Eq. (1) can be expressed as

∇4−ω2ρh=D
� �

w rð Þ ¼ ∑
Ri

∑
α
tαw1 Riαð Þδ r−Riαð Þ ð5Þ

where ∇4 = ((kx + Gx)2 + (ky + Gy)2)2, K=[kx, ky] and G=[Gx, Gy].
Here, tα is the stiffness coefficient of the meta-plate defined as



Fig. 1. (a) Two unit-cell representations and the corresponding Brillouin zones on the right. (b) A diagrammatic sketch of the red unit cell with six resonators of the meta-plate.
(c) Dispersion curves of the meta-plate with unit cells contain six resonators (see the inset in the left panel) and two resonators (see the inset in the right panel), respectively, are
calculated by the PWE and the FEM methods. Additional modes appearing in FEM calculation are shear-horizontal and shear plate modes and bending modes. Double Dirac cones at Γ
point and single Dirac cone at K point are marked by horizontal dashed line.

Fig. 2. The diagram of the normalized Dirac frequency ΩDa as a function of the
normalized resonant frequency Ωαa for different normalized mass γα values (denoted
by the colour bar).

L. He, Z. Wen, Y. Jin et al. Materials and Design 199 (2021) 109390
tα ¼ γαS Ωað Þ2

a4 1− Ωað Þ2= Ωαað Þ2
� � ð6Þ

where S ¼
ffiffiffi
3

p
a2=2 is the area of the honeycomb unit cell, Ω2 ¼

ω2ρa2h=D is the normalized frequency, γ = mR/(ρSh) the normalized
mass and Ω2

α ¼ knαρa2h=mnαD is the normalized resonant frequency
of each resonator.

By combining the above equationswith algebraic operations, we can
obtain the governing equations of the meta-plate as follows:

1−Ψ11 −Ψ12 −Ψ13 −Ψ14 −Ψ15 −Ψ16

−Ψ21 1−Ψ22 −Ψ23 −Ψ24 −Ψ25 −Ψ26

−Ψ31 −Ψ32 1−Ψ33 −Ψ34 −Ψ35 −Ψ36

−Ψ41 −Ψ42 −Ψ43 1−Ψ44 −Ψ45 −Ψ46

−Ψ51 −Ψ52 −Ψ53 −Ψ54 1−Ψ55 −Ψ56

−Ψ61 −Ψ62 −Ψ63 −Ψ64 −Ψ65 1−Ψ66

��������������

��������������
¼ 0 ð7Þ

where

Ψαβ ¼ tαa4

S
∑
G

e−G�Rαβ

kx þ Gxð Þ2 þ ky þ Gy
� �2� �2

a4− Ωað Þ2
ð8Þ

Eq. (7) defines a secular equation fromwhich we can obtain the fre-
quency as a function of the Bloch wave vector K, where it is convenient
to define the frequency f as

f ¼ Ω
2πa

ffiffiffiffiffiffi
ρh
D

r
ð9Þ

We solve the eigenvalue problem analytically with the PWEmethod
and numerically with finite elementmethod (FEM) and plot the disper-
sion curves in Fig. 1(c). The dispersion diagrams with the red and blue
units in Fig. 1(a) are shown in the left and right panels, respectively.
The band structure of flexural modes from FEM and PWE methods are
highly consistent. The additional modes obtained from the FEMmethod
3

correspond to theotherplate'smodes and resonator'smodes. It is clearly
observed that the dispersions of the fundamental flexural modes of the
meta-plates are typically parabolic in the low frequency limit. The dou-
ble Dirac cones at Γ point in the left panel and the single Dirac cone at K
point in the right panel have the same frequency fD = 611.5 Hz, as
marked by the blue dotted line. In fact, the double Dirac cones originate
from the zone-folding effect of band structures [19]. Therefore, the fre-
quency of the double Dirac cones can be described by the frequency of
the single Dirac cone.

For the blue unit with double resonators in Fig. 1(a), Eq. (7) can be
easily simplified as

1−Ψ11 −Ψ12

−Ψ21 1−Ψ22

���� ���� ¼ 0 ð10Þ

The above secular equation can also be expanded for low k around
the Dirac point K, and then a conical dispersion curve is found, defining
therefore a Dirac cone whose speed and frequency can be found both
numerical or analytically [37]. The Dirac frequency is consequently plot-
ted in Fig. 2 as a function of the normalized resonant frequency for



Fig. 3.Data flow cycle in the neural network during training (the forward propagation and backpropagation cycle in blue and optimization cycle in red). L represents the cost function. The
ellipses between layers represent the intermediate results.
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different normalizedmass γα, indicated by the colour bar, which shows
that γα runs from 1 to 10. Generally, increasing γα will decrease the
Dirac frequency. On the other hand, the Dirac frequency converges
then reaches to a limit when the normalized resonant frequency tends
to infinite. This diagram provides full possibilities to design or inversely
design the Dirac frequency as expected.
Fig. 4. Comparison between predicted value and real value for (a) prediction of bandgap
width and (b) prediction of arrangement radius R.
3. Prediction results and analysis of machine learning model

In this section, we establish a machine learning model for the for-
ward and backward prediction of band gap.Machine learning algorithm
can get the potential rules or characteristics behind the data so that it
can be used to predict or make decisions on new data. The key points
are the choice of model and the determination of model parameters.
From an abstract point of view, machine learning algorithm can be de-
scribed as determining a mapping function and its parameters to estab-
lishmapping relationship: y= f (x; θ).When themapping function and
parameters are determined, the output can be generated with given
input. Artificial neural network algorithm is a typical representative of
machine learning, a simplifiedmodel that established from the perspec-
tive of mathematical and physical methods and information processing.
We can combine the PWE method and machine learning to study the
application of machine learning algorithm in topological meta-plates
for flexural wave manipulation.

We consider the red unit cell, which contains six resonators (see
Fig. 1(a)). If the arrangement radius of resonators R ≠ a/3, the double
Dirac cone at Γ point in Fig. 1(c) will open and emerge a bandgap. To
prepare the dataset formachine learning,we select 578 values of thepa-
rameter R covering from 8 mm to 20 mm linearly. By using the PWE
method, we can obtain the dispersion curves for each value of R. Then
we extract the bandgap information from the calculated dispersion
curves, including the center frequency and bandgap width. Meanwhile,
we record the value of R then use “0” and “1” to denote R < a/3 and
R > a/3, respectively.

We build a neural network model with two hidden layers based on
TensorFlow [39] to complete the regression task. Each hidden layer con-
tains 256 neurons. The framework of data flow cycle in the neural net-
work during the training is shown in Fig. 3. The bottom layer is the
input layer which directly sends data to the next layer without any pro-
cess. The top layer is the output layer after two hidden layers. The num-
ber of neurons in input layer and output layer is determined by the
dimension of input vector and output vector. In the work of forward
4

prediction band gap, the input information received by its input layer
are 0/1 and center frequency, while bandgap width and arrangement
radius R are the output of the model. In the further study of inverse de-
sign, we choose 0/1 and bandgap width as the input of the model and
the output is the arrangement radius R. The calculation formula of any
layer m of neural network is

u mð Þ ¼ W mð Þx m−1ð Þ þ b mð Þ

x mð Þ ¼ f mð Þx m−1ð Þ ¼ ϕ u mð Þ
� �8<: 1 <m ≤ 4 ð11Þ

where x(m−1) is the output vector of layerm-1,W(m) represents the con-
nectionweightmatrix of layer m and layerm-1, which size is sm× sm−1,
where sm and sm−1 are the number of neurons in layerm and layerm-1,
b(m) represents the bias in layer m, which is a column vector, and the
Rectified Linear Unit (ReLU) is chosen as the activation function in



Fig. 5. (a) Comparison between thepredictedvalue and the real value for the arrangement radiusR. The orange solid line stands for theperfect same values in comparison. (b)Histogramof
the prediction error, showing that the error is within 0.01%.

Table 1
Predicted R values by the trained machine learning model.

Bandgap width (Hz) R < a/3 (mm) R > a/3 (mm)

100 14.95 18.15
230 12.08 19.96
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two hidden layers (ϕ(x)=max (0,x)), while linear output in the output
layer (ϕ(x) = x). Compared with other traditional activation functions,
ReLU has the biological significance [40] with advantages such as the
simplified calculation and avoiding the problem of gradient vanishing.
According to Eq. (11), the feed forward propagation process of neural
network from input layer to output layer can be described as

y ¼ f x 1ð Þ
� �

¼ f 4ð Þ∘ f 3ð Þ∘ f 2ð Þ x 1ð Þ
� �

; ð12Þ

where ∘ is the symbol of function compound operation propagating be-
tween adjacent layers.

Backpropagation algorithm is a training algorithm suitable for multi-
layer neural networks. The purpose of training is to limit the prediction
error of the final model to a reasonable range by gradually updating the
weights and biases of each layer. The cost function is used to describe
the prediction error as well as quantify the performance of the model.
Mean square error (MSE) is one of the common cost functions which is
chosen in thiswork. To reduce the cost of calculation and avoid large fluc-
tuation of cost function, we can use a small part of all samples for each
iteration which called Mini-batch. Define the MSE of single sample as
Li=[f(4) ∘ f(3) ∘ f(2)(x(1))− yi]2. The traditional gradient descent algorithm
is too sensitive to the hyperparameter of learning rate,where too low rate
leads to slow convergence and too high rate will likely cross over the ex-
treme point. Therefore, the dynamic updating strategy is adopted in this
work. We use Adaptive Moment Estimation (Adam) as the optimizer
(the detailed steps are given in Appendix A).

For the forward prediction model of band gap width, the training set
accounts for 90% of the data set, while the testing set accounts for 10%
in our work. After debugging, the batch size is set as 124, and the param-
eters in Adam optimizer include η=8e-5, β1 = 0.99, β2 = 0.99 and ε=
1e-8. In order to avoid overfitting, the strategy of early termination is
adopted.When epoch equals to 4317, we find sufficient good training re-
sultswithout overfitting or underfitting (seeAppendixB). Then58 groups
of test samples are used to predict the values with the trained model.

We order the test sample group number as the increase of the ar-
rangement radius R, then compare the predicted value (red dotted
line) to the real value (grey vertical bar) for the bandgap width and ar-
rangement radius in Fig. 4. Generally, the predicted values match quite
well the real values as one can see the superposition of the red dot and
the bar's top surface, proving the high accuracy of the trained model.
Opening bandgaps from the double Dirac cones, one can notice that
for a certain bandwidth, there are two R values which are smaller and
larger than a/3, respectively.

Next, we consider using machine learning algorithm to predict two
different arrangement radii for the same band gap which is an inverse
prediction design. Compared with the aforementioned training, the
batch size is set as 64, and the parameters in Adam optimizer are here
5

changed to η= 8e-7, β1 = 0.99, β2 = 0.99 and ε= 1e-8. The early ter-
mination strategyfixed the training epoch in 3933. Similarly,we test the
model with 58 groups of test samples after training the model. We plot
the predicted values of R and the corresponding real values as the blue
dots in Fig. 5(a) where the orange solid line stands for the perfect
same values in correspondence. As seen in Fig. 5(a), all the blue dots lo-
cate on the orange line, showing a good performance in the inverse de-
sign. Fig. 5(b) shows that the prediction error for arrangement radius R
iswithin 0.01%which indicates that given a bandgapwidth according to
the practical needs, we can accurately obtain the corresponding R with
this inverse prediction model.

4. Analysis of strip dispersion and eigenmodes

In the previous section, we considered the classical thin plate with
honeycombarrangement of resonators anddeveloped amachine learning
model which can inverse design the arrangement radius R for a given
bandgap width. The double Dirac cones at Γ point shown in Fig. 1(c) can
open to form a complete bandgap if R is changed different from a/3.
When R sweeps around the critical value a/3, band inversion is found
which supports a topological transition. Since the bandgaps for R < a/3
and R> a/3 have different topological phases, therewill appear a topolog-
ical edge state by combining two bulk media with the two respective R
values. However, the quality of the topological edge state relates closely
to the common bandgap width of these two-bulk media. If the common
bandgap is too small, the topological edge state may not be excited
owing to the poor energy confinement at the edge. Therefore, it's very im-
portant to inverse design the topological edge state with wide bandgaps.

The trained machine learning model in last section can instanta-
neous and precisely predict the arrangement radius R within 0.05 s if
one inputs a required bandgap width. Now we choose 100 Hz and
230 Hz as the small and big bandgap widths, respectively. Then we ob-
tain the corresponding predicted two pairs of R, as listed in Table 1.
Since the prediction is highly precise as seen in Fig. 5, we directly plot
the dispersion curves of flexural wave with these predicted two pairs
of R and display in Fig. 6. The dispersions for R < a/3 and R > a/3 are
marked as red triangles and blue solid lines, respectively, from which
their common bandgaps are highlighted in orange. In each column of
Fig. 6, the bands associated to the gap have different topological phases
for R< a/3 and R> a/3, so that topological interface modes are possible



Fig. 6.Dispersion plot for (a) bandgapwidth=100Hz and (b) bandgapwidth=230Hz. The commonbandgaps are highlighted as orange. The dotted and lined dispersions correspond to
R < a/3 and R > a/3, respectively.
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to appear when assembling the two bulk periodic media, for instance,
two bulk media with R = 18.15 mm and 19.96 mm, respectively.

We now study the flexural wave eigenmode characteristics by strips
for the cases of the bandgapwidth=100Hz and 230Hz.We construct a
supercell consisting of 5 units from both R< a/3 and R> a/3 lattice con-
figurations adjacently as seen at the right panel of Fig. 7. As explained
above, by assembling two bulk media with different topological phases,
topologically protected edge modes can be designed in their common
bandgap. The constructed supercell has 10 units length in y and periodic
boundary conditions applied to the two edges in x to account for infinite
length.We calculate the stripe's dispersions and plot in Fig. 7 where the
black solid lines are the flexural wave dispersions of bare plate without
any resonator. From both Fig. 7(a) and (b), we find a flat purple band
appearing in the designed bandgap among the red bulk bands. We
also present the eigenmodes of the purple band at kxa= π at the corre-
sponding right panels, from which it reveals a topological edge mode
around the interface separating the two bulk media. The topological
edge mode in Fig. 7(b) with wider bandgap is more confined around
Fig. 7. Dispersion diagrams for strips and the eigenmodes at the purple flat edge band at
kxa = π for (a) bandgap width = 100 Hz and (b) bandgap width = 230 Hz.
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the interface with less energy leakage into the bulk media than that
with narrow bandgap in Fig. 7(a).

5. Designs of the topological edge states

To study the propagating property of the topological edge states, we
construct a 16 × 16 supercell where the upper and lower half media cor-
respond to R< a/3 (markedwith S) and R> a/3 (markedwith E), respec-
tively. A point source is set at the left exit of the middle interface marked
with a red star.We calculate thewavepropagationswith theMSTmethod
for the narrow andwide bandgap and display thewave propagatingfields
in Fig. 8(a) and (b), respectively. From the two displacement fields, clear
edge states are found as expected. In Fig. 8(b) with the wide bandgap,
the edge state can hardly penetrate the bulk media from the third unit
away from the interface. However, the edge state in Fig. 8(a)with the nar-
row bandgap shows obvious wave leakage into the bulk media and the
wave even passes through the upper whole media into the background
plate. Due to the weak confinement, the edge state maximum amplitude
is also lower in Fig. 8(a). In fact, if the initial designedbandgapwidth is fur-
ther reduced, although a topological edgemode can still appear in the cor-
responding stripe dispersion, it can be barely excited with good quality in
practice. The reason is that the edge state will widely spread in the whole
supercell making the wave almost impossible to concentrate at the inter-
face. The bandgap width dependent property reveals the importance to
choose the bandgapwidth in design at the beginning properly. Therefore,
the inverse design with the input bandgap width as needs by machine
learningmethod provides an efficient strategy to realize topological states
with C6v lattices for great potential applications such as direction selective
propagation, sensing, signal communication, energy harvesting.

We further design a cross type structure with the wide bandgap
230 Hz based on Fig. 8(b) to design direction-selective edge states as
seen in Fig. 9. It should be noted that we use the multipoint sources to
excite pseudospin directions by applying forces with different phases
as shown by the enlarged unit cell at right with F1, F2 and F3 from the
red diamond. The gradient phases for the three point sources are
F1 = F exp (iωt), F2 = F exp (iωt+ 2π/3) and F3 = F exp (iωt+ π), re-
spectively where the yellow arrow indicating the pseudospin direction
and the frequencyω is 673.8 Hz. In Fig. 9, the lattice of R> a/3 (marked
with E) is employed in the upper left and lower rightwhile the lattice of
R< a/3 (markedwith S) is employed in the lower left and upper right. In
Fig. 9(a), when the pseudospin direction is counter clockwise, the flex-
ural wave is excited to propagate towards the right, then turn down-
ward along the acute angle of the cross structure. In Fig. 9(b), with the
clockwise direction, the excited edge state propagates towards the left
then turns upward also along the acute angle. The cross-center parts
are selected and displayed at right. One can see that the distance be-
tween the two “E” units in Fig. 9(a) or between the two “S” units in
Fig. 9 is much shorter than that along the other diagonal line. This



Fig. 8. Topological edge states with (a) narrow and (b) wide bandgaps along an interface separating expended (marked as E) and shrunken (marked as S) bulk media. The point source is
excited at the left exit of the interface as marked by the red star.

Fig. 9.MST simulation of direction selective topological edge states in cross structures with (a) counter clockwise (b) clockwise excitations in the red diamond unit, as the insets at right.
The cross-center parts are also enlarged and displayed at right.
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results in wave coupling in the “E-E" and “S-S" units through the obtuse
angles which in turn guides the topological edge state along the acute
angle without backscattering effect.

6. Summary

We realized an inverse design of topological edge states for flexural
wave with machine learning method using the artificial neural network.
The PWEmethod is used to analyze the band structures and the diagram
of theDirac frequency. By expendingor shrinking the resonator's arrange-
ments in the honeycomb unit, the Dirac cones can be opened and topo-
logical transition is enabled. Sweeping the arrangement radii, the
generated data sets from the PWE method are used for training the feed
forward artificial neural network, where the input are 0/1 (stands for
shrink/expand) and center frequency of the opened bandgap while
bandgap width and arrangement radius R are the output. Then the back-
ward neural network is built by setting 0/1 and bandgap width as the
input and the arrangement radius R as the output. The predicted results
fromboth neural networks are highly accurate, showing that such inverse
design scheme is helpful to directly link the bandgap characteristics with
7

the geometric parameters through the complex nonlinear mapping rela-
tionship between them. By setting the bandgap width of 100 Hz and
230 Hz as the targets, the trained neural network allows us to accurately
find out the resonator's arrangement radii that support topological transi-
tions, which are further used to design topological edge states. From the
comparison, the confinement of the topological edge state with wide
bandgap is much better than that with narrow bandgap, making it possi-
ble to design more advanced functions such as direction selective propa-
gationwith sharp turns. The proposedmachine learning inverse design of
topological states for flexural wave is quite efficient with varied targets
and has great potential applications such as signal processing with on-
chip metamaterials [41], source direction sensing [42], and energy har-
vesting from vibration concentration [43].
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Fig. 10. The convergence history of the (a) mean squared error and (b) R-square for the forward model.

Fig. 11. The convergence history of the (a) mean squared error and (b) R-square for the inverse model.
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Appendix A. The operation steps of Adam optimizer

The Adam optimizer which is used in the back propagation can be
organized as initialize the first and second moment variables s = 0,
r = 0, and suppose the gradient of the t + 1th iteration is

gtþ1 ¼ 1
batch_size

∑
jþbatch_size

i¼j
∇θL f xi, θt

� �
, yi

� �
, ð13Þ

where θ contains weights and biases. By combine the Eq. (11), we can
get the gradient of the cost function to the parameter is

∇W mð ÞL ¼ ∇u mð ÞLð Þ xðm�1Þ� �T
,

∇b mð ÞL ¼ ∇u mð ÞL:

(
ð14Þ

If layer m is the output layer, then ∇u(m)L = (∇x(m)L) ⊙ ϕ′(u(m)) =
(x(m) − y) ⊙ ϕ′(u(m)), else if layer m is hidden layer, then ∇u(m)L =
(∇x(m)L) ⊙ ϕ′(u(m)) = [(W(m+1))T], where ⊙ represents the Hadamard
8

product. The error term is defined as the gradient of cost function to
temporary variable u

δ mð Þ ¼ ∇u mð ÞL ¼
x mð Þ−y
� �

⊙ϕ0 u mð Þ� �
m ¼ 4,

w mþ1ð Þ� �T δ mþ1ð Þ
� �

⊙ϕ0 u mð Þ� �
m≠1, 4:

8<: ð15Þ

Substituting Eq. (15) into (14), the gradient of the cost function to
the weights and biases can be obtained. For each iteration, we can get
the total average gradient by Eq. (13). And then, Computing the biased
first-order moment estimation st+1 = β1st + (1 − β1)gt+1 and biased
second moment estimation rt+1 = β2rt + (1 − β2)gt+1

2 , where β1 and
β2 are exponential decay rate of moment estimation. Themoment devi-
ation is corrected as bs ¼ s

1−βtþ1
1

and br ¼ r
1−βtþ1

2
. Finally, the parameter

updating rules of Adam follow

θtþ1 ¼ θt−η
bsffiffiffibrp
þ ε

ð16Þ

where η denotes the learning rate and ε is a small parameter to avoid
zero denominator.

Appendix B. The overfitting or underfitting judgment of the two
models

We take 10% of the samples from the training set as the validation
dataset and plot the trend of MSE and R-square during the training pro-
cess in Figs. 10 and 11, respectively. The difference between the valida-
tion and training losses is small (see Figs. 10(a) and 11(a)) which show
that both the forward and inverse prediction model are no significant
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overfitting or underfitting. While the R-square are gradually ap-
proaching 1.0 (see Figs. 10(b) and 11(b)) which indicate that the
models fit the data well.
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