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Abstract
In this paper, we present a data-driven model predictive control (MPC) scheme
that is capable of stabilizing unknown linear time-invariant systems under the
influence of process disturbances. To this end, Willems’ lemma is used to pre-
dict the future behavior of the system. This allows the entire scheme to be set up
using only a priori measured data and knowledge of an upper bound on the sys-
tem order. First, we develop a state-feedback MPC scheme, based on input-state
data, which guarantees closed-loop practical exponential stability and recursive
feasibility as well as closed-loop constraint satisfaction. The scheme is extended
by a suitable constraint tightening, which can also be constructed using only
data. In order to control a priori unstable systems, the presented scheme con-
tains a prestabilizing controller and an associated input constraint tightening.
We first present the proposed data-driven MPC scheme for the case of full state
measurements, and also provide extensions for obtaining similar closed-loop
guarantees in case of output feedback. The presented scheme is applied to a
numerical example.
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1 INTRODUCTION

In recent years, there has been significant interest in designing data-driven model predictive control (MPC) schemes, in
which predictions are not based on a parametric model of the system, but rather directly on a priori collected input/output
data from the system, thus circumventing the challenging intermediate step of finding an accurate model. This is done
by employing the so-called Willems’ fundamental lemma,1 which states that for a controllable linear system, all possible
system trajectories can be parameterized in terms of linear combinations of time-shifts of one single, persistently exciting,
trajectory.

A direct data-based MPC scheme based on Willems’ lemma was first considered by Yang et al.2 and Coulson et al.3
Guarantees for recursive feasibility, stability, and robustness (in the presence of measurement noise) of the closed loop
were first proven by Berberich et al.4 In recent years, various further properties and extensions of this data-driven MPC
framework have been studied, compare, for example, the works by Coulson et al.,5 Huang et al.,6 Yin et al.,7,8 Xue and
Matni,9 Furieri et al.,10 Berberich et al.,11 Fiedler and Lucia,12 Breschi et al.,13 Klädtke et al.,14 and the overview paper by
Markovsky and Dörfler.15
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2 KLÖPPELT et al.

One of the major strengths of MPC is its ability to take constraints in the optimization problem into account, and
therefore, guarantee their satisfaction in closed-loop operation. For data-driven MPC schemes, achieving constraint
satisfaction is similarly important. However, in practice we typically only have access to noisy data. Thus, to achieve
closed-loop constraint satisfaction, a suitable constraint tightening is required, similar to model-based MPC.16-18 Such
a constraint tightening takes into account possible (worst-case) disturbances as well as their influence on the system
dynamics in order to ensure that no disturbance that may occur in the future can result in constraint violation.

For data-driven MPC schemes relying on an a priori identification of the system model, there already exist schemes
that provide a proper constraint tightening even in the case of additive process noise.19,20 However, in the direct
data-driven setting—based on Willems’ lemma—this problem has not been conclusively solved so far. In Berberich et al.,21

closed-loop constraint satisfaction is shown in case of measurement noise; however, no process noise and no input con-
straint tightening is considered, resulting in the fact that the proposed scheme can only be applied (without being overly
conservative) to open-loop stable systems. Process disturbances acting additively on the dynamics have been considered
by Huang et al.22 and Umenberger et al.23 However, both schemes lack the aforementioned closed-loop guarantees, and
moreover, rely on the knowledge of a priori measured disturbances. Recently, Liu et al.24 proposed a scheme guaranteeing
closed-loop stability and recursive feasibility in the presence of process disturbances, which, however, lacks of guarantees
for closed-loop constraint satisfaction.

In this paper, we propose robust data-driven MPC schemes based on Willem’s lemma. Throughout the course of this
paper, by “robust” we mean that all presented closed-loop guarantees, that is, recursive feasibility, constraint satisfac-
tion, and practical exponential stability, hold despite disturbances in the online and offline measurements. We start by
proposing an MPC scheme for the case that full state measurement is available. Moreover, with some extensions and
adaptations, a similar scheme can be set up for the case of output measurements, which is shown later in the paper. In
order to deliver the aforementioned robust closed-loop guarantees, we bound the influence of the process disturbance on
the online and offline measurements by means of a bound on the error propagation through the system dynamics. Using
this bound, we set up a state/output constraint tightening inspired by the one of Berberich et al.21 As for open-loop unsta-
ble systems the achievable disturbance bounds diverge, we make use of an input parameterization that prestabilizes the
system dynamics. Furthermore, in order to still guarantee input constraint satisfaction, despite the use of this underlying
pre-stabilizing controller, we introduce a novel input constraint tightening. We bound the error between the predicted
state/output sequence and an undisturbed state/output trajectory resulting from the application of the open-loop opti-
mal input sequence which enables us to deliver the aforementioned closed-loop guarantees. All system constants used
for the MPC schemes can be (over-)approximated using only given input-output data which are perturbed by process
disturbances, knowledge of an upper bound on the system order, and an upper bound on the disturbance.

The remainder of the paper is structured as follows. In Section 2 the problem setup and preliminaries, such as the
concept of persistency of excitation and Willems’ lemma, are introduced. Next, in Section 3, we set up the first proposed
data-driven MPC scheme based on state measurements. To this end, we elaborate the data-driven parameterization of
the constraint tightening, explain the MPC scheme and prove the aforementioned closed-loop guarantees. Thereafter, in
Section 4 we present data-driven output-feedback MPC based on the case where only output measurements are available.
We apply the proposed scheme to a numerical example in Section 5, and end with some concluding remarks in Section 6.

1.1 Notation

For a sequence {zk}N−1
k=0 , we define the Hankel matrix of depth L as

HL(z) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

z0 z1 … zN−L

z1 z2 … zN−L+1

⋮ ⋮ ⋱ ⋮

zL−1 zL … zN−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

and the stacked window from time instant a to b as

z[a,b] =
⎡
⎢
⎢
⎢
⎣

za

⋮

zb

⎤
⎥
⎥
⎥
⎦

.
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KLÖPPELT et al. 3

We write ‖x‖P =
√

x⊤Px for a vector x ∈ Rn and a positive definite matrix P ∈ Rn×n. Furthermore, for a vector x ∈ Rn we
denote the 𝓁1-, 𝓁2-, and 𝓁∞-norm by ‖x‖1, ‖x‖2, and ‖x‖∞, respectively. Moreover, for a matrix M ∈ Rn×m we denote the
respective induced norms by ‖M‖1, ‖M‖2, and ‖M‖∞. We write F ≽ 0 if F ∈ Rn×n is a symmetric and positive semi-definite
matrix.

2 PROBLEM SETUP AND PRELIMINARIES

In this paper, we consider the discrete-time multi-input multi-output LTI system

xk+1 = Axk + Buk + wk,

yk = Cxk + Duk, (1)

with the state xk ∈ Rn, the input uk ∈ Rm, the output yk ∈ Rp and the process disturbance wk ∈ Rn. The setup can be
extended to include measurement noise as well, see Remark 1 below. Throughout the paper, we assume that (1) is a
minimal realization, that is, that the pair (A,B) is controllable and the pair (A,C) is observable. Moreover, we consider
the matrices A,B,C,D as being unknown and the only knowledge about the system available being its order n.

Moreover, we assume that the process disturbances belongs to a hypercube (precise definitions will be given in
Sections 3 and 4). The goal of this paper is to construct a data-driven MPC scheme that stabilizes the origin and ensures
input and state constraint satisfaction (cf. Section 3) or output constraint satisfaction (cf. Section 4), where the respective
constraint sets are given by hypercubes.

To this end, we apply a persistently exciting (p.e.) input sequence to the system, and measure the resulting state/output
sequence, where a persistently exciting sequence is defined as follows.

Definition 1. A sequence {uk}N−1
k=0 , with uk ∈ Rm, is persistently exciting of order L if rank (HL(u)) = mL.

We want to make use of Willems’ fundamental lemma for the prediction in an MPC problem.

Lemma 1 (Willems’ lemma1). Suppose {uk, ŷk}N−1
k=0 is a trajectory of the controllable system

x̂k+1 = Ax̂k + Buk,

ŷk = Cx̂k + Duk, (2)

and u is persistently exciting of order L + n. Then, {ūk, yk}L−1
k=0 is a trajectory of System (2) if and only if there exists 𝛼 ∈ RN−L+1

such that
[

HL(u)
HL(ŷ)

]

𝛼 =

[
ū
y

]

. (3)

This lemma states that in the absence of disturbances, that is, if wk = 0 for all k ≥ 0, all trajectories of system (1) can be
parameterized by linear combinations of time shifts of a priori measured, sufficiently exciting input/output trajectories. In
the following two sections, we set up MPC schemes that use these trajectories for the prediction of the systems behavior.

3 DATA-DRIVEN STATE-FEEDBACK PREDICTIVE CONTROL

In this section, we present a robust data-driven state-feedback MPC scheme with closed-loop guarantees on stability and
constraint satisfaction in the presence of process noise. In Section 3.1, we introduce the data-driven MPC scheme for the
case of available state measurements. Thereafter, in Section 3.2 we prove the closed-loop guarantees of the introduced con-
trol scheme. Finally, in Section 3.3 we show how the system constants, which are used to set up the constraint tightening
of the MPC scheme, can be approximated purely from data.

3.1 Proposed MPC scheme

For the first data-driven predictive control scheme, we consider the availability of full state measurement, that
is, C = I, D = 0 in (1). Moreover, we assume that the process disturbance belongs to the hypercube wt ∈ W =
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4 KLÖPPELT et al.

{w ∈ Rn| ‖w‖∞ ≤ wmax} for all t ≥ 0, where wmax ≥ 0 is known, and the input and state constraint sets are given by the
hypercubes ut ∈ U = {u ∈ Rm| ‖u‖∞ ≤ umax} and xt ∈ X = {x ∈ Rn| ‖x‖∞ ≤ xmax} for some umax > 0, xmax > 0. As will
become clear later in this section, it is crucial for the construction of a proper constraint tightening that the prediction
model is stable. If this is not the case a priori (i.e., A is unstable), then this can be enforced via a prestabilizing input
parameterization

uk = Kxk + 𝜈k, (4)

as it is common, for example, in tube-based MPC.16,17 The state feedback matrix K is chosen such that all eigenvalues
of AK = A + BK strictly lie inside the unit disc. Such a prestabilizing controller can be computed purely from data, e.g.,
following the approaches by Berberich et al.25 or van Waarde et al.26 Throughout this paper, we assume that such a
controller is known a priori. In case of a stable system, the following scheme can be applied with K = 0.

To make use of Lemma 1 for the prediction of open-loop state sequences, we consider the input 𝜈k of the pre-stabilized
system

xk+1 = AKxk + B𝜈k + wk. (5)

Note that, starting at an initial state x0 and applying the input sequence 𝜈[0,k−1] to system (5), the state after k time steps
is given by

xk = Ak
Kx0 +

k−1∑

i=0
Ak−1−i

K B𝜈i +
k−1∑

i=0
Ak−1−i

K wi, (6)

where w[0,k−1] is the disturbance sequence acting on the system. Thus we can denote the disturbance propagated k steps
through the system dynamics by

dk ∶=
k−1∑

i=0
Ak−1−i

K wi. (7)

As discussed in the introduction, closed-loop constraint satisfaction of a data-driven MPC scheme could so far only be
shown by Berberich et al.21 for the case of output measurement noise, that is, additive noise v of the form x̃ = x + v.
However, taking a look at (7) clearly shows that due to the process noise acting on the state through the system dynamics,
these dynamics now have to be taken into account to set up a proper robust MPC scheme. Thus, throughout the paper,
we make use of the disturbance bound

dk ≥

k−1∑

i=0

‖
‖
‖

Ak−1−i
K

‖
‖
‖∞

wmax ≥ ‖dk‖∞ . (8)

As will be discussed in Section 3.3, a suitable over-approximation (8) of the past disturbances acting on the state can be
obtained purely from data. For unstable system matrices, the sum in (8) grows exponentially with increasing k. Therefore,
it becomes clear why the use of a prestabilizing controller is crucial in order to obtain a suitable error-bound and, later
on, a feasible constraint tightening, which is analogous to model-based robust MPC (cf. e.g., References 16-18).

Remark 1. Note that the following results can be easily extended to the case where, apart from the process disturbance wk,
also additive measurement noise on the state measurements is present. In this case, the disturbance sequence in (7) has
to be extended by the actual measurement noise instant occurring at time k and, in case of K ≠ 0, the past measurement
noise instants which are fed back into and propagated through the system dynamics. More precisely, instead of (7) the
disturbance sequence d′k ∶=

∑k−1
i=0 Ak−1−i

K wi +
∑k−1

i=0 Ak−1−i
K BKvi + vk needs considered in the arguments below, where v[0,k]

is the measurement noise sequence. If an upper bound ‖vk‖ ≤ vmax for all k ≥ 0 is known, a bound on ‖
‖
‖

d′k
‖
‖
‖∞

can be
over-approximated purely from data, following similar steps as for the over-approximation of (8), discussed in this paper.
Therefore, for the sake of simplicity, we consider only process disturbances throughout the paper.

We now apply a p.e. input sequence {𝜈d
k}

N−1
k=0 of length N to System (5), and measure the associated disturbed state

sequence {xd
k}

N
k=0, where the superscript “d” denotes a priori collected data.

Assumption 1. The input sequence {𝜈d
k}

N−1
k=0 is persistently exciting of order L + n + 1.
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KLÖPPELT et al. 5

Starting at the initial state xd
0 , similar to (7), we to denote the cumulated disturbance influencing the collected data at

time k as

dd
k =

k−1∑

i=0
Ak−1−i

K wd
i , (9)

and the undisturbed state at as
x̂d

k = xd
k − dd

k . (10)

Note that with the error bound dk for k = 0, … ,N, we can also upper bound the disturbances in the offline state
measurements, that is, dk ≥

‖
‖
‖

dd
k
‖
‖
‖∞

for k = 0, … ,N.
With these a priori generated data sequences, we are now able to set up the following optimal control problem (OCP),

given the measured state xt at time t and with the prediction horizon L

J∗L(xt) = min
𝛼(t),𝜎(t),
𝜈(t),x(t)

L−1∑

k=0

(
‖
‖𝜈k(t)‖‖

2
R + ‖

‖xk(t)‖‖
2
Q

)
+ 𝜆

𝛼
wmax‖𝛼(t)‖2

2 +
𝜆
𝜎

wmax
‖𝜎(t)‖2

2 (11a)

s.t.

[
𝜈(t)

x(t) + 𝜎(t)

]

=

[
HL(𝜈d)

HL+1(xd)

]

𝛼(t), (11b)

x0(t) = xt, (11c)

xL(t) = 0, (11d)

‖
‖xk(t)‖‖∞ + au,k ‖‖𝜈(t)‖‖1 + a

𝛼,k ‖𝛼(t)‖1 + a
𝜎,k ‖𝜎k(t)‖∞ + ac,k ≤ xmax, (11e)

‖
‖𝜈k(t)‖‖∞ + bu,k ‖‖𝜈(t)‖‖1 + b

𝛼,k ‖𝛼(t)‖1 + b
𝜎,k ‖𝜎k(t)‖∞ + bc,k + ‖

‖Kxk(t)‖‖∞ ≤ umax, (11f)

∀k = 0, … ,L − 1. (11g)

We denote the optimal solution of (11) at time t by 𝜈∗(t), x∗(t), 𝛼∗(t), 𝜎∗(t). Note that (11) is a strictly convex quadratic
program and can thus be solved efficiently. In (11b), we make use of Lemma 1 for the prediction of future state sequences
of the system. Note that, a Hankel matrix of depth L + 1 is used in the second block row of (11b), since the predicted state
sequence contains L + 1 elements (from k = 0 to k = L), whereas the predicted input sequence only contains L elements
(from k = 0 to k = L − 1). Moreover, note that, as it is common in predictive control based on Willems’ lemma, we make
use of a slack variable 𝜎(t) (first introduced by Coulson et al.3) that renders (11b) feasible, even in the presence of dis-
turbances. The slack variable 𝜎 as well as the variable 𝛼 are regularized in (11a). This leads to smaller values of 𝜎 and 𝛼,
improving the prediction accuracy and reducing the influence of disturbances in the Hankel matrices. For further discus-
sion on these issues, see also section IV.A by Berberich et al.4 and section IV by Dörfler et al.27 Note that the regularization
of 𝛼 is scaled with wmax and the regularization of 𝜎 with 1

wmax
as introduced by Bongard et al.28 This is needed in the proof

of Theorem 1 in order to obtain an upper bound on ‖𝛼∗(t)‖1 and ‖𝜎∗(t)‖∞. The scaling of the regularization of 𝜎 can also
be dropped. However, this comes at the cost of an additional non-convex constraint as it was shown by Berberich et al.4
Problem (11) contains the tightened state and input constraints (11e) and (11f). Note that both constraints depend on ū(t),
𝛼(t) and 𝜎(t). Together with suitably defined coefficients au,k, a

𝛼,k, a
𝜎,k, ac,k, and bu,k, b

𝛼,k, b
𝜎,k, bc,k, which will be defined

later on, this constrained tightening ensures recursive feasibility and closed-loop constraint satisfaction (cf. Theorem 1),
that is, ‖xt‖∞ ≤ xmax and ‖ut‖∞ = ‖Kxt + 𝜈t‖∞ ≤ umax for all t ≥ 0. Constraint (11f) can be dropped if no prestabilizing
controller is used, that is, K = 0. Problem (11) is similar to the one by Berberich et al.,21 which, however, does not con-
sider process disturbances and the input constraint tightening (11f). The predictive control scheme is used in an n-step
receding horizon manner, that is, at time t we solve (11) and choose 𝜈t+k = 𝜈∗k(t) in (4) for k = 0, … ,n − 1.

In the following, we introduce the coefficients used to set up the tightened state and input constraints (11e) and (11f).
To this end, we first introduce some system constants. First, we define the constant cpe =

‖
‖
‖

H†
𝜈x̂
‖
‖
‖1

, with

H
𝜈x̂ =

⎡
⎢
⎢
⎣

HL
(
𝜈

d)

H1

(
x̂d
[0,N−L−1]

)
⎤
⎥
⎥
⎦

, (12)
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6 KLÖPPELT et al.

where H†
𝜈x̂ is the Moore–Penrose inverse of H

𝜈x̂. Using dk as well as the over-approximation 𝜌A,k ≥
‖
‖
‖

Ak
K
‖
‖
‖∞

, we define

c
𝛼,k = 𝜌A,kdN−L + dN−L+k, c

𝜎,k = 𝜌A,k + 1, (13)

for k = 0, … ,L. Moreover, we introduce the controllability constant Γ > 0, which is chosen such that, starting at any x0,
we can find an input sequence 𝜈[0,n−1] steering the state of the prestabilized system (5) without disturbances to the origin
in n steps and satisfying

‖
‖𝜈[0,n−1]‖‖1 ≤ Γ ‖x0‖∞ . (14)

Note that such a constant exists as the pair (A,B) is controllable.
We are now ready to define the coefficients of the state and input constraint tightening as

au,k = 0, a
𝛼,k = c

𝛼,k, a
𝜎,k = c

𝜎,k, ac,k = dk,

bu,k = 0, b
𝛼,k = Kc

𝛼,k, b
𝜎,k = Kc

𝜎,k, bc,k = Kdk, (15)

for k = 0, … ,n − 1, and

au,k+n = au,k + a
𝛼,kcpe + a

𝜎,kcpedN−1,

a
𝛼,k+n = au,k+nΓc

𝛼,L + c
𝛼,k+n,

a
𝜎,k+n = au,k+nΓc

𝜎,L + c
𝜎,k+n,

ac,k+n = ac,k + a
𝛼,kcpe

(
nxmax + ndn

)
+ a

𝜎,k

(
dN−1cpe

(
nxmax + ndn

)
+ dn

)
+ dn,

bu,k+n = bu,k + b
𝛼,kcpe + b

𝜎,kcpedN−1,

b
𝛼,k+n = bu,k+nΓc

𝛼,L + Kc
𝛼,k+n,

b
𝜎,k+n = bu,k+nΓc

𝜎,L + Kc
𝜎,k+n,

bc,k+n = bc,k + b
𝛼,kcpe

(
nxmax + ndn

)
+ b

𝜎,k

(
dN−1cpe

(
nxmax + ndn

)
+ dn

)
+ Kdn, (16)

for k = 0, … ,L − n − 1, where K = ‖K‖∞. Note that dk and 𝜌A,k grow exponentially if AK has eigenvalues outside the
unit disc. This is the main motivation for the usage of the prestabilizing controller (4), as diverging dk and 𝜌A,k would also
lead to diverging c

𝛼,k and c
𝜎,k and, therefore, to large coefficients (15) and (16). This would in general yield an infeasible

OCP (11) even for small prediction horizons L. In order to set up the coefficients above, the system constants Γ, cpe, 𝜌A,k
for k = 0, … ,L, and dk for k = 0, … ,N − 1 have to be known. All of these constants can be approximated from data as
will be shown in Section 3.3.

3.2 Theoretical guarantees

Firstly, we denote the undisturbed state at time t + k resulting from an open-loop application of 𝜈∗(t) as

x̂∗t+k ∶= Ak
Kxt +

k−1∑

i=0
Ak−1−i

K B𝜈∗i (t). (17)

An upper bound for the prediction error between this undisturbed open-loop state trajectory x̂∗ and the predicted optimal
state sequence x∗(t) at time t can be derived by the following lemma.

Lemma 2. If (11) is feasible at time t, then

‖
‖
‖

x̂∗t+k − x∗k(t)
‖
‖
‖∞
≤ c

𝛼,k ‖𝛼
∗(t)‖1 + c

𝜎,k ‖𝜎
∗(t)‖∞ , (18)

holds for all k = 0, … ,L.
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KLÖPPELT et al. 7

Proof. Similar to the proof of Lemma 2 in the work of Berberich et al.,4 we start by considering the error between the
undisturbed open-loop state and the state prediction resulting from undisturbed data in the Hankel matrix

x−[t,t+L] ∶= x̂∗[t,t+L] −HL+1

(
x̂d
)
𝛼

∗(t) = x̂∗[t,t+L] −
(

HL+1
(

xd) −HL+1
(

dd))
𝛼

∗(t). (19)

Note that x̂∗[t,t+L−1] and HL

(
x̂d
)
𝛼

∗(t) are trajectories of the undisturbed system (5) resulting from the application of 𝜈∗(t)

with different initial states. Due to (11c) and (11b), the initial condition of HL+1

(
x̂d
)
𝛼

∗(t) is

H1

(
x̂d
[0,N−L]

)
𝛼

∗(t) = xt + 𝜎0(t) −H1

(
̂d

d
[0,N−L]

)
𝛼

∗(t). (20)

Thus, for the difference between both trajectories, it holds that

x−t+k = Ak
K

(
H1

(
dd
[0,N−L]

)
𝛼

∗(t) − 𝜎0(t)
)
, (21)

for k = 0, … ,L. To show (18), note that

‖
‖
‖

x̂∗t+k − x∗k(t)
‖
‖
‖∞
≤
‖
‖
‖

x−t+k
‖
‖
‖∞

+
‖
‖
‖
‖
𝜎

∗
k (t) −H1

(
dd
[k,N−L+k]

)
𝛼

∗(t)
‖
‖
‖
‖∞

(22)

≤

(
‖
‖
‖

Ak
K
‖
‖
‖∞

dN−L + dN−L−1

)
‖𝛼∗(t)‖1 +

‖
‖
‖

Ak
K
‖
‖
‖∞

‖
‖𝜎

∗
0 (t)‖‖∞ +

‖
‖
‖
𝜎

∗
k (t)

‖
‖
‖∞

, (23)

where the second inequality holds due to
‖
‖
‖
‖

H1

(
dd
[k,N−L+k]

)
𝛼

∗(t)
‖
‖
‖
‖∞

= max
i=1,… ,n

|
|
|
e⊤i H1

(
dd
[k,N−L+k]

)
𝛼

∗(t)||
|
, (24)

≤
‖
‖
‖

dd
[k,N−L+k]

‖
‖
‖∞

‖𝛼∗(t)‖1 , (25)

≤ dN−L+k ‖𝛼
∗(t)‖1 , (26)

for k = 0, … ,L, where ei is the ith unit vector in Rn. Therefore, we obtain (18) with c
𝛼,k = 𝜌A,kdN−L + dN−L+k, c

𝜎,k =
𝜌A,k + 1, and 𝜌A,k ≥

‖
‖
‖

Ak
K
‖
‖
‖∞

. ▪

The main difference of this proof to the proof of lemma 2 by Berberich et al.4 is that we consider process disturbances
acting on the state through the system dynamics. Therefore, the error bounds have to account for all the past disturbances
propagated through the system dynamics. To this end, we bound the disturbances dd

k in the offline collected data (see also
the discussion below (6)), thus, achieving similar error bounds to Berberich et al.4

Using the result of Lemma 2, we can now state our main result, which establishes recursive feasibility, practical expo-
nential stability, and input and state constraint satisfaction of the closed-loop system, assuming that the initial state is
feasible for Problem (11) and the disturbance bound is sufficiently small.

Theorem 1. Suppose that Assumption 1 holds. Then, for any VROA > 0, there exist 𝜆
𝛼

, 𝜆
𝛼
, 𝜆

𝜎

, 𝜆
𝜎

such that for all 𝜆
𝛼
, 𝜆

𝜎

satisfying
𝜆

𝛼

≤ 𝜆
𝛼
≤ 𝜆

𝛼
, 𝜆

𝜎

≤ 𝜆
𝜎
≤ 𝜆

𝜎
, (27)

there exist wmax, cpe > 0 as well as a continuous, strictly increasing function 𝛽 ∶ [0,wmax]→ [0,VROA] with 𝛽(0) = 0, such
that for all wmax and cpe satisfying

wmax ≤ min
{

wmax,
cpe

cpe

}

, (28)

the following holds for the closed loop resulting from an application of the n-step MPC scheme:

(i) If J∗L(x0) ≤ VROA, then OCP (11) is feasible at any time t ≥ 0.
(ii) For any initial condition satisfying J∗T(x0) ≤ VROA it holds that xt ∈ X and ut ∈ U for all t ≥ 0, and J∗L(xt) converges

exponentially to J∗L(xt) ≤ 𝛽(wmax).
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8 KLÖPPELT et al.

The proof of this result makes use of a similar candidate solution as the one of theorem 10 by Berberich et al.21 Together
with the prediction error in Lemma 2, showing constraint satisfaction and recursive feasibility of the tightened state
constraint (11e) as well as practical exponential stability works similar to the aforementioned reference. However, due
to the pre-stabilizing input, we require the input constraint tightening (11f). Thus, showing that the aforementioned
closed-loop properties also hold for this constraint is the main difficulty of this proof. Note that (ii) only shows exponential
convergence of xt to a neighborhood of x = 0; however, it is possible to establish a suitable lower as well as an upper
bound on J∗L(xt) analogous to lemma 1 by Berberich et al.,4 thus, resulting in practical exponential stability. For a detailed
discussion on the influence of the parameters 𝜆

𝛼
, 𝜆

𝜎
, and cpe on the stability properties, we refer to the work of Berberich

et al.4 In short, the region of attraction increases for smaller disturbance bounds or better persistency of excitation of the
input signal, the latter being expressed by a decrease of cpe.

Proof. To show (i), we construct a candidate solution for (11) at time t + n and show that (11b)–(11f) hold for this candi-
date. Therefore, we define the candidate solution over the first L − n steps via the previously optimal input shifted by n
steps, that is, 𝜈′k(t + n) = 𝜈∗k+n(t) for k = 0, … ,L − n − 1. Moreover, the state candidate is chosen as

x′[0,L−n](t + n) =

[
xt+n

x̂∗[t+n+1,t+L],

]

(29)

for the first L − n + 1 steps, with x̂∗ defined as in (17). Note that, c
𝛼,k scales linearly with wmax and

‖𝛼∗(t)‖1 ≤
√

N − L + 1 ‖𝛼∗(t)‖2 ≤

√

(N − L + 1) VROA

𝜆
𝛼
wmax

, (30)

which implies that the first term on the right-hand side of (18) becomes arbitrarily small for sufficiently small wmax.
Furthermore, the same holds true for the second term on the right-hand side of (18), since c

𝜎,k is uniformly upper bounded
for all k and

‖𝜎∗(t)‖∞ ≤ ‖𝜎(t)‖2 ≤

√
VROAwmax

𝜆
𝜎

. (31)

Due to this, Lemma 2, and x∗L(t) = 0, the state x′L−n(t + n) = x̂∗t+L becomes arbitrarily small for sufficiently small
wmax. Thus, for a sufficiently small wmax, by controllability, there exists an input sequence 𝜈

′
[L−n,L−1](t + n) that

steers x′[L−n,L](t + n) from x̂∗t+L to 0 in n steps. Furthermore, we choose the candidate solution for 𝛼

′(t + n) and
𝜎

′(t + n) as

𝛼

′(t + n) = H†
𝜈x̂

[
𝜈

′(t + n)
x̂∗t+n

]

, (32)

and

𝜎

′(t + n) = HL+1
(

xd)
𝛼

′(t + n) − x′(t + n),

=
⎡
⎢
⎢
⎣

̂dt+n

HL

(
dd
[1,N]

)
𝛼

′(t + n)

⎤
⎥
⎥
⎦

, (33)

where ̂dt+k satisfies xt+k = x̂∗t+k + ̂dt+k. Thus, the candidate solution satisfies (11b)–(11d).
It remains to be shown that also (11e) and (11f) hold for the candidate solution. In order to show the satisfaction of

(11f), we note that

‖
‖𝛼

′(t + n)‖‖1

(32)
≤ cpe

(
‖
‖
‖
𝜈

′(t + n)‖‖
‖1
+ ‖
‖x̂∗t+n

‖
‖1

)

≤ cpe

(
‖
‖
‖
𝜈

′(t + n)‖‖
‖1
+ nxmax + ndn

)
, (34)
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KLÖPPELT et al. 9

holds. Furthermore, it holds that

‖
‖𝜎

′(t + n)‖‖∞
(32)
≤ dN−1 ‖‖𝛼

′(t + n)‖‖1 + dn,

(34)
≤ dN−1cpe

(
‖
‖
‖
𝜈

′(t + n)‖‖
‖1
+ nxmax + ndn

)
+ dn. (35)

Using the same arguments as in proposition 8 (Inequality (18)) by Berberich et al.,21 we can bound the norm of the
candidate input by

‖
‖
‖
𝜈

′(t + n)‖‖
‖1
≤ ‖
‖𝜈

∗
[n,L−1](t)‖‖1 +

‖
‖
‖
𝜈

′
[L−n,L−1](t + n)‖‖

‖1
, (36)

≤ ‖
‖𝜈

∗(t)‖‖1 + Γ ‖‖x̂∗t+L
‖
‖∞ , (37)

≤ ‖
‖𝜈

∗(t)‖‖1 + Γc
𝛼,L−1 ‖𝛼

∗(t)‖1 + Γc
𝜎,L−1 ‖𝜎

∗(t)‖∞ , (38)

where the first inequality holds due to the definition of 𝜈′(t + n) and the triangle inequality, the second inequality holds
due to (14), and the last inequality holds due to the terminal condition (11d) and the prediction error bound (18). Since
(11f) holds for the optimal solution at time t and due to ‖

‖
‖
𝜈

′
k(t + n)‖‖

‖∞
= ‖
‖𝜈

∗
k+n

‖
‖∞ for k = 0, … ,L − n − 1, we obtain

‖
‖
‖
𝜈

′
k(t + n)‖‖

‖∞
≤ umax −

(
bu,k+n ‖‖𝜈

∗(t)‖‖1 + b
𝛼,k+n ‖𝛼

∗(t)‖1 + b
𝜎,k+n ‖𝜎

∗(t)‖∞ + bc,k+n +
‖
‖
‖

Kx∗k+n(t)
‖
‖
‖∞

)
. (39)

Plugging (38) and the coefficients in (16) into (39) yields for k = 0, … ,L − n − 1

‖
‖
‖
𝜈

′
k(t + n)‖‖

‖∞

(38)
≤ umax − bu,k

‖
‖
‖
𝜈

′(t + n)‖‖
‖1
− b

𝛼,k

(
cpe

‖
‖
‖
𝜈

′(t + n)‖‖
‖1
+ cpe(nxmax + ndn)

)

− b
𝜎,k

(
dN−1cpe

‖
‖
‖
𝜈

′(t + n)‖‖
‖1
+ dN−1cpe(nxmax + ndn) + dn

)
− bc,k

− Kc
𝛼,k+n ‖𝛼

∗(t)‖1 − Kc
𝜎,k+n ‖𝜎

∗(t)‖∞ −
‖
‖
‖

Kx∗k+n(t)
‖
‖
‖∞

− Kdn, (40)

(34),(35)
≤ umax − bu,k

‖
‖
‖
𝜈

′(t + n)‖‖
‖1
− b

𝛼,k ‖‖𝛼
′(t + n)‖‖1 − b

𝜎,k ‖‖𝜎
′(t + n)‖‖∞ − bc,k

− Kc
𝛼,k+n ‖𝛼

∗(t)‖1 − Kc
𝜎,k+n ‖𝜎

∗(t)‖∞ −
‖
‖
‖

Kx∗k+n(t)
‖
‖
‖∞

− Kdn, (41)

(18)
≤ umax − bu,k

‖
‖
‖
𝜈

′(t + n)‖‖
‖1
− b

𝛼,k ‖‖𝛼
′(t + n)‖‖1 − b

𝜎,k ‖‖𝜎
′(t + n)‖‖∞ − bc,k

− K ‖
‖
‖

x̂∗t+k+n − x∗k+n(t)
‖
‖
‖∞

− ‖
‖
‖

Kx∗k+n(t)
‖
‖
‖∞

− Kdn, (42)

≤ umax − bu,k
‖
‖
‖
𝜈

′(t + n)‖‖
‖1
− b

𝛼,k ‖‖𝛼
′(t + n)‖‖1 − b

𝜎,k ‖‖𝜎
′(t + n)‖‖∞ − bc,k −

‖
‖
‖

Kx′k(t + n)‖‖
‖∞

, (43)

where the last inequality holds due to x′k(t + n) = x̂∗t+n+k for k = 1, … ,L − n − 1, and

‖
‖
‖

x′0(t + n) − x̂∗t+n
‖
‖
‖∞

= ‖
‖xt+n − x̂∗t+n

‖
‖∞ ≤ dn. (44)

Therefore, the candidate solution satisfies (11f) for k = 0, … ,L − n − 1. Showing that also (11e) holds for k = 0, … ,L −
n − 1 can be done following the analogous steps as above.

To show that (11e) and (11f) are also satisfied for k = L − n, … ,L − 1, we recall from above that x′L−n(t + n) becomes
arbitrarily small for sufficiently small wmax. Thus, due to controllability and (14) also 𝜈′[L−n,L−1](t + n) and, therefore,
x′[L−n+1,L−1](t + n) become arbitrarily small. Moreover, due to (13) and (16) the coefficients a

𝛼,k and b
𝛼,k depend linearly

on wmax, and thus, they also become arbitrarily small for sufficiently small disturbance bounds wmax. Moreover, the same
holds for au,k, ac,k, bu,k, and bc,k. The coefficients a

𝜎,k, b
𝜎,k converge to constant values for wmax → 0.Finally, due to (35),

𝜎

′(t + n) becomes arbitrarily small if wmax is sufficiently small. Hence, all terms on the left-hand side of (11e) and (11f)
(except for xk(t) and 𝜈k(t), respectively) become arbitrary small. Therefore, since xmax, umax > 0, there exists a sufficiently
small bound wmax > 0 such that (11e) and (11f) are also satisfied for k = L − n, … ,L − 1.
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10 KLÖPPELT et al.

To show (ii), we can follow the same arguments as in theorem 3 by Berberich et al.4 to conclude invariance of the
sublevel set J∗L(xt) ≤ VROA and exponential convergence of J∗L(xt) to J∗L(xt) ≤ 𝛽(wmax). This is possible since the candidate
solution used in the first part of our proof is constructed analogous to the one used in the proof of the above reference.
Thus, the closed-loop scheme is recursively feasible. Closed-loop state constraint satisfaction follows from the same argu-
ments used in the proof of theorem 10 by Berberich et al.21 In order to show closed-loop input constraint satisfaction, we
note that the optimal solution at time t satisfies (11f) for the first n steps, that is,

umax ≥ ‖
‖𝜈

∗
k(t)‖‖∞ + bu,k ‖‖𝜈

∗(t)‖‖1 + b
𝛼,k ‖𝛼

∗(t)‖1 + b
𝜎,k ‖𝜎

∗(t)‖∞ + bc,k +
‖
‖
‖

Kx∗k(t)
‖
‖
‖∞

, (45)

= ‖
‖𝜈

∗
k(t)‖‖∞ + Kc

𝛼,k ‖𝛼
∗(t)‖1 + Kc

𝜎,k ‖𝜎
∗(t)‖∞ + Kdk +

‖
‖
‖

Kx∗k(t)
‖
‖
‖∞

, (46)

for k = 0, … ,n − 1, where the second inequality follows from plugging in the coefficients from (15). With (18), we finally
obtain for k = 0, … ,n − 1

umax ≥ ‖
‖𝜈

∗
k(t)‖‖∞ + K ‖

‖
‖

x̂∗t+k − x∗k(t)
‖
‖
‖∞

+ Kdk +
‖
‖
‖

Kx∗k(t)
‖
‖
‖∞

≥ ‖
‖𝜈

∗
k(t)‖‖∞ + K ‖

‖
‖

x̂∗t+k − x∗k(t)
‖
‖
‖∞

+ K ‖
‖xt+k − x̂∗t+k

‖
‖∞ +

‖
‖
‖

Kx∗k(t)
‖
‖
‖∞

≥ ‖
‖𝜈

∗
k(t) + Kxt+k‖‖∞ ,

where the second inequality holds due to ‖‖xt+k − x̂∗t+k
‖
‖∞ ≤ dk and the third inequality due to the triangle inequality. Thus,

the input constraints are satisfied in closed loop. ▪

3.3 Data-driven estimation of system constants

In order to set up the constraint tightening, we need to compute the coefficients (15) and (16). These depend on several
system constants. While K, xmax, and n are known a priori, the system constants 𝜌A,k, dk, cpe, and Γ have to be estimated
from data. In the following, we provide corresponding estimation procedures.

An approach for the computation of Γ was shown by Berberich et al.,21 where, however, the availability of the undis-
turbed data is assumed. To extend this approach for the approximation of Γ in the presence of disturbances in the data,
we adapt the respective optimization problem by including a slack variable as well as a regularization, similar to (11).
Thus, we set up the optimization problem

max
x0

min
𝛼,𝜎,

𝜈,x

‖
‖𝜈[0,n−1]‖‖1 + 𝜆

′
𝛼
wmax‖𝛼‖

2
2 +

𝜆

′
𝜎

wmax
‖𝜎‖2

2, (47a)

s.t. ‖
‖x0‖‖∞ ≤ xmax, (47b)

xn = 0, (47c)
[

𝜈

x + 𝜎

]

=

[
Hn(𝜈d)

Hn+1(xd)

]

𝛼, (47d)

which can be solved by solving the inner minimization problem for all vertices of X. Then, we choose Γ ≈
‖
‖
‖
𝜈

∗
[0,n−1]

‖
‖
‖1

xmax
, where

𝜈

∗
[0,n−1] is the optimal solution of (47). Moreover, we approximate cpe ≈

‖
‖
‖

H†
𝜈x
‖
‖
‖1

, with

H
𝜈x =

⎡
⎢
⎢
⎣

HL
(
𝜈

d)

H1

(
xd
[0,N−L−1]

)
⎤
⎥
⎥
⎦

. (48)

This approximation is possible, as for small disturbances also the error between H
𝜈x and H

𝜈x̂ is small. So far, both
procedures mentioned above only yield approximations of the real constants Γ and cpe, without being guaranteed
overapproximations of these constants. However, as was also confirmed in our numerical examples, the error
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KLÖPPELT et al. 11

between the real values and our estimates remains small for the considered disturbance level. Obtaining guaranteed
overapproximations of the constants Γ and cpe even in the presence of noise is an interesting subject for future research.

In order to estimate the overapproximations 𝜌A,k ≥
‖
‖
‖

Ak
K
‖
‖
‖∞

and dk ≥
∑k−1

i=0
‖
‖
‖

Ak−1−i
K

‖
‖
‖∞

wmax for i = 0, … ,L − 1 we use
algorithm 1 by Wildhagen et al.,29 which makes use of the S-lemma.26 Note that the setup in the aforementioned reference
considers a bound on the 2-norm of the disturbance. However, by noting that ‖w‖2 ≤

√
n ‖w‖∞, we can easily adapt the

algorithm to our setting.

4 DATA-DRIVEN OUTPUT-FEEDBACK PREDICTIVE CONTROL

In this section, we construct a robust data-driven predictive control scheme, in case only output measurements are avail-
able. First, in Section 4.1 we set up the MPC scheme and prove similar theoretical properties to the ones shown for the
state-feedback case. Thereafter, in Section 4.2 we show how the coefficients used for the constraint tightening can be
computed only from data.

4.1 Proposed MPC scheme and theoretical guarantees

In contrast to the previous section, we consider the case where no full state measurements are available, but only output
measurements. To this end, we consider the difference operator form

yk = −Anyk−1 − … − A2yk−n+1 − A1yk−n + Duk + Bnuk−1 + … + B2uk−n+1 + B1uk−n + w̃k, (49)

with the process disturbance w̃k ∈ ̃W = {w̃ ∈ Rp| ‖w̃‖∞ ≤ w̃max}. The input and output constraints are given by ut ∈
U = {u ∈ Rm| ‖u‖∞ ≤ umax} and yt ∈ Y =

{
y ∈ Rp| ‖y‖∞ ≤ ymax

}
for some umax > 0, ymax > 0, similar to the setup in

Section 3. Note that the following results also hold if only an upper bound on the system order is known, in which
case n needs to be replaced by this upper bound. Furthermore, note that (49) is an equivalent characterization of the
input–output behavior of (1), with C ≠ I or D ≠ 0. Moreover, we can transform (49) into the nonminimal realization

𝜉k+1 = Ã𝜉k + ̃Buk + ̃Ew̃k,

yk = ̃C𝜉k + Duk + w̃k, (50)

with the extended state 𝜉k =
[
u⊤k−n … u⊤k−1 y⊤k−n … y⊤k−1

]
⊤, compare Reference 30. Similar to the state feedback

case in Section 3, we want to make use of a prestabilizing controller in case of an unstable system. Therefore, we introduce
the control law

uk = ̃K𝜉k + 𝜈k, (51)

where the stabilizing feedback matrix ̃K can be computed purely from data, for example, following the approach by
Berberich et al.31 However, for simplicity it is assumed that such a prestabilizing controller is known a priori. Thus, 𝜈k is
the input to the stabilized system

𝜉k+1 = ÃK𝜉k + ̃B𝜈k + ̃Ew̃k,

yk = ̃CK𝜉k + D𝜈k + w̃k. (52)

We note that, starting at an initial state 𝜉0 and applying the input sequence 𝜈[0,k] to system (52), the output after k time
steps is given by

yk = ̃CKÃk
K𝜉0 + ̃CK

k−1∑

i=0
Ãk−1−i

K ̃B𝜈i + D𝜈k + ̃CK

k−1∑

i=0
Ãk−1−i

K ̃Ew̃i + w̃k. (53)

Thus, similar to (7) we denote the disturbance affecting the output after being propagated k steps through the system
dynamics as

𝛿

y
k ∶= ̃CK

k−1∑

i=0
Ãk−1−i

K ̃Ew̃i + w̃k, (54)
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12 KLÖPPELT et al.

for k > 1. Due to (51), also the pre-stabilizing input contains previously occurred disturbances. Therefore, using the same
initial state and input sequence as in (53), the prestabilizing input at time k is given by

uk = ̃KÃk
K𝜉0 + ̃K

k−1∑

i=0
Ãk−1−i

K ̃B𝜈i + 𝜈k + ̃K
k−1∑

i=0
Ãk−1−i

K ̃Ew̃i. (55)

Similar to (54) we define the disturbance affecting the input after k steps as

𝛿

u
k ∶= ̃K

k−1∑

i=0
Ãk−1−i

K ̃Ew̃i, (56)

for k > 1. In order to bound the prediction error we will make use of the upper bounds 𝛿
y
k ≥

‖
‖
‖
𝛿

y
k
‖
‖
‖∞

and 𝛿
u
k ≥

‖
‖
‖
𝛿

u
k
‖
‖
‖∞

, which,
similar to the error bounds in Section 3, can be be overapproximated purely from data as will be discussed in Section 4.2.

Again, we apply a p.e. input sequence
{
𝜈

d
k

}N−1
k=0 of length N to system (52), and measure the associated disturbed output

sequence {yd
k}

N−1
k=0 and the disturbed prestabilizing input sequence

{
ud

k

}N−1
k=0 , respectively. Note that, in order to apply the

first input via the prestabilization (51), we need n additional initial data points 𝜉d
0 =

[
ud⊤
[−n,−1] yd⊤

[−n,−1]
]
⊤. In practice this

initial sequence can be generated by applying an arbitrary input sequence to (50) and measuring the resulting output. As
the OCP, introduced in the following, now contains n additional steps to fix the initial state, the following assumption is
needed.

Assumption 2. The input sequence
{
𝜈

d
k

}N−1
k=0 is persistently exciting of order L + 2n.

Using the a priori collected data sequences, we set up the OCP for the output-feedback predictive control problem as

J∗L(𝜈[0,n−1](t − n), y[t−n,t−1]) = min
𝛼(t),𝜎(t),
𝜈(t),y(t)

L−1∑

k=0

(
‖
‖𝜈k(t)‖‖

2
R + ‖

‖yk(t)‖‖
2
Q

)
+ 𝜆

𝛼
w̃max‖𝛼(t)‖2

2 +
𝜆
𝜎

w̃max
‖𝜎(t)‖2

2 (57a)

s.t.
⎡
⎢
⎢
⎢
⎣

𝜈(t)
[

y(t)
ū(t)

]

+ 𝜎(t)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

HL+n(𝜈d)
HL+n(yd)
HL+n(ud)

⎤
⎥
⎥
⎥
⎦

𝛼(t), (57b)

⎡
⎢
⎢
⎢
⎣

𝜈[−n,−1](t)
y[−n,−1](t)
ū[−n,−1](t)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝜈

∗
[0,n−1](t − n)

y[t−n,t−1]

u[t−n,t−1]

⎤
⎥
⎥
⎥
⎦

, (57c)

⎡
⎢
⎢
⎢
⎣

𝜈[L−n,L−1](t)
y[L−n,L−1](t)
ū[L−n,L−1](t)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎥
⎦

, (57d)

‖
‖yk(t)‖‖∞ + fu,k ‖‖𝜈(t)‖‖1 + f

𝛼,k ‖𝛼(t)‖1 + f
𝜎,k ‖𝜎(t)‖∞ + fc,k ≤ ymax, (57e)

‖ūk(t)‖∞ + gu,k ‖‖𝜈(t)‖‖1 + g
𝛼,k ‖𝛼(t)‖1 + g

𝜎,k ‖𝜎(t)‖∞ + gc,k ≤ umax, (57f)

∀k = 0, … ,L − n − 1. (57g)

Problem (57) is similar to (11) in the state-feedback case. The key difference is that, due to the term HL+n(ud)𝛼(t) in (57b),
also a prediction for the prestabilizing input is incorporated in the OCP. This is necessary as an input constraint tightening
analogous to (11f) is not possible in the output feedback case. The reason for this is that a prediction of the extended state
is not available, due to the fact that the extended state of the prestabilized system incorporates the prestabilizing input u.
However, making use of the prediction ū(t) an input constraint tightening (57f) with the same structure as the output
constraint tightening (57e) can be set up. Moreover, the initial constraint (57c) and the terminal constraint (57d) hold over
n steps. This implies that the internal state of the underlying minimal realization corresponding to the prediction coincides
with the initial state and the terminal state, respectively (cf, the work of Markovsky and Rapisarda32). Furthermore, note

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6532 by T

echnische Inform
ationsbibliothek, W

iley O
nline L

ibrary on [30/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KLÖPPELT et al. 13

that due to the initial condition of the prestabilizing input the slack variable 𝜎 =
[
𝜎

⊤

y 𝜎

⊤

u
]
⊤ ∈ RL(p+m) consists of an

output and an input slack.
In order to set up the coefficients of the tightened input and output constraints, we have to define further system

constants, similar to the ones of the state-feedback case. Again, all of these constants can be (over-)approximated from

data as will be discussed in Section 4.2. Firstly, we consider the constant c𝜉pe =
‖
‖
‖
‖

H†
u ̂𝜉

‖
‖
‖
‖1

with

H
𝜈
̂
𝜉

=
⎡
⎢
⎢
⎣

HL+n
(
𝜈

d)

H1

(
̂
𝜉

d
[0,N−L−n]

)
⎤
⎥
⎥
⎦

, (58)

where ̂𝜉d
k =

[
ûd⊤
[k−n,k−1] ŷd⊤

[k−n,k−1]

]
⊤

consists of the undisturbed input/output data, that is, ûd
k = ud

k − 𝛿
u,d
k , and ŷd

k = yd
k − 𝛿

y,d
k

with 𝛿

u,d
k = ̃K

∑k−1
i=0 Ãk−1−i

K ̃Ew̃d
i and 𝛿y,d

k = ̃CK
∑k−1

i=0 Ãk−1−i
K ̃Ew̃d

i + w̃d
k , respectively. Moreover, we introduce a controllability

constant Γuy which has a similar interpretation as Γ in (14). However, in the output feedback case, the constant is defined
by considering two different input/output trajectories

{
𝜈

′
k, y

′
k

}2n−1
k=−n and

{
𝜈

′′
k , y

′′
k

}n−1
k=−n of the undisturbed system (52). Both

trajectories start with the same initial condition, that is, 𝜈′[−n,−1] = 𝜈
′′
[−n,−1] and y′[−n,−1] = y′′[−n,−1]. While 𝜈′′[0,n−1] is zero,

𝜈

′
[0,n−1] steers the system to the origin in n steps, that is, 𝜈′[n,2n−1] = 0 and y′[n,2n−1] = 0. The controllability constant Γuy is

now defined such that
‖
‖
‖
𝜈

′
[0,n−1]

‖
‖
‖1
≤ Γuy

‖
‖
‖

y′′[0,n−1]
‖
‖
‖∞

. (59)

is satisfied for all trajectories according to the above specifications. Furthermore, we will make use of the constant

𝜉max ∶= max
𝜉∈Un×Yn

‖𝜉‖1 . (60)

Finally, we introduce the constants 𝜌y
k ≥

‖
‖
‖
̃CKÃk

K
‖
‖
‖∞

and 𝜌u
k ≥

‖
‖
‖
̃KÃk

K
‖
‖
‖∞

for k = 0, … ,L − 1.
Using these system constants together with the definitions

cy
𝛼,k ∶= 𝜌

y
k𝛿N−L−1 + 𝛿

y
N−L+k, cy

𝜎,k ∶= 𝜌
y
k + 1, cu

𝛼,k ∶= 𝜌
u
k𝛿N−L−1 + 𝛿

u
N−L+k, cu

𝜎,k ∶= 𝜌
u
k + 1, (61)

for k = 0, … ,L − 1, where 𝛿N−L−1 ∶= max
(
𝛿

u
N−L−1, 𝛿

y
N−L−1

)
, we are now ready to define the coefficients of the constraint

tightenings (57e) and (57f). To this end, we define

fu,k = 0, f
𝛼,k = cy

𝛼,k, f
𝜎,k = cy

𝜎,k, fc,k = 𝛿
y
k,

gu,k = 0, g
𝛼,k = cu

𝛼,k, g
𝜎,k = cu

𝜎,k, gc,k = 𝛿
u
k , (62)

for k = 0, … ,n − 1, and

fu,k+n = fu,k + f
𝛼,kc𝜉pe + f

𝜎,kc𝜉pe𝛿
y
N−1,

f
𝛼,k+n = fu,k+nΓuycy

𝛼,L−1 + cy
𝛼,k+n,

f
𝜎,k+n = fu,k+nΓuycy

𝜎,L−1 + cy
𝜎,k+n,

fc,k+n = fc,k + f
𝛼,kc𝜉pe𝜉max + f

𝜎,k

(
𝛿

y
N−1c𝜉pe𝜉max + 𝛿

y
n

)
,

gu,k+n = gu,k + g
𝛼,kc𝜉pe + g

𝜎,kc𝜉pe𝛿
u
N−1,

g
𝛼,k+n = gu,k+nΓuycy

𝛼,L−1 + cu
𝛼,k+n,

g
𝜎,k+n = gu,k+nΓuycy

𝜎,L−1 + cu
𝜎,k+n,

gc,k+n = gc,k + g
𝛼,kc𝜉pe𝜉max + g

𝜎,k

(
𝛿

u
N−1c𝜉pe𝜉max + 𝛿

u
n

)
, (63)

for k = 0, … ,L − 2n − 1. Note that the coefficients are similar to (15) and (16) in the state-feedback case. However, due
to the prediction of the prestabilizing input, the coefficients of the input constraint tightening no longer depend on the
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14 KLÖPPELT et al.

feedback matrix ̃K. This comes at the cost of having to account not only for the output prediction error, but also for the
prediction error of the prestabilizing input.

Next, we want to derive upper bounds for these prediction errors, similar to Lemma 2. To this end, we define the
undisturbed output at time t + k resulting from an open-loop application of 𝜈∗(t) as

ŷ∗t+k ∶= ̃CKÃk
K𝜉t + ̃CK

k−1∑

i=0
Ãk−1−i

K ̃B𝜈∗i (t) + D𝜈∗k (t), (64)

as well as the undisturbed prestabilizing input at time t + k resulting from an open-loop application of 𝜈∗(t) as

û∗t+k ∶= ̃KÃk
K𝜉t + ̃K

k−1∑

i=0
Ãk−1−i

K ̃B𝜈∗i (t) + 𝜈∗k (t), (65)

where 𝜉t =
[
u⊤[t−n,t−1] y⊤[t−n,t−1]

]
⊤ is the extended state measured at time t. Moreover, we define the trajectories

y̌∗ ∶= HL+n(ŷd)𝛼∗(t), (66)

ǔ∗ ∶= HL+n(ûd)𝛼∗(t), (67)

where ŷd and ûd correspond to the undisturbed data in the Hankel matrices, that is, ŷd
k = yd

k − 𝛿
d,y
k and ûd

k = ud
k − 𝛿

d,u
k for

k = 0, … ,N − 1, with 𝛿d,y
k = ̃CK

∑k−1
i=0 ÃK ̃Ew̃d

i + w̃d
k and 𝛿d,u

k = ̃K
∑k−1

i=0 ÃK ̃Ew̃d
i . Note that, due to the absence of disturbances

in the Hankel matrices, y̌∗t+k and ǔ∗t+k can be be formulated analogous to (64) and (65) as trajectories resulting from the
open-loop application of 𝜈∗(t) with the initial condition

̌
𝜉t =

[
ǔ∗[t−n,t−1]

y̌∗[t−n,t−1]

]

=
⎡
⎢
⎢
⎣

u[t−n,t−1] −Hn

(
𝛿

d,u
[0,N−L−1]

)
𝛼

∗(t) + 𝜎u∗
[−n,−1](t)

y[t−n,t−1] −Hn

(
𝛿

d,y
[0,N−L−1]

)
𝛼

∗(t) + 𝜎y∗
[−n,−1](t)

⎤
⎥
⎥
⎦

, (68)

instead of 𝜉t due to (57b) and (57c). With these definitions, we are now ready to state the following lemma.

Lemma 3. If (57) is feasible at time t, then

‖
‖
‖

ŷ∗t+k − y∗k(t)
‖
‖
‖∞
≤ cy

𝛼,k ‖𝛼
∗(t)‖1 + cy

𝜎,k ‖𝜎
∗(t)‖∞ , (69)

‖
‖
‖

û∗t+k − ū∗k(t)
‖
‖
‖∞
≤ cu

𝛼,k ‖𝛼
∗(t)‖1 + cu

𝜎,k ‖𝜎
∗(t)‖∞ , (70)

hold for all k = 0, … ,L − 1 .

Proof. We show only (69) and note that showing (70) works analogous. Firstly, note that ŷ∗ and y̌∗ are (undisturbed)
trajectories of System (52) with the same input sequence, but with different initial conditions. Therefore, the following
holds for k = 0, … ,L − 1

‖
‖
‖

ŷ∗t+k − y̌∗t+k
‖
‖
‖∞

= ‖
‖
‖
̃CKÃk

K
(
𝜉t − ̌

𝜉t
)‖
‖
‖∞

. (71)

=
‖
‖
‖
‖
‖
‖
‖

̃CKÃk
K ⋅

⎡
⎢
⎢
⎣

𝜎

u∗
[−n,−1](t) −Hn

(
𝛿

d,u
[0,N−L−1]

)
𝛼

∗(t)

𝜎

y∗
[−n,−1](t) −Hn

(
𝛿

d,y
[0,N−L−1]

)
𝛼

∗(t)

⎤
⎥
⎥
⎦

‖
‖
‖
‖
‖
‖
‖∞

. (72)

≤ 𝜌
y
k ‖𝜎

∗(t)‖∞ + 𝜌
y
k

‖
‖
‖
‖
‖
‖
‖

⎡
⎢
⎢
⎣

Hn

(
𝛿

d,u
[0,N−L−1]

)

Hn

(
𝛿

d,y
[0,N−L−1]

)
⎤
⎥
⎥
⎦

𝛼

∗(t)
‖
‖
‖
‖
‖
‖
‖∞

. (73)

≤ 𝜌
y
k ‖𝜎

∗(t)‖∞ + 𝜌
y
k𝛿N−L−1 ‖𝛼

∗(t)‖1 . (74)
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KLÖPPELT et al. 15

Next, we bound

‖
‖
‖

y̌∗t+k − y∗k(t)
‖
‖
‖∞

=
‖
‖
‖
‖

H1

(
ŷd
[n+k,N−L+k]

)
𝛼

∗(t) −H1

(
yd
[n+k,N−L+k]

)
+ 𝜎y∗

k (t)
‖
‖
‖
‖∞

, (75)

=
‖
‖
‖
‖

H1

(
𝛿

d,y
[n+k,N−L+k]

)
𝛼

∗(t) + 𝜎y∗
k (t)

‖
‖
‖
‖∞

, (76)

≤ 𝛿
y
N−L+k ‖𝛼

∗(t)‖1 +
‖
‖
‖
𝜎

y∗
k (t)

‖
‖
‖∞

, (77)

for k = 0, … ,L − 1. Finally, plugging (74) and (77) into

‖
‖
‖

ŷ∗t+k − y∗k(t)
‖
‖
‖∞
≤
‖
‖
‖

ŷ∗t+k − y̌∗t+k
‖
‖
‖∞

+ ‖
‖
‖

y̌∗t+k − y∗k(t)
‖
‖
‖∞

, (78)

yields (69). ▪

We, again, close the loop by applying the optimal solution of (57) in an n-step manner, that is, ut+k = ̃K𝜉t+k + 𝜈∗k(t) for
k = 0, … ,n − 1, where 𝜈∗k(t) is the optimal solution of (57) for the prediction step k. Note that 𝜉t+k contains the inputs
u[t+k−n,t+k−1] and the measured outputs y[t+k−n,t+k−1]. We are now ready to state practical exponential stability, and input
as well as output constraint satisfaction of the closed loop. To this end, following the approach by Berberich et al.,4 we
now consider the Lyapunov function

Vt ∶= J∗L(𝜈[t−n,t−1], y[t−n,t−1]) + 𝛾W(𝜉t), (79)

for some 𝛾 > 0, where W(𝜉) is an IOSS Lyapunov function, which exists due to detectability of (A,C).33

Theorem 2. Suppose that Assumption 2 holds. Then, for any VROA > 0, there exist 𝜆
𝛼

, 𝜆
𝛼
, 𝜆

𝜎

, 𝜆
𝜎

such that for all 𝜆
𝛼
, 𝜆

𝜎

satisfying

𝜆

𝛼

≤ 𝜆
𝛼
≤ 𝜆

𝛼
, 𝜆

𝜎

≤ 𝜆
𝜎
≤ 𝜆

𝜎
, (80)

there exist ̄w̃max, cpe > 0 as well as a continuous, strictly increasing function 𝛽 ∶ [0, ̄w̃max] → [0,VROA] with 𝛽(0) = 0, such
that for all w̃max and cpe satisfying

w̃max ≤ min
{
̄w̃max,

cpe

cpe

}

, (81)

the following holds for the closed loop resulting from the application of the n-step MPC scheme:

(i) If V0 ≤ VROA, then OCP (57) is feasible at any time t ≥ 0.
(ii) For any initial condition satisfying V0 ≤ VROA it holds that yt ∈ Y and ut ∈ U for all t ≥ 0, and Vt converges exponen-

tially to Vt ≤ 𝛽( ̄w̃max).

This result is similar to the state-feedback case (Theorem 1). Also the proof works along the lines of the proof of
Theorem 1, where the candidate solution can be chosen analogously. The main difference lies in the modified con-
straint tightening. For a discussion on the role of the parameters in the above statement, we refer to the discussion below
Theorem 1.

Proof. We consider the candidate solutions

𝜈

′(t + n) =
⎡
⎢
⎢
⎢
⎣

𝜈

∗
[0,L−n−1](t)

𝜈

′
[L−2n,L−n−1](t + n)

0n

⎤
⎥
⎥
⎥
⎦

, (82)

y′(t + n) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

y[t,t+n−1]

ŷ∗[t+n,t+L−n−1]

y′[L−2n,L−n−1](t + n)
0n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (83)
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16 KLÖPPELT et al.

and

ū′(t + n) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u[t,t+n−1]

û∗[t+n,t+L−n−1]

ū′[L−2n,L−n−1](t + n)
0n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (84)

where 𝜈′[L−2n,L−n−1](t + n) is the input steering the system to the origin in n steps and y′[L−2n,L−n−1](t + n), ū′[L−2n,L−n−1](t + n)
are the associated output and prestabilizing input. Moreover, we define the candidate solutions

𝛼

′(t + n) = H†
𝜈
̂
𝜉

[
𝜈

′(t + n)
𝜉t

]

, (85)

and

𝜎

′(t + n) =

[
HL+n

(
yd)

HL+n
(

ud)

]

𝛼

′(t + n) −

[
y′(t + n)
ū′(t + n)

]

. (86)

Using these candidate solutions, the proof works analogous to the proof of Theorem 1. ▪

4.2 Data-driven estimation of system constants

In the following, we provide data-based procedures to compute (over-approximations of) the coefficients 𝜌y
k and 𝜌u

k for
k = 0, … ,L − 1, 𝛿

y
k and 𝛿

u
k for k = 0, … ,N − 1, as well as Γuy an c𝜉pe. First, we note that upper bounds ‖

‖
‖

Ãk
K
‖
‖
‖∞
≤ 𝜌Ã,k

and ‖
‖
‖

∑k−1
i=0 Ãk−1−i

K ̃E‖‖
‖∞

wmax ≤ 𝛿
′
k can be over-approximated from data based on Reference 29, analogously to 𝜌A,k and

dk in Section 3.3. As ‖‖ ̃K‖
‖∞ is known, we can directly choose 𝜌u

k = ‖
‖ ̃K‖

‖∞ 𝜌Ã,k for k = 0, … ,L − 1 and 𝛿
u
k = ‖

‖ ̃K‖
‖∞ 𝛿

′
k for

k = 0, … ,N − 1 to obtain suitable over-approximations of the system constants. In order to obtain similar results for
𝜌

y
k and 𝛿

y
k we need to bound ‖

‖
̃CK‖‖∞ ≤ 𝜌 ̃C first. This is done by slightly modifying the approach from29 as discussed in

the following.
We consider the data matrices

X ∶=
[
𝜉

d
n 𝜉

d
n+1 … 𝜉

d
N−1

]
,

Y ∶=
[

yd
n yd

n+1 … yd
N−1

]
,

V ∶=
[
𝜈

d
n 𝜈

d
n+1 … 𝜈

d
N−1

]
, (87)

where 𝜉

d
k =

[
ud⊤

k−n … ud⊤
k−1 yd⊤

k−n … yd⊤
k−1

]
⊤ for k = n, … ,N. In order to compute a (possibly small)

over-approximation of 𝜌 ̃C, we solve the optimization problem

min
𝜏,𝜎

2
𝜎

2
, (88a)

s.t. P1(𝜎2) − 𝜏P2 ≽ 0, (88b)

𝜎

2
≥ 0, (88c)

𝜏 ≥ 0, (88d)

where P1 and P2 are defined as follows
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KLÖPPELT et al. 17

P1(𝜎2) =
⎡
⎢
⎢
⎢
⎣

−I 0 0
0 0 0
0 0 𝜎

2I

⎤
⎥
⎥
⎥
⎦

, (89)

P2 =
⎡
⎢
⎢
⎢
⎣

−

[
X
V

]
⊤

Y⊤

0 I

⎤
⎥
⎥
⎥
⎦

⊤

⋅

[
−I⊤ 0

0 nw̃2
maxN

]

⋅

⎡
⎢
⎢
⎢
⎣

−

[
X
V

]
⊤

Y⊤

0 I

⎤
⎥
⎥
⎥
⎦

. (90)

We denote the solution of (88) by 𝜎∗. By equivalence of norms, we can choose 𝜌 ̃C =
√

n𝜎∗. For a detailed discussion of the
approach we refer to Reference 29. Using this result, we can now choose 𝜌y

k = 𝜌 ̃C𝜌Ã,k for k = 0, … ,L − 1 and 𝛿
y
k = 𝜌 ̃C𝛿′k

for k = 0, … ,N − 1, which yields suitable over-approximations.
Analogous to Section 3.3 we approximate c𝜉pe ≈

‖
‖
‖

H†
u𝜉
‖
‖
‖1

with

H
𝜈𝜉
=
⎡
⎢
⎢
⎣

HL+n
(
𝜈

d)

H1

(
𝜉

d
[0,N−L−n]

)
⎤
⎥
⎥
⎦

, (91)

and, again, note that the error between ‖
‖
‖

H†
u𝜉
‖
‖
‖1

and
‖
‖
‖
‖

H†
u ̂𝜉

‖
‖
‖
‖1

is small for small disturbances. Berberich et al.21 show a

procedure to compute Γuy from undisturbed data. In the following, we adapt the procedure in order to approximate Γuy for
disturbed data. To this end, we consider the input/output sequences

{
𝜈

′
k, y

′
k

}2n−1
k=−n and

{
𝜈

′′
k , y

′′
k

}n−1
k=−n, introduced above (59).

In order to over-approximate the controllability constant, we consider all initial conditions in the polytope Z ∶= Un ×Yn.
We denote the vertices of Z by zi

init =
[
𝜈

i⊤
init yi⊤

init
]
⊤ with i = 1, … ,N

𝜈
and N

𝜈
being the number of vertices of Z. First, for

all i = 1, … ,N
𝜈
, we solve

min
𝛼,𝜎,

𝜈
′
,y′

‖
‖
‖
𝜈

′
[0,n−1]

‖
‖
‖1
+ 𝜆′

𝛼
wmax‖𝛼‖

2
2 +

𝜆

′
𝜎

wmax
‖𝜎‖2

2, (92a)

s.t.

[
𝜈

′
[−n,−1]

y′[−n,−1]

]

= zi
init, (92b)

[
𝜈

′
[n,2n−1]

y′[n,2n−1]

]

=

[
0
0

]

, (92c)

[
𝜈

′

y′ + 𝜎

]

=

[
H3n

(
𝜈

d)

H3n
(

yd)

]

𝛼. (92d)

This yields input sequences 𝜈′i[0,n−1] that (approximately) steer the system from the vertices of Z to zero in n steps with
minimum energy. Note that, due to the disturbances in the data yd and since that zi

init might not be a trajectory of the
undisturbed system (52), a slack as well as a suitable regularization is needed in (92). In order to approximate Γuy, accord-
ing to (59), we now need to compute the values ‖‖

‖
y′′i[0,n−1]

‖
‖
‖∞

resulting from the initial condition zi
init after setting 𝜈′′[0,n−1] = 0.

This can be done by solving the optimization problem

min
𝛼,𝜎,

𝜈
′′
,y′′

𝜆

′′
𝛼

wmax‖𝛼‖
2
2 +

𝜆

′′
𝜎

wmax
‖𝜎‖2

2, (93a)

s.t.

[
𝜈

′′
[−n,−1]

y′′[−n,−1]

]

= zi
init, (93b)

𝜈

′′
[0,n−1] = 0 (93c)

[
𝜈

′′

y′′ + 𝜎

]

=

[
H2n

(
𝜈

d)

H2n
(

yd)

]

𝛼, (93d)
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18 KLÖPPELT et al.

for all i = 1, … ,N
𝜈
. Again, we make use of a slack variable to account for the disturbed data and zi

init not being a trajectory

of the system. An approximation of Γuy can now be computed via Γuy = maxi=1,… ,N
𝜈

‖
‖
‖
𝜈

′i
[0,n−1]

‖
‖
‖1

‖
‖
‖

y′′ i[0,n−1]
‖
‖
‖∞

.

5 NUMERICAL EXAMPLE

As an example, we consider the two mass-spring-system suggested by Wie et al.,34 with the masses m1 = 0.5 kg, m2 = 1 kg
and the spring constant k = 2 kg∕s2. Discretizing the system with a sampling time of 1 s yields the matrices

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−0.1799 1.1799 0.507 0.493
0.59 0.41 0.2465 0.7535

−1.0421 1.0421 −0.1799 1.1799
0.5211 −0.5211 0.59 0.41

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.7266
0.1367
1.014
0.493

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (94)

We assume that full state measurements are available and that wmax = 10−3, umax = 10, xmax = 10 hold for the constraint
sets, where the process disturbance wk acting on the system, during the data generation and in closed-loop operation, at
time k is sampled uniformly from W. As the matrix A has two eigenvalues on the unit disc, the usage of a prestabilizing
controller is expected to be advantageous in order to set up the MPC scheme introduced in Section 3. First, we collect
apply a PE input sequence of length 50 to the open-loop system and measure the corresponding state sequence. Thereafter,
we employ theorem 1 by Berberich et al.31 to compute a robust linear quadratic regulator for the system based on the
available noisy data (using diagonal multipliers to describe the disturbance bound, compare equation (21) in Reference
31). This yields the state-feedback gain

K =
[
0.4345 −0.8439 −0.3665 −0.6986

]
,

which serves as the prestabilizing controller, leading to all eigenvalues of AK = A + BK being located strictly inside the
unit disc.

The goal is to set up the OCP (11) with prediction horizon L = 12, a total amount of N = 50 data points (of the presta-
bilized system) in the Hankel matrices, and the parameterization Q = In, R = 1, 𝜆

𝛼
= 𝜆

𝜎
= 100. To this end, we have to

compute the constants (15) and (16) from data. In order to do so, we apply an input sequence of length N′ = 5000, which
is uniformly sampled from U, to the prestabilized system and collect the corresponding N′ state measurements. Using
these data sequences, we compute 𝜌A,k for k = 0, … ,L − 1 and dk for k = 0, … ,N − 1 following the approach mentioned
in Section 3.3. Note that the estimation of the system constants also works for a smaller amount of data, at the price of
a more conservative overapproximation of these constants. However, for a good approximation of these constants, we
need a much larger amount of data than for the prediction via the Hankel matrices (i.e., N′

≫ N). We now choose an
input-state-sequence of length N from the collected data (of total length N′), for which the input sequence is persistently
exciting of order L + n + 1, to construct the Hankel matrices and approximate the constant cpe as described in Section 3.3.
Moreover, we apply the method from Section 3.3, with 𝜆′

𝛼

= 𝜆′
𝜎

= 1, in order to compute an approximation of the control-
lability constant Γ. With these approximations of the system constants, we compute the coefficients in (15) and (16). The
resulting coefficients as well as the ideal coefficients that would be computable if perfect model knowledge was available,
can be found in Figure 1, where the red lines correspond to the ideal coefficients, and the blue lines to the coefficients
computed from data. It can be seen that the coefficients computed from data yield over approximations of the “real” coeffi-
cients. This is mainly due to the fact that the procedure in Section 3.3 only yields overapproximations of the constants 𝜌A,k

and dk. The approximation of cpe by its disturbed counterpart is accurate for the present example,compare the discussion
in Section 3.3.

Considering the parameter bc,k, it can be seen that for larger k, this coefficient already is close to umax. Even though
there is a nonmonotonicity in k, which results from the usage of an n-step MPC scheme and the corresponding recursive
definition of the constants in (15) and (16), it is clearly visible that bc,k tends to increase for larger k. Thus, for larger
prediction horizons or larger disturbance bounds wmax, this parameter would lead to bc,k > umax, which would render (11)
infeasible due to (11f). The reason for this conservatism in the constraint tightening lies in the fact that submultiplicativity
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F I G U R E 1 Coefficients for the state and input constraint tightening (11e), (11f). The red lines correspond to the ideal coefficients that
can be computed if perfect model knowledge is available. The blue lines correspond to the coefficients computed purely from data.
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F I G U R E 2 Ideal coefficients for the state constraint tightening (11e) without prestabilizing controller

and the triangle inequality were exploited multiple times in the proof of recursive feasibility and constraint satisfaction.
Moreover, the estimates for 𝜌A,k and dk only yield overapproximations of the parameters and for the sake of recursive
feasibility, xmax instead of ‖xt‖∞ is used to define the coefficients (16).

As a motivation for the usage of a prestabilizing controller, the coefficients for K = 0 (i.e., without input constraint
tightening) are plotted in Figure 2. Note that even for k = 4 it holds that ac,k ≈ 233 which already exceeds xmax and would
thus lead to an infeasible OCP even for the smallest possible prediction horizon of the n-step scheme, L = 4.

The states and inputs resulting from the n-step scheme in closed loop starting at x0 =
[
4 −4 0 0

]
⊤ can be found in

Figure 3. It can be seen that the predictive control scheme works as desired, meaning it stabilizes the states at the origin,
while satisfying the state and input constraints.
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F I G U R E 3 Simulation

6 CONCLUSION

In this paper, we introduced a data-driven predictive control scheme relying on predictions based on a priori measured
data, structured in Hankel matrices. The scheme is capable of stabilizing the origin of an LTI system, even in the presence
of process disturbances acting on the system state. To this end, a constraint tightening is proposed, which can be set up
using only a priori measured data. The presented MPC scheme allows for the usage of a prestabilizing controller and an
associated input constraint tightening, which enables the use also for a priori unstable systems. Closed-loop recursive
feasibility, practical exponential stability, and constraint satisfaction of the control scheme are shown. Moreover, the MPC,
initially introduced for available state measurements, is extended to the case that only output measurements are available.
The numerical experiments illustrated the applicability of the proposed approach and underlined the necessity to include
a prestabilization and corresponding input constraint tightening in order to design a feasible controller. Interesting issues
for future research include the development of less conservative constraint tightenings as well as a data-based technique
for obtaining estimates of cpe and the controllability constantΓ from noisy data, which are guaranteed overapproximations
of the real system constants.
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