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1 Introduction

Recently, a new type of models for N=4 supersymmetric mechanics was discovered and

studied [1–4]. They are distinguished from earlier such models by the coupling of two irre-

ducible N=4 multiplets, one dynamical and one “semi-dynamical”. The former produces

normal kinetic terms for all components, while the kinetic terms of the latter are one order

lower in time derivatives: the bosonic variables arise in a d=1 Wess-Zumino (WZ) action,

and the fermionic variables appear only algebraically in the action, thus are auxiliary. After

quantization, the semi-dynamical bosonic variables play the role of spin degrees of freedom

parametrizing a fuzzy manifold.1 For this reason, we also call the semi-dynamical multiplet

the “spin multiplet”. A slightly different treatment of the semi-dynamical spin variables

was employed in [7–9].

The first examples of these compound N=4 supersymmetric mechanics models were

constructed in [2, 3] as a one-particle limit of a new type of N=4 super Calogero mod-

els [1]. They describe an off-shell coupling of a dynamical (1,4,3) multiplet to a gauged

1In the simplest case of SU(2) doublets one gets the standard fuzzy sphere [5, 6].
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(4,4,0) spin multiplet. They inherit the superconformal D(2, 1;α) invariance of the parent

super Calogero models [10] and realize a novel mechanism of generating a conformal poten-

tial ∼ x−2 for the dynamical bosonic variable, with a quantized strength. Soon after, the

construction was generalized by replacing the dynamical (1,4,3) multiplet with a (4,4,0)

or a (3,4,1) one, but still keeping the (4,4,0) spin multiplet [11–14]. The larger num-

ber of dynamical bosons allowed for Lorentz-force-type couplings to non-abelian self-dual

background gauge fields in a manifestly N=4 supersymmetric fashion [12, 14]. Here, the

presence of the spin variables is essential for going beyond abelian backgrounds. It has

been conjectured in [2, 3] that these compound supersymmetric mechanics models may be

also relevant to the description of N=4 supersymmetric black holes.

In the present paper, we entertain a different generalization of the (1,4,3)–(4,4,0)

model, by replacing the (4,4,0) spin multiplet with a linear (3,4,1) multiplet. For the

dynamical multiplet, we remain with the (1,4,3) one, postponing other choices to future

study. We employ the N=4, d=1 harmonic superspace approach [15, 16] for the off-shell

description of the N=4 multiplets. To keep the treatment as general as possible, we re-

quire only N=4, d=1 Poincaré invariance, which includes N=4 superconformal systems

as a subclass.

What is the effect of changing the spin multiplet? In the (4,4,0) case [2, 3], the bosonic

variables form SU(2) doublets and after quantization span an oscillator-type Heisenberg

algebra. The fuzzy sphere arises from applying a quantum version of the S 3 → S 2 Hopf

fibration. In the (3,4,1) case considered here, in contrast, the elementary bosonic variables

va, a = 1, 2, 3 , form an SU(2) triplet. The WZ action for the (3,4,1) multiplet produces

scalar U(v) and vector Aa(v) potentials in the component action, which are related by

the three-dimensional Bogomolny equation rot ~A = gradU. The scalar potential U must

be a harmonic function in R3 ∋ {va} and is related to the dynamical bosonic variable x

of the (1,4,3) multiplet by the constraint U = x from the superfield coupling of the two

multiplets. As a result, only two bosonic degrees of freedom remain independent in the

(3,4,1) multiplet. Being semi-dynamical (i.e. described by a Lagrangian of first order in

time derivatives), these are the genuine spin variables.

This separation of degrees of freedom carried by the three-vector va has a remarkable

consequence. The set of Hamiltonian constraints implies a variant of the celebrated Nahm

equations for the vector va, with the dynamical combination of the latter’s components as

the corresponding evolution parameter. These Nahm equations play a very fundamental

role: they represent the necessary and sufficient conditions for N=4, d=1 Poincaré su-

persymmetry in our model. This phenomenon persists in the quantum theory: the N=4

supercharges and quantum Hamiltonian constitute the Poincaré superalgebra if and only

if the quantum operators v̂a satisfy the operator version of the Nahm equations.

The two spin degrees of freedom encoded in the vector va are described covariantly by

a constrained three-vector ℓa, a = 1, 2, 3. The constraint x = U and the Dirac brackets of

ℓa then determine the geometry of the spin space. In the one- and special multi-monopole

configurations we shall consider, the spin variables describe a fuzzy two-sphere. After
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canonical quantization à la Dirac, they directly yield an SU(2) algebra.2 For the one-

monopole situation, these features could actually be expected from the results of [2] by

way of a special (non-Wess-Zumino) gauge choice. In the two-monopole case, only a U(1)

symmetry survives, and we propose to use as a canonically conjugated pair of spin variables

the polar angle ϕ = arctan(ℓ2/ℓ1) and the U(1) generator ℓ3. This choice allows us to take

advantage of the Moyal-bracket formalism for the Weyl-ordered quantum variables.

The WZ action used to describe the (3,4,1) spin multiplet has a consistent off-shell

superfield realization only within N=4 harmonic superspace. For this reason, in section 2

we start with the harmonic superfield action of the coupled (1,4,3)–(3,4,1) system and

then derive the corresponding component action. In section 3 we analyze the bosonic limit

of this system. We present the Hamiltonian formulation for a general scalar potential and

show how the classical SU(2) Nahm equations appear in this framework. In the one- and

two-monopole configurations we discuss in detail the definition of the spin variables and

perform the quantization. The full supersymmetric systems are considered in section 4.

We explain the relationship between N=4 supersymmetry and the Nahm equations at

the classical and quantum level. Section 5 provides a short summary of our results and

discusses peculiarities of the multi-monopole situation.

2 Superfield content and action

We shall deal with the off-shell superfield action

S = SX+Sint+SWZ =

∫

µH L(X)+
i

2
b

∫

µ
(−2)
A V (L+++c++)− i

2
γ

∫

µ
(−2)
A L

(+2)(L++, u) .

(2.1)

Here, c++ = ciku+i u
+
k . The renormalization constants γ and b, as well as the constant

triplet cik, are parameters of the model. Below they will be appropriately fixed, either by

redefining component fields or by using some (broken) symmetries. For instance, the norm

of the vector cik can be fixed at any non-zero value by properly rescaling L++ and the

parameter b.

The N = 4 superfields X and L++ accommodate the off-shell (1,4,3) and (3,4,1) mul-

tiplets, their precise definition is given below. The analytic superfield V = V(ζ, u) is the

prepotential for the (1,4,3) multiplet related to the superfield X(t, θi, θ̄
i) by the harmonic

integral transform [17]

X(t, θi, θ̄
i) =

∫

duV(tA, θ+, θ̄+, u)
∣

∣

∣

θ±=θiu±
i
, θ̄±=θ̄iu±

i

. (2.2)

The definition (2.2) is invariant under the gauge transformation

δV = D++Λ−− , Λ−− = Λ−−(ζ, u) . (2.3)

The term proportional to c++ in (2.1), i.e. i

∫

µ
(−2)
A V c++, is the FI term for the (1,4,3)

multiplet.

2In contrast to the (4,4,0) spin multiplet case, where the spin variables form a Heisenberg algebra upon

quantization, while the fuzzy sphere and SU(2) group are recovered through a quantum Hopf fibration [2].
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Next two subsections contain a brief characterization of the linear (1,4,3) and (3,4,1)

multiplets.

2.1 The (1,4,3) multiplet

The analytic prepotential formulation of the (1,4,3) multiplet as given in (2.2), (2.3) was

proposed in [17] in the framework of the general N=4, d=1 superfield gauging proce-

dure [18]. This formulation was recently employed in [2, 3] in the context close to the

subject of the present paper.

In the ordinary N=4 superspace parametrized by the coordinates θi, θ̄
i and t the

(1,4,3) multiplet is described by the superfield X(t, θi, θ̄
i) subjected to the constraints [19]

DiDiX = 0 , D̄iD̄
i
X = 0 , [Di, D̄i]X = 0 , (2.4)

where Di = ∂/∂θi − iθ̄i∂t, D̄i = ∂/∂θ̄i − iθi∂t are spinor covariant derivatives.3 The θ

expansion of this superfield is as follows

X(t, θi, θ̄
i) = x+ θiχ

i + χ̄iθ̄
i + θiθ̄kKik −

i

2
(θ)2χ̇iθ̄

i − i

2
(θ̄)2θi ˙̄χ

i +
1

4
(θ)2(θ̄)2ẍ , (2.5)

with (θ)2 ≡ θiθi, (θ̄)2 ≡ θ̄iθ̄i . The first term in the action (2.1), SX =

∫

dt d4θL(X) , where

d4θ = 1
4

∂
∂θ̄i

∂
∂θ̄i

∂
∂θi

∂
∂θi

, has the following component form

SX =

∫

dt
[

L
′ẍ− iL′′

(

˙̄χkχk − χ̄kχ̇k

)

+
1

2
L
′′KikKik − L

′′′Kikχiχ̄k +
1

4
L
(IV )χiχ

iχ̄kχ̄k

]

.

(2.6)

Here, L′, L′′, L′′′, L(IV ) are functions of x , and primes mean differentiation with respect

to x: L′ = L′(x), etc.

It is easy to see that the prepotential representation (2.2) solves the constraints (2.4).

Expressing Di = D−u+i −D+u−i and D̄i = D̄−u+i −D̄+u−i and using the only non-vanishing

anticommutation relations

{D+, D̄−} = −{D−, D̄+} = −2i∂t , (2.7)

we find that the constraints (2.4) are satisfied as a direct consequence of the analyticity

conditions for V
D+ V = D̄+ V = 0 . (2.8)

To be convinced that V indeed describes the (1,4,3) multiplet we need to exploit the

gauge freedom (2.3). It can be used to remove an infinite set of gauge degrees of freedom

from V and to bring it into the Wess-Zumino gauge form

V(tA, θ+, θ̄+, u±) = x(tA)− 2 θ+χi(tA)u
−
i − 2 θ̄+χ̄i(tA)u

−
i + 3 θ+θ̄+Kik(tA)u

−
i u

−
k , (2.9)

3Our N=4 superspace conventions are the same as in refs. [12, 14] and in our recent review [4]. They

differ from those used, e.g., in [16–18] by the sign of the evolution parameter t. The advantage of this choice

is that it directly yields the correct sign of the fermionic kinetic term and, consequently, the sign ‘plus’

in front of the right-hand side of the quantum supersymmetry algebra anticommutator, {Q,Q†} = 2H .

Quantization of N=4 supersymmetric mechanics with the conventions of [16–18] can be found in [3].

– 4 –
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where tA = t+i(θ+θ̄−+θ−θ̄+). The fields x(t), χi(t), χ̄i(t), Kik(t) are the same as in (2.5).

To preserve this gauge, the standard N = 4 supersymmetry transformations of V should

be accompanied by a proper field-dependent gauge transformation with a composite Λ−−.

2.2 The linear (3,4,1) multiplet and its WZ action

The linear N=4 multiplet is accommodated by the even analytic superfield L++(ζ, u)

subjected to the additional harmonic constraint [16]

D++ L++ = 0 . (2.10)

The constraints (2.10) can be directly solved. The off-shell component content of the

linear multiplet is comprised by the fields vij = vji, B, ψi and ψ̄i. They enter the θ

-expansion of the superfield L++ subjected to (2.10) as [16]

L++ = v++ + θ+ψ+ + θ̄+ψ̄+ − 2i θ+θ̄+
(

v̇+− +B
)

, (2.11)

where v++ = viju+i u
+
j , v

+− = viju+i u
−
j , ψ

+ = ψiu+i and ψ̄+ = ψ̄iu+i .

When taken separately, the last (WZ) term in the action (2.1), SWZ , provides an

example of supersymmetric Chern-Simons mechanics [20–24]. In components, it has the

following form

SWZ = −γ
∫

dt du
∂L(+2)(v++, u)

∂v++

(

v̇+− +B
)

− i

2
γ

∫

dt du
∂2L(+2)(v++, u)

∂(v++)2
ψ̄+ψ+ .

It can be rewritten as

SWZ = −γ
∫

dt
(1

2
Aikv̇

ik +
i

2
Rikψ̄

(iψk) + UB
)

, (2.12)

where

Aik = 2

∫

duu+(iu
−
k)

∂L++

∂v++
, Rik =

∫

duu+i u
+
k

∂2L++

∂(v++)2
. U =

∫

du
∂L++

∂v++
.

(2.13)

From the definition of these potentials follow the relations between them:

△R3U = 0 , △R3Aik = 0 , ∂ikAik = 0 , (2.14)

∂ijAkl − ∂klAij = (ǫik∂jl + ǫjl∂ik)U , (2.15)

Rik = ∂ikU . (2.16)

Here, ∂ik = ∂/∂vik and △R3 = ∂ik∂ik is Laplace operator on R3.

Eqs. (2.14), (2.15) are recognized as the equations defining the monopole (static) so-

lution for a self-dual Maxwell or gravitation fields in R4 (see, for example, [25] and refs.

therein). Namely, the non-trivial physics arises in the presence of singularities in U. These

singularities lead to a non-trivial definition of the background vector gauge potential Aij

which necessarily involves the Dirac strings. This property requires the use of multiple

covering (or the fibre bundle formalism) of the v-space for the correct definition of the

potential [25]. Although we will sometimes give the expression for Aij , analysis of our

system does not require knowledge of the exact expression for this vector potential. The

Hamiltonian analysis of our system will deal solely with the field strengths.

– 5 –
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2.3 The V - L++ interaction

The second term in (2.1), Sint, describes an interaction of the (1,4,3) and (3,4,1) mul-

tiplets. Its form is uniquely determined by requiring it to be invariant under the gauge

transformations (2.3). It has the following simple component representation

Sint =
i

2
b

∫

µ
(−2)
A V (L++ + c++) (2.17)

= ib

∫

dt

[

− ixB +
1

2

(

χ̄kψk − ψ̄kχk

)

+
1

2
Kij(vij + cij)

]

.

2.4 The total component action

After summing up the component actions (2.6), (2.12) and (2.17), the total action (2.1) in

terms of the component fields reads

S =

∫

dt

[

L
′ẍ− iL′′

(

˙̄χkχk − χ̄kχ̇k

)

+
1

2
L
′′KikKik − L

′′′Kikχiχ̄k +
1

4
L
(IV )χiχ

iχ̄kχ̄k

+ b xB +
i

2
b
(

χ̄kψk − ψ̄kχk

)

+
i

2
bKij(vij + cij) (2.18)

− 1

2
γAikv̇

ik − i

2
γ Rikψ̄

(iψk) − γ UB
]

.

Next we should use the algebraic equations of motion for the auxiliary fields Kik, ψk

and ψ̄k

Kik=(L′′)−1

[

L
′′′χ(iχ̄k)−

i

2
b (vik+cik)

]

, ψi=−bγ−1(R−1)ikχ
k , ψ̄i=−bγ−1(R−1)ikχ̄

k ,

where (R−1)ik = 2Rik/(RlmRlm) is inverse of Rik defined in (2.16). Integrating out these

auxiliary fields from (2.18), we obtain the action in terms of physical fields only:

S =

∫

dt

[

L
′ẍ+

1

8
b2(L′′)−1(vij + cij)(vij + cij)−

1

2
γAikv̇

ik − (γ U− b x)B

− iL′′
(

˙̄χkχk − χ̄kχ̇k

)

− i

2
b
(

(L′′)−1
L
′′′(vik + cik) + bγ−1(R−1)ik

)

χiχ̄k (2.19)

+
1

4

(

L
(IV ) − 3

2
(L′′)−1(L′′′)2

)

χiχ
iχ̄kχ̄k

]

.

The renormalization constants b and γ mark the contributions of the superfield in-

teraction and WZ terms to the physical component action. They can be converted into

some non-zero numbers by a proper rescaling of the variables vik, B and the potential U.

Hereafter, we set b = 1, γ = 1.

3 Bosonic limit

3.1 Lagrangian, Hamiltonian and constraints

It is instructive to look first at the bosonic limit of the action (2.19). It reads:

Sbose =

∫

dt

[

− L
′′ẋẋ+

1

8
(L′′)−1(vij + cij)(vij + cij)−

1

2
Aikv̇

ik +B (x− U)

]

. (3.1)

– 6 –
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We see that the effect of adding the superfield coupling Sint between the (1,4,3) and

(3,4,1) multiplets is two-fold: first, there appears an oscillator-type potential term for

the bosonic fields vik of the (3,4,1) multiplet (with the additional dependence on x) and,

second, the auxiliary field B appears as a Lagrangian multiplier for the constraint

x− U(v) = 0 . (3.2)

Here, the first term comes from Sint, while the second one from the (3,4,1) WZ term SWZ .

If we would leave, for the (3,4,1) multiplet, the WZ action SWZ alone we would obtain

the meaningless condition U = 0. On the contrary, the constraint (3.2) is quite reasonable,

expressing bosonic field of one N = 4 multiplet (viz. (1,4,3)) through a function of bosonic

fields of another (3,4,1) multiplet. Also, the potential term for vik arises as a result of elim-

ination of the auxiliary fields Kik of the (1,4,3) multiplet. Thus we observe a new mecha-

nism of producing the potential terms in such a coupled system. Even more interesting, af-

ter substituting (3.2) into the kinetic term of x, we finally obtain a non-trivial target metric

∼ ∂ikU∂jlUv̇ikv̇jl, (3.3)

while originally there was no any kinetic term for vik, only the WZ term. This situa-

tion should be contrasted with the (3,4,1) supersymmetric mechanics models considered

in [16, 26], in which the invariant superfield actions from the very beginning involve both

the kinetic and WZ terms for the (3,4,1) multiplet. In this kind of N=4 mechanics models

the kinetic term of vik appears in parallel with a term bilinear in B, and elimination of

B by its algebraic equation of motion generates a potential ∼ (U)2 . No any additional

contribution to the target vik metrics comes from the WZ terms in this case. The target

space metric for one linear (3,4,1) multiplet is always conformally-flat, while the induced

metric (3.3) for generic U does not feature this property.

However, the metric (3.3) is clearly degenerated. One can pass to the new parametriza-

tion of the target space, treating U as one of the new coordinates. Then two remaining

coordinates will not appear in the metric part at all and will contribute only the WZ cou-

pling. Thus there remains only one genuine dynamical coordinate and two independent

spin variables. Taking this into account, for quantization it proves more convenient not

to explicitly solve the constraint (3.2) at all, viewing x as an independent phase variable.

Eq. (3.2) will be treated as a second-class hamiltonian constraint, on equal footing with

some other second-class constraints associated with the action (2.19).

To simplify things, in what follows we focus on the option with L| = −1
2x

2 (here, |
denotes restriction to the θ-independent parts). In terms of superfields, it corresponds to

the particular choice L(X) = −1
2X

2 in (2.1). The action (3.1) takes the form

Sbose =

∫

dt

[

ẋẋ− 1

8
(vij + cij)(vij + cij)−

1

2
Aikv̇

ik +B (x− U)

]

. (3.4)

Let us introduce the three-vector notation, passing from the spinor triplet indices (ik)

to the vector ones a = 1, 2, 3:

vik = iσika va , va =
i

2
σika vik , |v|2 = vava =

1

2
vikvik , (3.5)

– 7 –
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where σika = ǫijσaj
k, σaik = ǫkjσai

j and σai
k are the standard Pauli matrices. Note that

AikBik = 2AaBa, ∂a = i σika ∂ik and ∂ik = i
2 σ

ik
a ∂a .

In the vector notation, the constraint (2.16) for Ra is rewritten as:

Ra =
1

2
∂aU . (3.6)

The action (3.4) takes the form

Sb =

∫

dt

[

ẋẋ− 1

4
(va + ca)(va + ca)−Aav̇a +B (x− U)

]

, (3.7)

while the constraints (2.14), (2.15) on the potentials Aa and U are rewritten as:

∂a∂aU = 0 , (3.8)

∂a∂aAb = 0 , ∂aAa = 0 , (3.9)

Fab := ∂aAb − ∂bAa = −ǫabc∂cU . (3.10)

Note that the Laplace equation (3.8) follows already from (3.10) as the condition ensuring

the Bianchi identity for Fab .

Each solution of (3.8) produces some static solution for the self-dual Maxwell potential

Aa . For what follows, it is worth recalling the general multi-center solution. It is given by

U = Un := g0 +
n
∑

s=1

gs

|~v − ~ks|
, (3.11)

where g0 and gs are constants. Constant vectors ~ks can be interpreted as defining the

positions of the magnetic monopole charges. The constant g0 specifies only asymptotic

properties of the potential (3.11). Taking into account the constraint (3.14), x = U,

the presence of non-zero constant g0 in U amounts to the trivial shift of the x variable.

Therefore, without loss of generality, we assume g0 = 0 below. For the potential (3.11),

the solution of the equations (3.9), (3.10) for the 3-vector potential ~A = (Aa) reads

~A =
n
∑

s=1

~A s , ~A s = gs
~ns × (~v − ~ks)

|~v − ~ks|
(

|~ns||~v − ~ks|+ ~ns(~v − ~ks)
) , (3.12)

where the non-physical 3-vectors ~ns parametrize the Dirac string.4

Let us now perform the Hamiltonian analysis of the system with the action (3.7).

The relevant constraints are

πa ≡ pa +Aa ≈ 0 , (3.13)

h ≡ x− U ≈ 0 , (3.14)

and the Hamiltonian reads:

H =
1

4
p2 +

1

4
(va + ca)(va + ca) + λaπa +Bh , (3.15)

4Recall that the Dirac monopole field strength does not display dependence on these variables.
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where λa and B are the Lagrange multipliers. Poisson brackets of the con-

straints (3.13), (3.14) are

[πa, πb]P = −Fab , [πa, h]P = ∂aU , (3.16)

where Fab was defined in (3.10). Determinant of the matrix of the right-hand sides of (3.16)

is (∂aU∂aU)
2 6= 0.5 Hence, all four constraints (3.13), (3.14) are second class. The Dirac

brackets corresponding to them are

[A,B]
D
=[A,B]

P
+
ǫabc∂cU

∂pU∂pU
[A, πa]P [πb, B]

P
+

∂aU

∂pU∂pU

(

[A, πa]P [h,B]
P
− [A, h]

P
[πa, B]

P

)

.

(3.17)

For the phase variables, they yield

[x, p]
D
= 1 , (3.18)

[va, x]D = 0 , [va, p]D =
∂aU

∂pU∂pU
, (3.19)

[va, vb]D =− ǫabc
∂cU

∂pU∂pU
. (3.20)

Now we have two independent physical phase variables (x and p) and two independent

spin variables, hidden in va. Indeed, as follows from the examples considered below, the

constraint (3.14) can be treated as the equation defining a two-dimensional surface in the

R3 manifold parametrized by the variables va.

3.2 Nahm equations

The Dirac brackets (3.19) and (3.20) guarantee the fulfillment of the equations

[p, va]D =
1

2
ǫabc [vb, vc]D . (3.21)

Surprisingly, they are none other than a version of the famous Nahm equations [27–29],

with the Dirac bracket instead of the commutators of the gauge group generators appearing

in the original form of these equations. We can define the “genuine” spinning variables

ℓa, so that they decouple from the dynamical degrees of freedom x, p with respect to

the Dirac brackets, i.e. [ℓa, x]D = [ℓa, p]D = 0. Then [p, va]D = − ∂
∂xva := −v′a and the

equations (3.21) are rewritten as

v′a = −1

2
ǫabc [vb, vc]D (3.22)

for va=va(x, ℓa). In this form they coincide with the generalized (the so called “SDiff(Σ2)”)

Nahm equations, as given, e.g., in [30–32].

The mechanical model we are considering provides a dynamical realization of the close

interconnection between the three-dimensional Laplace equation and the SDiff(Σ2) Nahm

equations established in [32]. Indeed, it is just the dim-3 Laplace equation (3.8) which

5The case when ∂aU = 0 and U = const, Aa = 0, is trivial and so we do not consider it.
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ensures the self-consistency of the set of Dirac brackets (3.19), (3.20), which in turn imply

the Nahm equations (3.22). Below we will see that the Nahm equations (3.21) and their

quantum counterpart ensure the existence of the N=4 supersymmetry in models with the

(3,4,1) spin multiplet, both at the classical and the quantum levels.

In the next subsections we consider some simple examples of the models associated

with the action (3.4).

3.3 The one-monopole case

Let us consider first the simplest one-monopole case, in which

U = U1 :=
g

|~v − ~k|
, Aa = g

ǫabcnb(vc − kc)
|~v − ~k|

(

|~n||~v − ~k|+ ~n(~v − ~k)
) . (3.23)

The constant vector ~k can be absorbed into the redefinition of va, and in terms of ṽa =

va − ka the potential U1 possesses manifest SU(2) ∼ SO(3) invariance. The “magnetic

field” ∇× ~A points along the radial direction, ∇× ~A ∼ ~̃v, i. e.

v̂aAa = 0 . (3.24)

Obviously, in this case the whole Lagrangian (3.7) is SU(2) invariant under the condition

~k = −~c , (3.25)

where ca = i
2σ

ik
a cik .

According to [16], the one-monopole potential in (3.23) with ~n = ~k/|~k| can be produced

by the following analytic superfield Lagrangian L(+2)

L
(+2) ∼ L++

(

1 +
√
1− k−−L++

)√
1− k−−L++

, (3.26)

which, besides N=4, d=1 Poincaré supersymmetry, also exhibits N=4 superconformal

invariance associated with the supergroup D(2, 1;α) (it involves as a subgroup that SU(2)

which provides invariance of the bosonic action (3.7)). The total superfield action (2.1),

with L(X) = −1
2X

2 , exhibits the particular N=4 superconformal SO(4|2) invariance,

provided the condition (3.25) is imposed [2].

The constraint (3.14), i.e. x = U, for the potential (3.23) becomes

x = g/|~v − ~k| . (3.27)

Now we introduce the new variables

ℓa = x (va − ka) = g
va − ka
|~v − ~k|

. (3.28)

The constraint (3.14) (or, equivalently, (3.27)) then amounts to the condition

ℓaℓa = g2 . (3.29)
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The Dirac brackets (3.18)–(3.20) are rewritten as

[x, p]
D
= 1 , (3.30)

[ℓa, x]D = 0 , [ℓa, p]D = 0 , (3.31)

[ℓa, ℓb]D = ǫabcℓc . (3.32)

Thus the variables ℓa parametrize a sphere S2 with the radius g and generate SU(2) group

with respect to the Dirac brackets. The Nahm equations (3.22) are evidently satisfied by

va = ℓa
x + ka as a consequence of (3.32). After quantization, the variables ℓa are going to

parametrize a fuzzy sphere, with the relation (3.29) becoming the SU(2) Casimir condition

for a fixed spin (“fuzziness”).

In the one-monopole case the Lagrangian in (3.7) takes the form

Lbose = ẋẋ− 1

4

|~ℓ+ x(~k + ~c)|2
x2

− Ãaℓ̇a , (3.33)

where

Ãa = g
ǫabcnbℓc

|~ℓ|
(

|~n||~ℓ|+ ~n~ℓ
) ,

i.e. it is a sum of the conformal mechanics Laqrangian and SU(2) WZ term. Respectively,

the Hamiltonian (3.15) reads

H =
1

4

(

p2 +
|~ℓ+ x(~k + ~c)|2

x2

)

. (3.34)

The requirement of preservation of the vector ~ℓ, [H, ℓa]D = 0, leads just to the condi-

tion (3.25). Then, the bosonic Hamiltonian finally becomes

H =
1

4

(

p2 +
ℓaℓa
x2

)

=
1

4

(

p2 +
g2

x2

)

. (3.35)

The one-monopole system under consideration can be quantized in a few different ways,

depending on the quantum realization of the spin variables ℓa.

Let us firstly consider one possible quantization scheme, which explicitly takes into

account the properties of fuzzy sphere. After quantization variables ℓa become operators

ℓa → ℓ̂a . (3.36)

The commutation relations of ℓ̂a are determined by the Dirac brackets (3.32)6 and form

the su(2) algebra

[ℓ̂a, ℓ̂b] = i~ ǫabcℓ̂c . (3.37)

6We quantize by replacing [A,B}
D
=C → [Â, B̂}= i~ Ĉ for basic variables and explicitly keep the Planck

constant ~ in all quantum expressions, having in mind that in section 4 the quantum analogs of some classical

quantities will be sought for as a power series in ~ .
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The constraint (3.29) should hold for the operators ℓ̂a in the strong sense, because we

quantize Dirac brackets. On the other hand, the quantity ℓ̂aℓ̂a is the Casimir operator for

su(2). Therefore, for unitary representations it must be equal to

ℓ̂aℓ̂a = ~
2n(n+ 1) , (3.38)

where n is a non-negative half-integer or integer number, i.e. 2n ∈ N. Thus, in the

process of quantization the classical constant g2 present in the constraint (3.29) should be

substituted as

g2 → ~
2n(n+ 1), (3.39)

i.e. it gets quantized.

Then, for ℓ̂a we can use the standard realization by (2n + 1)×(2n + 1) matrices. As

a result, the wave function has (2n + 1) components and describes a non-relativistic spin

n conformal particle. The corresponding Hamiltonian is (3.35), in which the replace-

ments (3.36), (3.39) are done. The full set of the conformal symmetry generators will be

given below, while considering the supersymmetric case.

Now we apply to a different quantization method which will be also used in the two-

center case. Its main idea is to describe the spinning sector by two independent variables.

One can define the variables

ℓ3 and ϕ := arctan

(

ℓ2
ℓ1

)

, (3.40)

which still represent the two-sphere and have the canonical Dirac bracket

[ϕ, ℓ3]D = 1 . (3.41)

Being rewritten through the variables ϕ and ℓ3, the WZ term in (3.33) takes the very

simple form

−
∫

Ãa dℓa =

∫

ℓ3 dϕ . (3.42)

It is easy to show that the WZ action (3.42) is invariant (up to a total time derivative

in the integrand) under the SU(2) transformations realized as a particular subgroup of the

general group of symplectic diffeomorphism of the surface (ℓ3, ϕ):

δϕ =
∂f(ϕ, ℓ3)

∂ℓ3
, δℓ3 = −

∂f(ϕ, ℓ3)

∂ϕ
, (3.43)

f(ϕ, ℓ3) = a3ℓ3 +
√

g2 − ℓ23 (a1 cosϕ+ a2 sinϕ) , (3.44)

where a1,2,3 are properly normalized parameters of SU(2).7 This SU(2) is a symmetry of

the classical theory, so it is natural to require it to be preserved at the quantum level too.

The classical SU(2) generators can be constructed as

ℓ1 =
√

g2 − ℓ23 cosϕ , ℓ2 =
√

g2 − ℓ23 sinϕ , ℓ3 , (3.45)

7The WZ term (3.42) is invariant (up to a total t-derivative) under the full symplectic diffeomorphism

group [22–24]. However, this invariance is broken down to SU(2) in the full Lagrangian with fermions.
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or

ℓ1 = g sinϑ cosϕ , ℓ2 = g sinϑ sinϕ , ℓ3 = g cosϑ , (3.46)

where ϑ is the second (azimuthal) angle on the sphere. It is easy to check that these

quantities form the classical SU(2) algebra (3.32) with respect to the Dirac bracket (3.41)

(and in fact generate the transformations (3.43)). However, the direct passing to the

quantum case via replacing the Dirac brackets by commutators can be plagued by the

ordering ambiguities. It is convenient to pass to the complex variable

z := e iϕ cot (ϑ/2) , (3.47)

[z, z̄]
D

=
i

2g
(1 + zz̄)2 . (3.48)

In terms of z and z̄ the generators (3.45) take the form

ℓ+ = ℓ1 + iℓ2 =
2gz

1 + zz̄
= 2gz − z2 2gz̄

1 + zz̄
,

ℓ− = ℓ1 − iℓ2 =
2gz̄

1 + zz̄
, (3.49)

ℓ3 = −g 1− zz̄
1 + zz̄

= z
2gz̄

1 + zz̄
− g .

Since
[

z,
2gz̄

i(1 + zz̄)

]

D

= 1 , (3.50)

the quantum counterpart of 2gz̄/(1 + zz̄) plays the role of ∂z in the holomorphic represen-

tation, i.e.
2gz̄

(1 + zz̄)
→ ∂

∂z

after quantization. Then the holomorphic quantum realization of the SU(2) genera-

tors (3.49) is as follows [22, 23, 33–35]

ℓ̂1 = ~

[

1

2
(1− z2)∂z + gz

]

,

ℓ̂2 = ~

[

i

2
(1 + z2)∂z − igz

]

,

ℓ̂3 = ~ (z∂z − g) ,

(3.51)

where, for coherence, we again restored the Planck constant. The possible ordering ambi-

guity can always be absorbed into a redefinition of the parameter g.

At fixed g, the Hilbert space is spanned by 2g + 1 basis wave functions 1, z, ..., z2g

with the inner product defined as [22, 23, 33–35]

〈Ψ,Φ〉 = 2g + 1

2πi

∫

S2

dzdz̄

(1 + zz̄)2g+2
Ψ̄(z̄)Φ(z) . (3.52)

The norms |Φ|2 = 〈Φ,Φ〉 are finite, and this property amounts to saying that Φ and Ψ are

square-integrable (and hence well defined) functions on CP1 ∼ S2. In the realization (3.51),
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ℓ̂aℓ̂a = ~2g(g+1) , i.e. the basis functions span an irreducible spin g multiplet of the group

SU(2).8 Thus in this quantization scheme the original constant g is identified with the

spin quantum number n ∈ Z,Z + 1
2 , as opposed to the quantization formula (3.39) of the

previously employed method.9

3.4 The two-monopole case

This case corresponds to keeping two terms in the general solution (3.11) (with g0 = 0)

of the Laplace equation for the function U. Without loss of generality, we can place the

singularity point on the axis z, other possible choices are obtained by proper rotations and

shift of the coordinate system. Thus, the two-monopole potential can be chosen in the form

U ≡ U2 :=
g1

|~v − ~k1|
+

g2

|~v − ~k2|
, (3.53)

where
~k1 = (0, 0, k1) , ~k2 = (0, 0, k2) . (3.54)

The corresponding analytic superfield Lagrangian L(+2) is a sum of two Lagrangians (3.26),

with the parameters kik1 and kik2 . It possesses only U(1) internal symmetry and does not

exhibit superconformal symmetry (unless kik1 = kik2 is assumed, that would take us back

to the one-monopole case).

To quantize the system, we can proceed by analogy with the one-monopole case. We

should pass from the variables va to some new variables, such that their Dirac brackets are

maximally simple. One of these variables is the “dynamical” degree of freedom x , whereas

two residual degrees of freedom are spin ones. In these new variables, the spin sector

should decouple from the “dynamical” sector (x, p). This separation of the true dynamical

degrees of freedom from the “semi-dynamical” spin degrees of freedom is a necessary step

in performing quantization of the relevant Dirac brackets.

Using the basic brackets (3.18)–(3.20), it is direct to check that the quantity

ℓ3 :=
g1(v3 − k1)
|~v − ~k1|

+
g2(v3 − k2)
|~v − ~k2|

(3.55)

commutes with the variables of the dynamical sector:

[ℓ3, p ]D = [ℓ3, x ]D = 0 . (3.56)

The second semi-dynamical spin degree of freedom is the polar angle coordinate of ~v

ϕ := arctan

(

v2
v1

)

, (3.57)

[ϕ, p ]
D
= [ϕ, x ]

D
= 0 . (3.58)

8In fact, requiring the norm of Φ(z) to be convergent with respect to the inner product (3.52) already

restricts 2g to be integer and Φ(z) to be a polynomial in z of degree 2g.
9An equivalent approach is the Gupta-Bleuler (or “geometric”) quantization on the two-sphere (see

e.g. [34, 35]).
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Moreover, the variables (3.55) and (3.57) are conjugate to each other with respect to the

Dirac bracket:

[ϕ, ℓ3 ]D = 1 . (3.59)

Thus, the phase space of the model decouples in the two sectors: one is the dynamical

sector spanned by the pair (x, p) , whereas the pair (ϕ, ℓ3) defines the semi-dynamical spin

sector. Similarly to the one-center case, the WZ term in the action (3.7) have the form
∫

dt ℓ3 ϕ̇ in terms of the variables ϕ and ℓ3.

Note that the variable ℓ3 has the clear physical meaning: it is just the Nöther conserved

charge for the O(2) phase transformations

δv1 = α v2 , δv2 = −α v1 , δv3 = 0 , (3.60)

when ca points along the third axis, ca = (0, 0, c) . Namely this case, when the vector ~c is

collinear to the vectors ~k1,2 and

[ℓ3, H]
D
= 0 , (3.61)

will be considered below.

The inverse relations va = va(x, ℓ3, ϕ) are more complicated, and in what follows they

will not be used in the closed form. Rather, we will use the relations (3.53), (3.55), (3.57)

to express |~v| and v3 in terms of x=U and ℓ3 via some recurrence procedure with respect

to a small parameter. Let us illustrate this on two cases.

i) It is the case when the location of the second pole tends to infinity. Using the notation

g1 = g , ~k1 = ~k , ~k2 = ~k + ~k/ε ,

we find that in the limit ε→ 0, when

E =
ε2g2
k2
≪ 1 , g0 =

εg2
k
≪ 1 ,

the following relation holds

x = U2 ≡ U
′
2 :=

g

|~v − ~k|
+ 2E(v3 − k) + g0 . (3.62)

As was mentioned in section 3.1, a non-zero constant g0 in the general two-center

potential (3.11) can always be absorbed into a constant shift x → x′ = x− g0 . The

same can be done at each step of considering the ε expansion of the potential: an

additive constant in any order can be removed by a similar shift of x . In particular,

in (3.62) one can put g0 = 0 . Thus the only essential small parameter in the ε-

expansion will be E . We will omit the primes on x , hoping that this will not give

rise to any confusion.

Thus, in the limit of small ε the potential (3.62) is reduced to the sum of the one-

monopole potential (3.23) and a constant “electric background field potential” ∼
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~E(~v − ~k). The U(1) Nöther charge in the case of the potential (3.62) is given by the

expression

ℓ3 =
g(v3 − k)
|~v − ~k|

+ E
(

|~v − ~k|2 − (v3 − k)2
)

. (3.63)

Now we can invert the expressions (3.62), (3.63) to represent |~v| and v3 as a power

series in the small parameter E

v3 − k =
ℓ3
x

+ E
3ℓ23 − g2
x3

+O(E2) , (3.64)

√

(v1)2 + (v2)2 =

√

g2 − ℓ23
x

(

1 + E
3ℓ3
x2

)

+O(E2) . (3.65)

In the expansions (3.64), (3.65), the higher-order terms are determined by the

lower-order ones by the recurrence procedure, with taking account of the next orders

in (3.62) and (3.63), etc.

ii) The second limiting case corresponds to the situation when the distance between

poles tends to zero:

g1 = g2 = g/2 , ~k1 = ~k , ~k2 = ~k + ε~k .

In the limit ε→ 0 we obtain

x = U2 ≡ U
′′
2 :=

g

|~v − ~k|
+
d(v3 − k)
|~v − ~k|3

, (3.66)

where

d = εkg ≪ 1 .

The potential (3.66) is the sum of the one-monopole potential (3.23) and the

“electric dipolar potential” ∼ ~d(~v−~k)/|~v−~k|3. The generator of the U(1) symmetry

transformations in this case is expressed as

ℓ3 =
g(v3 − k)
|~v − ~k|

− d
|~v − ~k|2 − (v3 − k)2

|~v − ~k|3
. (3.67)

The expressions inverse to (3.66), (3.67) are represented in the form of a series in

the small parameter d as

v3 − k =
ℓ3
x

+ d
1

g
− d2 xℓ3

g4
+ d3

x2(3ℓ23 − g2)
g7

+O(d4) , (3.68)

√

(v1)2 + (v2)2 =

√

g2 − ℓ23
x

(

1 + d2
x2

2g4
− d3 2x

3ℓ3
g7

)

+O(d4) . (3.69)

Like in the previous case, higher-order terms in the expansions (3.68), (3.69) are

determined by the lower-order ones by recurrence, with taking into account the next

orders in d in (3.66) and (3.67).

– 16 –



J
H
E
P
0
6
(
2
0
1
2
)
1
4
7

Choosing, as in one-monopole case, ~c = −~k in the Hamiltonian (3.15) and using

there the expression (3.64)–(3.65) or (3.68)–(3.69) we obtain the Hamiltonian in

terms of the variables p, x and ℓ3 as a series in the relevant small parameters.

We observe that in the two-monopole case the expansion for v3 (see (3.64) and (3.68))

contains not only the linear terms in ℓ3 as in the one-monopoly case, but also terms

of the higher-order in this variable. The presence of these higher-order terms will

lead to the essential modification of the quantization procedure in the full-fledged

supersymmetric case.

In the expansions (3.64) and (3.68), we will leave only the first nontrivial corrections

quadratic in ℓ3. Note that in the considered case such terms appear in the third order

in d, while in the previous case already in the first order in E . This is the reason why

we restrict our attention to the first and third orders in the relevant ε expansions.

The commutator of the quantum operators ϕ̂ and ℓ̂3 corresponding to the classical

Dirac bracket (3.59) is

[ϕ̂, ℓ̂3 ] = i~ . (3.70)

Obviously, we can choose the natural angular-momentum representation for these operators

ℓ̂3 = −i~ ∂/∂ϕ , ϕ̂ = ϕ , 0 ≤ ϕ ≤ 2π . (3.71)

The wave function is then represented by the Fourier series

Ψ(x, ϕ) =
∞
∑

n=−∞

einϕψn(x) . (3.72)

The component d = 1 fields ψn(x) describe the states with a fixed value of the U(1)

“momentum” generator ℓ̂3 . We can keep only one component in the expansion (3.72), thus

choosing some fixed irreducible representation of U(1). This is sufficient for constructing

a quantum system which respects the same U(1) symmetry as in the classical case.

Alternatively, we could pick up a many-component wave function on which more general

SU(2) group is realized, in the same way as in one-monopole case (3.47)–(3.51). In this

case we will obtain a quantum system with the spinning sector still represented by fuzzy

sphere. Such a system will be considered in the next subsection.

3.5 A special multi-monopole case

Here we consider the potential of the form

U ≡ Ũ =
g

k
arcoth

(

|~v + ~k|+ |~v − ~k|
2k

)

, (3.73)

where ~k = (0, 0, k). By Euler homogeneity operator va∂a the potential (3.73) reproduces

the standard two-center potential (3.53) [32] (see also [36, 37]):

U2 = −va∂aŨ =
g

2

(

1

|~v + ~k|
+

1

|~v − ~k|

)

. (3.74)
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Besides the two poles at ~v = ±~k, the potential (3.73) possesses the third pole at ~v = 0 .

Choosing the potential in the form (3.73) makes it possible to define the spin variables

in a way similar to the one-monopole case and, what is most important, to quantize the

corresponding full-fledged supersymmetric model by analogy with that associated with

the one-monopole potential. We should pass from the variables va to the new triplet

of variables ℓa, such that their Dirac brackets with p vanish, [ℓa, p ]D = 0 . In terms

of these new variables, the spinning sector decouples from the “dynamical” sector (x, p).

This separation of the true dynamical degrees of freedom from the “semi-dynamical” spin

degrees of freedom is a necessary step in quantization of the relevant Dirac brackets.

We split va into the “radial variable” x and the spin ones ℓa by the following relations

v1 = f1(x) ℓ1 , v2 = f2(x) ℓ2 , v3 = f3(x) ℓ3 , (3.75)

where

f1 = f2 =
k

g sinh(kx/g)
, f3 =

k

g
coth(kx/g) . (3.76)

The functions fa thus defined satisfy the Euler equations10

f ′1 = −f2f3 , f ′2 = −f1f3 , f ′3 = −f1f2 . (3.77)

The Dirac brackets (3.18)–(3.20), being rewritten through the new variables, take the

form

[x, p]
D
= 1 , [ℓa, x]D = 0 , [ℓa, p]D = 0 , [ℓa, ℓb]D = ǫabcℓc , (3.78)

whereas the constraint (3.14) becomes the 2-sphere condition

ℓaℓa = g2 . (3.79)

The Hamiltonian (3.15) is rewritten as

H =
1

4
p2+

k2

4g2
sinh−2

(

kx

g

)

[

(ℓ1)
2 + (ℓ2)

2 +

(

cosh

(

kx

g

)

ℓ3 +
cg

k
sinh

(

kx

g

))2
]

, (3.80)

where we take ~c = (0, 0, c) in order to obey the requirement that ℓ3 has the vanishing Dirac

bracket with the Hamiltonian and hence generates U(1) symmetry of the system. Thus, we

obtain the Hamiltonian system which gives an opportunity to proceed to the quantization

along the same line as in the one-monopole case. Note that the relations (3.75) reproduce

the one-monopole solution (3.28) in the limit k → 0. In addition, the Nahm equations (3.22)

are satisfied with the Dirac brackets (3.78) and the Euler equations (3.77).

As opposed to the one-monopole model of section 3.1, where all the components of ℓa,

a = 1, 2, 3 , commute with x, p and Hamiltonian, the considered case is quite analogous

to the model based on the standard two-center potential (3.53), in which only ℓ3 can have

vanishing Dirac bracket with H,

[ℓ3, H]
D
= 0 , (3.81)

10Note that the functions fa are particle case of elliptic functions since cs(z;m) = ds(z;m) = 1/sinh(z),

ns(z;m) = coth(z) when |m| = 1.
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whereas

[ℓ1, H]
D
= −α ℓ2, [ℓ2, H]

D
= α ℓ1, α :=

k2ℓ3
2g2

. (3.82)

Therefore, only the third component ℓ3 is the ‘true’ conserved quantity in the considered

case, while ℓ1 and ℓ2 are not. However, the Dirac brackets (3.82) show that the evolution

of the variables ℓ1,2 with time amounts to their U(1) rotation with some field-dependent

parameter. Then the transformed vector

ℓ̃a ≃ ℓa + δt ℓ̇a = ℓa + δt [ℓa, H]
D

(3.83)

satisfies the same basic relations (3.78) of the deformed fuzzy sphere (with the replacement

ℓa → ℓ̃a). Thus, the (deformed) fuzzy sphere is preserved under the dynamical evolution

of the system and we can still use the standard quantum realization of its coordinates by

the (2n+ 1)×(2n+ 1) matrices, as described at the end of the section 3.1.

To summarize, we succeeded in performing the quantization of the bosonic limit of our

N=4 supersymmetric mechanics model in a closed form, not only in the superconformally-

invariant one-monopole case, but also in the special two-monopole case, which preserves

only d = 1 Poincaré supersymmetry. While the first case was already considered in [2],

based upon the (4,4,0) spin multiplet, the second option was not addressed before. We

managed to quantize due to passing to the proper spin variables with the clear geometric

meaning, based upon the requirement that the spin sector decouples from the physical

variables x and p. Although the new spin variables are related to the original variables

by the rather involved nonlinear transformations, they have simple Dirac brackets and,

therefore, admit a rather straightforward quantum realization. We fixed the redundancy

in the definition of the new spin variables by requiring them to form su(2) algebra as in

the one-monopole case, and so to parametrize a fuzzy sphere. This particular quantization

scheme is distinguished in that the spin variables have a simple matrix quantum represen-

tation. As distinct from the one-monopole case, this su(2) is not a genuine symmetry of

the system. Only one of the spin variables, just ℓ3, commutes with the Hamiltonian and

so generates the genuine U(1) symmetry. Nevertheless, the SU(2) algebra and its Casimir

operator at the fixed fuzziness are preserved under the time evolution.

4 Turning on supersymmetry

As in the previous section we consider the particular case with L| = −1
2 x

2. Then the total

action (2.19) takes the following form

S = Sb + Sf , (4.1)

where the pure bosonic part Sb was defined in (3.7), whereas the terms with fermionic

fields are

Sf = i
(

˙̄χkχk − χ̄kχ̇k

)

− i

2
(R−1)ikχiχ̄k . (4.2)
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The action (4.1) is invariant under the N=4 supersymmetry transformations

δx = −εiχi + ε̄iχ̄i ,

δχi = i ẋε̄i − i

2

(

vik + cik
)

ε̄k , δχ̄i = −i ẋεi −
i

2
(vik + cik) ε

k ,

δvij = −(R−1) k(i
[

εj)χk + ε̄j)χ̄k

]

, δB = −1

2

d

dt

[

(R−1) ik(ε
iχk + ε̄iχ̄k)

]

,

(4.3)

where εi, ε̄
i are the Grassmann parameters. The corresponding supercharges are

Qi = pχi +
(

vik + cik
)

χk −
1

2

(

x− U
)

(R−1) ikχk , (4.4)

Q̄i = p χ̄i −
(

vik + cik
)

χ̄k +
1

2

(

x− U
)

(R−1) ikχ̄
k . (4.5)

The full Hamiltonian has the form

H =
1

4
p2 +

1

8

(

vik + cik
)

(

vik + cik
)

+
i

2
(R−1)ikχiχ̄k −B

(

x− U
)

. (4.6)

Bosonic variables are subjected to the second class constraints (3.13), (3.14) and, as

before, we use Dirac brackets (3.17) for them. As a result, the last terms in the supercharges

and the Hamiltonian (4.4)–(4.6) vanish, and these quantities are finally expressed as

Qi = pχi + i (va + ca)σ
ik
a χk , Q̄i = p χ̄i − i

(

va + ca
)

σa ikχ̄
k , (4.7)

H =
1

4
p2 +

1

4
(va + ca)

(

va + ca
)

− χiσ
ik
a χ̄k ∂aU/(∂pU∂pU) , (4.8)

where we passed to the vector notations. Dirac brackets of the bosonic variables are the

same as in (3.18)–(3.20). Fermionic variables χi and χ̄i have the following non-vanishing

Dirac brackets:

{χi, χ̄k}D = − i
2
δ ik . (4.9)

We checked that the operators (4.7), (4.8) form N=4 supersymmetry algebra:

{Qi, Q̄k}D = −2i δ ikH , {Qi, Qk}
D
= [Qi, H]

D
= 0 . (4.10)

An important property of the supercharges (4.7) is that the basic relations of the

supersymmetry (4.10) are valid just because of the Nahm equations

[p, va]D =
1

2
ǫabc [vb, vc]D (4.11)

for the bosonic variables va. Indeed, the generators (4.7) have the following Dirac brackets

{Qi, Q̄j}
D
= 2i ǫij

[

1

4
p2 +

1

4
(va + ca)

(

va + ca
)

+
1

2

(

[p, va]D +
1

2
ǫabc [vb, vc]D

)

χkσ
kl
a χ̄l

]

+ i σija

(

[p, va]D −
1

2
ǫabc [vb, vc]D

)

χnχ̄n , (4.12)

{Qi, Qj}
D
= i σija

(

[p, va]D −
1

2
ǫabc [vb, vc]D

)

χnχn .
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From these expressions we observe that the N = 4 supersymmetry algebra (4.10) takes

place only provided the equations (4.11) are valid. As noticed in section 3.2, in the con-

sidered system the validity of the equations (4.11) is a consequence of the Dirac brack-

ets (3.18)–(3.20).

Quantum counterparts of the supercharges (4.7) are uniquely found to be

Q̂i = p̂ χ̂i + i (v̂a + ca)σ
ik
a χ̂k ,

ˆ̄Qi = p̂ ˆ̄χi − i
(

v̂a + ca
)

σa ik ˆ̄χ
k , (4.13)

where

{χ̂i, ˆ̄χk} =
1

2
~ δ ik . (4.14)

The anticommutators of the supercharges (4.13) are as follows

{Q̂i, ˆ̄Qj}=−2~ ǫij
[

1

4
p̂2 +

1

4
(v̂a + ca)

(

v̂a + ca
)

− i

2
~
−1

(

[p̂, v̂a] +
1

2
ǫabc [v̂b, v̂c]

)

χ̂kσ
kl
a
ˆ̄χl

]

+ i σija

(

[p̂, v̂a]−
1

2
ǫabc [v̂b, v̂c]

)(

χ̂n ˆ̄χn −
1

2
~

)

, (4.15)

{Q̂i, Q̂j}= i σija

(

[p̂, v̂a]−
1

2
ǫabc [v̂b, v̂c]

)

χ̂nχ̂n .

Then the fulfillment of the basic supersymmetry relations at the quantum level,

{Q̂i, ˆ̄Qk} = 2~ δ ikĤ , {Q̂i, Q̂k} = 0 , (4.16)

requires the validity of the operator Nahm equations

[p̂, v̂a] =
1

2
ǫabc[v̂b, v̂c] . (4.17)

The relevant quantum Hamiltonian is uniquely determined to have the form

Ĥ =
1

4
p̂2 +

1

4
(v̂a + ca)

(

v̂a + ca
)

− i~−1 [p̂, v̂a]χ̂iσ
ik
a
ˆ̄χk . (4.18)

Thus, quite similarly to the classical case, where the vector variables va are obliged to

satisfy the classical Nahm equations (4.11), after quantization the quantum operators v̂a
must be subjected to the operator Nahm equations (4.17).

It is the appropriate place here to make a short account of what we have observed.

First, like in the classical case, the operator Nahm equations (4.17) guarantee the

existence of the N=4 supersymmetry at the quantum level for the supercharges of the

form (4.13).

Second, while quantizing such systems, one should require the preservation of the

Nahm equations (i.e., the passing from the equations (4.11) with Dirac brackets to the

operator equations (4.17)), in addition to the standard procedure of replacing the Dirac

brackets of the phase variables by (anti)commutators.

The second point requires some additional comments concerning the chosen scheme of

passing to the quantum theory.
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The equations (4.17) involve the operators p̂ and v̂a which obey a complicated com-

mutation algebra induced by the Dirac brackets (3.18)–(3.20). As was already explained

in section 3 for the bosonic limit, in order to simplify things we should split the basic

quantum variables into the two decoupled sectors: the one formed by x̂, p̂ and the sec-

ond (spinning) sector spanned by the operators ℓ̂a (or ϕ̂, ℓ̂3) with transparent algebraic

and geometric properties. Then the operators v̂a=v̂a(x̂, ℓ̂a) (or v̂a=v̂a(x̂, ϕ̂, ℓ̂3)) are com-

posite quantities and they are constructed from the corresponding classical expressions

va=va(x, ℓa) (or va=va(x, ϕ, ℓ3)) by the appropriate ordering of the operators ℓ̂a. In this

case, the equations (4.17) take the form of the operator Nahm equations

~
∂

∂x̂
v̂a =

i

2
ǫabc[v̂b, v̂c] . (4.19)

Since x̂ commutes with all operators ℓ̂a (and with ϕ̂, ℓ̂3), the left-hand side of the

equations (4.19) is directly specified by the classical expressions for va , up to the ordering

of ℓ̂a. Then one is forced to assume that the right-hand side of eqs. (4.19) is also uniquely

determined by the Dirac brackets, i.e. [v̂a, v̂b] = i~ ̂[va, vb]D for va=va(x, ℓa). But it is

obvious that these severe conditions cannot be generically satisfied, as soon as we proceed

from the standard quantum relations between the quantities ℓa, [ℓ̂a, ℓ̂b] = i~ ̂[ℓa, ℓb]D , as

the basic ones. Only in some special cases we can expect an agreement of the quantization

of the composite vector va with the quantization of the “elementary” constituents ℓa,

when simultaneously passing from the classical Nahm equations to their quantized version.

This becomes possible in the one-monopole case and special multi-monopole case, when

the components of the vector va are linear functions of ℓa.

In the standard two-monopole case, when the expansion of va contains all degrees of

ℓa, the only possibility to preserve Nahm equations (and, hence, N=4 superalgebra) at

the quantum level is to properly modify the vector operators v̂a as compared with their

classical expressions,

v̂a(x̂, ℓ̂a) → v̂a(x̂, ℓ̂a; ~) ,

and to require that the new operators satisfy the operator Nahm equations to all orders in

~. In this case, the zero-order term in the ~ expansion of operators v̂a(x̂, ℓ̂a; ~) is uniquely

determined by the corresponding classical expressions,11 while the higher-order terms are

iteratively found from the requirement that the quantum Nahm equations hold.

It should be emphasized that in our consideration we strictly follow the standard

ideology of passing from the classical system to the corresponding quantum theory. If one

could directly construct a quantum theory, without any reference to the classical system,

no the problem of compliance with these additional restrictions would arise. However, we

do not know how to proceed in the second way.

4.1 The one-monopole case

Let us firstly consider the case of one-monopole potential (3.23). We use the variables (3.28)

subjected to the constraint (3.29) and parametrizing the two-sphere. The Dirac brackets

11More precisely, the classical expressions are the Weyl symbols of the zero-order terms.
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of bosonic variables are as in (3.30)–(3.32). With the choice ~c = −~k (see (3.25)) the

generators (4.7), (4.8) take the form

Qi = pχi + i
ℓa σ

ik
a χk

x
, Q̄i = p χ̄i − i

ℓa σa ikχ̄
k

x
, (4.20)

H =
1

4

(

p2 +
ℓaℓa
x2

)

+
ℓa χiσ

ik
a χ̄k

x2
. (4.21)

As opposed to the pure bosonic case considered in section 3, the vector ℓa has

non-vanishing Dirac brackets with the Hamiltonian (4.21) and, also, with the super-

charges (4.20). The transformations generated by N=4 supercharges and the Hamiltonian

are realized on ℓa as

δℓa = [βH + εiQ
i − ε̄iQ̄i, ℓa]D = ǫabcωb ℓc . (4.22)

Here, ωb = β σikb χiχ̄k/x
2 − iσikb (εiχk − ε̄iχ̄k)/x and β, εi and ε̄i are parameters of the

t-translations and supertranslations. Thus the supersymmetry transformations of ℓa,

like its H-transformation, are represented as SU(2) rotations with the field-dependent

parameters. As a result, the supersymmetry-transformed vector ℓ̃a = ℓa+δℓa+ . . . satisfies

the same basic relations (3.29) and (3.32), i.e. ℓ̃aℓ̃a = g2 and [ℓ̃a, ℓ̃b]D = ǫabcℓ̃c.

The fuzzy-sphere coordinate ℓa is a part of the triplet of the generators

Ja = ℓa − χiσ
ik
a χ̄k , [Ja, Jb]D = ǫabc Jc , (4.23)

which commute with the Hamiltonian, [H, Ja]D = 0, and generate SU(2) transformations

acting on all doublet indices i, k:

[Qi, Ja]D = − i
2
σika Qk , [Q̄i, Ja]D =

i

2
σa ik Q̄

k . (4.24)

The generators (4.23), together with the generators (4.20), (4.21) and

I1′ =
1

2
(χkχ

k + χ̄kχ̄k) ,

I2′ = −
i

2
(χkχ

k − χ̄kχ̄k) , [Ia′ , Ib′ ]D = ǫa′b′c′Ic′ . (4.25)

I3′ = −χkχ̄
k ,

Si = −2xχi + tQi , S̄i = −2x χ̄i + t Q̄i , (4.26)

K = x2 − t xp+ t2H , D = −1

2
xp+ tH , (4.27)

constitute the algebra of the N = 4 conformal supergroup OSp(4|2) . This supergroup

provides the full symmetry of the component action in the one-monopole case. Note that,

although the quantities (4.23) form the algebra SU(2) and commute with the Hamiltonian,

they cannot be treated as the coordinates of the fuzzy sphere: no condition JaJa = const

is valid and, moreover, such a condition would be not invariant under supersymmetry
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transformations, in contrast to the invariant condition ℓaℓa = g2. Therefore, in the full

supersymmetric setting, the bosonic fuzzy sphere is still spanned by the same variables ℓa.
12

The preservation of the basic relations (3.29) and (3.32) which define the fuzzy sphere

suggests the use of the standard (2n + 1) × (2n + 1) matrix realization for ℓ̂a , where

n ∈ Z,Z+ 1
2 is the spin of SU(2) irrep (“fuzziness”). It should be emphasized that in this

case the quantum Nahm equations (4.19), which are necessary for the implementation of

N=4 supersymmetry at the quantum level, are valid because v̂a−ka = ℓ̂a/x̂ for the fuzzy

sphere in the one-monopole case.

Using the holomorphic representation for the fermionic operators

χ̂i = χi , ˆ̄χk =
1

2
~ ∂/∂χk (4.28)

and taking into account that the quantum supercharges and Hamiltonian are (2n + 1) ×
(2n+ 1) matrices, we find that the wave function should have the form

ΨA(x, χi) = φA(x) + χiψA
i (x) + χiχiϕ

A(x) , (4.29)

where the external index A = 1, . . . , 2n+ 1 is the index of the irreducible SU(2) represen-

tation with the matrices ℓ̂a as generators. It is easy to see that, with respect to the full

SU(2) transformations generated by (4.23), the bosonic wave functions φA(x) and ϕA(x)

form two spin n SU(2) irreps, while the fermionic wave functions ψA
i (x) carry two SU(2)

irreps, with SU(2) spins n± 1
2 .

This result is in full agreement with the result obtained in [2], where the spin variables

were represented by the gauged (4,4,0) multiplet. In contradistinction to the formulation

in [2], where the fuzzy sphere coordinates are constructed as bilinear products of the SU(2)

doublet component fields obeying the oscillator algebra, i.e. as some secondary composite

objects, the (3,4,1) spin multiplet provides the description of the fuzzy sphere directly in

terms of the non-abelian vector coordinates ℓa , which are treated now as “elementary”

constituents.

4.2 Multi-monopole cases

We first consider the quantization of the standard two-monopole case with the potential

of the form (3.53).

Inverting the relations (3.53), (3.55), (3.57), we find the following expressions for the

components of the three-vector va in terms of the dynamical variable x and the spin ones

ϕ, ℓ3:

v1 = V (x, ℓ3) cosϕ , v2 = V (x, ℓ3) sinϕ , v3 =W (x, ℓ3) . (4.30)

The explicit form of the functions V (x, ℓ3), W (x, ℓ3) in two limiting cases considered in

section 3.4 can be easily obtained from the expressions (3.64), (3.65) and (3.68), (3.69). But

the explicit form of these functions still does not prompt us how to quantize the system.

12Note that here we consider the model with the world-line supersymmetry. In the case of supersym-

metrization of the target space there arise target fuzzy supermanifolds, e.g. the so-called fuzzy supersphere

(see [38, 39] and refs. therein).
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As argued in [40], the basic step in passing to the quantum supercharges from the

classical ones is to perform the Weyl ordering of the latter. Following this prescription

and employing the simple algebra of the basic operators x̂, p̂, ϕ̂, ℓ̂3, we can make use of

the Moyal bracket [40–42] in our analysis.

The quantum expressions corresponding to the expressions (4.30) are

v̂± := v̂1 ± iv̂2 = 〈V (x̂, ℓ̂3) e
±iϕ̂〉

W
, v̂3 =W (x̂, ℓ̂3) , (4.31)

where the brackets 〈. . .〉
W

denote the Weyl ordering of the noncommutative operators ϕ̂, ℓ̂3.

At the same time, classical expressions (4.30) should be Weyl symbols of the corresponding

quantum quantities, i.e

v̂±(ℓ̂3, ϕ̂) =
1

4π2

∫

dα dβ dℓ3 dϕV (x, ℓ3) e
±iϕ e−i(αℓ3+βϕ) ei(αℓ̂3+βϕ̂) . (4.32)

The Weyl ordering of the products of various operators is accomplished by means of the

Moyal bracket. In our case, the Moyal brackets of any operators M̂ , N̂ is defined by the

following general formula

[

[M̂, N̂}
]W

= 2 sinh

{

~

4

(

∂2

∂χ(2)k∂χ̄
(1)
k

− ∂2

∂χ(1)k∂χ̄
(2)
k

)

(4.33)

+
i~

2

(

∂2

∂x(1)∂p(2)
− ∂2

∂x(2)∂p(1)

)

+
i~

2

(

∂2

∂ϕ(1)∂ℓ
(2)
3

− ∂2

∂ϕ(2)∂ℓ
(1)
3

)}

·M(x(1), p(1), ϕ(1), ℓ
(1)
3 , χ(1)k, χ̄

(1)
k )N(x(2), p(2), ϕ(2), ℓ

(2)
3 , χ(2)k, χ̄

(2)
k )
∣

∣

∣

(1)=(2)

≡ i~ [M,N}
M
.

Note that the definition (4.32) implies the exact operator relations

v̂± = e±iϕ̂/2 V (x̂, ℓ̂3) e
±iϕ̂/2 . (4.34)

They are obtained by rewriting the operator exponential in the integral (4.32) as

ei(αℓ̂3+βϕ̂) = eiαβ~/2eiβϕ̂eiαℓ̂3 and then performing the appropriate Fourier transforms. We

have also used the relation F (ℓ̂3) e
iαϕ̂ = eiαϕ̂F (ℓ̂3 + α~).

As we already know, the implementation of N = 4 supersymmetry at the quantum

level in the present model requires the operator Nahm equations (4.17). Their fulfillment

for the Weyl ordered quantities is expressed as the Moyal-Nahm equations13

[p, va]M =
1

2
ǫabc[vb, vc]M . (4.35)

A direct calculation with using the Moyal bracket (4.33) shows that the Moyal brackets

in the left-hand and right-hand sides of the equation (4.35) do not match each other: the

left-hand side of (4.35) coincides with the Dirac brackets,

[p, va]M = −∂va
∂x

= [p, va]D , (4.36)

13Moyal deformations of Nahm equations were earlier considered in [31] and [43].
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while the right-hand side contains extra terms of the order ~2 and higher. For example,

i~ [v3, v±]M = −2 v3 sinh
{

i~

2

←−
∂

∂ℓ3

−→
∂

∂ϕ

}

v± = i~ [v3, v±]D +O(~3) . (4.37)

Thus we are led to modify the passing to the quantum theory.

Note that in the one-monopole case, when the function W is linear in ℓ3, such a

problem does not arise. We have W = (ℓ3/x) + k, V =
√

g2 − ℓ23/x in this case and the

Weyl-ordered operators (4.31) (see (4.34)) are

v̂3 = (ℓ̂3/x̂) + k , v̂± = e±iϕ̂/2
√

g2 − ℓ̂23 e±iϕ̂/2/x̂ .

They obey SU(2) algebra

[v̂+, v̂−] = 2~ v̂3/x̂ , [v̂3, v̂±] = ±~ v̂±/x̂ .

As a result, the operator Nahm equations (4.19) are nicely satisfied in this case.

In the two-monopole case we must modify the classical-quantum correspondence (4.32)

to save the most important equation (4.35) which guarantees the N = 4 supersymmetry

at the quantum level. For this purpose we need to change the symbols of the quantum

operators v̂a. Instead of the symbols (4.30), basically coinciding with the classical

expressions, we consider the following ones

v± = Ṽ (x, ℓ3, ~) e
±iϕ , v3 = W̃ (x, ℓ3, ~) . (4.38)

The correspondence principle with the initial system is ensured by the coincidence of the

first terms in the expansion of (4.38) in ~ with the expressions (4.30):

Ṽ (x, ℓ3, ~) = V (x, ℓ3) + ~V1(x, ℓ3) + ~2 V2(x, ℓ3) + · · · ,
W̃ (x, ℓ3, ~) = W (x, ℓ3) + ~W1(x, ℓ3) + ~2W2(x, ℓ3) + · · · .

(4.39)

The relevant operators read

v̂± = e±iϕ̂/2 Ṽ (x̂, ℓ̂3, ~) e
±iϕ̂/2 , v̂3 = W̃ (x̂, ℓ̂3, ~) . (4.40)

Thus we propose to correct the quantum operators in higher orders in the expansion in ~,

in such a way that the full operator Nahm equations are satisfied, while the limit ~ → 0

still yields the classical system.

The Moyal-Nahm equations (4.35) for the symbols (4.38) or, what is the same, the

operator Nahm equations (4.17) for the operators (4.40) now amount to the equations for

the coefficient functions Vn(x, ℓ3) and Wn(x, ℓ3). Solving these equation, we can find the

complete solutions for the quantum operators. In appendix we present the general scheme

of finding the solutions as series in ~ and explicitly give first non-trivial orders.

Thus, we succeeded in constructing the quantum theory in the two-monopole case,

using the expressions (4.38) as Weyl symbols of the quantum operators (4.40). In this

way, the fulfillment of the operator Nahm equations guarantees the N=4, d=1 Poincaré
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supersymmetry. The generators of the Poincaré supersymmetry are given by the expres-

sion (4.13) and (4.18), in which v̂± and v̂3 are given by eqs. (4.40), with the functions

Ṽ and W̃ defined as series in ~. For example, using the expression (A.14) obtained in

appendix we find the first terms of the quantum supercharges (up to the first order in E

and up to the fourth order in ~) in the case i) of section 3.4:

Q̂i = p̂ χ̂i + i
[

(W̃ − k)σik3 + eiϕ̂/2Ṽ eiϕ̂/2σik− + e−iϕ̂/2Ṽ e−iϕ̂/2σik+

]

χ̂k

ˆ̄Qi = p̂ ˆ̄χi − i
[

(W̃ − k)σ3 ik + eiϕ̂/2Ṽ eiϕ̂/2σ− ik + e−iϕ̂/2Ṽ e−iϕ̂/2σ+ ik

]

ˆ̄χk,
(4.41)

where σ± = 1
2 (σ1 ± iσ2) and

W̃ (x̂, ℓ̂3)− k =
1

x̂

(

ℓ̂3 + E
3ℓ̂23 − g2
x̂2

)

,

Ṽ (x̂, ℓ̂3, ~) =

√

g2 − ℓ̂23
x̂

(

1 +
3Eℓ̂3
x̂2

)(

1 +
~2

8(g2 − ℓ̂23)
+

~4

128(g2 − ℓ̂23)2

)

.

(4.42)

In (4.41) we take ~c = −~k as in the one-center case.

There is also another way of constructing a quantum N=4 supersymmetric system

in the multi-monopole case, which bears close parallels with the fuzzy-sphere method of

the one-monopole case. This option is associated with the special multi-monopole system

considered in section 3.3. We just consider the quantum counterparts of the relations (3.75)

v̂1 = f1(x̂) ℓ̂1 , v̂2 = f2(x̂) ℓ̂2 , v̂3 = f3(x̂) ℓ̂3 , (4.43)

where ℓ̂a are the standard fuzzy sphere coordinates,

[ℓ̂a, ℓ̂b] = i~ ǫabcℓ̂c , ℓ̂aℓ̂a = g2 , (4.44)

and fa are defined in (3.76). As pointed out in section 3.1., we must make the identification

g2 = ~2 n(n+ 1), 2n∈N to deal with the unitary SU(2) representations.

Due to the Euler equations (3.77) quantum Nahm equations (4.17), (4.19) are satisfied.

As a result, the operators (we choose ca = (0, 0, c) in (4.13), (4.18))

Q̂i = p̂ χ̂i +
ik

g
sinh−1

(

kx̂

g

)[

ℓ̂1 σ
ik
1 χ̂k + ℓ̂2 σ

ik
2 χ̂k

+

(

cosh

(

kx̂

g

)

ℓ̂3 +
cg

k
sinh

(

kx̂

g

))

σik3 χ̂k

]

, (4.45)

ˆ̄Qi = p̂ ˆ̄χi −
ik

g
sinh−1

(

kx̂

g

)[

ℓ̂1 σ1 ik ˆ̄χ
k + ℓ̂2 σ2 ik ˆ̄χ

k

+

(

cosh

(

kx̂

g

)

ℓ̂3 +
cg

k
sinh

(

kx̂

g

))

σ3 ik ˆ̄χ
k

]

,
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Ĥ =
1

4
p̂2 +

k2

4g2
sinh−2

(

kx̂

g

)

[

(ℓ̂1)
2 + (ℓ̂2)

2 +

(

cosh

(

kx̂

g

)

ℓ̂3 +
cg

k
sinh

(

kx̂

g

))2
]

(4.46)

+
k2

g2
sinh−2

(

kx̂

g

)[

cosh2
(

kx̂

g

)

(

ℓ̂1χ̂iσ
ik
1
ˆ̄χk + ℓ̂2χ̂iσ

ik
2
ˆ̄χk

)

+ ℓ̂3χ̂iσ
ik
3
ˆ̄χk

]

form the standard N=4, d=1 Poincaré superalgebra.

5 Summary and outlook

In this paper we presented a new version of N=4 mechanics, which couples a (1,4,3)

multiplet to a (3,4,1) multiplet. The (1,4,3) multiplet represents one dynamical bosonic

and four dynamical fermionic variables. The (3,4,1) multiplet appears in a superfield

Wess-Zumino action and thus is “semi-dynamical”; after elimination of the auxiliary

fermions a bosonic three-vector spin variable remains. The N=4 supersymmetric coupling

of the multiplets generates a constraint which relates one degree of freedom of these

vector variables to the dynamical boson. The remaining two bosons of the semi-dynamical

(3,4,1) multiplet are genuine spin variables.

These spin variables parametrize some two-dimensional fuzzy surface in three-

dimensional (flat) space. The Dirac brackets defined by the harmonic scalar potential yield

an algebraic structure in the spin sector. For the one-center potential (3.23) and the special

multi-center potential (3.73), the spin variables form an SU(2) algebra and parametrize the

fuzzy two-sphere. These quantum models can be given in closed form, while the one with a

general two-center potential needs a power series expansion (in small parameters and in ~ ).

An unexpected and, in our opinion, most remarkable feature is the occurrence of the

Nahm equations for the three-vector spin variable as a consequence of the Dirac brackets of

the constraints. We discovered a strict correspondence between these Nahm equations and

the presence of N=4 supersymmetry in the model, classically and quantum mechanically.

In other words, the Nahm equations guarantee extended supersymmetry.

We did not yet study the most general type of models possible. Rather, we restricted

ourselves to the action (3.4) and to special multi-monopole configurations. It would be

interesting to study the general multi-center solution of the Laplace equation ∂a∂aU = 0,

which is given by (3.11). For this case one may expect the spin variables to parametrize

some fuzzy Riemann surface (see, e.g., [44, 45]) and form a nonlinear deformed algebra

(see [46] and references therein). Furthermore, our supersymmetry generators are linear

in the fermionic variables, which is also special. In the more general case of N=4 super-

symmetry generators cubic in the fermions the Nahm equations might get supplemented

by additional relations to ensure full extended supersymmetry. Finally, it remains to

investigate other combinations of dynamical and semi-dynamical N=4 multiplets for

describing spin variables, utilizing for instance the nonlinear (3,4,1) multiplet [16, 47].
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A Solving the quantum Nahm equations

In this appendix we find the solution of the Nahm equations for the quantum-modified

functions

v̂± = e±iϕ̂/2 Ṽ (x̂, ℓ̂3, ~) e
±iϕ̂/2 , v̂3 = W̃ (x̂, ℓ̂3, ~) , (A.1)

where
Ṽ (x, ℓ3, ~) = V0(x, ℓ3) + ~

2 V2(x, ℓ3) + ~
4 V4(x, ℓ3) + · · · ,

W̃ (x, ℓ3, ~) =W0(x, ℓ3) + ~
2W2(x, ℓ3) + ~

4W4(x, ℓ3) + · · · .
(A.2)

The operator Nahm equations

[p̂, v̂a] =
1

2
ǫabc[v̂b, v̂c] , (A.3)

or their corresponding Moyal representation

[p, va]M =
1

2
ǫabc[vb, vc]M , (A.4)

amount to the following equations for the functions (A.2)

~ ∂xW̃ (ℓ3) =
1

2

[

Ṽ 2(ℓ3 + ~/2)− Ṽ 2(ℓ3 − ~/2)
]

, (A.5)

~ ∂xṼ (ℓ3) = −
[

W̃ (ℓ3 + ~/2)− W̃ (ℓ3 − ~/2)
]

Ṽ (ℓ3) . (A.6)

Since the Nahm equations with the Moyal bracket must be corrected at the level ~2 and

even higher-order levels, in the expansions (A.2) we assume that Vn(x, ℓ3) =Wn(x, ℓ3) = 0

for n = 2k+1. Then, the equations (A.5), (A.6) give rise to an infinite set of the equations

for the coefficient functions in the ~2 -expansion:

∂V0
∂x

= −V0
∂W0

∂ℓ3
,

∂W0

∂x
= V0

∂V0
∂ℓ3

, (A.7)

∂V2
∂x

= −V2
∂W0

∂ℓ3
− V0

∂W2

∂ℓ3
− V0

223!

∂3W0

∂ℓ33
,

∂W2

∂x
=
∂(V0V2)

∂ℓ3
+

1

233!

∂3(V0
2)

∂ℓ33
, (A.8)

∂V4
∂x

= −V4
∂W0

∂ℓ3
−V2

(

∂W2

∂ℓ3
+

1

223!

∂3W0

∂ℓ33

)

−V
(

∂W4

∂ℓ3
+

1

223!

∂3W2

∂ℓ33
+

1

245!

∂5W0

∂ℓ35

)

, (A.9)

∂W4

∂x
= V2

∂V2
∂ℓ3

+
∂(V0V4)

∂ℓ3
+

1

223!

∂3(V0V2)

∂ℓ33
+

1

255!

∂5(V0
2)

∂ℓ35
,

· · · , · · · .
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The equations (A.7) are automatically satisfied by the classical expres-

sions (3.64), (3.65) and (3.68), (3.69) for the two limiting cases considered in section 3.3:

i)















V0 =

√

g2 − ℓ23
x

(

1 + E
3ℓ3
x2

)

+O(E2),

W0 = k +
ℓ3
x

+ E
3ℓ23 − g2
x3

+O(E2);

(A.10)

ii)















V0 =

√

g2 − ℓ23
x

(

1 + d2
x2

2g4
− d3 2x

3ℓ3
g7

)

+O(d4) ,

W0 = k +
ℓ3
x

+ d
1

g
− d2 xℓ3

g4
+ d3

x2(3ℓ23 − g2)
g7

+O(d4) .
(A.11)

In fact, these equations are just the classical Nahm equations (4.11) with Dirac brackets.

The remaining differential equations (A.8), (A.9), and so on, serve to define the func-

tions V2, V4, . . . and W2,W4, . . ., respectively. Note that it is enough to take only some

particular solution of these equations to obtain a self-consistent quantum system corre-

sponding to the given classical system. In the cases considered here the function W0 has

the degree two in ℓ3, and it already induces the first nontrivial quantum corrections in Vn
andWn with n > 0. The expressions for the leading in ~2 and ~4 components are as follows

i)















V2 =
1

8x(g2 − ℓ23)1/2
(

1 + E
3ℓ3
x2

)

+O(E2), W2 = O(E2),

V4 =
1

128x(g2 − ℓ23)3/2
(

1 + E
3ℓ3
x2

)

+O(E2), W4 = O(E2);

(A.12)

ii)



















V2 =
1

8x(g2−ℓ23)1/2
(

1+d2
x2

2g4
−d3 2x

3ℓ3
g7

)

+O(d4), W2 = O(d4),

V4 =
1

128x(g2−ℓ23)3/2
(

1+d2
x2

2g4
−d3 2x

3ℓ3
g7

)

+O(d4), W4 = O(d4).
(A.13)

As a result, we find the solutions up to the ~4 terms

i)















Ṽ =

√

g2−ℓ23
x

(

1+
3Eℓ3
x2

)(

1+
~2

8(g2−ℓ23)
+

~4

128(g2−ℓ23)2
)

+O(E2, ~5)

W̃= k +
ℓ3
x

+ E
3ℓ23 − g2
x3

+O(E2, ~5);

(A.14)

ii)































Ṽ =

√

g2−ℓ23
x

(

1+d2
x2

2g4
−d3 2x

3ℓ3
g7

)(

1+
~2

8(g2−ℓ23)
+

~4

128(g2−ℓ23)2
)

+O(d4, ~5),

W̃ = k +
ℓ3
x

+ d
1

g
− d2 xℓ3

g4
+ d3

x2(3ℓ23 − g2)
g7

+O(d4, ~5).

(A.15)
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