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Knowledge graphs have gained increasing popularity in the last decade in science and technology. 
However, knowledge graphs are currently relatively simple to moderate semantic structures that 
are mainly a collection of factual statements. Question answering (QA) benchmarks and systems 
were so far mainly geared towards encyclopedic knowledge graphs such as DBpedia and Wikidata. 
We present SciQA a scientific QA benchmark for scholarly knowledge. The benchmark leverages 
the Open Research Knowledge Graph (ORKG) which includes almost 170,000 resources describing 
research contributions of almost 15,000 scholarly articles from 709 research fields. Following a 
bottom-up methodology, we first manually developed a set of 100 complex questions that can be 
answered using this knowledge graph. Furthermore, we devised eight question templates with which 
we automatically generated further 2465 questions, that can also be answered with the ORKG. The 
questions cover a range of research fields and question types and are translated into corresponding 
SPARQL queries over the ORKG. Based on two preliminary evaluations, we show that the resulting 
SciQA benchmark represents a challenging task for next-generation QA systems. This task is part 
of the open competitions at the 22nd International Semantic Web Conference 2023 as the Scholarly 
Question Answering over Linked Data (QALD) Challenge.

Knowledge graphs have gained increasing popularity in the last decade in science and technology. They enable 
a versatile and evolving semantic representation of knowledge at the crossroads of various 

(a)	 levels of information structuring: unstructured, semi-structured, structured;
(b)	 levels of abstraction: conceptual vs. operational;
(c)	 knowledge representation formalisms: graphs, facts, entity-relationship, logic; and
(d)	 technology ecosystems.

However, most publicly available knowledge graphs, such as DBpedia or Wikidata, are relatively simple to 
moderate semantic structures1. Although they vary in content, size, coverage, and overlap, they all primarily 
represent a collection of factual statements arranged in entity descriptions, possibly enriched by class hierar-
chies and corresponding property definitions. Question answering (QA) benchmarks and systems were so far 
geared primarily towards encyclopedic knowledge graphs such as DBpedia and Wikidata2,3. Currently, a new 
type of knowledge graph, called research knowledge graphs, is emerging whose contents are bibliographic meta-
data and scientific elements, such as ideas, theories, approaches, and claims as they are conveyed in scholarly 
contributions4,5 or OMICS data structures for personalized medicine6. These novel research knowledge graphs 
increasingly intertwine three previously largely isolated aspects: semantic representations (semantic intelligence), 
machine learning (machine intelligence), and crowd and expert sourcing (human intelligence). In particular, 
scholarly communication is a more challenging application domain for QA due to: 

1.	 The heterogeneity of knowledge representation;
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2.	 The concept drift and knowledge evolution along with the scientific discourse;
3.	 The different knowledge granularity used to describe research contributions;
4.	 The novel knowledge structures that go beyond simple entity descriptions.

We present SciQA a Scientific QA benchmark for scholarly knowledge. The benchmark leverages the Open 
Research Knowledge Graph (ORKG)4,7 (https://​orkg.​org) currently comprising almost 170,000 resources describ-
ing research contributions of almost 15,000 scholarly articles from 709 research fields. These research contribu-
tions contain, among other things, details about the research process, methods and materials used, and specific 
results. Figure 1 shows a concrete example of a paper by Budde et al.8 described in the ORKG9. This paper reports 
on four mechanical processes for manufacturing hybrid solid components. In Fig. 1, we show only parts of the 
description of one of the four processes described in the ORKG. Overall, each of the four descriptions includes 
details on the entire mechanical process concerning the individual steps, their sequence and, per step, the incom-
ing and outgoing components, measurement methods, and measurement results.

Following a bottom-up methodology, we first manually developed a set of 100 questions that can be answered 
with the ORKG. Subsequently, we devised eight question templates with which we automatically generated fur-
ther 2465 questions that also can be answered with ORKG. The handcrafted and autogenerated SciQA questions 
cover several research fields ranging from Computer Science, Engineering, Chemistry, and Geology in science 
and technology, over Immunology and Genetics in the life sciences to Economics and Urban Studies in the social 
sciences. The questions cover numerous question types, including non-factoid and factoid questions, and have 
corresponding SPARQL queries of different query shapes and triple pattern sizes. We translated the questions 
into SPARQL queries over the ORKG and provide a comprehensive set of related ground-truth query results.

We demonstrate the applicability and feasibility of the SciQA benchmark by presenting two preliminary 
evaluations, both targeting the 100 handcrafted questions. First, we present a proof-of-concept implementation 
of a scholarly QA system based on the JarvisQA system10. JarvisQA operates exclusively with tables or tabular 
views of knowledge graphs, and the autogenerated part of SciQA is not based on tables or tabular views. For 
this reason, the evaluation is performed only for the handcrafted part of SciQA. However, the JarvisQA system 
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Figure 1.   Concrete example of a paper8 described in the ORKG9: Blue shapes are resources and predicates of 
the ORKG schema. Yellow shapes are user-generated resources and predicates. The human-readable labels of the 
classes are represented in blue color. The IDs of the resources within the ORKG are shown in magenta.
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is only able to retrieve correct answers for a subset of handcrafted questions due to the more diverse data and 
question types in SciQA compared to the data JarvisQA was built on10. Second, we present initial insights into 
using the large language model (LLM) ChatGPT11 for answering the handcrafted questions. This evaluation aims 
to understand how well one of the current most famous LLMs is able to answer complex queries on scholarly 
knowledge (with superlatives, comparisons, etc.). In this evaluation, we also focused on the 100 hand-crafted 
questions to compare the results of JarvisQA with those of ChatGPT. In both preliminary evaluations, we found 
that the systems perform rather low. In the best-performing configuration ( JarvisXLS2 ), the proof-of-concept 
implementation of JarvisQA was able to answer 52 questions with 12 correct answers. ChatGPT provided answers 
for 63 questions, of which only 14 answers were correct. These low numbers substantiate that answering questions 
about scholarly knowledge is a challenge for current QA systems and LLMs12. For this reason, we conclude that 
the SciQA benchmark represents a challenging task for next-generation QA systems, as QA systems must now 
also deal with scientific knowledge in addition to encyclopedic knowledge.

Related work
The problem of answering questions expressed in natural language has received a lot of attention recently. 
Depending on the kind of system queries, e.g., text documents, knowledge graphs, relational databases, or image 
archives, benchmarks have been developed for evaluating the respective QA systems. Since the focus of this paper 
is on QA over scholarly knowledge graphs, we concentrate on QA benchmarks over knowledge graphs and linked 
data. An overview of relevant benchmarks is presented in Table 1.

One of the first datasets is WebQuestions14, which contains 5810 factoid question-answer pairs and is tar-
geted at Freebase. It was created using the Google Suggest API to obtain questions that begin with a “wh”-word. 
100K randomly selected questions were submitted to Amazon Mechanical Turk, asking workers to annotate 
the ones that can be answered by Freebase. In terms of structural complexity, WebQuestions is simple, as 
many questions only contain one class, one property, and one instance. In 2016, WebQuestions was extended 
to WebQuestionsSP15, by providing SPARQL queries for the 4737 questions that the annotators could fully 
process to find the answers.

The dataset SimpleQuestions16 also targets Freebase. It was created manually by English-speaking annota-
tors and consists only of factoid questions. It is much larger than WebQuestions, containing 108,442 simple 
questions paired with their corresponding answers and explanations. Diefenbach et al.17 created the benchmark 
SimpleQuestionsWikidata by converting SimpleQuestions to target Wikidata.

The LC-QuAD dataset18 differs from the previous ones, as it includes not only simple, factoid questions but 
also complex ones, i.e., the respective SPARQL queries contain multiple triple patterns. The dataset contains 
5000 pairs of questions-SPARQL queries targeting DBpedia. The questions were generated semi-automatically 
by extracting sub-graphs containing triples within a 2-hop distance from a seed entity. The generation of the 
SPARQL queries and questions was facilitated automatically, using templates, and, then, refined manually. After 
the development of LC-QuAD, its developers proceeded with the development of LC-QuAD 2.019, which con-
tains 30,000 questions, their paraphrases, and their corresponding SPARQL queries. LC-QuAD 2.0 targets both 
Wikidata and DBpedia 2018, and it was created similarly to LC-QuAD. LC-QuAD 2.0 also contains questions 
of higher complexity: Non-factoid questions, questions with qualifiers, aggregates, temporal aspects (as quali-
fiers), and superlatives. The benchmark ComplexWebQuestions20 (34,689 questions) has similar complexity: 
it contains composition questions, superlatives and comparatives. It was generated from WebQuestionsSP by 
sampling question-query pairs and automatically creating more complex SPARQL queries. From these queries, 
a set of questions was generated automatically by using 687 templates, and, then, reformulated by Amazon 
Mechanical Turk workers.

The benchmarks generated for the QALD challenges (http://​qald.​aksw.​org/) are also of high complexity. 
The QALD- 10 benchmark, generated for testing in the latest challenge (NLIWoD, ESWC2022), contains 394 
manually created Wikidata-based questions of varied complexity and each is annotated with a manually speci-
fied SPARQL query and its output. Each question may contain counts, superlatives, comparatives, and temporal 
aggregators. The questions are available in 4 different languages, i.a., English, German, Chinese, and Russian. 

Table 1.   QA benchmark comparison (full comparison is available in the ORKG13).

QA 
Benchmarks SciQA LC-QuAD 2.0 QALD-9

Web-
Questions-SP

Simple-Questions-
Wikidata

Complex-Web-
Questions

Questions 2565 30,000 408 4737 21,957 34,689

Domain Scholarly commu-
nication Encyclopedic

Languages English English Multi- language English English English

Question 
types

Complex, factoid, 
non-factoid

Complex, factoid, 
non-factoid

Complex, non-
factoid Simple, factoid Simple Complex, factoid

Knowledge 
base ORKG Wikidata DBpedia DBpedia Freebase Wikidata Freebase

Formal lan-
guage SPARQL SPARQL SPARQL SPARQL SPARQL SPARQL

Answers � × � � � �

Paraphrases � � × × × ×

http://qald.aksw.org/
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The questions in English were collected from speakers with at least a C1-level language proficiency in accordance 
with the Common European Framework of Reference for Languages and, according to the participants, express 
real-world information needs. Native speakers translated the questions into other languages.

All benchmarks in this section target either Freebase, DBpedia, or Wikidata and thus mainly encyclopedic 
knowledge graphs. SciQA is the only benchmark with a focus essentially on scholarly knowledge. A major 
advantage of using ORKG as a basis is that it allows the generation of sophisticated queries, e.g., with superla-
tives and comparisons, over scholarly knowledge, as the ones presented in the SciQA Benchmark, and if neces-
sary, provides the relevant evidence. This advantage is further enhanced by the class of “comparisons” among 
research outputs that the ORKG contains. Comparisons provide condensed overviews of the state-of-the-art for 
a particular research question. In this way, SciQA includes sophisticated questions over these comparisons, i.e., 
over aggregations of semantic contribution descriptions from various scientific papers. As our applicability and 
feasibility evaluation has shown, sophisticated QA systems and LLMs, like ChatGPT, have difficulties answering 
these types of questions that require scholarly knowledge. In fact, only 12 and 14 of the 100 handcrafted SciQA 
questions were answered correctly by the QA system and the large language model, respectively.

Regarding its structure, SciQA meets the current standard of QA benchmarks as it contains natural language 
questions, SPARQL queries, and answers. Finally, it is also the only benchmark that includes the features of the 
SPARQL queries, e.g., query shape, query components, and triple pattern sizes.

The ORKG dataset
The ORKG4 is a research knowledge graph that includes semantic descriptions of research articles and accompa-
nying services (https://​orkg.​org) for the production, curation, and (re)use of this data. The structured knowledge 
in the ORKG is contributed, i.e., crowdsourced, by researchers and partially also automatically extracted from the 
literature or integrated from other resources comprising structured research contribution descriptions21. Figure 2 
provides an overview of the core structure of ORKG. Each paper added to the ORKG contains its bibliographic 
metadata, i.e., authors, title, year of publication, DOI, research field, and the user-generated semantic descrip-
tion of its scientific contribution. In Fig. 1, we show a concrete example of a paper by Budde et al.8 described in 
the ORKG9.

The core entity in the ORKG is contributions presented in the form of research papers. A contribution is typi-
cally linked to a research field and problem, and its description includes several properties that are specific to 
the research field or problem. There is no predefined, fixed set of properties to describe research contributions, 
but these properties can be defined on the fly by the curators. On the one hand, this openness and extensibility 
allow selecting and defining a very appropriate knowledge representation for the research paper at hand. On the 
other hand, it brings significant challenges for potential QA applications. Based on described papers and their 
contributions, contributions dealing with a specific research problem in scholarly literature can be compared in 
so-called comparisons. Comparisons are tabular representations of the properties of all compared contributions22. 
Such comparisons provide an overview of key information about a research problem across dozens or hundreds 
of contributions. In this way, comparisons are a valuable tool, for example, to determine the leading sorting 
algorithm or to find out how dangerous a virus is compared to other viruses.

Table 2 provides some statistics about the ORKG knowledge graph. The ORKG is still relatively small com-
pared to other knowledge graphs, which often include millions of entities1. However, we anticipate that these 
novel structures of scholarly knowledge in the ORKG already pose a challenging task for QA systems.
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Figure 2.   Basic ORKG schema for papers: Blue shapes are resources and predicates of the ORKG schema. 
Yellow shapes are user-generated resources and predicates. IDs and classes of resources and predicates are 
omitted for brevity.
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Approach
In this section, we describe our approach to creating the SciQA benchmark. Creating a QA benchmark requires 
a collection of questions covering different aspects and scenarios on which a knowledge graph contains data. In 
particular, our approach consists of two main steps: (1) Manual creation of 100 handcrafted questions and (2) 
Automated generation of 2465 autogenerated questions. This approach is inspired by the procedures of related 
works that also combined the use of manual question creation and automated question generation16,18–20. To cre-
ate the SciQA benchmark, we followed a detailed methodology that tackles the following key aspects: Objectives, 
Data Structure, and Data Collection. 

(1)	 Objectives The goal of the benchmark is not only to create a dataset but also to provide a variety of knowl-
edge base scenarios, i.e., what questions can be asked on the knowledge graph or what type of use cases 
can utilize the data.

(2)	 Data Structure The ORKG4 represents information as papers and a collection of contributions. Figure 2 
depicts the core schema of the scholarly data in the ORKG that was followed to query data from the source.

(3)	 Data Collection We performed the collection of the data in two main steps: (1) Manual creation and (2) 
Automated generation. Figure 3 illustrates the entire approach in the form of an activity diagram to high-
light the main activities we undertook to create the SciQA benchmark. 

(1)	 Workflow for the 100 handcrafted questions
	   We started with the first workflow by selecting research fields and corresponding lists of ORKG 

comparisons24 in these fields to limit the scope of the data being queried. Subsequently, we defined 
several natural language questions according to different types, e.g., single comparison questions, 
True/False questions, aggregation questions (min, max, average), etc. For each natural language ques-
tion, we created one SPARQL query in two variations (human-readable and machine-readable). As 
the questions and queries were created, we collected associated metadata for them, e.g., type, query 
shape, etc. Finally, the natural language questions, the structured SPARQL queries, and the collected 
metadata were peer-reviewed multiple times for syntactic and semantic correctness.

	   All 13 authors from five countries and three continents participated in this workflow to accom-
modate different perspectives. In addition, these researchers consulted domain experts from their 
personal networks, when available, to ensure that the questions created were relevant and important 
to the respective research fields and researchers. Furthermore, we leveraged the expertise of the 21 

Table 2.   Overview of the size of the ORKG knowledge graph based on the exported RDF dump23.

General values Technical values

Type Number Type Number

Papers 14,538 Triples 1,133,217

Contributions 21,243 Classes 1621

Research problems 5065 Properties 6888

Research fields 709 Resources 169,967

Comparisons 1132 Literals 575,525

Workflow for the 100 hand-crafted questions

Selection of research
field

Selection of
comparison

Creation of natural
language question

Creation of SPARQL
query

Metadata extraction

Peer review of
questions

Workflow for the 2,465 auto-generated questions

Creation of question
templates

Determination of
placeholders

Creation of SPARQL
query templates

Collection of SPARQL
query results

Metadata extraction

Generation SPARQL
queries

Figure 3.   Detailed workflow for the development and generation of the SciQA benchmark.
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domain experts participating in the ORKG curation grants25,26 to create the relevant, realistic and 
useful questions.

(2)	 Workflow for the 2465 autogenerated questions
	   We performed this second workflow to enrich the SciQA benchmark as, even though the 100 

handcrafted questions were purposefully created, this number of questions is rather small for a 
benchmark. For this purpose, we expanded the SciQA benchmark through the integration with a 
set of automatically generated questions, which have been created using a structured approach that 
involves a combination of handcrafted questions and queries, and the utilization of a LLM (in this 
case GPT-327). The objective of the autogenerated questions is to target specific parts of the ORKG 
by creating queries with placeholders that can be populated with various entities, thereby facilitating 
the generation of numerous natural language questions.

	   To create the autogenerated questions, we followed a structured process. When creating the hand-
crafted questions, we observed that the data in the ORKG is very heterogeneous, which complicates 
the automatic generation of questions and queries. For this reason, we decided to set certain restric-
tions on the generation of the questions and queries. First, we decided to focus on a specific dataset 
from papers-with-code28 that is available in ORKG. Although this dataset belongs to only one research 
field (Computer Science), it is extensive, with 2236 papers (around 15% of the total number of papers 
in the ORKG) that are homogeneously described. This homogeneity is important as it facilitates the 
automatic generation of questions and queries. Second, we decided to focus on the questions and 
queries with the shape of a tree, the class which-what, and the type factoid to further narrow down 
the scope of the automatic generation. This shape, class, and type are the most common in the hand-
crafted questions and also match the nature of the selected papers-with-code data.

	   Initially, we crafted a set of eight queries and 32 questions. For each query, we created one ques-
tion manually and three variations using GPT-327 with careful manual validation. Next, we collected 
all possible entities for the placeholders in the queries from the ORKG. We then filled the queries’ 
placeholders with all possible entities, selecting one question randomly for each query. Finally, we 
collected the results of the created queries and extracted metadata for the final set of questions.

	   The addition of the autogenerated questions expands the SciQA dataset to a total of 2565 questions 
and queries, providing a larger corpus for training machine-learning-based question-answering sys-
tems. This approach can be particularly useful compared to relying solely on handcrafted questions, 
which are often limited in number and may not capture the full scope of the underlying data. By 
contrast, the use of machine-generated questions provides a more diverse and extensive set of ques-
tions that can help improve the accuracy and robustness of machine-learning models in answering 
questions on large knowledge graphs.

SciQA benchmark
In this section, we provide an overview of the SciQA questions and their corresponding SPARQL queries. We first 
explain how we classified the questions to extract the metadata, before presenting some examples of handcrafted 
and autogenerated questions in more detail.

Question classifications.  An appropriate question typology helps to satisfy two main goals of QA bench-
mark development. Namely, (1) an extensive coverage of the different topics in various subject areas that appear 
in the knowledge graph, and (2) the validation of the patterns used for writing questions and queries to ensure a 
better and more balanced distribution of questions across the possible different types of information requested.

There are many existing approaches to defining taxonomies of question types. Wendy Lehnert29 proposed a 
conceptual taxonomy with 13 conceptual classes, e.g., causal antecedent, goal orientation, enablement, etc. Li and 
Roth30 developed a two-layered taxonomy based on the answer type semantics: six coarse classes (abbreviation, 
entity, description, human, location, numeric value) and 50 fine classes (subclasses of different coarse classes 
do not overlap). Singhal et al.31 designed a small set of simple answer types corresponding to question classes, 
words, and expected answer types: Person, Location, Organization, Date, Quantity, Duration, Linear Measure. 
For example, if a question starts with who or whom, its type will be Person. The system Quarc32 defines a ques-
tion categorization based on the use of certain interrogative pronouns, e.g., who, what, when, where, or why. 
A similar approach was used by the system AskBill33, where eleven question types were defined with question 
patterns such as type “QTemporalAge” identified with pattern “How old/At (Which/What) age”.

Research data and their descriptions have a very complex structure and semantics. When developing ques-
tions to search for information within this data, it is useful to define the types of expected answers and the focus 
of the questions. The definition of necessary types of expected answers is based on the results of evaluation cam-
paigns of QALD34 and analysis of characteristic problems associated with the task of mapping natural language 
to formal queries presented in Cimiano and Minock35. These problems include:

•	 Lexical ambiguities arise when one word can be interpreted in different ways, i.e., it can refer to different 
entities or concepts.

•	 Light expressions such as the verbs “to be” and “to have”, and the prepositions “of ” and “with” either refer to 
an ontological property in a highly underspecified way or do not correspond to any property at all.

•	 Lexical gap between the user’s vocabulary and that of the ontology.
•	 Complex questions that can only be expressed using queries involving aggregation functions, comparisons, 

superlatives, and temporal reasoning.
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The definition of the focus of a question makes the search for an answer more specific. Moldovan et al.36 
defined the question focus as a word or sequence of words that indicate what information is being asked about in 
the question. Ferret et al.37 defined the question focus as “a noun phrase that is likely to be present in the answer” 
consisting of a head noun and a list of its modifiers. For example, the question “What types of nanocarriers do 
have therapeutic effect?” has the focus on “types of nanocarriers”. According to Mikhailian et al.38 there are two 
types of question foci: 

1.	 Asking Point (AP), which is denoted explicitly, e.g., words “research problems” in the question “What are 
the research problems Vernier Effect is related to?”.

2.	 ExpectedAnswerType (EAT), is an implicit answer that can be inferred from the information provided by the 
question, e.g., answer type “person” is the EAT for the question “Who are the authors of the SOSA ontology?”.

For our methodology, we modified the approach of Moldovan et al.36 by combining the question types, e.g., 
WHAT, WHO, WHICH, etc., corresponding to classes from the ORKG schema, e.g., Paper, Problem, etc., and 
the question patterns that define the expected answer (BOOLEAN, WHAT-WHO, WHAT-WHEN, WHICH-
WHERE, WHICH-WHAT, and WHO-WHAT). For instance, the question “Who is the author of the most recent 
paper about insects?” has the pattern WHO-WHAT. We also classified the questions according to the following 
dimensions:

•	 ORKG-content This classification is based on the structure of the ORKG schema.

–	 Paper-based: Questions on the content of a single or multiple research papers, e.g., “Which papers use 
DBLP as a dataset?”.

–	 Comparison-based: Questions on the content of a comparison, i.e., on the properties that the contri-
butions participating in a comparison share, e.g., “What is the most common knowledge representation 
method in Semantic Representations of Scholarly Communication?”.

•	 Question content Following the approach of Mikhailian et al.38, we classify the questions into either factoid, 
i.e., AP, or non-factoid, i.e., EAT. Factoid questions assume an explicit AP mapping to the entities of the 
ORKG ontology. If the answer to a question requires inference of a sequence of facts, counting, or filtering, 
we consider such questions non-factoid. We further classify them according to superlatives, e.g., “What is 
the most common lead compound in Anuran Antimicrobial Peptides Activity and Mechanism Against Differ-
ent Biological Membranes?”, negation questions, e.g., “What percentage of comparisons lacks a class link?”, 
questions with counts, e.g., “What is the total number of species examined in Invasion Biology-Enemy release 
hypothesis?”, ranking questions, i.e., asking for a min/max value, e.g., “What is the maximum female percent-
age in Brief Psychotherapy for Depression Studies?”, temporal questions, e.g., “How many studies are published 
after 2019?”, or a combination of various types of content, e.g., “Which was the most popular approach for 
summarization until 2002?”.

Finally, we characterized the questions based on important properties of their respective SPARQL queries:

•	 Number of triple patterns In contrast to simple questions, the SPARQL query of complex questions consists 
of more than a single triple pattern18. As presented in Tables 3 and 4, the dataset contains both simple and 
complex questions with up to 14 triple patterns.

•	 Query shape: We identified the shape (single edge, chain, star, cycle, tree, etc.) of the queries according to 
Bonifati et al.39. Note that the classification based on the number of triple patterns is incorporated in this 
classification, as simple questions can be classified as single-edge queries.

Table 3.   Overview of the SciQA handcrafted queries.

Characteristic Number

Research fields 48

SPARQL queries 100

Query shapes
Tree Chain Star Forest Edge Cycle

47 39 7 5 1 1

Query classes
Which–What Boolean What–When What–Who Who–What Which–Where

84 5 4 3 3 1

Query types
Factoid Non-factoid Superlative Temporal Count

61 39 26 3 7

Query components Min: 2, Med: 5, Max: 14

Triple patterns Min: 1, Med: 4, Max: 14
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•	 Query components We have noted the keywords and operators that are used to build each query, for instance, 
SELECT, ASK, DESCRIBE, COUNT, REGEX, STR, FILTER. These components give an insight into how 
complicated a query is and what feature should a QA system support to generate such structured queries.

Exemple questions and queries.  The key parts of the SciQA benchmark are natural language questions, 
which are translated into formal queries in the SPARQL query language and classified along a comprehensive 
query classification (presented in the “Methods” section). We first give an overview of the 100 SciQA queries, 
before presenting three exemplary questions and corresponding queries in detail. While Table 3 provides some 
statistics about the SciQA handcrafted queries, Table 4 provides the same statistics for the SciQA autogenerated 
queries. We published the full SciQA dataset and a corresponding snapshot of ORKG data on Zenodo23.

Below, we present three example handcrafted questions and two example autogenerated questions with their 
corresponding SPARQL queries for different research fields. Although the ORKG uses alphanumeric identifiers 
(similar to Wikidata), we present the queries here with human-readable identifiers for properties obtained from 
the corresponding resource labels. For convenience, SciQA is accompanied by a SPARQL query preprocessor, 
which converts the human-readable queries back to the ones with alphanumeric identifiers.

1.	 Handcrafted Question What is the average energy generation for each energy source considered in 5-year 
intervals in Greenhouse Gas Reduction Scenarios for Germany?

	   The first question (ID 55 in SciQA-Handcrafted) belongs to the research field Energy Systems from the 
domain of Mechanical Engineering. This non-factoid question is based on the comparison Greenhouse Gas 
Reduction Scenarios for Germany40,41, which summarizes the results of various studies analyzing a future 
low-carbon energy system with a focus on electricity generation for Germany. The question of average values 
for the energy generation for different energy sources in 5-year intervals is typical for this research field. 
Consulted domain experts confirmed that these average values are needed for trend analysis, for example. 
The corresponding SPARQL query includes seven triple patterns, uses eight query components, and is shaped 
as a tree.

Table 4.   Overview of the SciQA autogenerated queries.

Characteristic Number

Research fields 1

SPARQL queries 2465

Query shapes
Tree Chain Star Forest Edge Cycle

2465 0 0 0 0 0

Query classes
Which–What Boolean What–When What–Who Who–What Which–Where

2465 0 0 0 0 0

Query types
Factoid Non-factoid Superlative Temporal Count

2122 343 0 0 0

Query components Min: 4, Med: 6, Max: 13

Triple patterns Min: 6, Med: 6, Max: 11
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2.	 Handcrafted Question What is the most common knowledge representation method in Semantic Representa-
tions of Scholarly Communication?

	   The second question (ID 3 in SciQA-Handcrafted) belongs to the research field Databases/Information 
Systems from the domain Computer Science. This non-factoid question is based on the ORKG comparison 
Semantic Representations of Scholarly Communication22. This comparison provides an overview of publica-
tions on semantic representations of scholarly communication by focusing on scholarly communication as 
a whole and not specific data such as citations. The question is a typical one about the most frequent occur-
rence of information. Specifically, it is about the most commonly used knowledge representation data model 
for scientific communication, which in this case is the Resource Description Framework (RDF, cf. https://​
www.​w3.​org/​RDF/). The SPARQL query includes three triple patterns, uses seven query components, and 
is shaped as a chain.

3.	 Handcrafted Question Where did the study with maximal geographic scale take place in Genetic Variability 
(COI Variation) in Studies Large Sampled (>1000 Sequences)?

	   The third question (ID 78 in SciQA-Handcrafted) belongs to the research field Ecology and Biodiversity of 
Animals and Ecosystems, Organismic Interactions from the domain of Zoology. This non-factoid question is 
based on the comparison Genetic Variability (COI Variation) in Studies Large Sampled (>1000 Sequences)42 
which compares the genetic variability in studies containing more than 1000 cytochrome c oxidase I (COI) 
barcoding sequences. The question aims to identify where the study with the maximum geographic scope 
took place, which in this case is a study conducted in the United States of America, Mexico, and Canada. 
The SPARQL query has six triple patterns, uses six query components, and is shaped like a tree.

https://www.w3.org/RDF/
https://www.w3.org/RDF/
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4.	 Autogenerated Question Can you provide the highest benchmark result, including the metric and score, for 
the Sequential MNIST dataset?

	   The fourth question (ID 1355 in SciQA-Autogenerated) belongs to the research field Computer Science. 
This non-factoid question is based on the content of the ORKG imported from papers-with-code28. The 
question is about fetching the top (or the best) evaluation score recorded in the ORKG, the results should 
be fetched for each distinct evaluation metric used in the evaluation. The related SPARQL query includes 
ten triple patterns, uses nine query components, and has a shape of a tree.

5.	 Autogenerated Question List the title and ID of research papers that contain a benchmark over the SST-2 
Binary classification dataset?

	   The fifth question (ID 524 in SciQA-Autogenerated) belongs to the research field Computer Science. This 
factoid question is based on the content of the ORKG imported from papers-with-code28, which describes 
the evaluation results of machine learning models benchmarked on commonly used datasets in the natural 
language processing and machine learning communities. The question requests the IDs and titles of papers 
that have models that benchmarked a particular dataset, in this case, the SST-2 Binary classification dataset. 
The related SPARQL query includes six triple patterns, uses four query components, and has the shape of a 
tree.
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Applicability and feasibility evaluation
In this section, we present two preliminary evaluations using the handcrafted part of the SciQA benchmark. 
First, we show the results of a proof-of-concept implementation of a QA system based on the JarvisQA system10. 
Second, we show initial insights into using ChatGPT11 for answering the handcrafted questions.

Proof‑of‑concept based on JarvisQA.  In a preliminary analysis, we aim to understand how SciQA can 
be used by a QA system that is focused on scholarly knowledge. For this purpose, we investigate the performance 
of a proof-of-concept implementation based on JarvisQA10.

Experimental Setup.  JarvisQA is fundamentally designed to answer questions about scholarly knowledge. The 
system is based on BERT43 but works only on tables and tabular views of scholarly knowledge graphs, such as 
ORKG comparisons. SciQA does not rely only on tables and tabular views (comparisons) but has a broader 
spectrum of question/answer types. For this reason, we can answer 52 of the handcrafted questions (52%) with 
JarvisQA as they correspond to its input form. We configured our proof-of-concept implementation of JarvisQA 
to run on the compatible questions of SciQA, and we use seven distinct experimental setups that JarvisQA pro-
vides. Due to the limited coverage of questions that the system can answer, we limit the results to two categories 
of questions. The evaluation is conducted in terms of precision@k, recall@k, and f1@k metrics.

Results.  Table 5 shows the evaluation results of these experiments for two main categories of questions: normal 
and overall. While the category normal refers to single-answer questions, the category overall aggregates single-
answer questions and all other question types that JarvisQA can answer, such as listing and boolean questions. 
We note that the performance decreases across all the setups for the overall category because of the complex 
nature of the SciQA benchmark and the answers it expects, unlike what JarvisQA was trained with and thus can 
answer10.

ChatGPT and SciQA.  Besides the use of SciQA with a QA system focused on scholarly knowledge, we per-
formed an additional preliminary evaluation based on all handcrafted questions using ChatGPT11. Numerous 
LLMs adept at solving common natural language tasks have now been released such as ChatGPT11, Galactica44, 
LaMDA45, Codex46, or Sparrow47. Some of them show better performance on technical knowledge tasks, e.g., 
Galactica44, some in the medical domain, e.g., PubMedQA48 and MedMCQA49, etc. In this experiment, we do 
not aim to test all these LLMs on SciQA, but to estimate the baseline performance of LLMs for scholarly ques-
tions about various topics. We chose ChatGPT for our experiment as it is one of the most prominent LLMs at 
the moment, and it is not domain-specific. ChatGPT should be able to answer the questions from SciQA, as the 

Table 5.   Evaluation results of running JarvisQA against the handcrafted questions of the SciQA benchmark. 
JarvisQA setups follow similar notations as introduced in10. Top performing setup is indicated in bold, second 
best is underlined.

JarvisQA setup

Normal Overall

Precision Recall F1 Precision Recall F1

@1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10

JarvisQABUS 0.190 0.271 0.191 0.271 0.190 0.271 0.136 0.190 0.136 0.190 0.136 0.190

JarvisQALCS 0.193 0.254 0.194 0.254 0.194 0.254 0.138 0.179 0.138 0.179 0.138 0.179

JarvisQABCS2 0.134 0.187 0.134 0.188 0.134 0.187 0.098 0.135 0.098 0.135 0.098 0.135

JarvisQALUS2 0.169 0.288 0.169 0.288 0.169 0.288 0.122 0.202 0.122 0.202 0.122 0.202

JarvisQADis−BUS 0.134 0.246 0.134 0.246 0.134 0.246 0.098 0.174 0.098 0.174 0.098 0.174

JarvisQAXLS2 0.172 0.339 0.172 0.339 0.172 0.339 0.125 0.235 0.125 0.235 0.125 0.235

JarvisQAXXLS2 0.169 0.246 0.169 0.246 0.169 0.246 0.122 0.174 0.122 0.174 0.122 0.174
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source texts of the papers and the topics of the questions that were used to develop the dataset are mostly openly 
available on the internet. For this reason, we assume that questions from the SciQA can be potentially processed 
and answered by LLMs such as ChatGPT. In this way, this evaluation aims to gain initial insights into how well 
one of the current most famous LLMs, which is not trained specifically on ORKG data, is able to answer complex 
queries on scholarly knowledge (with superlatives, comparisons, etc.).

Experimental setup.  The underlying model of ChatGPT is designed to generate detailed answers to a user’s 
questions. For this reason, we have added the additional prompt “short:” to each of the 100 handcrafted ques-
tions to get shorter answers similar to the answers in SciQA. Although ChatGPT’s responses were shorter, they 
were still very detailed. In the future, a more refined individual tuning of the prompt is necessary to obtain 
answers in a more similar format to the answers of our dataset. However, we decided that this way of retrieving 
the answers is sufficient for our preliminary evaluation of SciQA. After collecting the 100 answers to all ques-
tions, the assessment of its correctness was performed with expert opinion.

Four experts compared the ChatGPT’s answers with the answer from the SciQA dataset. If correct facts 
were mentioned in the text returned by ChatGPT, that answer was assessed as “Correct”. Otherwise, the result 
was assessed as “Incorrect”. Also, if the system returned a response that it could not answer the question, it was 
assessed as “No answer”. After all the answers were independently assessed by the experts, the experts compared 
their results and discussed any disagreements in a meeting. During this discussion, situations arose in which the 
experts could not agree whether the answer was derived from the paper or data source mentioned in the question 
or whether the answer had been generated from common sense or general knowledge. As a result, the experts 
assessed these answer as “Uncertain.”. In Table 7, we show four examples of each of the four assessment types 
“Correct”, “Incorrect”, “Uncertain”, “No answer”. These examples include the question from SciQA with the SciQA 
answer, the answer by ChatGPT, and the experts’ assessment of the answer by ChatGPT with an explanation.

Results.  In Table 6, we provide an overview of the results of the experts’ assessment. We found from this analy-
sis that ChatGPT was able to generate answers for 63 of the 100 handcrafted questions. Fourteen of these 63 
answers are correct, 40 answers are incorrect, and nine answers are uncertain. Although these results are slightly 
better compared to the results of the best performing configuration of the proof-of-concept implementation of 
JarvisQA ( JarvisXLS2 : 12 correct answers), the performance of ChatGPT in answering questions about scientific 
knowledge is still low with only 14 correct answers. This preliminary evaluation shows the limited applicability 
and low accuracy of even the current cutting-edge LLM ChatGPT in answering specific questions about schol-
arly knowledge.

Discussion
In this section, we discuss three key aspects of SciQA: (1) the higher complexity of scholarly knowledge; (2) 
the insufficiency of LLMs for dealing with scholarly knowledge, and (3) the advancement of knowledge graphs 
towards cognitive knowledge graphs for facilitating the integration of semantic and machine learning approaches.

We argue, that scholarly knowledge is more complex than common sense knowledge, e.g., encyclopedic 
knowledge. We illustrated this complexity with some examples, e.g., Fig. 1. In these examples, the semantic 
units of knowledge are not simple entity descriptions, where an entity, such as an organization, place, or person 
is described with a set of RDF triple statements having the entity identifier as a common subject. In contrast, 
for scholarly knowledge graphs such as the ORKG a scholarly contribution description comprises numerous 
interwoven entity descriptions, which include, for example, descriptions of processes and process steps, material 
characteristics, components, measurements, simulations as well as bibliographic metadata. A single semantic 
unit in the ORKG commonly consists of more than a dozen tightly interlinked entity descriptions, which only 
together reasonably convey information, compared to encyclopedic or common sense knowledge, where often 
already a single entity description contains sufficient information. This inherently more complex structure of 
scholarly knowledge graphs makes question answering on them significantly more challenging, which we have 
demonstrated with our applicability and feasibility evaluation. In particular, the results of the two preliminary 
evaluations show how challenging it is for a QA system and a LLM to answer questions about scholarly knowl-
edge. Neither a QA system that is intended for scholarly knowledge and even trained on ORKG data nor the 
LLM ChatGPT was able to perform well in answering the 100 handcrafted questions from SciQA. In both cases, 
the systems were unable to adequately solve the challenge of scholarly QA (Table 7).

In our preliminary evaluations, we observed that even QA systems specifically designed for academic data, 
including one of the most advanced LLMs available at the time of this article, struggle to excel on the SciQA 
benchmark. The SciQA dataset encompasses various question types stemming from distinct entities within the 
knowledge graph, rather than solely relying on tabular views, which is the primary format JarvisQA operates on. 
Moreover, to accurately respond to SciQA queries, a QA system must comprehend the context of each question, 

Table 6.   Results of the four experts’ assessments of ChatGPT’s answers to the handcrafted questions of the 
SciQA benchmark.

Answer

No answerCorrect Incorrect Uncertain

# Answers 14 40 9 37
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which is embedded in the ORKG graph structure. One contributing factor to this challenge is the deficiency 
in NLP components tailored to academic data, such as entity linkers and query builders50. Another significant 
limitation is that LLMs like ChatGPT and BERT do not possess the contextual understanding specific to a 
knowledge graph, such as the ORKG, which further hinders their performance on the SciQA benchmark. Taking 
into account all the factors mentioned above, it becomes increasingly clear that there is a pressing need for the 
research community to rally behind the SciQa benchmark. By collaborating to develop systems that perform 
well on SciQA, researchers can contribute to improve and expand this QA dataset, as well as make progress in 
this field of QA for scholarly knowledge. With this goal in mind, we launched the Scholarly Question Answer-
ing over Linked Data (QALD) Challenge with a task using SciQA as one of the open competitions at the 22nd 
International Semantic Web Conference 202351,52. With this challenge, we hope to generate more baselines and 
inspire the community to create an array of scholarly-oriented tools and QA systems. Ultimately, this collabora-
tive effort will foster significant advancements in the field, benefiting academia as a whole.

A reason for this challenge even for LLMs lies in the fact, that these models are very good at recreating com-
mon sense knowledge, which can be found in varying forms in several different sources. However, due to their 
nature of employing probability distribution over sequences of words, they are not good at dealing with knowl-
edge to be found only in a single or very few sources. This issue was also shown recently with the failed LLM 

Table 7.   Sample of ChatGPT answers and our evaluation of the results as part of the qualitative assessment of 
the handcrafted SciQA benchmark.

SciQA question
SciQA 
answer ChatGPT answer Assessment and explanation

What is the most common Knowledge 
representation method in “Semantic 
representations of scholarly communica-
tion”?

RDF

The most common knowledge represen-
tation method in “Semantic representa-
tions of scholarly communication” is 
the use of semantic web technologies, 
such as RDF (Resource Description 
Framework) and OWL (Web Ontology 
Language), to represent and integrate 
scholarly communication data.

The answer is correct. The comparison 
mentions several semantic representa-
tion methods, each of which is associated 
with one or more knowledge representa-
tion methods.

Does paper “Disambiguating authors 
in citations on the web and authorship 
correlations” in Semi-supervised author 
name disambiguation employe Cosine 
similarity?

Yes No The answer is not correct. The paper does 
indeed mention the metric.

How many studies are published after 
2019 for “The Use of Silicon Carbide 
Thin Films in Different Device Types”?

3

As an AI language model, I cannot 
access up-to-date information on the 
number of studies published after 
2019 for “The Use of Silicon Carbide 
Thin Films in Different Device Types”. 
However, a search on Google Scholar or 
other academic databases can provide 
the most up-to-date information on 
this topic.

In this case, ChatGPT provided no 
answer, as there are 3 of 5 papers in the 
comparison that were published in 2020 
or later.

What risk factors for OSA are discovered 
in the paper with 100% OSA frequency 
in the “Comparison of the frequency 
of obstructive sleep apnea (OSA) in 
patients with mucopolysaccharidosis 
(MPS)”?

Increase in 
age

In the paper “Comparison of the 
frequency of obstructive sleep apnea 
(OSA) in patients with mucopolysaccha-
ridosis (MPS)”, the authors found that 
all patients with mucopolysaccharidosis 
(MPS) in their study had obstructive 
sleep apnea (OSA). The paper identifies 
several risk factors for OSA in patients 
with MPS, including:Upper airway 
abnormalities: MPS can cause structural 
abnormalities in the upper airway, such 
as enlarged tonsils and adenoids, a 
small or recessed jaw, and a thick and 
large tongue, which can increase the 
risk of OSA. Obesity: Excess weight can 
put additional pressure on the airway, 
increasing the likelihood of airway 
obstruction during sleep. Age: The risk 
of OSA increases with age, and patients 
with MPS may be at higher risk due to 
the early onset and progressive nature 
of the disease. Type of MPS: The study 
found that patients with MPS I and MPS 
II were at higher risk of OSA than those 
with MPS III, although all patients with 
MPS in the study had OSA. Severity of 
disease: Patients with more severe forms 
of MPS, as measured by a higher num-
ber of enzyme deficiencies and greater 
clinical manifestations, were more 
likely to have OSA. Overall, the study 
highlights the high prevalence of OSA in 
patients with MPS and the importance 
of early diagnosis and treatment to 
prevent potential complications.

The answer is uncertain as the response 
is too extensive, and it is impossible to 
unambiguously determine whether it 
contains a correct answer or not
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Galactica trained on scientific literature, which had to be taken offline after three days when it became clear that 
the model’s ratio between hallucination and reasonable answers is too unfortunate to be of any use53. We deem, 
that this is an inherent characteristic of LLMs, which can also not be addressed with further improvements of 
the models themselves. However, a combination of LLMs with symbolic knowledge representation approaches 
(such as the ORKG and SciQA) can be a promising avenue for leveraging the potential of AI and also for domains 
with more unique knowledge production such as science.

Scholarly knowledge graphs such as ORKG demonstrate the advance of the knowledge graph concept towards 
more cognitive knowledge graphs, which enable the trustworthy integration of artificial and human intelli-
gence. In cognitive knowledge graphs, the constituents will be more complex elements, such as ideas, theories, 
approaches, and claims as they are conveyed, for example, in scholarly contributions, but also in other areas 
such as industrial product models54, common vulnerabilities and exposure descriptions in developer security55 
or OMICS data for personalized medicine6. We see these base constituents of cognitive knowledge graphs to 
be complex fabrics of entity descriptions arranged according to certain patterns, such as graphlets. In network 
analysis and graph theory, the notions graphlet56 and motif57 were introduced to provide a structuring element 
between whole graphs and individual nodes and edges. Hence, in order to be able to effectively represent and 
manage more complex knowledge artifacts, the notion of graphlets can be applied to knowledge graphs (as we 
did in SciQA with research contributions). Cognitive knowledge graphs can be of particular importance to sup-
port the step from correlation to causality—while correlation arises from the detection of statistical relationships 
and patterns in the data, we plan to use rich contextual knowledge from knowledge graphs as additional signals 
for causality testing. Such integration of symbolic and sub-symbolic intelligence as HybridAI (cf. Breit et al.58) 
for a recent survey of approaches) can help us to systematically anchor transparency, traceability, explainability, 
trustworthiness, and reliability in data science and AI methods.

Conclusions and future work
In this section, we draw some conclusions and point out directions for future work. We address the problem 
of missing QA benchmarks for scholarly knowledge. So far, QA systems and corresponding benchmarks were 
mainly geared towards encyclopedic knowledge composed of relatively simple to moderate semantic structures1. 
In contrast, the consideration of scientific knowledge combined with knowledge graphs is rather new and chal-
lenging due to heterogeneous representations, concept drifts and evolution over time, different levels of granu-
larity, and novel semantic structures.

For these reasons, we developed the SciQA benchmark for scholarly knowledge as a new challenging task for 
the next-generation QA systems with 13 different researchers using a defined bottom-up methodology. SciQA 
contains 100 handcrafted natural language questions with paraphrases, corresponding human- and machine-
readable SPARQL queries with their results. These questions and queries are analyzed according to several clas-
sifications and cover 48 different fine-grained research fields such as Computer Science, Engineering, Chemistry, 
Geology, Immunology, and Economics (see Table 3). In addition to the handcrafted question-answer pairs, 
we semi-automatically created a set of 2465 questions derived from eight question templates. This approach is 
currently limited to the computer science domain, where we have a large set of homogeneously structured and 
described data. However, once the ORKG comprises more such homogeneously structured contribution descrip-
tions, the SciQA approach can easily be expanded to further research fields.

The initial results of the evaluation of SciQA using JarvisQA and ChatGPT demonstrate the difficulties of 
scholarly knowledge in general for a system that is designed to answer questions about scholarly knowledge, or 
a large language model capable of advanced reasoning and language understanding. Based on these insights, 
we conclude that the SciQA benchmark represents a challenging task for QA systems, but its implementation 
is realistic and feasible.

This work is the foundation for a longer research and technology development agenda. We envision advanc-
ing the concept of knowledge graphs from rather simple, atomic entity descriptions towards richer structured 
knowledge graphs, comprising fabrics of complex knowledge structures such as knowledge graph cells59. We 
plan to update SciQA annually as the ORKG evolves to include more content for more questions, queries, and 
answers. We also currently launch the Scholarly Question Answering over Linked Data (QALD) Challenge with 
a task using SciQA as one of the open competitions at the 22nd International Semantic Web Conference 202351,52. 
An extension of this work is to perform QA on federated scholarly knowledge graphs that link ORKG content to 
metadata about articles, datasets, people, organizations, etc. published by other scholarly infrastructures60. Given 
the advanced standardization of the persistent identification, description, interlinking, and exchange of metadata 
about these entities as well as the provision of (programmatic) access to metadata through systems such as the 
GraphQL-based PID Graph, the federated integration of ORKG content with metadata about contextual entities 
is straightforward. This will enable QA on scholarly knowledge understood broadly to include both the scientific 
knowledge published in articles interlinked with contextual knowledge about its production and consumption.

Data availability
The full SciQA dataset and a snapshot of ORKG data is available from Zenodo (https://​doi.​org/​10.​5281/​zenodo.​
58451​97)23 and Hugging Face (https://​huggi​ngface.​co/​datas​ets/​orkg/​SciQA)61.

Code availability
The source code of JarvisQA10 is available from GitHub (cf. https://​github.​com/​Yaser​Jarad​eh/​Jarvi​sQA).
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