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We provide existence and uniqueness of global (and local) mild solutions for a general class of
semilinear stochastic partial differential equations driven byWiener processes and Poisson random
measures under local Lipschitz and linear growth (or local boundedness, resp.) conditions. The so-
called “method of the moving frame” allows us to reduce the SPDE problems to SDE problems.

1. Introduction

Semilinear stochastic partial differential equations (SPDEs) on Hilbert spaces, being of the
type

Zt = (AZt + α(t, Zt))dt + σ(t, Zt)dWt,

Z0 = z0,
(1.1)

have widely been studied in the literature, see, for example, [1–4]. In (1.1), A denotes the
generator of a strongly continuous semigroup, andW is a trace class Wiener process. In view
of applications, this framework has been extended by adding jumps to the SPDE (1.1). More
precisely, consider an SPDE of the type

dZt = (AZt + α(t, Zt))dt + σ(t, Zt)dWt +
∫
E

γ(t, Zt−, x)
(
μ(dt, dx) − F(dx)dt

)
,

Z0 = z0,

(1.2)
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where μ denotes a Poisson randommeasure on some mark space (E,E)with dt⊗F(dx) being
its compensator. SPDEs of this type have been investigated in [5, 6], see also [7–12], where
SPDEs with jump noises have been studied.

The goal of the present paper is to extend results and methods for SPDEs of the type
(1.2) in the following directions.

(i) We consider more general SPDEs of the form

dZt = (AZt + α(t, Zt))dt + σ(t, Zt)dWt +
∫
B

γ(t, Zt−, x)
(
μ(dt, dx) − F(dx)dt

)

+
∫
Bc

γ(t, Zt−, x)μ(dt, dx),

Z0 = z0,

(1.3)

where B ∈ E is a set with F(Bc) < ∞. Then, the integral
∫
B represents the small

jumps, and
∫
Bc represents the large jumps of the solution process. Similar SDEs have

been considered in finite dimension in [13, Section II.2.c] and in infinite dimension
in [14].

(ii) We will prove the following results (see Theorem 4.5) concerning existence and
uniqueness of local and global mild solutions to (1.3):

(1) if (α, σ, γ |B) are locally Lipschitz and of linear growth, then existence and
uniqueness of global mild solutions to (1.3) hold;

(2) if (α, σ, γ |B) are locally Lipschitz and locally bounded, then existence and
uniqueness of local mild solutions to (1.3) hold;

(3) if (α, σ, γ |B) are locally Lipschitz, then uniqueness of mild solutions to (1.3)
holds.

In particular, the result that local Lipschitz and linear growth conditions ensure
existence and uniqueness of global mild solutions does not seem to be well known
for SPDEs, as most of the mentioned references impose global Lipschitz conditions.
An exception is [3], where the author treats Wiener process-driven SPDEs of the
type (1.1), even on 2-smooth Banach spaces, and provides existence and uniqueness
under local Lipschitz and linear growth conditions. In [3], the crucial assumption
on the operator A is that it generates an analytic semigroup, while our results hold
true for every pseudocontractive semigroup.

(iii) We reduce the proofs of these SPDE results to the analysis of SDE problems. This
is due to the “method of the moving frame”, which has been presented in [6]. As a
direct consequence, we obtain that any mild solution to (1.3) is càdlàg.
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As just mentioned, we will utilize the “method of the moving frame” from [6], which allows
us to reduce the SPDE problems to SDE problems. Therefore, we will be concerned with SDEs
in Hilbert spaces being of the type

dYt = a(t, Yt)dt + b(t, Yt)dWt +
∫
B

c(t, Yt−, x)
(
μ(dt, dx) − F(dx)dt

)
+
∫
Bc

c(t, Yt−, x)μ(dt, dx),

Y0 = y0.

(1.4)

By using the technique of interlacing solutions at jump times (which, in particular cases has
been applied, e.g., in [15, Section 6.2] and [10, Section 9.7]), we can reduce the SDE (1.4) to
SDEs of the form

dYt = a(t, Yt)dt + b(t, Yt)dWt +
∫
B

c(t, Yt−, x)
(
μ(dt, dx) − F(dx)dt

)
,

Y0 = y0,

(1.5)

without large jumps, and for those SDEs, suitable techniques and results are available in the
literature. This allows us to derive existence and uniqueness results for the SDE (1.4), which
are subject to the regularity conditions described above. We point out that [14] also studies
Hilbert space-valued SDEs of the type (1.4) and provides an existence and uniqueness result
considerably going beyond the classical results which impose global Lipschitz conditions. In
Section 3.3, we provide a comparison of our existence and uniqueness result for SDEs of the
type (1.4)with that from [14].

The remainder of this paper is organized as follows: in Section 2, we provide the
required preliminaries and notation. In Section 3, we prove existence and uniqueness results
for (local) strong solutions to SDEs of the form (1.4), and in Section 4, we prove existence and
uniqueness results for (local)mild solutions to SPDEs of the form (1.3) by using the “method
of the moving frame.”

2. Preliminaries and Notation

In this section, we provide the required preliminary results and some basic notation.
Throughout this text, let (Ω,F,F,P) with F = (Ft)t≥0 be a filtered probability space

satisfying the usual conditions.
LetU be a separable Hilbert space, and letQ ∈ L(U) be a nuclear, self-adjoint, positive

definite linear operator. Then, there exist an orthonormal basis (ej)j∈N
of U and a sequence

(λj)j∈N
⊂ (0,∞) with

∑
j∈N

λj < ∞ such that

Qej = λjej ∀j ∈ N, (2.1)
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namely, the λj are the eigenvalues of Q, and each ej is an eigenvector corresponding to λj .
The space U0 := Q1/2(U), equipped with the inner product

〈u, v〉U0
:=
〈
Q−1/2u,Q−1/2v

〉
U
, (2.2)

is another separable Hilbert space, and (
√
λjej)j∈N

is an orthonormal basis. Let W be a U-
valued Q-Wiener process, see [1, page 86, 87]. For another separable Hilbert space H, we
denote by L0

2(H) := L2(U0,H) the space of Hilbert-Schmidt operators fromU0 intoH, which,
endowed with the Hilbert-Schmidt norm

‖Φ‖L0
2(H) :=

⎛
⎝∑

j∈N

∥∥∥Φ(
√
λjej
)∥∥∥2
⎞
⎠

1/2

, Φ ∈ L0
2(H), (2.3)

itself is a separable Hilbert space.
Let (E,E) be a measurable space which we assume to be a Blackwell space (see [16,

17]). We remark that every Polish space with its Borel σ-field is a Blackwell space. Further-
more, let μ be a time-homogeneous Poisson random measure on R+ × E, see [13, Definition
II.1.20]. Then its compensator is of the form dt ⊗ F(dx), where F is a σ-finite measure on
(E,E).

For the following definitions, let τ be a finite stopping time.

(i) We define the new filtration F
(τ) = (F(τ)

t )t≥0 by

F(τ)
t := Fτ+t, t ≥ 0. (2.4)

(ii) We define the new U-valued process W (τ) by

W
(τ)
t := Wτ+t −Wτ, t ≥ 0. (2.5)

(iii) We define the new random measure μ(τ) on R+ × E by

μ(τ)(ω;B) := μ
(
ω;Bτ(ω)

)
, ω ∈ Ω, B ∈ B(R+) ⊗ E, (2.6)

where we use the notation

Bτ := {(t + τ, x) ∈ R+ × E : (t, x) ∈ B}. (2.7)

Then, W (τ) is an F
(τ)-adapted Q-Wiener process, and μ(τ) is a time-homogeneous

Poisson random measure relative to the filtration F
(τ) with compensator dt ⊗ F(dx), cf. [18,

Lemma 4.6].

Lemma 2.1. Let � be another stopping time. Then, the mapping (� − τ)+ is an F
(τ)-stopping time.
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Proof. For every t ∈ R+, we have

{(
� − τ

)+ ≤ t
}
=
{
� − τ ≤ t

}
=
{
� ≤ τ + t

} ∈ Fτ+t = F(τ)
t , (2.8)

showing that (� − τ)+ is an F
(τ)-stopping time.

Denoting by P(τ) the predictable σ-algebra relative to the filtration F
(τ), we have the

following auxiliary result.

Lemma 2.2. The following statements are true:

(1) the mapping

θτ : Ω × R+ −→ Ω × R+, θτ(ω, t) := (ω, τ(ω) + t) (2.9)

is P(τ)-P-measurable.

(2) the mapping

ϑτ : Ω −→ Ω × R+, ϑτ(ω) := (ω, τ(ω)) (2.10)

is Fτ -P-measurable.

Proof. According to [13, Theorem I.2.2], the system of sets

{A × {0} : A ∈ F0} ∪
{
�0, �� : � is a stopping time

}
(2.11)

is a generating system of the predictable σ-algebra P. For any set A ∈ F0, we have

θ−1
τ (A × {0}) = (A ∩ {τ = 0}) × {0} ∈ P(τ). (2.12)

Furthermore, for any F-stopping time �, we have

θ−1
τ

(
�0, ��

)
= θ−1

τ

({
(ω, t) ∈ Ω × R+ : 0 ≤ t ≤ �(ω)

})
=
{
(ω, t) ∈ Ω × R+ : 0 ≤ τ(ω) + t ≤ �(ω)

}
=
{
(ω, t) ∈ Ω × R+ : 0 ≤ t ≤ �(ω) − τ(ω)

}

= �0, � − τ� =
�
0,
(
� − τ

)+� \ ({τ > �
} × {0}) ∈ P(τ),

(2.13)

where, in the last step, we have used Lemma 2.1. This proves the first statement.
According to [13, Theorem I.2.2], the system of sets

{A × {0} : A ∈ F0} ∪ {A × (s, t] : s < t, A ∈ Fs} (2.14)
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is a generating system of the predictable σ-algebra P. For any set A ∈ F0, we have

ϑ−1
τ (A × {0}) = A ∩ {τ = 0} ∈ F0 ⊂ Fτ . (2.15)

Furthermore, for all s, t ∈ R+ with s < t and A ∈ Fs, we have

ϑ−1
τ (A × (s, t]) = A ∩ {s < τ} ∩ {τ ≤ t} ∈ Fτ , (2.16)

establishing the second statement.

Let us further investigate the Poisson random measure μ. According to [13, Proposi-
tion II.1.14], there exist a sequence (κn)n∈N

of finite stopping times with �κn� ∩ �κm� = ∅ for
n/=m and an E-valued optional process ξ such that for every optional process γ : Ω×R+×E →
H, where H denotes a separable Hilbert space, and all 0 ≤ t ≤ u with

P

(∫u

t

∫
E

∥∥γ(s, x)∥∥μ(ds, dx) < ∞
)

= 1, (2.17)

we have

∫u

t

∫
E

γ(s, x)μ(ds, dx) =
∑
n∈N

γ(κn, ξκn)1{t<κn≤u}. (2.18)

Let B ∈ E be a set with F(Bc) < ∞. We define the mappings �k : Ω → R+, k ∈ N0 as

�k := inf
{
t ≥ 0 : μ([0, t] × Bc) = k

}
, k ∈ N0. (2.19)

Lemma 2.3. The following statements are true:

(1) for each k ∈ N, the mapping �k is a finite stopping time,

(2) one has �0 = 0 and P(�k < �k+1) = 1 for all k ∈ N0,

(3) one has P(�k → ∞) = 1.

Proof. This follows from [19, Lemma A.19].

3. Existence and Uniqueness of Strong Solutions to
Hilbert Space-Valued SDEs

In this section, we establish existence and uniqueness of (local) strong solutions to Hilbert
space-valued SDEs of the type (1.4).

LetH be a separable Hilbert space, and let B ∈ E be a set with F(Bc) < ∞. Furthermore,
let a : Ω × R+ ×H → H and b : Ω × R+ ×H → L0

2(H) be P ⊗ B(H)-measurable mappings,
and let c : Ω × R+ ×H × E → H be a P ⊗ B(H) ⊗ E-measurable mapping.
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Definition 3.1. One says that existence of (local) strong solutions to (1.4) holds, if for each F0-
measurable random variable y0 : Ω → H, there exists a (local) strong solution to (1.4) with
initial condition y0 (and some strictly positive lifetime τ > 0).

Definition 3.2. One says that uniqueness of (local) strong solutions to (1.4) holds, if for two
(local) strong solutions to (1.4) with initial conditions y0 and y′

0 (and lifetimes τ and τ ′) we
have up to indistinguishability

Y1{y0=y′
0} = Y ′1{y0=y′

0},(
Yτ∧τ ′1{y0=y′

0} =
(
Y ′)τ∧τ ′1{y0=y′

0}
)
.

(3.1)

Note that uniqueness of local strong solutions to (1.4) implies uniqueness of strong
solutions to (1.4). This is seen by setting τ := ∞ and τ ′ := ∞.

Definition 3.3. One says that the mappings (a, b, c|B) are locally Lipschitz if P-almost surely

(∫
B

∥∥c(t, y, x)∥∥2F(dx)
)1/2

< ∞, ∀t ∈ R+ and ally ∈ H, (3.2)

and for each n ∈ N, there is a nondecreasing function Ln : R+ → R+ such that P-almost surely

∥∥a(t, y1
) − a

(
t, y2
)∥∥ ≤ Ln(t)

∥∥y1 − y2
∥∥,

∥∥b(t, y1
) − b

(
t, y2
)∥∥

L0
2(H) ≤ Ln(t)

∥∥y1 − y2
∥∥,

(∫
B

∥∥c(t, y1, x
) − c

(
t, y2, x

)∥∥2F(dx)
)1/2

≤ Ln(t)
∥∥y1 − y2

∥∥,
(3.3)

for all t ∈ R+ and all y1, y2 ∈ H with ‖y1‖, ‖y2‖ ≤ n.

Definition 3.4. One says that the mappings (a, b, c|B) satisfy the linear growth condition if
there exists a nondecreasing function K : R+ → R+ such that P-almost surely

∥∥a(t, y)∥∥ ≤ K(t)
(
1 +
∥∥y∥∥),

∥∥b(t, y)∥∥L0
2(H) ≤ K(t)

(
1 +
∥∥y∥∥),

(∫
B

∥∥c(t, y, x)∥∥2F(dx)
)1/2

≤ K(t)
(
1 +
∥∥y∥∥),

(3.4)

for all t ∈ R+ and all y ∈ H.
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Definition 3.5. One says that the mappings (a, b, c|B) are locally bounded if for each n ∈ N,
there is a nondecreasing function Mn : R+ → R+ such that P-almost surely

∥∥a(t, y)∥∥ ≤ Mn(t),∥∥b(t, y)∥∥L0
2(H) ≤ Mn(t),

(∫
B

∥∥c(t, y, x)∥∥2F(dx)
)1/2

≤ Mn(t),

(3.5)

for all t ∈ R+ and all y ∈ H with ‖y‖ ≤ n.

For a finite stopping time τ and a set Γ ∈ Fτ , we define the mappings a(τ,Γ) : Ω × R+ ×
H → H, b(τ,Γ) : Ω × R+ ×H → L0

2(H), and c(τ,Γ) : Ω × R+ ×H × E → H as

a(τ,Γ)(t, y) := a
(
τ + t, y

)
1Γ, (3.6)

b(τ,Γ)
(
t, y
)
:= b
(
τ + t, y

)
1Γ, (3.7)

c(τ,Γ)
(
t, y, x

)
:= c
(
τ + t, y, x

)
1Γ. (3.8)

By Lemma 2.2, the mappings a(τ,Γ) and b(τ,Γ) are P(τ) ⊗ B(H)-measurable, and c(τ,Γ) is P(τ) ⊗
B(H) ⊗ E-measurable. We will also use the notation

a(τ) := a(τ,Ω), b(τ) := b(τ,Ω), c(τ) := c(τ,Ω). (3.9)

Lemma 3.6. Suppose that τ1Γ is bounded. Then, the following statements are true:

(1) if (a, b, c|B) are locally Lipschitz, then (a(τ,Γ), b(τ,Γ), c(τ,Γ)|B) are locally Lipschitz, too;

(2) if (a, b, c|B) satisfy the linear growth condition, then (a(τ,Γ), b(τ,Γ), c(τ,Γ)|B) satisfy the linear
growth condition, too.

Proof. Suppose that (a, b, c|B) satisfy the linear growth condition. Since τ1Γ is bounded, there
exists a constant T ≥ 0 such that τ1Γ ≤ T . The mapping K̃ := K(• + T) : R+ → R+ is
nondecreasing, and we have P-almost surely

∥∥∥a(τ,Γ)(t, y)∥∥∥ =
∥∥a(t + τ, y

)
1Γ
∥∥ ≤ K(t + τ)1Γ

(
1 +
∥∥y∥∥) ≤ K̃(t)

(
1 +
∥∥y∥∥), (3.10)

for all t ∈ R+ and y ∈ H. Analogous estimates for b(τ,Γ) and c(τ,Γ) prove that (a(τ,Γ),
b(τ,Γ), c(τ,Γ)|B) satisfy the linear growth condition, too. The remaining statement is proven
analogously.
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Lemma 3.7. Let τ and � be two finite stopping times, and let Γ ∈ Fτ be a set with Γ ⊂ {τ ≤ �}. If Y
is an F-adapted local strong solution to (1.4) with lifetime �, then

Y (τ,Γ) := Yτ+•1Γ (3.11)

is an F
(τ)-adapted local strong solution to (1.4) with parameters

a = a(τ,Γ), b = b(τ,Γ), c = c(τ,Γ), W = W (τ), μ = μ(τ), (3.12)

initial condition Yτ1Γ, and lifetime (� − τ)+.

Proof. The process Y (τ,Γ) given by (3.11) is F
(τ) adapted, and we have

Y
(τ,Γ)
t 1�0,(�−τ)+�(t) = Yτ+t1Γ1�0,(�−τ)+�(t) = [Yτ + (Yτ+t − Yτ)]1Γ1�0,(�−τ)+�(t)

=

[
Yτ +

∫ τ+t

τ

a(s, Ys)ds +
∫ τ+t

τ

b(s, Ys)dWs

+
∫ τ+t

τ

∫
B

c(s, Ys−, x)
(
μ(ds, dx) − F(dx)ds

)

+
∫ τ+t

τ

∫
Bc

c(s, Ys−, x)μ(ds, dx)

]
1Γ1�0,(�−τ)+�(t).

(3.13)

Therefore, we obtain

Y
(τ,Γ)
t 1�0,(�−τ)+�(t) =

[
Yτ1Γ +

∫ t

0
a(τ + s, Yτ+s)1Γds +

∫ t

0
b(τ + s, Yτ+s)1ΓdW

(τ)
s

+
∫ t

0

∫
B

c
(
τ + s, Y(τ+s)−, x

)
1Γ

(
μ(τ)(ds, dx) − F(dx)ds

)

+
∫ t

0

∫
Bc

c
(
τ + s, Y(τ+s)−, x

)
1Γμ

(τ)(ds, dx)

]
1�0,(�−τ)+�(t).

(3.14)

Taking into account the Definitions (3.6)–(3.8) of a(τ,Γ), b(τ,Γ), c(τ,Γ) and the Definition (3.11) of
Y (τ,Γ), it follows that

Y
(τ,Γ)
t 1�0,(�−τ)+�(t) =

[
Yτ1Γ +

∫ t

0
a(τ,Γ)

(
s, Y

(τ,Γ)
s

)
ds +

∫ t

0
b(τ,Γ)

(
s, Y

(τ,Γ)
s

)
dW

(τ)
s

+
∫ t

0

∫
B

c(τ)
(
s, Y

(τ,Γ)
s− , x

)(
μ(τ)(ds, dx) − F(dx)ds

)

+
∫ t

0

∫
Bc

c(τ)
(
s, Y

(τ,Γ)
s− , x

)
μ(τ)(ds, dx)

]
1�0,(�−τ)+�(t).

(3.15)
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Consequently, Y (τ,Γ) is a local strong solution to (1.4)with parameters (3.12), initial condition
Yτ1Γ, and lifetime (� − τ)+.

Lemma 3.8. Let τ ≤ � be two finite stopping times. If Y (0) is an F-adapted local strong solution to
(1.4) with lifetime τ , and Y (τ) is an F

(τ)-adapted local strong solution to (1.4) with parameters

a = a(τ), b = b(τ), c = c(τ), W = W (τ), μ = μ(τ), (3.16)

initial condition Y
(0)
τ , and lifetime � − τ , then

Y := Y (0)1�0,τ� + Y
(τ)
•−τ1�τ,�� (3.17)

is an F-adapted local strong solution to (1.4) with lifetime �.

Proof. Let t ∈ R+ be arbitrary. Then, the random variable Y
(0)
t 1{τ≥t} is Ft-measurable. Let C ∈

B(H) be an arbitrary Borel set. We define DC ∈ Ft as

DC :=

{({τ < t} ∩ {t ≤ �
})c if 0 ∈ C,

∅ if 0 /∈ C.
(3.18)

According to Lemma 2.1, the mapping (t − τ)+ is an F
(τ)-stopping time. Therefore, we get

{
Y

(τ)
(t−τ)+ ∈ C

}
∈ F(τ)

(t−τ)+ = Fτ+(t−τ)+ , (3.19)

and hence, we obtain

{
Y

(τ)
t−τ1{τ<t≤�} ∈ C

}
=
{
Y

(τ)
(t−τ)+1{τ<t≤�} ∈ C

}

=
(
{τ < t} ∩ {t ≤ �

} ∩ {Y (τ)
(t−τ)+ ∈ C

})
∪DC

=
({

� ≥ t
} ∩ {τ /= t} ∩ {τ ≤ t} ∩

{
Y

(τ)
(t−τ)+ ∈ C

})
∪DC

=
({

� ≥ t
} ∩ {τ /= t} ∩ {τ + (t − τ)+ = t

} ∩ {Y (τ)
(t−τ)+ ∈ C

})
∪DC ∈ Ft,

(3.20)



International Journal of Stochastic Analysis 11

showing that the process Y defined in (3.17) is F adapted. Moreover, since Y (τ) is local strong
solution to (1.4)with initial condition Y

(0)
τ and lifetime � − τ , we have

Y
(τ)
t−τ1�τ,��(t) =

[
Y

(0)
τ +

∫ t−τ

0
a(τ)
(
s, Y

(τ)
s

)
ds +

∫ t−τ

0
b(τ)
(
s, Y

(τ)
s

)
dW

(τ)
s

+
∫ t−τ

0

∫
B

c(τ)
(
s, Y

(τ)
s− , x

)(
μ(τ)(ds, dx) − F(dx)ds

)

+
∫ t−τ

0

∫
Bc

c(τ)
(
s, Y

(τ)
s− , x

)
μ(τ)(ds, dx)

]
1�τ,��(t).

(3.21)

By the Definitions (3.6)–(3.9) of a(τ), b(τ), c(τ), we obtain

Y
(τ)
t−τ1�τ,��(t) =

[
Y

(0)
τ +

∫ t−τ

0
a
(
τ + s, Y

(τ)
s

)
ds +

∫ t−τ

0
b
(
τ + s, Y

(τ)
s

)
dW

(τ)
s

+
∫ t−τ

0

∫
B

c
(
τ + s, Y

(τ)
s− , x

)(
μ(τ)(ds, dx) − F(dx)ds

)

+
∫ t−τ

0

∫
Bc

c
(
τ + s, Y

(τ)
s− , x

)
μ(τ)(ds, dx)

]
1�τ,��(t).

(3.22)

Therefore, we get

Y
(τ)
t−τ1�τ,��(t) =

[
Y

(0)
τ +

∫ t

τ

a
(
s, Y

(τ)
s−τ
)
ds +

∫ t

τ

b
(
s, Y

(τ)
s−τ
)
dWs

+
∫ t

τ

∫
B

c
(
s, Y

(τ)
(s−τ)−, x

)(
μ(ds, dx) − F(dx)ds

)

+
∫ t

τ

∫
Bc

c
(
s, Y

(τ)
(s−τ)−, x

)
μ(ds, dx)

]
1�τ,��(t).

(3.23)

By the Definition (3.17) of Y , we obtain

Y
(τ)
t−τ1�τ,��(t) =

[
Y

(0)
τ +

∫ t

τ

a(s, Ys)ds +
∫ t

τ

b(s, Ys)dWs

+
∫ t

τ

∫
B

c(s, Ys−, x)
(
μ(ds, dx) − F(dx)ds

)

+
∫ t

τ

∫
Bc

c(s, Ys−, x)μ(ds, dx)

]
1�τ,��(t).

(3.24)
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Since Y (0) is a local strong solution to (1.4)with lifetime τ , we deduce that the process Y given
by (3.17) is a local strong solution to (1.4) with lifetime �.

Let k ∈ N0 be arbitrary. By Lemmas 2.1 and 2.3, the mapping �k+1 − �k is a strictly
positive F

(�k)-stopping time. Furthermore, let Γ ∈ F�k be arbitrary, and let y(�k)
0 : Ω → H be

an arbitrary F(�k)
0 -measurable random variable.

Lemma 3.9. If Y (�k,Γ) is an F
(�k)-adapted local strong solution to (1.4) with parameters

a = a(�k,Γ), b = b(�k,Γ), c = c(�k,Γ), W = W (�k), μ = μ(�k), (3.25)

initial condition y
(�k)
0 1Γ, and lifetime τ , then

Y (�k,Γ)− := Y (�k,Γ) − c

(
�k+1, Y

(�k,Γ)

(�k+1−�k)−, ξ�k+1

)
1��k+1−�k�1{�k+1−�k≤τ}1Γ (3.26)

is a F
(�k)-adapted local strong solution to (1.5) with parameters (3.25), initial condition y

(�k)
0 1Γ, and

lifetime τ ∧ (�k+1 − �k).

Proof. We define J : Ω → H as

J := c

(
�k+1, Y

(�k,Γ)

(�k+1−�k)−, ξ�k+1

)
1{�k+1−�k≤τ}1Γ, (3.27)

and the stochastic process (Jt)t≥0 as Jt := J1��k+1−�k�(t). By Lemma 2.2, the mapping J is F�k+1 -
measurable. Let C ∈ B(H) be an arbitrary Borel set. We define DC ∈ Ft as

DC :=

{{
�k+1 − �k /= t

}
if 0 ∈ C,

∅ if 0 /∈ C.
(3.28)

Then, for each t ∈ R+, we have

{Jt ∈ C} =
{
J1��k+1−�k�(t) ∈ C

}
=
({J ∈ C} ∩ {�k+1 − �k = t

}) ∪DC

=
({J ∈ C} ∩ {�k+1 = �k + t

}) ∪DC ∈ F�k+t = F(�k)
t .

(3.29)

Consequently, the process Y (�k,Γ)− defined in (3.26) is F
(�k)-adapted. Furthermore, by the

Definition (3.26), we have

Y
(�k,Γ)
− 1�0,τ∧(�k+1−�k)� = Y

(�k,Γ)−
− 1�0,τ∧(�k+1−�k)�, (3.30)
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and, by the Definition (3.8) of c(�k,Γ) and identity (2.18), we obtain

(∫ t

0

∫
Bc

c(�k,Γ)
(
s, Y

(�k,Γ)
s− , x

)
μ(�k)(ds, dx)

)
1�0,τ∧(�k+1−�k)�(t)

=

(∫ t

0

∫
Bc

c
(
�k + s, Y

(�k,Γ)
s− , x

)
1Γμ

(�k)(ds, dx)

)
1�0,τ∧(�k+1−�k)�(t)

=

(∫�k+t

�k

∫
Bc

c

(
s, Y

(�k,Γ)

(s−�k)−, x
)

1Γμ(ds, dx)

)
1�0,τ∧(�k+1−�k)�(t)

=

(∑
n∈N

c

(
κn, Y

(�k,Γ)

(κn−�k)−, ξκn

)
1{ξκn /∈B}1{�k<κn≤�k+t}

)
1�0,τ∧(�k+1−�k)�(t)1Γ

= c

(
�k+1, Y

(�k,Γ)

(�k+1−�k)−, ξ�k+1

)
1��k+1−�k�(t)1{�k+1−�k≤τ}1Γ,

(3.31)

showing that Y (�k,Γ)− is a local strong solution to (1.5) with parameters (3.25) and lifetime
τ ∧ (�k+1 − �k).

Lemma 3.10. If Y (�k,Γ)− is an F
(�k)-adapted local strong solution to (1.5) with parameters (3.25),

initial condition y
(�k)
0 1Γ, and lifetime τ , then

Y (�k,Γ) := Y (�k,Γ)− + c

(
�k+1, Y

(�k,Γ)−
(�k+1−�k)−, ξ�k+1

)
1��k+1−�k�1{�k+1−�k≤τ}1Γ (3.32)

is a F
(�k)-adapted local strong solution to (1.4) with parameters (3.25), initial condition y

(�k)
0 1Γ, and

lifetime τ ∧ (�k+1 − �k).

Proof. The proof is analogous to that of Lemma 3.9.

3.1. Uniqueness of Strong Solutions to Hilbert Space-Valued SDEs

Now, we will deal with the uniqueness of strong solutions to the SDE (1.4).

Proposition 3.11. One supposes that the mappings (a, b, c|B) are locally Lipschitz. Then, uniqueness
of local strong solutions to (1.5) holds.

Proof. We can adopt a standard technique (see, e.g., the proof of Theorem5.2.5 in [20]), where
we apply the Itô isometry and Gronwall’s lemma.

Theorem 3.12. One supposes that the mappings (a, b, c|B) are locally Lipschitz. Then, uniqueness of
local strong solutions to (1.4) holds.
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Proof. Let Y and Y ′ be two local strong solutions to (1.5)with initial conditions y0 and y′
0, and

lifetimes τ and τ ′. By induction, we will prove that up to indistinguishability

Y1�0,τ∧τ ′∧�k�1{y0=y′
0} = Y ′1�0,τ∧τ ′∧�k�1{y0=y′

0} ∀k ∈ N0. (3.33)

The identity (3.33) holds true for k = 0, because by Lemma 2.3, we have �0 = 0.
For the induction step k → k+1, we suppose that identity (3.33) is satisfied. We define

the stopping time τk := τ∧τ ′∧�k+1 and the set Γk := {�k ≤ τk}∩{y0 = y′
0} ∈ F�k . By Lemma 3.7,

the processes Y (�k,Γk) := Y�k+•1Γk and Y
′(�k,Γk) := Y ′

�k+•1Γk defined according to (3.11) are F
(�k)-

adapted local strong solutions to (1.4)with parameters (3.12), where τ = �k and Γ = Γk, initial
conditions Y�k1Γk and Y ′

�k1Γk , and lifetime (τk − �k)
+.

Let n ∈ N be arbitrary, and set Γkn := Γk ∩ {�k ≤ n} ∈ F�k . The processes
Y (�k,Γkn) := Y (�k,Γk)1Γkn and Y ′(�k,Γkn) := Y ′(�k,Γk)1Γkn are F

(�k)-adapted local strong solutions to
(1.4)with parameters (3.25), where Γ = Γkn, initial conditions Y�k1Γkn and Y ′

�k1Γkn , and lifetime

(τk − �k)
+. By Lemma 3.9, the processes Y (�k,Γkn)− and Y ′(�k,Γkn)− defined according to (3.26) are

F
(�k)-adapted local strong solutions to (1.5) with parameters (3.25), where Γ = Γkn, initial

conditions Y�k1Γkn and Y ′
�k1Γkn , and lifetime (τk −�k)+. According to Lemma 3.6, the mappings

(a(�k,Γkn), b(�k,Γkn), c(�k,Γkn)|B) are locally Lipschitz, too. Therefore, by Proposition 3.11, we have
up to indistinguishability

Y (�k,Γkn)−1�0,(τk−�k)+� = Y ′(�k,Γkn)−1�0,(τk−�k)+� ∀n ∈ N. (3.34)

By the Definition (3.26), we deduce that up to indistinguishability

Y (�k,Γkn)1�0,(τk−�k)+� = Y ′(�k,Γkn)1�0,(τk−�k)+� ∀n ∈ N, (3.35)

and hence, we have up to indistinguishability

Y (�k,Γk)1{�k≤n}1�0,(τk−�k)+� = Y ′(�k,Γk)1{�k≤n}1�0,(τk−�k)+� ∀n ∈ N. (3.36)

By Lemma 2.3, we have P(�k < ∞) = 1, and hence, we get up to indistinguishability

Y (�k,Γk)1�0,(τk−�k)+� = Y ′(�k,Γk)1�0,(τk−�k)+�. (3.37)

Therefore, we have up to indistinguishability

Y�k+•1{�k≤τk}1�0,(τk−�k)+�1{y0=y′
0} = Y ′

�k+•1{�k≤τk}1�0,(τk−�k)+�1{y0=y′
0}. (3.38)

Consequently, we have up to indistinguishability

Y1{�k≤τk}1��k,τk�1{y0=y′
0} = Y ′1{�k≤τk}1��k,τk�1{y0=y′

0}. (3.39)
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Together with the induction hypothesis, it follows that

Y1�0,τk�1{y0=y′
0} = Y ′1�0,τk�1{y0=y′

0}, (3.40)

which establishes (3.33). Since by Lemma 2.3, that we have P(�k → ∞) = 1, we deduce

Yτ∧τ ′1{y0=y′
0} =
(
Y ′)τ∧τ ′1{y0=y′

0}, (3.41)

completing the proof.

3.2. Existence of Strong Solutions to Hilbert Space-Valued SDEs

Now, we will deal with the existence of strong solutions to the SDE (1.4).

Proposition 3.13. One supposes that the mappings (a, b, c|B) are locally Lipschitz and satisfy the
linear growth condition. Then, existence of strong solutions to (1.5) holds.

Proof. If the mappings (a, b, c|B) are Lipschitz continuous, then we have existence and
uniqueness of strong solutions to (1.5) for every initial condition y0 ∈ L2(F0;H), see, for
example, [6, Corollary 10.3].

For (a, b, c|B) being locally Lipschitz and satisfying the linear growth condition, for
any initial condition y0 ∈ L2(F0;H), we adopt the technique from the proof of [21, Theorem
4.11]. For k ∈ N, we define the retraction

Rk : H −→ H, Rk

(
y
)
:=

⎧⎪⎨
⎪⎩
y if

∥∥y∥∥ ≤ k,

k
y∥∥y∥∥ if

∥∥y∥∥ > k
(3.42)

and the mappings ak : Ω × R+ × H → H, bk : Ω × R+ × H → L0
2(H), and ck : Ω × R+ ×

H × E → H as

ak := a ◦ Rk, bk := b ◦ Rk, ck(•, x) := c(•, x) ◦ Rk. (3.43)

These mappings are Lipschitz continuous, and hence, there exists a strong solution Y (k) to
the SDE (1.5) with parameters a = ak, b = bk, and c = ck, and initial condition y0. Using the
linear growth condition, Gronwall’s lemma, and Doob’s martingale inequality, we can show
that P(τk → ∞) = 1, where

τk := inf
{
t ≥ 0 :

∥∥∥Y (k)
t

∥∥∥ > k
}
, k ∈ N0, (3.44)
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that is, the solutions do not explode. Consequently, the process

Y := y01�τ0� +
∑
k∈N

Y (k)1�τk−1,τk� (3.45)

is a strong solution to (1.5)with initial condition y0.
Finally, for a general F0-measurable initial condition y0 : Ω → H, the process Y :=∑

k∈N
Y (k)1Ωk is a strong solution to (1.5)with initial condition y0, where (Ωk)k∈N

⊂ F0 denotes
the partition of Ω given by Ωk := {‖y0‖ ∈ [k − 1, k)}, and where for each k ∈ N the process
Y (k) denotes a strong solution to (1.5) with initial condition y01Ωk .

Theorem 3.14. One supposes that the mappings (a, b, c|B) are locally Lipschitz and satisfy the linear
growth condition. Then, existence of strong solutions to (1.4) holds.

Proof. Let y0 : Ω → H be an arbitrary F0-measurable random variable. By induction, we
will prove that for each k ∈ N0 there exists a local strong solution Y (k) to (1.4) with initial
condition y0 and lifetime �k. By Lemma 2.3, we have �0 = 0, providing the assertion for k = 0.

For the induction step k → k + 1, let Y (k) be a local strong solution to (1.4)with initial
condition y0 and lifetime �k. Let n ∈ N be arbitrary, and set Γkn := {�k ∈ [n − 1, n)} ∈ F�k .
By Lemma 3.6, the mappings (a(�k,Γkn), b(�k,Γkn), c(�k,Γkn)|B) are locally Lipschitz, too. Therefore,
by Proposition 3.13, there exists an F

(�k)-adapted strong solution Y (�k,Γkn)− to (1.5) with
parameters (3.25), where Γ = Γkn, and initial condition Y

(k)
�k 1Γkn . By Lemma 3.10, the process

Y (�k,Γkn) defined according to (3.32) is an F
(�k)-adapted local strong solution to (1.4) with

parameters (3.25), where Γ = Γkn, initial condition Y
(k)
�k 1Γkn , and lifetime �k+1 − �k. Noting

that (Γkn)n∈N
is a partition of Ω, it follows that Y (�k) :=

∑
n∈N

Y (�k,Γkn) is an F
(�k)-adapted local

strong solution to (1.4) with initial condition Y
(k)
�k and lifetime �k+1 − �k. By Lemma 3.8, the

process

Y (k+1) := Y (k)1�0,�k� + Y
(�k)
•−�k1��k,�k+1� (3.46)

defined according to (3.17) is an F-adapted local strong solution to (1.4)with initial condition
y0 and lifetime �k+1.

Consequently, for each k ∈ N0, there exists a local strong solution Y (k) to (1.4) with
initial condition y0 and lifetime �k. By Lemma 2.3, we have P(�k → ∞) = 1. Hence, it follows
that

Y := y01��0� +
∑
k∈N

Y (k)1��k−1,�k� (3.47)

is an F-adapted strong solution to (1.4)with initial condition y0.

Theorem 3.15. One supposes that the mappings (a, b, c|B) are locally Lipschitz and locally bounded.
Then, existence of local strong solutions to (1.4) holds.

Proof. Let y0 : Ω → H be an arbitrary F0-measurable random variable. We define the
partition (Ωk)k∈N

⊂ F0 of Ω by Ωk := {‖y0‖ ∈ [k − 1, k)}. Furthermore, for each k ∈
N, we define the mappings ak : Ω × R+ × H → H, bk : Ω × R+ × H → L0

2(H),
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and ck : Ω × R+ × H × E → H as in the proof of Proposition 3.13. These mappings are
locally Lipschitz and satisfy the linear growth condition. By Theorem 3.14, there exists a
strong solution Y (k) to (1.4) with parameters a = ak, b = bk, and c = ck, and initial condition
y01Ωk . The stopping time

τk := inf
{
t ≥ 0 :

∥∥∥Y (k)
t

∥∥∥ > k
}

(3.48)

is strictly positive, and Y (k) is a local strong solution to (1.4) with initial condition y01Ωk

and lifetime τk. The stopping time τ :=
∑

k∈N
τk1Ωk is strictly positive, and the process Y :=∑

k∈N
Y (k)1Ωk is a local strong solution to (1.4)with initial condition y0 and lifetime τ .

3.3. Comparison with the Method of Successive Approximations

So far, our investigations provide the following result concerning existence and uniqueness
of global strong solutions to the SDE (1.4).

Theorem 3.16. If (a, b, c|B) are locally Lipschitz and satisfy the linear growth condition, then exis-
tence and uniqueness of strong solutions to (1.4) hold.

Proof. This is a direct consequence of Theorems 3.12 and 3.14.

Now, we will provide a comparison with [14], where the authors also study Hilbert
space-valued SDEs of the type (1.4). Their result [14, Theorem 2.1] is based on the method
of successive approximations (see also [22, 23]) and considerably goes beyond the classical
global Lipschitz conditions. For the sake of simplicity, let us recall the required assumptions
in the time-homogeneous Markovian framework. In order to apply [14, Theorem 2.1], for
some constant p ≥ 2, we need the estimate

∥∥a(y1
) − a

(
y2
)∥∥p + ∥∥b(y1

) − b
(
y2
)∥∥p

L0
2(H)

+
∫
B

∥∥c(y1, x
) − c

(
y2, y

)∥∥pF(dx)

+
(∫

B

∥∥c(y1, x
) − c

(
y2, x

)∥∥2F(dx)
)p/2

≤ κ
(∥∥y1 − y2

∥∥p) ∀y1, y2 ∈ H,

(3.49)

where κ : R+ → R+ denotes a continuous, nondecreasing function with κ(0) = 0, and further
conditions, which are precisely stated in [14], must be fulfilled. These conditions are satisfied
if κ is a continuous, nondecreasing, and concave function such that

∫ ε

0

1
κ(u)

du = ∞ for each ε > 0. (3.50)

In particular, we may choose κ(u) = u for u ∈ R+, and consequently, both results,
Theorem 3.16 and [14, Theorem 2.1], cover the classical situation, where global Lipschitz
conditions are imposed.

However, there are situations where [14, Theorem 2.1] can be applied, while
Theorem 3.16 does not apply, and vice versa. For the sake of simplicity, in the following two
examples, we assume that H = R and b ≡ c ≡ 0.
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Example 3.17. We fix an arbitrary constant 0 < δ < exp(−1) and define the functions κ, ρ :
R+ → R+ by

κ(u) :=

⎧⎪⎪⎨
⎪⎪⎩
0, u = 0,
−u lnu, 0 < u < δ,

−δ ln δ − (1 + ln δ)(u − δ) u ≥ δ,

(3.51)

as well as

ρ(u) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, u = 0,

u
√
− ln(u2), 0 < u <

√
δ,

√
−δ ln δ − (1 + ln δ)(u2 − δ) u ≥

√
δ,

(3.52)

compare with [22, Remark 1]. Let a : R → R be a mapping such that

∣∣a(y1
) − a

(
y2
)∣∣ ≤ ρ

(∣∣y1 − y2
∣∣) ∀y1, y2 ∈ R. (3.53)

Then we have the estimate

∣∣a(y1
) − a

(
y2
)∣∣2 ≤ κ

(∣∣y1 − y2
∣∣2) ∀y1, y2 ∈ R, (3.54)

showing that condition (3.49) with p = 2 is satisfied. Moreover, κ is a continuous, nonde-
creasing, concave function, and condition (3.50) is satisfied, because for each 0 < ε < δ, we
have

∫ ε

0

1
κ(u)

du = −
∫ε

0

1
u lnu

du = − ln|lnu| |u=εu=0 = − ln|ln ε| + lim
u→ 0

ln|lnu| = ∞. (3.55)

Consequently, [14, Theorem 2.1] applies. However, we have

ρ′(u) =
√
− ln(u2) − 1√

− ln(u2)
foru ∈

(
0,
√
δ
)
, (3.56)

and thus, limu→ 0 ρ
′(u) = ∞. Therefore, the mapping a : R → R might fail to be locally

Lipschitz, and hence, Theorem 3.16 does not apply.

Example 3.18. Let us define the mapping a : R → R as follows. For n ∈ N0, we define a on
the interval [n, n + 1] by

a
(
y
)
:=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n, y ∈
[
n, n + 1 − 1

n + 1

]
,

n + (n + 1)
(
y −
(
n + 1 − 1

n + 1

))
, y ∈

[
n + 1 − 1

n + 1
, n + 1

]
.

(3.57)
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This defines the mapping a : R+ → R, which we extend to a mapping a : R → R by
symmetry

a
(
y
)
:= a
(−y), y ∈ R−. (3.58)

Then, a is locally Lipschitz and satisfies the linear growth condition, and hence, Theorem 3.16
applies. However, there are no constant p ≥ 2 and no continuous, nondecreasing function
κ : R+ → R+ with κ(0) = 0 such that

∣∣a(y1
) − a

(
y2
)∣∣p ≤ κ

(∣∣y1 − y2
∣∣p) ∀y1, y2 ∈ R. (3.59)

Suppose, on the contrary, that there exists a continuous, nondecreasing function κ : R+ → R+

with κ(0) = 0 fulfilling (3.59). Then we have

|κ(u)| ≥ 1 ∀u ∈ (0, 1]. (3.60)

Indeed, let u ∈ (0, 1] be arbitrary. Then, there exists n ∈ N with 1/n ≤ u. Moreover, by the
definition of the mapping a : R → R, there are y1, y2 ∈ R such that

∣∣y1 − y2
∣∣ ≤
(
1
n

)1/p

,
∣∣a(y1

) − a
(
y2
)∣∣ = 1. (3.61)

Therefore, using the monotonicity of κ and (3.59), we obtain

κ(u) ≥ κ

(
1
n

)
≥ κ
(∣∣y1 − y2

∣∣p) ≥ ∣∣a(y1
) − a

(
y2
)∣∣p = 1, (3.62)

showing (3.60). Now, the continuity of κ yields the contradiction κ(0) ≥ 1. Consequently,
condition (3.49) is not satisfied, and thus, we cannot use [14, Theorem 2.1] in this case.

4. Existence and Uniqueness of Mild Solutions to
Hilbert Space-Valued SPDEs

In this section, we establish existence and uniqueness of (local) mild solutions to Hilbert
space-valued SPDEs of the type (1.3).

Let H be a separable Hilbert space, let (St)t≥0 be a C0-semigroup on H with
infinitesimal generator A : D(A) ⊂ H → H, and let B ∈ E be a set with F(Bc) < ∞.
Furthermore, let α : Ω×R+ ×H → H and σ : Ω×R+ ×H → L0

2(H) be P ⊗B(H)-measurable
mappings, and let γ : Ω × R+ ×H × E → H be a P ⊗ B(H) ⊗ E-measurable mapping.
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Throughout this section, we suppose that there exist another separable Hilbert space
H, a C0-group (Ut)t∈R

onH, and continuous linear operators � ∈ L(H,H), π ∈ L(H,H) such
that the diagram

H Ut H
π

H

�

St
H

(4.1)

commutes for every t ∈ R+, that is,

πUt� = St ∀t ∈ R+. (4.2)

Remark 4.1. According to [6, Proposition 8.7], this assumption is satisfied if the semigroup
(St)t≥0 is pseudocontractive (one also uses the notion quasicontractive), that is, there is a
constant ω ∈ R such that

‖St‖ ≤ eωt ∀t ≥ 0. (4.3)

This result relies on the Szökefalvi-Nagy theorem on unitary dilations (see, e.g., [24, Theorem
I.8.1] or [25, Section 7.2]). In the spirit of [24], the group (Ut)t∈R

is called a dilation of the
semigroup (St)t≥0.

Remark 4.2. The Szökefalvi-Nagy theorem was also utilized in [26, 27] in order to establish
results concerning stochastic convolution integrals.

Now, we define the mappings a : Ω × R+ × H → H, b : Ω × R+ × H → L0
2(H), and

c : Ω × R+ ×H × E → H by

a
(
t, y
)
:= U−t�α

(
t, πUty

)
,

b
(
t, y
)
:= U−t�σ

(
t, πUty

)
,

c
(
t, y, x

)
:= U−t�γ

(
t, πUty, x

)
.

(4.4)

Note that a and b are P ⊗ B(H)-measurable and that c is P ⊗ B(H) ⊗ E-measurable.

Lemma 4.3. The following statements are true:

(1) if (α, σ, γ |B) are locally Lipschitz, then (a, b, c|B) are locally Lipschitz, too;
(2) if (α, σ, γ |B) satisfy the linear growth condition, then (a, b, c|B) satisfy the linear growth

condition, too;

(3) if (α, σ, γ |B) are locally bounded, then (a, b, c|B) are locally bounded, too.

Proof. All three statements are straightforward to check.
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Proposition 4.4. Let z0 : Ω → H be a F0-measurable random variable, and let τ be a stopping time.
Then, the following statements are true:

(1) if Y is a local strong solution to (1.4) with initial condition �z0 and lifetime τ , then Z :=
πUY is a local mild solution to (1.3) with initial condition z0 and lifetime τ ;

(2) if Z is a local mild solution to (1.3) with initial condition z0 and lifetime τ , then the process
Y defined as

Yt := �z0 +
∫ t∧τ

0
U−s�α(s, Zs)ds +

∫ t∧τ

0
U−s�σ(s, Zs)dWs

+
∫ t∧τ

0

∫
B

U−s�γ(s, Zs−, x)
(
μ(ds, dx) − F(dx)ds

)

+
∫ t∧τ

0

∫
Bc

U−s�γ(s, Zs−, x)μ(ds, dx), t ≥ 0

(4.5)

is a local strong solution to (1.4) with initial condition �z0 and lifetime τ , and one has
Zτ = πUYτ .

Proof. Let Y be a local strong solution to (1.4) with initial condition �z0 and lifetime τ . Then
we have

Zt∧τ = πUt∧τYt∧τ

= πUt∧τ

(
�z0 +

∫ t∧τ

0
a(s, Ys)ds +

∫ t∧τ

0
b(s, Ys)dWs

+
∫ t∧τ

0

∫
B

c(s, Ys−, x)
(
μ(ds, dx) − F(dx)ds

)
+
∫ t∧τ

0

∫
Bc

c(s, Ys−, x)μ(ds, dx)

)
.

(4.6)

By the Definitions (4.4) of a, b, c, we obtain

Zt∧τ = πUt∧τ

(
�z0 +

∫ t∧τ

0
U−s�α(s, πUsYs)ds +

∫ t∧τ

0
U−s�σ(s, πUsYs)dWs

+
∫ t∧τ

0

∫
B

U−s�γ(s, πUsYs−, x)
(
μ(ds, dx) − F(dx)ds

)

+
∫ t∧τ

0

∫
Bc

U−s�γ(s, πUsYs−, x)μ(ds, dx)

)
.

(4.7)
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Therefore, by (4.2), and since Z = πUY , we arrive at

Zt∧τ = St∧τz0 +
∫ t∧τ

0
S(t∧τ)−sα(s, Zs)ds +

∫ t∧τ

0
S(t∧τ)−sσ(s, Zs)dWs

+
∫ t∧τ

0

∫
B

S(t∧τ)−sγ(s, Zs−, x)
(
μ(ds, dx) − F(dx)ds

)

+
∫ t∧τ

0

∫
Bc

S(t∧τ)−sγ(s, Zs−, x)μ(ds, dx),

(4.8)

showing that Z is a local mild solution to (1.3) with initial condition z0 and lifetime τ . This
establishes the first statement. Now, letZ be a local mild solution to (1.3)with initial condition
z0 and lifetime τ . Then we have (4.8), and therefore, by (4.2) and the Definition (4.5) of Y , we
obtain

Zt∧τ = πUt∧τ

(
�z0 +

∫ t∧τ

0
U−s�α(s, Zs)ds +

∫ t∧τ

0
U−s�σ(s, Zs)dWs

+
∫ t∧τ

0

∫
B

U−s�γ(s, Zs−, x)
(
μ(ds, dx) − F(dx)ds

)

+
∫ t∧τ

0

∫
Bc

U−s�γ(s, Zs−, x)μ(ds, dx)

)
= πUt∧τYt∧τ ,

(4.9)

showing that Zτ = πUYτ . Therefore, by the Definition (4.5) of Y , we obtain

Yt∧τ = �z0 +
∫ t∧τ

0
U−s�α(s, πUsYs)ds +

∫ t∧τ

0
U−s�σ(s, πUsYs)dWs

+
∫ t∧τ

0

∫
B

U−s�γ(s, πUsYs−, x)
(
μ(ds, dx) − F(dx)ds

)

+
∫ t∧τ

0

∫
Bc

U−s�γ(s, πUsYs−, x)μ(ds, dx).

(4.10)

Taking into account the Definitions (4.4) of a, b, c, we get

Yt∧τ = �z0 +
∫ t∧τ

0
a(s, Ys)ds +

∫ t∧τ

0
b(s, Ys)dWs

+
∫ t∧τ

0

∫
B

c(s, Ys−, x)
(
μ(ds, dx) − F(dx)ds

)
+
∫ t∧τ

0

∫
Bc

c(s, Ys−, x)μ(ds, dx),

(4.11)

showing that Y is a local strong solution to (1.4)with initial condition �z0 and lifetime τ .
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Theorem 4.5. The following statements are true:

(1) if (α, σ, γ |B) are locally Lipschitz and satisfy the linear growth condition, then existence and
uniqueness of mild solutions to (1.3) hold;

(2) if (α, σ, γ |B) are locally Lipschitz and locally bounded, then existence and uniqueness of
local mild solutions to (1.3) hold;

(3) if (α, σ, γ |B) are locally Lipschitz, then uniqueness of local mild solutions to (1.3) holds.

Proof. Suppose that (α, σ, γ |B) are locally Lipschitz. Let Z and Z′ be two local mild solutions
to (1.3) with initial conditions z0 and z′0 and lifetimes τ and τ ′. We define the H-valued
processes Y and Y ′ according to (4.5). By Proposition 4.4, the processes Y and Y ′ are local
strong solutions to (1.4) with initial conditions �z0 and �z′0 and lifetimes τ and τ ′, and we
have Zτ = πUYτ and (Z′)τ

′
= πU(Y ′)τ

′
. By Lemma 4.3, the mappings (a, b, c|B) are also

locally Lipschitz, and hence, Theorem 3.12 yields that up to indistinguishability

Yτ∧τ ′1{�z0=�z′0} =
(
Y ′)τ∧τ ′1{�z0=�z′0}. (4.12)

Therefore, we have up to indistinguishability

Zτ∧τ ′1{z0=z′0} = πUYτ∧τ ′1{z0=z′0} = πU
(
Y ′)τ∧τ ′1{z0=z′0} =

(
Z′)τ∧τ ′1{z0=z′0}, (4.13)

proving uniqueness of local mild solutions to (1.3).
Now, we suppose that (α, σ, γ |B) are locally Lipschitz and satisfy the linear growth

condition. Let z0 : Ω → H be an arbitrary F0-measurable random variable. By Lemma 4.3,
the mappings (a, b, c|B) are also locally Lipschitz and satisfy the linear growth condition.
Thus, by Theorem 3.14, there exists a strong solution Y to (1.4) with initial condition �z0.
According to Proposition 4.4, the process Z := πUY is a mild solution to (1.3) with initial
condition z0, proving the existence of mild solutions to (1.3).

If (α, σ, γ |B) are locally Lipschitz and locally bounded, then a similar proof, which uses
Theorem 3.15, shows that existence of local mild solutions to (1.3) holds.

Remark 4.6. The structure Z = πUY shows that mild solutions to (1.3) obtained from
Theorem 4.5 have càdlàg sample paths.

Remark 4.7. As pointed out in [5], the existence of weak solutions to (1.3) relies on a suitable
stochastic Fubini theorem. Sufficient conditions can be found in [6].
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