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Abstract

Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately:
Among others, the rising number of published articles makes it nearly impossible to get a full overview of the state of the art
in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover
all details of a research work. Recently, several initiatives have proposed knowledge graphs (KG) for organising scientific
information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to
very specific use cases. In this paper, we aim to transcend this limited perspective and present a comprehensive analysis of
requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting and reviewing daily core tasks of a scientist,
(b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their
coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science
communication, derive implications, and outline possible solutions.

Keywords Scholarly communication - Research knowledge graph - Design science research - Requirements analysis

1 Introduction

Today’s scholarly communication is a document-centred
process and as such, rather inefficient. Scientists spend con-
siderable time in finding, reading, and reproducing research
results from PDF files consisting of static text, tables, and fig-
ures. The explosion in the number of published articles [14]
aggravates this situation further: It gets harder and harder to
stay on top of current research, that is to find relevant works,
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compare and reproduce them, and later on, to make one’s
own contribution known for its quality.

Some of the available infrastructures in the research eco-
system already use knowledge graphs (KG)! to enhance
their services. Academic search engines, for instance, such
as Microsoft Academic Knowledge Graph [38] or Literature
Graph [1] utilise metadata-based graph structures which link
research articles based on citations, shared authors, venues,
and keywords.

Recently, initiatives have promoted the usage of KGs
in science communication, but on a deeper, semantic level
[3,50,56,73,78,84,115]. They envision the transformation
of the dominant document-centred knowledge exchange to
knowledge-based information flows by representing and
expressing knowledge through semantically rich, interlinked
KGs. Indeed, they argue that a shared structured represen-
tation of scientific knowledge has the potential to alleviate

! Acknowledging that knowledge graph is vaguely defined, we adopt
the following definition: A knowledge graph (KG) consists of (1)
an ontology describing a conceptual model (e.g. with classes, rela-
tion types, and axioms), and (2) the corresponding instance data (e.g.
objects, literals, and <subject, predicate, object>-triplets) following the
constraints posed by the ontology (e.g. instance of relations, axioms,
etc.). The construction of a KG involves ontology design and population
with instances.
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some of the science communication’s current issues: Rel-
evant research could be easier to find, comparison tables
automatically compiled, own insights rapidly placed in the
current ecosystem. Such a powerful data structure could,
more than the current document-based system, also encour-
age the interconnection of research artefacts such as datasets
and source code much more than current approaches (like
Digital Object Identifier (DOI) references etc.), allowing for
easier reproducibility and comparison. To come closer to
the vision of knowledge-based information flows, research
articles should be enriched and interconnected through
machine-interpretable semantic content. The usage of Papers
With Code [80] in the machine learning community and
Jaradeh et al.’s study [56] indicate that authors are also will-
ing to contribute structured descriptions of their research
articles.

The work of aresearcher is manifold, but current proposals
usually focus on a specific use case (e.g. the aforementioned
examples focus on enhancing academic search). In this paper,
we present a detailed analysis of common literature-related
tasks in a scientist’s daily life and analyse (a) how they could
be supported by an ORKG, (b) what requirements result for
the design of (b1) the KG and (b2) the surrounding system, (c)
how different use cases overlap in their requirements and can
benefit from each other. Our analysis is led by the following
research questions:

1. Which use cases should be supported by an ORKG?

(a) Which user interfaces are necessary?
(b) Which machine interfaces are necessary?

2. What requirements can be defined for the underlying
ontologies to support these use cases?

(a) Which granularity of information is needed?
(b) To what degree is domain specialisation needed?

3. What requirements can be defined for the instance data in
context of the respective use cases?

(a) Which completeness is sufficient for the instance
data?

(b) Which correctness is sufficient for the instance data?

(c) Which approaches (human vs. machine) are suitable
to populate the ORKG?

Our analysis concentrates on eliciting use cases, defining
quality requirements for the underlying KG to support these
use cases, and elaborating construction strategies for the KG.
We follow the design science research (DSR) methodology
[51]. In this study, we focus on the first phase of DSR and
conduct a requirements analysis. The objective is to chart
necessary (and desirable) requirements for successful KG-
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based science communication, and, consequently, provide a
map for future research.

Compared to our paper at the 24th International Confer-
ence on Theory and Practice of Digital Libraries 2020 [16],
this journal paper has been modified and extended as follows:
The related work section is updated and extended with the
new sections Quality of knowledge graphs and Systematic
literature reviews. The new “Appendix 17 section contains
comparative overviews of datasets for research knowledge
graph population tasks such as sentence classification, rela-
tion extraction, and concept extraction. These comparisons
are intended to give a sense of what kind of information can be
automatically extracted from scientific texts with what accu-
racy using current state-of-the-art methods. This is important
to suggest appropriate construction strategies (i.e. manual,
semi-automatic, automatic) for the respective use cases based
on their data quality requirements. To be consistent with the
terminology in related work, we use the term “completeness”
instead of “coverage” and “correctness” instead of “quality”.
The requirements analysis in Sect. 3 is revised and contains
more details with more justifications for the posed require-
ments and approaches.

The remainder of the paper is organised as follows. Sec-
tion 2 summarises related work on research KGs, scientific
ontologies, KG construction, data quality requirements, and
systematic literature reviews. The requirements analysis is
presented in Sect. 3, while Sect. 4 discusses implications
and possible approaches for ORKG construction. Finally,
Sect. 5 concludes the requirements analysis and outlines
areas of future work. “Appendix 1” section contains com-
parative overviews for the tasks of sentence classification,
relation extraction, and concept extraction.

2 Related work

This section gives a brief overview of (a) existing research
KGs, (b) ontologies for scholarly knowledge, (c) approaches
for KG construction, (d) quality dimensions of KGs, and (e)
processes in systematic literature reviews.

2.1 Research knowledge graphs

Academic search engines (e.g. Google Scholar, Microsoft
Academic, Semantic Scholar) exploit graph structures such
as the Microsoft Academic Knowledge Graph [38], SciGraph
[113], the Literature Graph [1], or the Semantic Scholar
Open Research Corpus (S20RC) [70]. These graphs interlink
research articles through metadata, e.g. citations, authors,
affiliations, grants, journals, or keywords.

To help reproduce research results, initiatives such as
Research Graph [2], Research Objects [7], and OpenAIRE
[73] interlink research articles with research artefacts such
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as datasets, source code, software, and video presentations.
Scholarly Link Exchange (Scholix) [20] aims to create a stan-
dardised ecosystem to collect and exchange links between
research artefacts and literature.

Some approaches connect articles at a more seman-
tic level: Papers With Code [80] is a community-driven
effort to supplement machine learning articles with tasks,
source code, and evaluation results to construct leaderboards.
Ammar et al. [1] link entity mentions in abstracts with DBpe-
dia [66] and Unified Medical Language System (UMLS)
[11], and Cohan et al. [23] extend the citation graph with
citation intents (e.g. citation as background or used method).

Various scholarly applications benefit from semantic con-
tent representation, e.g. academic search engines by exploit-
ing general-purpose KGs [112], and graph-based research
paper recommendation systems [8] that utilise citation graphs
and mentioned entities. However, the coverage of science-
specific concepts in general-purpose KGs is rather low [1],
e.g. the task “geolocation estimation of photos” from Com-
puter Vision is neither present in Wikipedia nor in the
Computer Science Ontology (CSO) [95].

2.2 Scientific ontologies

Various ontologies have been proposed to model metadata
such as bibliographic resources and citations [83]. Iniesta
and Corcho [93] reviewed ontologies to describe scholarly
articles. In the following, we describe some ontologies that
conceptualise the semantic content in research articles.
Several ontologies focus on rhetorical [27,49,109] (e.g.
Background, Methods, Results, Conclusion), argumentative
[69,105] (e.g. claims, contrastive, and comparative state-
ments about other work) or activity-based structure [84] (e.g.
sequence of research activities) of research articles. Others
describe scholarly knowledge with linked entities such as
problem, method, theory, statement [19,50], or focus on the
main research findings and characteristics of research arti-
cles described in surveys with concepts such as problems,
approaches, implementations, and evaluations [40,106].
Various domain-specific ontologies exist, for instance,
mathematics [65] (e.g. definitions, assertions, proofs), mac-
hine learning [62,74] (e.g. dataset, metric, model, experi-
ment), and physics [96] (e.g. formation, model, observation).
The EXPeriments Ontology (EXPO) is a core ontology
for scientific experiments that conceptualise experimental
design, methodology, and results [99], while the Scientific
Observation Model (CRMsci) is an ontology of metadata
about scientific observations, processed data, and measure-
ments in descriptive and empirical sciences (e.g. biodiversity,
geology, geography, archaeology) [34]. Various repositories
provide access to several ontologies such as Open Biologi-
cal and Biomedical Ontologies (OBO) Foundry [98] for the

domain of life sciences or Linked Open Vocabularies (LOV)
[107] for web data.

Taxonomies for domain-specific research areas support
the characterisation and exploration of a research field.
Salatino et al. [95] give an overview, e.g. Medical Subject
Heading (MeSH), Physics Subject Headings (PhySH), Com-
puter Science Ontology (CSO). Gene Ontology [26] and
Chemical Entities of Biological Interest (CheBi) [30] are
KGs for genes and molecular entities.

2.3 Construction of knowledge graphs

Nickel et al. [77] classify KG construction methods into four
groups: (1) curated approaches, i.e. triples created manually
by a closed group of experts, (2) collaborative approaches,
i.e. triples created manually by an open group of volun-
teers, (3) automated semi-structured approaches, i.e. triples
extracted automatically from semi-structured text via hand-
crafted rules, and (4) automated unstructured approaches, i.e.
triples are extracted automatically from unstructured text.

2.3.1 Manual approaches

WikiData [108] is one of the most popular KGs with semanti-
cally structured, encyclopaedic knowledge curated manually
by a community. As of January 2021, WikiData comprises
92M entities curated by almost 27.000 active contributors.
The community also maintains a taxonomy of categories
and “infoboxes” which define common properties of cer-
tain entity types. Furthermore, Papers With Code [80] is a
community-driven effort to interlink machine learning arti-
cles with tasks, source code, and evaluation results. KGs such
as Gene Ontology [26] or Wordnet [41] are curated by domain
experts. Research article submission portals such as Easy-
Chair (https://wwww.easychair.org/) enforce the authors to
provide machine-readable metadata. Librarians and publish-
ers tag new articles with keywords and subjects [113]. Virtual
research environments enable the execution of data analysis
on interoperable infrastructure and store the data and results
in KGs [101].

2.3.2 Automated approaches

Automatic KG construction from text: Petasis et al. [85] pre-
sent a review on ontology learning, that is ontology creation
from text, while Lubani et al. [72] review ontology popula-
tion systems. Pajura and Singh [88] give an overview of the
involved tasks for KG population: (a) information extrac-
tion to extract a graph from text with entity extraction and
relation extraction, and (b) graph construction to clean and
complete the extracted graph, as it is usually ambiguous,
incomplete and inconsistent. Coreference resolution [17,71]
clusters different mentions of the same entity in text and entity
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linking [63] maps mentions in text to entities in the KG. Entity
resolution [104] identifies objects in the KG that refer to the
same underlying entity. For taxonomy population, Salatino et
al. [95] provide an overview of methods based on rule-based
natural language processing (NLP), clustering and statistical
methods.

The Computer Science Ontology (CSO) has been auto-
matically populated from research articles [95]. The AI-KG
was automatically generated from 333,000 research papers
in the artificial intelligence (AI) domain [32]. It contains
five entity types (tasks, methods, metrics, materials, others)
linked by 27 relations types. Kannan et al. [58] create a mul-
timodal KG for deep learning papers from text and images
and the corresponding source code. Brack et al. [17] gener-
ate a KG for 10 different science domains with the concept
types material, method, process, and data. Zhang et al. [115]
suggest a rule-based approach to mine research problems and
proposed solutions from research papers.

Information extraction from scientific text: Information
extraction is the first step in the automatic KG population
pipeline. Nasar et al. [75] survey methods on information
extraction from scientific text. Beltagy et al. [9] present
benchmarks for several scientific datasets and Peng et al. [82]
especially for the biomedical domain. “Appendix 17 sec-
tion presents comparative overviews of datasets for the
tasks sentence classification, relation extraction, and concept
extraction, respectively, in research papers.

There are datasets which are annotated at sentence level
for several domains, e.g. biomedical [31,60], computer
graphics [43], computer science [24], chemistry and com-
putational linguistics [105], or algorithmic metadata [94].
They cover either only abstracts [24,31,60] or full arti-
cles [43,69,94,105]. The datasets differentiate between five
and twelve concept classes (e.g. Background, Objective,
Results). Machine learning approaches for datasets consist-
ing of abstracts achieve an F1 score ranging from 66 to 92%
and for datasets with full papers F1 scores ranging from 51
to 78% (see Table 2).

More recent corpora, annotated at phrasal level, aim
at constructing a fine-grained KG from scholarly abstracts
with the tasks of concept extraction [4,15,44,71,89], binary
relation extraction [4,45,71], n-ary relation extraction [55,
57,59], and coreference resolution [17,25,71]. They cover
several domains, e.g. material sciences [44]; computational
linguistics [45,89]; computer science, material sciences, and
physics [4]; machine learning [71]; biomedicine [25,57,64];
or a set of ten scientific, technical and medical domains [15,
17,37]. The datasets differentiate between four to seven con-
cept classes (like task, method, tool) and between two to
seven binary relation types (like used-for, part-of, evaluate-
for). The extraction of n-ary relations involves extraction
of relations among multiple concepts such as drug-gene-
mutation interactions in medicine [57], experiments related
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to solid oxide fuel cells with involved material and measure-
ment conditions in material sciences [44], or task-dataset-
metric-score tuples for leaderboard construction for machine
learning tasks [59].

Approaches for concept extraction achieve F1 scores
ranging from 56.6 to 96.9% (see Table 4), for coreference
resolution F1 scores range from 46.0 to 61.4% [17,25,71],
and for binary relation extraction from 28.0 to 83.6% (see
Table 3). The task of n-ary relation extraction with an F1
score from 28.7 to 56.4% [57,59] is especially challenging,
since such relationships usually span beyond sentences or
even sections and thus, machine learning models require an
understanding of the whole document. The inter-coder agree-
ment for the task of concept extraction ranges from 0.6 to
0.96 (Table 4), for relation extraction from 0.6 to 0.9 (see
also Table 3), while for coreference resolution the value of
0.68 was reported in two different studies [17,71]. The results
suggest that these tasks are not only difficult for machines but
also for humans in most cases.

2.4 Quality of knowledge graphs

KGs may contain billions of machine-readable facts about
the world or a certain domain. However, do the KGs have
also an appropriate quality? Data quality (DQ) is defined as
fitness for use by a data consumer [110]. Thus, to evaluate
data quality, it is important to know the needs of the data
consumer since, in the end, the consumer judges whether
or not a product is fit for use. Wang et al. [110] propose a
data quality evaluation framework for information systems
consisting of 15 dimensions grouped into four categories,
ie.

1. Intrinsic DQ: accuracy, objectivity, believability, and rep-
utation.

2. Contextual DQ: value-added, relevancy, timeliness, com-
pleteness, and an appropriate amount of data.

3. Representational DQ: interpretability, ease of understand-
ing, representational consistency, and concise representa-
tion.

4. Accessibility DQ: accessibility and access security.

Bizer [10] and Zaveri [114] propose further dimensions
for the Linked Data context like consistency, verifiability,
offensiveness, licensing, and interlinking. Pipino et al. [87]
subdivide completeness into schema completeness, i.e. the
extent to which classes and relations are missing in the ontol-
ogy to support a certain use, column completeness (also
known as Partial Closed World Assumption [47]), i.e. the
extent to which facts are not missing, and population com-
pleteness, i.e. the extent to which instances for a certain class
are missing. Firber et al. [39] comprehensively evaluate and
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Plan Conduct

(1) Define research questions

(2) Develop a review
protocol and data extraction
forms

(3) Find related work

(5) Extract relevant data

Report

(6) Assess the quality of
the data

(4) Assess the relevance

(7) Analyse and combine
the data

(8) Write the review

Fig.1 Activities within a systematic literature review

compare the data quality of popular KGs (e.g. DBpedia, Free-
base, WikiData, YAGO) using such dimensions.

To evaluate the correctness of instance data (also known
as precision), the facts in the KG have to be compared against
a ground truth. For that, humans annotate a set of facts as true
or false. YAGO found to be 95% correct [103]. The automat-
ically populated AI-KG has a precision of 79% [32] . The
KG automatically populated by the Never-Ending Language
Learner (NELL) has a precision of 74% [21].

To evaluate the completeness of instance data (also known
as coverage and recall), small collections of ground-truth
capturing all knowledge for a certain ontology is necessary,
that are usually difficult to obtain [111]. However, some stud-
ies estimate the completeness of several KGs. Galarrage et
al. [46] suggest a rule mining approach to predict missing
facts. In Freebase [12] 71% of people have an unknown
place of birth, and 75% have an unknown nationality [36].
Suchanek et al. [102] report that 69%-99% of instances in
popular KGs (e.g. YAGO, DBPedia) do not have at least one
property that other instances of the same class have. The Al-
KG has a recall of 81.2% [32].

2.5 Systematic literature reviews

Literature reviews are one of the main tasks of researchers,
since a clear identification of a contribution to the present
scholarly knowledge is a crucial step in scientific work [51].
This requires a comprehensive elaboration of the present
scholarly knowledge for a certain research question. Further-
more, systematic literature reviews help to identify research
gaps and to position new research activities [61].

A literature review can be conducted systematically orin a
non-systematic, narrative way. Following Fink’s [42] defini-
tion, a systematic literature review is “a systematic, explicit,
comprehensive, and reproducible method identifying, evalu-
ating, and synthesising the existing body of completed and
recorded work” . Guidelines for systematic literature reviews
have been suggested for several scientific disciplines, e.g. for
software engineering [61], for information systems [79] and
for health sciences [42]. A systematic literature review con-
sists typically of the activities depicted in Fig. 1 subdivided
into the phases plan, conduct, and report. The activities may
differ in detail for the specific scientific domains [42,61,79].

In particular, a data extraction form defines which data has
to be extracted from the reviewed papers. Data extraction
requirements vary from review to review so that the form is
tailored to the specific research questions investigated in the
review.

3 Requirements analysis

As the discussion of related work reveals, existing knowledge
graphs for research information focus on specific use cases
(e.g. improve search engines, help to reproduce research
results) and mainly manage metadata and research artefacts
about articles. We envision a KG in which research articles
are linked through a deep semantic representation of their
content to enable further use cases. In the following, we
formulate the problem statement and describe our research
method. This motivates our use case analysis in Sect. 3.1,
from which we derive requirements for an ORKG.

Problem statement: Scholarly knowledge is very hetero-
geneous and diverse. Therefore, an ontology that conceptu-
alises scholarly knowledge comprehensively does not exist.
Besides, due to the complexity of the task, the population
of comprehensive ontologies requires domain and ontology
experts. Current automatic approaches can only populate
rather simple ontologies and achieve moderate accuracy (see
Sect. 2.3 and “Appendix 1)” section. On the one hand, we
desire an ontology that can comprehensively capture schol-
arly knowledge, and instance data with high correctness and
completeness. On the other hand, we are faced with a “knowl-
edge acquisition bottleneck”.

Research method: To illuminate the problem statement,
we perform a requirements analysis. We follow the design
science research (DSR) methodology [18,53]. The require-
ments analysis is a central phase in DSR, as it is the basis
for design decisions and selection of methods to construct
effective solutions systematically [18]. The objective of DSR
in general is the innovative, rigorous, and relevant design
of information systems for solving important business prob-
lems, or the improvement of existing solutions [18,51].

To elicit requirements, we studied guidelines for (a) sys-
tematic literature reviews (see Sect. 2.5), (b) data quality
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ORKG J get research figld™ | i article repositories | e.g. DataCite
find related work overview
—————— { data repositories | e.g. Dataset Search
assess relevance extract relevant
information _/ |----- <| code repositories | e.g. GitHub
get recommended obtaindeep Y\ |----- { virtual research environments | e.g. beaker.org
articles understanding
h _
researcher e 1 external knowledge bases | e.g. WikiData
reproduce results Wikioedi
______ e.g. Wikipedia,
i scholarly portals | TIB AV-portal

Fig.2 UML use case diagram for the main use cases between a researcher, an Open Research Knowledge Graph (ORKG), and external systems

requirements for information systems (see Sect. 2.4), and
(c) interviewed members of the ORKG and Visual Analytics
team at TIB,? who are software engineers and researchers
in the field of computer science and environmental sciences.
Based on the requirements, we elaborate possible approaches
to construct an ORKG, which were identified through a liter-
ature review (see Sect. 2.3). To verify our assumptions on the
presented requirements and approaches, ORKG and Visual
Analytics team members reviewed them in an iterative refine-
ment process.

3.1 Overview of the use cases

We define functional requirements with use cases which are
a popular technique in software engineering [13]. A use
case describes the interaction between a user and the sys-
tem from the user’s perspective to achieve a certain goal.
Furthermore, a use case introduces a motivating scenario to
guide the design of a supporting ontology and the use case
analysis helps to figure out which kind of information is nec-
essary [29].

There are many use cases (e.g. literature reviews, pla-
giarism detection, peer reviewer suggestion) and several
stakeholders (e.g. researchers, librarians, peer reviewers,
practitioners) that may benefit from an ORKG. Ngyuen et
al. [76] discuss some research-related tasks of scientists for
information foraging at a broader level. In this study, we focus
on use cases that support researchers (a) conducting literature
reviews (see also Sect. 2.5), (b) obtaining a deep understand-
ing of a research article and (c) reproducing research results.
A full discussion of all possible use cases of graph-based
knowledge management systems in the research environment
is far beyond the scope of this article. With the chosen focus,
we hope to cover the most frequent, literature-oriented tasks
of scientists.

2 https://projects.tib.eu/orkg/project/team/,
research-development/visual-analytics/staft.

https://www.tib.eu/en/
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Figure 2 depicts the main identified use cases, which are
described briefly in the following. Please note that we focus
on how semantic content can improve these use cases and
not further metadata.

Get research field overview: Survey articles provide an
overview of a particular research field, e.g. a certain research
problem or a family of approaches. The results in such
surveys are sometimes summarised in structured and com-
parative tables (an approach usually followed in domains
such as computer science, but not as systematically practised
in other fields). However, once survey articles are published
they are no longer updated. Moreover, they usually represent
only the perspective of the authors, i.e. very few researchers
of the field. To support researchers to obtain an up-to-date
overview of a research field, the system should maintain such
surveys in a structured way, and allow for dynamics and evo-
lution. A researcher interested in such an overview should be
able to search or to browse the desired research field in a user
interface for ORKG access. Then, the system should retrieve
related articles and available overviews, e.g. in a table or a
leaderboard chart.

While an ORKG user interface should allow for show-
ing tabular leaderboards or other visual representations, the
backend should semantically represent information to allow
for the exploitation of overlaps in conceptualisations between
research problems or fields. Furthermore, faceted drill-down
methods based on the properties of semantic descriptions of
research approaches could empower researchers to quickly
filter and zoom into the most relevant literature.

Find related work: Finding relevant research articles is
a daily core activity of researchers. The primary goal of
this use case is to find research articles which are relevant
to a certain research question. A broad research question is
often broken down into smaller, more specific sub-questions
which are then converted to search queries [42]. For instance,
in this paper, we explored the following sub-questions: (a)
Which ontologies do exist to represent scholarly knowledge ?
(b) Which scientific knowledge graphs do exist and which
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information do they contain? (c) Which datasets do exist for
scientific information extraction? (d) What are current state-
of-the-art methods for scientific information extraction? ()
Which approaches do exist to construct a knowledge graph?

An ORKG should support the answering of queries related
to such questions, which can be fine-grained or broad search
intents. Preferably, the system should support natural lan-
guage queries as approached by semantic search and question
answering engines [6]. The system has to return a set of rel-
evant articles.

Assess relevance: Given a set of relevant articles the
researcher has to assess whether the articles match the crite-
ria of interest. Usually researchers skim through the title and
abstract. Often, also the introduction and conclusions have to
be considered, which is cumbersome and time-consuming.
If only the most important paragraphs in the article are pre-
sented to the researcher in a structured way, this process
can be boosted. Such information snippets might include,
for instance, text passages that describe the problem tackled
in the research work, the main contributions, the employed
methods or materials, or the yielded results.

Extract relevant information: To tackle a particular rese-
arch question, the researcher has to extract relevant informa-
tion from research articles. In a systematic literature review,
the information to be extracted can be defined through a data
extraction form (see Sect. 2.5). Such extracted information
is usually compiled in written text or comparison tables in
a related work section or survey articles. For instance, for
the question “Which datasets do exist for scientific sentence
classification?” a researcher who focuses on a new anno-
tation study could be interested in (a) domains covered by
the dataset and (b) the inter-coder agreement (see Table 2
as an example). Another researcher might follow the same
question but focusing on machine learning and thus could be
more interested in (c) evaluation results and (d) feature types
used.

The system should support the researcher with tailored
information extraction from a set of research articles: (1)
The researcher defines a data extraction form as proposed in
systematic literature reviews (e.g. the fields (a)—(d)), and (2)
the system presents the extracted information as suggestions
for the corresponding data extraction form and articles in a
comparative table. Figure 3 illustrates a data extraction form
with corresponding fields in form of questions, and a possible
approach to visualise the extracted text passages from the
articles for the respective fields in a tabular form.

Get recommended articles: When the researcher focuses
on a particular article, further related articles could be rec-
ommended by the system utilising an ORKG, for instance,
articles that address the same research problem or apply sim-
ilar methods.

Obtain deep understanding: The system should help the
researcher to obtain a deep understanding of a research arti-

cle (e.g. equations, algorithms, diagrams, datasets). For this
purpose, the system should connect the article with arte-
facts such as conference videos, presentations, source code,
datasets, etc., and visualise the artefacts appropriately. Also
text passages can be linked, e.g. explanations of methods in
Wikipedia, source code snippets of an algorithm implemen-
tation, or equations described in the article.

Reproduce results: The system should offer researchers
links to all necessary artefacts to help to reproduce research
results, e.g. datasets, source code, virtual research environ-
ments, materials describing the study, etc. Furthermore, the
system should maintain semantic descriptions of domain-
specific and standardised evaluation protocols and guidelines
such as in machine learning reproducibility checklists [86]
and bioassays in the medical domain.

3.2 Knowledge graph requirements

As outlined in Sect. 2.4, data quality requirements should be
considered within the context of a particular use case (“fitness
for use”). In this section, we first describe dimensions we
used to define non-functional requirements for an ORKG.
Then, we discuss these requirements within the context of
our identified use cases.

3.2.1 Dimensions for KG requirements

In the following, we describe the dimensions that we use
to define the requirements for ontology design and instance
data. We selected these dimensions since we assume that they
are most relevant and also challenging to construct an ORKG
with appropriate data to support the various use cases.

For ontology design, i.e. how comprehensively should an
ontology conceptualise scholarly knowledge to support a cer-
tain use case, we use the following dimensions:

(A) Domain specialisation of the ontology: How domain-
specific should the concepts and relation types be in the
ontology? An ontology with high domain specialisation
targets a specific (sub-)domain and uses domain-specific
terms. An ontology with low domain specialisation
targets a broad range of domains and uses rather domain-
independent terms. For instance, various ontologies (e.g.
[15,84]) propose domain-independent concepts (e.g. pro-
cess, method, material). In contrast, Klampanos et al. [62]
present a very domain-specific ontology for artificial neu-
ral networks.

(B) Granularity of the ontology: Which granularity of the
ontology is required to conceptualise scholarly knowl-
edge? An ontology with high granularity conceptualises
scholarly knowledge with a lot of classes that have very
detailed and a lot of fine-grained properties and relations.
An ontology with a low granularity has only a few classes
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(1) Define research question and data extraction form

Research question and data extraction form

Which datasets exist for scientific sentence classification? Q

* (1) Which domains are covered by the dataset?
* (2) Who were the annotators?
* (3) What is the inter-annotator agreement?

(8) Present relevant papers
with extracted text

(2) Extract entities in search
query (e.g. dataset, task), find
relevant papers and rank them

internal organization
of the scientific discourse...

Remove |Paper Task Dataset (1) Which domains? (2) annotators? (3) agreement?
peo CLLCEC TR O dataset consists. dataset is constructed (4]
'@' Dernoncourt et al. |[PubMed for sequential PubMed 200k RCT | 5 ; [ Not found B
Y o ien randomized controlled trials.. Jupon the MED- LINE/PubMed...
the analysis of the - value of
@ Ronzano et al. Dr Inventor .. domain of Computer .. annotators are not inter-annotator B

Graphics..

domain experts.. agreement _is

equal to 0.6567..

]

[+]

Fig. 3 An example research questions with a corresponding data extraction form, and the extracted text passages from relevant research articles

for the respective (data extraction form) fields presented in a tabular form

and relation types. For instance, the annotation schemes
for scientific corpora (see Sect. 2.3) have a rather low
granularity, as they do not have more than 10 classes
and 10 relation types. In contrast, various ontologies (e.g.
[50,84]) with more than 20 to 35 classes and over 20 to
70 relations and properties are fine-grained and have a
relatively high granularity.

Although there is usually a correlation between domain spe-
cialisation and granularity of the ontology (e.g. an ontology
with high domain specialisation has also a high granularity),
there exist also rather domain-independent ontologies with
a high granularity, e.g. scholarly ontology [84]), and ontolo-
gies with high domain specialisation and low granularity,
e.g. the PICO criterion in Evidence-Based Medicine [60,92])
which stands for population (P), intervention (I), compari-
son (C), and outcome (O). Thus, we use both dimensions
independently. Furthermore, a high domain specialisation
requirement for a use case implies that each sub-domain
requires a separate ontology for the specific use case. These
domain-specific ontologies can be organised in a taxonomy.
For the instance data, we use the following dimensions:

(C) Completeness of the instance data: Given an ontology, to
which extent do all possible instances (i.e. instances for
classes and facts for relation types) in all research articles
have to be represented in the KG? Low completeness: itis
tolerable for the use case when a considerable amount of
instance data is missing for the respective ontology. High
completeness: it is mandatory for the use case that for the
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respective ontology, a considerable amount of instances
are present in the instance data. For instance, given an
ontology with a class “Task™ and a relation type “sub-
TaskOf” to describe a taxonomy of tasks, the instance
data for that ontology would be complete if all tasks
mentioned in all research articles are present (popula-
tion completeness) and “subTaskOf” facts between the
tasks are not missing (column completeness).

(D) Correctness of the instance data: Given an ontology,
which correctness is necessary for the corresponding
instances? Low correctness: it is tolerable for the use
case, that some instances (e.g. 30%) are not correct. High
correctness: itis mandatory for the use case, that instance
data must not be wrong i.e. all present instances in the
KG must conform to the ontology and reflect the content
of the research articles properly. For instance, an article is
correctly assigned to the task addressed in the article, the
F1 score in the evaluation results are correctly extracted,
etc.

It should be noted that completeness and correctness of
instance data can be evaluated only for a given ontology.
For instance, let A be an ontology having the class “Deep
Learning Model” without properties, and let B be an ontology
that also has a class “Deep Learning Model” and addition-
ally further relation types describing the properties of the
deep learning model (e.g. drop-out, loss functions, etc.). In
this example, the instance data of ontology A would be con-
sidered to have high completeness, if it covers most of the
important deep learning models. However, for ontology B,
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the completeness of the same instance data would be rather
low since the properties of the deep learning models are miss-
ing. The same holds for correctness: If ontology B has, for
instance, a sub-type “Convolutional Neural Network”, then
the instance data would have a rather low correctness for
ontology B if all “Deep Learning Model” instances are typed
only with the generic class “Deep Learning Model”.

3.2.2 Discussion of the KG requirements

Next, we discuss the seven main use cases with regard to the
required level of ontology domain specialisation and gran-
ularity, as well as completeness and correctness of instance
data. Table 1 summarises the requirements for the use cases
along the four dimensions at ordinal scale. The use cases
are grouped together, when they have (1) similar justifica-
tions for the requirements and (2) a high overlap in ontology
concepts and instances.

Extractrelevantinformation & getresearch field overview:
The information to be extracted from relevant research arti-
cles for a data extraction form within a literature review is
very heterogeneous and depends highly on the intent of the
researcher and the research questions. Thus, the ontology has
to be domain-specific and fine-grained to offer all possible
kinds of desirable information. However, missing informa-
tion for certain questions in the KG may be tolerable for
a researcher. Furthermore, it is tolerable for a researcher
if some of the extracted suggestions are wrong since the
researcher can correct them.

Research field overviews are usually the result of a lit-
erature review. The data in such an overview has also to be
very domain-specific and fine-grained. Also, this information
must have high correctness, e.g. an F1 score of an evaluation
result must not be wrong. Furthermore, an overview of a par-
ticular research field should have appropriate completeness
and must not miss any relevant research papers. However,
it is acceptable when overviews for some research fields are
missing.

Obtain deep understanding & reproduce results: The infor-
mation required for these use cases has to achieve a high level
of correctness (e.g. accurate links to dataset, source code,
videos, articles, research infrastructures). An ontology for
the representation of default artefacts can be rather domain-
independent (e.g. Scholix [20]). However, semantic repre-
sentation of evaluation protocols requires domain-dependent
ontologies (e.g. EXPO [99]). Missing information is tolera-
ble for these use cases.

Find related work & get recommended articles: When
searching for related work, it is essential not to miss rele-
vant articles. Previous studies revealed that more than half of
search queries in academic search engines refer to scientific
entities [112]. However, the coverage of scientific entities in
general-purpose KGs (e.g. WikiData) is rather low, since the
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introduction of new concepts in research literature occurs at
a faster pace than KG curation [1]. Despite the low complete-
ness, Xiong et al. [112] could improve the ranking of search
results in academic search engines by exploiting general-
purpose KGs. Hence, the instance data for the “find related
work” use case should have high completeness with fine-
grained scientific entities. However, semantic search engines
leverage latent representations of KGs and text (e.g. graph
and word embeddings) [6]. Since a non-perfect ranking of the
search results is tolerable for a researcher, lower correctness
of the instance data could be acceptable. Furthermore, due to
latent feature representations, the ontology can be kept rather
simple and domain-independent. For instance, the STM cor-
pus [15] introduces four domain-independent concepts.

Graph- and content-based research paper recommen-
dation systems [8] have similar requirements since they
also leverage latent feature representations and require fine-
grained scientific entities. Also, non-perfect recommenda-
tions are tolerable for a researcher.

Assess relevance: To help the researcher to assess the
relevance of an article according to her needs, the system
should highlight the most essential zones in the article to
get a quick overview. The completeness and correctness of
the presented information must not be too low, as otherwise
the user acceptance may suffer. However, it can be subop-
timal, since it is acceptable for a researcher when some of
the highlighted information is not essential or when some
important information is missing. The ontology to repre-
sent essential information should be rather domain-specific
(i.e. using terms that the researchers understand) and quite
simple (cf. ontologies for scientific sentence classification in
Sect. 2.3.2).

4 ORKG construction strategies

In this section, we discuss the implications for the design and
construction of an ORKG and outline possible approaches,
which are mapped to the use cases in Table 1. Based on the
discussion in the previous section, we can subdivide the use
cases into two groups: (1) requiring high correctness and
high domain specialisation with rather low requirements on
the completeness (left side in Table 1) and (2) requiring high
completeness with rather low requirements on the correctness
and domain specialisation (right side in Table 1). The first
group requires manual approaches, while the second group
could be accomplished with fully automatic approaches. To
ensure trustworthiness, data records should contain prove-
nance information, i.e. who or what system curated the data.

Manually curated data can also support use cases with
automatic approaches, and vice versa. Furthermore, auto-
matic approaches can complement manual approaches by
providing suggestions in user interfaces. Such synergy
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Fig.4 The virtuous cycle of data network effects by combining manual
and automatic data curation approaches [22]

between humans and algorithms may lead to a “data fly-
wheel” (also known as data network effects, see Fig. 4): Users
produce data which enable to build a smarter product with
better algorithms so that more users use the product and thus
produce more data, and so on.

4.1 Manual approaches

Ontology design: The first group of use cases requires rather
domain-specific and fine-grained ontologies. We suggest to
develop novel or reuse ontologies that fit the respective use
case and the specific domain (e.g. EXPO [99] for experi-
ments). Moreover, appropriate and simple user interfaces are
necessary for efficient and easy population.

However, such ontologies can evolve with the help of the
community, as demonstrated by WikiData and Wikipedia
with “infoboxes” (see Sect. 2.3). Therefore, the system
should enable the maintenance of templates, which are pre-
defined and very specific forms consisting of fields with
certain types (see Fig. 5). For instance, to automatically gen-
erate leaderboards for machine learning tasks, a template
would have the fields task, model, dataset, and score, which
can then be filled in by a curator for articles providing such
kind of results in a user interface generated from the tem-
plate. Such an approach is based on meta-modelling [13], as
the meta-model for templates enables the definition of con-
crete templates, which are then instantiated for articles.

Knowledge graph population: Several user interfaces are
required to enable manual population: (1) populate seman-
tic content for a research article by (la) choosing relevant
templates or ontologies and (1b) fill in the values; (2) termi-
nology management (e.g. domain-specific research fields);
(3) maintain research field overviews by (3a) assigning rel-
evant research articles to the research field, (3b) define
corresponding templates, and (3c) fill in the templates for
the relevant research articles.

Furthermore, the system should also offer Application
Programming Interfaces (APIs) to enable population by
third-party applications, e.g.:

— Submission portals such as https://www.easychair.org/
during submission of an article.

— Authoring tools such as https://www.overleaf.com/ dur-
ing writing.

— Virtual research environments [101] to store evaluation
results and links to datasets and source code during exper-
imenting and data analysis.

To encourage stakeholders like researchers, librarians, crowd
workers to contribute content, we see the following options:

— Top-down enforcement via submission portals and pub-
lishers.

— Incentive models: Researchers want their articles to be
cited; semantic content helps other researchers to find,
explore and understand an article. This is also related to
the concept of enlightened self-interest, i.e. act to further
interests of others to serve the own self-interest.

— Provide public acknowledgements for curators.

— Bring together experts (e.g. librarians, researchers from
different institutions) who curate and organise content
for specific research problems or disciplines.

4.2 (Semi-)automatic approaches

Ontology design: The second group of use cases require a
high completeness, while a relatively low correctness and
domain specialisation are acceptable. For these use cases,
rather simple or domain-independent ontologies should be
developed or reused. Although approaches for automatic
ontology learning exist (see Sect. 2.3), the quality of their
results is not sufficient to generate a meaningful ORKG with
complex conceptual models and relations. Therefore, mean-
ingful ontologies should be designed by human experts.
Knowledge graph population: Various approaches can be
used to (semi-)automatically populate an ORKG. Methods
for entity and relation extraction (see Sect. 2.3) can help to
populate fine-grained KGs with high completeness and entity
linking approaches can link mentions in text with entities
in KGs. For cross-modal linking, Singh et al. [97] suggest
an approach to detect URLs to datasets in research arti-
cles automatically, while the Scientific Software Explorer
[52] connects text passages in research articles with code
fragments. To extract relevant information at sentence level,
approaches for sentence classification in scientific text can be
applied (see Sect. 2.3). To support the curator fill in templates
semi-automatically, template-based extraction can (1) sug-
gest relevant templates for a research article and (2) pre-fill
fields of templates with appropriate values. For pre-filling,
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Fig.5 Conceptual meta-model in UML for templates and interface design for an external template-based information extractor

approaches such as n-ary relation extraction [44,54,57,59]
or end-to-end question answering [33,91] could be applied.

Furthermore, the system should enable to plugin exter-
nal information extractors, developed for certain scientific
domains to extract specific types of information. For instance,
asdepicted in Fig. 5, an external template information extrac-
tor has to implement an interface with three methods. This
enables the system (1) to filter relevant template extractors
for an article and (2) extract field values from an article.

5 Conclusions and future work

In this paper, we have presented a requirements analysis for
an Open Research Knowledge Graph (ORKG). An ORKG
should represent the content of research articles in a seman-
tic way to enhance or enable a wide range of use cases.
We identified literature-related core tasks of a researcher
that can be supported by an ORKG and formulated them
as use cases. For each use case, we discussed specifici-
ties and requirements for the underlying ontology and the
instance data. In particular, we identified two groups of use
cases: (1) the first group requires instance data with high
correctness and rather fine-grained, domain-specific ontolo-
gies, but with moderate completeness; (2) the second group
requires a high completeness, but the ontologies can be
kept rather simple and domain-independent, and a moder-
ate correctness of the instance data is sufficient. Based on
the requirements, we have described possible manual and
semi-automatic approaches (necessary for the first group),
and automatic approaches (appropriate for the second group)
for KG construction. In particular, we propose a framework
with lightweight ontologies that can evolve by community
curation. Furthermore, we have described the interdepen-
dence with external systems, user interfaces, and APIs for
third-party applications to populate an ORKG.

The results of our work aim to give a holistic view of the
requirements for an ORKG and guide further research. The
suggested approaches have to be refined, implemented, and
evaluated in an iterative and incremental process (see Www.
orkg.org for the current progress). Users from different scien-
tific domains should be deeply involved in the development
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process to build proper solutions. Furthermore, since ontolo-
gies and instance data will evolve in the ORKG, solutions
are required to adequately support this evolution process
(e.g. editing, versioning, support to report inconsistencies,
etc.). Finally, our analysis can serve as a foundation for a
discussion on ORKG requirements with other researchers
and practitioners.
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