Security Considerations in the Open
Source Software Ecosystem

Von der Fakultit fiir Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universitit Hannover
zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
(abgekiirzt: Dr. rer. nat.)

genehmigte Dissertation

von Herrn

Dominik Wermke, M.Sc.

2023

1. Referent:
2. Referentin:
3. Referent:
Vorsitz:

Tag der Promotion:

Prof. Dr. Sascha Fahl

Prof. Dr. Yasemin Acar

Prof. Dr. Esfandiar Mohammadi
Prof. Dr. Ziawasch Abedjan

15.05.2023

Summary

Open source software plays an important role in the software supply chain, allowing stakeholders to
utilize open source components as building blocks in their software, tooling, and infrastructure. But
relying on the open source ecosystem introduces unique challenges, both in terms of security and trust,
as well as in terms of supply chain reliability.

In this dissertation, I investigate approaches, considerations, and encountered challenges of stake-
holders in the context of security, privacy, and trustworthiness of the open source software supply
chain. Overall, my research aims to empower and support software experts with the knowledge and
resources necessary to achieve a more secure and trustworthy open source software ecosystem. In the
first part of this dissertation, I describe a research study investigating the security and trust practices
in open source projects by interviewing 27 owners, maintainers, and contributors from a diverse set
of projects to explore their behind-the-scenes processes, guidance and policies, incident handling, and
encountered challenges, finding that participants’ projects are highly diverse in terms of their deployed
security measures and trust processes, as well as their underlying motivations. More on the consumer
side of the open source software supply chain, I investigated the use of open source components in
industry projects by interviewing 25 software developers, architects, and engineers to understand their
projects’ processes, decisions, and considerations in the context of external open source code, finding
that open source components play an important role in many of the industry projects, and that most
projects have some form of company policy or best practice for including external code. On the side of
end-user focused software, I present a study investigating the use of software obfuscation in Android
applications, which is a recommended practice to protect against plagiarism and repackaging. The
study leveraged a multi-pronged approach including a large-scale measurement, a developer survey, and
a programming experiment, finding that only 24.92% of apps are obfuscated by their developer, that
developers do not fear theft of their own apps, and have difficulties obfuscating their own apps. Lastly,
to involve end users themselves, I describe a survey with 200 users of cloud office suites to investigate
their security and privacy perceptions and expectations, with findings suggesting that users are generally
aware of basic security implications, but lack technical knowledge for envisioning some threat models.

The key findings of this dissertation include that open source projects have highly diverse security
measures, trust processes, and underlying motivations. That the projects’ security and trust needs are
likely best met in ways that consider their individual strengths, limitations, and project stage, especially
for smaller projects with limited access to resources. That open source components play an important
role in industry projects, and that those projects often have some form of company policy or best
practice for including external code, but developers wish for more resources to better audit included
components.

This dissertation emphasizes the importance of collaboration and shared responsibility in build-
ing and maintaining the open source software ecosystem, with developers, maintainers, end users,
researchers, and other stakeholders alike ensuring that the ecosystem remains a secure, trustworthy, and
healthy resource for everyone to rely on.

III

Keywords

Open Source, Software Supply Chain, Usable Security, Software Developers

v

Zusammenfassung

Open-Source-Software spielt eine wichtige Rolle in der Software-Versorgungskette, da sie Beteiligten
ermdglicht, Open-Source-Komponenten als Bausteine in ihrer Software, Werkzeugen und Infrastruk-
tur zu verwenden. Die Verwendung von Open-Source-Komponenten bringt jedoch auch spezielle
Herausforderungen mit sich, sowohl in Bezug auf die Sicherheit und Vertrauen, als auch im Hinblick
auf die Zuverlissigkeit.

Diese Dissertation untersucht Ansitze, Uberlegungen und Herausforderungen von Beteiligten im
Zusammenhang mit der Sicherheit, dem Datenschutz und der Vertrauenswiirdigkeit der Open-Source-
Versorgungskette. Meine Forschung zielt darauf ab, Software-Experten mit dem Wissen und den
Ressourcen zu unterstiitzen, die fiir ein sicheres und vertrauenswiirdiges Open—Source—Okosystem
erforderlich sind. Im ersten Teil dieser Dissertation untersuche ich die Sicherheits- und Vertrauensprak-
tiken in Open-Source-Projekten in 277 Interviews mit Eigentiimern, Maintainern und Beitragenden aus
Open-Source-Projekten tiber Prozesse hinter den Kulissen, Richtlinien, den Umgang mit Zwischen-
fillen und Sicherheits-Herausforderungen. Die untersuchten Open-Source-Projekte besaflen hierbei
eine weite Spanne an Sicherheitsmafinahmen, Vertrauensprozesse und zugrunde liegende Motivatio-
nen. Um die Verwenderseite der Versorgungskette mit einzubeziehen, untersuche ich den Einsatz
von Open-Source-Komponenten in Industrieprojekten in 25 Interviews mit Softwareentwicklern, Ar-
chitekten und Ingenieuren, um die Prozesse, Entscheidungen und Uberlegungen ihrer Projekte im
Zusammenhang mit externem Open-Source-Code zu verstehen. Open-Source-Komponenten spielen
hierbei in vielen Projekten eine wichtige Rolle, die meisten Projekte haben Richtlinien fiir externen
Code. Auf der Endnutzer-Seite stelle ich eine Studie zur Verwendung von Obfuskation in Android-
Anwendungen vor. Die Studie nutzt einen mehrgliedrigen Ansatz bestehend aus Messungen, einer Um-
frage mit Entwicklern und einem Programmier-Experiment. Nur 24,92% der Apps wurden von ihren
Entwicklern obfuskiert, die Entwickler beftirchten dabei generell nicht den Diebstahl ihrer eigenen
Apps, und haben Schwierigkeiten ihre Apps zu obfuskieren. Um auch Endnutzer selbst einzubezichen,
stell ich eine Umfrage unter 200 Nutzern von Cloud-Office-Suiten vor, welche ihre Wahrnehmungen
und Erwartungen im Bezug zu Sicherheit und Datenschutz untersucht. Die Nutzer sind sich dabei
den grundlegenden Sicherheits-Implikationen bewusst, es mangelt ihnen aber an technischem Wissen
zum Verstindnis von einige Bedrohungsmodelle.

Zu meinen wichtigsten Erkenntnissen gehort, dass Open-Source-Projekte sehr unterschiedliche
Sicherheitsmafinahmen, Vertrauensprozesse und zugrunde liegende Motivationen haben, dass ihre
Sicherheits- und Vertrauensbediirfnisse wahrscheinlich am besten auf eine Art und Weise erfiillt wer-
den, die ihre individuellen Stirken, Grenzen und das Projektstadium berticksichtigt, insbesondere
bei kleineren Projekten mit begrenztem Zugang zu Ressourcen. Open-Source-Komponenten spielen
ausserdem in Industrieprojekten eine wichtige Rolle, und die meisten Projekte verfiigen tiber Richtlin-
ien fiir die Verwendung von externem Code. Aber die Entwickler wiinschen sich auch Ressourcen,
um die einbezogenen Komponenten besser tiberpriifen zu kénnen. Diese Dissertation unterstreicht
die Bedeutung von Zusammenarbeit und gemeinsamer Verantwortung von Entwicklern, Maintainern,
Endnutzern, Forschenden und anderen Beteiligten, welche alle dazu beitragen, dass das Open-Source-
Okosystem eine sichere und verlissliche Ressource bleibt.

Schliisselworter

Open Source, Software Supply Chain, Nutzbare IT-Sicherheit, Software-Entwickler

VI

Contents

Summary i
Zusammenfassung Vv
Contents Vil
List of Figures Xl
List of Tables Xl
1 Introduction 1
1.1 Motivation e e e e e I

1.2 ThisDissertation 3
12,1 STAtEMENT . . . v v v v v e e e e e e e e e e e e e e e 4

1.2.2 Contributions 4

1.2.3 STUCTUIE . . . v v v v o e e e e e e e e e e e e e e e e e e e 9

1.2.4 Typesettingand Typography 10

2 Background 11
2.1 Software Supply Chain L Lo I1
2.1.1 Vulnerabilities 13

2.1.2 Metricsand Frameworks Is

2.1.3 Targeted Attacks Lo Lo 16

2.2 OpenSourceSoftware L L L 19
221 Dependencies L L o Lo 21

2.2.2 Unique Challenges and Opportunities 22

2.3 UsableSecurity L 22
2.3.1 Approachesand Populations 0 .. 24

2.3.2 Usable Security for Software Experts 25

2.4 SUMMATYttt 27

3 Related and Concurrent Work 29
3.1 Software Supply Chain Security L L L 29

3.2 Security and Trust in the Open Source Ecosystem 31

3.3 Interview Studies in a Security Context 34

4 Security & Trust in Open Source Software Projects 37
4.1 Preamble e 37
4.1.1 Contribution 38

4.1.2 STIUCTUIE . . . v v v v v e e e e e e e e e e e e e e e e e e e 39

4.2 Introduction e 41

VII

43 RelatedWork 42
4.3.1 Research with Repositories 42

4.3.2 Interview Studies in a Security Context. 43

4.3.3 Security and Trust in the Open Source Community 43

4.4 Methodology 44
441 StudySetup. 44

4.4.2 Interview Structure 46

4.4.3 Codingand Analysis L 0L 48

4.4.4 Ethical Considerations and Data Protection 49

4.4.5 Limitations e e e e 49

45 Results e 50
4.5.1 Project Demographics L. 50

4.5.2 Security Challenges L L Lo 50

4.5.3 Guidanceand Policies 51

4.5.4 ProjectStructure Lo 53

4.5.5 ReleasesandUpdates 54

4.5.6 Rolesand Responsibilities 56

457 TrustProcesses v i e e 57

4.5.8 Opinions and Improvements 58

4.6 Discussion e e e e 59
4.7 SUMMATYt e 61
5 Security Challenges of the Open Source Supply Chain 63
s.t Preamble 63
s.t.t Contribution L 64

§.1.2 SEIUCLUIE v v v o e e e e e e e e e e e e e e e e e e e 65

5.2 Introduction 67
5.3 RelatedWork 68
5.3.1 Dependency Analysis & Selection 68

s.3.2 Security Research with Software Developers 69

5.3.3 Security Interview Studies oL L L 69

s.4 InterviewStudy 70
s.4.1 StudySetup. 70

5.4.2 Interview Structure e e e e e e e 72

5.4.3 Codingand Analysis 73

5.4.4 Ethical Considerations & Data Protection 74

5.4.5 Limitations e e 74

s.s Results e 75
s.s.1 Projectsand Participants L 75

s.s.2 Usage of Open Source Components 76

5.5.3 Thoughts about Open Source Components 77

s.5.4 Security Policiesand Guidance L. 78

s.s.s Experiences with Open Source Components 8o

5.5.6 ChallengesandIncidents 82,

s.s.7 Problemsand Improvements 84

5.6 Discussion e e e 8s
5.7 Conclusion e 87

VIII

6 Large Scale Investigation of Obfuscation Use in Android 89

6.1 Preamble 89
6.1.1 Contribution 90
6.1.2 STIUCLUIE v o e e e e e e e e e e e e 90
6.2 Introduction 93
6.3 RelatedWork 94
6.4 Android Obfuscation Techniques 95
6.4.1 Complications for Obfuscation 96
6.42 ProGuard. 96
6.5 Detecting ProGuard Obfuscation 97
6.s.1 HowOBruscaNWorks. 97
6.5.2 FeatureDetection. 97
6.53 OtherTools e 98
6.5.4 Evaluation e 98
6.5.5 Limitations e e e 99
6.6 Large Scale Obfuscation Analysis 100
6.6.1 Obfuscation Trends 101
6.7 DeveloperSurvey 103
671 Recruiting 104
6.7.2 Resultsand Takeaways 105
6.8 Obfuscation Experimento L L L 107
681 StudyDesign L o 107
682 TheTasks 108
6.8.3 Resultsand Takeaways 109
6.9 Discussion e e e 110
6.9.1 Ethical Considerations 110
6.9.2 Threatsto Validity I11
6.0 SUMMATY 112
7 Security & Privacy Perceptions of Cloud Office Suites 113
7.1 Preamble 113
7.1.1 Contribution 114
70,2 STIUCTUTE . . o v v v e v e e e e e e e e e e e e e e e e e e 114
7.2 Introduction e 115
7.3 Cloud Office Suites e 116
7.4 Methodology 117
7.4.1 StudyProcedure L L 117
7-4.2 SUrvey Structure 118
7.4.3 Codingand Analysis L o L 120
7.4.4 DataCollectionand Ethics 121
7.4.5 Limitations 121
7.5 Results e 122
7.5.1 Useof OfficeTools 122
7.5s.2 DocumentSecurity L L 124
7.5.3 Document Access 125
7.5.4 DocumentStorage o 127
7.s.s Document Responsibility 127

IX

7.5.6 Scenario Perception L 130

7.5.7 DataProtection. e 131
7.6 RelatedWork 131
7.7 Discussion e e e 132
7.7.1 Recommendations 133
7.8 Summary 133

8 Conclusion and Future Work 135
8.1 FutureWork 137

A Security & Trust in Open Source Software Projects 139
A.x Interview GuideinEnglish oo oo oo oo 139
A2 Interview GuideinGerman 144
A3 Codebook 149

B Security Challenges of the Open Source Supply Chain 157
Bir InterviewGuide e 157
B2 Codebook 162

C Large Scale Investigation of Obfuscation Use in Android 169
C.x OnlineSurvey 169
C.2 Programming Experiment - ExitSurvey 172

D Security & Privacy Perceptions of Cloud Office Suites 177
Dar Survey o 177

Bibliography 187

Acronyms 213

List of Figures

Background 11
2.1 VulnerabilityLogos 13
2.2 Usable Security Methods L L o 24
2.3 Usable Security Populations 25
2.4 Impactvs.Effect. oo 26
Security & Trust in Open Source Software Projects 37
4.1 Interview flowand topics L Lo 47
Security Challenges of the Open Source Supply Chain 63
s.1 Interview flowandtopics L L L L Lo 72
Large Scale Investigation of Obfuscation Use in Android 89
6.1 Obfuscation numbers of app structures 99
6.2 Percentage of obfuscated apps by updatemonth L0000 102
6.3 Online Questionnaire Likert L L L. 104
6.4 Comparison of invited app metadata vs. survey app metadata 105
Security & Privacy Perceptions of Cloud Office Suites 113
7.1 Survey flow for U.S. and German participants 118
7.2 Likert scale for associated risk of unauthorizedaccess 125
7.3 Comfort for different parties accessing documents 126
7.4 Participants’ comfort with potential privacy violations by their government. 128
7.5 DPerceived risk of unauthorized parties accessing documents L. 129
7.6 Comfort level with three datascenarios 130

XI

List of Tables

Security & Trust in Open Source Software Projects

4.1

Opverview of interview participants

Security Challenges of the Open Source Supply Chain

5.1

Opverview of interview participants

Large Scale Investigation of Obfuscation Use in Android

6.1
6.2
6.3
6.4
6.5

Popular obfuscation software . . .

Tool performance on sample setof 200 APKs

Top 10 obfuscated libraries

Distribution of main package obfuscation across download counts

Average main package obfuscation by Google Play account

Security & Privacy Perceptions of Cloud Office Suites
Overview of the most common cloud office suites and their related features.

7.1
7.2
7.3
74

Regression factors for candidatemodels L oL

Survey demographics

Final linear mixed regression model

37
45

63
71

89

95
98
100
102
103

XIII

Chapter 1
Introduction

PEN SOURCE SOFTWARE plays an important role in many software ecosystems. Whether in op-
O erating systems, network stacks, or low-level system drivers, open source software is found as
the foundation, glue, or tooling in many systems and processes, constituting important links of the
software supply chain. This wide-spread usage is to be expected, as utilizing open source code allows
stakeholders to concentrate on delivering features and achieving faster development cycles, rather than
investing time into building foundational solutions in-house. The general openness and community-
based development approach of the open source ecosystem also introduce unique security challenges:
code submissions might come from unknown entities, open source projects often only have limited
developer-hours to review pull requests or update dependencies, and including third-party code intro-
duces obligations for stakeholders to continuously vet the included components. In this dissertation, I
investigate approaches, considerations, and encountered challenges in the context of security, privacy,
and trustworthiness of the open source software supply chain. For this, I conducted research involving
software stakeholders such as maintainers, contributors, developers, software architects, and end users.
The research presented in this dissertation empowers and supports software experts involved in the
software supply, towards a more secure and healthy open source software ecosystem.

This chapter provides a general introduction to the motivation and challenges for the research de-
scribed in this dissertation (Section 1.1), as well as to provide an overview of the structure and com-
ponents of this dissertation and the research (Section 1.2). For a more in-depth description of, and
introduction to, the individual topics of software supply chain security, opportunities and challenges
in the open source ecosystem, and the research area of usable security for experts, see Chapter 2: Back-
ground.

1.1 Motivation

With the continued advancement of digital innovation, our daily lives are becoming increasingly in-
tertwined with technology and software. While these technological advancements have undoubtedly
brought about unprecedented convenience, efficiency, and connectivity, they have also resulted in a
reliance on underlying software infrastructures and ecosystems. An important part of these underlying
infrastructures is the software supply chain, which involves the creation, distribution, and integration
of software components. A complex, connected system, the software supply chain enables stakeholders
to utilize reusable abstractions and processes, supporting and speeding up the development and deploy-
ment of software products. As part of the software supply chain, reusable abstractions like libraries,
frameworks, and infrastructure templates enable stakeholders to focus on the specific functionalities
of their application, rather than having to write their whole software stack from scratch. Libraries and
frameworks, for instance, provide pre-built code that developers can incorporate into their applica-
tions, saving time and effort. Infrastructure templates allow developers to access and utilize pre-built
services and processes in their software, such as data storage, build pipelines, and authentication. For

Chapter 1 Introduction

stakeholders however, relying on third-party code also introduces security challenges, requires a cer-
tain level of trust and reliance, and introduces obligations in vetting included components. This trust
requirement was probably best summarized by Ken Thompson:

“To what extent should one trust a statement that a program is free of Trojan horses?
Perhaps it is more important to trust the people who wrote the software.” (K. Thompson

[1])

Software supply chain vulnerabilities pose significant risks to stakeholders, historically being ex-
ploited by threat actors who target systems with unpatched components containing known vulnera-
bilities. Because of these components’ reusability and connectedness, a vulnerability in, or successful
compromise of, a single important component can have cascading security effects on dependent com-
ponents and systems, creating ripple effects impacting individuals, communities, enterprises, and even
entire industries. High-impact exploits targeting vulnerabilities like Heartbleed [2], Shellshock [3],
and more recently Log4Shell [4] have highlighted weaknesses in both commercial and open source
software, affecting individuals, enterprises, and governments.

Over time, attacks on the software supply chain became more targeted, evolving from simply ex-
ploiting vulnerabilities in unpatched systems to directly leveraging the connectedness of the supply
chain for targeting more victims such as in the Solarwinds Orion [s] and Kaseya VSA [6] attacks, where
attackers successfully compromised maintenance tools to target thousands of users’ systems. Following
these impactful attacks, governments worldwide recognized the high impact of attacks targeting the
software supply chain responding in a number of ways: the European Commission published a draft
of the Cyber Resilience Act [7], the German IT Security Act 2.0 was approved [8], and two Presidential
Executive Orders were introduced in the United States to better protect critical federal infrastructure
from cyberattacks [9], [10]. These acts, laws, and orders aim to improve the security of products with
digital elements throughout their entire life cycle, facilitate compliance for hardware and software pro-
ducers, enhance transparency of the security properties of digital products, and enable businesses and
consumers to securely use digital products.

These targeted attacks have evolved, with threat actors now exploiting the software supply chain
through targeting upstream dependencies, build systems, and even developers directly through their
accounts and computers. The complexity of today’s build systems, continuous integration and contin-
uous delivery (CI/CD) pipelines, and the involved number of stakeholders increases the risk of misuse,
misconfiguration, or leakage of secrets. This has resulted in third-party services and developers involved
in building and deploying software becoming high-value targets for attackers. Recent security incidents
at Codecov [11], Slack [12], Okta [13], LastPass [14], and CircleCI [15] highlight the vulnerability of these
links in the software supply chain.

As one of these links, the open source ecosystem plays an important role in the software supply
chain, allowing stakeholders to utilize open source components as building blocks in their software,
tooling, and infrastructure. It also allows users to customize the software to meet their specific needs,
which includes benefits in efficiency and cost savings, making open source components a common
occurrence, even in the commercial software industry. The interactions in the open source ecosystem
differ from a commercial software supply chain, working more like a community of many smaller
communities, instead of the more linear, often contract-based, supply chain. But relying on the open
source ecosystem brings unique challenges, both in terms of security and trust, as well as in terms of
supply chain reliability and non-existing warranties or contracts.

In the past, the security research field has produced advanced technologies and approaches for im-
proving security such as public key cryptography and end-to-end encryption. However, adoption

1.2 This Dissertation

of such mechanisms has often been slow, and despite the development of advanced cryptographic
algorithms, access control, and memory-safe applications that can offer provable strong security, vul-
nerabilities and attacks continue to happen. One reason for this gap between theoretical security and
low actual security in practice is the lack of consideration of human factors during the development
of these solutions. Security mechanisms can be difficult to use, interfere with users’ priorities, or make
unrealistic assumptions about users’ security knowledge. Traditional approaches to security have often
prioritized technical solutions that focus on functionality over usability, resulting in systems that are
difficult to navigate and understand for both non-experts and even experts. While the field of usable
security encompasses a wide range of stakeholders, including end users, software experts play a crucial
role in developing and implementing secure software solutions. As software experts are responsible for
designing, implementing, and maintaining software systems, enabling and supporting a single expert
with usable secure approaches can result in security benefits for tens of their projects, hundreds of
deployments, and thousands of end users using the software.

In this dissertation, I investigate approaches, considerations, and encountered challenges of stake-
holders in the context of security, privacy, and trustworthiness of the open source software supply chain.
Specifically, in the first research part of this dissertation, I present research concerning the security and
trust practices in open source projects by interviewing 27 owners, maintainers, and contributors from
a diverse set of open source projects to explore their behind-the-scenes processes, guidance and policies,
incident handling, and challenges they encountered in the past. In the second part, I present research
concerning the “consumer” side of the open source software supply chain, specifically the use of open
source components in industry projects. For this, I interviewed 25 software developers, architects, and
engineers about their projects’ processes, decisions, and considerations around the usage of external
open source components. In the third part, more focused on end-user facing software, I investigate
the use of software obfuscation in Android applications, which is a recommended practice to protect
against plagiarism and repackaging. Therefore, my study leveraged a multi-pronged approach including
a large-scale measurement, a developer survey, and a programming experiment. In part four, to involve
end users and their perceptions, I surveyed 200 users of cloud office suites to investigate their security
and privacy perceptions and expectations. Overall, the research presented in this dissertation aims to
empower and support the involved software experts, towards a more secure and reliable open source
software ecosystem.

1.2 This Dissertation

At the time of writing this dissertation, I have published several peer-reviewed, high quality conference
research papers, both as first author and co-author with the invaluable help of many colleagues. I am
deeply grateful to my co-authors for helping me to work on these ideas. Without them, a large part of
my research would not have been possible.

The research-based chapters in this thesis are either based on, or inspired by, research that was also
published as peer-reviewed research publications. I thus provide a preamble before each research-based
chapter, outlining my personal, as well as my co-authors’ contribution to each of these research projects
(Sections 4.1, 5.1, 6.1, and 7.1). In addition, for the chapters based on previous research, some sections
include disclaimer boxes highlighting certain facts about the following section, e.g.,

Chapter 1 Introduction

Disclaimer: This related work section reflects the state of prior research in early 2022 and is
provided to highlight the state of research during the time of the research project. For related
and concurrent work at the time of this dissertation, see Chapter 3: Related and Concurrent
Work.

Other sections, specifically the sections describing results, include summary boxes to highlight find-
ings in the related area:

Summary: Projects and Participants. The majority of our participants had worked on multiple
projects in a diverse set of software areas, and in different team configurations and sizes. Only
about half mentioned security-specific roles in the development loop.

The rest of this section is structured as follows: I provide the research statement of this dissertation
(Section 1.2.1). I then introduce the research that chapters in this dissertation are based on, provide
a short summary, and highlight my contributions, as well as list some of the research projects with
my contribution that served as inspiration for some sections (Section 1.2.2). Lastly, I summarize the
individual chapters of this dissertation and outline their content (Section 1.2.3).

1.21 Statement

The overarching goal of my research is to empower and enable software experts through usable security
research, providing them with knowledge, processes, and tooling that support them in building secure
and trustworthy software, resulting in potential benefits for thousands of end users. The central thesis
of this dissertation is:

“Open source software plays an important role in the software supply chain, allowing stake-
holders to utilize open source components as building blocks in their software, tooling,
and infrastructure. Relying on the open source ecosystem introduces unique challenges,
both in terms of security and trust, as well as in terms of supply chain reliability. By
identifying challenges, approaches, and considerations in the context of security, we can
empower and support the involved software experts and stakeholders, towards a more
secure, trustworthy, and reliable open source software ecosystem.”

Based on this statement, I conducted usable security research with software experts and other stake-
holders of the software supply chain. The research presented in this dissertation investigates security,
trustworthiness, and perceptions in the context of the (open source) software supply chain, involving
open source maintainers and contributors, industry software stakeholders, Android developers, and
end users of cloud office software.

1.2.2 Contributions

Four research projects with me as team lead and lead author contributed to the research and research
chapters presented in this dissertation (Chapters 4, s, 6, and 7). As usual for collaborative research,
this work would have been impossible without the significant contributions of the co-authors. For all
publications, the authors are listed in order of contribution, as is customary in the security research
field in general, and the usable security and privacy field in particular. The publications are listed below
in the same order as their related chapters appear in this dissertation.

1.2 This Dissertation

1. Chapter 4: Security & Trust in Open Source Software Projects of this dissertation is based on
research that also lead to the publication “Committed to Trust: A Qualitative Study on Security
& Trust in Open Source Software Projects” [16].

Dominik Wermke, N. Wohler, J. H. Klemmer, M. Fourné, Y. Acar, and S. Fahl, “Com-
mitted to Trust: A Qualitative Study on Security & Trust in Open Source Software
Projects,” in 437d IEEE Symposium on Security and Privacy (IEEE S€P’2z), San Fran-
cisco, CA, USA: IEEE, May 2022

Short Summary: In 27 in-depth, semi-structured interviews with owners, maintainers, and
contributors from a diverse set of open source projects, we explored their security measures
and trust processes. We find that our participants’ projects are highly diverse both in deployed
security measures and trust processes, as well as their underlying motivations. As projects grow
in scope and contributors, so grow their needs for security and trust processes.

Contributions to the Project: I came up with the initial idea for this study based on my desire
to conduct open source research in a more developer-inclusive and cooperative manner and
further refined the idea with input from Sascha Fahl. I set up the initial concept and research
approach for this research project. Ilead the design of the study and interview guide and iterated
it with the rest of the team. I implemented the landing page and contact templates for this
study, and iterated them with the group. Noah Wohler, Jan Klemmer, and I invited participants
via GitHub and other communication channels. Together with Noah Wohler, Jan Klemmer,
Marcel Fourné, and Sascha Fahl, I conducted or supported the majority of interviews. In joint
work with Noah Wohler and Jan Klemmer, we qualitatively coded the interview transcripts. I
analyzed the coded text passages and code counts. I compiled the paper for publication with
minor contributions from the remaining team and we jointly discussed the work’s implications.
I presented the publication at IEEE S&P 2022 and included it in some of my talks.

Recognition: The publication was awarded a Distinguished Paper Award at IEEE S&P 2022.
I presented aspects of this research as part of an invited talk at USENIX ENIGMA 2023 and
included it in my other invited talks and a guest lecture.

2. Chapter s: Security Challenges of the Open Source Supply Chain of this dissertation is based
on research that also lead to the publication ““Always Contribute Back”: A Qualitative Study
on Security Challenges of the Open Source Supply Chain” [17].

Dominik Wermke, J. H. Klemmer, N. Wohler, J. Schmiiser, H. S. Ramulu, Y. Acar, and
S. Fahl, ““Always Contribute Back”: A Qualitative Study on Security Challenges of the

Open Source Supply Chain,” in 44th IEEE Symposium on Security and Privacy (IEEE
S€9P%23), San Francisco, CA, USA: IEEE, May 2023

Short Summary: Inastudy consisting of 25 interviews with software developers, architects, and
engineers from industry software projects, we found that open source components play an im-
portant role in many projects, and that most projects have policies or best practices for including
external code, but many developers desire more resources for auditing included components.

Contributions to the Project: Icame up with the initial idea for this study based on a logical
follow-up to the previous paper “Committed to Trust: A Qualitative Study on Security & Trust
in Open Source Software Projects” [16]. I lead the design of the study and interview guide with

Chapter 1 Introduction

the rest of the team. I implemented the landing page and contact templates for this study, and
iterated them with the group. Jan Klemmer and I invited participants via the team’s professional
network and from job postings on Upwork. I conducted the majority of interviews either alone
or with support from the rest of the team. In joint work with Jan Klemmer, Noah Wohler,
Juliane Schmiiser, and Harshini Sri Ramulu, we qualitatively coded the interview transcripts.
I analyzed the coded text passages and code counts. I compiled the paper for publication with
contributions from the remaining team and we jointly discussed the work’s implications.

Recognition: Ipresented aspects of this research as part of an invited talk at USENIX ENIGMA
2023.

3. Chapter 6: Large Scale Investigation of Obfuscation Use in Android of this dissertation is based
on research that also lead to the publication “A Large Scale Investigation of Obfuscation Use in
Google Play” [18].

Dominik Wermke, N. Huaman, Y. Acar, B. Reaves, P. Traynor, and S. Fahl, “A Large
Scale Investigation of Obfuscation Use in Google Play,” in 34th Annual Computer Security
Applications Conference (ACSAC18), San Juan, PR, USA: ACM, Dec. 2018, pp. 222-235

Short Summary: For this large-scale analysis of obfuscation in Android, we analyzed 1.7 million
free Android apps and found that only 24.92% of them were obfuscated. To investigate reasons,
we surveyed 308 Google Play developers about their experiences and attitudes towards obfus-
cation and found that while developers feel that apps are at risk of plagiarism, they do not fear
theft of their own apps, and many report difficulties obfuscating their own apps. In a follow-up
programming experiment with 7o developers, we found that the vast majority failed to obfuscate
a realistic sample app.

Contributions to the Project: Sascha Fahl, Yasemin Acar, and Brad Reaves came up with the
initial idea and iterated it with me. The full team came up with the initial concept and research
approach for this research project. I implemented the analysis tooling and storage for the large-
scale analysis. Nicolas Huaman and I created the tasks and example apps for the programming
experiment. Yasemin Acar, Nicolas Human, and I created the survey guide for the developer
survey, and iterated it with the rest of the team. I analyzed the large-scale analysis results. Together
with Nicolas Huaman, I qualitatively coded the programming task solutions. I compiled the
paper for publication with contributions from the remaining team and we jointly discussed the
work’s implications. I presented the publication at ACSAC’18 and included it in some of my
talks.

4. Chapter 7: Security & Privacy Perceptions of Cloud Office Suites of this dissertation is based on
research that also lead to the publication “Cloudy with a Chance of Misconceptions: Exploring
Users’ Perceptions and Expectations of Security and Privacy in Cloud Office Suites” [19].

Dominik Wermke, C. Stransky, N. Huaman, N. Busch, Y. Acar, and S. Fahl, “Cloudy
with a Chance of Misconceptions: Exploring Users’ Perceptions and Expectations of
Security and Privacy in Cloud Office Suites,” in Sixteenth Symposium on Usable Privacy
and Security (SOUPS20), Aug. 2020

1.2 This Dissertation

Short Summary: We surveyed 200 office users from the U.S. and German-speaking countries
about their experiences with and perceptions of cloud office tool such as Google Docs or Mi-
crosoft Office 365. We find that our participants are aware of basic general security implications,
storage models, and access by others, although some of their threat models seem somewhat un-
derdeveloped, often due to lacking technical knowledge. Our participants have strong opinions
on how comfortable they are with the access of certain parties, but are somewhat unsure about
who actually has access to their documents.

Contributions to the Project: I came up with the initial idea for this study based on the then-
prevalent privacy issues with using U.S.-based cloud applications in German education and
industry. I setup the initial concept and research approach involving U.S. and German partici-
pants for this research project. Ilead the design of the study and survey guide with the rest of the
team. Christian Stransky and I invited participants via Amazon’s Mechanical Turk. I analyzed
and visualized the survey counts together with Nicolas Huaman. In joint work with Christian
Stransky, Nicolas Huaman, and Niklas Busch, we qualitatively coded the free text answers. I
compiled the paper for publication with contributions from the remaining team and we jointly
discussed the work’s implications. I presented this publication at SOUPS20.

In addition to these four main research projects with me as team lead and lead author, I list a number

of supporting projects with my involvement below. This research is not directly part of, or included

in this dissertation, but provided some general themes and ideas, especially for the background and

conclusion sections. The supporting publication are ordered by time of publication, with the latest

publications being first.

()

N. Huaman, A. Krause, Dominik Wermke, C. Stransky, J. H. Klemmer, Y. Acar, and S.
Fahl, “If You Can’t Get Them to the Lab: Evaluating a Virtual Study Environment with

Security Information Workers,” in Eighteenth Symposium on Usable Privacy and Security,
(SOUPS22), Boston, MA, USA, Aug. 2022

The research conducted for “If You Can’t Get Them to the Lab: Evaluating a Virtual Study
Environment with Security Information Workers” [20] inspired some of the research approaches
described in the Background Section 2.3: Usable Security. This work will likely contribute to
Nicolas Huaman’s dissertation. My contributions to this work included creating and testing an
initial prototype of OLab (prototype name of “Project Leine”), programming some of OLab’s
features, as well as to contribute some texts for the publication.

Short Summary: This work tackles the challenges of conducting lab studies in usable security
and privacy research, such as the difficulty of recruiting skilled participants and limited resources.
We created a virtual study environment prototype called OLab, which enables researchers to
conduct lab-like studies remotely using a commodity browser. The prototype was evaluated
and found to be effective in supporting a variety of lab-like study setups and received positive
feedback from participants.

N. Huaman, B. von Skarczinski, Dominik Wermke, C. Stransky, Y. Acar, A. Dreif3i-
gacker, and S. Fahl, “A Large-Scale Interview Study on Information Security in and At-
tacks against Small and Medium-sized Enterprises,” in 30th USENIX Security Symposinm
(USENIX Sec’2r), Vancouver, B.C., Canada: USENIX Association, Aug. 2021

Chapter 1 Introduction

()

(d)

(e)

The research conducted for “A Large-Scale Interview Study on Information Security in and At-
tacks against Small and Medium-sized Enterprises” [21] emphasized some of the software supply
challenges in the industry context described in the Background Section 2.1: Software Supply
Chain. This work will likely contribute to Nicolas Huaman’s dissertation. My contributions
to this work included supporting Nicolas Huaman in the data analysis, as well as writing and
revising some of the publication’s texts.

Short Summary: We conducted a study of 5,000 small and medium enterprisess (SMEs) in
Germany to investigate their experiences with cybercrime and information security. Our findings
show that while many technical security measures and basic awareness have been implemented
by most companies, there are differences in reporting cybercrime incidents based on industry
sector, company size, and security awareness.

C. Stransky, Dominik Wermke, J. Schrader, N. Huaman, Y. Acar, A. L. Fehlhaber, M.
Wei, B. Ur, and S. Fahl, “On the Limited Impact of Visualizing Encryption: Perceptions

of E2E Messaging Security,” in Seventeenth Symposium on Usable Privacy and Security
(SOUPS21), Aug. 2021

The research conducted for “On the Limited Impact of Visualizing Encryption: Perceptions of
E2E Messaging Security” [22] informed some of the distinctions between experts and end users
discussed in the Background Section 2.3: Usable Security. This work contributed to Christian
Stransky’s dissertation. My contributions to this work among others included supporting Chris-
tian Stransky in qualitative coding and data analysis, as well as writing parts of the publication.

Short Summary: Through a series of five online studies, we investigated whether making an
app’s end-to-end encryption more visible improves perceptions of trust, security, and privacy.
We found that simple text disclosures that messages are “encrypted” are sufficient, while icons
negatively impacted perceptions. User perceptions depend more on preconceived expectations
and an app’s reputation than visualizations of security mechanisms.

Y. Acar, C. Stransky, Dominik Wermke, C. Weir, M. L. Mazurek, and S. Fahl, “Develop-
ers Need Support, Too: A Survey of Security Advice for Software Developers,” in JEEE
Cybersecurity Development (SecDev’r7), IEEE, Boston, MA, USA, Sep. 2017, pp. 22—26

The research conducted for “Developers Need Support, Too: A Survey of Security Advice for
Software Developers” [23] informed some of the challenges developers face described in the
Background Section 2.1: Software Supply Chain. This work contributed to Yasemin Acar’s
dissertation. My contributions to this work included supporting the team in qualitative coding
and data analysis, as well as writing parts of the publication.

Short Summary: This paper has taken a first step in understanding and improving the security
guidance ecosystem for developers by analyzing 19 general advice resources, identifying gaps in
the current ecosystem and providing a basis for future work to evaluate existing resources and
develop new ones to fill these gaps.

Y. Acar, C. Stransky, Dominik Wermke, M. L. Mazurek, and S. Fahl, “Security Developer
Studies with GitHub Users: Exploring a Convenience Sample,” in Thirteenth Symposium
on Usable Privacy and Security (SOUPST7), Santa Clara, CA, USA, Jul. 2017, pp. 81-95

1.2 This Dissertation

The research conducted for “Security Developer Studies with GitHub Users: Exploring a Con-
venience Sample” [24] informed some of the decisions around conducting research with open
source contributors, both for research described in the chapters of this dissertation, as well as
approaches described in the Background Section 2.3: Usable Security. This work contributed to
Yasemin Acar’s dissertation. My contributions to this work included supporting Yasemin Acar
with the data analysis and visualization.

Short Summary: We conducted an experiment to examine the performance of 307 active
GitHub users on security-related programming tasks. While we found differences in perfor-
mance based on self-reported years of experience, we did not find statistically significant dif-
ferences based on the participants’ status as a student, professional developer, or security back-
ground.

1.2.3 Structure

The remainder of this dissertation is structured as follows:

Chapter 1 — Introduction: This chapter is intended to give a general introduction to motivation and
challenges, as well as to provide an overview of the structure and components of this dissertation
and the research it is based on.

Chapter 2 — Background: This chapter aims to equip readers with the fundamental knowledge and
concepts needed to comprehend this dissertation, namely, software supply chain security, the
open source ecosystem, and usable security research, especially involving software experts.

Chapter 3 — Related and Concurrent Work: This chapter identifies and summarizes the most relevant
research publications and studies at the time of this dissertation. It is intended to establish the
context for the presented research in this dissertation, to demonstrate the significance of the
underlying research questions, and to provide a foundation for understanding of the research
methodology and relevance.

Chapter 4 — Security & Trust in Open Source Software Projects: This chapter investigates security
and trust challenges associated with decentralized development and collaboration in open source
projects. For this, I conducted 27 interviews with owners, maintainers, and contributors of
various open source projects to investigate their security and trust practices, finding that projects
had diverse measures and motivations. Based on these findings, I argue for supporting individual
open source projects based on their strengths and limitations, particularly smaller projects with
limited resources. The findings have implications for improving trust and security in the open
source software ecosystem. This chapter is based on research that also resulted in the previously
published work “Committed to Trust: A Qualitative Study on Security & Trustin Open Source
Software Projects” [16].

Chapter 5 — Security Challenges of the Open Source Supply Chain: This chapter investigates the
associated security challenges of using open source components in software development based
on 25 in-depth interviews with industry professionals. I found that open source components
play an important role in many projects, but developers wish for more resources to better audit
included components. The findings have implications for usage and security of open source
components in industry software projects. This chapter is based on research that also resulted
in the previously published work ““Always Contribute Back”: A Qualitative Study on Security
Challenges of the Open Source Supply Chain” [17].

Chapter 1 Introduction

Chapter 6 — Large Scale Investigation of Obfuscation Use in Android: This chapter presents an

analysis of the use of software obfuscation in Android applications using a multi-pronged study
approach including a large-scale measurement, a developer survey, and a programming exper-
iment. I found that only 24.92% of apps are obfuscated by their developer and that they do
not fear theft of their own apps but have difficulties obfuscating their apps. The findings have
implications for improving the security of Android apps and tools to help developers write more
secure software. This chapter is based on research that also resulted in the previously published
work “A Large Scale Investigation of Obfuscation Use in Google Play” [18].

Chapter 7 — Security & Privacy Perceptions of Cloud Office Suites: This chapter describes a survey

with 200 users of cloud office suites to investigate their security and privacy perceptions and
expectations. Findings suggest that users are generally aware of basic security implications but
lack technical knowledge to envision some of the more advanced threat models. They had strong
opinions on certain parties accessing their data, but were unsure who actually has access to their
documents. I provide recommendations for different groups associated with cloud office suites
to improve future standards, regulations, implementations, and configuration options. This
chapter is based on research that also resulted the previously published work “Cloudy with
a Chance of Misconceptions: Exploring Users’ Perceptions and Expectations of Security and
Privacy in Cloud Office Suites” [19].

Chapter 8 — Conclusion and Future Work: This chapter provides a conclusion for the research

conducted for this dissertation and discusses some of the possible directions for future work that

could build upon my findings.

In addition, a number of appendices for the individual research studies (Appendices A, B, C, and D),

references and glossaries are provided in the later chapters of this dissertation.

1.2.4 Typesetting and Typography

This dissertation was compiled and typeset utilizing John Collins’ latexmk (version 4.79) [25], LuaTex
(version 1.16.0) [26], and Markus Kohm’s KOMA-Script scrbook class (version 3.38) [27]. References
are included via biblatex, using the default icee style, slightly modified to include titles as they appear

in the bib source. In terms of font choices, this thesis utilizes a serif font, EB Garamonds with old
style numerals, for the body text. A serif font, Inter, for headings and subheadings. And a mono font,
Source Code Pro at 0.76 scale, for code inserts and certain tool names.

I0

Chapter 2
Background

UMAN FACTORS play an important role in securing the software supply chain, especially for the
H community-focused open source ecosystem. This chapter provides a background on the funda-
mental concepts mentioned in the subsequent chapters of this dissertation. The chapter is divided into
three main sections providing background on the software supply chain, the open source ecosystem,
and the area of usable security research.

Section 2.1, Software Supply Chain, discusses the various aspects of securing the software supply
chain. This section covers vulnerabilities (Section 2.1.1), metrics and frameworks (Section 2.1.2), and
attacks directly targeting the supply chain (Section 2.1.3). Section 2.2, Open Source Software, focuses
on the open source ecosystem, including the unique challenges and opportunities related to using
and securing open source software. This section discusses how the open source model works and the
potential security risks associated with it, the role of dependencies (Section 2.2.1), and both challenges
and opportunities unique to the open source software supply chain (Section 2.2.2). Section 2.3, Usable
Security, introduces the concept of usable security and discusses its importance in securing software.
This section introduces common research approaches and populations (Section 2.3.1), as well as the
subfield of usable security for software experts (Section 2.3.2), relevant for the research presented in
this dissertation. Finally, Section 2.4, Summary, provides a summary of the key points covered in this
chapter.

By understanding the concepts and background information presented in this chapter, readers will
be better equipped to understand the subsequent chapters of this dissertation, which delve deeper into
research involving topics such as securing the software supply chain, security challenges in open source
software, and usable security research with experts.

2.1 Software Supply Chain

The emerging software supply chain concept is inspired by the supply chain system from logistics:
in logistics, supply chain refer to the network of organizations, people, activities, information, and
resources involved in the creation and delivery of a product or service to customers or end users. The
supply chains encompass processes from the sourcing of raw materials to the delivery of finished goods
to end users, and includes all the logistical and operational processes in-between.

As an supply chain example adjacent to computer science, consider the supply chain involved in the
production and delivery of a laptop computer: the chain begins with the sourcing of raw materials,
such as metals, plastics, and electronic components, from suppliers around the world. These materials
are then transported to manufacturing facilities, where they are either first refined, or directly processed
into individual components like wires, transistors, or plastic brackets. The individual components
are combined into assemblies, e.g., key caps, chip boards, or cables. These key caps, chip boards, and
cables are then assembled into functional components like a keyboard, hard drives, or screens. The
individual functional components are combined according to a specification and branded to form

11

Chapter 2 Background

a fully functional laptop. The assembled laptops themselves are then packaged with accessories and
shipped to warchouses, where they are stored until they are ordered by retailers or individual customers.
Finally, the laptops are shipped to their destination, where they are unpacked, sold, and used by their
new owners. Throughout this process, a complex web of logistics, communication, and coordination
is required to ensure that the laptop is produced and delivered efficiently and effectively. Each step in
the supply chain depends on the successful completion and availability of the previous step, and any
disruptions or delays can have a significant impact on the overall process.

Analogous to a supply chain in logistics, the software supply chain concept covers the network
of components, tools, and processes by which software is composed, developed, tested, and finally
deployed to customers or end users. The software supply chain’s processes can be divided into several
stages, including planning, design, development, testing, deployment, and maintenance. Similarities
to the supply chain system in logistics involve the coordination of multiple suppliers and stakeholders,
establishing contracts and quotas, as well as the management of (virtual) assets like code and data. Some
key differences include that the software supply chain is typically less reliant on physical materials and
more focused on digital assets, such as code and data. This results in transportation and storage of
goods being less of a concern, with a focus more on ensuring the integrity and security of the digital
assets.

Unlike physical goods, software products are often developed iteratively, with multiple teams work-
ing on different parts of the product at the same time. This often results in stakeholders having to
collaborate and coordinate between different teams over long time-spans, as well as the need to conduct
continuous testing and quality assurance processes to ensure that the resulting software is stable and
secure in every deployment cycle and release. With many different teams and stages being involved,
the interactions between stakeholders and their individual types and specialities can be quite com-
plex. The cross-sector working group of the Enduring Security Framework (ESF) under the Critical
Infrastructure Partnership Advisory Council (CIPAC) released a number of “Recommended Prac-
tices” for securing the software supply chain, targeting software suppliers [28], developers [29], and
customers [30]. Analogues to the 3 types, but less oriented towards a federal government agency and
with a more general focus, this dissertation considers the major stakeholders of the software supply
chain to fit into the following categories (the open source ecosystem being an exception, see Section 2.2

and Chapter 8):

Customers are responsible for defining the requirements for the software product they need, evaluat-
ing various software products to determine the best fit for their needs, acquiring and deploying
the software product, and maintaining it throughout its life cycle. The customer’s responsibili-
ties also include monitoring the software’s performance, identifying issues, and applying updates
and patches as necessary to ensure the product remains functional and secure.

Developers are involved in designing, building, and releasing software products that meet the needs
of customers while maintaining the security and integrity of the codebase. Developers are also
responsible for identifying and remediating any security vulnerabilities that are identified during
the development process.

Suppliers act as an intermediary between developers and customers. Their responsibilities include
maintaining the integrity of delivered software products, as well as ensuring that customers
receive high-quality software that meets their needs. For this, they provide software packages
and updates to ensure that they are safe, stable, and effective. Suppliers should accept reports of
issues or newly discovered vulnerabilities from customers and notify developers for remediation.

12

2.1 Software Supply Chain

s

Figure 2.1: Logos for impactful software vulnerabilities. From left to right: Heartbleed [32], Shellshock
(also known as Bashdoor) [33], ProxyLogon (part of the Microsoft Exchange Attack) [34],
and the (ironically bad) logo for the Log4Shell vulnerability [3s].

To proactively identify and address potential vulnerabilities that may impact the security of the
software supply chain, stakeholders need to maintain clear communication channels, implement strong
security measures, and conduct regular risk assessments to identify potential vulnerabilities. By taking
a shared responsibility approach towards security, the different types of stakeholders can work together
to ensure the integrity and reliability of the software supply chain for everyone involved.

2.1.1 Vulnerabilities

Compared to a physical product supply chain, the software supply chain faces unique cybersecurity
challenges: due to the resulting software products being typically distributed and deployed digitally,
they often present a large attack surface to potential cyberattacks, a fact that attackers are keenly aware
of. According to Sonatype’s 2021 “State of the Software Supply Chain” report, the number of recorded
supply chain attacks in the past year had increased by over 650% to 12,000 [31].

One of the benefits of participating in the software supply chain are reusable abstractions. Reusable
abstractions refer to software components such as libraries, frameworks, or infrastructure that can be
used to build more complex applications quickly and efficiently. These reusable abstractions enable
developers to focus on the specific functionalities of their application, rather than having to write their
whole software stack from scratch. Libraries and frameworks, for instance, provide pre-built code
that developers can incorporate into their applications, saving time and effort. And existing external
infrastructure like data storage, data serving, or authentication frameworks allows developers to access
and include pre-built services with additional features and benefits in their software.

Trusting external code from reusable abstractions can come with security risks. Vulnerabilities in
third-party code can be exploited by attackers to gain access to sensitive information or compromise
systems and vulnerabilities in one component can have cascading effects on other components and
systems, creating a ripple effect that can impact individuals, organizations, and entire industries.

According to the ESF working group, common methods of compromise used against software supply
chains include exploitation of software design flaws, incorporation of vulnerable third-party compo-
nents into a software product, infiltration of the supplier’s network with malicious code prior to the
final software product being delivered, and injection of malicious software that is then deployed by the
customer [29]. In addition to these attack methods, the software supply chain with its wide-spread
reuse of software components is especially vulnerable for zero day vulnerabilities (“zero days”). The
term refers to the fact that there is zero time between the discovery of the vulnerability and the first
attack, leaving the affected software or system at risk until a patch or fix is developed and implemented.
This type of vulnerability can be exploited by attackers to gain unauthorized access to all systems with
the component, steal sensitive information, or carry out other malicious activities. An overview of
impactful vulnerabilities and past attacks leveraging zero days as examples:

3

Chapter 2 Background

Heartbleed (CVE-2014-0160 [2]) was a security vulnerability in the OpenSSL cryptography library

publicly disclosed in April 2014 [32]. The vulnerability allowed attackers to exploit a missing
bound check in the input validation of a keep-alive feature in OpenSSL, affecting both instances
running as Transport Layer Security (TLS) server or client, potentially leaking passwords and
encryption keys stored in the memory. A patch was released on the same day the vulnerability was
announced. The Heartbleed vulnerability was considered one of the most significant security
incidents in recent history due to its widespread impact and the sensitive data that could have
been compromised.

Shellshock (CVE-2014-6271 [3] and other related vulnerabilities), also known as Bashdoor, was a

vulnerability in the Bash shell, a widely used command-line interface in Unix-based systems, and
was discovered in September 2014 [36]. It allowed attackers to remotely execute arbitrary code on
vulnerable systems, giving them unauthorized access to sensitive data and control over affected
systems. The Shellshock vulnerability was particularly severe due to the widespread use of Bash
in web servers, routers, and other network devices, making it a potential target for cybercriminals
seeking to gain access to critical infrastructure. The vulnerability also affected many Internet
of Things (IoT) devices, including cameras, routers, and other connected devices, making it
difficult to patch all the affected systems. The discovery of Shellshock led to a worldwide effort
to patch the vulnerability, with many organizations and security experts working to identify and
mitigate the risks posed by the exploit. It also raised concerns about the security of open-source
software and the need for more rigorous code reviews and security audits to prevent similar
vulnerabilities from being introduced in the future.

The Microsoft Exchange Server attack involving the ProxyLogon vulnerability [34] (CVE-2021-

26855 [37]) and others, was a global cyberattack wave targeting Microsoft Exchange Server, a
widely used email and calendaring software. The attack began in January 2021 and was de-
tected by Microsoft in early March. The multiple attackers, believed to include a Chinese state-
sponsored hacking group known as Hafnium, exploited 4 zero-day vulnerabilities in Microsoft
Exchange Server to gain access to email accounts, steal sensitive data, and install malware [38].
The attack affected tens of thousands of organizations globally, including government agencies,
businesses, and non-governmental organizations (NGOs).

Log4Shell (CVE-2021-44228 [4] and other related) was a vulnerability found in the Log4j Java log-

ging library, which is widely used in many applications and services [39]. The vulnerability allows
remote attackers to execute arbitrary code on a server running a vulnerable version of the library.
The vulnerability was discovered in early December 2021, and the details were publicly disclosed
on December 9th. Within hours of the disclosure, attackers began exploiting the vulnerability
to gain unauthorized access to servers around the world. The Log4Shell incident was considered
a critical cyberattack, and the impact was widespread, affecting thousands of organizations and
businesses globally. The vulnerability was rated 10 out of 10 on the Common Vulnerability Scor-
ing System (CVSS), the highest possible score. The incident led to an urgent global response to
patch the vulnerability, with many organizations implementing emergency measures to protect
their systems. It also sparked discussions around the importance of secure coding practices,
vulnerability management, and the need for better cybersecurity strategies to prevent similar
incidents in the future.

Exploits targeting vulnerabilities like Heartbleed, Shellshock, and Log4Shell have highlighted weak-

nesses in relying on external code, both in commercial and open source software, affecting individuals,
enterprises, and governments worldwide.

14

2.1 Software Supply Chain

2.1.2 Metrics and Frameworks

In the software supply chain, stakeholders address security vulnerabilities that are specific to their
area of responsibility. However, some security challenges or vulnerabilities may require a collaborative
approach, involving multiple stakeholders, dependencies, and software deployments. In the contextof a
secure software supply chain, metrics, and frameworks that classify security vulnerabilities (CVE [40],
CVSS [41], EPSS [42], VEX [43]), attacks and weaknesses (CWE [44]), or coding practices (Open
Source Security Foundation (OpenSSF) Scorecard [45]) play an important role in communicating
between stakeholders. These metrics and frameworks provide a standard way to measure and evaluate
the security of software systems, helping stakeholders to identify and mitigate security risks.

CVE, CVSS, and EPSS help assess the severity or exploitability of security vulnerabilities: Common
Vulnerabilities and Exposures (CVE) is a standardized convention for identifying and tracking publicly
disclosed vulnerabilities [40]. It provides a unique identifier for each vulnerability and allows security
researchers, product vendors, and users to share information about vulnerabilities across different plat-
forms and organizations. Common Vulnerability Scoring System (CVSS) is a framework for rating the
severity of security vulnerabilities based on their impact on confidentiality, integrity, and availability of
asystem [41]. The CVSS score is a numerical value ranging from o to 10, with higher values indicating
greater severity. The score is calculated based on several factors, including the attack vector, the attack
complexity, the impact on the system, and the availability of mitigations. CVSS allows organizations to
prioritize which vulnerabilities to patch first, as vulnerabilities with higher CVSS scores are considered
more severe and should be addressed with greater urgency. Exploit Prediction Scoring System (EPSS) is
used to predict the likelihood of a vulnerability being exploited by attackers [42]. The scoring consists
of a numerical score between o and 1 for each vulnerability, estimating the probability that a vulner-
ability will be exploited in the next 30 days. The scoring is based on a number of factors such as the
severity of the vulnerability, the complexity of the attack needed to exploit it, and the potential impact
of a successful exploit. The Vulnerability-Exploitability Exchange (VEX) is used by to exchange infor-
mation about vulnerabilities and their exploitability [43]. A VEX document includes a Product Tree,
which lists all the products referenced in the Common Vulnerability Reporting Framework (CSRF)
document. The VEX framework also includes an Affected Status field, which describes whether a
product is affected by the vulnerability, regardless of whether the vulnerability is present or not. The
status can be one of fixed, known affected, known not affected, and under investigation In addition to
the product information, the VEX framework requires at least one vulnerability identifier, such as a
CVE or an ID, to be associated with each vulnerability.

Analogous to vulnerabilities, there are a number of frameworks to track and communicate attacks
and weaknesses. Common Weakness Enumeration (CWE) tracks weaknesses in software and hardware,
providing a description of the weakness, examples of how it can be exploited, and mitigations that can
be taken to prevent or reduce the risk of exploitation [44]. Common Attack Pattern Enumeration and
Classification (CAPEC) catalogues common attack patterns that can be used to identify, describe, and
classify various types of attacks [46]. The CAPEC taxonomy includes a hierarchical structure of attack
patterns, with each pattern having a unique identifier and a detailed description of its characteristics
and potential impact. MITRE ATT&CK is a framework for understanding and categorizing adversary
behaviors during cyberattacks [47]. The framework consists of a matrix of tactics and techniques that
adversaries utilize to achieve their objectives, as well as a knowledgebase of detailed descriptions and
examples of real-world attacks.

In supply chain logistics, a bill of materials (BOM) provides a list of materials, assemblies, and com-
ponents required to manufacture a final product. Analogous for the software supply chain, a Software
Bill of Materials (SBOM) is a comprehensive inventory of all the components, dependencies, and other

15

Chapter 2 Background

third-party software used in building a particular software application or system [48]. It provides a
detailed list of all the software and hardware components that make up a product or system, includ-
ing their version numbers, licenses, and any known vulnerabilities. A SBOM is useful for inventory,
vulnerability, and license management by suppliers, developers, and consumers in the software supply
chain (SSC) [49]. In May 2021, the United States “Executive Order on Improving the Nation’s Cyber-
security” mandated that the National Institute of Standards and Technology (NIST) issue guidance
within 9o days to enhance the security of the software supply chain, including providing a SBOM for
each product [10]. However, the diversity of software development and use across different organiza-
tions makes it challenging to develop a one-size-fits-all approach to providing transparency for software
assurance. To address these challenges, the National Telecommunications and Information Adminis-
tration (NTIA) published the minimum elements for an SBOM, consisting of three broad categories:
data fields, automation support, and practices and processes [49]. The data fields category includes
baseline information about each software component, such as component name, version number, and
licensing information. The automation support category focuses on the ability to generate SBOMs
in both machine and human-readable formats. The several data format specifications for generating
and consuming SBOMs include The Linux Foundation Projects’ Software Package Data eXchange
(SPDX) [s0], OWASP’s CycloneDX [s1], and NIST’s Software Identification (SWID) tags [52]. The
practices and processes category includes a set of guidelines and procedures for generating and main-
taining the SBOM throughout the software development life cycle, covering aspects such as frequency,
depth, known unknowns, and distribution and delivery, access control, and accommodation of mis-
takes. The NTIA notes that these minimum elements are only the initial steps, and that SBOMs are an
emerging technology and practice [49]. They also highlight that modern software applications provided
as a service present unique challenges for the SBOM format, with risk management responsibilities
being on the side of service providers due to lack of control by the user.

2.1.3 Targeted Attacks

In recent times, attacks on the software supply chain became more targeted, evolving from simply
exploiting vulnerabilities in unpatched systems to directly leveraging the connectedness of the supply
chain for targeting more victims. The European Union’s European Union Agency for Cybersecurity
(ENISA) published a report on “Threat Landscape for Supply Chain Attacks” in July 2021, finding that
of 24 supply chain attacks between January 2020 to July 2021, around 62% of the attacks on customers
took advantage of trust in their supplier and 66% of the incidents attackers focused on the suppliers’
code to target further victims [53]. Both the SolarWinds Orion attack and the Kaseya VSA ransomware
attack highlight the approach of these targeted attacks:

The SolarWinds Orion attack was a major supply chain attack in late 2020, affecting a wide range
of organizations, including government agencies and major corporations [54]. SolarWinds is a
software company providing system management tools for network and infrastructure moni-
toring. The attackers targeted the performance monitoring system SolarWinds Orion, which
had privileged access to I'T systems to obtain log and system performance data. The attackers
exploited a backdoor in a component of the Orion software framework, named SUNBURST
by FireEye (CVE-2020-10148 [5]), allowing the attackers to inserted malicious code into software
updates for the component. After a dormant period of up to two weeks, SUNBURST retrieved
and executed commands, including the ability to transfer files, execute files, profile the system,
reboot the machine, and disable system services [5s]. In addition to the SUNBURST malware, a

16

2.1 Software Supply Chain

second attack, later dubbed SUPERNOVA, was discovered during investigations into the Solar-
Winds incident [56]. On December 19, 2020, Microsoft announced that it had found evidence
of this attempted supply chain attack, which was distinct from the SUNBURST attack that
inserted malware into Orion binaries [57].

The Kaseya VSA ransomware attack occurred in July 2021, targeting the customers of Kaseya, a
provider of IT management software used to manage clients’ systems remotely [58]. The attack-
ers exploited a vulnerability in Kaseya’s VSA (Virtual System Administrator) software to dis-
tribute ransomware to its customers’ systems (CVE-2021-30116 [6]). The vulnerability was orig-
inally identified in April 2021 by the Dutch Institute for Vulnerability Disclosure (DIVD) [59].
They worked with Kaseya experts to fix four of the seven vulnerabilities, but the remaining issues
could not be resolved in time before the attack. The attack affected between 800 and 1,500 busi-
nesses globally, mostly small to medium-sized businesses and managed service providers. The
attackers demanded a ransom payment of $70 million in Bitcoin to release keys for the encrypted
data. On July 23, 2021, Kaseya announced that it had received a universal decryptor tool from
an unnamed “trusted third party” and was working to restore the victims’ files [60].

These high-impact attacks, particularly the SolarWinds Orion incident, did not go unnoticed by
governments worldwide, and a number of acts, laws, and orders were introduced in response: The
European Commission published a draft of the Cyber Resilience Act (CRA) on September 15, 2022,
setting out the specific objectives of improving the security of products with digital elements through-
out their entire life cycle, facilitating compliance for hardware and software producers by creating a
coherent cybersecurity framework, enhancing transparency of the security properties of digital prod-
ucts, and enabling businesses and consumers to securely use digital products [7]. The German “Second
act on increasing the security of I'T systems (German I'T Security Act 2.0)” was approved in May 2021,
allowing the Federal Office for Information Security (German: Bundesamt fiir Sicherheit in der In-
formationstechnik (BSI)), to set standards and requirements for federal authorities, mobile network
operators, and companies of special public interest, as well as allowing the BSI to act as a advisory body
for consumer protection related to I'T security [8]. In the United States, two Presidential Executive
Orders were introduced to better protect critical U.S. federal infrastructure from cyberattacks: “Exec-
utive Order on America’s Supply Chains” (EO14017 [9], with a focus on the general supply chain, but
specific considerations for software products) and “Executive Order on Improving the Nation’s Cyber-
security” (EO14028 [10]), establishing new requirements to secure the federal government’s software
supply chain, such as systematic reviews, process improvements, and security standards for software
suppliers, developers, and customers that acquire the software for the Federal Government.

More recently, attackers began to directly exploit the software supply chain by targeting upstream
dependencies and build systems to inject malicious code into downstream software. Today’s build sys-
tems and CI/CD pipelines can interact and chain with other systems and third-party services, allowing
for the creation of complex, multi-step build and distribution processes for software. This complexity
also increases the risk of misuse, misconfiguration, or leakage of secrets, and as software is increasingly
being built and deployed using third-party services, these services are becoming high-value targets for
attackers seeking to infect all customers and compromise the software supply chain. This vulnerability
of the software supply chain was further highlighted by a large number of recent security incidents,
targeting Codecov, Slack, Okta, LastPass, and CircleClI:

The Codecov security incident was publicly disclosed on April 15, 2021 by Codecov, a company that
provides code coverage and software testing tools [11]. An attacker leveraged an error in Code-
cov’s public Docker image setup, allowing them to extract a Google Cloud Storage account

17

Chapter 2 Background

key from an intermediate image layer. With account access, the attacker modified Codecov’s
Bash Uploader in the Google Cloud Storage with malicious changes [61]. Each time a developer
downloaded the Codecov testing script, the malicious software would begin running on the
customer organization’s test machines, allowing the attackers to exfiltrate credentials and other
sensitive data stored in the victim’s continuous integration environments [62].

The Slack security incident was published on the messenger service’s blog on December 31, 2022 [12].
Slack was notified of suspicious activity on their GitHub account and discovered that a lim-
ited number of Slack employees’ tokens were stolen and misused to gain access and download
externally hosted GitHub repositories on December 27. Slack claimed that none of the down-
loaded repositories contained customer data, means to access customer data, or Slack’s primary
codebase.

The Okta security incident. On January 20, 2022, the identity and access management company
Okta was notified that a new password factor was added to a Sitel customer support engineer’s
Okta account [13]. At the time, Okta assumed that the individual’s attempt to access the account
was unsuccessful, they reset the account, and informed Sitel, who engaged a forensic firm to
investigate. Based on this investigation, Okta actually concluded that a small percentage of
customers, approximately 2.5%, may have had their data viewed or acted upon [63].

The LastPass password manager experienced two connected security incidents in 2022 [14]. The first
incident, which occurred in August, was due to a keylogger malware infection on software en-
gineer’s corporate laptop, which provided the hacker with access to the company’s cloud-based
development environment. According to LastPass, no customer data or vault data was taken
during this incident, but information stolen in the first incident was used to identify targets and
initiate a second attack. The second incident was disclosed on December 22, 2022, and it was
caused by a vulnerability in third-party software that was exploited by an attacker. The attacker
targeted a senior DevOps engineer and used the vulnerability to deliver malware, bypass exist-
ing controls, and gain unauthorized access to cloud backups. The stolen data included system
configuration data, API secrets, third-party integration secrets, and encrypted and unencrypted
LastPass customer data.

The CircleClI security incident was disclosed by the CI/CD platform on January 4, 2023 [15]. An
attacker used malware on a CircleCI engineer’s laptop to gain unauthorized access to a subset
of CircleCI’s production systems. The malware allowed the attacker to steal a valid two-factor,
authentication-backed single sign-on (SSO) session and execute a session cookie theft, enabling
the attacker to impersonate the targeted employee in a remote location and escalate access to
a subset of CircleCI’s production systems. The targeted employee had privileges to generate
production access tokens, which allowed the unauthorized third party to access and exfiltrate
data from a subset of databases and stores, including customer environment variables, tokens,

and keys.

In addition to highlighting the overall vulnerability of the software supply chain, these incidents
especially revealed the large potential attack surface presented by third-party services and employees
involved in building and deploying software.

To summarize, the software supply chain encompasses the processes of software composition, de-
velopment, testing, deployment, and maintenance. Collaboration and coordination are necessary due
to the iterative development process with multiple teams. High-impact attacks, such as the SolarWinds

18

2.2 Open Source Software

Orion incident, have targeted the software supply chain, leading to the introduction of laws and or-
ders. Attackers now target upstream dependencies and build systems to inject malicious code into
downstream software. Third-party services are becoming high-value targets for attackers seeking to
compromise the software supply chain, as seen in recent security incidents at Codecov, Slack, Okta,
LastPass, and CircleCI.

In conclusion, the software supply chain is a complex and interconnected network that is essential
for software development and deployment. However, recent attacks targeting the supply chain have
highlighted its vulnerability to malicious actors. As software continues to play an increasingly critical
role in our lives, it is essential to prioritize research and innovation in this area to address the evolving
security challenges and ensure the integrity and trustworthiness of the software supply chain. Only
by understanding the risks and implementing effective measures can we build a resilient and secure
software ecosystem for the future.

2.2 Open Source Software

Open source software is a type of computer software that allows users to use, modify, and distribute the
source code of the software freely. Open source code plays a major role in the software supply chain,
with a 2023 report finding that of 1,700 codebases in 17 industries, 96% of codebases contained open
source, and 76% of total code was open source code [64].

The general concept of open source software is known under many different, sometimes diverging,
terms: free software, libre software, Free and Open Source Software (FOSS or F/OSS), or Free/Libre
and Open Source Software (FLOSS). The term “free software” predates “open source software” but
can sometimes be misunderstood to mean software that s free of charge, whereas the intended meaning
is freedom of use. The free software community is divided into two political camps: the free software
movement and the open source movement [65]. The free software movement advocates for computer
users’ freedom and sees non-free programs as an injustice to users, while the open source movement
focuses on practical benefits rather than the issue of justice for users. To remain neutral between the
two political camps, some use the combined term “FLOSS,” which stands for “Free/Libre and Open
Source Software” and includes both free and libre [65]. This dissertation uses the more general term
“open source software (OSS)” and related concepts throughout all chapters, both to highlight the more
general focus on the entire ecosystem in this dissertation, as well as the community-spanning, practical
utilization of open source components.

While the legal and philosophical interpretation of the open source concept is highly relevant for
the open source ecosystem itself and for companies or other supply chain stakeholders that want to
utilize open source components, this dissertation, and the research described in it, focuses more on the
practical aspect of open source software, namely that its code is available for public use, modification,
and distribution. Thus, the underlying definition for open software used in this dissertation follows
the one provided in the recent United States S.4913 bill introduced to the senate:

“Open source software means software for which the human-readable source code is made
available to the public for use, study, re-use, modification, enhancement, and re-distribution.”
(S.4913: Securing Open Source Software Act [66])

The open source ecosystem plays an important role in the software supply chain, allowing stakehold-
ers to utilize open source components as building blocks in their software, tooling, and infrastructure.
Whether in operating systems, network stacks, or low-level system drivers, open source software is
found as foundation, glue, or tooling in many systems and processes, constituting important links of

9

Chapter 2 Background

the software supply chain. It also allows users to customize the software to meet their specific needs,
which includes benefits in efficiency and cost savings during software development. This made open
source software ubiquitous across the software industry, with no area considered too critical to exclude
it. In RedHat’s 2022 “The State of Enterprise Open Source” they interviewed 1296 I'T leaders world
wide, finding that 82% are more likely to select a vendor who contributes to the open source community
and that 89% of IT leaders believe enterprise open source is as secure or more secure than proprietary
software [67].

Governments have taken notice of this special position of open source software: the “Securing Open
Source Software Act” (S.4913 [66]) was introduced to the senate in September 2022, and is placed on the
Senate Legislative Calender as of December 2022. The bill sets forth the duties of the Cybersecurity and
Infrastructure Security Agency (CISA) regarding open source software security, including performing
outreach and engagement, supporting federal efforts, coordinating with non-federal entities, serving
as a point of contact, and encouraging efforts to bolster open source software security. CISA is also
required to publish a framework for assessing the risk of open source software components and update
it annually [66].

Unlike contract relations in a (software) supply chain, the open source ecosystem consists of less
linear, more connected interactions, with stakeholders commonly acting in multiple roles. For example,
adeveloper can contribute some patches to an open source project, while being one of the users of the
project, or even using some of the components as maintainer in one of their own projects.

Maintainers in open source projects play a critical role in ensuring that the project is healthy and
sustainable over time. The exact responsibilities can differ from project to project, but generally
they are responsible for managing the community of contributors, reviewing code contributions,
resolving issues and bugs, and making decisions about the direction of the project.

Contributors are individuals who contribute to open source projects by submitting code, docu-
mentation, bug reports, and other contributions. They play an important role in the success of
open source projects by helping to improve the quality of the software, fixing bugs, adding new
features, and enhancing the user experience.

Users in the open source ecosystem utilize and provide feedback on the software. They may also
contribute to the project by providing feedback, suggesting new features, or reporting bugs,
potentially moving into the role of a contributor depending on their involvement with the

project.

Even aside from the differing stakeholder roles, the open source ecosystem functions quite differ-
ently compared to a traditional software supply chain, working more like a community of many smaller
communities, instead of the more linear, often contract-based, supply chain. Unlike commercial soft-
ware development, the open source community is made up of individuals who often have never met
or spoken to one another, but share a common goal of working towards creating or improving a soft-
ware project. Contributors often have different ideas of what the project should do and what their
individual motivation behind their commitment to the project is. Many open source projects start
informally and without any legal entity, but some later grow into formal organizations or join umbrella
organizations. For potential contributors, Joining or contributing to an open source project is often
quite straightforward and often requires no formal process.

20

2.2 Open Source Software

2.2.1 Dependencies

The ability to rely on external dependencies as building blocks for software is likely one of the most
impactful advantages of participating in the software supply chain. Acting as part of the software supply
chain, the open source ecosystem include many ways for developers to leverage external dependencies
as building blocks for their software, e.g., on code platforms like GitHub and GitLab or from package
repositories like npm or PyPI.

But as recent incidents described in the previous sections have highlighted, relying on external depen-
dencies also introduces new attack surfaces for each new component. A number of recent attacks on
open source package infrastructures highlight the vulnerability and the impact of an attacker hijacking
popular dependencies. For this, the attackers try to leverage several of potential attack surfaces:

Developer Accounts, as in an incident that occurred in June 2020, involving the user-agent parsing
library ua-parser [68]. The incident was caused by a malicious actor who gained access to the
npm publishing account of one of the library’s maintainers and published a version of the library
that contained a backdoor. This backdoor was designed to steal the npm tokens of developers
who installed the library, which would allow the attacker to gain access to their other projects and
resources. The backdoor was discovered and reported by a security researcher, and the affected
version of the library was quickly removed from npm. The maintainer of the library also revoked
all the compromised npm tokens and urged all users of the library to update to a safe version as
soon as possible.

Malicious Packages waiting to be downloaded by potential victims, as in the noblesse malware family
thatinvolved several malicious PyPI packages discovered by the JFrog security team in July 2021m,
which were estimated to be downloaded about 30,000 times [69]. The malicious packages used
basic obfuscation techniques to avoid detection and included a number of different payloads:
some payloads targeted Discord authentication tokens, likely to impersonate the user on the
communication platform. Others attempted to steal browser autocomplete data like passwords
and credit cards, or collected various system informations from a victim’s computer.

Typo-squatting or dependency confusion attacks, which flood package registries with malicious
packages named very similar to already existing, popular packages in an attempt to trick victims.
As happened in August 2022 with more than 200 cryptominer packages flooding npm and
PyPI [70] and again in February 2023 with thousands of PyPI packages containing a Windows
trojan [71].

These incidents highlighted the potential security risks of relying on third-party libraries, especially
those that are widely used and have multiple contributors. They also served as a reminder of the impor-
tance of implementing good security practices, such as using two-factor authentication and regularly
monitoring for unusual activity on package registry accounts. In response to these incidents, Python’s
PyPI and GitHub have began to require two-factor authentication (2FA) for developer accounts with
critical projects. While such approaches increase the overall security of package repositories and de-
pendencies, they might also negatively affect usability. E.g., if 2FA is required, but the authentication
process is too complicated or time-consuming, developers may try to find ways to bypass it, which
would undermine the intended security benefits. By examining the common challenges and usage pat-
terns involved in using and providing external dependencies, researchers can identify ways to improve
the adoption of security processes, ultimately enhancing the security of the software supply chain.

21

Chapter 2 Background

2.2.2 Unique Challenges and Opportunities

The benefits of open source software include collaboration and knowledge sharing among developers,
which can lead to faster development cycles and more innovative solutions. It also allows users to
customize the software to meet their specific needs, which can result in increased efficiency and cost
savings for users. In addition, open source software is often free (as in money) or significantly cheaper
to run than proprietary software, making it accessible to a wider range of teams and users. Open
source software also presents unique challenges connected to the social and community focus of the
ecosystems, as well as in terms of supply chain reliability and non-existing warranty or contracts, as a
number of recent incidents highlighted:

colors and faker, two popular npm libraries with 20 million and 2.8 million weekly downloads respec-
tively, started to print corrupted text and run in a loop in January 2022 [72], [73]. Major open
source projects like Amazon’s Cloud Development Kit, Facebook’s Jest, and the Node.js Open
CLI Framework were impacted by this and expressed concerns regarding a potential hijack [74].
The changes appear to be intentionally introduced by the developer, who had previously ex-
pressed frustration with the lack of compensation by major companies for maintaining these
widely-used libraries [74], [75].

The node-ipc package turned malicious in March 2022 (CVE-2022-23812 [76]), when its npm main-
tainer intentionally added malware targeting Russian and Belarusian IP addresses [77]. Depend-
ing on the version, the malicious dependency would overwrite user files with heart emojis or just
create files with an anti-war message.

Aside from these obvious incidents, some open source software is so ubiquitous in the development
and operation of I'T systems that its existence is hardly noticed. Its absence, or even just unfixed bugs,
could wreak large costs and other damages for big organizations. This is specifically true for many
open source projects, which are often done by default as hobbies, not contributing significantly to the
income of their main developers.

Being heavily community-based, there are a number of efforts of improving security in the open
source ecosystem. The Open Source Security Foundation, also known as OpenSSF, is a collaborative
effort between leading companies in the technology industry to improve the security of open-source
software [78]. The foundation was founded with the goal of bringing together industry leaders, de-
velopers, and open source foundations to promote secure coding practices and identify and address
vulnerabilities in open source software.

2.3 Usable Security

Usable security is an interdisciplinary research field that combines human-factor concepts with the
technology and development of secure systems, with the goal of creating software, tools, interfaces, and
workflows that are both secure and accessible to users of all levels of technical expertise. Security research
has resulted in advanced technologies and approaches such as public key cryptography and end-to-end
encryption. However, adoption of such mechanisms has often been slow, and despite the development
of advanced cryptographic algorithms, access control, and memory-safe applications that can offer
provably strong security, cyberattacks continue to happen. One reason for this gap between theoretical
security and low actual security in practice is the lack of consideration of human factors during the
development of these solutions. Security mechanisms can be difficult to use, interfere with users’
priorities, or make unrealistic assumptions about users’ security knowledge. Traditional approaches to

22

2.3 Usable Security

security have often prioritized technical solutions that prioritize functionality over usability, resulting
in systems that are difficult to navigate and understand for non-experts. A theme also reflect in the
following quote by Bruce Schneier:

“In the past, computer security research has focussed on technical defences to safeguard
systems. But it has become clear that technical measures are not enough: People are the
weakest link in the security chain.” (Bruce Schneier in “Secrets and Lies: Digital Security
in a Networked World” [79])

The field of usable security grew out of concerns about the usability of security systems. In the early
days of computing, security was typically implemented through complex passwords and other technical
measures that were difficult for users to understand and use.

Zurko and Simon’s 1996 paper “User-Centered Security” proposed an agenda for creating user-
friendly security systems [8o]. They argued that users would not use or buy security products they did
not understand, and suggested conducting usability testing, developing security models, and consid-
ering user needs during system development. They also proposed formal usability testing of security
mechanisms to ensure both usability and security, departing from the traditional assumption that
security mechanisms were understandable without testing.

Following this, two influential papers for the usable security research were published in 1999: Adams
and Sasse’s widely cited “Users are not the enemy” addresses the issue of blaming users for compromis-
ing system security [81]. The authors found that users often pick weak passwords and do not change
them unless forced to do so. Technical measures to enforce stronger security practices were found to be
ineffective, as users found ways to bypass them. Users were also challenged to comply with conflicting
password requirements and had confused beliefs about password strength and security threats. The
paper argues that by explaining the rationale behind security measures to users, they can become the
first line of defense against security threats. And Whitten and Tygar’s “Why Johnny Can’t Encrypt:
A Usability Evaluation of PGP 5.0.” conducted a usability study usability of an email encryption tool
for PGP [82]. The study subjects were given a scenario that required using and understanding the en-
cryption software, but none were able to complete the task. This validated the widespread perception
that even easy-to-use encryption programs were too complex for the general public. Referencing this
seminal paper’s title, a number of papers from unrelated authors conducting usability studies with en-
crypted messages use titles with “Johnny,” e.g., “Johnny 2: a User Test of Key Continuity Management
with S/MIME and Outlook Express” [83], “Why Johnny still can’t encrypt: evaluating the usability of
email encryption software” [84], or “Helping Johnny 2.0 to encrypt his Facebook conversations” [8s].

In 2005, Cranor and Garfinkel co-authored the book Security and Usability: Designing Secure Sys-
tems That People Can Use, which was one of the first comprehensive works to address the topic of how
to make security mechanisms more usable [86]. And in 2014, Garfinkel and Lipford released “Usable
Security: History, Themes, and Challenges,” one of the first structured overviews covering the field of
usable security [87].

In the following years, the field of usable security continued to grow and mature, with researchers
investigating topics such as phishing, password management, and privacy. Today, usable security is
an established area of research with its own conferences, journals, and professional organizations. As
technology continues to evolve, the need for usable security will only continue to grow, making usuable
security an important area of research and practice.

23

Chapter 2 Background

Interviews A/B Experiments
Large-Scale
Cognitive CATIs Measurements
Walkthoughs Task-based
i Online Experiments
in
Alouds Surveys o Longitudal
Expert Habituation Measurements
Walkthoughs Studies
< >
Qualitative Quantitative

Figure 2.2: Range of research approaches I have used during my usable security research. Ranging from
quantitative approaches to more qualitative methods.

2.3.1 Approaches and Populations

The field of usable security is a multidisciplinary domain that covers a broad range of research ap-
proaches and diverse populations to gather data and insights on how to create secure and user-friendly
computer systems and applications.

Empirical approaches for gathering data can range from quantitative measurements to more quali-
tative methods like interviews. For an exemplary range of methods in usable security research, see the
range of methods I have utilized in my research in Figure 2.2. One common approach to data collection
in usable security research is through large-scale measurement studies. These studies often use quantita-
tive methods to analyze data from large sample sizes, providing a broad understanding of user behaviors
and attitudes towards security. Another approach is task-based experiments, where participants are
given programming tasks to solve in controlled environments. These experiments allow researchers to
gather detailed data on user behavior, performance, and decision-making processes. A/B experiments
and online surveys are also popular empirical methods in usable security research. A/B experiments
involve randomly assigning participants to different experimental conditions and comparing the results
to identify which design or feature is most effective. Online surveys are used to gather self-reported
data from participants, providing insights into their attitudes, perceptions, and behaviors related to
security. In addition to quantitative methods, qualitative approaches are also valuable in usable security
research. Semi-structured interviews are often used to collect detailed information from experts or users
with specialized knowledge in a particular area of security. Process walkthroughs involve observing and
interviewing participants as they perform security-related tasks, providing valuable insights into user
behaviors and needs. Overall, usable security research involves a wide range of empirical methods and
techniques that can be tailored to the specific needs of the research question and population being
studied.

Because the software ecosystem involves complex and interconnected network of stakeholders, usable
security research encompasses a wide range of populations. For an exemplary range of populations in
usable security research, see the range of populations I have studied in my research in Figure 2.3. One of
the primary user-focused populations studied in this field are the end users of specific apps or software.
These users play a critical role in determining the success of software products, and their behaviors
and preferences can greatly impact the security and usability of these products. In addition to end
users, usable security research also encompasses more specialized roles like application developers and
Data Protection Officers (DPOs). Application developers are responsible for creating and maintaining
software products, and their decisions can have a significant impact on the security and usability of

24

2.3 Usable Security

Project Leads

Admins DPOs
Maintainers
App Devs Cloud Users
Sys Eng Work
orkers
GitHub Users Messenger
Crypto Dev Users
Industry App Users
DevOps Stakeholders
< >
Experts End Users

Figure 2.3: Range of populations in the software ecosystem I have worked with during my usable secu-
rity research, ranging from experts to end users.

those products. DPOs are responsible for ensuring that organizations comply with data protection reg-
ulations, and their expertise in this area is crucial for developing secure and privacy-preserving software.
Furthermore, usable security research also extends to extremely specialized and niche populations like
developers of cryptographic libraries. These developers are responsible for creating the fundamental
building blocks of secure software, and their work plays a critical role in protecting sensitive informa-
tion and ensuring the privacy of users. Beyond these specific populations, usable security research also
involves understanding the broader social and cultural contexts in which software is used. For example,
researchers may examine the impact of cultural norms on user behavior, or study the role of social
influence on the adoption of security measures. Overall, the multidisciplinary nature of usable security
research requires considering many different populations and their specific needs and behaviors.

To summarize, by applying a wide range of approaches for studying the software ecosystem and its
various stakeholders, researchers can gain valuable insights into how to create secure and user-friendly
software products that meet the needs of a diverse range of users.

2.3.2 Usable Security for Software Experts

The IT security field involves various stakeholders, including end users and software experts. Among
these stakeholders, software experts have a crucial role to play in developing and implementing secure
software solutions. Since they are responsible for designing, implementing, and maintaining the soft-
ware systems that support various aspects of modern life, their expertise is essential to ensure that these
systems are both secure and usable.

The field of usable security recognizes that traditional security approaches have often prioritized
technical solutions over usability, resulting in systems that are difficult to implement and comprehend.
However, software experts are uniquely positioned to bridge this gap by integrating human-centered
design principles into the development of secure software systems. Similar to end users, developers may
struggle with security and privacy. Rather than blaming them, the goal of usable security research for
software experts is to support and empower them to build secure, trustworthy, and privacy-respecting
software, benefiting not only them, but also all users of their software. As the software ecosystem is vast,
this idea extends to all types of software experts, such as developers, administrators, and maintainers.
The importance of considering the experts was also highlighted in this quote by Kevin Mitnick:

“Companies spend millions of dollars on firewalls and secure access devices, and it’s money

25

Chapter 2 Background

Users 1,000,000s of end users
Administartors 1000s of deployments
Maintainers

100s of lines of code
Developers

Project Leads 10s of projects

Impact

Figure 2.4: Supporting software experts with usable security approaches can have a significant impact
on the security of software applications. By enabeling software experts to create secure,
usable software, any users benefit as well, resulting in improved security for a larger number
of software projects and deployments.

wasted because none of these measures address the weakest link in the security chain: The
people who use, administer and operate computer systems.” (Kevin Mitnick [88])

Being an expert does not necessarily make one knowledgeable about security, as recent software
vulnerabilities have demonstrated. For example, the Log4Shell vulnerability has affected many services
and the recent LastPass and CircleCI breaches were traced back to leaked data from employees. In
addition, recent incidents of fake packages in the Python ecosystem have preyed on careless developers
who inadvertently install them. It is essential to recognize that experts are not necessarily security
experts and may require support and education to minimize the risk of becoming the weakest link in
the software supply chain. Experts are not only not security experts, they might end up as the weakest
link in the software supply chain.

As with many aspects of security, the human factors involved in the design, implementation, and
use of supply chain security measures might not have received the attention they deserve. Recent
high-profile attacks on the software supply chain have highlighted the role of individual developers as
the weakest link in the chain, and simply securing dependencies and build systems with technological
approaches is not sufficient to prevent such attacks. The main challenge is that developers are all
different, with various projects, setups, and attack surfaces that need to be protected. Each individual
developer involved in the software supply chain serves as a potential attack surface, which can have a
significant impact on the overall security of the ecosystem.

Experts, including project leads, developers, and maintainers, have a significant impact on the soft-
ware ecosystem. By supporting these experts, we can bring security and privacy improvements to many
individual users of their software. For example, empowering an expert to include a specific security
feature in their code could potentially impact tens of their projects, hundreds of lines of code they
write, which could then be potentially deployed thousands of times, resulting in software that might
ultimately be used by millions of end users.

Although tech-only approaches, such as firewalls, password managers, or dev and analysis tools, can
provide some level of security, they might not be able to solve security problems alone. Ultimately, these
tools depend on security-conscious experts for their effectiveness. Therefore, it is critical to recognize
that security is not only a technical problem but also a human problem that requires support and
education for security-conscious experts. By empowering and educating these experts, usable security
research can enable more secure software systems that are resilient to attacks, more trustworthy, and
better protect their users’ data privacy.

26

2.4 Summary

2.4 Summary

The software supply chain is a process that encompasses the development, testing, deployment, and
maintenance of software using various components, tools, and processes. Reusable abstractions, such
as libraries, frameworks, and cloud infrastructure, allow stakeholders to quickly build and develop
complex applications without reinventing the wheel. However, relying on third-party code and services
can lead to security risks, which can have cascading effects on systems and organizations.

Open source software is a critical aspect of the software supply chain but introduces unique chal-
lenges in terms of security, trust, and supply chain reliability. Open source software provides benefits
such as collaboration, knowledge sharing, and customization that can result in faster development and
increased efficiency for software development. Some open source software is even so embedded in I'T
systems that unfixed bugs or the software being no longer supported could lead to significant damages
for large organizations.

Supply chain security is a critical research concern, including the human factors involved in design,
implementation, and use of security measures. While technical measures are essential, developers and
other software experts might actually be the weakest security link in the software supply chain. Sup-
porting these experts can bring security and privacy improvements to many individual users of their
software, making it essential to recognize that security is not only a technical problem but also a human
problem that requires support for security-conscious experts. Empowering and educating these experts
can lead to the building of a secure and reliable open source software ecosystem, resilient to attacks,
trustworthy, and protecting of end users’ data and privacy.

27

Chapter 3

Related and Concurrent Work

HIS CHAPTER identifies and summarizes the most relevant research publications and studies at
T the time of this dissertation. It is intended to establish the context for the presented research in
this dissertation, to demonstrate the significance of the underlying research questions, and to provide
a foundation for understanding of the research methodology and relevance.

To allow for a better reading experience, my research and research with my contribution is listed
inline with, and in the same style of, general related work, but specifically highlighted in text by “In
work with my contribution [...]”, “As part of my research [...]”, or similar.

3.1 Software Supply Chain Security

Supply-chain risk, attacks, and vulnerabilities have been systematized [89]-[91] and analyzed to inform
the development of protective measures [92], to improve the accuracy of vulnerability alerts and security
bug reports [93], [94], and to better understand the factors that influence dependency vulnerability
remediation in software projects [95].

Research investigating security aspects with developers, architects, and engineers working on in-
dustry projects provide important insights into the security of the overall software supply chain. Past
research investigated the security impact of different aspects such as decision-making [96], [97], organi-
zational changes [98], [99], and information sources [100], [101]. Stevens ez al. conducted a multi-stage
study with 25 industry employees investigating aspects of threat modeling [102]. Assal and Chiasson sur-
veyed 123 software developers about software security processes, finding that the real issues frequently
stem from a lack of organizational or process support [103].

CI/CD and build systems play an important role of integrating and combining software supply
chain components in software projects. As such, they are a high-value target for an attacker looking to
stealthily injecting malicious code. Past research into the security of CI/CD and build systems include
hardening [104], as well as infrastructure as code [105], [106]. Koishybayev ez al. analyzed 447,238
workflows spanning 213,854 GitHub repositories finding that 99.8% of workflows are overprivileged
and have read-write access (instead of readonly) to the repository [107]. In 2023, Gu ez al. systematically
studied potential security threats in continuous integration (CI) workflows with multiple stakeholder,
conducting a large-scale measurement with over 1.69 million repositories and revealing four novel attack
vectors [108].

Dependencies are a popular (security) software research topic, as they can hide critical attack vectors
and attack surfaces. Kula ez /. conducted an empirical study on library migration with over 4,600
GitHub software projects and 2,700 library dependencies, finding that although many of these systems
rely heavily on dependencies, 81.5% still keep their outdated dependencies and 69% of surveyed develop-
ers claimed to be unaware of their vulnerable dependencies [109]. Xu ez al. surveyed 49 developers from
GitHub and F-Droid to analyze reasons why developers replace own code with a library, i. e. re-use, or

29

Chapter 3 Related and Concurrent Work

re-implement a library’s functionality [110]. Larios Vargas e /. identified 26 technical, human, and eco-
nomic factors that developers consider in their dependency selection processes based on 16 interviews
and a survey with 115 developers [111]. Dependency ecosystems are a common data source for mea-
surement studies in this field, e. g., for package repositories like JavaScript’s npm [112]-[118], Python’s
PyPI [119], Ruby’s gem [120], R’s CR AN [121], and the wider software ecosystems like for Apache [122],
Gentoo [123], Java [124], [125], or Android [126]. In 2023, Gu ef al. conducted a measurement study
spanning one year over six registries and seventeen popular mirrors, covering over 4 million packages,
finding that multiple threats exist in every ecosystem, and some have been exploited by attackers [127].
The propagation of vulnerabilities within the npm ecosystem has been studied with the help of depen-
dency trees [128] and dependency graphs [117]. Ferreira ez al. proposed a lightweight permission system
that protects Node.js applications by enforcing package permissions at runtime [129]. As part of the
npm ecosystem, many webpages deliver third-party Javascript, which brings challenges as a compro-
mised script will be delivered to all website visitors. Jueckstock and Kapravelos presented VisibleV3, a
dynamic analysis framework hosted inside V8, the JS engine of the Chrome browser, which allows for
isolating and identifying namespace artifacts used by JS code in the wild to detect automated browsing
platforms [130] An approach to separate these third-party scripts from the privileged browser execution
model is sandboxing [131], [132]. The inclusion of third-party dependencies and the associated technical
challenges have been studied and compared across a variety of software ecosystems [133]-[136]. Re-
ducing the number of included dependencies, and with that the potential attack surface, is a common
approach. E.g., by Koishybayev and Kapravelos, who presented Mininode, a static analysis tool (SAT)
for Node.js applications that measures and removes unused code and dependencies [137].

A common form of third-party code stems from libraries and other APIs, allowing developers to
speed up their development process by (re)utilizing established implementations of software behavior.
In 2010, Mileva ez al. mined and evaluated API popularity and trends for 200 Java projects [138]. The
authors demonstrate that it is possible to give adoption recommendations based on past usage trends.
Similarly, libraries that are already included in a project can also be used for further library recommen-
dations, as Nguyen ez a/. demonstrated with the library recommendation system CrossRec [139]. Zapata
et al. inspected 6o npm projects for three cases of high severity vulnerabilities, finding evidence that
up to 73.3% of the projects depending on outdated dependencies were actually safe from the threat
because they did not call vulnerable code [140]. As part of the library ecosystem, cryptographic APIs are
especially relevant for ensuring a secure software supply chain. Nadi ef 4/. analyzed 100 StackOverflow
posts, 100 GitHub repositories, and survey input from 48 developers to find challenges and obstacles
faced by developers using Java cryptography APIs, finding that while developers find it difficult to
use certain cryptographic algorithms correctly, they feel confident in selecting the right cryptography
concepts [141]. Acar ez al. investigated the usability of Python cryptographic libraries in a controlled
experiment with 256 developers, finding participants struggling with both basic functional correctness
and security. Lépez de la Mora and Nadi proposed a metric-based approach for informed adoption
decision when selecting and comparing libraries [143]. With my contribution, Gorski e 4/. conducted a
controlled online experiment with 53 participants, in which we study the effectiveness of cryptographic
APl-integrated security advice, finding that integrated advice improves code security [144]. Based on
this research, Gorski ez 2/. went on to conduct a participatory design study with 25 software developers
in focus groups [145]. In 2022, Jancar e a/. conducted a survey with 44 developers of 27 open source
cryptographic libraries investigating if and how the developers ensure that their code executes in con-
stant time. They found that developers are aware of timing attacks and of their potentially dramatic
consequences and yet often prioritize other issues [146].

Software obfuscation has been studied as defense against reverse engineering [147], to prevent intel-
lectual property attacks [148], as disguise for malware [149], and to avoid user profiling [150]. Code ob-

30

3.2 Security and Trust in the Open Source Ecosystem

fuscation techniques allowed to successfully avoid detection tools such as anti-malware software [151]—
[153], repackaging detection algorithms [154], and app analysis tools [155]. On the detection side,
obfuscation-resilient detection of libraries in Android apps has been advanced for in-depth analyses of
apps with a focus on malicious third-party libraries, malware detection, and repackaging [156]-[159].
Both Fahl ez 4. and Oltrogge et al. conducted developer surveys and interviews, revealing deficits in
the handling of TLS/SSL and suggesting several improvements [160]—[162]. More on the user side,
privacy policies of Android apps have been evaluated in a number of works [163]-[166]. Balebako ez
al. performed interviews and online surveys to investigate how app developers make decisions about
privacy and security, identifying several hurdles and suggesting improvements that would help user-
privacy [167], [168]. Jain and Lindqvist suggested design changes to the Android Location API based
on the results of a developer lab study [169].

In conclusion, the software supply chain presents a complex ecosystem of risks, attacks, and vul-
nerabilities that require continuous attention to ensure the security and integrity of software systems.
Researchers have systematically analyzed these risks and vulnerabilities to inform the development of
protective measures. Dependency ecosystems are a common data source for measurement studies in
this field and security of the overall software supply chain is greatly impacted by the practices and de-
cisions made by developers, architects, and engineers working on projects. The research approaches
described in this dissertation provide additional and enhanced insights into the real-world experiences
of software teams, complementing and extending the results of previous, more measurement-focused
studies.

3.2 Security and Trust in the Open Source Ecosystem

The open source community faces unique security and trust challenges compared to other ecosystems,
making them a valuable subject for research, including reviews and systematizations: Crowston e .
reviewed the empirical research on Free/Libre and open source software (OSS) development and assess
the state of the literature [170]. Wen provided a literature review of software security in open source
development [171]. Ohm et al. analysed 174 malicious software packages that were used in real-world
attacks on open source software supply chains, finding that 56% of packages trigger their malicious
behavior on installation and 61% leveraged typo squatting [172]. In 2023, Ladisa ez al. presented a
taxonomy of attacks on open source supply chains validated by user surveys with 17 domain experts
and 134 developers [173].

In past case studies, researches closely studied development in early open source projects such as
Linux [174], Mozilla [175], and FreeBSD [176]. Antikainen et a/. surveyed 95 respondents of the Linux
kernel community about factors influencing their trust, finding significance for (developer) skills, rep-
utation, and established practices [177]. Deligiannis ez a/l. analyzed 16 drivers from the Linux 4.0 ker-
nel [178]. Bai ez al. proposed and evaluated a static analysis approach, finding 640 use-after-free bugs
in Linux driver code [179].

Trust is an important factor in public software collaboration. Bugiel ez al. presented an approach
to asses the trustworthiness of software based on their security history [180]. Syeed ez 4/. investigate
the different aspects of measuring trust in OSS communities, providing further avenues to develop
trust-based measurement tools [181]. Murdoch and Leaver discussed the UK government’s Cyber-
Security Information Sharing Partnership (CiSP), an online collaboration environment for security
information [182]. Sinha ez a/. empirically studied in an automated approach the induction of external
developers as code committers in Eclipse projects. They find that developers establish trust and cred-
ibility in a project by contributing to the project in a non-committer role or, as lesser factor, by their

31

Chapter 3 Related and Concurrent Work

employing organization [183].

Another important factor is maintaining code quality with many involved contributors and soft-
ware life cycles. Groven ez al. applied first and second generation software quality assessment models
to the case of Asterisk, a FLOSS implementation of a telephone private branch exchange [184]. Bosu
and Carver developed an approach to divide OSS developers into core and periphery groups based
on centrality measures. They then compared the outcome of the code review process for members of
the two groups, finding that the core developers receive quicker first feedback on their review request,
complete the review process in shorter time, and are more likely to have their code changes accepted
into the project codebase [185]. Ryoo ez al. studied the extent of discrepancy between an architect’s
vision of what security tactics need to be adopted in the software and the actual implementation [186].
Thompson and Wagner investigated 3,126 projects to study the relationship between code review cov-
erage and participation and software quality and security, finding a significant effect [187]. Moldon ez
al. examined how the behavior of software developers changes in response to removing gamification
elements from GitHub [188].

The openness of the ecosystem has lead to open source repositories being established data source
in the (security and privacy) research community. This is mirrored by the large number of available
datasets, e.g., of commits [189], [190], contributors [191], vulnerabilities, and accessible via torrents:
both Gousios and Spinellis and Gousios ef a/. provided torrents of datasets as an alternate access method
that have been used for research in a number of papers [192], [193]. Alali ez 4/. characterized what a
typical commit looks like, finding that 75% of commits are quite small with respect to number of files,
number of lines, and number of hunks committed [194]. But the openness of open source reposito-
ries also introduces challenges, e.g., when secrets like API keys or credentials are involved. Meli ez al.
conducted a six-month scan of real-time public GitHub commits and a public snapshot covering 13%
of open source repositories, finding that secret leakage is pervasive with over 100,000 repositories, and
that thousands of new, unique secrets are leaked every day [195]. With my involvement, Krause ez a/.
surveyed 109 developers and conducted 14 in-depth interviews with developers, finding that 30.3% have
encountered secret leakage in the past [196]. Feng ez al. presented PassFinder, an automated approach
based on deep neural networks for detecting password leakage from public repositories [197]. Basak ez
al. investigated Internet artifacts, such as blog articles and question and answer posts, identifying 2.4
practices of secret management for developers [198].

Due to the amount of freely available code, open source repositories are a common source for vulner-
ability research. In 2004, Bosu ez 4/. analyzed peer code review data of the Android Open Source Project
(AOSP) to understand whether code changes that introduce security vulnerabilities occur at certain
intervals [199]. In 2008, Hattori and Lanza studied commits in 9 large open source projects [200]. Al-
tinkemer e al. collected software vulnerability data for open source and proprietary operating system
software and analyzed if significant differences exist for multiple metrics [201]. Anbalagan and Vouk
classified 43,710 vulnerabilities from the Open Source National Vulnerability Database, Bugzilla, and
Fedora [202]. Edwards and Chen examined historical releases of Sendmail, Postfix, Apache httpd, and
OpenSSL with static source code analysis and the entry-rate in the CVE dictionary for a release [203].
Shahzad ez al. explored a large software vulnerability dataset disclosed since 1988 till 2011 [204]. Tan
et al. investigated software bug characteristics by sampling 2,060 real world bugs in three large, rep-
resentative open source projects, finding that while software evolves, semantic bugs increase, while
memory-related bugs decrease [205]. Bosu ez /. analyzed 267,046 code review requests from 10 open
source projects and identified 413 vulnerable code changes [199]. Pletea ez al. performed sentiment
analysis on commits and pull requests from 9o GitHub projects, finding more negative emotions
for security-related discussions compared to others [207]. Abunadi and Alenezi present an empirical
study clarifying how useful cross project prediction techniques are in predicting software vulnerabil-

32

3.2 Security and Trust in the Open Source Ecosystem

ities [208]. Alenezi and Javed tested several open source web applications against common security
vulnerabilities [209]. Zampetti ez a/. studied the usage of SATs for Java code in 20 GitHub reposito-
ries [210]. Santos e 4l. investigated vulnerabilities associated with security tactics in Chromium, PHP,
and Thunderbird [211]. Gkortzis ef al. presented a dataset of reported vulnerabilities of 8694 open
source project versions [212]. Zahedi ez a/. empirically identified security issues posted on 200 GitHub
repositories [213]. In 2020, Walden investigated how the Heartbleed vulnerability changed the software
evolution of OpenSSL [214]. Householder ez /. analyzed vulnerabilities with CVE IDs, finding that
4.1% of IDs have public exploit code associated with them within 365 days [215].

Identifying and patching or fixing vulnerable dependencies is an important task of open source
maintainers and users. Plate ez al. proposed an approach to facilitate the impact assessment for vul-
nerabilities in OSS libraries [216]. Antal ez al. investigated commits of Python and JavaScript projects,
finding that neither community reacts fast to appearing security vulnerabilities in general [217].

Automated approaches and generated metrics are a common approach to better tackle the complex-
ity of open source dependency chains and repository maintenance. Perl ez 4/. trained a SVM classifier
to flag suspicious commits based on a large-scale mapping of CVEs to GitHub commits [218]. Zhou
and Sharma described an automatic vulnerability identification system based on commit messages and
bug reports in open source projects [219]. Imtiaz ez 4/. analyzed five open source projects that have been
using the SAT Coverity, finding that severity and fix complexity may correlate with an alert’s lifespan
in some of the projects [220]. Hogan et 4/. presented an automated method for labeling vulnerability-
contributing commits (VCCs) [221]. In 2022, Zahan ez al. worked with OpenSSF Scorecards in two
preprints, both for investigating security features in npm and PyPI, as well as their impact on security
outcomes, highlighting some impactful features [222], [223].

On the side of vulnerability fixes, Sliwerski et a/. analyzed CVS archives for fix-inducing changes,
finding distinct patterns with respect to their size and the day of week they were applied [224]. Li
and Paxson investigated fixes for vulnerabilities in 682 open source projects, finding that a third of all
security issues were introduced more than 3 years prior to remediation [225]. Piantadosi ez /. linked
337 CVE entries to the corresponding patches, finding that developers who fix software vulnerabilities
are more experienced than the average [226]. Ramsauer ez 4/. present a data-mining based approach to
detect fixes for vulnerabilities that bypass the standard public process, finding 29 commits that address
12 vulnerabilities [227].

Because of the open source ecosystem’s reliance on communities and communication, related aspects
like interactions with newcomers, first submissions, or donations are a common subject of research.
Among the social aspects found in open source projects, researchers investigated toxic comments [228]
and metadata [229], [230] as well as programming languages [231] and their general maintenance [232],
[233]. Wen studied knowledge sharing and learning about secure programming knowledge in projects
by a socio-technical approach [234]. Hannebauer and Gruhn surveyed newcomers to Mozilla and
GNOME, finding that most newcomers modify a component because they need the modification for
themselves [235]. Steinmacher ez /. conducted semi-structured interviews with 36 developers from
14 different projects, identifying social barriers faced by first-time contributors [236]. Pinto e 4/. con-
ducted two surveys aimed at understanding what motivates casual contributors, finding that although
casual contributors are rather common they are responsible for only 1.73% of the total number of com-
mits [237]. Steinmacher ez al. proposed and evaluated a portal created to support newcomers to OSS
projects [238]. Canfora e al. proposed an approach aimed at identifying and recommending mentors
in software projects by mining data from mailing lists and versioning systems [239]. Steinmacher ez al.
provide guidelines for newcomers to open source projects based on previous studies [240]. Dominic
et al. proposed a conversational bot that would recommend projects to newcomers and assist in the
onboarding to the open source community [241]. Subramanian ez 4. investigated first pull requests

33

Chapter 3 Related and Concurrent Work

by contributors, finding a mixture of trivial and non-trivial changes [242]. Balali ez 4/. interviewed
mentors of 10 well-established OSS projects and qualitatively analyzed their answers to identify both
challenges and strategies related to recommending tasks for newcomers [243]. Overney ez a/. conducted
a mixed-method study to investigate donations in open source, finding d 25,885 projects asking for
donations on GitHub, often to support engineering activities. However, they find no clear evidence
that donations influence the activity level of a project [244].

In conclusion, the open source ecosystem has become an essential resource for the security and
privacy research community due to the openness and accessibility of its repositories. The large number
of available datasets has enabled researchers to conduct studies that were not possible before. While
open source repositories have become an established data source, the focus of this dissertation is more
on exploring the less visible aspects of the ecosystem, such as trust processes, contributor hierarchy, and
security considerations. By examining these aspects, we can gain a better understanding of how open
source projects operate and how they can be made more secure and trustworthy.

3.3 Interview Studies in a Security Context

Interview studies are a well-established qualitative research approach for in-depth evaluations in the
(security and privacy) research community.

Interviews allow researchers access to data that is not readily available from technical systems: thoughts
and procedures. Johnson ez a/. conducted interviews with 20 developers to investigate why develop-
ers are not widely using SATs and how current tools could potentially be improved, finding that al-
though all participants felt that use is beneficial, false positives and warning presentation are barriers
to use [245]. Combined with other approaches in larger studies, interviews can provide additional
in-depth insights: Bai ez 4/. asked 52 participants to complete encryption tasks using both a traditional
key-exchange model and a key-directory-based registration model [246]. Gallagher ez 4/. conducted
17 semi-structured interviews, finding that experts and non-experts view, understand, and use Tor in
notably different ways. [247].

Past research also utilized interviews to gain insights into the work and tools of experts such as se-
curity professionals, app developers [248], administrators, and security analysts. Specifically, as part
of a larger study in 2004, Barrett ez a/. conducted 12 interviews with sysadmins, managers, team leads,
and others in various roles about their issues and concerns, challenges in their work [249]. Botta ez
al. interviewed 12 security management professionals, finding that the job of I'T security management
is distributed across multiple employees, often affiliated with different organizational units or groups
within a unit and responsible for different aspects of it [250]. Bauer ez al. conducted a series of inter-
views with thirteen administrators that manage access-control policy. Based on these interviews, they
identified three sets of real-world requirements that are either ignored or inadequately addressed by
technology [2s1]. Silic and Back conducted 14 semi-structured interviews with information security
professionals and programmers, finding that the professionals generally trust OSS [252]. Bridges e 4.
interviewed 13 security analysts about host data, how tools are used, and how tools are evaluated [253].
Haney ez al. conducted 21 interviews in organizations including cryptography in products, finding
an uniquely strong security mindset in those companies [254]. With my contribution,Huaman ez a/.
conducted 5,000 computer-assisted telephone interviews with small and medium enterprises in Ger-
many, finding that security awareness has arrived in all companies [21]. These experts also include expert
communities that rely on security, such as journalists, editors, and victim service providers: McGregor
et al. investigated computer security practices of 15 journalists in the U.S. and France in semi-structured
interviews, finding that existing security tools fail not only due to usability issues but when they ac-

34

3.3 Interview Studies in a Security Context

tively interfere with other aspects of the journalistic process [255]. As part of a larger study, McGregor
et al. interviewed five of the personnel with significant editorial or technical input on the systems used
during the Panama Papers project [256]. Chen ez a/. conducted 17 semi-structured interviews with staft
members at victim service providers and survivors of trafficking, investigating the role technology plays
in their interactions as well as related computer security and privacy concerns and mitigations [257].

Past research of open source ecosystem leveraged interviews to gain additional insights to mind-
sets and opinions, often in combination with conducted measurements. As part of a larger study,
Steinmacher ez a/. conducted semi-structured interviews with 36 developers from 14 different projects,
identifying social barriers faced by first-time contributors [236]. Also as part of a larger study, Balali
et al. interviewed mentors of 10 OSS projects, qualitatively analyzing their answers to identify both
challenges and strategies related to recommending tasks for newcomers [243]. Zhou ez a/. investigated
and classified 15,306 hard forks on GitHub and conducted interviews with 18 owners of hard forks,
finding that hard forks often evolve out of social forks rather than being planned deliberately [258].
Bogart et al. conducted interviews and a survey combined with measurements to investigate how break-
ing change decisions are made in 18 open source ecosystems, finding shared values like stability and
compatibility, as well as differences in other values between the projects [259]. In recent work from 2021
and 2022 respectively, both Jansen ez 4/. and Ghofrani ez a/l. conducted smaller-scale interview studies
with industry developers investigating the trust aspect of external software [260], [261]. Butler ez al.
interviewed company experts to identify the value of reproducible builds for businesses [262]. Also in
2022, Gutfleisch ez 4/. interviewed developers about usability considerations in their secure software
development processes, identifying a high impact of contextual factors [263]. As part of my research
and foundation for chapters in this thesis, Wermke ez /. investigated both trust and security practices
of open source projects in 27 interviews [16] and considerations and experiences around open source
components (OSCs) in 25 interviews with industry project [17]. In 2023 with my contribution, Fourné
et al. interviewed 24 participants from the reproducible-builds.org project, finding that self-effective
work by highly motivated developers and collaborative communication with upstream projects are key
contributors [264].

In conclusion, the use of in-depth interviews as a research method has been well-established in the
security and privacy research community, and has been effectively used in prior studies to gather detailed
information from experts. Some of the research approaches described in this dissertation employed
in-depth interviews as a means to gain deep insights into the perceptions, behaviors, and reasoning of
study participants. By allowing software experts to share their perceptions and experiences in their own
words, interviews can facilitate a more personal and engaging conversation that can help build trust
and rapport between researchers and participants. This can be particularly important in the context
of security and privacy research, where developers may be hesitant to disclose sensitive information or
express their true thoughts and feelings about certain issues. Overall, the use of in-depth interviews
as a research method can provide valuable insights that are difficult to obtain through other means,
and can play a critical role in advancing our nuanced understanding of the issues at hand, which can
inform the development of effective solutions and strategies to enhance security and privacy in a variety
of contexts.

35

Chapter 4

Security & Trust in Open Source Software
Projects

PEN SOURCE SOFTWARE is an important link in the software supply chain. But the openness
O and community-based development approach of the open source ecosystem introduce unique
security challenges: code submissions might come from unknown entities and projects often only have
limited developer-hours to review pull requests or update dependencies. This chapter presents research
investigating security and trust practices in open source projects, including the unique challenges of
decentralized development and open collaboration in these projects.

As this research project was conducted as a team consisting of me, Noah Wohler, Jan Klemmer,
Marcel Fourné, Yasemin Acar, and Sascha Fahl, this chapter utilizes the academic “we” to mirror this
fact. We conducted 27 in-depth interviews with owners, maintainers, and contributors of diverse open
source projects to investigate their security and trust practices, including guidance and policies, incident
handling, and challenges encountered, finding that the projects have highly diverse security measures
and trust processes, as well as underlying motivations. Based on our findings, we argue for supporting
open source projects in ways that consider their individual strengths and limitations, especially for
smaller projects with limited access to resources. This research has implications for the open source
software ecosystem and how the research community can better support open source projects in trust
and security considerations.

41 Preamble

This chapter is based on research that was also published as “Committed to Trust: A Qualitative Study
on Security & Trust in Open Source Software Projects” [16], which appeared and was presented by me
at the top-tier security conference 43rd IEEE Symposium on Security and Privacy (IEEE S&P 2022,
“Oakland”) in May 2022. The publication was awarded one of four Distinguished Paper Awards (out
of 147 papers) at IEEE S&P 2022.

Dominik Wermke, N. Wohler, J. H. Klemmer, M. Fourné, Y. Acar, and S. Fahl, “Committed
to Trust: A Qualitative Study on Security & Trust in Open Source Software Projects,” in 437d
IEEE Symposium on Security and Privacy (IEEE S€P%2), San Francisco, CA, USA: IEEE, May

2022

The original abstract for the publication is as follows:
Abstract: Open Source Software plays an important role in many software ecosystems. Whether

in operating systems, network stacks, or as low-level system drivers, software we encounter daily
is permeated with code contributions from open source projects. Decentralized development

37

Chapter 4 Security € Trust in Open Source Software Projects

and open collaboration in open source projects introduce unique challenges: code submissions
from unknown entities, limited personpower for commit or dependency reviews, and bringing
new contributors up-to-date in projects’ best practices & processes.

In 277 in-depth, semi-structured interviews with owners, maintainers, and contributors from a
diverse set of open source projects, we investigate their security and trust practices. For this, we
explore projects’ behind-the-scene processes, provided guidance & policies, as well as incident
handling & encountered challenges. We find that our participants’ projects are highly diverse
both in deployed security measures and trust processes, as well as their underlying motivations.
Based on our findings, we discuss implications for the open source software ecosystem and how
the research community can better support open source projects in trust and security considera-
tions. Overall, we argue for supporting open source projects in ways that consider their individual
strengths and limitations, especially in the case of smaller projects with low contributor numbers
and limited access to resources.

The publication included the following acknowledgements:

Acknowledgements: With this, we want to acknowledge our interviewees for their participa-
tion: It was a great experience to interview you for this study. We appreciate your knowledge,
project information, and most importantly your valuable time that you have generously given.
We hope that with this work and your contribution, both the research and open source commu-
nity are one step closer to more secure and trustworthy software. Last but not least, we thank
the anonymous reviewers for their valuable feedback.

In addition, I would like to express my sincere gratitude to everyone who has contributed to the
completion of this project. I would also like to thank the participants again, who generously gave their
time and shared their impressions and experiences around their open source projects with us. Their
willingness to participate made this research possible, and I am deeply grateful for their contributions.

411 Contribution

The research presented in this chapter was conducted as a team consisting of me as a team lead, Noah
Wohler, Jan Klemmer, Marcel Fourné, Yasemin Acar, and Sascha Fahl. I am grateful for the contribu-
tions of each member, which have been integral to the success of this research project. Without their
expertise, hard work, and dedication, this research project would not have been possible.

I came up with the initial idea for this study based on my desire to conduct open source research in a
more developer-inclusive and cooperative manner and further refined the idea with input from Sascha
Fahl. I'set up the initial concept and research approach for this research project. Ilead the design of the
study and interview guide and iterated it with the rest of the team. I implemented the landing page and
contact templates for this study, and iterated them with the group. Noah Wohler, Jan Klemmer, and
I invited participants via GitHub and other communication channels. Together with Noah Wahler,
Jan Klemmer, Marcel Fourné, and Sascha Fahl, I conducted or supported the majority of interviews.
In joint work with Noah Waéhler and Jan Klemmer, we qualitatively coded the interview transcripts.
I analyzed the coded text passages and code counts. I compiled the paper for publication with minor
contributions from the remaining team and we jointly discussed the work’s implications. I presented
the publication at IEEE S&P 2022 and included it in some of my talks.

38

4.1 Preamble

4.2 Structure

The remainder of this chapter is structured as follows: After a general introduction (Section 4.2), I
provide the related work at the time of this project in 2022, covering the areas of repository research,
interviews in a security context, and open source security and trust (Section 4.3). I then describe our
interview approach (Section 4.4) and highlight our findings (Section 4.5). Finally, I discuss our findings
(Section 4.6) and provide a summary for this chapter (Section 4.7).

39

4.2 Introduction

4.2 Introduction

Open source software (OSS) is an unavoidable component in many of today’s software ecosystems.
Whether as low-level system drivers in operating systems, as tooling in daily jobs, or simply as depen-
dencies of hobby projects, OSS is an important building block in our everyday software interactions.

In a 2020 report covering 45,000 repositories, GitHub found that most projects on their plat-
form rely on some form of OSS [265]. In recent years, collaborative version control platforms such as
GitHub [266] and GitLab [267] introduced a wide field of developers to open source projects (OSPs).
As the complexity of modern software development increased, so did the number of dependencies and
involved contributors. Decentralized development and open collaboration of OSPs introduce unique
challenges: code submissions from unknown entities, limited personpower for reviewing commits and
dependencies, and bringing new contributors up-to-speed in projects’ best practices and processes.

Assessing vulnerabilities in components is a difficult task, as the large number of dependencies re-
quired by today’s software result in a complex software supply chain, including software repositories,
package managers, and package registries. The median number of transitive dependencies in the npm
ecosystem was reported as 683 in a 2020 GitHub report [265]. In addition to vulnerabilities in compo-
nents, dependency sources often lack basic security and trust controls due to historical and economic
reasons. Recent incidents in the npm ecosystem highlight the large attack surface provided by such reg-
istries: in late October 2021, versions of the npm package #a-parser-JS with 7 million weekly downloads
included malicious code [268]. An attacker gained access to the maintainer’s account and released three
manipulated versions executing a Monero cryptocurrency miner and password-stealing trojans [269].
Less than a month later, GitHub reported an authorization vulnerability in npm, allowing attackers
to publish manipulated, authorized versions of their packages, which could actually be applied to any
npm package without authorization [270]. While GitHub stated with “high confidence” that the
vulnerability had not been exploited maliciously, telemetry data was only available from September
2020 onwards [271]. Analogous to a 2020 report from The Linux Foundation [272], we consider the
software supply chain in this research to include technical features such as how the software is stored,
how it can be retrieved, and how it is analyzed during these processes.

The same holds true for commercial software: by building their software as a wrapper or glue around
open source components, companies can leverage OSS as building blocks in their processes and prod-
ucts, allowing them to focus their efforts on features and faster delivery. In 2020, 95% of IT departments
and companies considered OSS as strategically important to their organization’s overall enterprise in-
frastructure software strategy [273]. By introducing open source components, companies inherit the
same challenges and attack surfaces as OSPs. They are now obligated to assess and mitigate the impact
of vulnerabilities from open source components included in their products. As such, improving secu-
rity and trust in the open source ecosystem leads to positive effects down the whole dependency chain
for both open source and commercial software.

These chain effects make the open source ecosystem an important field of research for the (security
and privacy) community. With the introduction of more developer-centered research approaches arose
the need for human-subject research considerations. Recent conflicts between the research and open
source communities such as the “hypocrite commits” incident in early 2021 highlight the need for more
respectful research approaches for investigating security and trust in open source projects [274]. In this
chapter, we propose a more cooperative approach for researching open source, working together with
committers towards a more secure and trustworthy ecosystem, instead of against them.

In addition to security, trust also plays an important role in software development and especially the
open source community, as was probably best described in Ken Thompson’s Turing Award Lecture
“Reflections on Trusting Trust”:

41

Chapter 4 Security € Trust in Open Source Software Projects

“To what extent should one trust a statement that a program is free of Trojan horses?
Perhaps it is more important to trust the people who wrote the software.” (K. Thompson

[1])

As to err is only human, we consider contributors as trustworthy if they do not act with malicious
intent, not necessarily that they contribute error-free code.

In this chapter, we aim to shed light on security and trust practices in OSPs — by exploring projects’
behind-the-scene processes, provided guidance and security policies, as well as past security challenges
and incident handling. We are especially interested in processes that are often not directly visible from
the repository data, e. g., trust relationships, incident responses, and the handling of suspicious or mali-
cious contributors. For this, we conducted 27 in-depth, semi-structured interviews with contributors,
maintainers, and owners from a diverse set of open source projects.

Our research approach investigates security measures and trust processes in OSS based on the fol-
lowing research questions:

RQ1. “How are OSPs structured bebind-the-scenes?” Due to their community-driven nature, OSPs
include structures and processes that are not inherently visible on a repository level. We investigate the
why and how of behind-the-scenes interactions and decisions, especially in the context of security and
trust.

RQz. “If and what guidance and policies are provided by OSPs?” Often changing contributors and
loose team structures lead to challenges in distributing project-internal knowledge in OSPs. We examine
guidance and (security) policies provided by open source projects of any size, as well as identify their
established roles and responsibilities.

RQs. “How do OSPs approach security and trust challenges?” OSPs face unique challenges in terms of
security and trust due to their open nature, including code submissions from mostly unknown entities.
We investigate which organizational and technical measures OSPs employ to establish trust between
contributors and how they react or plan to react to arising security and trust challenges.

4.3 Related Work

Disclaimer: This related work section reflects the state of prior research in early 2022 and is
provided to highlight the state of research at the time of this research project. For related and
concurrent work at the time of this dissertation, see Chapter 3: Related and Concurrent Work.

We present and discuss previous work in three areas: research involving data and artifacts from
software repositories, interview studies in a security context, and investigations of security and trust in
the open source community. We also put our work into context and illustrate the novel contributions
of our research.

4.3.1 Research with Repositories

Open source repositories are an established data source in the (security and privacy) research commu-
nity. This is corroborated by the large number of available data sets, e. g., of commits [189], [190], [194],
contributors [191], and vulnerabilities [204], [212], as well as easy access via torrents [192], [193]. Early
work describes case studies of then emerging open source projects such as Linux [174], Mozilla [175],

42

4.3 Related Work

and FreeBSD [176]. Due to freely accessible code and commits, open source repositories are a com-
mon source for vulnerability research, e. g., by matching Common Vulnerabilities and Exposuress
(CVEs) [203], [215], tracking vulnerability evolution over time or events [199], [202], [205], [214], or for
evaluating static analysis tools [201], [209], [210], [213]. Both Deligiannis e 4/. and Bai ez 4/. analyzed
drivers in the Linux Kernel [178], [179]. Fixes and patches are essential for ensuring a secure code base,
motivating previous work to investigate fix patterns and phases [224], [225], [227]. Piantadosi ez 4.
linked 337 CVE entries to the corresponding patches, finding that developers who fix vulnerabilities are
more experienced than average [226]. Related research focusing on social aspects investigated collabo-
ration [275]—[277], gamification [188], donations [244], and pull requests [278]-[280]. Recently pub-
lished work investigated repository artifacts such as programming languages [231], maintenance [232],
[233], toxicity in comments [228], and related metadata [229], [230].

Unlike previous research focusing on repositories, we are more interested in aspects that are not
directly visible on a repository level: trust processes, contributor hierarchy, and security considerations.

4.3.2 Interview Studies in a Security Context

Interview studies are a well-established research approach for in-depth investigations in the (security
and privacy) research community. In the past, research has utilized interviews to gain insights into the
work and tools of experts such as security professionals [250], [252], administrators [249], [251], and
security analysts [253]. Interviews were also conducted to establish the security needs of expert commu-
nities such as journalists [255], editors [256], and victim service providers [257]. As part of larger studies,
interviews allow insights into specific mindsets and approaches, e. g., for encryption tasks [246] or Tor
usage [247]. More recently, Gutfleisch ez al. interviewed developers about security feature considera-
tions in their software development process [263]. In the context of OSS and communities, Dabbish
et al. examined the value of transparency for large-scale distributed collaborations and communities
of practice in interviews [275]. As part of a larger study, Steinmacher ez a/. conducted semi-structured
interviews with 36 developers from 14 difterent projects, identifying social barriers faced by first-time
contributors [236]. Balali ez /. interviewed mentors of 10 OSS projects, identifying both challenges
and strategies related to recommending tasks for newcomers [243].

Similarly, we also decided on in-depth interviews for our research approach to gain detailed insights
into participants’ perceptions, behaviors, and reasoning.

4.3.3 Security and Trust in the Open Source Community

The open source community faces unique security and trust challenges compared to other ecosystems,
making them a valuable subject for research [170], [171], [281]. Issues and commits are important struc-
tural features in the open source community, enabling evaluations of general statistics [200], security
tactics [211], and emotions [207]. Antal ez 4/. investigated commits of Python and JavaScript projects,
finding that neither community reacts very fast to emerging security vulnerabilities in general [217].
Bosu et al. analyzed 267,046 code review requests from 1o open source projects, finding that less ex-
perienced contributors’ changes were 1.8 to 24 times more likely to be vulnerable [206]. Published
identification systems for open source projects include vulnerabilities [208], [218], [219] and toxic com-
ments [282]. Trust is an important factor in public software collaboration. Research directions include
trustworthiness measurements [180], [181] and factors influencing trust [177], [183], [279]. In line with
our findings, prior research established (quality of) contributions, reputation, and employing orga-
nization as important trust factors. Code quality is an important factor for security in open source

43

Chapter 4 Security € Trust in Open Source Software Projects

projects, with previous research investigating aspects such as code reviews [18s], [187], quality assess-
ment models [184], and discrepancies between vision and actual implementation [186]. Due to their
important role in the open source ecosystem, committers are the focus of multiple works, e. g., for their
pull requests [242], their motivations [235], [237], [283], [284], or contribution barriers [234], [236].
Other works propose supporting aspects such as approaches for onboarding [238], [240], [241], [243]
and mentoring [239], [243]. Blincoe ez al. proposed a new method, reference coupling, for detecting
technical dependencies between projects, finding that most ecosystems are centered around one project
and are interconnected with other ecosystems [285]. Casalnuovo ez 4/. explored the evidence for social-
ization as a precursor to joining GitHub projects, finding developers preferentially join projects where
they have pre-existing relationships [286].

While our research utilizes certain repository artifacts to enrich our research, our focus is more on
in-depth details from 27 interviews with contributors, maintainers, and project owners. Like previous
research, we consider the open source ecosystem to be of major importance to the overall software
world and hope to leverage 27 in-depth interviews as first steps towards supporting committers and
maintainers in creating secure and trustworthy projects.

4.4 Methodology

In this section, we provide an overview of our study approach and the structure of the semi-structured
interviews. We also detail the qualitative coding process, report on our data collection and ethical
considerations, and discuss the limitations of our work.

4.41 Study Setup

To gain insights into the inner workings of open source projects, we conducted semi-structured in-
terviews (z = 27) with contributors, maintainers, and owners of OSPs between July and November
2021. We decided on in-depth interviews as our research approach, as we were especially interested in
processes that are often not directly visible from the repository data, e. g., trust relationships, incident
responses, and the handling of suspicious or malicious contributors.

Interview Guide. We based the initial interview guide on our exploratory research questions. We
also considered concepts investigated in previous related work and adapted them to our more in-depth
interview approach. To establish additional areas of research and for feedback, we consulted and piloted
the interview guide with open source contributors from our professional network. For the participants’
convenience, we created both English and German versions of the interview guide, keeping both in sync
during the study. During the study process, we continually iterated the interview guide based on the
conducted interviews and the collected participant feedback. Changes were limited to the addition of a
few follow-up questions and minor structural modifications, reaching saturation without any changes
past the 15 interview. Our full interview guides in English and German are included in the appendix
(cf. Sections A.1, A.2).

Recruitment and Inclusion Criteria. We based our recruitment approach around reaching as many
diverse OSS projects as possible. We decided on utilizing multiple recruitment channels to better reach
a diverse set of projects from different historical and structural contexts: via our professional network,
project- or technology-associated communication channels such as mailing lists, Discord instances, or
IR C servers, as well as via contact details on public repository websites like GitHub. See also Table 4.1
for an overview of interviewed participants and corresponding recruitment channel.

44

4.4 Methodology

Table 4.1: Detailed overview of interviewed contributors, their project background, as well as some
project metadata. For reporting, participants were assigned an alias. We only report binned
project metrics to preserve both our participants’ and their projects’ privacy.

Alias Interview Project!
Language Duration Codes? Recruitment Channel Commits Contributors Category
P01 German 0:40:49 68 Professional Network 100,000+ 10+ Operating System
P02 German 1:03:51 76 Professional Network 1,000+ 10+ Secure Messenger
P03 German 0:53:49 57 Contact Email 10,000+ 100+ Virtualization/Containers
P04 English 0:33:59 62 Communication Channel 100+ 10+ JavaScript Libraries
Pos English 0:36:35 42 Contact Email 1,000+ 100+ Code Editor
P06 English 0:55:20 70 Communication Channel 100+ 10+ JavaScript Libraries
P07 English 0:33:16 54 Contact Email 100+ 10+ .NET Libraries
P08 English 1:06:18 67 Contact Email 100,000+ 100+ Operating System
P09 English 0:30:37 95 Contact Email 10,000+ <10 Version Control System
P10 English 0:23:35 36 Contact Email 10,000+ 100+ GUI Tool
P11 English 1:08:13 101 Contact Email 10,000+ 1,000+ Orchestration
P12 German 0:35:12 61 DProfessional Network 10,000+ 100+ Network Security Monitor
P13 English 0:29:23 39 Contact Email 10,000+ 100+ Scientific Computing
P14 English 0:19:44 38 Communication Channel 1,000+ 10+ Cryptocurrency Exchange
P15 German 0:26:32 44 Communication Channel 10,000+ 100+ Operating System
P16 English 0:46:19 48 Contact Email 10,000+ 100+ Code Analysis
P17 English 0:44:14 57 Contact Email 1,000+ 1,000+ JavaScript Libraries
P18 English 0:32:46 45 Project Website 1,000+ 10+ Scientific Computing
P19 German 0:40:59 40 Communication Channel 1,000+ 10+ Scientific Computing
P20 German 0:38:14 63 Communication Channel 10,000+ 100+ Network Protocol
P21 English 0:38:25 43 Contact Email 1,000+ 100+ Virtualization/Containers
P22 English 0:37:09 73 Contact Email 1,000+ 100+ Data Format
P23 English 0:23:19 62 Contact Email 10,000+ 100+ Virtualization/Containers
P24 English 0:39:35 57 Contact Email 100+ 100+ Orchestration
P25 English 0:52:23 83 Project Website 10,000+ 1,000+ Operating System
P26 English 0:33:23 59 Contact Email 10,000+ 100+ Scientific Computing
P27 English 0:37:52 78 Contact Email 1,000+ 100+ Scientific Computing

Lif multiple projects: largest project covered in the interview. 2 Total number of codes assigned to the interview after resolving conflicts.

Aside from our professional network and well-known open source projects , we utilized GitHub as
a platform for selecting and contacting open source projects. We focused on GitHub, as it is widely
used in the open source community and provides relevant metrics for gauging the activity as well as
popularity of a project. We created our initial data set based on data from July 2021, consisting of code
repositories that received at least 40 commits from at least 20 distinct committers in the previous six
months and gained new committers in July 2021. Our intent was to exclude inactive projects or small
projects without contributors, for which our inquiry would either not reach active contributors or in
which trust processes are irrelevant.

Our general recruitment approach in the repository channel was a stratified sampling in quartiles
of GitHub repositories ranked by both a “popularity” and an “activity” score. We based this score on
repository-level metrics provided by the GitHub API such as the number of commits and committers
as well as the number of stars and forks.

Our initial repository data set was downloaded in July 2021 from GH Archive (https: //www.gharch
ive.org/), aservice providing historical GitHub repository data, publicly available for further analysis.
We limited our data set to code repositories that received at least 40 commits from at least 20 distinct
committers in the previous six months, which sets a minimum threshold for any given selected project’s
activity. This was done with the intent of excluding inactive and personal projects, in which our inquiry
would either not reach active contributors or where interpersonal trust processes are irrelevant.

The resulting 15,256 repositories were enriched with up-to-date data from GitHub’s AP], such as

45

https://www.gharchive.org/
https://www.gharchive.org/

Chapter 4 Security € Trust in Open Source Software Projects

programming language usage, topic tags, as well as star and fork counts. Users usually give out stars as
a means of bookmarking a project or to explicitly value a project’s merit. A project is “forked” into a
user’s namespace for them to be able to make changes to its code base and consequently create a pull
request for their changes to be accepted into the main source tree. The combination of the number of a
project’s stars and forks can thus serve as a proxy for its popularity. To ensure that the selected projects
recently went through the onboarding of new contributors, we only proceeded with those that gained
new committers in July 2021, and which had not contributed to the project before. After excluding
duplicate repositories as well as repositories exclusively containing markup languages, we arrived at a
set of 4,456 projects for final consideration.

We joined the popularity and activity indicators to a combined ranking and divided the set of projects
into quartiles. This ensured high diversity across the indicators, while minimizing the amount of strata.
We then iteratively selected and contacted projects from each stratum (e. g., first project from r* quartile,
first project from 2nd quartile, and so on) until we reached interview saturation.

1. Communication Channel. If the project provided a public communication channel such as a
Slack workspace, Discord server, or Gitter chat, we asked the administrators for permission to
post a call for participants.

2. Contact Email. Otherwise, we either contacted the project’s contact email or the project’s top
contributor by number of commits in the past year via their public email address.

In addition to these channels, we asked our participants for their recommendations of interesting or
unique open source projects, which we then contacted via the approaches described above.

Due to the previous filtering, we did not require any additional eligibility criteria from our par-
ticipants beyond stating that we were looking for people involved in OSS. In total, we recruited 27
participants from equally as many distinct projects.

Interview Procedure. We conducted the 27 interviews in a lead/backup interviewer configuration be-
tween July and November 2021. To afford our participants a high level of comfort during the interview,
we offered them the choice to conduct the interview either in English or German, as all interviewing
researchers were proficient in both languages. We conducted the majority of interviews via our self-
hosted Jitsi instance, though a few interviews were conducted via Zoom or the participant’s service of
choice. Interviews were advertised as lasting between 30—45 minutes in total, with the interview part
lasting a median of 00:37:52 minutes.

The different interview sections were introduced with an open, non-leading question, allowing
participants to elicit their own thoughts and reactions on their terms. Only if specific points were
not addressed, did we follow up with a more specific, non-leading sub-question. Interviewers were
specifically instructed not to impart a sense that the project’s security or insecurity was being judged
and to not prime participants’ answers in other ways.

4.4.2 Interview Structure

We outline our semi-structured interview structure below and in Figure 4.1. For reporting, we group
the interview into eight sections, each consisting of 1-4 opening questions, corresponding follow-up
questions, and in some cases additional nudges.

Before the actual interview part, we gave a short introduction of involved institutions and our mo-
tivations. We specifically highlighted to participants that our goal is not to judge the security of their
projects, that it is okay not to be aware of all aspects of a project, and that we are explicitly interested in

46

4.4 Methodology

1. Project Demographics
Establish project context and role of participant.

¥

2. Security Challenges
Explore security challenges the project faced in the past.

¥

3. Guidance and Policies
Identify guidance and best practices available to contributors, content and applicability of
security and disclosure policies. Establish practices around (security) testing and reviews.

¥

4. Project Structure
Establish repository setup, build process and control, and supply chain handling.

¥

5. Releases and Updates
Establish release and update processes and responsibilities and explore handling of security-
relevant updates.

6. Roles and Responsibilities
Identify the maintainer and contributor hierarchy of the project.

¥

7. Trust Processes
Establish trust models and explore past trust incidents and trust strategies of the project.

]

8. Opinions and Improvements
Explore participants’ views of problems and potential improvements.

|
' Outro |
| Debrief and collect feedback for the interview. |
Figure 4.1: Illustration of the flow of topics in the semi-structured interviews. In each section, par-
ticipants were presented with general questions and corresponding follow-ups, but were
generally free to diverge from this flow at will.

their personal thoughts and opinions. We went over how we intend to collect and handle the interview
data and obtained the participant’s consent for recording and data handling.

1. Project Demographics. The interview opens with a general question section about the project
and our participant’s relation to it. This section is intended both to ease nervous participants into
the interview as well as establish some initial context to later combine with actual repository data. We
report the demographics and combined data in Section 4.5.1and Table 4.1.

2. Security Challenges. The “Security Challenges” section explores past security challenges encoun-
tered by our participants, as well as their opinion of a recent research conflict. To open this section
with an example of a recent incident and to ease participants into this sensitive topic, we queried them
about, and if necessary introduced them to, the “hypocrite commits” incident from early 2021 [274],
[287], [288]. The incident is a recent, widely publicized example of well-intentioned actions resulting
in potentially adverse outcomes. We selected this incident because we suspected that projects are more

47

Chapter 4 Security € Trust in Open Source Software Projects

familiar with well-intentioned commits turning sour, compared to straight-up malicious attacks. We
report these results in Section 4.5.2.

3. Guidance and Policies. The “Guidance and Policies” section establishes guidance provided for,
and policies enforced by participants’” projects. Follow-ups for guidance included specific guidance
for infrastructure, programming style, and cryptography usage. Follow-ups for policies included the
(coordinated) disclosure approach of the project, potential policies for handling security incidents, and
policies for security aspects such as enforced (security) reviews. We report these results in Section 4.5.3.

4. Project Structure. The “Project Structure” section investigates behind-the-scenes structures and
processes in the project. Specifically, we were interested in structures that are often not directly visible
from repository artifacts, such as how build and deploy steps are set up, who controls them, and how
the related secrets are managed. We also included follow-ups for supply chain handling such as selection
criteria and vulnerability checks for dependencies. Lastly, we asked participants about additional in-
frastructure such as project websites and communication tools, as well as who controls these resources.
We report these results in Section 4.5.4.

5. Releases and Updates. The “Releases and Updates” section explores release mechanisms within
the project, as well as how end users or downstream dependencies receive updates to the latest version,
with a special focus on security-relevant fixes. In particular, we were interested in release schedules,
whether there were guidelines in place regarding the deprecation of older (insecure) versions, as well as
if and how release binaries are secured. We report these results in Section 4.5.5.

6. Roles and Responsibilities. The “Roles and Responsibilities” section establishes the contributor
hierarchy and security roles of the project. We were especially interested in how decisions are formed
and whether security-specific roles are assigned. We report these results in Section 4.5.6.

7. Trust Processes. The “Trust Processes” section considers established trust models in the project and
how recently onboarded contributors can become trusted members. Follow-ups included questions
about identity checks or the mandatory signing of Contributor License Agreements (CLAs). Addi-
tionally, we asked the participants about past trust incidents and, if applicable, what their mitigation
strategy looked like. In cases without such an incident, we asked participants about their opinion on
what would happen if an incident occurred. We report these results in Section 4.5.7.

8. Opinions and Improvements. The “Opinions and Improvements” section aims to elicit partici-
pants’ personal opinions and beliefs about current open source practices regarding security and trust
and how they would personally approach improving the status quo. We report these results in Sec-
tion 4.5.8.

After the interview part, we debriefed the participants and collected additional feedback regarding
covered topics and suggestions for interesting or unique OSPs to contact.

4.4.3 Coding and Analysis

For our study with interviews and repository artifacts, we evaluated both qualitative and quantitative
data points. We recorded the interviews digitally, transcribed them via a GDPR-compliant service, and
manually reviewed all transcripts for potential mistakes.

We analyzed all interview answers in an iterative open-coding approach [289]-[291]. All researchers
together established an initial codebook based on the interview guide and interview impressions. Three
researchers then iteratively coded the interviews in multiple rounds, resolving conflicts by consensus
decision or by introducing new (sub)codes after each iteration. We continued with our iterative coding
approach until no new codes or themes emerged [292], [293]. This approach does not necessitate

48

4.4 Methodology

the reporting of inter-coder agreement, as each conflict is resolved when it emerges (resulting in a
hypothetical final agreement of 100%). In total, we assigned 1618 codes after resolving, resulting in a
median of 59 codes per interview. The final codebook is included in the Appendix at Section A.3.

4.4.4 Ethical Considerations and Data Protection

This experiment was approved by the human subjects review board (Institutional Review Board (IRB)
equiv.) of our institution. Research plan, study procedure, and all involved parties adhered to the
strict German data and privacy protection laws, as well as the EU General Data Protection Regulation
(GDPR). In addition, we modeled our study to follow the ethical principles of the Menlo report for re-
search involving information and communications technologies [294]. All documents with personally
identifiable data according to the GDPR were stored in a secure cloud collaboration software suite and
were encrypted at rest and in transit. The transcription service we leveraged is based in the EU and fully
complies with the GDPR. Our research approach agrees with the Researcher Guidelines for the Linux
developer community introduced in response to the “hypocrite commits” incident in late March 2022,
after the conclusion of our work [295].

We encouraged potential participants to familiarize themselves with consent and data handling in-
formation on a study website before agreeing to any interview participation. We obtained informed
consent from all participants for participation in the study and having their interview’s audio recorded.
Before, during, and after the interview, (potential) participants were able to contact us at listed contact
addresses for any questions or additional information. We consider the interview questions regarding
certain security incidents to be of sensitive nature and explicitly highlighted to the participants that
they could skip questions or terminate the interview at any time. Our participants did not receive
any compensation, since we surmised that open source contributors likely would be more inclined to
volunteer their time to research if they act out of intrinsic motivation.

4.4.5 Limitations

Our work includes a number of limitations typical for this type of interview study and should be
interpreted in context. In general, self-report studies may suffer from several biases, including over- and
under-reporting, sample bias, and social-desirability bias. We do note that our sample is a convenience
sample and that our participants are not necessarily representative of contributors in the open source
ecosystem. It is possible that contributors who agreed to speak with us are more (or less) security-
conscious than those who declined.

During sampling, we focused on projects providing an English Readme document. We also offered
and conducted seven interviews in German for participants’ convenience. Thus, we can offer no direct
insight regarding the generalizability of our results regarding non-English and non-German speaking
open source contributors. During modelling of our study, we decided that this was an agreeable trade-
off, with English serving as the “working language” of the international open source community, likely
allowing us to communicate with a meaningful set of contributors.

Certain questions, e. g., about security and trust incidents, can be considered to be of sensitive
nature. To reduce social-desirability bias in answers, we specifically highlighted to participants that
we were only interested in information about their projects and not judging their security approaches
and processes in any way. We also instructed participants that they were able to skip questions or to
terminate the interview for any reason at any time.

49

Chapter 4 Security € Trust in Open Source Software Projects

4.5 Results

In the following section, we report and discuss results for 27 semi-structured interviews with open
source contributors, maintainers, and owners. In our reporting, we mostly adhere to the structure
of the interview guide described in Section 4.4.1 and summarize our key findings after each question
block. We report participants’ quotes as transcribed, with minor grammatical corrections and omissions
marked by brackets (“[...]”). Quotes from German interviews were translated to English by native
German speakers.

4.5.1 Project Demographics

In total, we interviewed 27 valid participants. In addition to this section, we report general interview
and project demographics in Table 4.1. As it is common in the open source community to be involved
in multiple projects, we encouraged our participants to talk about the projects they considered most
relevant during the interview. For the collected quantitative data, we considered the largest project
mentioned during the interview, as a trade-off between concise reporting and applicability.

Due to our recruitment approach aiming for a high diversity in projects, our participants reported
a wide range of projects and backgrounds, ranging from operating system components, over libraries,
to scientific computing frameworks. For each individual participant, we report project categories and
commits of the largest project they mentioned in Table 4.1. Project contributors are often highly dis-
tributed, with five of 277 participants reporting to know other contributors only virtually. E. g., as P17
reported: “Everybody that I’ve encountered has just been virtually: I can see the profile picture of
some people, and that’s the only image I have of them.” (P17) Although this does not seem to impair
collaboration: “But to be honest, I don’t really mind. As long as one has the same interests, it’s still
easy to collaborate if you have the same goal.” (Pr7) At the other extreme, four participants mentioned
very close connections such as working at the same company or university. We sorted our partici-
pants into their highest project role with a roughly ascending order of responsibility: contributors (4),
maintainers (3), team leaders (7), and founders or owners (9).

Overall, we found our participants to be more experienced than we expected, often having been
involved for multiple years and possessing high-level commit rights. We assume this high level of expe-
rience was due to our recruiting focusing on “expert channels” such as project-specific communication
channels or dedicated contact addresses, as well as being referred further up in projects until reaching
founders and owners.

Summary: Project Demographics. The majority of our participants are highly experienced in the
open source environment, often with multiple years of work and high-level commit rights.

4.5.2 Security Challenges

In this section, we explore past security challenges encountered by our participants, as well as their
opinion of the widely reported “hypocrite commits” incident. More than half (16) of our participants
reported never having encountered a direct security incident in the past. The most commonly reported
security challenges (that did not necessarily lead to an incident) included: suspicious or low quality
commits (15) and vulnerabilities introduced by dependencies (8). Overall, our participants seem to be
mostly ambivalent about potentially malicious commits:

50

4.5 Results

“I mean, there’s definitely been people that have intentionally tried to put malicious code
in projects, but it’s always very easy to spot immediately. It’s like those spam emails where
they have bad grammar and stuft.” (Po6)

Same holds true for vulnerabilities in dependencies, which apparently often turn out to be false positives
or to be irrelevant for participants’ projects:

“Most of the time, the vulnerabilities I deal with are transitive dependencies, have a CVE,
and 99.99 percent of the time, they are false positives for every other use case: it’s a real
vulnerability in the dependency, but it’s not in the way almost anyone uses it.” (Po6)

The majority of our participants were aware of the “hypocrite commits” incident in early 2021 (23 of
27). For the remaining four, we provided a short, factual summary of the incident during the interview.
Of the 16 participants with a generally negative opinion of the incident, many considered the research
approach as outright malicious: “[t]he shocking and surprising part was, that an academic institution
would essentially do evil and justify it by saying that the ends justify the means.” (Po6) This is likely a
misconception, as the researchers stated that they did not intend to, and objectively did not, introduce
any vulnerability in Linux [274]. Of the remaining participants with a mixed (7) or no opinion (4),
some considered the research approach similar to that of a “White Hat Hacker”, although with a flawed
execution. E.g.,

“I do understand both sides of this [...] It would be much better if this kind of research was
done in cooperation with somebody at the Linux kernel, who knew that it’s happening
and without disclosing that to a lot of people.” (P1r)

We could not identify a single participant with an outright positive opinion of the incident. We assume
this skew was likely exaggerated by the generally negative, sometimes misinformed reporting by open
source aligned news sources and communities.

Summary: Security Challenges.Only few projects have experienced an outright security incident,
although many of our participants were familiar with suspicious or low quality commits, as well
as potential vulnerabilities introduced by dependencies. The majority of our participants were
generally aware of the “hypocrite commits” incident and had an overall negative opinion of the
research approach.

4.5.3 Guidance and Policies

In this section, we examine guidance and best practices provided by the projects, as well as the content
and applicability of security and disclosure policies.

Guidance. Most commonly, our participants mentioned guidance for contributing to the project (14)
and programming language-specific guidance such as style guides (13), followed by general guidance
for project setup and infrastructure (8). As reasons for not providing specific guidance documents,
participants mention time and money constraints: “Somebody would have to write the guide, and I am
the only one who can write it. I mean, there is nobody paid to write it and I am also not paid to write
it.” (P26) More generally, our participants are somewhat divided in their opinions of the helpfulness
of guidance for their projects, ranging from very positive: “I personally think that documentation is
one of the most important aspects of an open source project, both for users and also developers” (P27),
to less helpful, as for Po2’s project: “I’m also honestly not quite sure that’s really that helpful [...]
Of course, it’s quite nice to have overviews and stuff like that somewhere, but there aren’t too many

SI

Chapter 4 Security € Trust in Open Source Software Projects

people who then read something like that.” (Po2) Instead, Po2 mentions that they prefer to coach
new contributors: “Most of the people who are interested show up in the communication channels.
And then it depends on [project members] being communicative by helping the other person.” (Po2).
Similarly, Prr mentions an approach outside of classical guidance documents: “We answer very detailed
answers to questions of users, which then become the kind of searchable result of answers for guides,
including security fixes.” (P1x) This difference in approaching guidance appears to be between projects
with a more technical developer audience preferring coaching or static testing, vs. projects with less
technical contributors such as scientists preferring extensive guidance, although our interview coverage
of these aspects was too low to statistically confirm this.

Security Policies. Next, we were interested in the content and applicability of our participants’ security
and disclosure policies. Of our 27 participants, eight mention that their projects do not have specific
security policies. Po6 offers one possible explanation for this:

“So in the same way as people don’t make a security policy on their repo unless something
pushes them to do it or unless they have a security incident, people aren’t going to doc-
ument security best practices unless they’ve had a problem. Part of that is because they
may not know to do so. But part of that is also because is there a need?” (Po6)

The most commonly mentioned security policy aspect (10) was related to providing a security-specific
contact for the project and/or to a dedicated security team. Less common security policies include
air gapping: “The policy of [the project] is that any released software has to be built on a machine
controlled by the release manager.” (P1r) and programming language-specific policies: “Everything that
is related to crypto or network code or parsing and so on is all written in Rust. That’s already a kind of
policy.” (Poz)

Only four of our participants explicitly mentioned not having any form of disclosure policy or
security contact. Disclosure approaches mentioned by the other participants included a policy or plan
for coordinated disclosure (10), private channels for disclosure (s), and plans for full disclosure, e. g.,
as public issue (2). The often heated debate regarding coordinated disclosure in OSPs extends to our
participants:

“[the projects] say: we’re just putting our users at too much risk. We’re not sitting on
patches, the people out there have installations on the front line, and because somebody
likes to coordinate something, we’re not waiting three months longer.” (Por)

Testing and Reviews. Being closely related to policies, we also queried our participants about their
security testing and review setup, with many participants mentioning automated tests and mandatory
reviews:

“There are standard practices like there is a test suite, we’ve unit tests, integration tests, and
as soon as we find any bugs or you write regression tests and there are codes, there’s peer
reviews of our codes and larger reviews of bigger PRs as well.” (Pos)

Summary: Guidance and Policies.Our participants appear to diverge in their opinions regarding the
helpfulness of (written) guidance. For security policies, larger projects mentioned dedicated security
teams, while smaller projects mentioned a security contact channel. Most projects included some
type of disclosure policy or at least contact for security issues.

52

4.5 Results

4.5.4 Project Structure

With this section, we wanted to explore structures that are often not directly visible from repository
artifacts, such as how build and deploy steps are set up, selection criteria and vulnerability checks for
dependencies, and any additional infrastructure such as project websites and communication tools.
The specific project setups appear to be as diverse as our participants’ projects. As probably expected
of open source projects, most development approaches appear to be somewhat open:

“It’s an open-source project, everything from [build] stages to Cl is in the same repository,
and everyone can contribute to it. However, no one has direct control over anything
because everything executed is a series of scripts and tests in the main repository, meaning
that anyone can send a pull request tomorrow and modify them.” (P2s)

Code submissions are at the heart of open source collaboration, making pull request handling and
build pipeline setup part of the overall security and trust strategy.

Pull Requests. Specifically for incoming pull requests, projects provide a number of controls, e. g., by
protecting the main branch:

“The main branch is protected. Of course, we do everything through forks. Meaning, each
developer has their own fork, opens a pull request and there’s a limited number of people
who have the permissions to do the final merge.” (P19)

Our participants opt for a number of different strategies for merging code contributions, such as
only rebasing on main: “We actually always require from the author to rebase their changes on top of
the main, so that we don’t have the whole complex structure of merges [...] which actually helps to
pinpoint any kind of problems [...]” (P1r), a majority vote before merging pull requests:

“So on each PR you can review it and then give a thumbs-up or thumbs-down. And that’s
done by at least three of the main contributors, [...] and that means that it’s a majority of
them think that it’s a worthy contribution,” (Pr7)

or an optimistic merging approach with resolving problems in follow-up pull requests:

“[Y]ou optimistically merge code as long as it passes some basic sanity checks. If someone
thinks that the code which is merged isn’t actually perfect, there is some way to improve
it, they need to send a follow-up pull request.” (P16)

Overall, project structure and code submission handling appear to be specialized to the project’s needs
and community.

Build Pipeline. In theinterviews, 23 participants mentioned using CI/CD or or other automatic build
systems in their projects, with the majority relying on GitHub Actions (10). Aside from GitHub Ac-
tions, many different systems were mentioned, sometimes even within the same project: “But basically
we use everything, like Travis, Azure Pipelines, GitHub Actions, CircleCI, custom build machines and
so on. It’s quite a hodgepodge.” (Po2) A few participants (3) mentioned that they prefer manual builds
and publishing for a number of reasons, . g., “I don’t like the one click deploy, I like to actually see,
you know, things fly by in the console.” (Po4) Running tests as part of the build pipeline is a common
practice, with some of our participants taking advantage of this, e. g., “[...] we have a huge number
of tests, actually. More than 10,000 tests and 7o static check analyses.” (P11) and “Every pull request
automatically goes through our full test suite [...] There are at least 1,000 files, each testing one area.”
(P12). Thoroughly testing every commit might include some trade-offs in the context of attracting

53

Chapter 4 Security € Trust in Open Source Software Projects

contributors, as pointed out by P16: “If the tests run in five seconds, then people will contribute, if the
tests run in five hours, then people will contribute less.” (P16)

Only four participants mentioned that they PGP sign commits in their projects, although not always
for security reasons: “I PGP sign all my commits. The main reason I do that is because it gives me
a pretty little verified badge on all my commits.” (Po6) Reasons for not signing commits included
technical limitations: “[Commit signing] is one of the things that is rather difficult to do if you are
using the GitHub workflow” (P1r) and different workflows: “I don’t make everybody do it, because
eventually, the commit will get squashed when I merge it, and then it’s going to be signed by GitHub
automatically.” (P24) Some of these issues might be alleviated by a recent Git patch introducing SSH-
based signatures and verification, although it remains to be seen if and how collaborative platforms will

adapt.

Dependencies. Common criteria for selecting a dependency included activity: “Our most important
criteria, in general, is that we do not want to rely on inactive projects.” (P2s) and reputation metrics
like GitHub stars: “If somebody was pulling in a package and I go to their GitHub and its got two stars
and it’s only used in this project, ’'m probably going to say: ‘Let’s avoid using that’.” (P24). Other
participants had more involved criteria for including a dependency:

“What I usually do before including any dependency is I send them a pull request fixing
something. And if they don’t react on this or don’t merge that one, then they don’t
become my dependency because they are obviously not interested in improving the soft-
ware.” (P18)

Some of such elaborate selection criteria even benefited all involved parties: “As it happened also with
[dependency]: we reached out, we got a good response. We worked on a few issues together, even I
personally fixed one of those issues [...]” (P1r) Few mentioned that they manually review third party
dependencies: “Whenever we include a library in a project, we examine the project beforehand and
two or three core contributors actually need to confirm that it looks okay.” (Po3) One participant
mentioned looking for usages of specific language features that may affect security: “I always go to the
source code. I searched for all uses of unsafe and I check if they are, if they are like, if they make sense
or not.” (P22)

Summary: Project Structure.Our participants appear to fully utilize modern build systems, in-
cluding during testing and deploy. Only few projects explicitly use signed commits, often due to
incompatibilities with their workflow or threat model. Selection criteria for dependencies range
from readily available metrics over security reviews, to elaborate collaborations or even rewrites.

4.5.5 Releases and Updates

In this question section, we were interested in the projects’ release decisions and schedules, whether
there were guidelines in place regarding release deprecation, how the releases are distributed, and
whether releases are digitally signed. The release decisions of our participants broadly fit into two
approaches: either as periodical releases (9) or when specific features or patches are ready (10). Different
communities seem to favor different release approaches, as our participants describe both feature-driven
and cycle-driven release schedules based on community input: “Periodically, we’ll reach consensus in
the community, and say, ‘Hey, we ought to do a release’, and so we’ll stop developing for a few days
and just make sure there aren’t any major bugs.” (Pog) and

54

4.5 Results

“We try to aim for three times a year, mostly because the real reason for the three times a
year rough cycle is that we polled the community and the kind of the averaging that three
times a year seemed like what suited people the most.” (P13)

Some participants utilize both approaches, depending on, e. g., project maturity:

“Mainline development continues just normally under main branch, and we have this
temporary release branch where we merge in only bug fixes that come in during this time.
This is for the most mature projects [...] For projects that move faster and don’t have for
example, back-holding strategy for bugs and stuff like this, we basically once a month tag
aversion and push them out.” (P18)

Aside from set release windows, participants often mentioned a more flexible approach to vulnerability
fixes, e.g., “If you have a vulnerability, Spectre, Meltdown or something like that, then it can also
happen that updates are released completely unscheduled.” (Por)

The majority of our participants does not seem to specifically advertise new releases, e. g.,

“Most people who interact with this project don’t actually even look at my GitHub. They
don’t look at the release assets or anything like that, they just use [package registry] and it
just works from there. They pull it down and use it automatically..” (P24)

Of the ones that do advertise, preferred channels included social channels like Twitter, Slack, or IRC
(3), mailing lists (3), and websites (2). Again, our participants seem to prefer a practical approach for
deprecating insecure or out-of-date releases, e. g., by simply stopping support: “We only guarantee that
we will backport security fixes to the last two releases. So anything before that is not an LTS we will
not fix, which could be seen as deprecated from this point of view.” (P2s) and “I don’t have any official

2]

policy of supporting old versions, so they’re eftectively deprecated as soon as I release a new version.”
(P27)

For distributing releases, 12 participants specifically mention that they utilize external infrastructure
such as registries, app stores, or package managers. As a reason for not distributing binary releases, P15
points to their community composition: “We have no [binary] releases. We always build the project
ourselves, there are no pre-built binaries for end users, because there are practically no end users” (P1s),
as well as P2s: “All of our releases are done on GitHub tag, because we release via source code, not via
binaries, so it’s a software release in the form of a git tag.” (P2s)

Of our participants, 11 were aware of their projects’ releases being signed. Their reasons for not or
not correctly signing releases included technical limitations:

“The Mac build is signed by my developer key, but the builds for Raspberry Pi, Linux,
Windows, they’re unsigned. People just have to trust the integrity that 'm the only
person who has access to those and I did it right. Wed love to have better solutions for
that, but none are available right now.” (Pog)

Another reason was their general singing setup, which lead to key ownership problems:

“[...] because our release procedure checklist only states sign, meaning sign them in general.
So people use their GPG signing keys, and there is no control where and how those keys
are verified or belong to a particular key ring. So this is something we need to improve.”

(P2s)

Generally, our participants seem to be aware of the security benefits of signing and releasing checksums
of releases, but some are not utilizing it for (all) releases due to technical limitations and platform
restrictions.

55

Chapter 4 Security € Trust in Open Source Software Projects

Summary: Releases and Updates.Our participants mostly publish projects’ releases and updates
based on direct community input and feedback, often mentioning exceptions from their usual
schedule for vulnerability fixes. Release distribution and deprecation appear to be oriented towards
practicality, utilizing package registries and other distribution infrastructures, again depending on
the need of their users.

4.5.6 Roles and Responsibilities

In this section, we sought to establish what hierarchies exist between contributors in the participants’
projects and how they affect the decision making process. We were also interested in roles that directly
deal with the projects’ security and role-specific duties.

Somewhat unsurprisingly, participants involved in projects with corporate stakeholders frequently
mentioned sophisticated management structures that oversee the project’s development:

“At the top of the pyramid, there’s the PMC, the project management committee and
they’re essentially the people who either funded the project or major industrial, or repre-
sentatives of major industrial partners.” (P13)

Most of our participants described the contributor hierarchy in their projects as having two levels: The
core team that is tasked with reviewing code submissions and that has permissions to merge new code
into the source tree and everyone else whose code is subject to the code review process. The core team
was often called a group of maintainers or simply committers:

“There’s two classes of contributor. There are the maintainers and then there’s pretty much
everyone else. The maintainers are me and maybe seven other people who contribute
regularly to the project [...] They can push directly to the main branch of the project.”

(P13)

Other projects make a distinction between the core team and the project’s owners, or they even have a
dedicated role for developers who have the ability to manipulate the repository itself, e. g., by pushing
to branches corresponding to pull requests:

“[...] then there are about [a few] people who have maintainer status, so they can merge
requests. And then there is about a hundred people who have developer access, so they
can push to a branch inside the merge request.” (P26)

Some projects take centralization further and follow the so-called Benevolent Dictator for Life (BDFL)
model, where the project’s founder steers the overall direction of the project and has the final say in
disputes:

“[The project] is what [one of our contributors] has dubbed a do-ocracy, and that is basi-
cally whoever’s writing the code gets to decide how it’s done, but our benevolent dictator
y g g

has the final say so. We essentially have this benevolent dictator, and everybody else under
that.” (Pog)

Participants whose projects have not grown out of corporate contexts often mentioned a more relaxed
contributor structure, with direct influences on the code review process:

“It is basically a much more peer-to-peer structure than a hierarchical structure. If you
develop something, you don’t need to submit it to somebody to get it into the tree. You
do need to get a review from people who are competent in this area, but that’s all.” (Po8)

56

4.5 Results

Only five participants stated they were aware of roles within their projects that deal with security.
Po8 summarized the security team’s obligations as follows:

“You can communicate privately with the security team. They would classify your issues
and decide if it matches the criteria for the issued security notice, how to proceed with
patches, and how to publish them.” (Po8)

Three of the five participants mentioned roles that are not primarily or only indirectly involved with
security, such as I'T departments or sysadmins: “We obviously have a I'T department that would follow
up on [security incidents].” (P19) Relying on a security response team existing within the parent
organization or foundation of the project was more uncommon, which two participants reported:

“There is a whole security team at [organization]. They are pre-vetting those issues, and
filtering them, and contacting the PMC members of the projects involved, whenever they
see there is a need to follow up on certain security issues.” (P1r)

Summary: Roles and Responsibilities.Our participants’ projects have a variety of contributor hier-
archies which are mostly relatively flat with two levels. This practical approach seems to be prevalent
in projects of any size, bar very small (single person) projects or ones that grew out of a corporate con-
text. Most of the projects do not staff teams dedicated to project security, with some either relying
on their organization’s resources or leveraging members of other teams such as their I'T admins.

4.5.7 Trust Processes

In this section, we explore the general trust model of projects, as well as their handling of, and strategies
for trust challenges. We were also interested in how recently onboarded contributors can become
trusted members and if identity checks or the the signing of a CLA is required.

Trust Models. Establishing trust for new committers is an important step in the OSS onboarding
process. The majority of our participants described some form of meritocracy when asked how new
contributors gain trust within the community, i. e., by making frequent, high-quality contributions to
the project:

“So it’s purely on contributions to the project, so it’s meritocracy based. And this means
that the person essentially starts usually either just helping out on filing issues like well doc-
umented issues, filing pull requests and again well documented, reviewing pull requests
is also an important aspect of it.” (P22)

A less common approach involves trusting unknown contributors by default and giving them access
early in the hope of facilitating first-time contributions:

“I really want to empower people to contribute. [...] it’s very easy to get access to [the
project]. It’s not like super easy, but you just submit patches and if you do some useful
work, I default to just give you the commit access.” (P16)

CLAs appear to be still somewhat rare, with only four participants mentioning that their projects
require one, €. g.,

“For licensing purposes, we require a [CLA], because the project is licensed under the BSD
license. We have to have people assign their copyright, so when people want to contribute,
they fill out a form, just sign it. It says, ‘Hey, I'm releasing my contributions under the
Berkeley Style License’.” (Po9)

57

Chapter 4 Security € Trust in Open Source Software Projects

This low number agrees with the personal impressions of some of our participants, . g., “[...] I think
that was the only time I ever had to [sign a CLA], and I’ve submitted lots of pull requests to many
different projects. It doesn’t seem to be very widely used.” (P24) In our interviews, projects affiliated
with corporate stakeholders or other organizations appear to be more likely to require a CLA.

Trust Incidents. The term “trust incident” can cover a wide field of potential incidents, including
social conflicts due to OSP often being community-focused. Still, the majority of participants, 20,
reported to never have experienced a trust incident (by their definition) in their projects. Described
trust incidents included drive-by cryptocurrency miner commits, failed background checks, and a pro-
active block after potential SSH key theft. Somewhat unsurprisingly, larger and likely older projects
appear to have had more experience with trust incidents in the past.

The fact that most projects have never experienced a trust incident is also reflected in their incident
handling strategy, with multiple participants reporting not having previously thought about such
cases, €. g., “[...] since it has never happened, it is not something I have thought about.” (P26) Reported
incident response strategies, especially by smaller projects, seem to be decided on a case-by-case basis,

€.g,

“[Incident response] is decided dynamically from case to case. The infrastructures are so
small that you can do this relatively quickly. So it’s not like in the company that we have
incident playbooks. There are too few people involved for that.” (Por)

Again, larger, and likely older projects appear to have a more codified incident handling strategy in
place. Two participants pointed to their project’s or organization’s code of conduct, which codifies the
steps to take in the case of a breach of trust:

“That is one place where then the code of conduct will start to kick in. We actually have
an enforcement section for code of conduct with a step-by-step escalation, which basi-
cally ends up with everything from just asking someone not to do something through to
banning them and removing access.” (P27)

Summary: Trust Processes. Most of our participants use some form of meritocracy for establishing
trust with new contributors, with some even assuming trustworthiness by default to facilitate first-
time contributions. The majority of participants never experienced a trust incident in their projects
and also did not establish specific trust incident strategies. Larger, likely older projects seem to have
more past experience with incidents, and often offer more specific strategies.

4.5.8 Opinions and Improvements

Lastly, we asked participants about both the internal and external reputation of their project in the
context of security, as well as how they would personally like to improve security and trust in their
projects.

With one exception, all participants reported a high internal reputation of their projects, e.g.,
“Amongst the people on the project, everybody trusts it a lot.” (Pog) and “We follow very, very high
standards there, mainly because we have a few people who are very, very keen on that.” (P11) The same
generally holds true for the external reputation, although many participants are unsure about the actual
awareness of the project outside of their community. Overall, our participants appear to take pride in
their projects, but are quite humble about their importance and reach in the OSS ecosystem.

We also asked our participants how they would like to improve security and trust in their projects,
assuming no limitations. For reporting, we roughly sorted the suggested improvements into mainly

58

4.6 Discussion

requiring more person-hours (1s), requiring more money (9), or requiring a different infrastructure (9).
Improvements requiring more person-hours focus on alleviating past software development decisions
and technical debt, e. g., “If I could, I would write the entire stack myself.” (P14) and “[...] I would
rewrite a lot of the code. That’s just a historical thing, because it has already become big and complex
[...] IE’s just like building a house; you'd have to build it three times before it becomes good.” (P20)
Another focus was enhancing the review process, e. g., “So the first thing I do is that a group of people
would review every pull request exclusively from the view of security.” (P2s)

Some of the improvements mainly requiring more money also translated into necessitating more
person-hours, just by buying the time, e. g.,

“I could always use more participants in the review process and so if I could hire some
people, if I had the disposable income to do that, I would probably hire people to get
more eyes on pull requests than just myself [...]” (P24)

and

“I think getting more tools and more CI-type tools to watch for that, because I think
humans are vulnerable [...] If T had unlimited budget and unlimited engineers, I'd really
work on improving our testing systems.” (P23)

Other money-based improvements included the introduction of security bounties:

“[Projects] mentioned they tried all the different kinds of things, and the only thing that
worked well was [a] bounty process, and having bounties, and being able to reward secu-
rity researchers to bring up the security issues.” (P1r)

For improvements requiring infrastructure, participants mentioned improvements to build and test
pipelines, e. g., “with unlimited resources, I would like some more investment into automatic tools
that are better in like finding vulnerabilities and problems with code.” (Po7) and “I would like to build
[the binaries] on my own machine and then ship the site final result. For anything binary related, that
would be way better than what we have right now.” (P18) Other participants mentioned transitioning
their projects’ codebases to other languages, e. g. Rust: “What I'd like to do is oxidize [the project] over
time, to integrate Rust and Rust code into the codebase — which is quite an undertaking [...] and an
incredibly tedious task to do it well.” (Po3) Overall, even improvements initially requiring more money
or a different infrastructure were traceable to the crux of all OSP: the need for more contributors.

Summary: Problems and Improvements.Our participants take pride in their projects, but are quite
humble about their importance and reach in the OSS ecosystem. Overall, even improvements ini-
tially requiring more money or a different infrastructure ended up targeting the project’s need for
more contributors.

4.6 Discussion

In this chapter, we investigated the security measures and trust processes of a diverse set of OSP. We
conducted 27 in-depth, semi-structured interviews with open source contributors, maintainers, and
owners to explore the following research questions:

59

Chapter 4 Security € Trust in Open Source Software Projects

RQr. “How are OSPs structured bebind-the-scenes?” Our participants described their contributor hier-
archy as being mostly based on two levels: a core group of maintainers tasked with reviewing code sub-
missions and with permissions to merge new code into the source tree and other contributors that are
subjected to a code review process. Most of the projects do not staff dedicated security teams, with some
relying on other teams for security, such as their I'T admins or their organization’s resources. Release
processes appear to be oriented towards practicality, including decisions based on direct community
input and feedback and utilizing package registries and other distribution infrastructures depending on
the needs of their users. Our participants appear to fully utilize modern build systems, including during
testing and deploy, with criteria for dependencies ranging from readily available metrics to elaborate
reviews.

RQ2. “If and what guidance and policies are provided by OSPs?” Our participants appear to diverge
in their opinion regarding the helpfulness of (written) guidance, with some preferring more hands-
on approaches to knowledge transfer. For security policies, rather large projects described dedicated
security teams, while smaller projects just offered a security contact point. Most projects mentioned
some type of disclosure policy or contact for security issues.

RQs. “How do OSPs approach security and trust challenges?” Most of our participants reported having
experienced neither a security nor trust incident in the past, although many of our participants were
familiar with suspicious or low quality commits, as well as potential vulnerabilities introduced by de-
pendencies. Most of our participants use some form of meritocracy for establishing trust with new
contributors, with some even assuming trustworthiness by default to facilitate first-time contributions.
Participants with larger, older projects more frequently reported incidents and approaches for incident

handling.

Below we discuss some of our additional findings in greater detail. OSPs are part of a larger connected
ecosystem of components, libraries, and software registries. A single compromised dependency can
introduce vulnerabilities into thousands of projects further down the chain, a fact that our participants
were keenly aware of:

“What we don’t have is the money to fix all the dependencies, like all the ones that de-
pend on the project because every backward incompatible change that we will do in the
project to address the security concern would have repercussions in the ecosystem that
goes beyond our own project.” (P22)

In general, project development as described by our participants appears to be highly community-
driven and practical: important decisions such as release windows, announcements, and distribution
infrastructure are all based on the input, feedback, and needs of contributors and users. Most projects
appear to handle security and trust incidents “as they happen”. This seems to be a pragmatic strategy,
as it seems unlikely that a project could cover all possible incident types beforehand, especially with the
limited personpower of smaller communities.

As mentioned by our participants, the combination of deep dependency chains and automatic
testing can lead to many false positive security warnings. These false positives can lead to a habituation
effect, as summarized by a participant:

“So one false positive is worse than missing a real vulnerability, in my opinion, because if
you miss a real vulnerability, everyone’s like, oh, we better care more about security. If
there’s a false positive, then everyone says, oh, security warnings are bullshit. It is much
harder to unwind the security-warnings-are-bullshit attitude than it is to make people care
about security.” (Po6)

60

4.7 Summary

Fittingly, we can let one of our participant’s words help with summarizing our general findings:
“Ultimately, I believe that people are the key. Automation is something that can help people. But in
the end, the people are like the ultimate barrier between the harm and the intent..” (P1o)

4.7 Summary

In 27 in-depth, semi-structured interviews with owners, maintainers, and contributors from a diverse
set of open source projects, we investigate their security measures and trust processes. We explore
projects’ behind-the-scene processes, provided guidance and policies, as well as past challenges and
incident handling. We find that our participants’ projects are highly diverse both in deployed security
measures and trust processes, as well as their underlying motivations.

As projects grow in scope and contributors, so grow their needs for security and trust processes. We
argue for supporting projects in ways that their growth supports. A small three person project will never
live up to security and trust measures provided by a 1,000+ maintainer project with corporate backing,
yet it should not be left out of any support. Interesting aspects for future consideration include the type
and applicability of support for small projects, as well as identifying measures with the best trade-oft in
working hours and security improvement.

Especially smaller projects handle security and trust incidents “as they happen”. Elaborated incident
playbooks and committee structures are likely of little use to these projects due to frequently changing
committers and structures. We surmise that especially these smaller projects could be better supported
with public, general example playbooks and resources for incidents, that they then can utilize when the
need arises. As researchers, we advocate against treating open source developers solely as data sources
and review process black-boxes, and instead to consider them as valuable partners in bringing security
and trust to OSS and software ecosystems as a whole. Overall, we argue for supporting open source
projects in ways that better consider their individual strengths and limitations, especially in the case of
smaller projects with low contributor numbers and limited access to resources.

The research presented in this chapter focused on the “producer side” of the open source software
supply chain, interviewing owners, maintainers, and contributors of open source projects, investigating
security and trust processes. Based on this idea, we extended this research with a project investigating
the “other side” of the software supply chain, covering security considerations in industry projects
around included open source components. I present this follow-up research is in the following chapter
Security Challenges of the Open Source Supply Chain (Chapter s).

61

Chapter 5

Security Challenges of the Open Source
Supply Chain

PEN SOURCE COMPONENTS hold important roles in companies’ and software teams’ products,
O setups, and processes. While external software components allow companies to focus on features
and faster delivery, they also introduces unique security challenges and attack surfaces, such as code from
potentially unvetted contributors and the obligation to assess and mitigate the impact of vulnerabilities
in external components. This chapter investigates security challenges and considerations in the context
of utilizing open source components in companies.

As this project was conducted as a team consisting of me, Jan Klemmer, Noah Wohler, Juliane
Schmiiser, Harshini Sri Ramulu, Yasemin Acar, and Sascha Fahl, this chapter utilizes the academic
“we” to mirror this fact. We conducted 25 in-depth interviews with software developers, architects,
and engineers from industry projects to investigate their processes, decisions, and considerations when
using open source code. Our fidings include that open source components play an important role in
many projects, and most projects have some form of company policy or best practice for including
external code. However, developers wish for more resources to better audit included components.

51 Preamble

This chapter is based on research that was also published as ““Always Contribute Back”: A Qualitative
Study on Security Challenges of the Open Source Supply Chain” [17], which will appear at the top-tier
security conference 44th IEEE Symposium on Security and Privacy (IEEE S&P 2023, “Oakland”) in
May 2023.

Dominik Wermke, J. H. Klemmer, N. Wohler, J. Schmiiser, H. S. Ramulu, Y. Acar, and S. Fahl,
““Always Contribute Back”: A Qualitative Study on Security Challenges of the Open Source
Supply Chain,” in 44th IEEE Symposium on Security and Privacy (IEEE S€P’3), San Francisco,
CA, USA: IEEE, May 2023

The original abstract for the publication is as follows:

Abstract: Open source components are ubiquitous in companies’ setups, processes, and soft-
ware. Utilizing these external components as building blocks enables companies to leverage the
benefits of open source software, allowing them to focus their efforts on features and faster deliv-
ery instead of writing their own components. But by introducing these components into their
software stack, companies inherit unique security challenges and attack surfaces: including code
from potentially unvetted contributors, as well as the obligation to assess and mitigate the impact
of vulnerabilities in external components.

Chapter s Security Challenges of the Open Source Supply Chain

In 25 in-depth, semi-structured interviews with software developers, architects, and engineers
from industry projects, we investigate their projects’ processes, decisions, and considerations in
the context of external open source code. We find that open source components play an impor-
tant role in many of our participants’ projects, that most projects have some form of company
policy or at least best practice for including external code, and that many developers wish for
more developer-hours, dedicated teams, or tools to better audit included components. Based on
our findings, we discuss implications for company stakeholders and the open source software
ecosystem. Overall, we appeal to companies to not treat the open source ecosystem as a free
(software) supply chain and instead to contribute towards the health and security of the overall
software ecosystem they benefit from and are part of.

The paper includes the following acknowledgements:

Acknowledgements: This work is supported in part by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA
- 390781972, NSF grant CNS-2206865, and the Google Research Scholar program. Any findings
and opinions expressed in this material are those of the authors and do not necessarily reflect
the views of the funding agencies. We want to thank all interviewees for their participation and
appreciate the industry-insider knowledge and valuable time that they have generously given. We
also thank the anonymous reviewers for their valuable feedback.

In addition, I would like to express my sincere gratitude to everyone who has contributed to the
completion of this project. I would also like to thank the participants again, who generously gave their
time and shared their experiences regarding open source components in their industry projects with
us.

5.1.1 Contribution

The research presented in this chapter was conducted as a team consisting of me as team lead, Jan
Klemmer, Noah Wohler, Juliane Schmiiser, Harshini Sri Ramulu, Yasemin Acar, and Sascha Fahl. I am
grateful for the contributions of each member, which have been integral to the success of this research
project. Without their expertise, hard work, and dedication, this research project would not have been

possible.

I came up with the initial idea for this study based on a logical follow-up to the previous paper “Com-
mitted to Trust: A Qualitative Study on Security & Trust in Open Source Software Projects” [16]. I
lead the design of the study and interview guide with the rest of the team. I implemented the land-
ing page and contact templates for this study, and iterated them with the group. Jan Klemmer and
I invited participants via the team’s professional network and from job postings on Upwork. I con-
ducted the majority of interviews either alone or with support from the rest of the team. In joint
work with Jan Klemmer, Noah Wohler, Juliane Schmiiser, and Harshini Sri Ramulu, we qualitatively
coded the interview transcripts. I analyzed the coded text passages and code counts. I compiled the
paper for publication with contributions from the remaining team and we jointly discussed the work’s
implications.

5.1 Preamble

5.1.2 Structure

The remainder of this chapter is structured as follows: After a general introduction (Section s.2), I pro-
vide the related work at the time of this project in early 2023, covering the areas of dependency analysis
and selection, security research with software developers, and security interview studies (Section s.3). I
then describe our interview approach (Section s.4) and highlight our findings (Section s.s). Finally, I
discuss our findings (Section 5.6) and provide a summary for this chapter (Section 5.7).

5.2 Introduction

5.2 Introduction

Open source components (OSCs) play an important role in many companies’ and software teams’
setup and processes. Whether as libraries and packages included in their software, as foundation or glue
for their development and deployment processes, or as part of an even longer software supply chain
itself: Utilizing external software components as building blocks in their processes and products enables
companies to leverage the benefits of open source software (OSS), allowing them to focus their efforts on
features and faster delivery. According to a 2020 RedHat report, 95% of I'T departments and companies
consider OSS as strategically important to their organization’s overall enterprise infrastructure software
strategy [273].

By introducing these external components into processes and their stack, industry projects inherit
the unique challenges and attack surfaces from open source projects: companies are including code
from potentially unvetted contributors and sources and are now obligated to assess and mitigate the
impact of vulnerabilities from external code included in their software. While not strictly open source,
the impactful SolarWinds Orion attack wave highlighted the industry’s vulnerability to compromised
external code components [296]. In December 2020, cybersecurity company FireEye discovered that
advanced persistent threat actors had created a backdoor hidden in a software update of SolarWinds’
Orion system, affecting almost 18,000 customers worldwide [297]. Malicious actors are aware of the
widespread use of OSCs in the industry and have tried to leverage this attack vector in the past: In
August 2022, 10 packages on the popular Python package index PyPI were found to be malicious by
Checkpoint [298]. Installing one of these packages triggered a malicious script, crawling the local
browser storage for passwords, cookies, and crypto-currency wallets, extracting them via a Discord
server hook. The integrity of OSCs is not only threatened by malicious external actors: In a so-called
protestware incident, the JavaScript node-ipc library (dependency of, e.g., @vue/cli and the Unity
game engine) was updated by the maintainer as protest to Russia’s invasion of Ukraine in early March
2022. Depending on version and if the machine’s IP matched a list of Russian or Belarusian addresses,
the library would replace all of the user’s system files with heart emojis [77]. This and other recent
protestware incidents highlighted that even initially well-meaning changes can be conceived as threats
to the software supply chain and harm the trust in OSS.

In this chapter, we aim to shed light on the security challenges and considerations of companies
and software teams around including OSCs in their projects and processes — by exploring industry
projects’ behind-the-scene processes, provided guidance and security policies, as well as past security
challenges and incident handling. Our research approach utilizes 25 in-depth interviews with software
developers, architects, and engineers from a diverse sample of industry projects and companies, to
investigate the importance of OSCs in companies’ software stacks, as well as related security challenges
and considerations, guided by the following research questions:

RQu. “How are Open Source Components included in companies’ tech stacks in terms of position, impor-
tance, and security effects?” OSCs hold an important role in many companies’ software stacks. We are
interested in the specific roles of these components in the software stack, as well as if and how these
components are considered in the update and security processes of the projects.

RQ2z. “What are companies’ awareness, experiences, and attitudes regarding the security of including
external open source code?” Including external OSCs in industry projects introduces unique security
challenges and attack vectors such as code contributions from unvetted sources. We are interested in
companies’ awareness surrounding the security of including external open source code, as well as their
experiences with, and past challenges of, including external code in the context of security and updates.
We are also interested in the companies’ attitudes about including, managing, and contributing back

Chapter s Security Challenges of the Open Source Supply Chain

to open source projects (OSPs).

RQs. “If and how do stakebolders make decisions and considerations around security and trust challenges
of including Open Source Components?” The major impact of security challenges in OSCs justifies
specific considerations. We are interested in measures that companies use to decide on including OSCs,
what decisions and considerations they have in place for the external code, and which improvements
and changes stakeholders consider.

5.3 Related Work

Disclaimer: This related work section reflects the state of prior research in early 2023 and is
provided to highlight the state of research at the time of this research project. For related and
concurrent work at the time of this dissertation, see Chapter 3: Related and Concurrent Work.

In this section, we present and discuss related work in three areas: research investigating dependencies
and the selection thereof, security research involving software developers and similar stakeholders, as
well as interview studies with a focus on security. We also put our work into context and illustrate the
novel contributions of our research.

5.3.1 Dependency Analysis & Selection

Dependencies are a popular (security) software research topic, as they can hide critical attack vectors
and attack surfaces. Dependency ecosystems are a common data source for measurement studies in this
field, e. g., for package repositories like JavaScript’s npm [112]-[117], Python’s PyPI [119], [299], Ruby’s
gem [120], R’s CRAN [121], and the wider software ecosystems like for Apache [122], Gentoo [123],
Java [124], [125], or Android [126]. The inclusion of third-party dependencies and the associated tech-
nical challenges have been studied and compared across a variety of software ecosystems [133]-[136]. In
2020, Ponta et al. presented a novel method for detecting vulnerabilities in OSS dependencies [300].
The propagation of vulnerabilities within the npm ecosystem has been studied with the help of de-
pendency trees [128] and dependency graphs [117]. The obfuscation-resilient detection of libraries in
Android apps has been advanced for in-depth analyses of apps with a focus on malicious third-party
libraries and malware detection [156]-[158]. The selection of dependencies is crucial for supply chain
security. However, it is also a major challenge because approaches, criteria, and metrics for good and
secure choices are hard to generalize and various exist. In 2010, for example, Mileva ez 2/. mined and
evaluated API popularity and trends for 200 Java projects [138]. The authors demonstrate that it is
possible to give adoption recommendations based on past usage trends. Similarly, libraries that are
already included in a project can also be used for further library recommendations, as Nguyen ez a/.
demonstrated with the library recommendation system CrossRec [139]. In 2020, Xu et al. surveyed
49 developers from GitHub and F-Droid to analyze reasons why developers replace own code with
a library, i. e. re-use, or re-implement a library’s functionality [110]. In 2018, Lépez de la Mora and
Nadi proposed a metric-based approach for informed adoption decision when selecting and comparing
libraries [143], [301]. Kula ez al. conducted an empirical study on library migration covering 4,600
GitHub software projects and 2,700 library dependencies, finding that 81.5% of the studied systems
still keep their outdated dependencies [109]. Supply-chain attacks and vulnerabilities that propagate
through the dependency chain have been systematized [91] and analyzed to inform the development
of protective measures [92], [172], to improve the accuracy of vulnerability alerts [93], and to better

68

5.3 Related Work

understand the factors that influence dependency vulnerability remediation in software projects [95].
Larios Vargas et 4l. identified 26 technical, human, and economic factors that developers consider
in their dependency selection processes based on 16 interviews and a survey with 115 developers [111].
More recently, in two preprints, Zahan ez /. utilized Open Source Security Foundation (OpenSSF)
Scorecards, both for investigating security features in npm and PyPI, as well as their impact on security
outcomes, highlighting some impactful features [222], [223].

Compared to prior work investigating dependencies utilizing measurements and systematization,
we leveraged interviews to investigate in-depth the real-world selection and inclusion practices of, and
experiences around, open source components in companies and software teams, providing additional
and enhancing insights to previous measurement results.

5.3.2 Security Research with Software Developers

Research investigating security aspects with developers, architects, and engineers working on industry
projects provide important insights into the security and health of the overall software ecosystem.

Past research investigated the security impact of different aspects such as decision-making [96], [97],
organizational changes [98], [99], and information sources [100], [101]. Stevens ez /. conducted a
multi-stage study with 25 industry employees investigating aspects of threat modeling [102]. Assal
and Chiasson surveyed 123 software developers about software security processes, finding that the real
issues frequently stem from a lack of organizational or process support [103]. More recently, Ladisa
et al. introduced a taxonomy for attacks on open source supply chains, validating their taxonomy by
surveying 17 domain experts and 134 software developers [173].

Similar to prior work with software developers, we consider industry developers and software teams
to play an important role in the overall security and health of the software supply chain.

5.3.3 Security Interview Studies

A common approach for in-depth, qualitative research in the security community are interview studies.
Prior interview studies were conducted to establish the security needs of expert communities such as
journalists [255], editors [256], and victim service providers [257]. As part of larger studies, interviews
allow insights into specific mindsets and approaches, e. g., for encryption tasks [246] or Tor usage [247].
Huaman ez al. conducted 5,000 computer-assisted telephone interviews with small and medium en-
terprises in Germany, finding that security awareness has arrived in all companies [21]. More related to
this research, past research has utilized interviews to gain insights into the work and tools of experts
such as security professionals [252], app developers [248], administrators [249], [251], and security ana-
lysts [253]. Specifically, Botta ez al. interviewed 12 security management professionals, finding that the
job of IT security management is distributed across multiple employees [250]. Haney ez 4/. conducted
21 interviews in organizations including cryptography in products, finding an uniquely strong security
mindset in those companies [302]. More recently, both Jansen e# /. and Ghofrani et al. conducted
smaller-scale interview studies with industry developers investigating the trust aspect of external soft-
ware [260], [261]. Compared to these smaller-scale, preliminary works, our work focuses less on specific
trust aspects, with our approach covering the broader topic of OSC in companies, covering real-world
usage, company policies, and security considerations. Gutfleisch ez 4/. interviewed developers about
usability considerations in their secure software development processes, identifying a high impact of
contextual factors [263]. Wermke ez 4/. interviewed 27 open source maintainers about security and
trust considerations in their projects, finding that the projects were highly diverse both in deployed

Chapter s Security Challenges of the Open Source Supply Chain

security measures and trust processes [16]. Similar to Wermke ez al., we also decided on leveraging 25
in-depth interviews to gain detailed insights into participants’ perceptions, behaviors, and reasoning,
focusing on the “other” end of the open source software supply chain, interviewing stakeholders of
industry projects in the context of OSCs they use.

Overall, we leveraged 25 interviewes with participants from industry projects to investigate the
broader picture of OSCs in companies and software teams, covering topics including, but not limited
to, real-world usage, company policies, and security considerations.

5.4 Interview Study

In this section, we outline the interview approach including the structure of our interview guide, the
subsequent coding and analysis steps, ethical considerations, and potential limitations of our research
approach. The full interview guide and codebook are included in the appendix (cf. Sections B.r and
B.2).

5.4.1 Study Setup

To investigate security considerations and experiences around OSCs in companies and software teams,
we conducted semi-structured interviews (2 = 25) with software developers, architects, and engineers
experienced in industry software projects between May and October 2022. We opted for interviews as a
qualitative approach, because we wanted to focus our investigation on processes not necessarily visible
on a software level and rationales, e. g., how a decision for or against including a component is made,
how incidents are handled internally, or what the (potentially unwritten) policies for including external
code look like. Conducting this research study as interviews also allowed us to explore participants’
decisions and considerations in-depth by asking follow-up questions.

Interview Guide. We conducted the interviews with an established interview guide based on our
research questions. In addition to our research questions, we also considered concepts and findings
from previous and ongoing related work and adapted them for in-depth interviews. We gathered
feedback from, and tested the initial interview guide with, pilotinterviews in the team and with industry
stakeholders from our professional network. After the initial pilot interviews, we only performed
relatively minor changes: Adding a few minor follow-up questions to improve coverage of interesting
areas as well as updating some question wording and moving questions between interview guide sections
for better interview flow. No further changes beyond minor grammatical modifications were added
after the 8th interview. The full interview guide is included in the appendix (cf. Section B.1).
Recruitment and Inclusion Criteria. We based our recruitment approach around covering a diverse
set of industry projects utilizing OSCs. For recruitment, we utilized multiple recruitment channels to
better reach a diverse set of companies from different historical, structural, and industry contexts. This
included recruiting expert talent via Upwork and our professional network:

1. Industry Experts. For recruiting expert talent, we turned to Upwork, a platform for professional
developers and freelancers. We posted a job posting for our interviews and specifically selected
participants based on their experiences working in company projects utilizing some form of open
source, aiming for a diverse sample with a broad coverage of the industry.

2. Professional Network. In addition to Upwork, we enhanced our sample with professionals from
our own network, specifically targeting software solutions that are less commonly encountered in
industry but still play important roles, such as embedded hardware or research software projects.

70

5.4 Interview Study

Table s.1: Detailed overview of interviewed software developers, their projects, as well as some project

metadata. According to our interview guidelines, participants were assigned an alias and their

projects’ metadata was binned to preserve their privacy.

Alias Interview Projects
Duration Codes! Recruitment Channel — Position> Area Software Stack?*
PO1 46:21 31 Professional Network Developer Machine Learning Python, Flask, AWS
P02 50:59 34 Professional Network Sec Engineer Finance, VR JavaScript
P03 33:54 29 Professional Network Lead Dev Embedded C,STM32
P04 29:02 29 Professional Network Team Lead Mobile Android
POS 39:19 31 Professional Network Lead Engineer Framework Python
P06 30:21 26 Professional Network Developer Industry Java, Spring
P07 38:20 25 Industry Expert Senior Engineer Finance Node.js, SQL
P08 54:15 24 Industry Expert Lead Dev Web Apps PHP, Laravel, MySQL
P09 35:17 36 Industry Expert Lead Dev Web Apps Angular JS, ASP.NET, Python, C#
P10 40:33 27 Industry Expert Architect Various Java, Maven, Terraform
P11 41:01 26 Industry Expert Senior Engineer Enterprise Apps Java, Node.js, Angular JS
P12 52:04 27 Industry Expert Founder Enterprise Apps Java
P13 25:20 30 Industry Expert Developer Web Apps PHP, WordPress
P14 36:50 28 Industry Expert Developer Backend React
P15 49:51 19 Industry Expert Consultant Various Java
P16 49:24 35 Industry Expert Developer Finance Angular JS, Vue.js
P17 26:25 30 Industry Expert Architect Various ASP.NET, Angular JS, React Na-
tive
P18 39:25 32 Industry Expert Developer Mobile Android, Spring, Angular JS
P19 27:39 30 Industry Expert Expert, Architect ~ Embedded Terraform
P20 29:04 33 Industry Expert Developer Enterprise Apps ~ JavaScript, Ruby on Rails
P21 33:29 22 Industry Expert Developer Health & Wellness Java, PostgreSQL
P22 51:04 28 Industry Expert Team Lead Web Apps JavaScript, React, Node.js
P23 28:09 25 Industry Expert Developer Web Apps .NET, C#, React
P24 43:04 28 Industry Expert Developer, Auditor Mobile C++, C-Basic, C#, Flutter
P25 33:56 30 Industry Expert Developer Blockchain React, Python

! Total number of codes assigned to the interview after resolving conflicts.
2 Based on self-reporting of participants and binned to preserve their privacy.

See also Table 5.1 for an overview of interviewed participants and corresponding recruitment chan-

nels. Due to the previous filtering, we did not require any additional eligibility criteria from our par-
ticipants beyond stating that we were looking for professionals working on industry projects utilizing
OSCs. In total, we recruited 25 participants from equally as many distinct companies and projects.
As compensation for their valuable time as domain experts, we offered each participant $60 or the
equivalent value in local Amazon vouchers.
Interview Procedure. We conducted the 25 interviews either in a solo interviewer or lead and backup
interviewer configuration. We chose the lead and backup interviewer setup so that the lead interviewer
can fully concentrate on asking questions and listening to the interviewee, and the backup interviewer
could ensure that no questions are forgotten, ask additional follow-up questions that emerge, or take
over in case of any connection issues. We conducted all interviews virtually; mostly via our self-hosted
Jitsi instance, or any other tool of the participant’s choice (e. g., Zoom, Google Meet, etc.). We advertised
the interviews with a duration between 35—45 minutes depending on answer duration and scheduled
one hour interview appointments for some time to spare. Overall, the median duration of the actual
interview part, excluding short introduction, consent gathering, and debriefing, was 38:20 minutes.
In general, the interviews were based around non-leading, open questions, allowing interviewees to
elaborate their thoughts and answers. Each interview section started with a general question, allowing
participants to freely state what they had on their mind. Only if specific points were not already
addressed by that time, we asked more specific sub-questions as follow-ups. All interviewers were

71

Chapter s Security Challenges of the Open Source Supply Chain

L. Projects and Participants
Establish participant’s industry context, past and current projects, as well as general project
structure and tooling.

2. Usage of Open Source Components
Explore usage behavior, criteria for OSC selection, as well as the how these components are
integrated in the projects.

3. Security Policies and Guidance
Identify security policies and guidance regarding external code, policy content, and applicability.
Investigate how and by what policy OSC-related security incidents are handled.

¥
4. Experiences with Open Source Components
Establish general experiences using OSCs, how they are updated, and how they are related to
releases of the actual project.

5. Challenges and Incidents
Establish opinions of a past incident and general handling of OSCs incidents, previously en-
countered supply-chain related challenges, and inconveniences in participants’ projects.

¥

6. Problems and Improvements
Explore participants’ view on problems and potential improvements of the software supply
chain.

Figure s.1: Overview of the semi-structured interviews’ flow and topics. After introducing each section
with a general question, we followed-up with specific questions (if not already covered). Due
to our semi-structured interview approach, participants were allowed to diverge from this
flow at any time.

instructed not to prime participants through the questions and not to impart any sense of judging,
e. g., regarding specific OSC choices or security practices.

5.4.2 Interview Structure

We report on the structure of the semi-structured interviews below and in Figure s.1. The interviews
were structured in six main sections consisting of one to four opening questions, corresponding follow-
up questions, and sometimes additional nudges or explanations. We also report on the results from the
interview in sections corresponding to the interview guide’s question section (cf. Section s.5).

Before starting the interview, we provided participants with a general introduction of ourselves and
our research project, followed by an explanation of our goals, the interview process, and the interview’s
role in that process. We specifically affirmed participants that participation in the interview is voluntary,
that they could skip any question for any reason, that we were not judging their projects in terms
of security or privacy, and that we were also very interested in their personal thoughts and opinions

72

5.4 Interview Study

about processes. We guaranteed full de-identification of any quotes we might use and offered to send
participants a preprint of the potential scientific publication based on their interviews.

After answering any remaining questions and obtaining consent for data handling and recording
from the participant, we started a recording and began the actual interview with the following structure:

1. Projects and Participants. In the first interview section we asked our participants to describe their
projects, their relation to it, as well as project structures and tooling. This section intends to both ease
nervous participants into the interview as well as to establish some initial context about the participant
and their projects. Specifically, we prompted for project context and structure, team size and tools, as
well as for the development process and stages. We report these results in Section s.5.1.

2. Usage of Open Source Components. Both the “Usage of Open Source Components” and “Thoughts
about Open Source Components ” sections investigate the usage of open source components in our par-
ticipants’ projects. Specifically, we were interested in the technical implementation and processes,
selection and exclusion criteria for open source components, as well as whether they contributed back
to open source projects in some way. We report these results in Sections 5.5.2 and 5.5.3.

3. Security Policies and Guidance. Our third block of questions covers security policies and guidance
for including external code like OSC in projects. We asked about company policies and project-specific
guidance or documentation for the inclusion of external code, and the participants’ personal opinions
and wishes regarding these. Additionally, we investigated the general processes and policies for security
incidents in external components. We report these results in Section s.5.4.

4. Experiences with Open Source Components. The fourth section focuses on the participants’
personal experiences with OSC in their projects. Our questions covered aspects such as the developer
experience of using OSCs and if components had to be customized for the projects. We also investigated
the update, release, and deprecation procedures of the projects in the context of external components.
Lastly, we asked whether our participants would use the same components again and why. We report
these results in Section s.5.5.

5. Challenges and Incidents. In the fifth interview section “Challenges and Incidents”, we are inter-
ested in specific OSC-related security incidents and inconveniences experienced by our participants in
the past. To ease our participants into this sensitive topic, we asked them about their opinion regard-
ing open source software supply chain security of the “node-ipc protestware” incident from March
2022 [77]. We inquired about participants’ opinion of the incident, as well as for their strategies to deal
with similar incidents in their project. We then specifically asked them about any OSC-related security
incidents or inconveniences their projects might have encountered in the past. We report these results
in Section 5.5.6.

6. Problems and Improvements. In our final interview section, we investigate our participants’ opin-
ion of their projects’ security, as well as problems they see with the current software supply chain and
their suggested solutions. We report these results in Section s.5.7.

Following the interview sections, we asked our participants for any additional insights and aspects
that we might have missed or they wanted to talk about. After completing the interview, we thanked
them for their valuable time and offered them an opportunity for questions and comments, concluding
the interview with a debriefing.

5.4.3 Coding and Analysis

For our evaluation of the interviews, we recorded the audio of interviews digitally, removed identifying
information from recordings, transcribed them via a GDPR-compliant service, and manually reviewed

73

Chapter s Security Challenges of the Open Source Supply Chain

all transcripts for potential transcription mistakes. We analyzed all interview answers in an iterative
semi-open coding approach [289]-[291]. All researchers together established an initial codebook based
on the interview guide and interview impressions. Five researchers then iteratively coded the interviews
according to the codebook in multiple rounds, resolving conflicts by consensus decision or by introduc-
ing new (sub)codes after each iteration. We continued with our iterative coding approach until no new
codes or themes emerged [292], [293]. Our approach does not necessitate the reporting of intercoder
agreement, as each conflict is resolved when it emerges (resulting in a hypothetical final agreement
of 100%) [303]. In total, we assigned 715 codes after resolving, resulting in a median of 29 codes per
interview. The final codebook is included in the appendix (cf. Section B.2). As part of discussing our
results, we report on some counts. We want to highlight that counts from a qualitative interview study
with a sample selected for diverse background are not intended to be representative counts for the wider
developer population, but are included to give some general idea about the distribution of codes and
to highlight especially prevalent or underrepresented themes in the interviews.

5.4.4 Ethical Considerations & Data Protection

This interview study was approved by our institutions’ Institutional Review Board (IRB) as well as Hu-
man Subjects Review Board (IRB equivalent). Our study was modeled after the ethical principles for
research involving information and communication technologies outlined in the Menlo report [294].
The research plan, study procedure, and all involved research parties adhered to the strict German
data and privacy protection laws as well as the General Data Protection Regulation (GDPR). Before
signing up for interviews, we provided participants extensive information about our study procedure
and data handling, encouraged them to get informed before making a decision, and offered to answer
any questions they may have had. We emphasized to participants that they could skip any question for
any reason such as not knowing an answer, not wanting to answer, or not being allowed to answer, as
well as that they could drop out of the interview at any time. We offered participants to provide them
with a preprint of the paper before publication, allowing them to request changes or to correct misun-
derstandings. To compensate our domain expert participants, we oftered them $60 or the equivalent
value in local Amazon vouchers.

All data was collected, handled, and stored in compliance with the EU’s GDPR. In accordance, any
personally identifiable data was stored in a secure cloud collaboration software, encrypted at rest as well
as in transit. For transcribing the interviews, we commissioned an EU-based, fully GDPR-compliant
transcription service.

5.4.5 Limitations

A number of limitations typical for this kind of interview study apply to our work, including poten-
tial over- and under-reporting, self-reporting, recall, and social-desirability biases, as well as sampling
bias. Our sample is a convenience sample which may not be representative of the larger population of
developers working on industry projects utilizing OSC. Experts who agreed to participate in our study
might be more or less open source or security-oriented than those did not sign-up for an interview.
We conducted our interviews in English, so we cannot provide insights into non-English-speaking
industry projects. As English is the de-facto “working language” of international software projects, we
consider this a negligible drawback that still allows us to reach a meaningful set of developers. Since
questions about security practices and incidents can be considered sensitive, we attempted to mitigate
social desirability bias by emphasizing that we were not going to judge the participants or their answers

74

5.5 Results

in any way but were genuinely interested in their processes and opinions. We also reminded them that
they could skip questions as desired and for any reason.

5.5 Results

We report and discuss results for 25 semi-structured interviews with software developers, architects,
and engineers. In our reporting, we mostly adhere to the structure of the interview guide described
in Section 5.4.2 and summarize our key findings after each question block. We report participants’
quotes as transcribed, with de-identified information, minor grammatical corrections, and omissions

highlighted by brackets (“[...]”).

5.5.1 Projects and Participants

In total, we interviewed 25 valid participants, reporting on their projects and background in this sec-
tion and Table 5.1. We only report binned project metrics to preserve both our participants’ and their
projects’ privacy. Due to our recruitment approach aiming for a high diversity in projects, our par-
ticipants reported a wide range of projects and backgrounds, ranging from web applications, over
embedded devices, to scientific computing frameworks.

As the vast majority of our participants (23) had worked on multiple projects in the past, we en-
couraged them to highlight aspects of their projects as they saw fit. The majority of our participants
(22) worked or had worked on projects in teams, specifically with two to five (9) or more than five (13)
developers. About half (13) mentioned having worked on projects with multiple teams, e. g., “We are
a very flat team, so basically everyone is on the same level. We discuss things together and we work to-
gether. We have a development team for back-end code, for front-end code, and the design team.” (P13)
We were also interested whether this included specific teams or members with a security background:
11 participants mentioned security-specific roles on their projects, e. g., “Yes, we have online software
security engineer or cybersecurity engineer [...]. Then you have more dedicated roles for the infor-
mation assurance processes and some of the other cloud based [services].” (P19) These 11 also include
security-specific roles provided by clients, e. g. for Pr2: “Actually, most of the time, our clients are en-
terprise clients and we hand over the codebase to them and then their security team.” (P12) About half
of our participants (13) specifically mentioned not having someone with security-specific background
or experience in the loop, €. g., “No, I haven’t worked with any company [that] had something like [a
security-specific role].” (P18)

Overall, we found our participants to be quite knowledgeable about their projects, with many years
of experience in different areas of software development. This allowed us in-depth insights into the
considerations around OSCs in their projects, a goal we hoped to archive with our recruitment strategy.
Based on our findings, an interesting area for future research could be how security processes differ
between the different industry areas.

Summary: Projects and Participants. The majority of our participants had worked on multiple

projects in a diverse set of software areas, and in different team configurations and sizes. Only
about half mentioned security-specific roles in the development loop.

75

Chapter s Security Challenges of the Open Source Supply Chain

5.5.2 Usage of Open Source Components

In this interview section, we were interested in the general usage and selection criteria of OSCs (for
specific experiences with OSCs, see also Section s.5.5). All 25 of our participants mentioned using OSCs
in their projects (unsurprisingly, as we specifically selected for this), e. g., “Every solution that we have
built, we heavily use open-source components.” (P10) Some participants even voiced a philosophical
attachment to the idea, . g., “We are using a lot of open-source things because, by philosophy, we like
to embrace open-source community” (Po7), including perceived benefits such as reduced maintenance
burden:

“The software are well maintained, and we don’t have to focus on maintaining the work.
We can just use them, and if we see any problems, we can contribute to this and we don’t
have to do any in-house maintenance.” (Po7)

For pulling in OSCs into their build processes, our participants have a number of different approaches,
often relying on the (semi-)official package repositories such as PyPI or npm, e. g.,

“So for builds we use npm and also some other package managers. Usually it’s a mixed
project with different code bases, and we pull the packages directly from the package
managers. I don’t think we currently have any that are not managed by package managers,

which is great.” (Po2)

Aside from package repositories, some participants mentioned directly pulling from repositories if
there are no other options available: “[For] some of the dependencies, if either the current version is
not maintained [on PyPI] or for some machine learning tools [...] we pull them directly from the Git
repo for them.” (Pox) Others mentioned directly pulling from GitHub as a potential security concern:

“I think some components are fairly secure because we draw from sources posted and
maintained by hardware manufacturers. [...] These are open source components, but
they have major corporate backing behind them, and we’re not pulling it from GitHub.”

(Po4)

Some participants specifically mentioned configuring and modifying OSCs to fit their needs and the
requirements of their projects: “We pull them in, and then all of these open source components, we
take them and then we do a bit of work on it ourselves. So, for example, we run packet managers and
we add an external code.” (P17)

Updates & Releases. As for keeping their OSCs up-to-date, our participants seem to follow the same
pattern for pulling in components, i.e., relying on the package management tools of their software
stack, including tools like npm audit: “We even have a mechanism that lets the build fail if there is a
component that could not be updated if an update is available or if there is a vulnerability reported by
npm, for example.” (Po2) Others routinely revisited included components:

“It’s some of the external dependencies that, yes, can go out of date or can disappear,
that are more of a cause of concern. That’s why we periodically revisit that whenever we
upgrade or whenever we make a new release.” (Po4)

Outside of the build and update process, some participants mentioned to keep track of included com-
ponents via their package managers, but only one specifically mentioned maintaining a Software Bill
of Materials (SBOM):

76

5.5 Results

“We do regular scans, we build Software Bill of Materials [...] and we put those Bill of
Material files into Dependency-Track which is free software, open source provided by
OWASP that we also use for vulnerability management and overview.” (Po2)

Both tooling and research around the recently established SBOM format might present a promising
research opportunity.

Of our 25 participants, 14 mentioned that they (at least partially) use internal mirrors for pulling
software into their build processes, e. g.,

“We do use internal mirrors mainly for speed and convenience, especially large code bases.

[...] Usually, when we clone from those internal repositories, we’re going to use fixed

commits from it, so it makes development a lot easier.,” (Po4)
and three participants mentioned other solutions like local build caches: “We have a local cache. So
we try to have everything pulled only once and put it in our cache, but sometimes we get upstream
changes, so we pull it from there.” (Po3).
Selection Metrics. We were interested in what metrics and criteria our participants use for deciding on
and selecting OSCs. Most commonly mentioned metrics included: Some form of popularity measure
like downloads or GitHub stars (16), a large and active community (11), specific features (10), and activity
measures like commit frequency and recent releases (10). We were also interested in what criteria would
exclude an component from being used by our participants. Most common exclusion criteria included:
the project being visibly inactive (s), a low number of contributors (4), and specific company policies
(3). On the security side, participants mentioned looking for a positive security history (8) and exclusion
based on vulnerable or malicious code (3), e. g.,

“if the vulnerability score is ridiculously high, obviously, then we would not allow that
[component]. Also, if certain vulnerabilities exist for functionalities that we want to
actually use, if those are compromised, then obviously it’s not a good choice.” (Poz2)

Lastly, we were interested in whether our participants had used or heard of recently emerging automatic
metric tools before, such as the OpenSSF Scorecards for repositories. The majority (r7) had not, and
only four had heard of (but not used) the OpenSSF Scorecards project specifically: “Yes, I have heard
of those, but we have not used them yet.” (Po2) For other metric tools, e. g., Pr2 mentioned: “We are
using some integrated code quality tools, and there are some predefined, maybe hundreds of rules to
check the quality of the code. These tools also provide a feedback on code security.” (Pr2)

Overall, our participants’ selection metrics and criteria seem to focus on quickly accessible numbers
and facts, such as downloads, GitHub stars, and time since the last release. Understandably so, as there
a often many different open source packages to be considered for each use case.

Summary: Usage of Open Source Components.All of our participants included OSCs in their
projects. About half maintained internal mirrors or caches for their builds. Common selection and
exclusion criteria included easily visible metrics like activity, number of contributors, or GitHub
stars.

5.5.3 Thoughts about Open Source Components
Aside from our participants’ usage of OSC in their projects, we were also interested in their thoughts

about supporting the open source ecosystem, company policies prohibiting packages, and which met-
rics they would like to use for selecting components.

77

Chapter s Security Challenges of the Open Source Supply Chain

We asked participants if their company contributed back to open source projects in some form
including pull requests or issues, which 14 do and five would like to, e. g., “We rarely submit PRs, but
we submit issues, and if we find some bugs or enhancements regularly, because, often, there are some
bugs, and also, we found a few security-related, actually.” (Pox) Some participants even mentioned
contributing back as a company policy:

“We also do heavy contribution on anything that is being leaky, or if something is not
looking right, we always create issues. This is something that we also have in our company
policy: Always contribute back.” (Po7)

Sometimes, this contribution was out of necessity:

“[A feature] never made to production because the [open source] project went dead com-
pletely. When we were thinking about the operation of the new release, we basically had
to take over, fork it, and then implement that feature on our own.” (P1o0)

Some participants suggested that their management or legal departments do not fully understand the
open source ecosysten.

For the three cases where company policies prohibit specific packages, reasons often involved the
package’s license: “Many open source projects are using different licenses, some of the licenses are not
okay for big projects [...] we check if this package is using restricted license [...] ” (P24) and “There are
no rules, except that the license has to be compliant with what we do.” (Por) Some mentioned that they
include their clients in these decisions: “There are certain exclusion criteria based on our customers’
concerns. For example, if they don’t want us using products from certain companies, then we don’t do
that.” (Po4) We were also interested in what selection criteria our participants would like to use if they
could. The wishes included specific (free) software solutions:

“I think there are many interesting software solutions as far as I could see. So most of
them, obviously, combined with costs. I saw a lot of software that is supposed to help
with managing third party vulnerabilities and so on and used for scanning. It’s always a
question of the price and most of the time I would say it’s not really worth it.” (Po2)

as well as security-focused metrics: “It would be nice to have some security metrics. How much security
leaks [the project] has, or in what time frame it will be fixed, or what time frame fixed for last issues.”
(P1x) Based on our findings, we suggest developers might require metrics and tools that are still simple
and free, yet cover more aspects of an OSC than just popularity.

Overall, our participants seemed to have a very positive attitude about open source projects and are
aware of the importance of contributing back.

Summary: Thoughts about Open Source Components.Most projects contributed back to open
source projects in some form or would at least like to, with some participants suggesting that their
management or legal departments do not fully understand the open source ecosystem. Some par-
ticipants mentioned that their company’s policy prohibited them from using certain open source
packages, mostly due to non-permissive licenses.

5.5.4 Security Policies and Guidance

In this interview section we were interested in the policies around OSC usage in projects, as well as
provided guidance and documentation for external components. More than half (16) of our participants

78

5.5 Results

mentioned some form of company or team policy for including external code in their projects. These
policies range from quite strict: “Every single third party library that is used, installed, involved in our
projects is vetted and must be approved.” (Po2), over somewhat more lenient: “We can use anything
that is signed oft by our CTO and our project lead. Like any piece of code that has been vetted by them,
we are free to use it on our projects.” (Po7), to fully placing trust on the individual:

“[The policy is to] make sure that the plugins or open source components that we use are
still updated and they’re still supported. We wouldn’t want to include something very
old, but it very much depends on the developer to make sure of that.” (P13)

This number also includes more or less informal policies that are nonetheless applied by the developers
of the project, such as: “Not on a systematic basis, but most of the time my team if we are using a
new library, that we are going to use it for the first time, we are actually checking it in vulnerability
databases.” (P12) Participants also mentioned policies influenced by external laws and standards such
as HIPAA: “If we are including something which is not self-hosted, then we have to take [HIPAA]
into consideration with what they claim happens with the data on their end.” (P17) as well as ISO:
“In some [client] companies, [policy] follows the standard security programs like ISO and things like
that.” (P1o) Other policies are less concerned with actual security and more with copyright, e. g., “at
[company], we were allowed to use things like npm and Angular, but we had to basically extract all the
legal stuff, so the licenses basically, compile a list and give it to them.” (P16)

We were also interested in what our participants wished to see in a (security) policy for external code,
which included some more general advice “You need to have clear guidance on how to select packages,
which quality, how you would define the quality of the package.” (P16) as well as specific security
considerations such as: “[...] doing searches to see if the software that we’re considering using has had
any prior issues, whether it’s security issues, whether they’ve been disclosed through penetration testing
or through some other means [...].” (Po9) Both Pr7 and P18 mentioned why such a policy might not
be relevant or even a good idea for every project size: “For small projects, I don’t think those policies
would help because they would create more governance and more red tapes.” (P18) and

“With the size of our team I don’t believe it’s really needed, because if a developer wants
to include a component, the code is generally reviewed before it goes in by people who
would be in the know whether or not this component can be included. And in general,
during the initial discussion of when we are explaining what needs to be done and they
are giving their thoughts on it, is when we decide what needs to be included and what
doesn’t.” (P17)

As part of policies, we were interested in how a potential security incident in an external component
would be handled, by what policy, and by whom (for actually encountered incidents, see Section s.5.6).
Only six of our participants mentioned that they would involve or hand a hypothetical incident to a
security team, e. g., “We’ll tell [the security team], hey, this needs to be patched pretty soon, and if it
doesn’t happen then we escalate it to the management above it, and we exert pressure on both ends.”
(Po4) P18 provided us some insights on why a security team does not necessarily make sense for every

company structure:

“There’s no security team that specifically would do that because if there is a team that
exists that only does that, they would probably just sit on their hands with nothing to do
a lot of time, and this team needs to work across different projects across the company,
then that they can handle that because the different projects in a company probably have
alot of languages, different languages, different frameworks. There’s no way either they

79

Chapter s Security Challenges of the Open Source Supply Chain

will know enough to poke in the project and respond fast enough, or there’s no way the
company is willing to pay money for that for a team that doesn’t produce anything.” (P18)

We were also interested in whether companies had included a disclosure policy for security issues.
Only seven participants mentioned something akin to a disclosure policy for the public or their clients,
e. g., “Yes, we do. Well, a policy for coordinated disclosure [...]. Internally, we try to fix it as quickly as
possible and only then disclose it.” (Pos) Other companies appear to be in the process of implementing
a disclosure policy, e. g., as mentioned by one participant:

“I guess the organization that kind of writes the standards that we follow is trying to adopt
widespread disclosures of historical and current cybersecurity threats, but at the moment
I'have not seen any of those come out yet.” (P19)

Opverall, most participants mentioned some form of policy or common best practice in their teams,

although some of the company policies seem more focused on fulfilling external standard or law re-
quirements instead of ensuring the security of included external components.
Guidance & Documentation. A small majority of our participants (14) did mention not having spe-
cific documentation or guidance for OSCs in their projects. As reasons for not providing specific
documentation, participants mentioned extensive approval processes and sufficiently experienced de-
velopers:

“It sounds like it would be just something to add to the pile because we already have ap-
proval processes and usually our developers are at least somewhat experienced and they
have seen many things before [...] For other firms, for other companies, it definitely might
make sense.” (Po2)

Reasons for providing documentation included easier onboarding and supporting new developers by
providing them with wrapped, documented versions of OSCs: “We document [wrapped OSCs], and
we present these in-house made components to our new developers with a good documentation and
they know how they operate.” (P12) Our participants seemed to agree on the usefulness of having
documentation for these components and processes, e. g., P13 said: “But [having some documentation
for included OSCs is] a very good point. We should definitely have something like that because it’s not
always going to be me.” (P13)

Overall, our participants appear to provide documentation for included components based on their
given requirements and team context, with accessibility for mostly new developers in larger teams on
the one side of the spectrum, to experienced developers with other processes in smaller teams on the
other side.

Summary: Policies and Guidance.Most projects had some form of company policy or at least best

y proj pany policy

practices for including external code. Relatively few had dedicated security teams or a disclosure

policy. Perspectives on providing documentation appear to depend on the team context, with larger

documentation support being seemingly correlated with larger team size and the number of less
pp g gy 8

experienced developers.

5.5.5 Experiences with Open Source Components
Aside from general usage and policies for external code, we were also interested in participants’ past

experiences with OSCs. Overall, our participants voiced a positive to very positive opinion about their
experiences with the open source ecosystem, e. g., “[i]t’s great. It’s a very vibrant ecosystem and you

8o

5.5 Results

have a plethora of options to use,” (P16) “I would say pretty good. I like [the open source ecosystem]
alot. It’s really easy to have issues and get them resolved,” (P23) and “open source technology and
components are very attractive. They have to be because if not, you’re not going to use them.” (P1s)
Multiple participants mentioned a very important or key role of OSS in the overall software industry,

e.g.,

“I think open-source components or open-source software in general has [a] very impor-
tant role in overall software development industry. Whether companies are developing
commercial solutions or building open-source or free solutions, they play a very important
role.” (P1o)

as well as: “So [the ability to talk with maintainers] is why I feel that they really help us to accelerate our
process of development and are pretty much a cornerstone of the software industry today.” (Pr7) A
common theme for the usage experience of OSCs was the friendliness and openness of the open source
communities, e. g., for questions “[‘open-source project’] says if we find any question, there is always a
community back there to answer whatever we need,” (Po7) and for better understanding the structure:

“[...] when we talk to them and try to understand why something is built a certain way
or not, most of them will be open to sitting down and having a discussion, and even in
cases allowing us to help them change something for the better or for a completely new
feature.” (Pr7)

This theme also included the ability to easily file issues (and get them resolved), e. g.,

“[t]here are always issue trackers where you can flag any problems you have. I think I went
into one case where we didn’t have to put the issue up ourselves because that was already
flagged by other users of the component” (Po6)

and “If there is a breaking change, we don’t have to think about it, we just have to create an issue on
the parent or the maintenance repository and they take care of making this in the next version.” (Po7)
Further positive attributes of OSCs mentioned by our participants included speeding up development
of their projects, e. g., “[open source software] has allowed us to develop much quicker or develop
applications more quickly using a lot of open source tools as part of the overall application, so I'm a big
proponent of open source software” (P19) and overall good code quality: “So I have always particularly
really liked the open source industry and what they provide, because if you go to see the code quality
in most of these projects it is really good and they do cover a lot of use cases.” (P17)

Importance of Documentation. We specifically inquired about the setup experience of open source
components, and multiple participants mentioned that they see a good documentation as quite crucial
for a good experience when using OSCs, e. g., “I remember when I was junior or new in this open-
source side [...] It was quite hard to set up or test or check or find the documentation, etc., but when
you get used to it, it’s mostly intuitive” (P1r) and

“It depends on how good the documentation is [...] Some people just write terrible docu-
mentation or they just don’t write it at all. I think depending on how good they are, that
can make your experience either very good or very bad.” (P23)

Our participants seem to be divided on the actual state of documentation for OSCs, with some
negative experiences on the one side, ¢. g.,

81

Chapter s Security Challenges of the Open Source Supply Chain

“[m]y general experience with this technology is that there’s a lack of documentation some-
times [...] there’s more documentation and examples from the private software because
of course, you’re paying for the documentation as a client” (P1s)

and some positive expressions on the other side, e. g.,

“[i]f those are popular components, they’re usually very comfortable to use because they
have examples on their website. They have a little demo version [...] and [you can] even
edit the code on it and then just copy and paste it into your project.” (P2s)

As mentioned by P2s, the quality and available documentation for OSCs appears to be often directly
correlated with the popularity of the project, with more popular projects likely having more maintainer-
hours available for creating documentation.

Customization and Using Components Again. More than half of our participants (14) mentioned
that they had to customize an OSC for their projects beyond basic configuration changes, e. g., “Yes.
There’s been times where contributing or even bringing in our own package, there’s been a few times
where I've forked and customized the open source repository, too.” (P20) Participants also mentioned
contributing back some of their customization and improvements to the open source projects, e. g.,
“We’ve also contributed back to the code base or the open source project to try to get changes im-
plemented as well.” (P19) When asked whether they would select the same components again for a
project, 17 responded positively, e. g., “we are using our popular frameworks, our popular open-source
components again and again and again. We have already set up a documentation for that.” (Pr2) Of
the remaining, six responded somewhat negatively, e. g.,

“I think we could do with a few dependencies less because they are not really critical and
they just add a nice-to-have feature [...] Some dependencies were pulled in that if starting
over, I would probably try to avoid.” (Pos)

Overall, our participants had quite positive experiences with OSCs. Their highlights include, among
others, the ability for fast iteration in their projects, the lessened maintenance burden, and the general
openness of the communities and code, allowing them to understand, modify, and contribute to open
source project our participants utilize in their software. We see promising research venues in what
constitutes a high-quality open source documentation and how to best support the customization of
components without sacrificing security.

Summary: Experiences.Our participants mentioned almost exclusively positive experiences, al-
though some highlight the varying quality of documentations. Mentioned positive attributes in-
cluded the ability to open issues (that get resolved) and the ability to directly talk to maintainers.
Most of our participants would select the same components in some form again, given the choice.

5.5.6 Challenges and Incidents

Almost all of our participants (24) reported to have encountered some form of security challenge or
annoyance related to OSCs in the past. Our participants mentioned challenges related to updates:
“One day, all of a sudden, the system stopped responding because the PHP updates didn’t follow in
that particular package,” (Po8) as well as out-dated and potentially vulnerable components. Another
common theme was OSCs being no longer maintained or deprecated, e. g., as described by Pr7: “Yes,
dependency is no longer maintained is a big challenge” (Pr7) but they also highlight their way forward of
forking or looking for alternatives: “At that time we will start maintaining it ourselves privately, or else

82

5.5 Results

see if somebody else has started a version two.” (Pr7) Other participants mentioned that they updated
their development process when they became aware of prevalent incidents (but were not affected) in
the open source ecosystem, e. g.,

“I believe it is also was a Node.js developer who deleted all their repositories [...] and that
is when we implemented cache for everything that we have a local copy for every open
source component we are integrating in our build chain to be locally available.” (Po3)

The participant s likely referring to the “left-pad” incident from early 2016, which involved a maintainer
deleting their popular npm packages, including the widely-used “left-pad” package included in, and
thus breaking, many other npm packages [304].

Incident Opinion and Strategy. To investigate our participants’ strategies for handling trust inci-
dents, we introduced and asked them for their opinion of the March 2022 “node-ipc protestware”
incident [77]. In this protestware incident, the JavaScript node-ipc library was updated by the main-
tainer as protest to Russia’s invasion of Ukraine to, depending on library version and IP address, replace
all of the user’s system files with heart emojis. The majority of our participants had a mostly negative
opinion of the incident (16), followed by a neutral opinion (6), and no opinion (3). No participant had
a mostly positive opinion of the incident. Negative opinions mostly focused on the potential damage
done to trust in the open source ecosystem and the potential to harm bystanders, e. g., “I don’t think
that’s appropriate when we’re talking about security and trust [...] I don’t really consider that inclusive
of all people trying to use open source. Sorry, I don’t really agree with that,” (P23) the overall mali-
cious look of the changes: “That is just straight up malicious that is a very black hat thing to do, and
that should not even have reached a package manager,” (Po2) as well as the overall damage to OSS’s
reputation:

“It’s bad for reputation of open-source software, but these things happen in commercial
software also. [...] Some people want to use them for, as you said, for protesting purposes
and some people want to use them for malicious activities.” (Pr2)

With this recent incident as background, we asked our participants, what they would do if one of
their projects depended on this package and how their general strategy for incidents would look like if a
component or maintainer lost their trust. Most participants mentioned that they had not encountered
something like that before, €. g., “No. We had never had this incident or something like that, so we
never thought about what we should do if this ever occurs.” (Po3) Common strategies for handling
such incidents included finding an (open source) alternative, e. g.,

“If we lose trust in a component, we’d also try to find an alternative. I guess it’s a trade off,
[if] it’s the only alternative and we really need it, then we would have to think about how
to make it more trustworthy or maybe contribute upstream,” (Pos)

or assessing the damage first before taking any further steps, as mention by Pr2:

“Try to minimize the bad effects and try to contain the bad effects. Then I can maybe
complain about the reputation of open-source software, but my first priority is to go
ahead and fix the issue if it affects us.” (P12)

Overall, most participants mentioned not having considered or encountered such an incident before.
In general, their first strategy would consist of either finding an alternative, stepping up and forking
the project, maintaining the project internally, or assessing the damage first before any further steps.
Providing tooling and strategies that support developers in handling such incidents present a promising
opportunity for both researchers and industry.

83

Chapter s Security Challenges of the Open Source Supply Chain

Summary: Challenges and Incidents.Almost all of our participants had encountered (security) chal-
lenges or inconveniences related to OSCs, often mentioning broken updates and vulnerabilities in
(out-dated) components. Our participants had mostly a negative opinion of the “node-ipc protest-
ware” incident, mostly due to harming the trustin the open source ecosystem. Most did not mention
a specific strategy for reacting to such incidents and would generally look for alternatives.

5.5.7 Problems and Improvements

In the final question section, we asked our participants what they think the perceived security of their
projects is (both by internal and external actors), as well as how they would like to improve the software
supply chain security of their projects. Regarding the perception within their team or company, seven
mentioned a mostly positive perception regarding their security, four a mostly negative, with the rest
reporting either a neutral (5) or no perception. Regarding the perception of external actors (e.g., their
clients, their users, or the public), nine mentioned a mostly positive perception regarding their security,
zero a mostly negative, and again the rest reporting either a neutral (3) or no perception.

Improving Security. As for suggestions for improving the software supply chain security of their
projects assuming no limitations, we roughly sorted our participants’ ideas by theme, with the most
mentioned including the auditing of their dependency graph and the code of external components (8),

€.g,

“It would be nice to have independent audits of everything that we use, that way, we can
have some level of assurance that at least the software that we’re using or components
we’re using meets some particular standard” (Po9)

and in general more developer hours (3) for testing and securing their projects or adopting OSCs,
e.g., “[...] I would like to have enough developers that we do not have to go through some of those
dependencies which are not highly rated on GitHub or which are nearing the end of their maintenance
lifecycle, and be able to develop those in-house.” (Pr7) Other ideas for improvement included hiring a
dedicated security team (2): “If I have unlimited money, then a security team would be fine, but that’s
not a reality in most enterprise” (P18) or establishing a set of best practices and documentations for
open source communities (2):

“I think having some set of best practices out there that is more widely accepted among the
open source development community and I guess rigid guidelines in such a way would
improve what we use it for and how we use it.” (P19)

Another suggestion was the creation of a foundation or entity that could verify the security of OSCs:

“There should be an entity. Just like there’s an Apache foundation, there can be a security
foundation that can offer this analysis and certification for the open source if you pay.
I can be more comfortable or more confident about the technology that I'm going to
propose to my boss or to the client. I can say, hey, this software is open source, but it has
already been tested by this other open source foundation, but focus on security.” (P1s)

Such a recently formed organization is the OpenSSF, which aims to improve open source software
security through a collaborative effort, potentially highlighting a need to raise even more awareness for
such efforts.

Overall, our participants’ ideas for improving the software supply chain security of their projects
mostly centered around having more developer-hours or tools to audit included components, as well

84

5.6 Discussion

as general security checks and pen tests of their projects and OSCs. Providing and enabling the tooling
for both auditing and testing OSC provide an opportunity for both researchers and industry going
forward.

Summary: Problems and Improvements.If they had an opinion about it, most participants thought
that their projects’ security is perceived as positive, both by internal and external actors. For improv-
ing the software supply chain security of their projects, participants often suggested manual and
automatic audits of code and dependencies.

5.6 Discussion

In this chapter, we qualitatively investigated the role and importance of OSCs in companies and soft-
ware teams, as well as the related security challenges and consideration, by conducting 25 in-depth
interviews with software developers, architects, and engineers to answer the following research ques-
tions:

RQu. “How are Open Source Components included in companies’ tech stacks in terms of position, im-
portance, and security effects?” Our participants mentioned OSCs in many positions in their projects,
including as project components, as foundation and frameworks for their software, and as tools in their
development infrastructure. OSCs appeared to play quite important roles in participants’ projects,
with some reporting using OSC for key features or foundation in their software or development pro-
cesses. Some even specifically mentioned OSCs and the open source community as an important or
key part of their overall software ecosystem. As for security effects, some participants reported updat-
ing their development processes in response to news about vulnerabilities in, or the abandoning of,
popular open source projects, e. g., “[...] and [the left-pad incident] is when we implemented cache for
everything [so] that we have a local copy for every OSC [...].” (Po3)

RQ2. “What are companies’ awareness, experiences, and attitudes regarding the security of including
external open source code?” Overall, our participants consisting of software developers, architects, soft-
ware developers, architects, and engineerss appeared to be quite aware of the security implications of
including OSC in their software, although some reported management not allowing or understanding
the concept of open source, €. g.,

“I think the responsible people just didn’t understand the whole scope of OSC options
that a developer has, because they’re mostly managers and legal people, and they don’t
have so much insight in technical stuft.” (P16)

Almost all participants reported positive to very positive experiences with open source code, although
all except one mentioned experiencing some form of challenge or inconvenience by OSCs in the past,
mostly originating from an unmaintained project, a botched patch, or an upstream vulnerability. Our
participants seemed to have somewhat ambivalent attitudes about the security of OSCs, with many
mentioning that they would or could only handle incidents from OSC if/when they happen, while
their most common security wishes included large-scale audits of their dependencies and OSC projects.

RQs. “Ifand how do stakebolders make decisions and considerations around security and trust challenges
of including Open Source Components?” The decision and selection processes around OSCs reported by
our participants appear to span the whole spectrum from purpose-build, in-house components mod-
ified by specific teams wrapping and documenting open source projects, to whatever component an
individual developer thought right for the job. As for considerations around security, our participants

8s

Chapter s Security Challenges of the Open Source Supply Chain

appeared in general to be optimistic, while still acknowledging the large potential attack surfaces of
using external code.

Aside from answering our research questions, we discuss some of the broader themes and our
interview-spanning findings in greater detail:

Securing a Bowl of Spaghetti. The “chain” part of the software supply chain analogy lends itself to
convey an overall image of linear relations, with clear start (producer) and end (consumer) points, with
some additional chain links in-between. But in reality, a better fitting picture for the software supply
chain in general, and OSS in particular is that of a giant bowl of spaghetti, with many intertwined
strands, impossible to discern beginning and ends, even when closer investigating some string. Some
companies in our study tackled this problem by focusing only on the security aspects on their plate,
namely by maintaining in-house versions or caches of included OSCs, which separates them from many
attack vectors in the whole bowl, and allows them to better check and audit the local components.
Promising research venues include both the underlying concepts for maintaining such a software stack
separation, as well as the necessary tooling like for static analysis, reproducible builds, and package
signing. Based on our findings, our recommendations for industry projects include considering es-
tablished available approaches like version pinning and including static analysis tools (SATs) in their
build pipeline, as well as to evaluate some of the more recently emerging technologies, like SBOM and
OpenSSF Scorecards. Other participants mentioned that they see this security and complexity problem
more as a journey: “I think that security isn’t something that a lot of people, I think even in IT, view
security as something that is a destination and not a journey, so to speak. They don’t think of it as an
ongoing process.” (Po9)

Community of Communities. Our participants seemed to have quite positive attitudes about OSCs,
with many mentioning their software or team benefiting from using them, e. g., through reduced main-
tenance burden, fast iterations, and open communities and code. This exchange can quickly become
one-sided, especially as it is not always feasible for both companies to provide, and open source com-
munities to receive, the most common exchange equalizer in the industry: Money. Promising future
research opportunities involve identifying ways to best support both individual open source projects
in different growth stages and communities, as well as the open source ecosystem as a whole. Based on
our current findings, it might be beneficial for companies to approach the open source ecosystem with
the mindset of being just another community among the many different open source communities,
instead of treating it as another software supplier. In practice, this could involve the open sourcing of
their internal components if feasible, providing guidance and help with issues just as most open source
projects, and contributing back if the chance arises. The software industry can also benefit from sup-
porting open source communities in terms of cultivating developer talent: By supporting and enabling
open source projects included in their software stack, they allow a world-wide developer community
to learn from, and participate in their software stack, allowing a wide group of people the access to
industry technologies, allowing them to grow into expert developers. e. g., as it happened to Pr9:

“I'started programming when I didn’t have a lot of money to buy software, so finding free
tools on the Internet has always been cost eftective for me. Then later on in, I guess, my
professional career, it has allowed us to develop much quicker or develop applications
more quickly using a lot of open source tools as part of the overall application, so 'm a
big proponent of open source software.” (P19)

Not Your Typical Supply Chain. Companies treating the open source ecosystem as any other of their
(software) supply chains will likely lead to bad surprises for both sides down the line: Companies might
need to scramble if open source components they had relied on for years are suddenly abandoned by

86

5.7 Conclusion

the maintainer or don’t implement direly needed features, while open source communities might be
punished for their openness by being (mis)treated as a cheaper support desk and alternative for in-house
development teams. Unlike a company’s other (software) supply chains, the open source ecosystem
rarely operates based on contracts, and if a company is not able to provide a value exchange equivalent
in money for utilized OSCs, they might want to consider oftering some of their developer time or
code back to the open source ecosystem. Future researcher venues could involve the legal challenges of
the open source ecosystem, best approaches for different company types to support or get involved in
open source, and how companies could improve their development processes around involved OSC.
With industry’s great power of utilizing freely available OSCs in their software comes also the great
responsibility of keeping the open source ecosystem healthy and secure, or as one of our participants
formulated it fittingly: “This is something that we also have in our company policy: Always contribute
back.” (Po7)

5.7 Conclusion

We investigated the use of OSCs in software companies and teams during 25 in-depth, semi-structured
interviews with software developers, architects, and engineers. We explored challenges and consider-
ations of software companies and teams around including OSCs in their projects by exploring their
behind-the-scene processes, provided guidance and security policies, as well as security challenges en-
countered in the past and their incident handling. We found that most of our participants’ projects
had some form of company policy or at least best practices for including external code, with selection
and exclusion criteria for OSCs being commonly based on easily visible metrics like activity, number of
contributors, or GitHub stars. We also found that most projects contribute in some form back to open
source projects, or our participants would at least like to, with some suggesting their management or
legal departments do not fully understand the open source ecosystem.

This chapter presented research investigating considerations around OSCs in industry projects by
interviewing 25 software developers, architects, and engineers. But the requirement for a secure supply
chain and software is not limited to software experts in companies: especially Android app developers,
with apps being widely utilized by end users, can benefit from improving the security and protection
of their apps. I present research on the use of obfuscation in the Android ecosystem, consisting of a
multi-pronged study approach with measurements, a survey, and a programming experiment in the
following chapter Large Scale Investigation of Obfuscation Use in Android (Chapter 6).

87

Chapter 6

Large Scale Investigation of Obfuscation
Use in Android

MARTPHONES have changed society in countless ways, especially by enabling millions of end users
the access to applications. But Android applications are frequently plagiarized or repackaged,
resulting in security and privacy risks for users. Software obfuscation is a recommended protection
against these malicious practices. At the time of this research, there was little prior data and insights on
how and why Android apps are obfuscated in practice apart from limited or small-scale studies. This
chapter presents a comprehensive analysis of the use of software obfuscation in Android applications
with a multi-pronged approach consisting of a large-scale app measurement, a developer survey, and a
programming experiment.

As this research project was conducted as a team consisting of me, Nicolas Huaman, Yasemin Acar,
Brad Reaves, Patrick Traynor, and Sascha Fahl, this chapter utilizes the academic “we” to mirror this
fact. We analyzed 1.7 million free Android apps from Google Play and found that only 24.92% of
apps are obfuscated by their developer. To better understand this rate, we surveyed 308 Google Play
developers and found that while developers think that apps in general are at risk of plagiarism, they
do not fear theft of their own apps. We then conducted a follow-up study where the majority of 70
participants failed to obfuscate a realistic sample app, even though many mistakenly believed they had
been successful. The presented findings have broad implications for improving the security of Android
apps and for tools that aim to help developers write more secure software.

6.1 Preamble

This chapter presents research that also resulted in the previously published paper “A Large Scale
Investigation of Obfuscation Use in Google Play” [18], which appeared in the proceedings of, and was
presented by me at, the 34th Annual Computer Security Applications Conference (ACSAC’18) in
December 2018.

Dominik Wermke, N. Huaman, Y. Acar, B. Reaves, P. Traynor, and S. Fahl, “A Large Scale
Investigation of Obfuscation Use in Google Play,” in 34th Annual Computer Security Applications
Conference (ACSAC18), San Juan, PR, USA: ACM, Dec. 2018, pp. 222-235

The original abstract for this publication is as follows:

Abstract: Android applications are frequently plagiarized or repackaged, and software obfus-
cation is a recommended protection against these practices. However, there is very little data on
the overall rates of app obfuscation, the techniques used, or factors that lead to developers to
choose to obfuscate their apps. In this paper, we present the first comprehensive analysis of the

89

Chapter 6 Large Scale Investigation of Obfuscation Use in Android

use of and challenges to software obfuscation in Android applications. We analyzed 1.7 million
free Android apps from Google Play to detect various obfuscation techniques, finding that only
24.92% of apps are obfuscated by the developer. To better understand this rate of obfuscation,
we surveyed 308 Google Play developers about their experiences and attitudes about obfuscation.
We found that while developers feel that apps in general are at risk of plagiarism, they do not fear
theft of their own apps. Developers also report difficulties obfuscating their own apps. To better
understand, we conducted a follow-up study where the vast majority of 70 participants failed to
obfuscate a realistic sample app even while many mistakenly believed they had been successful.
These findings have broad implications both for improving the security of Android apps and for
all tools that aim to help developers write more secure software.

The paper was published with the following acknowledgements:

Acknowledgements: This work was supported in part by the National Science Foundation
under grant numbers CNS-1526718 and CNS-1562485. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

In addition, I would like to express my sincere gratitude to everyone who has contributed to the
completion of this project. I would also like to thank the participants again, who generously gave
their time and shared their experiences about obfuscation in the Android ecosystem with us. Their
willingness to participate made this research possible, and I am deeply grateful for their contributions.

6.1.1 Contribution

The research prresented in this chapter was conducted as a team consisting of me as team lead, Nicolas
Huaman, Yasemin Acar, Brad Reaves, Patrick Traynor, and Sascha Fahl. I am grateful for the contribu-
tions of each member, which have been integral to the success of this research project. Without their
expertise, hard work, and dedication, this research project would not have been possible.

Sascha Fahl, Yasemin Acar, and Brad Reaves came up with the initial idea and iterated it with me.
The full team came up with the initial concept and research approach for this research project. I
implemented the analysis tooling and storage for the large-scale analysis. Nicolas Huaman and I created
the tasks and example apps for the programming experiment. Yasemin Acar, Nicolas Human, and I
created the survey guide for the developer survey, and iterated it with the rest of the team. I analyzed
the large-scale analysis results. Together with Nicolas Huaman, I qualitatively coded the programming
task solutions. I compiled the paper for publication with contributions from the remaining team and
we jointly discussed the work’s implications. I presented the publication at ACSAC’18 and included it
in some of my talks.

6.1.2 Structure

The remainder of this chapter is structured as follows: After a general introduction (Section 6.2), I
provide the related work at the time of this research project in 2018 (Section 6.3). I then provide back-
ground for the areas of Android obfuscation techniques (Section 6.4) and the detection of obfuscated
apps (Section 6.5). I then describe our multi-pronged study approach including a large-scale analysis

90

6.1 Preamble

(Section 6.6), a developer survey (Section 6.7), and a programming task experiment involving obfus-
cating an app (Section 6.8). Finally, I discuss our findings (Section 6.9) and provide a summary for this
chapter (Section 6.10).

91

6.2 Introduction

6.2 Introduction

While smartphones have changed society in countless ways, application markets are perhaps an un-
derappreciated development. These markets enable the simple distribution of new software, but they
have also enabled numerous studies of application security [163], [164], [305] and provided mechanisms
to identify malware before or after infection [306], [307]. Much of this research depends on software
analysis techniques, and these techniques face challenges in the presence of software obfuscation [148],
[159], [308]—[310], software transformations designed to frustrate automatic or manual analysis.

Despite the impacts of obfuscation, to-date there is very little data on how Android apps are ob-
fuscated in practice apart from limited or small-scale studies [305], [311]. In this chapter, we present
the first holistic, comprehensive analysis of the state of the use of software obfuscation in Android
applications. We begin with a study of obfuscation usage (and techniques) on over 1.7 million apps
collected from Google Play. We follow this with a survey of 308 application developers about their
experiences and perceptions of software obfuscation. We conclude with a development study with
70 professional Android developers to investigate usability issues with ProGuard, which is by a large
margin the most popular obfuscation tool for Android. We address three research questions:
RQu: How many apps are obfuscated, and what techniques are used? For researchers who develop
automated analysis tools, it is critical to understand how often and what types of obfuscation are com-
monly applied so they can ensure correct analysis of apps. It is also an important measurement for
the Android ecosystem. Software obfuscation is a defense against app repackaging, an abusive practice
where applications are cloned and redistributed to build trojan apps or steal ad revenue. App repack-
aging is an epidemic threat to the entire ecosystem: in recent studies, 86% of malware samples collected
were repackaged versions of benign applications [312], and apps are repackaged by the thousands [313],
[314]. Up to 13% of entire third party markets consist of repackaged apps [315], [316]. Thus, software
obfuscation protects not just individual apps and developers, but also users and the ecosystem at large.

We find that roughly 25% of apps are obfuscated, but that number rises to 50% for the most popular
apps with more than 1o million downloads. This is high enough that it would have a significant impact
on research — especially for projects that ignore obfuscated apps [161], [317]. However, it is also still low
enough to indicate that the vast majority of apps are unprotected.
RQ2: What are developers’ awareness, threat models, experiences, and attitudes about obfuscation? These
factors provide insight into root causes of the low rates of obfuscation in Android. We examine whether
developers are aware of obfuscation, whether they have attempted or successfully used obfuscation,
which tools they have used, and whether they found the tools were sufficiently easy to use. We find that
while developers are aware of the benefits of obfuscating their apps on a theoretical level, a perceived
negligible personal impact and the time-consuming use of obfuscation tools for real applications is a
large deterrent to obfuscation.
RQ3: How usable is the leading obfuscation tool ProGuard? Our developer survey also found that 35%
of our participants reported difficulty obfuscating their apps, while over 61% — more than double the
Play market average — claim to obfuscate their apps. To better understand this paradox, we asked 70
developers to obfuscate two sample apps. We found that while most developers successfully managed
to complete a simple obfuscation task, 78% failed to correctly use ProGuard in a more complex and
realistic scenario. Moreover, 38% mistakenly believed they had successfully obfuscated their app. This
highlights that even when developers attempt to use obfuscation, tool usability likely has a negative
impact on its effectiveness.

We conclude our paper with a discussion of lessons learned and recommendations in Section 6.9.
While software obfuscation is by no means a perfect defense against reverse engineering, previous work
shows that even simple forms of obfuscation (like identifier renaming) significantly increase the effort

93

Chapter 6 Large Scale Investigation of Obfuscation Use in Android

required to successfully reverse engineer software [318], [319]. Additionally, the significant challenges
obfuscation presents researchers (as shown in prior work [159], [308]-[310]) make this topic worthy of
study. Our focus is on obfuscation used by legitimate applications; we leave the topic of obfuscation
of malware for future work.

We note that the implications of this study go beyond the Android ecosystem. In contrast to other
secure practices with a variety of costs and trade offs, software obfuscation is in an ideal position for
adoption: ProGuard is one of the very few secure development tools in existence that is free, already
available in the IDE of most developers, and can automatically enhance security while simultaneously
improving performance. Understanding why developers do or do not use such an ideal tool has broad
implications both for the development of better developer support and as a measure of barriers to a more
security-conscientious software development community.

6.3 Related Work

Disclaimer: This related work section reflects the state of prior research in late 2018 and is
provided to highlight the state of research at the time of this research project. For related and
concurrent work at the time of this dissertation, see Chapter 3: Related and Concurrent Work.

Software obfuscation has been studied as defense against reverse engineering [147], to prevent in-
tellectual property attacks [148], as disguise for malware [149], and to avoid user profiling [150]. Re-
searchers successfully employed code obfuscation techniques to avoid detection tools, including anti-
malware software [151]—[153], repackaging detection algorithms [154], and app analysis tools [155], al-
though performance of anti-malware software improved in a more recent study [320]. A number of
works detail different obfuscation techniques in general [147], [149], [321], [322], for the Java program-
ming language [323]—[325], and for Android apps in particular [151], [326], [327]. Research on Android
app obfuscation has focused on reversing obfuscation [328], [329], analyzing an app in spite of obfusca-
tion [159], [308]—[310], the detection of repacked malware [330]-[333], or identification of third-party
libraries [158], [334].

Previous Android developer studies were performed in the context of privacy, Trusted Layer Securi-
ty/Secure Sockets Layer (Transport Layer Security (TLS)/SSL) security, and cryptographic Application
Programming Interfaces (APIs). Balebako et al. performed interviews and online surveys to investigate
how app developers make decisions about privacy and security, identifying several hurdles and sug-
gesting improvements that would help user-privacy [167], [168]. Jain et al. suggested design changes to
the Android Location API based on the results of a developer lab study [169]. Fahl et al. and Oltrogge
et al. conducted developer surveys and interviews, revealing deficits in the handling of TLS/SSL and
suggesting several improvements [160]—-[162]. Nadi et al. found in a study that Java developers struggle
with perceived low-level cryptography APIs [141]. Concerning obfuscation on the Android platform,
Ceccato et al. assessed in experiments the impact of Java code obfuscation on the code comprehension
of students, finding that obfuscation delays, but not prevents tampering [318], [319]. Pang et al. surveyed
121 developers about their knowledge concerning app energy consumption [335]. Compared to these
works, our root cause analysis focuses on obfuscation knowledge and ability to use the obfuscation
tool ProGuard among Google Play developers. Similar to recent work on how information sources
influence code security [100], we find that developers are generally aware of benefits and basic use, but
fail to correctly obfuscate in complex scenarios.

Finally, in a pre-print concurrent with our research, Dong et al. also investigate the use of obfus-
cation in the Android ecosystem [336]. While that work is solely focused on technical measurements

94

6.4 Android Obfuscation Techniques

Table 6.1: Selected features of popular obfuscation software for
the Android environment.

Obfuscation Other

(9} o on

cEs5%0¢% §288 ¢

SRR
Name License f0=zdAa< S 00=E&
Allatori® $290 0000000 000OCFO
DashO' Onrequest O O 0O 0000 00O O
DexGuard® Onrequest 0 0O 00000 00000
DexProtector $800 0000000 0000O0
GuardIT Onrequest O O OO0 OO0 00O OO
Jack®t Free 0000000 OOCOO0OO
ProGuard’ Free 0000000 COO0OO
ReDex>' Free 0000000 COO0OO
yGualrdJr Free 0000000 OCOOGO

" Multiple obfuscation patterns, default can be detected
* Mirrors ProGuard’s obfuscation with same configuration format
T Obfuscation features (partially) detected by OBFUSCAN

of obfuscation (similar in focus to our Sections 3 and 4), our research works with the developers re-
sponsible for obfuscation to determine the root causes of why apps are or are not obfuscated. Our
app measurements are more comprehensive (1,762,868 apps from Google Play market vs. 114,560 apps)
and use measurement techniques grounded in specifications of the most common obfuscation tools
(instead of machine learning approaches).

6.4 Android Obfuscation Techniques

Available obfuscation tools for the Android ecosystem range from free, open-source obfuscation so-
lutions providing only basic obfuscation features such as ProGuard, up to premium tools with high
licensing fees such as DexGuard (cf. Table 6.1). Basic obfuscation features include the following:

Name obfuscation. Package, class, method, and field names are commonly obfuscated by replac-
ing their original values with meaningless labels. For example, ProGuard implements name
obfuscation by generating name replacements using characters from the [a-zA-z] alphabet.
Obfuscated names are generated by iterating through the alphabet resulting in the following re-
naming patterns: [a, b, ..., z1,[A, B, .., Z],[aa, ab, .., zz],andsoon. Allatoriand Dex-
Guard build on ProGuard’s name obfuscation alphabet and add reserved Windows keywords
(“AUX”, “NUL”). Some of the tools allow users to add their own word lists to the renaming
alphabet.

Name overloading. Obfuscation tools commonly use Java method overloading to assign the same
name to methods with different signatures (i.e., different arguments or return types). In addition
to using the same name for different methods, method parameters are also renamed to common

names.

95

Chapter 6 Large Scale Investigation of Obfuscation Use in Android

Source Obfuscated
public class Matrix { public class a {
private int M; private int a;
public Matrix(int M); public a(int b);
} }

Listing 6.1: Example code before and after obfuscation with ProGuard.

Debug data obfuscation. Removing debug information like line numbers or method names
complicates the reverse engineering of code structures. Obfuscation tools often include means
to reverse this information removal to allow for debugging by developers.

Annotation obfuscation. Another information removal feature strips annotations from classes
and methods. Annotations provide additional functional context in class bytecode, including
annotations for inner classes or methods that contain “throws” statements. Similar to debug
information, the removal of class file annotation and the removal of class source file information
complicates the reverse engineering of code structures by tracing class attributes.

String encryption. Strings can be encrypted to hide information. A trade-off has to be made
between encryption strength and performance impact by decryption. The decrypter has to be
provided in the program, making encryption unsuitable to hide sensitive information. Strings
are encrypted to deter simple string searches over the code base and hide information about the
program flow.

DEX file encryption. The casses.dex file can be encrypted to increase the difficulty of decompila-
tion. Decryption of encrypted classes at run time can cause large performance impacts.

6.4.1 Complications for Obfuscation

While the previous section has discussed a number of techniques for transforming software, configuring
obfuscation tools for Android is more complicated than merely choosing from the available features.
In fact, there are a number of complicating situations that make it difficult or impossible to obfuscate
certain pieces of code, and if that code happens to be obfuscated the app can no longer function. These
situations for partial obfuscation include classes that need to be accessible from an outside context:
the names and class names of native methods and similarly classes that extend native Android classes
such as activities, services or content providers should remain unobfuscated in most cases so that the
library/system can invoke callbacks.

6.4.2 ProGuard

The free ProGuard enjoys preferential treatment in the Android ecosystem. It is included with the
Android SDK and the official Android Studio IDE. In addition, other obfuscation tools inherit most
of their functionality from ProGuard; the now deprecated alternative tool chain Jack is configured
by ProGuard configuration files and provides ProGuard’s obfuscation with reduced options. Simi-
larly, ReDex accepts ProGuard’s configuration files and mirrors the renaming functionality closely.
DexGuard is a commercial ProGuard extension and utilizes name obfuscation with the same basic
functionality as ProGuard, but with some advanced features.

6.5 Detecting ProGuard Obfuscation

-optimizationpasses 5

-dontusemixedcaseclassnames
-overloadaggressively

-printmapping mapping.txt

-keep public class x extends project.Interface
-dontwarn project.example.xx

Listing 6.2: Example ProGuard configuration. Configuration path is set in the build system, e.g. in a
gradle.build file.

ProGuard was integrated with the Android Software Development Kit (SDK) in August 2009 and
can be activated in the build setup of a project. The “minifyEnabled” option activates ProGuard
obfuscation for the release build of an app. Additional configuration files can be specified with the
“proguardFiles” option. In the ProGuard configuration file, different program options are activat-
ed/deactivated by setting a number of flags that are relevant to later presented results (cf. Listing 6.2).
Some processing steps of ProGuard can be completely disabled with flags such as “~keep”.

6.5 Detecting ProGuard Obfuscation

To answer “RQu: How many apps are obfuscated, and what techniques are used?” we built a tool we
call OBFUsCAN to conduct a large scale measurement study of obfuscation practices. OBFUSCAN is able
to detect a number of obfuscation features in compiled Android binaries. In particular, OBFUSCAN is
able to detect all of ProGuard’s obfuscation features and many features of other obfuscation tools (as
shown in Table 6.1).

6.5.1 How Obfuscan Works

OBFUscAN takes an Android binary as input and analyzes certain parts of the binary to detect specific
obfuscation features and outputs the list of all detected features. OBFUSCAN analyzes package, class,
method and field names to detect name obfuscation. To detect method name overloading, OBFUSCAN
analyzes the distribution of obfuscated method names for duplicates and relies on the content of debug
entries to detect debug information removal. Annotation removal is detected by analyzing an app
binaries for the removal of corresponding class attribute fields. To detect further obfuscation features,
OBFUscaN relies on the dasses.dex file format and specific function calls (see below).

6.5.2 Feature Detection

OBFuscaN implements many heuristics to detect obfuscation features. For accuracy, many of these are
developed deterministically and directly from the ProGuard source code.

For name obfuscation, OBFUSCAN detects both lower- and upper-case obfuscated names by simu-
lating the obfuscation process of ProGuard and comparing the generated names to the actual names
encountered on the app, package, or class level. OBFUscAN also considers possible flags such as the us-
age of mixed-case characters if corresponding strings are detected in the scope. Finally, OBFuscan also
looks for instances where tools replace class names with restricted keywords in the Windows operating
system utilized by DexGuard and some Allatori configurations. To detect method name overloading,

97

Chapter 6 Large Scale Investigation of Obfuscation Use in Android

Table 6.2: Performance of OBFUscAN for sample set of 200 APKs. Shown are true positive (TP), true
negative (TN), false positive (FP), false negative (FN) predictions, and Matthews correlation

coefficient (MCC).
Feature TP TN FP FN MCC
Class name obfuscation 98 100 o 2 0.980
Method name obfuscation 99 100 o I 0.990
Field name obfuscation 100 92 8 o 0.923
Method name overloading 99 100 o I 0.990
Debug information removed 100 100 o 0 LOOO
Annotations removed 100 88 12 o 0.886
Source files removed 100 100 o o L0ooO

OBFUSCAN investigates names that follow the obfuscation pattern and occur multiple times on the
same class level. OBFUSCAN detects missing debug information by parsing and storing the entries of the
Java LineNumberTzable which maps bytecode instructions to source code line numbers. Similarly, the
removal of the source file data from classes removes information about the source file where the class
(or at least its majority) is defined. OBFUscAN detects this feature by directly accessing the source file
attribute of classes and storing the string content of the attribute. Removal of annotations is detected
by OBFUscaAN by directly accessing and storing the attribute field of classes.

6.5.3 Other Tools

Although we built OBFUuscaN with a focus on detecting the use of ProGuard, it is able to detect
apps that were obfuscated with other tools (cf. Table 6.5). OBFUSCAN is able to detect apps that were
obfuscated using ReDex, Jack and DexGuard name obfuscation using OBFUSCAN’s name obfuscation
detection feature since all three tools use name obfuscation patterns that are identical with ProGuard’s
name obfuscation. Additionally, OBFUSCAN is able to detect DexGuard’s more advanced removal of
debugline numbers and annotations obfuscation features. We extended OBFUSCAN’s name obfuscation
detection feature to also cover the name obfuscation patterns implemented by yGuard and DashQ. To
be able to detect Allatori’s non-alphanumeric name obfuscation scheme, we extended OBFUSCAN and
added detection support for restricted Windows keywords such as “AUX” or “NUL”.

6.5.4 Evaluation

We implemented OBFUscAN in Python and evaluated its efficacy by conducting a lab experiment using
100 real Android applications randomly selected from the F-Droid open source app market. We com-
piled two different versions of each sample app: One version did not use any means of obfuscation and
one version that had ProGuard’s name obfuscation for all application scopes, method name overload-
ing, debug information removal, annotation removal, and source file removal enabled. Additionally,
we acquired and tested 26 apps obfuscated with DexGuard, an expensive commercial tool, correctly
identifying obfuscation in all 26.

OBFUscaN correctly identifies nearly all obfuscation features of the 200 APKs dataset with a low
false-positive rate and a high correlation coefficient (cf. Table 6.2). We manually investigated false
positives and false negatives. OBFUSCAN falsely detected few class and method names as not obfuscated.
In these cases, structures of the app were exempt from obfuscation, e.g., due to classes being marked

98

6.6 Large Scale Obfuscation Analysis

100% [Al packages
1,500,000 83.1% Main package
® 64.7% 66.5% Pl 65%
«» 1,000,000
X
o
< 500,000+ 24.9%
8.2% 10.2% 7.5%
0 1 T T T T T
Total Obfs. Obfs. Obfs. Overload

classes methods fields

Figure 6.1: Comparison of obfuscation for different app structures including all packages and main
package only. Overall obfuscation of apps considering all packages is increased due to library
obfuscation.

as an interface. The false positive rate for field names is slightly higher than for other features. This
is because ProGuard uses short strings for names (e.g., a and b) that are sometimes used as variables
in unobfuscated apps. OBFUSCAN had no false positives for the debug information and source files
removal feature. However, it falsely detected 12 apps as using the annotations removal feature. These
false positives affect apps that do not use the code characteristics that are compiled to annotations (like
inner classes).

6.5.5 Limitations

There are several obfuscation features that OBFUscAN does not measure. Since OBFUSCAN focuses on
the detection of the benign application of obfuscation, we do not look for packers or other techniques
specifically used by malware. We excluded the heuristics for resource name and content obfuscation
from our large scale measurement study for performance reasons. We evaluated a test set of 1,000
random apps from Google Play and could not find a single app using these features. Additionally, we
did not implement class and string encryption detection. Both are advanced features and DexGuard,
DexProtector, or GuardIT provide them as extensions to the more basic name obfuscation features.
Finally, OBFuscaN focuses on the detection of name obfuscation as implement by common tools.
These heuristics conservatively estimate the prevalence of obfuscation at the cost of missing the use of
name obfuscation algorithms by less popular tools. However, because OBFUsCAN reliably detects the
removal of debugging information, we believe that this estimates a strong upper bound of the potential
uses of other tools that are not ProGuard-related.

OBFUSCAN’s annotation removal detection looks for app packages that do not include annotations.
However, this heuristic might mislabel unobfuscated apps that naturally do not use annotations. Since
it is hard to estimate the false positive rate for this heuristic, we excluded it from our measurement
study in Section 6.6.

To test OBFUSCAN, we used apps from F-Droid rather than Google Play because we needed source
code. While there is a chance that F-Droid apps differ from Google Play apps, this methodology was
better than alternatives like writing test apps.

99

Chapter 6 Large Scale Investigation of Obfuscation Use in Android

Table 6.3: Top 10 obfuscated libraries by total number of packages and number of APKs containing
the libraries. Our analysis considers both main application code and libraries separately to
determine the actual rates of use by end developers.

Scope Packages Unique APKs
com.google.ads.* 1,919,976 681,102
com.google.android.gms.* 24,095,920 651,952
android.support.v4.* 1,811,806 192,497
com.unitysd.* 432,856 152,668
org.fmod.* 135,524 135,524
android.support.yy.* 992,843 117,680
com.facebook.* 1,309,276 106,178
com.startapp.” 2,234,609 88,242
com.chartboost.* 491,612 87,781
com.pollfish.* 537,046 44,851

6.6 Large Scale Obfuscation Analysis

With OBFUSCAN we can answer our “RQu: How many apps are obfuscated, and what techniques are
used?” Therfore, we analyzed 1,762,868 ' current free Android apps from Google Play to investigate the
real-world use of the ProGuard family of Android obfuscation tools. To the best of our knowledge,
this is the largest obfuscation detection analysis to-date for Android applications. Of those applica-
tions, OBFUSCAN detected the renaming obfuscation pattern implemented by the ProGuard family of
obfuscation tools (cf. Section 6.4) in 1,137,228 (64.51%) apps.

Main Application Code Obfuscation. The high percentage of apps with obfuscated code would
seem to indicate that many developers are obfuscating their apps. However, this statistic is misleading
because a large percentage of apps are not intentionally obfuscated by the original developer. Instead,
many apps simply include third-party libraries that use obfuscation, and the presence of an obfuscated
library does not indicate that core application code is obfuscated. This fact means we need additional
analysis to determine how often developers are actually obfuscating their apps.

To distinguish between apps that are obfuscated by their developer and apps that simply include
obfuscated libraries, we analyze the obfuscation used by the declared main package of the application®.
The main package is used as the universal identifier of the application (e.g. com.google.maps) and is
necessarily implemented by the developer, so a choice to obfuscate the main package strongly indicates a
choice to obfuscate at least some (if not all) of the original application code. We note that determining
whether code is from a library or written by the developer is non-trivial, and this approach has the
advantage of being scalable to millions of apps while not relying on potentially incomplete lists of
libraries [334].

Our main package analysis found that only 24.92% of apps (439,232 apps) are intentionally obfus-
cated by the developer. In other words, the vast majority of apps — representing millions of man-hours
of development — are not protected using ProGuard as recommended for use in the official Android
developer documentation [337].

Obfuscation in Libraries. To get a better understanding of the included libraries in the Android

ecosystem, we investigated the names of Android packages in all apps. Android packages follow Java
naming conventions, allowing for the identification of larger scopes (e.g. the com.google.ads.interactive-

"All free Android applications we were able to download from our geographic location.
*This distinction of main package vs. other packages was also performed by Linares-Visquez et al. [310]

I00

6.6 Large Scale Obfuscation Analysis

media.v3.api package can be traced to the com.google.ads.* scope). Examining the included packages,
we find that most of the external library obfuscation stems from a few, popular library frameworks (cf.
Table 6.3). Examples include the Google Ad framework and the Google Mobile Service (GMS) frame-
work used for Google authentication and search. Other commonly included obfuscated frameworks
include the Facebook integration library and the FMOD audio playback library. The presence of these
very popular libraries explains why many applications have obfuscated code, yet so few main packages
are obfuscated.

Obfuscation Feature Popularity. OBFUSCAN provides the ability to examine use of individual Pro-
Guard obfuscation features, and the use of name features for both entire applications and main packages
only is shown in Figure 6.1. The “all package” category is measured as the number of apps containing
any package with the obfuscation feature. This includes all libraries and the declared main package.
The “main package” category is the number of apps with the obfuscation feature considering only the
app’s main package. We note that percentages of features used in the main package results are only
among those apps with code in the main package.

We see first that class name obfuscation is the most popular feature, with 64.7% of all packages and
24.9% of main packages using it. Looking at other features shows a marked difference in feature use
between libraries and main packages. While features that obfuscate method names, field names, and
exploit function name overloading are used about as often as class name obfuscation in the all package
analysis, they are infrequently used in main packages. One explanation is that library developers have a
greater incentive to protect proprietary or sensitive internal APIs.

Overall, our findings indicate that the vast majority of app developers do not obfuscate their core
code, and even when they do they do not use all of the available features. These results might indicate
that developers either only obfuscate critical parts of their application or do not fully understand the
concept of obfuscation.

Non-Proguard Obfuscation. While OBFuscaN comprehensively covers features used by ProGuard, it
also provides information about other forms of obfuscation. First, apps that do not contain debug info
or source files are likely obfuscated, and so looking for those characteristics provides an upper bound
on the number of apps in our dataset that are obfuscated by any non-ProGuard tool. As shown in
Figure 6.1, we find that between 7.4 and 7.5% of apps in our data have these features for the main package,
while between 11.7 and 13.2% of apps have these features for any class in the application. Additionally,
we found 2,799 (0.16%) apps that use the advanced obfuscation feature of replacing class names with
restricted keywords of the Windows operating system (e.g. “AUX”, utilized by DexGuard and some
Allatori configurations). By analyzing classes.dex files, we found 794 (0.05%) apps that were obfuscated
with DexProtector and 207 (0.01%) apps obfuscated with Bangcle. Ultimately, these results together
allow us to conclude that ProGuard is far more popular than any other obfuscation tool. This is
because the classes using ProGuard-style name obfuscation greatly outnumber the scrubbed debugging
or source files, which provide an upper bound on all other obfuscation tools.

6.6.1 Obfuscation Trends

By comparing our obfuscation findings with Google Play metadata for all analyzed apps, we can develop
further insights into the use of obfuscation in Android. In this subsection, we consider an app “ob-
fuscated” if classname obfuscation is used, as this is the most common obfuscation feature supported
by most obfuscation tools. As before, we distinguish between “all packages” and “main packages” for
our analysis. We investigate the following trends in app obfuscation: main package obfuscation rate in

101

Chapter 6 Large Scale Investigation of Obfuscation Use in Android

10091 — A Packages

--- Main Package

~
a1

Obfuscated APKs (%)
5 8

o

Month of last update

Figure 6.2: On average, more recently updated apps are more likely to be obfuscated.

Table 6.4: Distribution of main package obfuscation for different download counts. More popular
apps have a higher rate of main package obfuscation.

Download Counts ~ Total Apps ~ Obfs. Main Package

o+ 115,683 27.30%

10+ 343,652 26.34%

100+ 499,018 2.4.74%

1,000+ 383,046 24.03%
10,000+ 234,213 23.95%
100,000+ 80,302 25.50%
1,000,000+ 16,335 29.15%
10,000,000+ 1940 36.80%
100,000,000+ 160 50.00%

relation to download numbers; average main package obfuscation by number of apps per developer;
and obfuscation by app update date.

App Popularity. Google Play apps range from rarely downloaded side projects to popular and com-
plex apps with dozens of developers and millions of installs. Hence, different apps will have difterent
incentives to obfuscate their code. We hypothesized that popular apps would be more likely to obfus-
cate their code as these apps are often more sophisticated and complex and face the greatest risks of
plagiarism. To test this hypothesis, we examine the obfuscation rates for each download count category
reported by Google Play.

Table 6.4 shows these results. We find that most apps — the 98.9% (1,655,914 apps) of apps with
less than 1 million downloads — are obfuscated at roughly the same rate, ranging from 23.9% — 27.3%.
As download counts increase further, we see an increase in obfuscation in the most downloaded apps
from 29.15% of apps with more than one million downloads to 50.0% of apps with more than 100
million downloads. While this does confirm our initial expectation, we were surprised that even the
most popular apps are only obfuscated on average half of the time.

Obfuscation by Google Play account. We also investigated if the number of published apps per
Google Play account plays a role in the decision to obfuscate apps. Our hypothesis was that accounts
with more submitted apps either belong to experienced developers or even companies specialized in app
development and that apps from these accounts would show a higher obfuscation rate either due to a
higher awareness or even previous experience of intellectual property theft or due to a higher perceived
investment.

102

6.7 Developer Survey

Table 6.5: Average main package obfuscation for number of apps by Google Play account. Accounts
with more apps have a higher average rate of main package obfuscation.

Apps per Account Unique Accounts Avg. Obfs. of MP

I 311,908 21.83%

2+ 155,220 21.24%
10+ 27,397 26.50%
100+ 642 34.37%
250+ 2 35.29%
500+ 36 68.41%

Table 6.5 shows the results. We find that apps from accounts with less than 100 apps have roughly
the same average obfuscation rate between 21.8% — 26.5%. For accounts with 100 or more submitted
apps this increases to about 35% and even to 68.4% for accounts with soo and more apps. This increase
in average app obfuscation seems to confirm our hypothesis that experienced developers or specialized
companies with a large number of submitted apps use obfuscation more often. A likely explanation
for this could be that more experienced developers and companies want to protect their intellectual
property further. This could be the results from previous experiences of intellectual property theft, or
the result of placing a higher value on their apps, as they are likely an important source of income for
professional developers and specialized app companies.

Update Date. Figure 6.2 shows how all package and main package obfuscation rates vary when com-
pared to the month of their most recent update; recent updates on average imply frequent maintenance
of apps [338].> ProGuard is distributed with the Android SDK starting August 2009. The base Pro-
Guard name obfuscation algorithm remained functionally unchanged, allowing OBFUSCAN to detect
obfuscation for all included apps over the study period.

The figure shows a clear upward trend for both all packages and main packages, though as seen
previously the overall obfuscation rate for all packages is much greater than main package obfuscation
rate. More recently updated apps are more likely to be obfuscated as well. This could be indicative of
greater developer sophistication or greater investment in terms of development time and intellectual
property. In any case, it is clear that more recently updated apps are more likely to be obfuscated,
though still at a low rate overall.

RQ1 Conclusions: This section addressed our RQx: How many apps are obfuscated, and what
techniques are used?. We found thata significant minority of apps are obfuscated by developers (24.92%),
though obfuscated libraries are present in far more apps (64.51%). We also found that ProGuard was
overwhelmingly the most popular obfuscation tool. Although these numbers a low compared to an
ideal high rate of adoption, they are high enough that software tools and research should be compatible
with obfuscated apps.

6.7 Developer Survey

To answer our second research question, “RQz: What are developers’ awareness, threat models, experi-
ences, and attitudes about obfuscation,” we conducted an online survey of Android developers covering
their obfuscation experience, the tools they use and their general knowledge and risk assessment con-
cerning obfuscation and reverse engineering. We asked them if they had heard of obfuscation, if they

3Unfortunately, our data collection only allowed us to collect the most recent data on an application, preventing us from
getting ground truth on the changes in obfuscation of individual apps over time.

103

Chapter 6 Large Scale Investigation of Obfuscation Use in Android

How likely do you think Android apps are ...

Reverse Engineeredq 18% I 15'% -58%
Repackaged 15% I 18% - 51%
Plagiarized{ 14% B o T s
Obfuscated{ 12% | o I <

How likely do you think your *own* Android

Reverse Engineeredq 51% 26%
Repackaged 1 52% 19%
Plagiarized 4 50% 20%
Obfuscated 4 38% 28%

Ml Very Unlikely| |Unlikely Neutral[" Likely [l Very Likely

Figure 6.3: Likert plots of questions on risks of apps in general and risks to the participant’s apps show
that developers see themselves at much lower risk than the “average” app.

knew whatit was, if they had ever used it or decided against using it, and why. Additionally, we measured

» « » «

their awareness of “repackaging,” “reverse engineering,” “software plagiarism,” and “obfuscation”. We
asked how strongly they feel that apps in general and their own apps in particular are threatened by the
first three concepts. We followed this with a set of general questions about their Android development
practices.* In this section, we briefly discuss the design of this survey as well as the results. The online
study was approved by the Institutional Review Boards of all involved universities (See Section 6.9.1
for more details).

Depending on participants’ prior answers, we asked up to three free text questions, the results of
which we analyzed by using open coding with two researchers, developing an initial codebook and
refining it iteratively, using it independently on the answers and resolving all conflicts with the help of

a third researcher [289].

6.7.1 Recruiting

We collected a random sample of 62,462 email addresses of Android application developers listed in
Google Play. We emailed these developers, introducing ourselves and asking them to take our online
survey. A total of 561 people clicked on the link to our survey, visited our website and agreed to the
study’s consent form. Of these 561, 186 dropped out before answering the first question; another 67
participants were removed for dropping out later during the survey or providing answers that were
nonsensical, profane, or not in English. Results for our survey are presented for the remaining 308 valid
participants.

As common for developer studies [100], we compared participants to the larger population from
which we sampled: we compared metadata of 3,159 Android apps associated with our survey participants
to the metadata of 1.1M free and paid applications associated with the 62,462 email addresses to which
we sent survey invitations (shown in Figure 6.4).

We found a close resemblance in download counts per app (mean invited: 5.75, mean participated:
5.89, category s corresponds to 100—s00 downloads, category 6 to soo-1,000 downloads), the average
user rating (mean invited: 3.07, mean participated: 3.29) and the date of the last update as a measure

#Full questionnaire included in the appendix

104

6.7 Developer Survey

B Invited B3 Participants

Py 51

3 o [2017 - [
B C -

o 15 =4 £ 20161

8 :t oC 3- ©

5 101 o 5 20151

Ind D 24 -

9 o @ 2014

s % 2 4. S

g < 2013

0O 01 0 + ——

Figure 6.4: App metadata associated with invited email addresses compared to metadata from our
participants: We find a close resemblance in download category (as classified by Google
Play), ratings and currentness of last update. We compared the distributions using Mann-
Whitney-U tests, but our results were inconclusive due to a number of outliers. Nonethe-
less, we observe similar interquartile ranges: while the invited population leans to being
more spread out than our participant population, the populations are similar in median
and mean with the invited population having heavier tails.

of app age and long-term developer support (mean invited: 2015-11-18, mean participated: 2015-09-o1).
These similarities suggest that the developers who opted into our survey study resemble the random
sample of Google Play Android developers.

6.7.2 Results and Takeaways
Obfuscation Experience

We found that the majority (241, 78%) of our participants had heard of software obfuscation in general,
while 210 (68%) knew about obfuscation techniques for Android in particular. 187 (61%) had considered
obfuscating one or more of their applications, of whom 148 (48%) actually did obfuscate one or more
applications. While the majority of developers had heard of reverse engineering (253, 82%), software
plagiarism (201, 65%) and software repacking (189, 61%) and felt that Android applications in general
were severely threatened by plagiarism and malicious repacking, they had the impression that their own
apps were less likely to face those threats than apps “in general”. Figure 6.3 shows a Likert plot of these
responses.

Reasons to obfuscate

The following results are reported for ror developers who voluntarily specified reasons for using obfus-
cation in a free text answer. 63 developers (62.3%) used obfuscation to protect their intellectual property
against malicious reverse engineering and theft. Interestingly, 14 (13.9%) participants used ProGuard
only because it came pre-installed with Android Studio and was easy to use. 18 (17.8%) participants
needed ProGuard’s optimization features and stated that adding obfuscation was trivial. 4 (4%) partic-
ipants apparently misunderstood the concept of obfuscation and enabled ProGuard to provide their
users additional security, similar to encrypting files or using secure network connections. 7 (6.93%)
configured obfuscation because there was a policy (either given by the company they worked for or a
customer) that required it.

105

Chapter 6 Large Scale Investigation of Obfuscation Use in Android

Verifying that obfuscation works

The following results are reported for the 69 participants who gave a free text answer on their method
of verifying the success of obfuscating their app. 48 (69.6%) developers verified the correct use of obfus-
cation by decompiling the application and manually looking for obfuscation features (e.g., obfuscated
package, class or method names). Six (8.7%) participants relied on the Android Studio toolchain and
interpreted no warning or error messages as successful obfuscation. Four (5.8%) participants checked
their apps’ logfiles to verify their obfuscation. Finally, six (8.7%) other participants verified obfuscation
by comparing the size of the non-obfuscated with the obfuscated version of an application.

Reasons to not obfuscate

Out of the 185 developers who gave reasons to not obfuscate in a free text answers, 81 (54.8%) thought
about obfuscation and then decided against using it because they saw no reason to protect their applica-
tion(s) against malicious reverse engineering, either because they open sourced their applications (17) or
included no valuable intellectual property (64). 52 (35%) participants tried to use obfuscation and gave
up because they felt overwhelmed by ProGuard’s complexity. They could not get third party libraries
working or had other issues such as non-working JavaScript interfaces. Five (3.2%) tried to understand
the concept of obfuscation but failed. Eight (5.8%) participants mentioned company policies that did
not allow them to obfuscate code. However, no one elaborated on those policies in more detail.

Use of Obfuscation Tools

Furthermore, 148 participants gave details on the obfuscation tools they had used. Most of them
(127, 85.8%) had used ProGuard. 12 participants (8.1%) used the Jack toolchain’. 11 participants (7.4%)
used DexGuard and 6 participants (4%) used ReDex. 4 participants mentioned other less popular
obfuscation tools with only one appearance, like an obfuscation tool built into the Unity engine.
Overall, 144 (97.3%) of the participants had used ProGuard or similar tools.

RQ2 Conclusions: This section addressed RQz: What are developers’ awareness, threat models,
experiences, and attitudes about obfuscation? We found that survey participants are aware of obfuscation,
but estimated the risk to their own apps as low. Many participants noted that obfuscation was simply
not worth the extensive effort.

We also learned that many Android developers suffer from misconceptions (e.g., using obfuscation
to secure network connections) and seem to be overwhelmed by using obfuscation correctly (e.g., the
inability to obfuscate an app, but exclude certain components from obfuscation). Generally, we also
observed the lack of a threat model: one participant explicitly stated “I wasn’t sure my apps would
be even popular enough so that someone would bother to copy them. If they would get popular, I'd
release an update with obfuscation on.” Many developers did not see a reason to obfuscate their own
app(s) despite being aware of an abstract risk. One participant explicitly spoke of their experiences
with piracy, stating “I see it as highly unlikely, that someone is actually interested in reverse engineering
my code. However, I have encountered several fraud cases as an Android developer. All consisted of
minimum reverse engineering efforts, i.e. people decompiled my app, changed the advertising ID code,
repacked it, and published it under a different name.” We find that the lack of concrete threat models
explains a low motivation to obfuscate; to obtain a better understanding of the barriers to obfuscation,

5The Jack toolchain was deprecated in March 2017 (cf. https://android-developers.googleblog.com/2017/03/ futur
e-of-java-8-language-feature. html)

106

https://android-developers.googleblog.com/2017/03/future-of-java-8-language-feature.html
https://android-developers.googleblog.com/2017/03/future-of-java-8-language-feature.html

6.8 Obfuscation Experiment

we decided to investigate the usability issues mentioned by a substantial number of participants in

depth.

6.8 Obfuscation Experiment

The large scale measurement study and developer survey described above raised an interesting paradox:
Roughly 50% of our survey participants claimed to have tried obfuscation in the past, but only 25% of
the apps in our measurement study were obfuscated. We hypothesized that this discrepancy may be
explained by the fact that developers may aztempt obfuscation, but be unsuccessful due to difficulties
in using their obfuscation tool. To test this hypothesis that the leading obfuscation tool might suffer
trom usability problems, we conducted an online experiment to investigate how developers interact
with the ProGuard obfuscation framework. This study addresses our RQ3: How usable is the leading
obfuscation tool?

6.8.1 Study Design

We designed an online, within-subjects study to compare how effectively developers could quickly write
correct, secure ProGuard configurations. Again, we recruited developers with demonstrated Android
experience from Google Play. Participants were assigned to complete a short set of Android obfuscation
tasks, using ProGuard. All participants completed the same set of two ProGuard tasks. After finishing
the tasks, participants completed a brief exit survey about the experience. We examined participants’
submitted ProGuard configuration for functional correctness and security. The study was approved
by our institutions’ ethics review boards (see Section 6.9.1 for more details).

We chose to use ProGuard as the obfuscation tool for our experiment because it is pre-installed with
Android Studio, the standard IDE for Android app development, and also because our online survey
participants overwhelmingly used ProGuard.

Recruitment and Framing

Similar to our survey, we recruited Android developers from Google Play to participate in our developer
study. We emailed 91,177 developers in batches, asking them to volunteer for a study on how Android
developers use ProGuard to obfuscate apps. We did not mention security or privacy in the recruitment
email. We assigned each invitee a unique pseudonymous ID to link their study participation to Google
Play metadata without directly identifying them. Recipients who clicked the link to participate were
directed to a page containing a consent form. After affirming they were over 18, consenting to the study,
and indicating comfort completing a study in English, they were introduced to the study, given access
to an Android Study project containing our skeleton app and instructions (including screenshots) on
how to import it and set it up. We also provided brief instructions about the study infrastructure,
which we describe next.

Experimental Setup

After reading the study introduction, participants were instructed to work on the tasks themselves.
Our aim was to have developers write and test ProGuard configurations. We wanted to capture the
ProGuard configuration and the Android application code that they typed. To achieve this, we prepared
a Gradle-based Android application development project for Android Studio as a skeleton, compressed

107

Chapter 6 Large Scale Investigation of Obfuscation Use in Android

the project to a zip file, and provided a download link. We asked participants to download the zip file,
import the project into their Android Studio development environment, work on the tasks, put their
solutions in a new zip file, and upload this file to our study server. After uploading the solution zip file,
we provided a link to the exit survey that allowed us to connect the ProGuard solutions to the survey
responses.

6.8.2 The Tasks

To investigate possible usability issues with ProGuard, we asked participants to use ProGuard to com-
plete two obfuscation tasks on the skeleton app we provided in the zip file.

We designed tasks that were short enough so that uncompensated participants would be likely to
complete them before losing interest, but sufficiently complex to offer insights into the usability of
ProGuard. Most importantly, we designed tasks to model real world problems that Android developers
using ProGuard could reasonably be expected to encounter. We chose both tasks after investigating
ProGuard centered StackOverflow discussions and GitHub repositories. Both tasks are amongst the
most popular ProGuard related discussions on StackOverflow and represent the most popular modifi-
cations in ProGuard configuration files on GitHub.

For each task, participants were provided with stub code and some commented instructions. These
stubs were designed to make the task clear without providing too much scaffolding and to facilitate our
evaluation. We also provided Android application and ProGuard code pre-filled so participants could
test their solutions.

Task 1 - Configure: The first task required participants to activate ProGuard within the default Gradle
configuration file. The goal was to fully obfuscate the Android application. Participants were asked to
solve this task so we could investigate their ability to complete a basic ProGuard configuration. Possible
errors include the inability to activate obfuscation or a misconfiguration of ProGuard that disables
obfuscation.

Task 2 - Obfuscate and Keep: The second task required developers to configure ProGuard to obfus-
cate one specific class (SecretClass) of our app, while keeping a second class (Open Class) and its function
(doStuff()) unobfuscated. To solve this task, developers were expected to use ProGuard’s “~keep” flag
for the Open Class class.

The challenge for this task was to correctly use the “~keep” flag. Depending on the specified argu-
ments, developers could potentially leave the SecrerClass unobfuscated or obfuscate OpenClass instead.

Exit Survey

Once both tasks had been completed and the zip file was uploaded, participants were directed to a short
exit survey.(’ We asked for opinions about the completed tasks, their assessment of their configurations
for both tasks, general questions related to obfuscation and reverse engineering, and their previous
experience with ProGuard and other Android obfuscation tools.

Evaluating Solutions

Once participants submitted solutions, we evaluated their correctness. Every solution was indepen-
dently reviewed by two coders, using a codebook prepared ahead of time based on the official ProGuard
configuration documentation. Differences between the two coders were reconciled by a third coder.

6We used LimeSurvey for this; the full questionnaire is available in the Appendix.

108

6.8 Obfuscation Experiment

We assigned correctness scores to valid solutions only. To determine a correctness score, we consid-
ered several different ProGuard parameters. A participant’s solution was marked correct (1) only if their
solution was acceptable for every parameter; an error in any parameter or a parameter that weakened the
ProGuard configuration security resulted in a correctness score of 0. To assess the correctness of Task
1, we evaluated the Gradle and ProGuard flags in participants’ solutions. Whenever participants en-
abled ProGuard using both the “minifyEnabled true” and “proguardFiles proguard-rules.pro”
options in the configuration file, we rated the solution correct. Solutions that did not specify one of
these options or included the “~dontobfuscate” flag were rated incorrect.

For Task 2 correctness, we evaluated whether participants enabled obfuscation for the SecrerClass
class and its doSecretStuff{) method but left the OpenClass class and its method doStuff{) unobfus-
cated. Similar to Task 1, we required participants to enable obfuscation by using the “minifyEnaled
true” and the “proguardFiles proguard-rules.pro” options. Additionaﬂy, correct solutions had to

» <« » «

specify one of the following options “~keep”, “~keepclassmemebers”, “~keepclasseswithmembers”,

“~keepnames”, “~keepclassmembernames”, or “~keepclasseswithmembernames” for both the Open-
Class class and the doStuff{) method without including the SecretClass and its doSecretStuff() method.

Solutions that did not meet these criteria were considered incorrect.

6.8.3 Results and Takeaways

In total, we sent 91,177 email invitations. Of these, 999 (1.9%) requested to be removed from our list, a
request we honored.

766 people clicked on the link in the email. Of these, a total of 280 people agreed to our consent
form; 202 (72.1%) dropped out without taking any action. We received zip files from the remaining
78 participants. We excluded eight submissions from further evaluation: one participant submitted a
broken zip file, five submitted zip files without a ProGuard configuration file included, two submitted
unmodified ProGuard configuration files.

The remaining 70 participants proceeded through at least one ProGuard task; of these, 66 started the
exit survey, and 63 completed it with valid responses. Unless otherwise noted, we report results for the
remaining 63 participants, who proceeded through all tasks and completed the exit survey with valid
responses. Almost all (60, 95%) of our participants had heard of the concept of software obfuscation
before, and 54 (85%) had been using ProGuard at least for one Android application in the past.

Most participants (49, 77%) mentioned an abstract threat of reverse engineering or malicious repack-
aging for Android applications in general. However, similar to the online survey we conducted in
Section 6.7, only a small number of participants estimated a high risk for malicious repackaging for
their own app(s).

Surprisingly, all of the 7o participants who changed the configuration for Task 1 submitted a cor-
rect solution by adding both the “minifyEnabled true” and “proguardFiles proguard-rules.pro”
options.

Task 2 was correctly solved by only 17 (22%) participants, all of whom correctly solved Task 1 as well.
Of the 53 incorrect solutions for Task 2, 30 solutions did not include the -keep option for the OpenClass
class. These mistakes resulted in obfuscated classes that should be kept unobfuscated. 17 of the 53
incorrect solutions did include the -keep option but misspelled the package name for the OpenClass
class. Six of the 53 incorrect solutions included the wildcard option for class names which disabled
obfuscation for the SecretClass class.

41 of our participants rated their solutions as correct. However, only 11 of them actually submit-
ted correct solutions for both tasks. Overall, 52 participants self-reported previous experience with

109

Chapter 6 Large Scale Investigation of Obfuscation Use in Android

ProGuard of which 13 correctly solved both tasks. Only one of the 11 participants with no previous
ProGuard experience was successful.

RQ3 Conclusions: This section addressed our RQ3: How usable is the leading obfuscation tool? We
found that all participants, regardless of their experience with ProGuard, were able to solve the trivial
task to obfuscate the complete app with ProGuard. However, we found a low success rate for the task
that required more complex configuration, which substantiated the usability problems mentioned in
our developer survey. Being unfamiliar with ProGuard use essentially disqualified participants from
configuring partial obfuscation. Critically, participants were unable to verify whether ProGuard had
been configured correctly and whether it obfuscated successfully. These results underline a critical
usability problem with ProGuard that likely contributes to low obfuscation rates in the wild.

6.9 Discussion

Security through insignificance? Our large-scale analysis showed that the majority of developers do
not take basic steps to protect their apps. Even for the most popular apps with upwards of 10,000,000
downloads, who are high risk candidates for obfuscation-related threats, the intentional obfuscation
percentage remains below 50%. In our studies, participants assigned a low risk of obfuscation-related
attacks to their apps while assuming a greater risk for the whole app ecosystem. Through provided
write-ins we learned that many developers perceive their apps as too insignificant to ever fall prey to
intellectual property theft or plagiarism. This “security through insignificance”-approach could prove
fatal to the increasing number of small developers in the Android ecosystem.

Optional obfuscation: In addition to low initial motivation, the complexity of correctly using ob-
fuscation further contributes to developer unwillingness to obfuscate. Cryptic error messages and
confusing documentation do not increase motivation. Perhaps as a result, a certain mind-set seems to
have contributed further to the rejection of obfuscation: some participants voiced concerns that obfus-
cation would destroy their “completed” applications. This view of obfuscation usage as an optional —
not essential — development practice could play a larger role in hampering the acceptance of software
obfuscation among developers.

Recommendations: Our findings indicate that there are two critical problems preventing widespread
adoption of obfuscation in the Android ecosystem. The first is technical, and may have a technical
solution: ProGuard is difficult to use correctly. We believe that it may be possible to automatically
detect complicating factors (like WebView use) and automatically generate valid ProGuard configu-
rations for developers. If successful, this would allow obfuscation to be enabled by default within
Android Studio and other development environments. The second problem is that developers are not
motivated to deploy obfuscation given a low perceived risk and high perceived effort. Developers also
view obfuscation as an optional, possibly “app destroying” step instead of an integral part of the build
process. While improved interfaces and automation for obfuscation may improve the perceptions of
effort, more research and education regarding the risks of plagiarism is needed. A technical solution
may take the form of new obfuscation techniques or obfuscations applied by the market instead of
relying on developers to protect themselves, their users, and the ecosystem at large.

6.9.1 Ethical Considerations
We conducted two user studies in the context of this research. Both the survey presented in Section 6.7

and the developer study in Section 6.8 were approved by the Institutional Review Board (US) and
ethical review board (Germany) of all involved universities. Additionally, the strict data and privacy

110

6.9 Discussion

protection laws in Germany were taken into account for collecting, processing and storing participants’
data. Our user studies were targeted towards Android developers who had made their app public by
offering it on Google Play. For ecological validity reasons we decided against recruiting local computer
science students. To reach this rather specific group of Android developers, we gathered email addresses
from developers who had published apps on Google Play from their public Google Play profiles. We
selected a random sample and emailed them an invitation to one of our studies (This participant re-
cruitment procedure is in line with work by Acar ez al. [100]). Our invitation email included a link to
our website, where they could access information about the purpose of our research, a consent form
that explained how participant data would be used and a contact form. The email further included a
link to be blacklisted; hashes of the blacklisted email addresses are shared across several research groups
participating in similar developer studies.

6.9.2 Threats to Validity

In this section, we detail issues that may have affected the validity of our results and the steps we have
taken to ensure that our results are as accurate as possible.

App Analysis. Our dataset of 1.7 million apps was downloaded from public accessible Google Play
Android apps. This is a common methodology, and like all similar studies we run the risk that paid
apps or apps in other markets have difterent properties. These populations (paid apps in particular)
may have additional incentives to obfuscate. However, we believe that the high overlap of apps that are
available as both free and paid apps, and identical apps available in multiple markets, minimizes this
risk.

Our choice of measuring main package obfuscation is not perfect; it is possible that a developer does
not obfuscate the main package but obfuscates the remainder of the app. To estimate the frequency of
this practice, we examine how many apps without main package obfuscation have obfuscated packages
that do not have multiple occurrences in the overall dataset. We found that only 22,868 apps (1.30%
of all apps in the dataset) meet this criteria. This establishes an upper bound on the error of this
heuristic. We note that an alternative approach to main package analysis would have been to remove
third-party library packages after identification with obfuscation-resistant library detection tools such
asL1IBRADAR [158], LiBScoUT [334], or L1BD [157]. This whitelist approach to package filtering
would by design miss new or rarely used libraries, so we opted for the conservative approach of main
package analysis.

Online Survey and Developer Study. As with any user study, our results should be interpreted in
context. We chose an online study because it is difficult to recruit “real” Android application developers
(rather than students) for an in-person lab study at a reasonable cost. Conducting an online study
resulted in less control over the study environment, but it allowed us to recruit a geographically diverse
sample.

Because we targeted developers, we could not easily take advantage of services like Amazon’s Me-
chanical Turk or survey sampling firms. Managing online study payments outside such infrastructures
is very challenging; as a result, we did not offer compensation and instead asked participants to gener-
ously donate their time. As might be expected, the combination of unsolicited recruitment emails and
no compensation may have led to a strong self-selection effect, and we expect that our results represent
developers who are interested and motivated enough to participate. However, as the recruitment in
Figure 6.4 demonstrates, while our participants have higher average app ratings, the sample represents

Google Play developers both in app popularity and frequency of updates.

III

Chapter 6 Large Scale Investigation of Obfuscation Use in Android

In any online study, some participants may not provide full effort or may answer haphazardly. In
this case, the lack of compensation reduces the motivation to answer non-constructively; unmotivated
participants typically do not opt in to the study. We attempted to remove obviously low-quality data
(e.g., responses that are entirely invective) before analysis, but cannot discriminate perfectly.

6.10 Summary

This paper presents the first comprehensive evaluation of the state of software obfuscation for benign
Android applications. We built OBFUSCAN to analyze the use of obfuscation in 1,762,868 free Android
applications available in Google Play. Our investigation reveals that 439,232 were obfuscated by their
developers, leaving more than 75% unprotected against malicious repacking. In an online survey with
308 Google Play developers, 78% of the participants had heard of obfuscation while only 48% actually
used software obfuscation — more than 85% of the participants used ProGuard - in the past. Inter-
estingly, the majority of the participants recognized that software obfuscation in general is a laudable
approach to protect against malicious repackaging. However, only few of them saw a reason to protect
their own apps. Finally, in a within-subjects study with 70 real Android developers, we learned that
78% of the participants could not correctly complete a realistic ProGuard obfuscation task. Participants
who self-reported no previous experience with ProGuard had a negligible chance to correctly obfuscate
the study application beyond the trivial option to obfuscate it entirely.

Overall, our studies show that the current use of software obfuscation for benign Android applica-
tions leaves manifold challenges for future research. We find that both misconceptions about software
obfuscation many of our participants suftered from and the challenges in using ProGuard correctly
seem to be the root cause for the low adoption rate of software obfuscation in the Android ecosystem.
Hence, future research needs to find more effective ways to make the concept and relevance of soft-
ware obfuscation concepts accessible to Android developers and should work on more usable software
obfuscation tools.

This chapter presented research on the use of obfuscation in the Android ecosystem, consisting of a
multi-pronged study approach with measurements, a survey, and a programming experiment. Aside
from software experts themselves, end users can provide important insights into their perceptions and
reasoning, allowing developers and administrators to match their approaches accordingly. I present
research involving a survey with 200 cloud office users from Germany and the U.S., investigating their
experiences and perceptions of cloud office suites in the following chapter Security & Privacy Percep-
tions of Cloud Office Suites (Chapter 7).

II2

Chapter 7

Security & Privacy Perceptions of Cloud
Office Suites

LouD OFFICE SUITES such as Google Docs or Microsoft Office 365 are widely used tools, but
C introduce unique security and privacy risks and challenges for documents and sensitive user
information. This chapter describes an investigation into the security and privacy perceptions and
expectations of 200 users of cloud office suites such as Google Docs and Microsoft Office 365 from
Germany and the U.S.

As this project was conducted as a team consisting of me, Nicolas Huaman, Christian Stransky,
Niklas Busch, Yasemin Acar, and Sascha Fahl, this chapter utilizes the academic “we” to mirror this
fact. Our survey found that users are generally aware of basic security implications, storage models,
and access by others, but some threat models are underdeveloped due to a lack of technical knowledge.
Users have strong opinions on certain parties accessing their data but are unsure who actually has access
to their documents. The chapter provides recommendations for different groups associated with cloud
office suites to inform future standards, regulations, implementations, and configuration options.

71 Preamble

This chapter is based on research that was also published as “Cloudy with a Chance of Misconceptions:
Exploring Users’ Perceptions and Expectations of Security and Privacy in Cloud Office Suites” [19],
which appeared and was presented by me at the Sixteenth Symposium on Usable Privacy and Security
(SOUPS 2020) in August 2020.

Dominik Wermke, C. Stransky, N. Huaman, N. Busch, Y. Acar, and S. Fahl, “Cloudy with a
Chance of Misconceptions: Exploring Users’ Perceptions and Expectations of Security and Pri-
vacy in Cloud Office Suites,” in Sixteenth Symposium on Usable Privacy and Security (SOUPS 20),

Aug. 2020
The original abstract for the publication is as follows:

Abstract: Cloud Office suites such as Google Docs or Microsoft Office 365 are widely used,
and introduce security and privacy risks to documents and sensitive user information. Users
may not know how, where and by whom their documents are accessible and stored, and it is
currently unclear how they understand and mitigate risks. We conduct surveys with 200 cloud
office users from Germany and the U.S. to investigate their experiences and behaviours with
cloud office suites. We explore their security and privacy perceptions and expectations, as well as
their intuitions for how cloud office suites should ideally handle security and privacy. We find
that our participants seem to be aware of basic general security implications, storage models,

3

Chapter 7 Security € Privacy Perceptions of Cloud Office Suites

and access by others, although some of their threat models seem underdeveloped, often due to
lacking technical knowledge. Our participants have strong opinions on how comfortable they are
with the access of certain parties, but are somewhat unsure about who actually has access to their
documents. Based on our findings, we distill recommendations for different groups associated
with cloud office suites, which can help inform future standards, regulations, implementations,
and configuration options.

I would like to express my sincere gratitude to everyone who has contributed to the completion of
this project. I would also like to thank our participants, who generously gave their time and shared
their perceptions regarding cloud office software with us. Their willingness to participate made this
research possible, and I am deeply grateful for their contributions.

711 Contribution

The research presented in this chapter was conducted as a team consisting of me as team lead, Nicolas
Huaman, Christian Stransky, Niklas Busch, Yasemin Acar, and Sascha Fahl. I am grateful for the
contributions of each member, which have been integral to the success of this research project. Without
their expertise, hard work, and dedication, this research project would not have been possible.

I came up with the initial idea for this study based on the then-prevalent privacy issues with using
U.S.-based cloud applications in German education and industry. I setup the initial concept and re-
search approach involving U.S. and German participants for this research project. I lead the design
of the study and survey guide with the rest of the team. Christian Stransky and I invited participants
via Amazon’s Mechanical Turk. I analyzed and visualized the survey counts together with Nicolas
Huaman. In joint work with Christian Stransky, Nicolas Huaman, and Niklas Busch, we qualitatively
coded the free text answers. I compiled the paper for publication with contributions from the remaining
team and we jointly discussed the work’s implications. I presented this publication at SOUPS’20.

71.2 Structure

The rest of this chapter is structured as follows: after a general introduction (Section 7.2), I provide
a background to cloud office suites in Section 7.3. I then describe the setup and structure of our two
surveys in Section 7.4 and report our results in Section 7.5. I discuss related work at the time of this
research in 2020 in Section 7.6. Finally, I discuss findings and give recommendations in Section 7.7 and
summarize this chapter in Section 7.8.

4

7.2 Introduction

7.2 Introduction

During the 1970s, office software began to emerge in the world of personal computing. Early word
processors such as Electric Pencil for the MITS Altair in 1976 , WordStar for the CP/M in 1978 ,
and later dedicated spreadsheet applications such as VisCalc were considered “killer applications” for
their respective systems. These dedicated office tools helped the adoption of personal computers over
more dedicated or mechanical systems for word processing. In recent years, another major shift is
happening in the world of office applications. With Microsoft Office 365, Google Drive, and projects
like LibreOftice Online, most major Office suites have moved on to provide some sort of cloud platform
that allows for collaboration between multiple editors, automatic real-time storage on cloud or internal
network servers, and easy access through the browser without requiring the installation of software.

The major selling points for these cloud office platforms might as well be their biggest (security &
privacy) weaknesses: easy sharing of documents, cloud storage of data, and the high similarity in design
and UI to previously prevalent offline office software hide a large array of potential privacy and security
trapdoors from the average office user.

With the shift from offline to cloud, many cloud office providers also moved from a pay-once model
to a subscription-based model with a trial period or even a completely free payment model. This
shift accompanied a questionable change in business model drive for these companies: the processing
and storing of documents in the cloud provides the possibility of large-scale privacy intrusion by the
providers for both end users and businesses that utilize the cloud. Due to the similarity in design to
offline office software, this major impact on their privacy is likely not fully realized by the end user.
This impact on privacy gets further amplified by governments and administrations updating their
infrastructure to cloud-based solutions, potentially processing and uploading the data of citizens in the
cloud without their explicit consent. In a recent example, the Department of Defense awarded a $7.6
billion contract to General Dynamics to provide the Pentagon with the cloud-based Microsoft Office
365 [339].

Another major selling point of cloud office applications is the ease of access, often from almost any-
where on earth with an internet connection, without requiring any additional installation of software.
While the actual location of the underlying servers is rarely mentioned in cloud advertisements, it has
large implications on privacy and security. In July 2019, the central German State of Hesse declared that
schools may not legally to use Microsoft Office 365 and similar cloud office platforms due to collected
telemetry and the potential access to stored data on U.S. servers by U.S. officials [340], [341]:

“What is true for Microsoft is also true for the Google and Apple cloud solutions. The
cloud solutions of these providers have so far not been transparent and comprehensibly
setout. Therefore, itis also true that for schools the privacy-compliant use is currently not
possible.” (Hessian commissioner of Data Protection and Freedom of Information [341].)

In August 2019, Microsoft announced that it will be able to provide cloud services from data centers
in Germany in late 2019 “to meet evolving customer needs” and to being “committed to making sure that
the Microsoft Cloud complies with [the European General Data Protection Regulation] GDPR” [342].
As of February 2020, Microsoft offers Office 365 and Dynamics 365 from new German data center
regions [343].

In this chapter, I investigate privacy and security misconceptions by end users of cloud office appli-
cations in a user study including participants from both Germany and the U.S. For this, we conducted
two online surveys with 200 crowd workers from Amazon’s Mechanical Turk and ClickWorker. With
a combination of qualitative and quantitative methods, we modeled the two surveys to explore the
following research questions:

15

Chapter 7 Security € Privacy Perceptions of Cloud Office Suites

Table 7.1: Overview of the most common cloud office suites and their related features.

Versions available Mobile Version Sharing

Offline Document
Storage Mode Recovery
Self Free Paid Trial Android iOS E-Mail Link Read Read &
Hosted Only Comment
Office 365 [) O O De © o o o o O O o
Google Drive o o (@) o O o o o o o O o o
iWork for @ O (@) o 0 @) [] o O @) ([
iCloud
LibreOffice O O o o D - D O D+ D+t D¢ @) D+
Online
OnlyOffice o O o e O o o o o o O o o

o Feature available o Feature not available D Feature partially available
' Students and teachers receive a free online only version. * Support is only provided by third party companies and not
directly by The Document Foundation. 3 Only a viewer is available. ~ # Depends on underlying software.

RQi: “How and why do our participants interact with cloud office applications?” Today’s office
suites are compelling to use with features such as collaboration between multiple editors, automatic
real-time storage, and easy online access without installation. We are interested why and how our
participants interact with office applications both in a home and organizational setting.

RQ2: “What are end users’ awareness, perceptions, and attitudes about privacy in cloud office appli-
cations?” The switch from an offline to cloud environment in both home and organizational settings
introduced immense changes for privacy and security assumptions for office suites. We examine our
participants’ security and privacy perceptions and expectations, as well as their intuitions for how cloud
office suites should ideally handle security and privacy.

RQ3: “Whatis the participants’ understanding and related mental models regarding protection and
security of their cloud documents?” The actual server location, access by providers or governments,
and handling of deletions has an enormous impact on the privacy of cloud office applications. We
survey the extend of our participants’ understanding and their basic mental models regarding cloud
office documents.

7.3 Cloud Office Suites

For this research, we define cloud office suites as cloud-based office applications that allow view, edit
and comment on documents, spreadsheets and presentations in the browser.

Table 7.1 provides an overview of the most popular cloud office suites and their features relevant
for this work. Prominent providers of cloud office suites are Google (Google Drive) [344], Microsoft
(Ofhice 365) [345], Apple (iWork for iCloud) [346], The Document Foundation (Libre Office On-
line) [347], and Ascensio System SIA (OnlyOffice) [348]. In contrast to traditional office suites such as
Microsoft Office, cloud office suites provide browser based user interfaces. Users are no longer limited
to work on desktop computers using native office applications, but can access their files using any device
that provides a modern browser. Hence, modern cloud office suites support mobile devices such as
smartphones and tablets and allow easy access to their cloud applications wherever users have access to
the internet.

In contrast to traditional office suites, cloud office suites allow users to easily share documents with
multiple collaborators and edit the same document simultaneously. Cloud office documents can be
shared using e-mail addresses or direct links to a document. For better user experience, all cloud office

16

7.4 Methodology

suite providers allow their users to recover deleted documents. In addition to online access to their
documents, Google Drive provides an offline mode that stores documents in the local browser storage
and makes them available for offline editing. Offline documents are pushed to the cloud as soon as
users have Internet access.

The three major providers Microsoft, Google, and Apple only provide cloud-hosted solutions while
Ascensio System also provides a self-hosted community edition which allows keeping the data under
their users’ control. Every hosted cloud office solution provides storage capabilities in the cloud. The
amount of storage included depends on the license purchased and can be upgraded at any time. Libre-
Office Online by The Document Foundation supports no storage by itself and is dependent on the
underlying software like OwnCloud or NextCloud to provide the storage and authentication.

While all cloud office suites provide rudimentary access control for sharing, only Google Drive and
OnlyOfice provide an option to share documents with read-only access that still allows to comment
on documents.

7.4 Methodology

In this section we provide details on the procedure and structure of the two surveys we conducted
with crowd workers from Amazon’s Mechanical Turk (z = 105) and ClickWorker (z = 95). We also
detail the coding process for our qualitative questions as well as the statistical analysis approach for our
quantitative data. We also report on our data collections and ethics, and discuss the limitations of our
work.

Note that while our two surveys may include participants living in the U.S. or in Germany, Austria,
or Switzerland respectively, we refer to them as “U.S.” and “German(y)” for a more succinct reporting.

7.41 Study Procedure

Both the German-speaking participants from ClickWorker and the English-speaking participants from
Mechanical Turk were administered an almost identical survey, with the German survey being a direct
translation from the English one by multiple native German speakers.

Questionnaire Development. The questionnaire development was guided by our established research
questions. We included pre-tested and evaluated survey questions from previous work where appro-
priate to allow for a greater comparability between studies. In addition, we performed 5 in-depth,
free-form interviews with both experts and non-experts to establish additional areas of interest for our
survey.

Pre-Testing. Before we conducted the surveys, we pre-tested our questionnaires following the princi-
ple of cognitive interviews [349]. This allowed us to glean insights into how survey respondents might
interpret and answer questions. We asked participants to share their thoughts as they answered each
survey question and used our findings to iteratively revise and rewrite the survey questions to minimize
bias and maximize validity. This first pre-test was conducted internally in both German and English
with members of the groups, students of our university, and friends. In addition, we refined the surveys
in multiple pilots with participants on Mechanical Turk (z = 9) and ClickWorker (z = 20) until a
satisfactory convergence was reached.

Recruitment and Inclusion Criteria. We recruited participants for our study from Amazon’s Me-
chanical Turk and ClickWorker during September 2019. We did not mention security or privacy in
the initial recruitment ad to avoid certain recruitment biases. We generally required participants to
be age 18 or older and to have used cloud office software before. For Amazon’s Mechanical Turk, we

1y

Chapter 7 Security € Privacy Perceptions of Cloud Office Suites

additionally required participants to live within the United States. To ensure sufficient data quality, we

also required them to have completed a minimum of 1,000 hits and to have a task approval rate of at

least 95% [350]. For ClickWorker, we additionally required participants to speak German and to live

within Germany, Austria, or Switzerland.

A total of 229 people responded to our surveys. Of those, 22 did not finish and 7 were excluded

due to low-quality answers or due to failing at least one of our quality checks, resulting in 200 final

participants whose responses we consider.

7.4.2 Survey Structure

1. Use of Office Tools

Establishes office and cloud office usage patterns of our participants.

¥

2. Document Safety
Explores participants’ perceptions of safety for documents on their computer versus in the
cloud.

¥

3. Document Access
Explores participants’ perceptions about unauthorized access of their documents and breach
disclosures.

¥

4. Document Storage
Explores participants’ perceptions about the storage of their cloud office documents.

¥
[Assigned depending on crowd worker platform.]

sa. Responsibility (GER) sb. Responsibility (U.S.)
Explores perception of cloud provider re- Explores perception of cloud provider re-
sponsibilities (Localized for Germany). sponsibilities (Localized for the U.S.).

[Participants were equally distributed among both conditions.)

6a. Personal Perception 6b. General Perception
Explores perception of personalized scenar- | | Explores perception of generalized scenar-
ios. ios.

¥

7. Data Protection
Explores participants’ general perceptions and models about the protection of their documents.

¥

8. GDPR

Explores participants’ awareness of the European General Data Protection Regulation (GDPR).
¥

9. Demographics
General demographics (age, gender, CS experience) and feedback.

Figure 7.1: Illustration of the survey flow for both German and English surveys. Splits in the flow

118

include a localized version of the “Responsibility” block for Germany and the U.S. and a
split for generalized scenarios vs. personalized that were randomly assigned to participants.

7.4 Methodology

We outline the survey structure in Figure 7.1 and below. Both our surveys consisted of a total of 9
sections, ranging from general cloud office questions to personal beliefs about the responsibilities of
cloud office providers. The two survey versions differed slightly due to localized answer options (e.g.,
localized names for government agencies) and changes to concepts that do not exist or have a different
privacy implication in German-speaking countries (e.g., social security number).

1. Use of Office Tools: Our surveys open with questions in which we explore the general usage patterns
of offline and cloud office applications by our participants in both private and professional context.
We report general demographics and office-specific demographics of our participants in Section 7.5.1

and Table 7.3.

2. Document Safety: The “Document Safety” section explores how participants perceive the security
of their documents in the cloud vs. locally on their computer and why. We report these results in
Section 7.5.2.

3. Document Access: The “Document Access” section investigates participants’ mental concepts
and perceived risks related to the access of their documents. Questions related to which parties they
think have access to their documents, who already might have accessed their documents without their
authorization, and if the risk of unauthorized access by different parties is higher in the cloud or on
their computer. Further, the section asks participants about who they think woxld inform them in case
of an unauthorized access to their data and who they think shox/d inform them and how. We report
the results related to the access of cloud office documents in Section 7.5.3.

4. Document Storage: This section explores our participants’ perception about the storage of their
cloud office documents. We asked our participants about the number of copies they think exist of their
documents and with whom they think copies remain after deleting their own versions. In addition,
we asked who they think can delete their documents. We report the results for these questions in
Section 7.5.4.

sa/b. Responsibility: In this section, we investigate our participants’ perceptions about responsibil-
ities of cloud office providers regarding access and protection of documents. The “Responsibility”
section differs slightly between the German and English survey to allow for the localization of certain
answer options such as law-enforcement agencies and government names. We report the results in
Section 7.5.5.

6a/b. Perception: The “Perception” section contains questions to three different scenarios related
to the processing of sensitive data in cloud document applications, either in a more personal or more
generalized condition.

1. Data of children. The first scenario described the use of a cloud office application in an educa-
tional setting. We asked our participants to assess how much they felt at ease with using cloud
office applications for handling data of children in schools, e.g., for storing grades or writing
tasks.

2. Health data. The second scenario had a focus on health information. A general practitioner used
a cloud office application to handle sensitive patient information including a patient’s name,
age, weight, diagnosis, and treatment plan. Again, we asked our participants to rate their level of
comfort with the scenario.

3. Financial data. In the third scenario we illustrated a use case involving financial data. A financial
advisor used a cloud office application to process client data. The processed documents include
private information such as the client’s name, social security number, and detailed financial
information.

119

Chapter 7 Security € Privacy Perceptions of Cloud Office Suites

Participants of the study were equally distributed between both conditions and the order of scenarios
was randomized for each participant. Results for the different scenarios are reported in Section 7.5.6.

7. Data Protection: The “Data Protection” section explores participants’ mental models about the
protection of their documents in the cloud. We asked our participants’ which data they think is collected
when they process documents in cloud office applications and how they think their data is protected.
We report these results in Section 7.5.7.

8. GDPR:. In the “GDPR” section we explored our participants’ general knowledge about the Euro-
pean General Data Protection Regulation (GDPR) and what they know about the protection offered
by it. These questions link back to “responsibility block”, which asked participants about cloud office
provider responsibilities directly implied by the GDPR. We report the general results for this block
together with other demographics in Section 7.5.1 and combined it for our analysis of the responsibility
section in Section 7.5.5.

9. Demographics: We administered demographic questions at the end of the questionnaire to pre-
vent stereotype bias [351], [352]. Our demographic questions included age, gender, age, and previous
experiences in CS education and CS jobs. Additionally we asked respondents for general feedback for
the survey questionnaire. We report general demographics and office-specific demographics of our
participants in Section 7.5.1 and Table 7.3.

7.4.3 Coding and Analysis

Our collected data includes both qualitative and quantitative data points.

Qualitative Coding. We analyzed all open-ended questions in an iterative open-coding process [290],
[291]. Two researchers established an initial codebook [289], coded all open-ended questions together,
and resolved emerging coding conflicts immediately in a consensus discussion or by introducing new
codes. If new codes were introduced, all previous answers were revisited and re-coded if necessary. Due
to the immediate resolving, reporting an intercoder agreement and reliability is uncommon for this
approach [353]. The codebook remained stable once both researchers were satisfied that all important
themes and concepts in the responses could be captured with the codes. Both surveys were coded with
the same codebook and codes for the German survey were assigned by two native speakers.

Quantitative Analysis. We use the non-parametric Kruskal-Wallis H test (K775 non-parametric
equivalent to the one-way ANOVA) to compare multiple independent groups. For multiple tests
on paired groups, we use the Mann-Whitney U test (A 17U and control the results for multiple test-
ing. We assume an alpha level of @ = .05 for significance in hypothesis tests. Where appropriate, we
controlled our hypothesis tests for the multiple comparison problem with the conservative Bonferroni
correction and report the “adjusted”/“adj.” values. For certain tests, we map five-point Likert scale
answers to numbers (-2, -1, 0, 1, 2.).

We present the outcomes of our regressions in tables where each row contains a factor and the
corresponding change of the analyzed outcome in relation to the baseline of the given factor. Linear
regression models measure change from baseline factors with a coefficient (Coef.) of zero for the value
of the outcome. For each factor of a model, we also list a 95% confidence interval (C.1.) and a p-value
indicating statistical significance. We highlight p-values below a cut-off of .05 with a star ().

As our regression analyses are intended to be exploratory, we consider a set of candidate models and
select the final model based on the lowest Akaike Information Criterion (AIC) [354]. We consider
candidate models consisting of the required factors “Country”, “Condition”, and “Scenario”, as well
as every possible combination of the optional variables. Required factors, optional factors, and corre-
sponding baseline values are described in Table 7.2. In cases when we consider results on a per-scenario

120

7.4 Methodology

Table 7.2: Factors used in candidate regression models. Model candidates always included the required
factors and covered all possible combinations of optional factors. Final models were selected
based on lowest AIC. Categorical factors are individually compared to the baseline.

Factor Description Baseline
Required
Country Germany or U.S., participants assigned based on crowd working platform. ~ U.S.
Condition General or Personal. Scenario condition, participants evenly distributed ~ General
between both conditions.
Scenario Child, Health, or Financial. Type of scenario, all 3 shown to each partici- Child
pant.
Participant Random effect accounting for repeated measures (due to the 3 scenarios n/a
per participant).
Optional
Office at work True or False, uses office software at work, self-reported. False
CS Education True or False, has a CS education, self-reported. False
CS]Job True or False, has a CS job, self-reported. False
Age Age in years, self-reported. n/a

rather than a per-participant basis, we use a mixed linear model that adds a random intercept to account
for multiple scenarios from the same participant.

7.4.4 Data Collection and Ethics

Our institutions did not require a formal IRB process for the studies conducted in this research project.
Nonetheless, we modeled our research plan and study procedures after an IRB-approved study, ad-
hered to the strict German and U.S. data and privacy protection laws and the General Data Protection
Regulation in the E.U., and structured our study following the ethical principals of the Menlo report
for research involving information and communications technologies [355]. All participants approved
to a consent form that informed them about the study purpose, the data we collected and stored and
included an e-mail address and phone number to contact the principal investigators in case of questions
or concerns.

Recently, researchers faced issues with low data quality on Amazon MTurk [356]. Therefore, we
included a number of filters to identify low-quality answers. During data cleaning and analysis, we
identified 7 participants who did not pass our quality measures and excluded these invalid participants
from further analysis.

We calibrated participants’ compensations based on an average piloting time of 10 minutes and payed
participants on Amazon’s Mechanical Turk $1.70 and on ClickWorker €1.70 for an hourly wage of
$10.20 and €10.20, respectively.

7.4.5 Limitations

As any study with online surveys, our work includes a number of limitations typical for this type of
study and should be interpreted in context. In general, self-report studies may suffer from several
biases, including over- and under-reporting, sample bias, and social-desirability bias. However, while
we utilize self-report data, our central claims are not about the accuracy of respondents’ answers to a
given question, but rather about the concepts and misconceptions conveyed by their answers.

121

Chapter 7 Security € Privacy Perceptions of Cloud Office Suites

Conducting user studies on crowd working platforms like Amazon’s Mechanical Turk and Click-
Worker is a commonly used and generally accepted procedure for human-computer interaction and
usable security and privacy research [357]. While the quality of answers can suffer in a crowd worker
context, we tried to ensure a high data quality by following best practices by limiting access to our
surveys to high-reputation cloud workers [350] and by manually filtering low quality answers.

This study focuses on the responses of German and U.S. Internet users, and thus, we can offer
no insight into the generalizability of results for international participants. We aimed to improve the
internal validity of our study by providing localized answer options.

We explicitly ignored the implications of meta data collection and third party data of cloud office
providers to allow participants to focus on their mental model of cloud document processing and
access.

7.5 Results

In the following section we report and discuss results for all 200 valid participants of both the U.S.
and German survey. Generally, participants were aware of certain security and privacy implications of
writing their documents in cloud office applications, but were unaware or had severe misconceptions
about others. Our reporting of results mostly follows the actual order of survey sections described in
Section 7.4.2. After each question section, we summarize our key findings.

7.5.1 Use of Office Tools

We report the general demographics of both surveys in Table 7.3. Overall, 127 participants responded to
our survey on Amazon’s Mechanical Turk (U.S.) and 102 on ClickWorker (German). Of those, 105 and
95 respectively completed the survey and were considered valid for a combined total of 200 participants
of whom we report results.

Our participants identified predominantly as male (64.5%) with a median age of 33.0 years (mean
= 35.7, 7 = 10.7). Across both surveys, 28.0% of our participants classified themselves as having a
CS education and 22.5% as having worked in a CS-related job. CS experiences are similar for both
the U.S. and the German survey, with the exception of CS education (38.1% vs. 16.8%). We assume
this discrepancy might be related to general differences in education systems, as the German school
curriculum focuses less on I'T education compared to the U.S. The majority of both our U.S. and
German participants have a job that involves using office applications regularly with 80.0% and 77.8%,
respectively.

The majority (97.1%) of our U.S. participants have used Google Drive (with its related cloud office
tools such as Google Docs or Google Sheets) before, followed by Microsoft Office (Offline) (86.7%)
and Microsoft Office 365 (Cloud) (70.5%). The majority of our German participants (87.4%) is more
familiar with Microsoft Office (Offline), followed by Google Drive (80.0%) and Microsoft Office 365
(Cloud) (64.2%). We assume this difference is likely due to the extensive, almost exclusive usage of
Microsoft Office products in German businesses and government'. These differences even out for
office tools used in the last months where Google Drive prevails among both the U.S. and German
participants (82.7%, 70.5%), followed by Microsoft Office (Offline) (50.5%, 65.3%) and Microsoft Office
365 (Cloud) (50.5%, 55.8%). The majority of our U.S. participants use office tools to process Spreadsheets

'E.g. the city of Munich decided to migrate to Windows 10 after it’s 2003 decision to adopt Linux, partially due to incom-
patibility and communication problems with other organizations [358].

122

7.5 Results

Table 7.3: Demographics for all valid participants from the U.S. survey (Amazon’s Mechanical Turk),
German survey (ClickWorker), and combined.

U.S. German Combined

Participants
Started 127 102 229
Finished 110 97 207
Valid (7 =) 105 95 200
Gender
Male 66.7% 62.1% 64.5%
Female 33.3% 37.9% 35.5%
Other (Free text) 0.0% 0.0% 0.0%
Age in years
Mean 35.3 36.1 35.7
Std. dev. (¢) 9.9 ILS 10.7
Median 33.0 33.0 33.0
Computer Science
CS Education 38.1% 16.8% 28.0%
CSJob 24.8% 20.0% 22.5%
Professional Usage
Office software at work 80.0% 77.9% 79.0%
Office Usage”
Google Drive 97.1% 80.0% 89.0%
Microsoft Office (Offline) 86.7% 87.4% 87.0%
Microsoft Office 365 (Cloud) 70.5% 64.2% 67.5%
LibreOffice Offline 18.1% 25.3% 21.5%
Apple’s iWork Web (Offline) 9.5% 20.0% 14.5%
Apple’s iWork Web (Cloud) 6.7% 17.9% 12.0%
LibreOffice Online 4.8% 9.5% 7.0%
Other 3.8% 5.3% 3.0%
OnlyOffice .0% 1.1% 2.5%
Document Usage*
Spreadsheets 89.5% 82.1% 86.0%
Text 76.2% 90.5% 83.0%
Emails 68.6% 55.8% 62.5%
Presentations 49.5% 65.3% 57.0%
Calendar and Appointments 57.1% 50.5% 54.0%
Other 1.o% 2.1% 1.5%
Document Storage”
Locally on my computer 73.3% 82.1% 77.5%
Google Drive 88.6% 52.6% 71.5%
Dropbox 33.3% 35.8% 34.5%
OneDrive 30.5% 29.5% 30.0%
iCloud 18.1% 24.2% 21.0%
Network Share 21.0% 16.8% 19.0%

* Multiple answers allowed, may not sum to 100%

123

Chapter 7 Security € Privacy Perceptions of Cloud Office Suites

(89.5%), Text (76.2%), and Emails (68.6%). As document types, the German participants process Text
(90.5%), followed by Spreadsheets (82.1%) and Presentations (65.3%).

Most of our U.S. participants prefer to store their documents in Google Drive (88.6%), followed by
locally (73.3%), and Dropbox (33.3%). While the majority of German participants prefers local storage
(82.1%), followed by Google Drive (52.6%), and Dropbox (35.8%). This mirrors the distribution of most
used office tools for U.S. participants (Google Drive Office — Google Drive Storage) and German
participants (Offline Microsoft Office — Local Storage).

Participants of both the U.S. and German survey agree on the top reasons why they (would) use
cloud office applications over local office applications: easy remote access of documents (76.2%, 70.5%),
ease of collaboration (58.1%, 59.0%), and free or cheap access (52.4%, 43.2%).

Summary: Demographics.Somewhat unsurprisingly, participants prefer to store their documents
on the platform they edit them with (e.g., locally for offline office). All of our participants agree on
the benefits of cloud office applications: free access and easy collaboration for remote documents.

7.5.2 Document Security

In this question section we asked our participants to think about where their documents are more
secure from any unauthorized access, on their personal computer or in the cloud. Most participants
reported that they feel their personal computer is more secure than for their documents than the cloud
(54-5% vs. 19.5%).

In addition to the quantitative questions, we asked our participants to explain their assessment. Most
(94) of the participants who said they felt their documents would be more secure against unauthorized
access on their personal computers mentioned that an attacker would require physical access to their
machines to acquire access to documents, e.g., P30 said “You would have to physically breach my
computer to get to the documents, the drive is encrypted, no one can access it.”. Similarly P47 explained
“I think that documents are more secure on my computer because I’'m the only one that can access
them; and if there were any threats on my PC, I would use programs to get rid of them.” (P47). Some
participants (21) who said files were more secure on their computer thought that it was easier to attack
acloud system than their personal computer, e.g., P27 mentioned that “Because I know what security I
have on my pc, but don’t know about Google. Of course, I assume they’ve got top of the line security,
but I don’t actually know.” (P27).

Participants who thought documents in the cloud were more secure (39; 19.5%) mostly mentioned
two reasons. First, they believe that cloud office suite providers have more security expertise than they
personally do. For example, P79 said “The cloud is managed by big corporations. They probably take
security more serious than individuals. They always have to worry about hackers so there security is
likely very powerful.” (P79). Second, some participants assessed cloud office suites to be more “secure”
than their personal computers because they have backups and losing data is less likely, e.g.,

“Local computers can be hacked and can crash. It happens. Too often, backups are not
made regularly, so data can be lost in either case. With automatic backup to the cloud,
documents are more secure in case of local computer issues..” (P74)
Other reasons for believing in a secure cloud seem often to be based on insufficient technical knowledge,
e.g., “because I think it is not possible to hack the cloud.” (P219). Few participants (3; 1.5%) mentioned
the use of two-factor authentication (2FA) and the application of encryption by cloud office suite
providers as important security factors.

124

7.5 Results

B Higher risk on my computer [Somewhat higher risk in the cloud
[Somewhat higher risk on my computer ~ B Higher risk in the cloud
[Equal risk

The cloud office provider W1 [

People in document share

Third parties

AlA

Cybercriminals

My browser vendor

il

My internet provider

My employer

Law enforcement

My OS manufacturer

My hardware manufacturer

| HURAE

T T T
40 60 80

Percent of answers (%, n = 149)

(=)
N
(=)
—
o -
o

Figure 7.2: Likert-Scale for participants’ associated risk of unauthorized access between their local com-
puter and their cloud office documents for different parties.

Summary: Document Security.Our participants seem to be aware of some general security implica-
tions of processing their documents in the cloud. They seem to prefer their local system in terms of
security against unauthorized access, although some of their threat models seem less developed.

7.5.3 Document Access

In this question section we explore perception, misconceptions, and mental models of our participants
regarding the (unauthorized) access of specific parties to their potentially sensitive documents processed
in cloud office applications.

We found a significant difference in the risk of different parties accessing the participants docu-
ments (KIWH; H = 102.33; p < 0.01). This might indicate that participants seem to be aware of the
changed attack surface for cloud office documents and associate a higher risk of unauthorized access by
cybercriminals and third parties such as advertisers and plugin developers in the cloud (cf. Figure 7.2).

These answers coincide with parties of which participants thought that they already accessed their
documents, although some participants have the misconception that their browser vendor and oper-
ating system provider also have accessed their cloud documents. Figure 7.3 shows the comfort level of
our participants related to the access of different parties to their cloud office documents.

We also asked participants who would inform them if their cloud office documents are accessed by
an unauthorized party and who should inform them. Participants’ answers point at a responsible party
here: While the German and U.S. participants are split on the cloud office provider (73; 69.5%) and
nobody (39; 41.1%) as most common answer on who would inform them respectively, both groups agree
that it is the cloud office provider that shoxld inform them (153; 76.5%).

A large number of participants explicitly told us that they like to be informed about unauthorized
access of their cloud office documents by email (119; 59.5%). In addition, some participants provided
us with their wishes about the information they want to receive in case of such a data breach, e.g., P69
insisted that

125

Chapter 7 Security € Privacy Perceptions of Cloud Office Suites

B Completely comfortable =[] Somewhat uncomfortable
[Somewhat comfortable B Completely uncomfortable
[Neither

Cybercriminals
Third parties
My internet provider

My hardware manufacturer

Law enforcement

My OS manufacturer

My browser vendor

The cloud office provider

My employer
People in document share N T [[N

I I I
20 40 60 80 100

Percent of answers (%, n = 92)

o

(a) Survey participants from MTurk (U.S.).

Cybercriminals [T T [
Third parties I I | |
My hardware manufacturer I I | |
My browser vendor [I |
The cloud office provider [I | |
My internet provider B[] | |
My OS manufacturer L] I |
Law enforcement B[] I | |
My employer B 1 | | —
People in document share [I I | |
I I I I I I

0 20 40 60 80 100

Percent of answers (%, n = 87)

(b) Survey participants from Crowd Worker (German).

Figure 7.3: How comfortable our participants are with different parties accessing their cloud docu-
ments. “I don’t know” answers were omitted.

126

7.5 Results

“[I] [n]eed to know basically everything that the person saw. When they saw it, what they
saw, where they’re from. I don’t care who gives the analysis, just that its an accurate
analysis and that they let me know..” (P69)

Summary: Document Access.Overall, our participants seem to have a clear idea on by whom and
how they should be informed about unauthorized access of their cloud documents: the cloud office
provider via (secure) email. Our participants seem to have strong opinions on how comfortable they
are with the access of certain parties, but are somewhat unsure about who actually has access to their
documents.

7.5.4 Document Storage

The majority of German participants believe that multiple copies of their cloud office documents exist
(49; 51.6%), while most U.S. participants admit that they do not know (s1; 48.6%). Of those that assume
multiple copies exist (83; 41.5%), the majority thinks that only their copies are deleted if they delete a
document (30 of 83; 36.1%), or they are unsure (21 of 83; 25.3%). Unsurprisingly the majority of our
participants assume that their cloud provider can delete their documents (138; 69.0%), followed by
people they shared the documents with for U.S. participants (43 of 10s; 41.0%) and cybercriminals for
German participants (46 of 95; 48.4%).

Some of our participants assume a rather basic mental model of why copies of their cloud documents
might exist, e.g., P123 believes “[...] that these copies exist just in case that [sic] the original documents
get lost.” (P123). Other participants had a less utilitarian view on the existence of potential copies, e.g.,
P79 had some rather dystopian thoughts about why copies of their documents are created: “[T]o use
against me when the time is right.” (P79). For why not all of the copies are deleted, some participants
had some very convincing arguments: “[They are] used to train artificial intelligence or to make a profile
of me for the future.” (P79), “possibly to sell to 3rd-party vendors for advertising” (P96), and “so they
can be used for law enforcement.” (P97).

Summary: Document Storage.Overall, our participants seem to be rather unsure about the actual
number of copies, access rights, and deletion procedures of their cloud documents. They seem
pessimistic on why additional copies are kept.

7.5.5 Document Responsibility

In this section we asked participants about which party they think is responsible for the protection of
their documents. The majority of U.S. participants sees the cloud provider as responsible (83; 79.0%),
while the majority of the German participants sees themselves as responsible (69; 72.6%),

We also compared U.S. and German participants in their agreement regarding four scenarios explor-
ing the responsibilities of cloud office providers:

S1: “Cloud oftice providers should ofter adequate protection for cloud office documents.” (MW U;
U = 4445;adj.p = 1)

S2: “I'should have the right to demand a full overview of my data collected by cloud office providers.”
(MWU; U = 4419; adj. p = 1)

S3: “Upon my request, cloud office providers should have to show what they do with my documents
and who has or had access.” (MWU; U = 4181; adj.p = 1)

S4: “Cloud office providers must be able to modify or delete any data they have on private individuals.”
(MWU; U = 45665 adj. p = 1)

127

Chapter 7 Security € Privacy Perceptions of Cloud Office Suites

B Completely comfortable = [Somewhat uncomfortable
[Somewhat comfortable B Completely uncomfortable
[Neither

S3: Law enforcement can access data

S1: Data can be stored abroad

150 N N 0
S4: Law enforcement can demand passwords L1 1 [
BT T T
T T T T

S2: Laws apply for documents stored abroad

0 20 40 60 80 100
Percent of answers (%, n = 94)

(a) Survey participants from MTurk (U.S.).

S3: Law enforcement can access data I 1 [[H

S4: Law enforcement can demand passwords [I I | |
S1: Data can be stored abroad [I | |
S2: Laws apply for documents stored abroad R I I | |
I 1 1 1 1 1

0 20 40 60 80 100

Percent of answers (%, n = 84)

(b) Survey participants from Crowd Worker (German).

Figure 7.4: Participants’ comfort with potential privacy violations by their government.

and find no significant differences between our U.S. and German participants. Similarly, we com-
pared U.S. and German participants regarding their (dis)comfort with the following statements (Note
that the statements were localized, e.g., an U.S. participant would be presented with “US regulation”):

S1: “Cloud providers can store my documents on servers outside of the US/Germany without legal
repercussions.” (MWU; U = 4151; adj. p = 1)

S2: “US/German regulations and laws still apply if the documents are stored on servers outside of the
US> (MWU; U = 4817; adj. p = 0.04)

S3: “US/German law enforcement can access my cloud documents without a court order.” (MW U;
U = 4768;adj. p = 0.02)

S4: “US/German law enforcement can force me to give up my cloud office password.” (MW U;
U = 5104; adj. p < 0.001)

and find significant differences for S2, S3, and S4. These differences can be mostly attributed to U.S.
participants being more uncomfortable with privacy violations by their government compared to the
Germans (cf. Figure 7.4).

We further investigated differences between U.S. and German participants by asking them where
they do think the risk is higher of different parties obtaining unauthorized access to their documents if
they are either stored on a server in the U.S. or Germany (cf. Figure 7.5).

Summary: Document Responsibility. While participants from the U.S. and Germany agree on the
responsibilities of cloud providers, U.S. participants are comparably more uncomfortable regarding
potential privacy violations by the government.

128

I Higher risk for server in Germany

[Somewhat higher risk for server in Germany

[Equal risk
The US Government
My internet provider
My employer
My OS manufacturer
My browser vendor
The cloud office provider

My hardware manufacturer

7.5 Results

[Somewhat higher risk for server in the US
I Higher risk for server in the US

Foreign government [|

Third parties [
Cybercriminals]

The German Government [N I

I T T T T
0 20 40 60 80

Percent of answers (%, n = 89)

- mEH
s
S

(a) Survey participants from MTurk (U.S.).

[Higher risk for server in Germany
[Somewhat higher risk for server in Germany
[Equal risk

[Somewhat higher risk for server in the US
I Higher risk for server in the US

The US Government [[| |

My OS manufacturer []

The cloud office provider [_|

My browser vendor |

My hardware manufacturer [|

Cybercriminals

Third parties

Foreign government

[
o
[
My internet provider [[|
The German Government [N I
[I I

T T
20 40 60 80

Percent of answers (%, n = 77)

S ..III
=g
S

My employer

(b) Survey participants from CrowdWorker (German).

Figure 7.5: Risk of unauthorized parties accessing participants’ documents on servers in the U.S. vs.
Germany.

129

Chapter 7 Security € Privacy Perceptions of Cloud Office Suites

I Completely comfortable [0 Somewhat uncomfortable
[Somewhat comfortable Bl Completely uncomfortable
[Neither

S3: Financial data (General) BT T [H |

S3: Financial data (Personal) [1 | —
S2: Health data (General) [I I | |
S2: Health data (Personal) [| [
S1: Child's data (Personal) [1 | |
S1: Child's data (General) [I I | |
I I I I I I

0 20 40 60 80 100

Percent of answers (%, n = 195)

Figure 7.6: Participants’ comfort with three different data scenarios (Financial, Health, and Children)
and two different conditions (General and Personal perspective).

Table 7.4: Final linear mixed regression model examining the perception of 3 different scenarios in 2
phrasing conditions. “I don’t know” answers were omitted. See Section 7.4.3 and Table 7.2
for further details.

Factor Coef. C.L p-value
Scenario: Health -0.50 [-0.66,-0.33] < 0.001+
Scenario: Financial -0.88 [-105,-0.72] < 0.001x
Condition: Personal 0.03 [-0.25,0.31] 0.843
Country: Germany -0.11 [-0.39,0.17] 0.431

7.5.6 Scenario Perception

In this question section, we wanted to explore the effect of different conditions and scenarios on how
comfortable our participants are with processing documents in the cloud. For this, our participants
were presented with three different types of private data stored in cloud documents: children data
including names and grades, health data including names and diagnosis, and financial data including
names and SSNs. As additional modifier, participants were equally distributed across two conditions:
“General” with a more generalized scenario and “Personal” with a more personalized scenario (e.g., “a

child” vs. “your child”).

We investigated participants’ answers by computing the best performing model from multiple linear
regressions (cf. Table 7.4). We find that neither the country nor the condition has a significant coefficient
in the regression. Both the “Health data” scenario and the “Financial data” scenario are significantly
rated as less comfortable by our participants than the “Child data” baseline. (cf. Figure 7.6)

Summary: Scenario Perception.Our participants are uncomfortable the most with the scenario
of processing financial documents in the cloud. Presenting a more personalized scenario did not
significantly affect their comfort level.

130

7.6 Related Work

7.5.7 Data Protection

In this question section, we asked two open questions to assess the amount of data our participants
think cloud office suite providers collect when processing documents. Additionally, we asked our
participants what security measures they think cloud providers deploy to protect their documents.
Regarding data collection, most participants thought that cloud office suite providers collected the
actual document content and metadata including the time and duration they used the cloud office
application, IP addresses and filenames. A few participants were concerned that cloud providers would
search their documents for keywords and report them to security agencies and law enforcement, e.g.
P96 thinks that providers are “searching for specific keywords, most notably for US security reasons”.

Most participants had very specific ideas of what security measures cloud office suite providers would
deploy. The majority of our participants were convinced that providers would deploy encryption to
protect their stored documents. For example, P74 believes that “the cloud servers are supposed to
be encrypted and follow industry-standard protocols [...]” (P74). Similarly, participants mentioned
access control and authentication, e.g., P79 hopes that “Security is handled by the service provider of
the cloud office applications. They probably use complicated passwords and 2 factor authentication.”
(P79). Finally, some participants mentioned firewalls and other network security measures. Prr hopes
that “they are protected by multiple firewalls [and] they are continuously monitored” (Prr).

Summary: Data Protection.Our participants identified encryption as their preferred security mea-
sure their cloud office suite should employ.

7.6 Related Work

Disclaimer: This related work section reflects the state of prior research in mid 2020 and is
provided to highlight the state of research at the time of this research project. For related and
concurrent work at the time of this dissertation, see Chapter 3: Related and Concurrent Work.

As we conduct surveys investigating end-user security and privacy perceptions and expectations with
cloud office suites, we discuss related work in the areas of security & privacy in the cloud and user
studies within a context of cloud applications or storage.

Security & Privacy in the Cloud. A number of papers covers cloud security, client-side encryption
or hiding layers to prevent third parties including the cloud office provider from accessing the content
of any document edited in the cloud [359], [360]. The backup and restore performance, liabilities, and
problems with data privacy of four cloud storage providers was examined by Hu et al. in 2010 [361].
Drago etal. investigated the traffic of DropBox in a measurement study and found possible performance
bottlenecks [362]. In 2010 Svantesson and Clarke reviewed the terms of use of Google Docs finding
that cloud computing is associated with risks to privacy and consumer rights [363].

Nestori et al. found in their 2018 paper, that Office 365 is not GDPR compliant [364]. Ramokapane
et al. conducted a user study that found that users struggle to delete their data from the cloud, as
incomplete or inaccurate mental models based on a lack of information on deletion lead to a failure to
remove the data properly [365].

Cryptography alone is not enough to ensure privacy in cloud computing as Dijk et al. described. It
also requires tamper-proof hardware and distributed computing [366]. MUBox introduced a meta-
cloud storage application to help improve user collaboration on cloud storage services by introducing

131

Chapter 7 Security € Privacy Perceptions of Cloud Office Suites

activity views. Nebeling et al. conducted a user study with 16 participants to examine the accuracy and
confidence with the activity views [367].

User Studies of the Cloud. Most user surveys in the cloud context focus on the storage aspect: Tan et
al. investigated the acceptance of Saa$ collaboration tools like Google Docs in an organizational setting
and found that their intention to continue using these tools is positively affected by the perceived
usefulness and satisfaction. [368]. Marshall et al. conducted a survey with 106 participants and 19
interviews to understand early user experiences and models of cloud storage systems, finding that users’
misconceptions limit the ability to take full advantage of cloud features [369]. Burda et al. developed
a technology acceptance model which incorporates users’ perception of risk and trust and verified it
in a study with 229 cloud storage users. They found evidence that trust in cloud archiving can be
increased by a providers’ reputation and user satisfaction. These findings could be used for marketing
purposes. [370] Both Clark et al. and Khan et al. explored users’ perception of file sharing status over
time, finding a mismatch in user expectations and reality [371], [372].

Massey et al. conducted a qualitative study with 27 participants and identified four different strategies
that teams used in shared repositories and suggested ways to improve existing tools with new technolo-
gies [373]. Mijuskovic et al. conducted a qualitative user study with 28 participants and found that
most users are aware of security and privacy risks in the cloud, but lack knowledge to describe potential
risks in detail [374].

We consider the following works by Ion et al. and Arpaci et al. closest to our surveys. Ion et al.
studied privacy attitudes and beliefs towards consumer cloud storage by conducting interviews and a
survey with end users in Switzerland and India, finding that requirements for consumer cloud storage
differ from those of companies and that end users prefer local offline storage for sensitive data [375].
Arpaci et al. conducted a study with 200 pre-service teachers to understand the effects of security and
privacy concerns of cloud computing in educational use and proposed a research model that indicates
that security and privacy perception has a significant influence on students’ attitudes towards cloud
services [376].

Compared to these earlier studies consisting mostly of small-scale qualitative studies investigating
the acceptance of cloud technology or larger studies focusing on cloud storage, our larger-scale study
(» = 200) with both qualitative and quantitative parts investigates security and privacy explicitly in
the context of cloud office apps.

7.7 Discussion

In this chapter, we explored the security and privacy perceptions and expectations of cloud office users,
as well as their intuitions for how cloud office suites should ideally handle security and privacy. We
performed two online surveys with 200 cloud office users from the U.S. and Germany to explore the
following research questions:

RQr: “How and why do our participants interact with cloud office applications?” The fairly recent
shift from offline-only tools to cloud office suites includes immense changes of privacy and security
assumptions, although the application design and end user experience remained mostly the same or
even included new features. We find that a large majority of our participants regularly work on different
document types in cloud office applications. Most common reason for using cloud office applications
are the ease of sharing and the ease of usage without requiring installation of additional software.

RQ2: “Whatare end users’ awareness, perceptions, and attitudes about privacy in cloud office appli-
cations?” Users seem to be aware of some general security implications, storage models, and access by

132

7.8 Summary

others, although some of their threat models seem underdeveloped (e.g., “I think it is not possible to

hack the cloud.”), likely due to lacking technical knowledge.

RQ3: “What are participants’ mental models regarding protection and security of their cloud doc-
uments?” We find that users” mental models are incomplete and their understanding of cloud office
security and privacy is limited, caused by a lack of transparency of the services’ operations.

Our findings suggest that the current state of cloud office suites leaves much to be desired in the eyes
of end users. General misconceptions and the unclear responsibilities of cloud providers might result
in additional challenges for the end user adoption of cloud office suites.

7.71 Recommendations

Based on our findings, we offer recommendations for groups associated with cloud office suites.

For the industry: Since our participants were somewhat unsure about who actually has access to
their documents (Section 7.5.3), we recommend changes to user interfaces and sharing policies that will
improve their awareness. In case of unauthorized access we recommend notifications via email, as most
of our participants prefer their provider to inform them this way (Section 7.5.5). They also identified
encryption as their preferred security measure their cloud office suite should employ for improved
security (Section 7.5.7).

For end users: There exist a number of self-hosted alternatives to cloud office applications such as
Seafile or NextCloud that allow for most of the cloud conveniences while you still retain full control
of your data (Section 7.3).

For policy makers: Our participants are somewhat unsure about who actually has access to their
documents and about how many copies actually exist on which servers (Section 7.5.3). Privacy-focused
policies such as GDPR could serve as a first step for improving security and privacy considerations for
end users and could enable more privacy-friendly applications. In addition, data-at-rest and responsible
disclosure policies could help with user wishes such as prefer encryption measures and notifications by
email in case of unauthorized access (Sections 7.5.5, 7.5.7).

7.8 Summary

In the research described in this chapter, we conducted surveys with 200 cloud office users from Ger-
many and the U.S. to investigate their experiences and behaviours with cloud office suites. We find that
our participants prefer to store their documents on the platform they edit them with. While our par-
ticipants agree on the benefits of cloud office applications free access and easy collaboration for remote
documents, they prefer their local system in terms of security against unauthorized access. They are
generally aware of security implications of processing their documents in the cloud, although some of
their threat models are less developed.

Our participants have strong opinions on how comfortable they are with the access of certain parties,
but are somewhat unsure about who actually has access to their documents. They have a clear idea
that they should be informed about unauthorized access of their cloud documents by the provider via
email. They also identified encryption as their preferred security measure their cloud office suite should
employ.

Our participants are the most uncomfortable with the scenario of processing financial documents
in the cloud (vs. health or child’s data). Presenting a more personalized scenario did not significantly
affect their comfort level.

133

Chapter 7 Security € Privacy Perceptions of Cloud Office Suites

Further Work. Our participants are generally aware of security implications of processing their
documents in the cloud, although some threat models are less developed. Promising venues for fu-
ture research could include investigations into general security and how privacy perception could be
improved. Additional venues include the improvement of threat models and the effect of COVID-
19 on the whole cloud office ecosystem. We hope our findings can help to inform future standards,
regulations, implementations,and configuration options for cloud office applications.

This chapter presented research involving a survey with 200 cloud office users from Germany and
the U.S., investigating their experiences and perceptions of cloud office suites. In the previous four
chapters, I presented research investigating approaches, considerations, and encountered challenges in
the context of security, privacy, and trustworthiness of the open source software supply chain. For this,
I conducted research involving software stakeholders such as maintainers, contributors, developers,
software architects, and end users. In the following chapter, I will provide a conclusion based on my
findings, as well as highlight some potential future research avenues based on my research.

134

Chapter 8

Conclusion and Future Work

ONCLUDING, the research I conducted for, and presented in this dissertation, provided valuable
C insights into processes, challenges, perceptions, and consideration around security and trust in
the software supply chain in general, and the open source software ecosystem in particular.

First, I investigated the security and trust practices in open source projects by interviewing 27 own-
ers, maintainers, and contributors from a diverse set of projects to explore their behind-the-scenes
processes, guidance and policies, incident handling, and encountered challenges. My findings include
that participants’ projects are highly diverse in terms of their deployed security measures and trust
processes, as well as their underlying motivations. Secondly, to focus more on the consumer side of
the open source software supply chain, I investigated the use of open source components in industry
projects. For this, I interviewed 25 software developers, architects, and engineers with industry expe-
rience to understand their projects’ processes, decisions, and considerations in the context of external
open source code. My findings include that open source components play an important role in many
of the projects, and that most projects have some form of company policy or best practice for including
external code. Thirdly, I presented a study investigating the use of software obfuscation in Android
applications, which is a recommended practice to protect against plagiarism and repackaging. The
study leveraged a multi-pronged approach including a large-scale measurement, a developer survey,
and a programming experiment. My findings include that only 24.92% of apps are obfuscated by their
developer, that developers are generally aware of, but do not fear theft of their own apps, and have
difficulties obfuscating their apps. Lastly, to include end users themselves, I conducted a survey with
200 users of cloud office suites to investigate their security and privacy perceptions and expectations,
with findings suggesting that users are generally aware of basic security implications but lack technical
knowledge to envision some of the more advanced threat models. Participants also had strong opinions
on the access of their data by certain parties such as the Government, but were generally unsure about
who actually has access to their documents.

Across this whole dissertation, my key findings include that open source projects have highly diverse
security measures, trust processes, and underlying motivations. That open source projects’ security
and trust needs are probably best met in ways that consider their individual strengths, limitations, and
project stage, especially for smaller projects with limited access to resources. And that open source
components play an important role in industry projects, and that those projects often have some form
of company policy or best practice for including external code, but developers wish for more resources
to better audit included components. My findings emphasize the importance of collaboration and
shared responsibility in building and maintaining the open source software ecosystem, especially with
the following greater themes in mind:

Open source projects are an integral part ofa larger interconnected ecosystem, consisting of various
components, libraries, and software registries. This ecosystem can be understood as a community of
communities, and supporting individual open source projects in different growth stages and commu-
nities is necessary for the security and health of the entire open source ecosystem. The development of

135

Chapter 8 Conclusion and Future Work

open source projects, according to the input provided by my interviews with open source stakeholders,
is highly community-driven and practical. Key decisions such as release schedules, announcements,
and distribution infrastructure are all based on the feedback, needs, and contributions of project users
and contributors. In most cases, security and trust incidents appear to be handled reactively, as they
occur. This approach stems from a pragmatic strategy, given the limited resources and personnel of
smaller open source communities. Attempting to anticipate all possible incident types beforehand,
particularly for smaller projects with frequently changing committers and structures, is not a viable
option. However, it is important to note that small projects may benefit from more proactive support
in managing security and trust incidents. This support could come in the form of public, general
example playbooks and resources that projects can utilize when incidents arise. The availability of
such resources could help smaller projects navigate the challenges of security and trust incidents more
effectively, without the need for elaborate incident playbooks and committer structures that may be
difficult to implement and maintain.

Treating the open source ecosystem as just another supply chain for software can lead to unpleasant
surprises for both companies and the community. For companies, reliance on open source components
may result in unexpected issues if the maintainer abandons the project or fails to implement necessary
features. On the other hand, open source communities may be mistreated as a cheaper support desk or
an alternative to in-house development teams, leading to resentment and frustration. Unlike commer-
cial software supply chains, open source generally do not operate on contracts, providing no warranty
or support promises in the case of vulnerabilities. If a company cannot provide an equivalent value
exchange in monetary terms for utilizing open source components, they might consider offering some
of their developer time or code back to the open source ecosystem. With the great power provided to
industry by utilizing freely available open source components in their software also comes the great
responsibility of keeping the open source ecosystem reliable, healthy, and secure.

The analogy of a software supply chain is generally used in the context of library and package rela-
tions in software. This can be somewhat misleading, as the “chain” part of the analogy implies linear
relations with clear producer and consumer endpoints and some intermediary links. However, this
simplistic view fails to capture the complex reality of the software supply chain, particularly in the case
of open source software. A more appropriate analogy would be that of a tangled bowl of spaghetti, with
numerous intertwined strands that make it impossible to distinguish the beginning and endpoints,
even when attempting to pull on individual strings. Some of the companies included in my research
have addressed this issue by focusing exclusively on the security aspects of their specific software supply
chain. They achieve this by maintaining in-house versions or caches of the open source software they
use, thereby separating themselves from many potential attack vectors in the larger software supply
chain. This approach also allows them to scrutinize and audit components more thorough locally,
but introduces challenges in terms of contributing back to, and keeping up with, the open source
ecosystem.

During my research, participants from industry generally held positive attitudes towards open source
components, with many reporting benefits such as reduced maintenance burden, faster iterations, and
access to open communities and code. However, this exchange can become one-sided, particularly as it
is not always possible for both companies and open source communities to exchange money as a value
equalizer. To address this issue, companies might consider approaching the open source ecosystem
as a community of communities, rather than a software supplier. This might involve open sourcing
internal components where feasible, providing guidance and assistance to open source projects, and
contributing back to the community when possible. Supporting open source communities can also
benefit the software industry by helping to cultivate developer talent. By enabling and supporting open
source projects included in their software stack, companies allow a global community of developers

8.1 Future Work

to learn from and participate in their technology stack. This expands access to industry technologies,
allowing more people to become expert developers and contributing to the growth of the industry as a
whole.

In summary, the open source ecosystem as a community of many communities requires different
approaches to ensure the security and health of the overall ecosystem. Companies and other stake-
holders should be prepared to contribute back to the community and maintain good relationships
with maintainers. This way, both sides can benefit from the advantages of open source software while
avoiding potential problems down the line. Overall, I argue that collaboration between developers,
maintainers, end users, researchers, and other stakeholders alike is necessary to ensure that the open
source ecosystem remains a secure, trustworthy, and reliable resource for everybody.

8.1 Future Work

The future of securing the software supply chain involves recognizing the importance of human factors
and the individual software experts. While securing dependencies and build systems is a necessary step
towards a secure and reliable ecosystem, recent attacks have shown that these experts are a, if not the
most, vulnerable link.

An important benefit of the software supply chain is that it allows developers to leverage third-
party dependencies as building blocks for their software, e.g., from package repositories like npm or
PyPI. However, the reliance on external repositories also introduces new attack surfaces, as recent typo-
squatting and account-takeover attacks have shown [71], [269]. In response, Python’s PyPI package
repository and GitHub started requiring 2FA for developer accounts with critical projects. While this
approach was implemented to increase the overall security of package repositories and dependencies,
such approaches also have an impact on usability. If 2FA is required, but the authentication process
is too complicated or time-consuming, maintainers may try to find ways to bypass it, which would
undermine the intended security benefits. By examining the common challenges and usage patterns
involved in using and providing external dependencies, future work could identify ways to improve the
adoption of security processes, ultimately benefiting the security of the software supply chain.

Build systems and continuous integration and continuous delivery (CI/CD) pipelines can interact
and chain with other systems and third-party services, allowing for the creation of complex, multi-step
build and distribution processes for software. But this complexity also increases the risk of misuse,
misconfiguration, or leakage of secrets, and as software is increasingly being built and deployed using
third-party services, these services are becoming high-value targets for attackers seeking to infect all
customers and compromise the software supply chain. As build systems and CI/CD pipelines are
becoming increasingly complex, it’s essential to not overlook the human factor in setting up, maintain-
ing, and using them. Usability plays an important role in ensuring that developers can effectively and
securely utilize and manage these complex systems: By establishing what makes these usable for stake-
holders, such as clear documentation, user-friendly interfaces, and effective training materials, future
research could reduce the risk of misconfiguration and other vulnerabilities while allowing developers
to maintain productivity and workflow efficiency.

Metrics and frameworks that allow for structured reporting of security vulnerabilities, attacks, or
coding practices play an important role in software supply chain stakeholders’ communication. Overall
adoption is an important factor in the effectiveness of any metric or framework. If these tools become
widely adopted, they might create a network eftect, whereby stakeholders become familiar with the
metric and share a common understanding of what constitutes secure software development practices.
As more stakeholders adopt and utilize a particular metric or framework, they build a collective under-

137

Chapter 8 Conclusion and Future Work

standing of what it takes to develop secure software according to the metric, leading to a higher level
of standardization and consistency in secure software development practices. Designing tooling for
and around these metrics, as well as their general usability, are important in making them effective and
widely accepted. Without proper consideration of the human factor, these tools may not be utilized to
their fullest potential or even adopted at all. Additionally, when more stakeholders utilize these tools,
they can provide feedback on how to further improve their usability, resulting in a continuous im-
provements and adaptions. By investigating and improving metrics” and frameworks’ usability, future
work would increase the likelihood that stakeholders will utilize these tools and ultimately establish a
common understanding towards a more secure software ecosystem.

Some open source components are so ubiquitous and deeply embedded in the development and
operation of I'T systems that their existence is hardly ever noticed by the involved stakeholders. Aban-
donment or lack of maintenance of these essential components would wreak havoc on the software
supply chain, exposing vulnerabilities and potentially resulting in large costs and other damages for
stakeholders. This is specifically true for many open source projects, which are often developed by small
teams or even single developers as hobbies. These small projects might also be at risk of deprecation,
as they often do not contributed significantly to the income of their main developers. Future research
into how to better identify, secure, and support these small projects and the people behind them.

To conclude, future work needs to consider human factors to secure the open source software ecosys-
tem and related software supply chain. Recent attacks have demonstrated that developers are a vulnera-
ble link in the software supply chain in general, and the open source ecosystem in particular. This makes
approaches which consider the human factor an important step towards effective software supply chain
security, trustworthiness, and reliability.

Appendix A

Security & Trust in Open Source Software
Projects

A1 Interview Guide in English

[General Greeting of Participant]

Intro

* Thanks: Thank you very much for offering your valuable time for this interview. We are very
grateful for your contribution.

* Ready: Are you ready to start the interview?

* Structure: First of, I am going to talk about the context and data handling, and if you agree
with everything, we would then start with the interview.

Context

* We: We are a researchers at the CISPA Helmholtz Center for Information Security (short intro).

* Our research: focuses on the area Usable Security for Developers (short overview).

* In the past: Open Source Projects as data source. Open Source code and projects are at the
foundation of many software ecosystems. Open Source also has unique challenges, such as
changing contributors and trust requirements.

* Now: “How can we empower open source contributors to build more secure projects.”

* This interview as a start/exploration of internal processes and decisions often not visible at the
repository level.

* For this interview:

— We are not judging security or privacy of a project, we are just interested in the underlying
structures and processes.

— Projects are often very complex, if you don’t know the answer, just say “next”.

— We are not just interested in structures, but also your personal opinions and experiences.

Questions? Any questions about this interview context?

Consent

* Voluntary: Your responses in this interview are entirely voluntary, and you may refuse to answer
any or all of the questions in this interview.

139

Appendix A Security €9 Trust in Open Source Software Projects

* Duration: Duration of the interview depends a bit on the duration of your answers, in our
experience so far about 30 to 45 minutes.

* We will fully anonymize you and your projects in any publication and only include short quotes.

* We will send you a preprint before a potential publication, so you can veto quote usage etc.

* Recording: We would like to record this interview so that we can transcribe the answers later

— The recording will be destroyed when we transcribed the answers (a few days)
— The transcripts will be destroyed after analysis (a few months)

* Questions? Any more questions about data handling or recording?
* “The recording is now on”
* Restate consent question

S1: Project and Demographics

[Check project(s) beforehand]
S$1Q1 Project: Can you tell us a bit about the [project(s)] you are involved in?
Follow-Ups:
¢ S1Qr.1 About: What is the project about? What is it’s purpose?
* S1Qr.2 Age: When was the project created?
¢ S$1Q1.3 Contributors: How many regular contributors does the project have?
¢ S1Q1.4 Connection: How do contributors know each other? (Virtually, Personally)
* S1Qr.s Distribution: How are the contributors distributed geographically?

$1Q2 Project Relation How are you related to [project]?
Follow-Ups:

¢ S1Q2.1 Join: When did you join the project?

¢ S1Q2.2 Role: What is your role in the project?

S2: Incidents

[Mention “hypocrite commits” incident: If participant is aware continue, else introduce (see Interview

Guide Appendix)]

* 52Q1 Opinion: What do you think about this incident?

¢ 52Q2 Challenges: Can you remember any security challenges that your project faced in the
past?
Nudges:

— “malicious committers/commits,
— security issues with your repository (software/provider)
— tool chain, etc.?

S3: Guidance

$3Q1 Guidance: Are there guides/best practices/hints available for contributors, maintainers, etc.?
[IF NOT Guidance]:
* What are your thoughts about including guides/best practices/hints for contributors, maintain-
ers, etc.?

140

A.1r Interview Guide in English

Follow-Ups:
* $3Qu1 Infrastructure: Does your project have security guidelines for configuring/running
infrastructure? (cloud, VCS, etc.)
* $3Qu.2 Languages: Does your project use security or style guidelines for the utilized program-
ming languages? What do they cover?
* $3Qu3 Cryptography: If you’re using cryptography in your code: Do you have a guide on how
to use cryptography? (forbidden functions etc.)

S4: Security Policies

S4Q1 Security Policies: What do your security policies contain?
[IF NOT Policies]:

* What would you like your security policies to contain?

Follow-Ups:
* 54Qu1 Content: What specific parts do they cover?
* 54Qu.2 Applicability: Do these have to be read and acknowledged by committers/contributors?

$4Q2 Disclosure Policies: What is the (coordinated) disclosure policy of the project?
$4Q3 Security Incidents: How are security incidents/issues handled?
Follow-Ups:
* 54Q3.1 Policy: By what policy?
* 54Q3.2 Who: By whom? (specific security team?)
* 54Q3.3 Access: Private/Public?
* 54Q3.4 Process: Are there “Playbooks” for Incident Response and Vulnerability Management?
(What do these specify?)
* 54Q3.5 History: How was this process developed?

$4Q4 Security Testing / Reviews: What measures do you have to test security?
Follow-Ups:
* 54Q4.1 Aspects: What aspects of security are checked and how?
* 54Q4.2 Tools: Is the project using specific (software) tools? (SAST, DAST, Manual, Pentests)
* 54Q4.3 Project Stages: At what stages of the project? (Only initially, on changes, etc.)
* 54Q4.4 Frequency: How often are manual security reviews done? Pentesting etc.? Who carries
out these reviews? (skills, external/internal person)
* 54Q4.5s Threat Modeling: Is some form of Threat Modelling used?

S5: Project Structure

SsQ1 Repository: What does the general repository structure look like? (Filesystem, Stages, CI etc.)
Follow-Ups:

* Ss5Qu.1 Stages: What stages do exist? (Code — Commit — PRs — Review — CI for tests and

Build — Deployment, ...)

* S$5Qr.2 Control: Who controls which stages?

* S$5Qr.3 Main: How are branches setup? Is it possible to directly push to the main branch?

* S5Qr.4 Systems: How are Build and Deployment systems secured? Who has access/control?

* S$5Qr.s PRs: How are incoming pull requests handled?

141

Appendix A Security €9 Trust in Open Source Software Projects

* S5Qu.6 Signed Commits: Are commits signed? (Requires PGP key, how are those trusted?)
* S5Qu.7 Secret Management: Does the project use some form of secret management system?
* S5Qu1.8 Access: Who has access to those systems?

S5Q2 Supply Chain: What does the setup for the Supply Chain (e.g., libraries and other dependencies)
look like?
Follow-Ups:
* S$5Q2.1 Criteria: What criteria are considered when deciding on external libraries and depen-
dencies?
* S$5Q2.2 Checks: How are the processes to check if those are secure and trusted?
* S$5Q2.3 Vulnerabilities: How is checked whether a dependency has security vulnerabilities?
(SAST, code reviews, checking open source projects itself and its contributors, etc.)
* S5Q2.4 Signed: Do libraries have to be cryptographically signed?
* S5Q2.5 Private Packages: Does the project use a private package repository with vetted and
secure dependencies?

S5Qs3 Infrastructure: Does the project have additional infrastructure such as a project website or chat
tools?
Follow-Ups:
* §5Q3.1 Access: Who controls the additional infrastructure? Same set of maintainers for all
infrastructure?

S6: Release and Updates

S6Q1 Releases: How are releases and updates published?
Follow-Ups:
* S6Qu1 Decision: How is decided if/when a security update is released?
* S6Q1.2 Secured: What security concepts are considered for releases? Are releases “secured” in
any way?
* 56Q1.3 Update System: Are security updates made automatically? How does the update system
work?
* S6Qu.4 Deprecation: Do you publish information about deprecated / insecure versions?

S7: Roles and Responsibilities

§7Qi Contributors: Can you tell us a bit about the maintainer / contributor hierarchy of the project?
Follow-Ups:

* $7Qu1 Security Roles: Are there security specific roles in your projects?

* $7Qr.2 Roles known: Are these groups/roles common knowledge?

S8: Trusting Contributors

$8Q1 Trust: Can you tell us a bit about the trust model of the project?
Follow-Ups:
¢ S8Qu1 Establish: How do you establish trust for new committers?
* S8Qu.2 Identity: Do you have some form of identity check? (e.g., by being coworkers, at con-
ferences, etc.)

142

A.1r Interview Guide in English

* $8Qr.3 Authentication: Do you authenticate committers? (How?)
* S8Qr.4 Access Control: Are you using some form of access control in your project?
* §8Qus Trusted: How could a new contributor become trusted members of the project / team?

$8Q2 License: Is there a Contributor License Agreement?

o Yes: What does it look like?
o No: Do you know why the project doesn’t have one?

$8Q3 Public: Does the project maintain a public list of contributors and their contributions?

S9: Untrustworthy Contributors

S9Q1 Trust Incidents: Are you aware of any contributors that turned out to be not trustworthy?
[IF NOJ:

* Assuming there is an untrustworthy contributor ...

Follow-Ups:
* S9Qr.1 Approach: How did the project deal with such a situation?
* S9Qu.2 Excluding: If applicable, can you explain the process for excluding contributors from
the project?
* S9Qu.3 Identifying: How does the process for identifying untrustworthy contributors look
like?

S9Q2 Trust Strategy: What is the project’s strategy to deal with contributors who become untrust-
worthy?
Follow-Ups:
* S9Q2.1 Who: Who makes the decision? (BDFL, committee, maintainers)
* 59Qz2.2 Playbook: Is there a playbook/defined process?
* $9Q2.3 Circumstances: Under which circumstances are untrustworthy committers excluded
from future contributions?
* S9Q2.4 Process: What does the exclusion process look like?
* $9Q2.5 Investigation: Does the project have a defined process to investigate potential vulnerable
contributions?

S9Q3 Removal: Did the project decide to remove their contributions? Follow-Ups:
* S9Qs3.1 Decision: How was this decision made?
* 59Q3.2 Process: What did the removal process look like?

S$10: Problems and Improvements

S10Qr Reputation: Whatis, in your personal opinion, the reputation of the project in terms of security
and trust?
Follow-Ups:

¢ S10Qu1Internal: Internal reputation.

* S10Qr.2 External: External reputation.

S10Q2 Improvements Project: Assuming no limitations whatsoever (e.g., monetary or in terms of
people-power), how would you personally like to improve security and trust in the project?
Follow-Ups:

143

Appendix A Security €9 Trust in Open Source Software Projects

¢ S10Q2.1 Problems: Where do you see problems in the current system?

* S10Q2.2 Why Exist: What do you think are the reasons for the current (trust) system to be the
way it is?

* S10Q2.3 Improvements: What would you like to improve?

Outro

* “The recording is now off”
* Thank the participant again for their valuable time
* We will be in contact for a preprint

Debrief

* Is there something that we did not cover during the interview but you would like to talk about?
* Do you know of any other unique projects or persons we could invite for an interview?

Incident: Hypocrite Commits

In April 2021, after receiving “poor quality patches” Linux kernel developer Greg Kroah-Hartman re-
verted 68 patches submitted by University of Minnesota email addresses and announced that all further
patches coming from University of Minnesota addresses should be summarily rejected by default.

This incident actually started in August 2020, when a number of “bad faith” patches were sent to
Linux kernel developers by University of Minnesota researchers under false identities. These patches
were part of an ongoing work studying the feasibility of introducing vulnerabilities into open source
software projects through minor patches (“hypocrite commits”)

A.2 Interview Guide in German

[Allgemeine Begriiflung]

Intro

* Duvs. Sie [Dieser Guide nutzt von hier an “Du”]

* Thanks: Wir bedanken uns vielmals fiir deine bisher aufgewendete Zeit und dem Interesse an
unserem Interview.

* Ready: Bist du bereit, mit dem Interview zu beginnen?

* Structure: Zunichst werde ich was zum Hintergrund des Interviews und der Verwendung von
Daten sagen, und nur wenn du mit allem zustimmst, werden wir dann mit dem eigentlichen
Interview beginnen.

Context

* We: Wir sind Wissenschaftler am CISPA Helmholtz Zenter (kurze Einfithrung).
* Our research: Unsere Forschung ist im Bereich Nutzbare I'T-Sicherheit (kurze Ubersicht).
* In the past: Open-Source-Projekte als Datenquelle.

144

A.z2 Interview Guide in German

* Projekte sind ein wichtiger Software-Baustein, aber bringen auch besondere Herausforderungen.

* Now: “Wie kénnen wir im speziellen Open Source Contributorn helfen, ihre Open Code
Projekte sicherer zu machen.”

* Dieses Interview als Basis: Explorative Projekte und Abliufe Gber Dateien/Repos hinaus
anschauen (insbesondere weil viele Abliufe nicht direkt im Repo erkennbar sind).

* Im Speziellen fiir das Interview heifSt das:

— Dies ist keine Bewertung von Sicherheitsabliufen oder dhnlichem, wir sind lediglich an
den Strukturen interessiert.

— Projekte konnen sehr komplex sein, wenn keine Antwort bekannt: “weiter”.

— Nicht nur stumpfe Abfrage von Daten, wir haben die Form eines Interviews gewihlt, weil
wir auch an personlichen Meinungen und Einschitzungen interessiert sind.

* Questions? Fragen zum Interview-Hintergrund?

Consent

* Voluntary: Dieses Interview ist komplett freiwillig, zu jedem Zeitpunkt kann das Interview
beendet oder Fragen tibersprungen werden

* Duration: Linge des Interviews hingt von der Ausfiihrlichkeit der Antworten ab, unserer
bisherigen Erfahrung nach zwischen 30 und 45 Minuten.

* Wir anonimisieren dich und alle Projekte, sowie verwenden wenn tiberhaupt nur kurze Zitate

* Bevor wir irgendwas verdffentlichen, senden wir dir/Thnen eine Kopie zum Vetoen.

* Recording: Interview Aufnahme

— Diese Aufnahme wird nach dem transkribiren zerstort (ein paar Tage)
— Die Transkripte werden nach der Auswertung zerstort (ein paar Monate)

* Questions? Fragen zur Datenverarbeitung oder Aufnahme?
“Die Aufnahme liuft jetzt”

* Restate: Stimmst du unter diesen Bedingungen zu einer Aufnahme zu?

S1 Project & Demographics

S$1Q1 Project: Kannst du uns ein wenig zu deinem Projekt erzihlen?

Follow-Ups:
* S1Qr1 About: Worum geht es bei dem Projekt? Was ist der Zweck des Projekts?
* S$1Qr.2 Age: Wann ist das Projekt entstanden?
¢ S$1Q1.3 Contributors: Wie viele regulire Contributoren hat das Projekt?
* S1Qu.4 Connection: Wie kennen sich die Contributoren? (Virtuell, Personlich)
* S$1Qrs Distribution: Wie verteilen sich die Contributoren geographisch?

S1Q2 Project Relation: Was ist oder war dein Zusammenhang zum Projekt?
Follow-Ups:

* S1Q2.1Join: Wann bist du zum Projekt gestoflen?
* S$1Q2.2 Role: Was war deine Aufgabe in dem Projekt?

145

Appendix A Security €9 Trust in Open Source Software Projects

S2 Incidents

[Erwihne “hypocrite commits” Vorfall: Fahre fort falls bekannt, ansonsten kurze Einfithrung (siche
Interview Guide Appendix)]
$2Q1 Opinion: Was hiltst du von diesem Vorfall?
$2Q2 Challenges: Kannst du dich an irgendwelche IT Sicherheits-Herausforderungen bei deinem
Projekt erinnern?
Nudges:
¢ Boshafte Committers/Commits,
e Sicherheits-Probleme mit deinem Repository (Software/Provider)
* Software-Werkzeuge, etc.?

S3 Guidance

$3Q1 Guidance: Gibt es Leitfiden/Best Practices/Hinweise fiir Contributoren, Maintainers, usw.?
[IF NOT Guidance]:
* Wias ist deine Meinung dazu, Leitfiden/Best Practices/Hinweise fiir Contributoren, Maintain-
ers, usw. bereitzustellen?

Follow-Ups:
* $3Qu1 Infrastructure: Hat das Projekt Richtlinien fiir die Konfiguration und Ausfithrung der
Infrastruktur? (Cloud, VCS, usw.)
* $3Qr.2 Languages: Hat das Projekt Sicherheits- oder Stil-Richtlinien fiir die verwendeten Pro-
grammiersprachen? Was decken die Richtlinien ab?
* $3Qu3 Cryptography: Falls Kryptographie verwendet wird: Hat das Projekt Richtlinien beziiglich
der Nutzung von Kryptographie? (verbotene Funktionen etc.)

S4 Security Policies

$4Q1 Security Policies: Was enthalten die Sicherheits-Richtlinien?
[IF NOT Policies]:
* Was sollten deiner Meinung nach die Richtlinien enthalten?

Follow-Ups:
* $4Qu1 Content: Welche Bereiche decken sie ab?
* $4Qu.2 Applicability: Miissen die Richtlinien von Committern/Contributoren gelesen und
anerkannt werden?

$4Q2 Disclosure Policies: Was ist die (koordinierte) Disclosure Policy des Projekts?

$4Q3 Security Incidents: Wie wird mit Sicherheits-Vorfillen verfahren?
Follow-Ups:
* 54Qs.1 Policy: Nach welcher Richtlinie?
* S4Q3.2 Who: Von wem? (extra I'T Sicherheitsteam?)
* S4Q3.3 Access: Private/Public?
* 54Q3.4 Process: Gibt es “Playbooks” fiir die Reaktion auf Vorfille oder Schwachstellen? (Was
enthalten diese?)
* 54Q3.5 History: Wie ist dieser Prozess entstanden?

A.z2 Interview Guide in German

S4Q4 Security Testing / Reviews: Welche Verfahren fur Sicherheits-Tests gibt es?
Follow-Ups:
* 54Q4.1 Aspects: Welche Aspekte decken diese Tests ab, und wie?
* 54Q4.2 Tools: Nutzt das Projekt spezielle (Software-) Tools? (SAST, DAST, Manual, Pentests)
* $4Q4.3 Project Stages: Bei welchen Phasen des Projekts? (Nur zu Beginn, bei Anderungen,
etc.)
* 54Q4.4 Frequency: Wie hiufig werden manuelle Sicherheits-Bewertungen durchgefiihrt? Pen-
testing etc.? Wer fithrt die Bewertungen durch? (Skills, externe/interne Person)
* 54Q4.5 Threat Modeling: Wird eine Art von Threat Modelling verwendet?

S5 Project Structure

SsQ1 Repository: Wie sicht die Repository-Struktur aus? (Filesystem, Stages, CI etc.)
Follow-Ups:
* Ss5Qu.1 Stages: Welche Projekt-Stufen gibt es? (Code — Commit — PRs — Review — CI for
tests and Build — Deployment, ...)
* $5Qu.2 Control: Wer kontrolliert welche Stufe?
* S$5Qr.3 Main: Wie sind Branches aufgesetzt? Ist es moglich, direkt auf den Main Branch zu
pushen?)
* S5Qu.4 Systems: Wie sind Build und Deployment System gesichert? Wer hat Zugriff/Kontrolle?
* S5Qu.s PRs: Wie wird mit neuen Pull Requests verfahren?
* S$5Q1.6 Signed Commits: Sind Commits signiert? (Benotigt PGP-Schliissel, wie wird diesem
vertraut?)
* S$5Qr.7 Secret Management: Nutzt das Projekt eine Art von Secret Management System?
* Ss5Qu.8 Access: Wer hat Zugriff auf diese Systeme?

S5Q2 Supply Chain: Wie sicht das Setup fiir die Supply Chain (bspw. Bibliotheken und andere
Abhingigkeiten) aus?
Follow-Ups:
* S5Q2.1 Criteria: Welchen Kriterien werden bei der Auswahl von externen Bibliotheken und
Dependencies beriicksichtigt?
* S5Q2.2 Checks: Nach welchen Prozessen wird deren Sicherheit und Vertrauen etabliert?
* $5Q2.3 Vulnerabilities: Wie wird tiberpriift, ob eine Dependency Sicherheitsliicken hat? (SAST,
code reviews, Uberpriifung von Open-Source-Projekten und Contributoren, etc.)
* S5Q2.4 Signed: Miissen Bibliotheken kryptographisch signiert sein?
* S5Q2.5 Private Packages: Nutzt das Projekt ein privates Package Repository mit gepriiften und
sicheren Dependencies?

SsQs3 Infrastructure: Hat das Projekt zusitzliche Infrastruktur wie eine Webseite oder Chat-Anwendungen?
Follow-Ups:
* S§5Q3.1 Access: Wer hat Zugriff auf die zusitzliche Infrastruktur? Selbes Set von Maintainern
wie die gesamte Infrastruktur?

S6 Release and Updates

S6Q1 Releases: Wie werden Releases und Updates veréftentiche?
Follow-Ups:

147

Appendix A Security €9 Trust in Open Source Software Projects

* S6Qu1 Decision: Wie wird entschieden, ob/wann ein Sicherheits-Update veréffentlicht wird?
* S6Qu.2 Secured: Welche Sicherheitskonzepte werden fiir Releases berticksichtigt? Sind Releases
in irgendeiner Weise “gesichert”?

S6Qr.3 Update System: Werden Security-Updates automatisch aufgespielt? Wie funktioniert

das Update-System?
* S6Qr1.4 Deprecation: Werden Information tiber deprecated / unsichere Versionen verdftentlicht?

S7 Roles and Responsibilities

§7Qi1 Contributors: Kannst du uns was zur Maintainer / Contributor Hierarchie im Projekt erzihlen?
Follow-Ups:

* S7Qu1 Security Roles: Gibt es sicherheits-spezifische Rollen im Projekt?

* $7Qr.2 Roles Known: Sind diese Rollen / Gruppen allgemein bekannt?

S8 Trusting Contributors

$8Q1 Trust: Kannst du uns was zum Vertrauens-Modell des Projektes erzihlen?
Follow-Ups:
* $8Qu1 Establish: Wie wird das Vertrauen in neue Committern etabliert?
¢ S8Qu.2 Identity: Gibt es eine Art von Identititsiiberpriifung? (bspw. fiir Kollegen, bei Kon-
ferenzen, etc.)
* S8Qr.3 Authentication: Werden Committer authentifizier? (Wie?)
* S8Qr.4 Access Control: Wird eine Art von Access Control verwendet?
¢ S8Qus Trusted: Wie konnen neue Committer vertraute Mitglieder des Projektes werden?

$8Q2 License: Gibt es eine Contributor License Agreement?

* Yes: Was enthilt sie?
* No: Weift du, warum das Projekt keine hat?

$8Q3 Public: Maintained das Projekt eine 6ffentliche Liste von Contributoren und deren Beitrigen?

S9 Untrustworthy Contributors

9Q1 Trust Incidents: Weifit du von Contributoren, die sich als nicht vertrauenswiirdig herausgestellt
haben?
[IF NO]:

¢ Angenommen es gibe einen nicht vertrauenswiirdigen Contributor ...

Follow-Ups:
* S9Qu1 Approach: Wie ist das Projekt mit dieser Situation umgegangen?
* S9Qr.2 Excluding: Falls zutreftend, wie liuft der Prozess fiir einen Projekt-Ausschluss von
Contributoren ab?
* S9Qr.3 Identifying: Wie sicht der Prozess zum Identifizieren von nicht vertrauenswiirdigen
Contributor aus?

S9Q2 Trust Strategy: Wie sicht die Projekt-Strategie fiir nicht vertrauenswiirdige Contributors aus?
Follow-Ups:

148

A.3 Codebook

* 59Q2.1 Who: Wer triftt die Entscheidung? (BDFL, committee, maintainers)

* S9Qz2.2 Playbook: Gibt es ein Playbook / definierten Prozess?

* 59Q2.3 Circumstances: Unter welchen Umstinden werden nicht vertrauenswiirdige Contrib-
utoren von zukiinftigen Beitrigen ausgeschlossen?

* 59Q2.4 Process: Wie sieht der Ausschlussprozess aus?

* S9Q2.5 Investigation: Hat das Projekt einen definierten Ablauf, um méglicherweise unsichere
Beitrige zu untersuchen?

S9Q3 Removal: Hat sich das Projekt entschieden, deren Beitrige zu entfernen?
Follow-Ups:

* $9Q3.1 Decision: Wie wurde die Entscheidung getroffen?

* 59Q3.2 Process: Wie sah der Ablauf der Entfernung aus?

S$10 Problems and Improvements

S10Q1 Reputation: Was ist, deiner personlichen Meinung nach, der Ruf des Projekts im Kontext von
Sicherheit und Vertrauen?
Follow-Ups:

¢ S10Qu1Internal: Interner Ruf.

* S10Qu.2 External: Externer Ruf.

S10Q2 Improvements Project: Angenommen es gibe keine Einschrinkungen (Geld, Arbeitszeit),
wie wiirdest du personlich am liebsten die Sicherheit / das Vertrauen des Projektes verbessern?
Follow-Ups:

* S10Q2.1 Problems: Wo sichst du die Probleme im aktuellen System?

* S10Q2.2 Why Exist: Was denkst du sind die Griinde fiir das aktuelle System

* S10Q2.3 Improvements: Was wiirdest du verbessern?

Outro

* “The recording is now off”
* Thank the participant again for their valuable time

Debrief

* Gibtes etwas, das wir wihrend des Interviews nicht angesprochen haben, iiber das Du aber gerne
gesprochen hittest?

* Falls angemessen: Kennst du noch weitere Personen, die fiir ein solches Interview potentielle
Teilnehmende sein kénnten?

A.3 Codebook
C1 Project Demographics

Cr.1 Project Type
Description: General code for project type(s) of the participant.
Subcodes include currently:

149

Appendix A Security €9 Trust in Open Source Software Projects

* Cri1: Operating System

* Crr-2: Library

* Cri1-3: Virtualization/containers

* Cri-4: Code analysis

* Cri-s: Hybrid engineering

* Cr.1-6: WebApp/Backend

* CrL1-7: Parser/Serialization/Deserialization
* Cr.1-8: Shared libraries

* Cr1-9: Version Control System

* Cri-10: UI Tool

* Crr-1u: Orchestration:

¢ Crr12: Network Monitoring

* Cr.113: Scientific simulations

¢ Crr-14: Decentralized exchange (crypto)
* Crr15: CLI Tool

* Cr1-16: Network Protocol

You may extend this list if you identify a new project type.
Buzzwords: “I work on X, a library for ...”
Coding: Add corresponding subcodes for each project mentioned.

C1.2 Project Age
Description: Age of the project.
Coding: Code (if) estimated by participant + enhance with actual repo age if available

C1.3 Contributor Count
Description: Number of (regular) contributors to the project.
Coding: Code (if) estimated by participant + enhance with actual repo data if available

Cr.4 Contributor Connections
Description: How the contributors are connected to each other.
Coding: Add corresponding subcodes, when in doubt: likely random “Contributors”

C1.5 Contributor Distribution
Description: How the contributors are distributed.
Coding: Add corresponding subcodes, when in doubt: likely “Global”

C1.6 Participant Position

Description: Rough estimate of our participant’s position within the project (estimate from project
data if not mentioned by participant).

Subcodes include currently (roughly ordered by rank):

* Cr6-1: Founder or Owner (or equiv.)
* Cr.6-2: Team Lead (or equiv.)

* Cr1.6-3: Maintainer (or equiv.)

* Cr1.6-4: Regular contributor

You may extend this list if you identify a new position.

150

A.3 Codebook

Coding: Add corresponding subcodes.

C2 Incidents

C2.1 Security Challenges
Description: If/What security challenges the project faced.
Subcodes include currently:

¢ C2.1-1: None

* Cz.1-2: Suspicious/Low Quality Commits (but no obvious attack)
* C2.1-3: Social Engineering

* C2.1-4: Vuln in dependency

* Ca.1-5: Other

* C2.1-6: Full disclosure of vulnerabilities

¢ Ca.1-7: Unsafe user input

* C2.1-8: Loss of credentials

You may extend this list if you identify a new incident type.
Coding: Add corresponding subcodes

C2.2 Incident Aware
Description: If the participants were aware of the incident.
Subcodes include currently:

* C2.2-1 Aware: No
* C2.2-2 Aware: Yes

Coding: Add corresponding subcodes

C2.3 Incident Opinion
Description: What opinion the participant had of the research approach mentioned in the incident.
Subcodes include currently:

¢ C2.3-1 Opinion: No opinion / Refuse to answer
* C2.3-2 Opinion: Negative

* C2.3-3 Opinion: Neutral / Mixed

* C2.3-4 Opinion: Positive

Coding: Add corresponding subcodes

C3 Guidance

C3.1 Guidance Types
Description: If/what type of guidance the project(s) provide.
Subcodes include currently:

* C3.a-1: None

151

Appendix A Security €9 Trust in Open Source Software Projects

¢ Cs.1-2: Language (e.g. style)

* C3.1-3: Security

* C3.1-4: Crypto-specific

* C3.1-5: Infrastructure

* C3.1-6: General (contributing)
* C3.1-7: Test-specific

You may extend this list if you identify a new type.
Coding: Add corresponding subcodes

C4 Security Policies

C4.1 Policies Content
Description: If/what type of security policies the project(s) provide.
Subcodes include currently:

* C4.1-1: None

¢ C4.1-2: Mandatory 2FA

* C4.1-3: Security contact/team
* C4.1-4: Bug bounty program
* C4.1-5: Limited scope

* C4.1-6: Air gapping

You may extend this list if you identify a new type.
Coding: Add corresponding subcodes

C4.2 Disclosure Policies
Description: If/what type of disclosure policies the project(s) follow.
Coding: Add corresponding subcodes

C4.3 Incident Playbooks
Description: If/what type of incident playbooks the project(s) follow.
Subcodes include currently:

Coding: Add corresponding subcodes

C4.4 Security Testing
Description: If/what type of security testing does the project(s) perform.
Subcodes include currently:

Coding: Add corresponding subcodes

C4.5 Security Reviews

Description: If/what type of security reviews does the project(s) perform.
Subcodes include currently:

Coding: Add corresponding subcodes, see also Cs.3 - Pull Requests.

C4.6 Threat Modeling
Description: If threat modeling is mentioned by the participant (exact match only?).

152

A.3 Codebook

Subcodes include currently:
Coding: Add corresponding subcodes

C5 Project Structure

Cs.1 Project Stage

Description: What does the setup of the project look like? Which stages does the project have?
Examples: Code — Commit — PRs — Review — CI for tests and Build — Deployment
Coding: Code mentions of stage-relevant parts.

Cs.2 Stage Control
Description: Who controls the different stages.
Coding: Add corresponding subcodes

Cs.3 Pull Requests/Patches
Description: How are pull requests (or patches if mailing list ist used) handled?
Coding: Add corresponding subcodes

Cs.4 Secret Management
Description: How are (CI/CD) secrets handled
Coding: Add corresponding subcodes

Cs.s Commit Signing
Description: Whether/Why commits are signed
Coding: Add corresponding subcodes

Cs.6 Supply Chain
Description: What does the software supply chain look like?
Subcodes include currently:

* Cs.6-1: Private package repo used

* Cs.6-2: Vulnerability checking with tools
* Cs.6-3: Vulnerability checking manual

* Cs.6-4: Decision Criteria

* Cs.6-5: Frequent updates of dependencies
* Cs.6-6: Pinning of package versions

* Cs.6-7: Optional dependencies

* Cs.6-8: Link against OS libs

You may extend this list if you identify a new type.
Buzzwords: Third Party Libraries, Package Manager, APIs, External projects
Coding: Add corresponding subcodes

Cs.7 Other Infrastructure

Description: Does the project have additional infrastructure such as a project website or chat tools?
Subcodes include currently:

153

Appendix A Security €9 Trust in Open Source Software Projects

* Cs.7-1: None
* Cs.7-2: Access (who controls this infrastructure?)

Coding: Add corresponding subcodes

C6 Release and Updates

Cé6.1 Release Decision
Description: Who makes the decision to release an update?
Coding: Add corresponding subcodes

Cé6.2 Release Deprecation
Description: How are releases deprecated?
Coding: Add corresponding subcodes

C6.3 Release Announcement
Description: How are (security) releases announced?
Coding: Add corresponding subcodes

C6.4 Release Distribution
Description: If/how releases are actually distributed.
Coding: Add corresponding subcodes

Cé6.5 Release Signing
Description: If/how releases are signed.

Coding: Add corresponding subcodes

C7 Roles and Responsibilities

C7.x Hierarchy
Description: What does the trust hierarchy look like
Coding: Add corresponding subcodes

C7.2 Security-specific roles
Description: Are there security-specific roles within the project?
Buzzwords: security team, sysadmins

Coding: Add corresponding subcodes

C8 Trusting Contributors
C8.1 Gaining Trust

Description: What are ways to gain trust as a new contributor
Coding: Add corresponding subcodes

154

A.3 Codebook

C8.2 Identity Check
Description: Does the project(s) check the identity of contributors
Coding: Add corresponding subcodes

C8.3 Contributor License Agreement
Description: Does the project(s) have a CLA?
Subcodes include currently:

* C8.3-1 None

Coding: Add corresponding subcodes

C8.4 Public List of Contributors
Description: Does the project(s) maintain a public list of contributors
Coding: Add corresponding subcodes

C9 Untrustworthy Contributors

Co.1 Trust Incidents
Description: Did the project(s) have trust incidents
Coding: Add corresponding subcodes

Co.2 Trust Strategy
Description: What are the project(s) strategies for dealing with trust incidents
Coding: Add corresponding subcodes

C9.3 Commit Removal
Description: If/how the project(s) removed affected commits
Coding: Add corresponding subcodes

C10 Problems and Improvements

Cro.1 Reputation
Description: What does the participant think about the reputation of their project(s)
Coding: Add corresponding subcodes

Cro.2 Improvements

Description: Areas that the participant wants to improve
Coding: Add corresponding subcodes

155

Appendix B

Security Challenges of the Open Source
Supply Chain

B Interview Guide

Intro

* Thanks: Thank you very much for offering your valuable time for this interview. We are very

grateful for your contribution.

* Ready: Are you ready to start the interview?
* Structure: First off, I am going to talk about the context and data handling, and if you are

okay with everything and have no further questions, only then would we start with the actual
interview and the recording.

Context

We: We are researchers at the CISPA Helmholtz Center for Information Security (+ other
institutions, short context).

Our research: focuses on the area “Usable Security for Developers”. This boils down to “How
can we enable and empower developers to write more secure code”.

Open Source components are part of the software supply chain and impact many different
software projects. External components include unique challenges, such as code from unknown
sources and challenges in trusting external projects.

Now: “How can we support software projects with selecting and including open source com-
ponents in secure ways?”

This interview: is intended as a start/exploration of internal processes and decisions around
open source components and the supply chain.

For this interview:

— We are not judging the security or privacy of a project, we are just interested in the un-
derlying structures and processes.

— Projects are often very complex, if you don’t know the answer, don’t want to answer,
or are not allowed to answer a question, feel free to just say “next”.

— Weare not just interested in structures, but also your personal opinions and experiences.

Questions? Any questions about this interview context so far?

Consent

* Voluntary: Your responses in this interview are of course entirely voluntary. You may skip any

157

Appendix B Security Challenges of the Open Source Supply Chain

or all of the questions and can of course leave the interview at any time.

* Duration: Duration of the interview depends a bit on the duration of your answers, in our
experience 30—45 min, median interview duration so far was about 32 minutes.

¢ We will fully de-identify you and your projects in any publication and only include short
quotes.

* We will send you a preprint before a potential publication, so you can veto quote usage etc.

* Recording: We would like to record this interview so that we can transcribe the answers later.

— The recording will be destroyed when we transcribed the answers (a few days)
— The transcripts will be destroyed after analysis (a few months)

* Questions? Any more questions about data handling or recording?
* “The recording is now on”
* Restate: For the recording: “Are you okay with this interview being recorded?”

S1Project & Demographics

[Check project(s) beforehand]
S$1Q1 Project: Can you tell us a bit about the [project(s)] you are involved in?

* S1Qr.1 About: What is the project about? What is its purpose?

* S1Qr.2 Age: When was the project created?

* S1Qu.3 Developers: How many regular developers does the project have?
* S1Q1.4 Structure: How is the team structure for this project?

$1Q2 Project Relation: How are you related to [project(s)]?

¢ S1Q2.1 Join: When did you join the project?
¢ S1Q2.2 Role: What is your role in the project?

§1Q3 Setup: Can you tell us a bit more about the general development setup of the project?

* S1Q3.1 Tools: Is the project using specific (software) tools? (SAST, DAST, Manual, Pentests)

* S1Q3.2 Project Stages: At what stages of the project? (Only initially, on changes, etc.)

* 51Q3.3 Frequency: How often are manual security reviews done? Pentesting etc.? Who carries
out these reviews? (skills, external/internal person)

* 51Q3.4 Security Roles: Are there security specific roles in your projects?

Usage of Open Source Components (OSCs)

$2Q1 Components: Are you aware of any OSCs included in your project?
* 52Qr.2 Components: How/If do the different roles interact with components?
$2Q2 Metrics: Are you aware of any metrics for selecting those components?

* S2Q2.1 Exclusion: What are exclusion criteria?

* 52Q2.2 Opinion: What metrics would you personally like to use?

* 52Q2.3 Awareness: Are you aware of already prepared metrics such as the OSSF Scorecards for
repos or socket.dev for JS? [see Appendix for explanations what those are]

B.1 Interview Guide

$2Q3 Supply Chain: How are those external components pulled/included into the build process?

* 52Qs.1 Inclusion: What is the process for including components in your project?

* 52Q3.2 Aspects: What parts of this process include some form of security checks?

* 52Q3.3 Mirrors: Do you have internal sources/mirrors for the components, instead of public
ones? (e.g., internal versions of packages on a local package server, instead of a public one like

PyPI)
$2Q4 Infrastructure: Does additional infrastructure use open source components?

* 52Q4.1 CI/CD: In the build system?
* 52Q4.2 Other: Website / Documentation / etc ?

$2Qs Support: Does your company contribute back to Open Source Projects (independent of use)?

* 52Qs.18election: How do you choose which projects you support?

* 52Qs.2 Type: How does your company contribute back? (pull requests, issues, infrastructure,
sponsorship, monetary, ...)

* 52Qs.3 Not: If not, would you like your company to contribute back?

Security Policies & Guidance

S3Q1 Security Policies: If/what are your project’s security policies for including external code?
[IF NOT Policies]: If/what would you like your security policies to contain?

* $3Qu1 Content: What specific parts do they cover?

* $3Qr.2 Applicability: Are the teams aware of these policies? Do these have to be read and
acknowledged by developers/admins/managers?

* $3Qu.3 Guidance: Does this include guidance (e.g., guides or resources for new team members)

$3Q2 Security Incidents: How are security incidents/issues in components generally handled?

* $3Q2.1 Policy: By what policy?

* $3Q2.2 Who: By whom? (specific security team?)

* $3Q2.3 Access: Discussed in private groups or open within the company?

* 53Q2.4 Process: Are there “Playbooks” or a specific process for (component) Incident Response
and Vulnerability Management? (What do these include?)

* $3Q2.5 History: How has this process developed?

* 53Q2.6 Disclosure Policies: What is the (coordinated) disclosure policy of the project?

$3Q3 Documentation: Does your project provide guides/best practices/hints for including external
code (e.g., open source components)?

* $3Q3.1 Opinion: What are your personal thoughts about including such guides/best prac-
tices/hints (e.g, in a Wiki)?

S4 Experiences with Open Source Components

$4Q1 Components: Can you tell us a bit about the developer experience of using OSCs in the project?

* 54QuiSetup: Was it difficult to set up these components?

159

Appendix B Security Challenges of the Open Source Supply Chain

* $4Qr.2 Documentation: Are these components documented somewhere? (Could a new hire
manage them?)

* $4Q1.3 Customization: Did you need to customize components for your environment? Did
you contribute changes back?

$4Q2 Updating: How are you keeping open source components up to date?

* 54Q2.1 Responsible: Who is responsible?

* 54Q2.2 Version: In what version / release of your [project(s)] are OSCs updated?

* 54Q2.3 Checks: Do you check code changes or changelogs before updating?

* 54Q2.4 Metrics: How is the initial selection decision for an OSC different to an update decision
of the same OSC?

$4Q3 Same: Would you select the same components again and why?

$4Q4 Releases: How are releases and updates of your project handled (and how are OSC considered
in the process)?

* 54Q4.1 Decision: How is decided if/when a (security) update is released?

* 54Q4.2 Secured: What security concepts are considered for releases? Are releases “secured” in
any way?

* 54Q4.3 Update System: Are security updates made automatically? How does the update system
work?

* 54Q4.4 Deprecation: Do you publish information about deprecated / insecure versions?

* 54Q4.5 Dependencies: How do you handle dependencies to external components when you
publish a release/update?

S5 Challenges & Incidents

[Mention “protestware node-ipc” incident: If participant is aware continue, else introduce (see Ap-

pendix)]

SsQ1 Opinion: What is your personal opinion of this incident (in terms of supply chain trust)?

* S5Qr.2 Handling: How would you react, if your project depends on this (node-ipc) depen-
dency?

SsQz2 Trust Strategy: In general, what is/would be your [project(s)] strategy to deal with components
that become untrustworthy?

* S$5Q2.1 Identifying: What does the process for identifying untrustworthy components look
like?

* S$5Q2.2 Excluding: If applicable, can you explain the process for excluding components from
the project more in-depth?

S5Q3 Challenges: Can you remember any supply-chain related security challenges that [project] faced
in the past?
Nudges:

* Malicious / compromised dependency

160

B.1 Interview Guide

* Security vulnerability included from a dependency

SsQ4 Inconveniences: Aside from major challenges, were you inconvenienced by components in the
past?
Nudges:

* Dependency no longer maintained
* Sudden changes to components’ API
* Changes how a component was distributed

S6 Problems and Improvements

S6Q1 Opinions: In your experience, what is the perceived security of your project? Both by internal
actors (like the team) and external actors (like the client or the public).

S6Q2 Improvements: Assuming no limitations whatsoever (e.g., monetary or in terms of developer-
hours), how would you personally like to improve supply-chain security of your project?

* 56Q2.1 Problems: Where do you see problems in the current system?

* 56Q2.2 Why Exist: What do you think are the reasons for the current (trust) system to be the
way it is?

* 56Q2.3 Improvements: What would you like to improve?

Outro

* Anything else: Is there something that we did not cover during the interview but you would
like to talk about on the recording?

* IF second interviewer: Wait if the second interviewer has any further questions.

* “The recording is now off”

* Thank the participant again for offering their valuable time

* “We will later be in contact for a preprint for changes and veto”

* IF Voucher: Ask if the want/can be compensated for the interview in the form of an Amazon
voucher

— Ask for the email they want their voucher assigned to (likely their Amazon email). Write
the email down!
— Stress that it might take some time (weeks) for billing to process the charges

Debrief

* Easy debrief starter is to ask the participant how they felt about the interview
* Do you have any recommendations for other interesting companies or stakeholders we should
invite for an interview?

Protestware-Incident (node-ipc)
In early March 2022, the JavaScript node-ipc library (dependency of, e.g., @vue/cli) was updated by

the maintainer to include potentially malicious code: depending on the version when the node-ipc
dependency was pulled in, the code scans the host’s IP address. If the IP address matched lists of

161

Appendix B Security Challenges of the Open Source Supply Chain

Russian or Belorussian IPs, the package would go on to replace all of the user’s system files with a heart
emoji. In other versions, the package always displayed a message of support for Ukraine.

OSSF Scorecard

Scorecard (https://github.com/ossf/scorecard) is a tool by the Open Source Security Foundation that
allows users to judge the safety of dependencies automatically based on several metrics. The tool allows
assessing several criteria, like project activity, contributors, known vulnerabilities, static analysis, etc.,
on a scale from o to 10. Overall, the project aims to help automate trust decisions, and can be used as a
CLI tool or GitHub Action.

Socket.dev

Socket.dev is a tool to detect and block (ongoing) software supply chain attacks in JavaScript software
and the npm ecosystem, e.g., by monitoring dependency changes and analyzing their behavior. It is
available as a GitHub application.

Open Source

We don’t care too much about the ideological idea of open source here, but more about the used
components, so a fitting example definition would be: “Software components publicly available, e.g.,
on GitHub or language respective package platforms like PyPI or npm. Using these components
generally requires the user (our participant’s company) to rely on code contributions from a number
of unknown and untrusted maintainers or developers”

B.2 Codebook
C1 Project Demographics

Cu.1 Project

* Cryr Project type
* Cri.2 Project age
* Cr.1.3 Team size

— Curr13-0 Not mentioned
— CrLL311

— Crr322-5

— CrLr335+

* Cr1.1.4 Team structure

Cr.1.4-0 Not mentioned
Cr.1.4-1 Consultant / Freelancer (alone)

Cr.1.4-2 Single (developer) team
Cr.1.4-3 Multiple teams (including stuff like SRE, QA, etc.)

* Cr1.s Number of Projects

— Cuirs-o Not mentioned

162,

Cr.1s-1 One
Cr.rs-2 Multiple (>1)

C1.3 Project Setup

* Cr3.1 Project-specific tools

* Cr.3.2 Project stages

* Cr3.3 Review frequency
* Cr.3.4 Security roles.

Cr.3.4-0 Not mentioned
Cr.3.4-1 Yes

Cr3.4-2 No

C1.3.4-3 Other

C2 Usage OSCs

C2.1 OSC Components

¢ C2.1.1 OSCs included

Ca2.1.1-0 No
Ca.r.1-1 Yes

¢ Ca2.1.2 Specific OSCs
* C2.1.3 Roles that interact with OSCs

C2.2 OSC Selection Metrics

* C2.2.1 Metrics for selecting OSCs [Select all that apply, feel free to extend]

C2.2.1-0 None mentioned

Ca.2.1-1 Popularity (like Github stars or downloads)

C2.2.1-2 Sponsorship (by trusted entity)

C2.2.1-3 Activity (like commit frequency or releases)

C2.2.1-4 Quality (e.g., commit quality)

C2.2.1-5 Recommendations (by friends, blogs, communities, ...)
C2.2.1-6 License (must allow usage, etc.)

C2.2.1-7 No fix rules (each developer doing as they think)

C2.2.1-8 Features (needs to have the needed features)

C2.2.1-9 Security history (e.g., past incidents or CVEs)

C2.2.1-10 Ease of use (for developers, not including documentation)
C2.2.1-1 Community (e.g., to be large, or active)

C2.2.1-12 Minimize number of dependencies

C2.2.1-13 Dependencies predefined (e.g., customer requirements)
C2.2.1-14 Code Inspection (by developer before use)

C2.2.1-15 Maturity (of the whole project)

C2.2.1-16 Documentation (easy to read/understand/apply, helpful, etc.)

* C2.2.2 Exclusion criteria for OSCs [Select all that apply, feel free to extend]

C2.2.2-0 None mentioned

B.2 Codebook

Appendix B Security Challenges of the Open Source Supply Chain

C2.2.2-1 Previous vulnerability

C2.2.2-2 Inactive maintainer / project

C2.2.2-3 Avoid specific organizations (companies, vendors, etc.)

C2.2.2-4 Minimum star limit

C2.2.2-5 Company Policies (e.g., not to use any 3rd party code at all, license restrictions,
etc.)

C2.2.2-6 Obviously malicious code/vulnerabilities

C2.2.2-7 Single/low number of contributors
C2.2.2-8 Bad documentation

C2.2.2-9 Bad code quality

* (C2.2.3 Personal wishlist metrics
¢ C2.2.4 Awareness of existing metrics

— C2.2.4-0No

— C2.2.4-1 OpenSSF Scorecards
— C2.2.4-2 socket.dev

C2.2.4-3 Other

C2.3 How are OSCs pulled in?

* C2.3.1 How are OSCs pulled in
* C2.3.2 Process for including new OSCs
* C2.3.3 Using internal mirrors.]

— C2.3.3-0 No
— C2.3.3-1 Yes
— C2.3.3-2 Other

C2.4 OSC in other infrastructure?

C2.5 Contribute back to OSS?

* Ca2.5-0 Did not contribute back
* C2.5-1 Did contribute back
* Ca2.5-2 Would like to contribute back

C3 Policies and Guidance

C3.1 What security policies?

* Cs.1.1 Security policies for external code

— Cs.1-o No
— Ca.r1-1 Yes
— Cz..1-2 Other

* Cs.1.2 Content of security policies
* Cs3.1.3 Applicability / Awareness

C3.2 How are incidents in components handled?

* C3.2.1 Security incident handling

B.2 Codebook

* C3.2.2 Incident by what policy
* C3.2.3 Incident by whom
* C3.2.4 Specific security team

— C3.2.4-0 Not mentioned
— C3.2.41 Yes

— C3.2.4-2 No

C3.2.4-3 Other

* Cs3.2.5 Incident process
* C3.2.6 Incident process history
* C3.2.7 Disclosure policies

— C3.2.7-0 Not mentioned
— C3.2.7-1 Yes

— C3.2.7-2No

C3.2.7-3 Other

C3.3 Project provides documentation for including external code?

* C3.3.1 Documentation

— C3.3.1-0 Not mentioned
— C3.3.11 Yes

C3.3.1-2 No

C3.3.1-3 Other

* C3.3.2 Documentation Opinion

C4 Experiences OSCs

C4.1 Developer experience using components?

* C4.1.2 Development experience

— C4.1.2-0 No opinion

— C4.1.2-1 Mostly Negative
— C4.1.2-2 Neutral

— C4.1.2-3 Mostly Positive

* C4.1.1 Did customize OSC in the past?

— C4.1.1-0 Not mentioned
— C4.1.11 Yes

— C4..1-2 No

— C4.1-1-3 Other

C4.2 How are components kept up-to-date?

* C4.2-1OSC update

* C4.2-2 OSC update responsible
* C4.2-3 OSC update version

* C4.2-4 OSC update checks

* C4.2-5 OSC update metrics

Appendix B Security Challenges of the Open Source Supply Chain

C4.3 Would you use the same components again?

* C4.3-0 Not mentioned
* C4.3-1 Mostly Yes

* C4.3-2 Mostly No

* C4.3-3 Other

C4.4 How are releases and updates handled?

* C4.4-1Release process

* C4.4-2 Release decision

* C4.4-3 Release secured

* C4.4-4 Release update system
* C4.4-5 Release deprecation

* C4.4-6 Release dependencies

C5 Challenges and Incidents

Cs.1 Opinion of incident

* Cs.1-o No opinion

¢ Cs.1-1 Mostly Negative
* Cs.1-2 Neutral

* Cs.1-3 Mostly Positive

Cs.2 General trust strategy

* Cs.2-0 Handling similar incident
* Cs.2-1 Trust strategy

¢ Cs.2-2 Identify untrustworthy

¢ Cs.2-3 Exclude components

Cs.3 Past security challenges / inconveniences

¢ Cs.3.1 Past Challenges encountered?

— Cs.3.1-0 Not mentioned
— Cs.3.1-1 Yes

— Cs.3.-2 No

— Cs.3.1-3 Other

* (Cs.3.2 Past Inconveniences

C6 Problems and Improvements

Cé6.1 Opinions

¢ C6.1.1 Internal opinion

— Cé6.1.1-0 No opinion
— C6.1.1-1 Mostly Negative
— C6.1.1-2 Neutral

166

B.2 Codebook

— C6.1.1-3 Mostly Positive
* C6.1.2 External opinion

— C6.1.2-0 No opinion

— C6.1.2-1 Mostly Negative
— C6.1.2-2 Neutral

— C6.1.2-3 Mostly Positive

C6.2 Improvements to [Select all that apply, feel free to extend]

* C6.2-0 More developer hours

* C6.2-1 Better documentation / guidance

* C6.2-2 Static analysis and similar tooling

* C6.2-3 Audit external components (on introduction and updates)
* C6.2-4 Tust processes between oss and third party devs (TLS etc)
* C6.2-5 Resources for security implications (mailings lists)

* C6.2-6 (certificate) updates for long lifecycle devices

* C6.2-7 Automated alerts for dependency updates (CI)

¢ C6.2-8 Contribute back to dependencies

* C6.2-9 Make transportation more secure

* C6.2-10 Regular pentests

* C6.2-11 Build security in from the start

* C6.2-12 Dedicated security expert for project

* C6.2-13 More/better quality assurance

* C6.2-14 Use security software (e.g., proxy)

* C6.2-15 Better security education for devs

* C6.2-16 Incentives/ monetary rewards

* C6.2-17 Rewrite deps in-house

Appendix C

Large Scale Investigation of Obfuscation
Use in Android

C.1 Online Survey
General Questions

Qu.1: Which of these have you heard of in the context of Android apps?
Please check all that apply.

Reverse Engineering
Repackaging of Software
Software Plagiarism
Obfuscation

O o o o

Qu.2: How likely do you think Android apps are ...
[s-point Likert-Scale with: Very Unlikely, Unlikely, Neutral, Likely, Very Likely, and I don’t know

answers]

O Reverse Engineered
O Repackaged
O Plagiarised
O Obfuscated

Qu.3: How likely do you think your own Android apps are ...
[s-point Likert-Scale with: Very Unlikely, Unlikely, Neutral, Likely, Very Likely, and I don’t know
answers]

O Reverse Engineered
O Repackaged
O Plagiarised
O Obfuscated

Q1.4: How much do you feel the intellectual property of your own Android apps is threatened by ...
[s-point Likert-Scale with: Very Unlikely, Unlikely, Neutral, Likely, Very Likely, and I don’t know

answers]

O Reverse Engineering

O Repackaging of Software
O Software Plagiarism

O Obfuscation

Appendix C Large Scale Investigation of Obfuscation Use in Android

Terminology

Q2.1: Reverse engineering is: ...

Q@

RS

Q2.

©)
(@)
(@)
(@)
(@)
@)
(@)
©)

OO0OO0OO0O0OO0OO0O0

3:

OO O0OO0OO0O0

Translate binary files to source code
Translate source code to binary files
Analysis of pure source code
Analysis of binary files
Reconstruction of app logic
Testing an app’s functionality

I don’t know

Other [with free text]

: Reverse engineering can be used for: ...

Understanding an app’s logic

Circumvention of licence or security checks
Repackaging of an app

Stealing IP addresses

Attacks on Android users who have your app installed
Remote attacks on mobile phones

Idon’t know

Other [with free text]

Software plagiarism is: ...

Repackaging existing software and rebranding it as your own
Use of third party open source code in your software
Imitating software to trick users

Copy pasting code found on the internet

I'don’t know

Other [with free text]

Q2.4: Software plagiarism can be used for: ...

OO O0OO0OO0O0

Obtaining software revenue

Distributing disguised malware

Attacking users that have your app installed
Attacking distribution services

I don’t know

Other [with free text]

Qz2.5: Obfuscation is: ...

170

@)

OO OO0

Making source code unreadable or difficult to understand so only authorized developers can
work on it

Making source code unreadable or difficult to understand before compilation

Hiding binaries from the user

Preventing acces to the deployed application

Idon’t know

O

Q2.6:

OO O0OO0OO0O0

Q2.7:

O
O
O

Q2.8:

O
O
O

Q2.9:

O
O
O

Other [with free text]
Obfuscation can be used for: ...

Making reverse engineering more difficult

Prevent others from attacking vulnerabilities within your application
Hiding the logic within your application

Optimization of app performance

Idon’t know

Other [with free text]

Have you heard of obfuscation before?

Yes
No
Uncertain

Have you ever thought about using obfuscation?

Yes
No
Uncertain

Did you obfuscate at least once before?

Yes
No
Uncertain

Obfuscation Tools

C.1 Online Survey

Q3.1: Please select all Android obfuscation tools that you have heard of prior to this study.

]

O
O
O
O
m]
O

ProGuard
DexGuard

Jack

DashO

ReDex

Harvester

Other [with free text]

Q3.2: Please select all Android obfuscation tools that you have used before.

O
O
O
m]
O
m]
O

ProGuard
DexGuard

Jack

DashO

ReDex

Harvester

Other [with free text]

171

Appendix C Large Scale Investigation of Obfuscation Use in Android

Q3.3: Please select all Android obfuscation tools that you have actively decided against using.

o ProGuard

o DexGuard

o Jack

o DashO

o ReDex

o Harvester

o Other [with free text]

'

: Which tools do you use to remove unused library code?

ProGuard “Minify”

Android Studio “Minify”

I remove it manually

I never remove unused library code from my apps
Other [with free text]

O O o o o

Obfuscation 1

Q4.1: How did you first encounter obfuscation?
[Free text]

Q4.2: How many apps have you worked on?
[Number input]

Q4.3: How many of those where obfuscated?
[Number input]

Q4.4: Why did you use obfuscation on those apps?
[Free text]

Q4.5: Why did you decide against obfuscating apps?
[Free text]

Q4.6: Did you verify that obfuscation was successful?

O Yes
O No

Q4.7: How did you verify if obfuscation was successful?
[Free text]

Q4.8: Why did you decide against using obfuscation?
[Free text]

C.2 Programming Experiment - Exit Survey

After completing the programming task, developers were asked to fill out an exit survey.

172

C.2 Programming Experiment - Exit Survey

Tasks

Do you think you solved the tasks correctly?
T.x: Taskr

O Yes
O No
O Idon’t know

T.2: Taskz

O Yes
O No
O Idon’t know

T.3: Do you have additional comments on the tasks?
[Free text]

General Questions

Qu.1: Which of these have you heard of in the context of Android apps?
Please check all that apply.

Reverse Engineering
Repackaging of Software
Software Plagiarism
Obfuscation

o o o o

Qu.2: How likely do you think Android apps are ...
[s-point Likert-Scale with: Very Unlikely, Unlikely, Neutral, Likely, Very Likely, and I don’t know

answers]

O Reverse Engineered
O Repackaged
O Plagiarised
O Obfuscated

Qu.3: How likely do you think your *own* Android apps are ...
[s-point Likert-Scale with: Very Unlikely, Unlikely, Neutral, Likely, Very Likely, and I don’t know

answers]

O Reverse Engineered
O Repackaged
O Plagiarised
O Obfuscated

Qu.4: How much do you feel the intellectual property of your own Android apps is threatened by ...
[s-point Likert-Scale with: Very Unlikely, Unlikely, Neutral, Likely, Very Likely, and I don’t know

answers]

O Reverse Engineering

O Repackaging of Software
O Software Plagiarism

O Obfuscation

173

Appendix C Large Scale Investigation of Obfuscation Use in Android

Terminology

Q2.1: Reverse engineering is: ...

Q@

RS

Q2.

©)
(@)
(@)
(@)
(@)
@)
(@)
©)

OO0OO0OO0O0OO0OO0O0

3:

OO O0OO0OO0O0

Translate binary files to source code
Translate source code to binary files
Analysis of pure source code
Analysis of binary files
Reconstruction of app logic
Testing an app’s functionality

I don’t know

Other [with free text]

: Reverse engineering can be used for: ...

Understanding an app’s logic

Circumvention of licence or security checks
Repackaging of an app

Stealing IP addresses

Attacks on Android users who have your app installed
Remote attacks on mobile phones

Idon’t know

Other [with free text]

Software plagiarism is: ...

Repackaging existing software and rebranding it as your own
Use of third party open source code in your software
Imitating software to trick users

Copy pasting code found on the internet

I'don’t know

Other [with free text]

Q2.4: Software plagiarism can be used for: ...

OO O0OO0OO0O0

Obtaining software revenue

Distributing disguised malware

Attacking users that have your app installed
Attacking distribution services

I don’t know

Other [with free text]

Qz2.5: Obfuscation is: ...

174

@)

OO OO0

Making source code unreadable or difficult to understand so only authorized developers can
work on it

Making source code unreadable or difficult to understand before compilation

Hiding binaries from the user

Preventing acces to the deployed application

Idon’t know

C.2 Programming Experiment - Exit Survey

O Other [with free text]
Q2.6: Obfuscation can be used for: ...

Making reverse engineering more difficult

Prevent others from attacking vulnerabilities within your application
Hiding the logic within your application

Optimization of app performance

Idon’t know

Other [with free text]

OO O0OO0OO0O0

Q2.7: Have you heard of obfuscation before?

O Yes
O No
O Uncertain

Q2.8: Have you ever thought about using obfuscation?

O Yes
O No
O Uncertain

Q2.9: Did you obfuscate at least once before?

O Yes
O No
O Uncertain

Obfuscation Tools

Q3.1: Please select all Android obfuscation tools that you have heard of prior to this study.

o ProGuard
o DexGuard

o Jack

o DashO

o ReDex

o Harvester

o Other [with free text]

Q3.2: Please select all Android obfuscation tools that you have used before.

o ProGuard

o DexGuard

o Jack

o DashO

o ReDex

o Harvester

o Other [with free text]

175

Appendix C Large Scale Investigation of Obfuscation Use in Android

Q3.3: Please select all Android obfuscation tools that you have actively decided against using.

o ProGuard
o DexGuard

o Jack

o DashO

o ReDex

o Harvester

o Other [with free text]

Qs.

: Which tools do you use to remove unused library code?

N

ProGuard “Minify”

Android Studio “Minify”

I remove it manually

I never remove unused library code from my apps
Other [with free text]

O O o o o

ProGuard

P.1: What do you use Proguard for?

o Testing

o Minifying Code
o Optimization

o Obfuscation

P.2: After using Proguard, how did you verify that it achieved its goal?

O Idid not verify that Proguard worked
O Reverse Engineering
O Other [with free text]

P.3: Why have you never used Proguard before?

O No need

O Never heard of it

O Too complicated

O I have other tools

O Other [with free text]

Appendix D

Security & Privacy Perceptions of Cloud
Office Suites

D.1 Survey

The following survey is the English version of the survey, the German version followed the same struc-
ture with nearly identical questions. Differences in questions included localization changes, e.g., for
country-specific agencies and institutions. Question numbers were not displayed to the participants.

Consent Form

[Consent Form with contact information.]

Please indicate, in the box below, that you are at least 18 years old, have read and understood this consent
form, and you agree to participate in this online research study.

I 'am age 18 or older.

I have read this consent form or had it read to me.

I am comfortable using the English language to participate in this study.

I have used cloud office software before (e.g., Google Drive or Microsoft Office 365).

O o o o o

I agree to participate in this research and I want to continue with the study.

Office demographics

For this survey, we are interested in your experience with and use of Cloud Office Suites and appli-
cations. Cloud Office Application or Online Office Application are software that can be used
to create office documents in a web browser, without requiring the installation of a dedicated soft-
ware. Examples for Cloud Office Suites are Google Docs/Sheets/Slides, Microsoft Office 365, and
LibreOffice Online.

Qu.1: Which office suites have you used before?

(Please select all that apply)

Microsoft Oftice (Offline; Word, Excel, Powerpoint, ...)
Microsoft Oftice 365 (Cloud-based; Word, Excel, Powerpoint, ...)
LibreOffice (Offline; Writer, Calc, ...)

LibreOffice Online (Cloud-based; Writer, Calc, ...)

Google Drive (Cloud-based; Docs, Sheets, Slides, ...)

Apple’s iWork App (Offline; Pages, Numbers. Keynote...)

o Apple’s iWork Web (Cloud-based; Pages, Numbers. Keynote...)

O 0o o o o o

177

Appendix D Security & Privacy Perceptions of Cloud Office Suites

o OnlyOffice
o Other (please specify):

Qu.2: Which office suites have you used this month?
(Please select all that apply)

Microsoft Office (Offline; Word, Excel, Powerpoint, ...)
Microsoft Office 365 (Cloud-based; Word, Excel, Powerpoint, ...)
LibreOffice (Offline; Writer, Calc, ...)

LibreOffice Online (Cloud-based; Writer, Calc, ...)

Google Drive (Cloud-based; Docs, Sheets, Slides, ...)

o Apple’s iWork App (Offline; Pages, Numbers. Keynote...)

o Apple’s iWork Web (Cloud-based; Pages, Numbers. Keynote...)
o OnlyOffice

o Other (please specify):

O 0o o o g

Qu.3: Does your job involve using office applications on a regular basis?

O Yes

O No

0O Idon’tknow

O I'd prefer not to answer

Qu.4: Which types of documents do you process with office suites?
For this question, please give answers both for your job and your personal life.

(Please select all that apply)

Text (Reports, Letters, etc.)
Spreadsheets (Numbers, Dates, etc.)
Presentations

Calendar and Appointments

Emails

O 0O O o o o

Other (please specify):

Qu.5: How do you store your documents?

For this question, please give answers for any documents you might store, including personal and work
documents, including but not limited to documents that you edit with office applications.

(Please select all that apply)

Locally on my computer

My office suite saves them online automatically.
Dropbox

Google Drive

Network Share

Self-hosted cloud service

OneDrive

iCloud

Other (please specify):

O 0O 0O O o o o o O

Qu.6: Why do you use cloud office applications (compared to local office applications)?
(Please select all that apply)

D.1 Survey

Provided or required by work

Easy remote access (e.g., from multiple devices)
Ease of collaboration

No installation required

Built-in backup of documents

Free / cheap access

Other (please specify):

O O O o o o o

Document Safety

Q2.1: Where do you think your documents are more secure from any unauthorized access?
This is a matrix question, the scala for answers of this questions is:

* More secure on my computer

* Somewhat more secure on my computer
* Equally secure

* Somewhat more secure in the cloud

* More secure in the cloud

e Idon’tknow

The questions are:

* Word documents

* Presentations

* Spreadsheets

* E-Mails

* Calendar and Appointments

Q2.2: Why (if at all) do you think your documents may be more secure on your computer?
[Free text field]

Q2.3: Why (if at all) do you think your documents may be more secure in the cloud?

[Free text field]

Document Access

Q3.1: Who else besides yourself might be able to access the documents you edit in cloud office applica-
tions?

(Please select all that apply)

People I share the documents with

My employer

My internet provider

The cloud office provider (e.g., Google or Microsoft)

My browser vendor (e.g., Google or Mozilla)

My operating system manufacturer (e.g., Apple or Microsoft)
Cybercriminals (e.g., hackers or organized crime)

Law enforcement or intelligence agencies (e.g., police, FBI or NSA)
Third parties (e.g., online advertisers or plugin developers)

O O O O o o o o O

179

Appendix D Security & Privacy Perceptions of Cloud Office Suites

o The manufacturer of my computer hardware (e.g., Intel, AMD, Apple, or Lenovo)
o Other (please specify):

The following 3 questions are matrix questions with the following options:

* DPeople I share the documents with

* My employer

* My internet provider

The cloud office provider (e.g., Google or Microsoft)
* My browser vendor (e.g., Google or Mozilla)

* My operating system manufacturer (e.g., Apple or Microsoft)

¢ Cybercriminals (e.g., hackers or organized crime)

* Law enforcement or intelligence agencies (e.g., police, FBI or NSA)

* Third parties (e.g., online advertisers or plugin developers)

* The manufacturer of my computer hardware (e.g., Intel, AMD, Apple, or Lenovo)

Q3.2: Where do you think the risk is higher that the following parties can obtain unauthorized access
to your cloud office documents?

* Higher risk on my computer

* Somewhat higher risk on my computer
* Equal risk

* Somewhat higher risk in the cloud

* Higher risk in the cloud

* Idon’t know

Q3.3: Do you think that any of these parties have already accessed your documents?

* Yes
* No
e I don’t know

Q3.4: Please rate your level of (dis)comfort with the potential access of these parties to your cloud office
documents.

¢ Completely comfortable

* Somewhat comfortable

* Neither

* Somewhat uncomfortable
¢ Completely uncomfortable
* Idon’tknow

Q3.5: Who do you think would inform you if an unauthorized party or person accessed you docu-
ments?

(Please select all that apply)

People I share the documents with

My employer

My internet provider

The cloud office provider (e.g., Google or Microsoft)
My browser vendor (e.g., Google or Mozilla)

O O o o o

180

D.1 Survey

My operating system manufacturer (e.g., Apple or Microsoft)

Law enforcement or intelligence agencies (e.g., police, FBI or NSA)

Third parties (e.g., online advertisers or plugin developers)

The manufacturer of my computer hardware (e.g., Intel, AMD, Apple, or Lenovo)
The news

Scientists

Nobody would inform me

Other (please specify):

O O O O o o o O

Q3.6: Who do you think should be responsible for informing you if an unauthorized party or person
accessed your documents?

(Please select all that apply)

People I share the documents with

My employer

My internet provider

The cloud office provider (e.g., Google or Microsoft)Finde ich gut. Da sollte China am besten
noch deutlich weiter vorangehen. Damit der Westen sich endlich besinnt und ”intellectual

o o o o

property” wieder abschaftt. Das war die ganze Zeit eine Schnapsidee.

My browser vendor (e.g., Google or Mozilla)

My operating system manufacturer (e.g., Apple or Microsoft)

Law enforcement or intelligence agencies (e.g., police, FBI or NSA)

Third parties (e.g., online advertisers or plugin developers)

The manufacturer of my computer hardware (e.g., Intel, AMD, Apple, or Lenovo)
The news

Scientists

Nobody would inform me

Other (please specify):

O O O O o o o o O

Q3.7: How would you like to be informed if an unauthorized party or person accessed your cloud
office documents?

[Free text field]

Document Storage

Q4.1: Do you think that multiple copies of your cloud office documents exist?
These can be documents that are shared with others or private documents.

O Yes

O No

O Idon’t know

O I'd prefer not to answer

Q4.2 (only shown if Q4.1 = Yes): For which purpose do you think these copies might exist?

[Free text field]

Q4.3 (only shown if Q4.1 = Yes): In which geographic locations do you think your cloud office docu-
ments and copies of these are stored?

[Free text field]

Q4.4 (only shown if Q4.1 = Yes): Which of the copies do you think are actually removed if you delete a
cloud office document?

181

Appendix D Security & Privacy Perceptions of Cloud Office Suites

O
(©)
O
©)
O
O
(@)
O

All

Mine and my collaborators’
Only mine

Only my collaborators’
None

I don’t know

I'd prefer not to answer

Other (please specify):

Q4.5 (only shown if Q4.1 = Yes and Q4.4 != All): Where or with whom do you think copies remain?
[Free text field]

Q4.6 (only shown if Q4.1 = Yes and Q4.4 != All): For which purpose do you think that the copies
remain?

[Free text field]

Q4.7: Who do you think can delete your documents?

(Please select all that apply)

0O O oo oo o o o o o

People I share the documents with

My employer

My internet provider

The cloud office provider (e.g., Google or Microsoft)

My browser vendor (e.g., Google or Mozilla)

My operating system manufacturer (e.g., Apple or Microsoft)
Cybercriminals (e.g., hackers or organized crime)

Law enforcement or intelligence agencies (e.g., police, FBI or NSA)
Third parties (e.g., online advertisers or plugin developers)

The manufacturer of my computer hardware (e.g., Intel, AMD, Apple, or Lenovo)
Other (please specify):

Q4.8: Who do you think is responsible for protecting your data?
(Please select all that apply)

182

0o 0o 0o o ooo o o oo o g

People I share the documents with

My employer

My internet provider

The cloud office provider (e.g., Google or Microsoft)

My browser vendor (e.g., Google or Mozilla)

My operating system manufacturer (e.g., Apple or Microsoft)
Cybercriminals (e.g., hackers or organized crime)

Law enforcement or intelligence agencies (e.g., police, FBI or NSA)
Third parties (e.g., online advertisers or plugin developers)

The manufacturer of my computer hardware (e.g., Intel, AMD, Apple, or Lenovo)
Myself

The US-Government

Other (please specify):

D.1 Survey

Responsibility

Qs.1: Please indicate your agreement with the following statements: (5 point-likert scale from Strongly
agree to Strongly disagree + I don’t know option)

* Cloud office providers should ofter adequate protection for cloud office documents (e.g., by
encryption and well implemented security practices)

* Ishould have the right to demand a full overview of my data collected by cloud office providers.

* Upon my request, cloud office providers should have to show what they do with my documents
and who has or had access.

¢ Cloud office providers must be able to modify or delete any data they have on private individuals.

Qs.2: Please indicate your (dis)comfort with the following statements: (5 point-likert scale from Com-
pletely comfortable to Completely uncomfortable + I don’t know option)

* Cloud providers can store my documents on servers outside of the US without legal repercus-
sions.

* US regulations and laws still apply if the documents are stored on servers outside of the US.

* US law enforcement can access my cloud documents without a court order.

¢ US law enforcement can force me to give up my cloud office password.

Qs.3: Where do you think the risk is higher of somebody obtaining unauthorized access to your
documents if they are either stored on a server in Germany or the US? (5 point-likert scale from "Higher
risk for server in Germany” to "Higher risk for server in the US” + I don’t know option)

* My employer

* My internet provider

* The cloud office provider (e.g., Google or Microsoft)

* My browser vendor (e.g., Google or Mozilla)

* My operating system manufacturer (e.g., Apple or Microsoft)
* Cybercriminals (e.g., hackers or organized crime)

* Third parties (e.g., online advertisers or plugin developers)

* The manufacturer of my computer hardware (e.g., Intel, AMD, Apple, or Lenovo)
* US government

* German governments

* Foreign government (neither US nor German)

Personal Perception - Scenario A - Personalized Scenario

Below are listed three different scenarios.

How comfortable do you feel with each approach?

Q6.A.1: Your child is required by the school to use a cloud office suite for tasks. The processed docu-
ments include private information such as your child’s name and grades.

O Completely comfortable

O Somewhat comfortable

O Neither

O Somewhat uncomfortable
O Completely uncomfortable

Appendix D Security & Privacy Perceptions of Cloud Office Suites

0O Idon’t know

Q6.A.2: Your general practitioner uses a cloud office suite to process patient data. The processed
documents include private information such as your name, age, weight, diagnosis, and treatment plan.

O Completely comfortable

O Somewhat comfortable

O Neither

O Somewhat uncomfortable
O Completely uncomfortable
0O Idon’tknow

Q6.A.3: Your financial advisor uses a cloud office suite to process client data. The processed documents
include private information such as your name, SSN, and financial information.

O Completely comfortable

O Somewhat comfortable

O Neither

O Somewhat uncomfortable
O Completely uncomfortable
0O Idon’t know

Personal Perception - Scenario B - Generalized Scenario

Only scenario block A or B was randomly shown to the participants

Below are listed three different scenarios.

How comfortable do you feel with each approach?

Q6.B.1: A school requires children to use a cloud office suite for tasks. The processed documents
include private information such as childrens” names and grades.

O Completely comfortable

O Somewhat comfortable

O Neither

O Somewhat uncomfortable
O Completely uncomfortable
0O Idon’t know

Q6.B.2: A doctor’s office uses a cloud office suite to process patient data. The processed documents
include private information such as name, age, weight, diagnosis, and treatment plans.

O Completely comfortable

O Somewhat comfortable

O Neither

O Somewhat uncomfortable
O Completely uncomfortable
0O Idon’t know

Q6.B.3: A financial advisor’s office uses a cloud office suite to process client data. The processed
documents include private information such as name, SSN, and financial information.

D.1 Survey

O Completely comfortable

O Somewhat comfortable

O Neither

O Somewhat uncomfortable
O Completely uncomfortable
0O Idon’tknow

Data Protection

Q7.1: What do you think - what data does the cloud office application collect when you process docu-
ments with it?

[Free text field]

Qy7.2: How do you think documents processed by cloud office applications are protected?

[Free text field]

GDPR

Q8.1: Do you know what the GDPR is?

O A data protection regulation in EU law
O A plugin for Google Drive

O A cloud office provider

O A counter terrorism act in US law

O Idon’tknow

O I'd prefer not to answer

Q8.2 (Only shown if Q8.1 = A data protection regulation in EU law): What do you think does the
GDPR protect?
[Free text field]

Demographics

Qo.1: How old are you? (in years, e.g. 42. Optional)
[Free text field]
Q9.2: As which gender do you identify?

O Male

O Female

O [Free text field]

O I'd prefer not to answer

Q9.3: Do you have formal education (Bachelor’s degree or higher) in computer science, information
technology, or a related field?

O Yes
0O No
O I'd prefer not to answer

Q9.4: Have you held a job in computer science, information technology, or a related field?

Appendix D Security & Privacy Perceptions of Cloud Office Suites

O Yes
O No
O I'd prefer not to answer

Qo9.5: Do you have any feedback or additional comments for us? (completely optional)
[Free text field]

186

Bibliography

[1]

[2]

(3]

(4]

(5]

[e]

(7]

(8]

K. Thompson, “Reflections on Trusting Trust,” Commun. ACM, vol. 27, no. 8, pp. 761-763,
Aug. 1984.

MITRE, CVE-2014-0160, https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-
0160, Dec. 2013.

MITRE, CVE-2014-6271, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-
6271, Sep. 2014.

MITRE, CVE-2021-44228, https://cve.mitre.org/cgi-bin/cvename. cgi? name=CVE -
2021-44228, Nov. 2021.

National Vulnerability Database, CVE-2020-10148, https: //nvd.nist.gov/vuln/detail/
CVE-2020-10148, Dec. 2020.

National Vulnerability Database, CVE-2021-30116, https: / /nvd . nist. gov/vuln/detail/
CVE-2021-30116, Jul. 2021

European Commission, Cyber Resilience Act, https: //digital-strategy.ec.europa.eu/
en/1library/cyber-resilience-act, Sep. 202.2.

Bundesamt fiir Sicherheit in der Informationstechnik, Second act on increasing the security of
IT systems (German IT Security Act 2.0), https://www.bsi.bund.de/EN/Das-BSI/Auftrag/
Gesetze-und-Verordungen/IT-SiG/2-0/1it_sig-2-0_node.html, May 2021.

The White House, Executive Order on America’s Supply Chains (EO14017), https : / [waw .
whitehouse . gov / briefing-room/presidential -actions /2021 /05 /12 /executive -
order-on—improving-the-nations-cybersecurity/, Feb. 2021.

The White House, Executive Order on Improving the Nation’s Cybersecurity (EO14028), https:
/ /www .whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-

order-on-improving-the-nations-cybersecurity/, May 2021.

J. Menn and R. Satter, Codecov hackers breached hundreds of restricted customer sites, https:
/ /www . reuters . com/technology/codecov-hackers-breached-hundreds-restricted-
customer-sites-sources-2021-04-19/, Apr. 2021.

Slack, Slack Security Upddte, https://slack.com/blog/news/slack-security-update, Jan.
2023.

D. Bradbury, Okta’s Investigation of the January 2022 Compromise, https: / /www . okta.com/
blog/2022/03/oktas—investigation-of-the-january-2022-compromise/, Mar. 2022.

K. Toubba, Security Incident Update and Recommended Actions, https: //blog. lastpass.
com/2023/03/security-incident-update-recommended-actions/, Mar. 2023.

R. Zuber, CircleCI incident report for January 4, 2023 security incident, https: / /circleci.
com/blog/jan-4-2023-1incident-report/,]an. 2023.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2020-10148
https://nvd.nist.gov/vuln/detail/CVE-2020-10148
https://nvd.nist.gov/vuln/detail/CVE-2021-30116
https://nvd.nist.gov/vuln/detail/CVE-2021-30116
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://www.bsi.bund.de/EN/Das-BSI/Auftrag/Gesetze-und-Verordungen/IT-SiG/2-0/it_sig-2-0_node.html
https://www.bsi.bund.de/EN/Das-BSI/Auftrag/Gesetze-und-Verordungen/IT-SiG/2-0/it_sig-2-0_node.html
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.reuters.com/technology/codecov-hackers-breached-hundreds-restricted-customer-sites-sources-2021-04-19/
https://www.reuters.com/technology/codecov-hackers-breached-hundreds-restricted-customer-sites-sources-2021-04-19/
https://www.reuters.com/technology/codecov-hackers-breached-hundreds-restricted-customer-sites-sources-2021-04-19/
https://slack.com/blog/news/slack-security-update
https://www.okta.com/blog/2022/03/oktas-investigation-of-the-january-2022-compromise/
https://www.okta.com/blog/2022/03/oktas-investigation-of-the-january-2022-compromise/
https://blog.lastpass.com/2023/03/security-incident-update-recommended-actions/
https://blog.lastpass.com/2023/03/security-incident-update-recommended-actions/
https://circleci.com/blog/jan-4-2023-incident-report/
https://circleci.com/blog/jan-4-2023-incident-report/

Bibliography

[x6]

188

D. Wermke, N. Wohler, J. H. Klemmer, M. Fourné, Y. Acar, and S. Fahl, “Committed to Trust:
A Qualitative Study on Security & Trust in Open Source Software Projects,” in 437d IEEE
Symposium on Security and Privacy, IEEE S€P 2022, May 22-26, 2022, May 2022.

D. Wermke, J. H. Klemmer, N. Wohler, J. Schmiiser, H. S. Ramulu, Y. Acar, and S. Fahl,
““Always Contribute Back”: A Qualitative Study on Security Challenges of the Open Source
Supply Chain,” in 44th IEEE Symposium on Security and Privacy (S€P’23), IEEE, May 2023.

D. Wermke, N. Huaman, Y. Acar, B. Reaves, P. Traynor, and S. Fahl, “A Large Scale Investiga-
tion of Obfuscation Use in Google Play,” in Proceedings of the 34th Annual Computer Security
Applications Conference, ACSAC18, San Juan, PR, USA, December 3-7, 2018, Dec. 2018, pp. 222—
235.

D. Wermke, C. Stransky, N. Huaman, N. Busch, Y. Acar, and S. Fahl, “Cloudy with a Chance
of Misconceptions: Exploring Users’ Perceptions and Expectations of Security and Privacy in
Cloud Office Suites,” in Sixteenth Symposium on Usable Privacy and Security, SOUPS 20z,
August 12-14, 2020, Aug. 2020.

N. Huaman, A. Krause, D. Wermke, C. Stransky, J. H. Klemmer, Y. Acar, and S. Fahl, “If You
Can’t Get Them to the Lab: Evaluating a Virtual Study Environment with Security Informa-
tion Workers,” in Eighteenth Symposium on Usable Privacy and Security, SOUPS 2022, August
7-9, 2022, Aug. 202.2..

N. Huaman, B. von Skarczinski, C. Stransky, D. Wermke, Y. Acar, A. DreifSigacker, and S.
Fahl, “A Large-Scale Interview Study on Information Security in and Attacks against Small
and Medium-sized Enterprises,” in 30th USENIX Security Symposium (USENIX Security 21),
2021, pp. 1235—1252.

C. Stransky, D. Wermbke, J. Schrader, N. Huaman, Y. Acar, A. L. Fehlhaber, M. Wei, B. Ur,
and S. Fahl, “On the Limited Impact of Visualizing Encryption: Perceptions of E2E Messaging
Security,” in Seventeenth Symposium on Usable Privacy and Security, SOUPS 2021, August §-1o,
2021, Aug. 2021

Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and S. Fahl, “Developers Need
Support Too: A Survey of Security Advice for Software Developers,” in 2017 IEEE Secure
Development Conference (SecDev’r7), 2017.

Y. Acar, C. Stransky, D. Wermke, M. L. Mazurek, and S. Fahl, “Security Developer Studies
with GitHub Users: Exploring a Convenience Sample,” in 13th Symposium on Usable Privacy
and Security (SOUPS’17), 2017.

J. Collins, latexmbk — Fully automated LATEX document generation, https://www.ctan.org/
pkg/latexmk/.

H. Hage, H. Henkel, T. Hoekwater, and L. Scarso, Lua Tex, https: / /www. luatex.org/.

M. Kohm, koma-script — A bundle of versatile classes and packages, https://ctan.org/pkg/
koma-script.

CIPAC, Securing the Software Supply Chain: Recommended Practices for Suppliers, https :
//media.defense.gov/2022/0ct/31/2003105368/-1/-1/0/SECURING_THE_SOFTWARE _
SUPPLY_CHAIN_SUPPLIERS.PDF, Oct. 2022.

CIPAC, Securing the Software Supply Chain: Recommended Practices for Developers, https :
/ / media . defense . gov /2022 /Sep/01/2003068942/~-1/~-1/0/ESF_SECURING _THE _
SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF, Sep 2022.

https://www.ctan.org/pkg/latexmk/
https://www.ctan.org/pkg/latexmk/
https://www.luatex.org/
https://ctan.org/pkg/koma-script
https://ctan.org/pkg/koma-script
https://media.defense.gov/2022/Oct/31/2003105368/-1/-1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF
https://media.defense.gov/2022/Oct/31/2003105368/-1/-1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF
https://media.defense.gov/2022/Oct/31/2003105368/-1/-1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF
https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

Bibliography

CIPAC, Securing the Software Supply Chain: Recommended Practices for Customers, https :
/ / media . defense . gov /2022 /Nov /17 /2003116445/-1/-1/0/ESF _SECURING _ THE _
SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF, Nov. 2022.

Sonatype, State of the Software Supply Chain, https: / /www . sonatype . com/ resources /
state-of-the-software-supply-chain-2021, 2021.

Synopsys, Inc., The Heartbleed Bug, https://heartbleed.com/, Jun. 2020.

N. Perlroth, Security Experts Expect Shellshock Software Bug in Bash to Be Significant, https:
//www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-
software-bug-to-be-significant.html, Sep. 2014.

DEVCORE, ProxyLogon, https: //proxylogon.com/, Mar. 2021.

F. Wortley, C. Thompson, and F. Allison, Log4Shell: RCE o-day exploit found in logyj, a popular
Java Zoggz'ngpadeﬂge, https://www.lunasec.io/docs/blog/log4j-zero-day/, Dec. 2021.

J. Graham-Cumming, Inside Shellshock: How hackers are using it to exploit systems, https :
//blog.cloudflare.com/inside-shellshock/, Oct. 2014.

Microsoft, CVE-2021-26855, https: //msrc.microsoft.com/update-guide/vulnerability/
CVE-2021-26855, Mar. 2021.

Microsoft Threat Intelligence Center (MSTIC), HAFNIUM targeting Exchange Servers with
o-dﬂy exploiz‘s, https://www.microsoft.com/en-us/security/blog/2021/03/02/hafnium-
targeting-exchange-servers/, Mar. 2021.

A. Berger, What is Log4Shell? The Logqj vulnerability explained (and what to do about it),
https://www.dynatrace.com/news/blog/what-is-log4shell/, Dec. 2021.
MITRE, Overview - About the CVE Program, https://www.cve.org/About/Overview.

Forum of Incident Response and Security Teams (FIRST), Common Vulnerability Scoring
System SIG, https://www.first.org/cvss/.

Forum of Incident Response and Security Teams (FIRST), Exploit Prediction Scoring System,
https://www.first.org/epss/.

National Telecommunications and Information Administration (NTIA), Vulnerability-Exploitability
€Xchdnge (VEX) — An Overview, https://ntia.gov/files/ntia/publications/vex_one-
page_summary.pdf, Sep. 2021.

MITRE, Common Weakness Enumeration, https://cwe.mitre.org/about/index.html.
OpenSSF, OpenSSF Scorecard, https://securityscorecards.dev/.

MITRE, Common Attack Pattern Enumeration and Classification, https: //capec.mitre.
org/about/index.html.

MITRE, MITRE ATTEICK, https://attack.mitre.org/.
Cybersecurity and Infrastructure Security Agency (CISA), Software Bill of Materials (SBOM),

https://www.cisa.gov/sbom.

National Telecommunications and Information Administration (NTIA), The Minimum El-
ements For a Software Bill of Materials (SBOM), https: //www.ntia. gov/report/2021/

minimum-elements-software-bill-materials-sbom, Jul. 2021

The Linux Foundation Projects, The Software Package Data Exchange (SPDX), https: / /
spdx.dev/.

https://media.defense.gov/2022/Nov/17/2003116445/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF
https://media.defense.gov/2022/Nov/17/2003116445/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF
https://media.defense.gov/2022/Nov/17/2003116445/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF
https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://heartbleed.com/
https://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html
https://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html
https://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html
https://proxylogon.com/
https://www.lunasec.io/docs/blog/log4j-zero-day/
https://blog.cloudflare.com/inside-shellshock/
https://blog.cloudflare.com/inside-shellshock/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855
https://www.microsoft.com/en-us/security/blog/2021/03/02/hafnium-targeting-exchange-servers/
https://www.microsoft.com/en-us/security/blog/2021/03/02/hafnium-targeting-exchange-servers/
https://www.dynatrace.com/news/blog/what-is-log4shell/
https://www.cve.org/About/Overview
https://www.first.org/cvss/
https://www.first.org/epss/
https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
https://cwe.mitre.org/about/index.html
https://securityscorecards.dev/
https://capec.mitre.org/about/index.html
https://capec.mitre.org/about/index.html
https://attack.mitre.org/
https://www.cisa.gov/sbom
https://www.ntia.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.ntia.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://spdx.dev/
https://spdx.dev/

Bibliography

190

OWASP, CycloneDX, https://cyclonedx.org/.
National Vulnerability Database, Software Identification Tags (SWID Tags), https://nvd.

nist.gov/products/swid.

European Union Agency for Cybersecurity, Threat Landscape for Supply Chain Attacks, https:
//www.enisa.europa.eu/news/enisa-news/understanding-the-increase-in-supply-

chain-security-attacks, Jul. 2021.

M. Jankowiczand C. R. Davis, These big firms and US agencies all use software from the company
breached in a massive hack being blamed on Russia, https: //www.businessinsider.com/

list-of-companies-agencies-at-risk-after-solarwinds-hack-2020-12, Dec. 2020.

FireEye, Highly Evasive Attacker Leverages Solar Winds Supply Chain to Compromise Multiple
Global Victims With SUNBURST Backdoor, https : / /www . mandiant . com/ resources /
blog / evasive-attacker - leverages -solarwinds - supply -chain-compromises-with-
sunburst-backdoor, Dec. 2020.

SolarWinds, Solar Winds Security Advisory, https: / /www.solarwinds . com/sa-overview/
securityadvisory, Apr. 2021.

Microsoft 365 Defender Research Team, Analyzing Solorigate, the compromised DLL file that
started a sophisticated cyberattack, and how Microsoft Defender belps protect customers, https:
/ /www .microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-
the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-
microsoft-defender-helps-protect/, Dec. 2020.

Kaseya, Kaseya Responds Swiftly to Sophisticated Cyberattack, https: / /www . kaseya . com/
press-release/kaseya-responds-swiftly-to-sophisticated-cyberattack-mitigating-
global-disruption-to-customers/, Jul. 2021.

L. Sterk, DIVD gives full disclosure in Kaseya Case, https://www.divd.nl/2022/04/04/
Kaseya-VSA-full-disclosure/, Apr. 2022.

BBC, Ransomware key to unlock customer data from REvil attack, https: //www.bbc.com/
news/technology-57946117, Jul. 2021

Codecov, Post-Mortem / Root Cause Analysis (April 2021), https: //about.codecov.io/apr-
2021-post-mortem/, Apr. 2021.

N. Stoler, Breaking Down the Codecov Attack: Finding a Malicious Needle in a Code Haystack,
https://www.cyberark.com/resources/blog/breaking-down-the-codecov-attack-
finding-a-malicious-needle-in-a-code-haystack, Apr. 2021.

D. Bradbury, Updated Okta Statement on LAPSUSS, https: //www.okta.com/blog/2022/
03/updated-okta-statement-on-lapsus/, Mar. 2022.

Synopsys, Open Source Security and Risk Analysis (OSSRA), https: / /www . synopsys . com/
software - integrity / resources / analyst - reports / open - source - security - risk -

analysis.html, 2023.

M. Drake, The Difference Between Free and Open-Source Software, https: / /www.digitalocean.

com/community/conceptual-articles/free-vs-open-source-software, Oct. 2017.

G. C. Peters, Securing Open Source Software Act, https://www.congress.gov/bill/117th-
congress/senate-bill/4913, Sep. 2022.

https://cyclonedx.org/
https://nvd.nist.gov/products/swid
https://nvd.nist.gov/products/swid
https://www.enisa.europa.eu/news/enisa-news/understanding-the-increase-in-supply-chain-security-attacks
https://www.enisa.europa.eu/news/enisa-news/understanding-the-increase-in-supply-chain-security-attacks
https://www.enisa.europa.eu/news/enisa-news/understanding-the-increase-in-supply-chain-security-attacks
https://www.businessinsider.com/list-of-companies-agencies-at-risk-after-solarwinds-hack-2020-12
https://www.businessinsider.com/list-of-companies-agencies-at-risk-after-solarwinds-hack-2020-12
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.solarwinds.com/sa-overview/securityadvisory
https://www.solarwinds.com/sa-overview/securityadvisory
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.kaseya.com/press-release/kaseya-responds-swiftly-to-sophisticated-cyberattack-mitigating-global-disruption-to-customers/
https://www.kaseya.com/press-release/kaseya-responds-swiftly-to-sophisticated-cyberattack-mitigating-global-disruption-to-customers/
https://www.kaseya.com/press-release/kaseya-responds-swiftly-to-sophisticated-cyberattack-mitigating-global-disruption-to-customers/
https://www.divd.nl/2022/04/04/Kaseya-VSA-full-disclosure/
https://www.divd.nl/2022/04/04/Kaseya-VSA-full-disclosure/
https://www.bbc.com/news/technology-57946117
https://www.bbc.com/news/technology-57946117
https://about.codecov.io/apr-2021-post-mortem/
https://about.codecov.io/apr-2021-post-mortem/
https://www.cyberark.com/resources/blog/breaking-down-the-codecov-attack-finding-a-malicious-needle-in-a-code-haystack
https://www.cyberark.com/resources/blog/breaking-down-the-codecov-attack-finding-a-malicious-needle-in-a-code-haystack
https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.digitalocean.com/community/conceptual-articles/free-vs-open-source-software
https://www.digitalocean.com/community/conceptual-articles/free-vs-open-source-software
https://www.congress.gov/bill/117th-congress/senate-bill/4913
https://www.congress.gov/bill/117th-congress/senate-bill/4913

[67]

[68]

[69]

[73]

[74]

Bibliography

P. Cromier, The State of Enterprise Open Source: A Red Hat report, https: //www . redhat.

com/en/resources/state-of-enterprise-open-source-report-2022, Feb. 2022.

faisalman, ua-parser-js: GitHub Issue 536, https : / / github . com/ faisalman/ua-parser -
js/issues/536, Oct. 2021

A. Polkovnichenko, O. Kaspi, and S. Menashe, /Frog Detects Malicious PyPI Packages Stealing
Credit Cards and Injecting Code, https: //jfrog.com/blog/malicious-pypi-packages-
stealing-credit-cards—injecting-code/, Jul. 2021

A. Sharma, More Than 200 Cryptomining Packages Flood npm and PyPI Registry, https :
//blog.sonatype.com/more-than-200-cryptominers-flood-npm-and-pypi-registry,
Aug. 2022.

A. Sharma, Attacker Floods PyPI With 1000s of Malicious Packages That Drop Windows Trojan
via Dropbox, https://blog.sonatype.com/attacker-floods-pypi-with-450-malicious-
packages-that-drop-windows—trojan-via-dropbox, Feb. 2023.

A. Sharma, Dev corrupts NPM libs ‘colors’ and ‘faker’ breaking thousands of apps, https: //
www . bleepingcomputer . com/news / security /dev-corrupts-npm-1libs-colors-and-
faker-breaking-thousands-of-apps/, Jan. 2022.

G. Jones, GitHub Advisory Database: Infinite loop causing Denial of Service in colors, https:
//github.com/advisories/GHSA-5rqg-jm4f-cqx7, Jan. 2022.

A. Sharma, npm Libraries ‘colors’ and ‘faker’ Sabotaged in Protest by their Maintainer — What
to do Now? https://blog.sonatype.com/npm-libraries-colors-and-faker-sabotaged-
in-protest-by-their-maintainer-what-to-do-now, Jan. 2022.

Marak, Issue 285: Zalgo issue with vr.4.44-liberty-2 release, https : / / github . com / Marak /
colors.js/issues/285, Jan. 2022.

National Vulnerability Database, CVE-2022-23812, https: / /nvd.nist.gov/vuln/detail/
CVE-2022-23812, Mar. 2022.

L. Tal, Alert: peacenotwar module sabotages npm developers in the node-ipc package to protest
the invasion of Ukraine, https: //snyk.io/blog/peacenotwar-malicious-npm-node-ipc-
package-vulnerability/, Mar. 2022.

The Linux Foundation, Open Source Security Foundation (OpenSSF), https://openssf.org/.
B. Schneier, “Secrets and lies: digital security in a networked world,” 2015.

M. E. Zurko and R. T. Simon, “User-Centered Security,” in Proceedings of the 1996 Workshop
on New Security Paradigms, 1996, pp. 27-33.

A. Adams and M. A. Sasse, “Users are not the enemy,” Commaunications of the ACM, vol. 42,
no. 12, pp. 40—46,1999.

A. Whitten and J. D. Tygar, “Why Johnny Can’t Encrypt: A Usability Evaluation of PGP s.0.,”
in 8th Usenix Security Symposium (SEC’99), vol. 348, 1999, pp. 169-184.

S. L. Garfinkel and R. C. Miller, “Johnny 2: a User Test of Key Continuity Management with
S/MIME and Outlook Express,” in 15t Symposium on Usable Privacy and Security (SOUPS o),
2005, pp. 13—24.

S. Sheng, L. Broderick, C. A. Koranda, and J.]J. Hyland, “Why Johnny still can’t encrypt:

evaluating the usability of email encryption software,” in 2nd Symposium on Usable Privacy
and Security (SOUPS 06), ACM, 2006, pp. 3—4.

191

https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022
https://github.com/faisalman/ua-parser-js/issues/536
https://github.com/faisalman/ua-parser-js/issues/536
https://jfrog.com/blog/malicious-pypi-packages-stealing-credit-cards-injecting-code/
https://jfrog.com/blog/malicious-pypi-packages-stealing-credit-cards-injecting-code/
https://blog.sonatype.com/more-than-200-cryptominers-flood-npm-and-pypi-registry
https://blog.sonatype.com/more-than-200-cryptominers-flood-npm-and-pypi-registry
https://blog.sonatype.com/attacker-floods-pypi-with-450-malicious-packages-that-drop-windows-trojan-via-dropbox
https://blog.sonatype.com/attacker-floods-pypi-with-450-malicious-packages-that-drop-windows-trojan-via-dropbox
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/
https://github.com/advisories/GHSA-5rqg-jm4f-cqx7
https://github.com/advisories/GHSA-5rqg-jm4f-cqx7
https://blog.sonatype.com/npm-libraries-colors-and-faker-sabotaged-in-protest-by-their-maintainer-what-to-do-now
https://blog.sonatype.com/npm-libraries-colors-and-faker-sabotaged-in-protest-by-their-maintainer-what-to-do-now
https://github.com/Marak/colors.js/issues/285
https://github.com/Marak/colors.js/issues/285
https://nvd.nist.gov/vuln/detail/CVE-2022-23812
https://nvd.nist.gov/vuln/detail/CVE-2022-23812
https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/
https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/
https://openssf.org/

Bibliography

[85]

[86]

[87]

[88]

[89]

[92]

192

S. Fahl, M. Harbach, T. Muders, M. Smith, and U. Sander, “Helping Johnny 2.0 to encrypt his
Facebook conversations,” in 8th Symposium on Usable Privacy and Security (SOUPS1z), 2012.

L. F. Cranor and S. Garfinkel, Security and Usability: Designing Secure Systems That People
Can Use. O’Reilly Media, Inc., 200s.

S. Garfinkel and H. R. Lipford, “Usable Security: History, Themes, and Challenges,” Synthesis
Lectures on Information Security, Privacy, and Trust, vol. s, no. 2, pp. 1-124, 2014.

K. Mitnick, The testimony qfdn ex-hacker, https://www.pbs.org/wgbh/pages/frontline/
shows/hackers/whoare/testimony.html, 2000.

C.]J. Alberts, A. J. Dorofee, R. Creel, R. J. Ellison, and C. Woody, “A systemic approach for
assessing software supply-chain risk,” in zorr 44th Hawaii International Conference on System
Sciences, IEEE, 2011, pp. 1-8.

C. Theisen, N. Munaiah, M. Al-Zyoud, J. C. Carver, A. Meneely, and L. Williams, “Attack sur-
face definitions: A systematic literature review,” Information and Software Technology, vol. 104,
Pp- 94-103, 2018.

C. Okafor, T. R. Schorlemmer, S. Torres-Arias, and J. C. Davis, “SoK: Analysis of Software
Supply Chain Security by Establishing Secure Design Properties,” in Proceedings of the 1st ACM
Waorkshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED2z),

Nov. 2022.

N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen, C. Kruegel, F. Piessens,
and G. Vigna, “You are what you include: large-scale evaluation of remote javascript inclu-

sions,” in Proceedings of the 2012 ACM Conference on Computer and Communications Security
(CCS ’12), 2012, p. 736.

I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci, “Vuln4Real: A Methodology
for Counting Actually Vulnerable Dependencies,” IEEE Transactions on Software Engineering,
vol. 48, no. s, pp. 1592-1609, May 2022.

R. Shu, T. Xia, J. Chen, L. Williams, and T. Menzies, “How to better distinguish security bug
reports (using dual hyperparameter optimization),” Empirical Software Engineering, vol. 26,
pp- 1-37, 2021

G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo, A. E. Santosa, A. Sharma, and D. Lo, “Out
of sight, out of mind? How vulnerable dependencies aftect open-source projects,” Empirical
Software Engineering, vol. 26, no. 4, p. 59, Jul. 2021.

S. Frey, A. Rashid, P. Anthonysamy, M. Pinto-Albuquerque, and S. A. Naqvi, “The good,
the bad and the ugly: a study of security decisions in a cyber-physical systems game,” JEEE
Transactions on Soﬁ‘ware Engineering, vol. 45, no. s, pp. 521-536, 2017.

B. Shreeve, J. Hallett, M. Edwards, K. M. Ramokapane, R. Atkins, and A. Rashid, “The best
laid plans or lack thereof: Security decision-making of different stakeholder groups,” JEEE
Transactions on Software Engineering, 2020.

A. Poller, L. Kocksch, S. Tiirpe, F. A. Epp, and K. Kinder-Kurlanda, “Can security become a
routine? A study of organizational change in an agile software development group,” in Proceed-
ings of the zor; ACM conference on computer supported cooperative work and social computing,

2017, pp. 2489-2503.

https://www.pbs.org/wgbh/pages/frontline/shows/hackers/whoare/testimony.html
https://www.pbs.org/wgbh/pages/frontline/shows/hackers/whoare/testimony.html

[99]

[100]

[1o1]

[102]

[103]

[104]

[xo5]

[106]

[x07]

[108]

[109]

[110]

[r11]

[112]

Bibliography

D. Baca, M. Boldt, B. Carlsson, and A. Jacobsson, “A novel security-enhanced agile software
development process applied in an industrial setting,” in zo15 r0th International Conference on
Availability, Reliability and Security, IEEE, 2015, pp. 11-19.

Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky, “You Get Where You’re

Looking For: The Impact of Information Sources on Code Security,” in 372b IEEE Symposium
on Security and Privacy (S€P16), IEEE, May 2016, pp. 289-30s.

Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky, “How internet resources
might be helping you develop faster but less securely,” JEEE Security € Privacy, vol. 1s, no. 2,
pp. 50—60, 2017.

R. Stevens, D. Votipka, E. M. Redmiles, C. Ahern, P. Sweeney, and M. L. Mazurek, “The battle

for New York: a case study of applied digital threat modeling at the enterprise level,” in 27h
USENIX Security Symposium (USENIX Security 18), 2018, pp. 621-637.

H. Assal and S. Chiasson, ““Think secure from the beginning’ A Survey with Software Devel-
opers,” in Proceedings of the 2019 CHI conference on human factors in computing systems, 2019,

pp- I-13.
L. Bass, R. Holz, P. Rimba, A. B. Tran, and L. Zhu, “Securing a deployment pipeline,” in zoz5
IEEE/ACM 3rd International Workshop on Release Engineering, IEEE, 2015, pp. 4-7.

A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells in infrastructure as
code scripts,” in IEEE/ACM 41st International Conference on Software Engineering (ICSE),
IEEE, 2019, pp. 164-175.

A. Rahman, E. Farhana, and L. Williams, “The ‘as code’ activities: Development anti-patterns
for infrastructure as code,” Empirical Software Engineering, vol. 2s, pp. 3430-3467, 2020.

I. Koishybayev, A. Nahapetyan, R. Zachariah, S. Muralee, B. Reaves, A. Kapravelos, and A.
Machiry, “Characterizing the Security of Github CI Workflows,” in 325z USENIX Security
Symposium (USENIX Sec’22), 2022, pp. 2747-2763.

Y. Gu, L. Ying, H. Chai, C. Qia, H. Duam, and X. Gao, “Continuous Intrusion: Characterizing

the Security of Continuous Integration Services,” in 44th IEEE Symposium on Security and
Privacy (S€P’23), IEEE, May 2023.

R.G.Kula,D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do developers update their library
dependencies? An empirical study on the impact of security advisories on library migration,”
Empirical Software Engineering, vol. 23, pp. 384—417, 2018.

B. Xu, L. An, F. Thung, F. Khombh, and D. Lo, “Why reinventing the wheels? An empirical
study on library reuse and re-implementation,” Empirical Software Engineering, vol. 25, no. 1,
pp- 755—789, Sep. 2019.

E. Larios Vargas, M. Aniche, C. Treude, M. Bruntink, and G. Gousios, “Selecting third-party
libraries: The practitioners’ perspective,” in Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020, pp. 245-256.

E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the JavaScript package
ecosystem,” in Proceedings of the 13th International Conference on Mining Software Repositories,
May 2016, pp. 351-361.

193

Bibliography

[x13]

[114]

[115]

[116]

[x17]

[118]

[x19]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

194

R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and Evolution of Package De-
pendency Networks,” in 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), May 2017, pp. 102-112.

R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab, “Why do developers use
trivial packages? an empirical case study on npm,” in Proceedings of the zor7 11th Joint Meeting
on Foundations of Software Engineering, Aug. 2017, pp. 385-395.

R. G. Kula, A. Ouni, D. M. German, and K. Inoue, “On the Impact of Micro-Packages: An
Empirical Study of the npm JavaScript Ecosystem,” Sep. 2017, arXiv:1709.04638 [cs].

A. Decan, T. Mens, and E. Constantinou, “On the impact of security vulnerabilities in the npm
package dependency network,” in Proceedings of the 15th international conference on mining
Joftware repositories, 2018, pp. 181-191.

M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small World with High Risks: A
Study of Security Threats in the npm Ecosystem,” in Proceedings of the 28th USENIX Confer-
ence on Security Symposium (SEC’19), 2019, pp. 99s5—1010.

N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila, and L. Williams, “What
are weak links in the npm supply chain?” In Proceedings of the 44th International Conference
on Software Engineering: Software Engineering in Practice, 2022, pp. 331-340.

M. Valiev, B. Vasilescu, and J. Herbsleb, “Ecosystem-level determinants of sustained activity
in open-source projects: A case study of the PyPI ecosystem,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018, pp. 644—65s.

J. Kabbedijk and S. Jansen, “Steering Insight: An Exploration of the Ruby Software Ecosys-
tem,” in Software Business, vol. 8o, Series Title: Lecture Notes in Business Information Pro-
cessing, 2011, pp. 44-55.

D. M. German, B. Adams, and A. E. Hassan, “The Evolution of the R Software Ecosystem,” in
2013 17th European Conference on Software Maintenance and Reengineering, Mar. 2013, pp. 243—
252.

G. Bavota, G. Canfora, M. D. Penta, R. Oliveto, and S. Panichella, “The Evolution of Project
Inter-dependencies in a Software Ecosystem: The Case of Apache,” in 2013 [EEE International
Conference on Software Maintenance, Sep. 2013, pp. 280-289.

R. Bloemen, C. Amrit, S. Kuhlmann, and G. Ordéfiez—Matamoros, “Gentoo package depen-
dencies over time,” in Proceedings of the uth Working Conference on Mining Software Reposi-
tories - MSR 2014, 2014, pp. 404—407.

L. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci, “Vulnerable open source de-

pendencies: Counting those that matter,” in Proceedings of the 12th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, 2018, pp. 1-10.

Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu, and Y. Liu, “An empirical study
of usages, updates and risks of third-party libraries in java projects,” in z020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE, 2020, pp. 35-45.

L. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. E. Hassan, “A Large-Scale
Empirical Study on Software Reuse in Mobile Apps,” IEEE Software, vol. 31, no. 2, pp. 78-86,
Mar. 2014.

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

Bibliography

Y. Gu, L. Ying, Y. Pu, X. Hu, H. Chai, R. Wang, X. Gao, and H. Dua, “Investigating Package
Related Security Threats in Software Registries,” in 44th IEEE Symposium on Security and
Privacy (S€P%23), IEEE, May 2023.

C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng, “Demystifying the Vulnerability Prop-
agation and Its Evolution via Dependency Trees in the NPM Ecosystem,” in 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE), 2022, pp. 672—-684.

G. Ferreira, L. Jia,]. Sunshine, and C. Kistner, “Containing malicious package updates in npm
with a lightweight permission system,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), IEEE, 2021, pp. 1334-1346.

J. Jueckstock and A. Kapravelos, “Visiblev8: In-browser monitoring of javascript in the wild,”
in Proceedings of the Internet Measurement Conference (IMC), Oct. 2019, pp. 393-40s.

P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet, and F. Piessens, “JSand: com-
plete client-side sandboxing of third-party JavaScript without browser modifications,” in Pro-
ceedings of the 28th Annual Computer Security Applications Conference, 2012, pp. 1-10.

D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Herman, B. Karp, and D. Mazieres, “Pro-
tecting Users by Confining JavaScript with COWL,” in 1z¢h USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), 2014, pp. 131-146.

A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of dependency network evo-
lution in seven software packaging ecosystems,” Empirical Software Engineering, vol. 24, no. 1,
pp- 381—416, Feb. 2019.

A. Decan and T. Mens, “What Do Package Dependencies Tell Us About Semantic Versioning?”
IEEE Transactions on Software Engineering, vol. 47, no. 6, pp. 12261240, Jun. 2021.

Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu, Z. Zhu, and S.-C. Cheung, “Do the
dependency conflicts in my project matter?” In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Oct. 2018, pp. 319-330.

F.R. Cogo, G. A. Oliva, and A. E. Hassan, “An Empirical Study of Dependency Downgrades

in the npm Ecosystem,” IEEE Transactions on Software Engineering, vol. 47, no. 11, pp. 2457—
2470, Nov. 2021

I. Koishybayev and A. Kapravelos, “Mininode: Reducing the Attack Surface of Node. js Appli-
cations.,” in The 23rd International Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2020), Oct. 2020, pp. 121-134.

Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining API Popularity,” in Testing — Practice and
Research Techniques, 2010, pp. 173-180.

P. T. Nguyen, J. Di Rocco, D. Di Ruscio, and M. Di Penta, “CrossRec: Supporting software
developers by recommending third-party libraries,” Journal of Systems and Software, vol. 161,
Mar. 2020.

R. E. Zapata, R. G. Kula, B. Chinthanet, T. Ishio, K. Matsumoto, and A. Ihara, “Towards
smoother library migrations: A look at vulnerable dependency migrations at function level

for npm javascript packages,” in 2018 I[EEE International Conference on Software Maintenance
and Evolution (ICSME), IEEE, 2018, pp. 559—563.

195

Bibliography

[141]

[142]

[143]

[144]

[145]

[150]

[x51]

[152]

[153]

[154]

S. Nadi, S. Kriiger, M. Mezini, and E. Bodden, “Jumping Through Hoops: Why Do Java
Developers Struggle with Cryptography APIs?” In 38th IEEE/ACM International Conference
on Software Engineering (ICSE’16), 2016, pp. 935-946.

Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and C. Stransky, “Compar-
ing the Usability of Cryptographic APIs,” in 38th IEEE Symposium on Security and Privacy
(S€FP’17), 2017.

F. Lépez de la Mora and S. Nadi, “An Empirical Study of Metric-Based Comparisons of Soft-

ware Libraries,” in Proceedings of the 14th International Conference on Predictive Models and
Data Analytics in Software Engineering, 2018, pp. 22-31.

P. L. Gorski, L. L. Iacono, D. Wermke, C. Stransky, S. Méller, Y. Acar, and S. Fahl, “Developers
Deserve Security Warnings, Too: On the Effect of Integrated Security Advice on Cryptographic
API Misuse,” in 14th Symposium on Usable Privacy and Security (SOUPS18), 2.018.

P. L. Gorski, Y. Acar, L. Lo Iacono, and S. Fahl, “Listen to developers! A participatory design
study on security warnings for cryptographic APIs,” in Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, 2020, pp. I-13.

J. Jancar, M. Fourné, D. D. A. Braga, M. Sabt, P. Schwabe, G. Barthe, P.-A. Fouque, and Y.
Acar, ““They’re not that hard to mitigate”: What Cryptographic Library Developers Think
About Timing Attacks,” in 2022 IEEE Symposium on Security and Privacy (SP), IEEE, 2022,
pp- 632-649.

C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating transformations,”
Department of Computer Science, The University of Auckland, New Zealand, Tech. Rep.,
1997.

C.S. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and obfuscation - tools
for software protection,” IEEE Transactions on Software Engineering, vol. 28, no. 8, pp. 735—
746, Aug. 2002.

I. You and K. Yim, “Malware Obfuscation Techniques: A Brief Survey,” in 2010 International
Conference on Broadband, Wireless Computing, Communication and Applications (BWCCA'ro),
Nov. 2010, pp. 297-300.

L. Ullah, R. Boreli, S. S. Kanhere, and S. Chawla, “ProfileGuard: Privacy Preserving Obfusca-
tion for Mobile User Profiles,” in 13th Workshop on Privacy in the Electronic Society (WPES’14),
2014, pp- 83-92.

M. Protsenko and T. Miiller, “PANDOR A applies non-deterministic obfuscation randomly to
Android,” in 8th International Conference on Malicious and Unwanted Software: "The Amer-
tcas” (MALWARE?3), Oct. 2013, pp. 59-67.

M. Zheng, P. P. C. Lee, and J. C. S. Lui, “ADAM: An Automatic and Extensible Platform
to Stress Test Android Anti-virus Systems,” in gth Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA12), 2013, pp. 82101

V. Rastogi, Y. Chen, and X. Jiang, “Catch Me If You Can: Evaluating Android Anti-Malware
Against Transformation Attacks,” IEEE Transactions on Information Forensics and Security,
vol. 9, no. 1, pp. 99-108, Jan. 2014.

H. Huang, S. Zhu, P. Liu, and D. Wu, “A Framework for Evaluating Mobile App Repackaging
Detection Algorithms,” in 6th International Conference on Trust and Trustworthy Computing
(TRUST’13), 2013, pp. 169-186.

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

Bibliography

J. Hoffmann, T. Rytilahti, D. Maiorca, M. Winandy, G. Giacinto, and T. Holz, “Evaluating
Analysis Tools for Android Apps: Status Quo and Robustness Against Obfuscation,” in 6th
ACM Conference on Data and Application Security and Privacy (CODASPY’16), 2016, pp. 139—

141.
L. Li, T. F. Bissyande, J. Klein, and Y. Le Traon, “An Investigation into the Use of Common
Libraries in Android Apps,” in 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), Mar. 2016, pp. 403—414.

M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and W. Huo, “LibD: Scalable and
Precise Third-Party Library Detection in Android Markets,” in 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering (ICSE), May 2017, pp. 335—346.

Z.Ma, H. Wang, Y. Guo, and X. Chen, “LibRadar: fast and accurate detection of third-party
libraries in Android apps,” in Proceedings of the 38th International Conference on Software
Engineering Companion, May 2016, pp. 653-656.

L. Glanz, S. Amann, M. Eichberg, M. Reif, B. Hermann, J. Lerch, and M. Mezini, “Code-
Match: Obfuscation Won’t Conceal Your Repackaged App,” in 11th Joint Meeting on Founda-
tions of Software Engineering (ESEC/FSE’r7), 2017, pp. 638—648.

S. Fahl, M. Harbach, T. Muders, L. Baumgirtner, B. Freisleben, and M. Smith, “Why Eve and
Mallory Love Android: An Analysis of Android SSL (in)Security,” in 19th ACM Conference
on Computer and Communication Security (CCS’12), 2012, pp. 50—61.

M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl, “To Pin or Not to Pin Helping
App Developers Bullet Proof Their TLS Connections,” in 24th Usenix Security Symposium
(SEC’I5), 2015, pp. 239-254.

S. Fahl, M. Harbach, H. Perl, M.. Koetter, and M. Smith, “Rethinking SSL Development in an
Appified World,” in 20th ACM Conference on Computer and Communication Security (CCS13),
2013, pp. 49—60.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox,]. Jung, P. McDaniel, and A. N. Sheth, “TaintDroid:
An Information-flow Tracking System for Realtime Privacy Monitoring on Smartphones,” in

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI10), 2010,
Pp- 393—407.

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A.N. Sheth, “TaintDroid: An Information-Flow Tracking System for Realtime Privacy Mon-
itoring on Smartphones,” ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, 5:1—
5:29, Jun. 2014.

B. Andow, S. Y. Mahmud, W. Wang, J. Whitaker, W. Enck, B. Reaves, K. Singh, and T. Xie,
“PolicyLint: Investigating Internal Privacy Policy Contradictions on Google Play.,” in USENIX
Security Symposinm, 2019, pp. 585—602.

B. Andow, S. Y. Mahmud, J. Whitaker, W. Enck, B. Reaves, K. Singh, and S. Egelman, “Actions
speak louder than words: Entity-sensitive privacy policy and data flow analysis with policheck,”
in Proceedings of the 29th USENIX Security Symposium (USENIX Security20), 2020.

R. Balebako, A. Marsh, J. Lin, J. I. Hong, and L. F. Cranor, “The privacy and security behaviors
of smartphone app developers,” in Workshop on Usable Security (USEC’14), 2014.

R. Balebako and L. Cranor, “Improving App Privacy: Nudging App Developers to Protect
User Privacy,” IEEE Security € Privacy, vol. 12, no. 4, pp. s5—58, Jul. 2014.

197

Bibliography

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[179]

[180]

[181]

[182]

S.Jainand]. Lindqvist, “Should I Protect You? Understanding Developers’ Behavior to Privacy-
preserving Apis,” in Workshop on Usable Security (USEC’14), 2.014.

K. Crowston, K. Wei,]. Howison, and A. Wiggins, “Free/Libre Open-Source Software Devel-
opment: What We Know and What We Do Not Know,” ACM Comput. Surv., vol. 44, no. 2,
Mar. 2008.

S.-F. Wen, “Software security in open source development: A systematic literature review,” in
2017 215t Confference of Open Innovations Association (FRUCT), 2017, pp. 364-373.

M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife collection: A review of
open source software supply chain attacks,” in Detection of Intrusions and Malware, and Vil-
nerability Assessment: 17th International Conference, DIMVA 2020, Lisbon, Portugal, Springer,

Jun. 2020, pp. 23—43.

P. Ladisa, H. Plate, M. Martinez, and O. Barais, “Taxonomy of attacks on open-source software
supply chains,” in 44th IEEE Symposium on Security and Privacy, I[EEE S€IP 2023, IEEE, May
2023.

Q. Tu et al., “Evolution in open source software: A case study,” in Proceedings 2000 Interna-
tional Conference on Software Maintenance, IEEE, 2000, pp. 131-142.

A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open source software devel-
opment: Apache and Mozilla,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 11, no. 3, pp. 309—346, 2002.

T. T. Dinh-Trong and J. M. Bieman, “The FreeBSD project: A replication case study of open
source development,” IEEE Transactions on Software Engineering, vol. 31, no. 6, pp. 481-494,
2005

M. Antikainen, T. Aaltonen, and J. Viisinen, “The role of trust in OSS communities —
Case Linux Kernel community,” in Open Source Development, Adoption and Innovation, 2007,
pp- 223—228.

P. Deligiannis, A. F. Donaldson, and Z. Rakamaric, “Fast and Precise Symbolic Analysis of
Concurrency Bugs in Device Drivers,” in zo15 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), IEEE, 2015, pp. 166-177.

J.-J. Bai,]. Lawall, Q.-L. Chen, and S.-M. Hu, “Effective static analysis of concurrency use-after-
free bugs in Linux device drivers,” in 2019 USENIX Annual Technical Conference (USENIX
ATC 19), 2019, pp. 255—268.

S. Bugiel, L. V. Davi, and S. Schulz, “Scalable trust establishment with software reputation,”
in Proceedings of the sixth ACM workshop on Scalable trusted computing, 2011, pp. 15-24.

M. Syeed, J. Lindman, and I. Hammouda, “Measuring Perceived Trust in Open Source Soft-
ware Communities,” in Open Source Systems: Towards Robust Practices, 2017 .

S. Murdoch and N. Leaver, “Anonymity vs. Trust in Cyber-Security Collaboration,” in Pro-
ceedings of the 2nd ACM Workshop on Information Sharing and Collaborative Security, (WISCS
2015), 2015, pp. 27-29.

V.S. Sinha, S. Mani, and S. Sinha, “Entering the Circle of Trust: Developer Initiation as Com-

mitters in Open-Source Projects,” in Proceedings of the 8th Working Conference on Mining
Software Repositories, 2011, pp. 133-142.

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

Bibliography

A.-K. Groven, K. Haaland, R. Glott, and A. Tannenberg, “Security Measurements within the
Framework of Quality Assessment Models for Free/Libre Open Source Software,” in Proceed-
ings of the Fourth European Conference on Software Architecture: Companion Volume, 2010,
pp- 229-235.

A. Bosu and J. C. Carver, “Impact of Developer Reputation on Code Review Outcomes in
OSS Projects: An Empirical Investigation,” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, 2014.

J. Ryoo, B. Malone, P. A. Laplante, and P. Anand, “The Use of Security Tactics in Open Source
Software Projects,” IEEE Transactions on Reliability, vol. 65, no. 3, pp. 1195-1204, 2016.

C. Thompson and D. Wagner, “A Large-Scale Study of Modern Code Review and Security in
Open Source Projects,” in Proceedings of the 13th International Conference on Predictive Models
and Data Analytics in Software Engineering, 2017.

L. Moldon, M. Strohmaier, and J. Wachs, “How Gamification Affects Software Developers:
Cautionary Evidence from a Natural Experiment on GitHub,” in zo2r IEEE/ACM 43rd Inter-
national Conference on Software Engineering (ICSE), 2021, pp. 549—561.

A. Pietri, D. Spinellis, and S. Zacchiroli, “The Software Heritage Graph Dataset: Public Soft-
ware Development under One Roof,” in Proceedings of the 16th International Conference on
Mining Software Repositories, 2019, pp. 138—142.

A. Pietri, D. Spinellis, and S. Zacchiroli, “The Software Heritage Graph Dataset: Large-Scale
Analysis of Public Software Development History,” in Proceedings of the 17th International
Conference on Mining Software Repositories, 2020, pp. 1-5.

G.Robles, L. Arjona Reina, A. Serebrenik, B. Vasilescu, and]. M. Gonzélez-Barahona, “FLOSS
2013: A Survey Dataset about Free Software Contributors: Challenges for Curating, Sharing,
and Combining,” in Proceedings of the 11th Working Conference on Mining Software Reposito-

ries, 2014, Pp. 396-399.

G. Gousios and D. Spinellis, “GHTorrent: GitHub’s Data from a Firehose,” in Proceedings of
the gth IEEE Working Conference on Mining Software Repositories, 2012, pp. 12—21.

G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean GHTorrent: GitHub Data
on Demand,” in Proceedings of the 1ith Working Conference on Mining Software Repositories,
2014, pp- 384—387.

A. Alali, H. Kagdi, and J. I. Maletic, “What’s a Typical Commit? A Characterization of Open

Source Software Repositories,” in 2008 16th IEEE International Conference on Program Com-
prebemz'on, 2008, pp. 182—I91.

M. Meli, M. R. McNiece, and B. Reaves, “How Bad Can It Git? Characterizing Secret Leakage
in Public GitHub Repositories,” in 26th Annual Network and Distributed System Security
Symposium (NDSS’19), 2019.

A. Krause, J. H. Klemmer, N. Huaman, D. Wermke, Y. Acar, ¢t al., “Committed by Acci-
dent: Studying Prevention and Remediation Strategies Against Secret Leakage in Source Code
Repositories,” arXiv preprint arXiv:2211.06213, Nov. 2022.

R. Feng, Z. Yan, S. Peng, and Y. Zhang, “Automated Detection of Password Leakage from
Public GitHub Repositories,” in 44th IEEE/ACM International Conference on Software En-
gineering (ICSE22), 2022, pp. 175-186.

199

Bibliography

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

200

S. K. Basak, L. Neil, B. Reaves, and L. Williams, “What are the Practices for Secret Management
in Software Artifacts?” In 2022 IEEE Secure Development Conference (SecDev’2z), IEEE, 2022,
pp- 69-76.

A. Bosu,]J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “When Are OSS Developers More
Likely to Introduce Vulnerable Code Changes? A Case Study,” in Open Source Software: Mobile
Open Source Technologies, 2014, pp. 234—236.

L. P. Hattori and M. Lanza, “On the nature of commits,” in 2008 237d IEEE/ACM International
Conference on Automated Software Engineering - Workshops, 2008, pp. 63—71.

K. Altinkemer, J. Rees, and S. Sridhar, “Vulnerabilities and patches of open source software:
an empirical scudy,” Journal of Information System Security, vol. 4, no. 2, pp. 3-25, 2008.

P. Anbalagan and M. Vouk, “Towards a Unifying Approach in Understanding Security Prob-
lems,” in zoth International Symposium on Software Reliability Engineering, 2009, pp. 136—
145.

N. Edwards and L. Chen, “An Historical Examination of Open Source Releases and Their
Vulnerabilities,” in Proceedings of the 2012 ACM Conference on Computer and Communications
Security, 2012, pp. 183-194.

M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A Large Scale Exploratory Analysis of Software
Vulnerability Life Cycles,” in Proceedings of the 34th International Conference on Software
Engineering, 2012, pp. 771-781.

L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteristics in open source
software,” Empirical software engineering, vol. 19, no. 6, pp. 1665-170s, 2014.

A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identifying the characteristics of
vulnerable code changes: An empirical study,” in Proceedings of the 22nd ACM SIGSOFT in-
ternational symposium on foundations of software engineering, 2014, pp. 257-268.

D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and Emotion: Sentiment Analysis of Secu-
rity Discussions on GitHub,” in Proceedings of the 11th Working Conference on Mining Software
Repositories, 2014, pp. 348351

I. Abunadi and M. Alenezi, “Towards Cross Project Vulnerability Prediction in Open Source
Web Applications,” in Proceedings of the The International Conference on Engineering € MIS
2015, 20I5.

M. Alenezi and Y. Javed, “Open source web application security: A static analysis approach,”
in 2016 International Conference on Engineering € MIS (ICEMIS), 2016, pp. 1-s.

F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta, “How Open Source
Projects Use Static Code Analysis Tools in Continuous Integration Pipelines,” in Proceedings
of the 14th International Conference on Mining Software Repositories, 2017, pp. 334—344.

J. C. S. Santos, A. Peruma, M. Mirakhorli, M. Galstery, J. V. Vidal, and A. Sejfia, “Under-
standing Software Vulnerabilities Related to Architectural Security Tactics: An Empirical
Investigation of Chromium, PHP and Thunderbird,” in zor7 IEEE International Conference
on Software Architecture (ICSA4), 2017, pp. 69-78.

A. Gkortzis, D. Mitropoulos, and D. Spinellis, “VulinOSS: A Dataset of Security Vulnerabili-
ties in Open-Source Systems,” in Proceedings of the isth International Conference on Mining
Software Repositories, 2018, pp. 18—21.

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

Bibliography

M. Zahedi, M. Ali Babar, and C. Treude, “An empirical study of security issues posted in open
source projects,” in Proceedings of the sist Hawaii International Conference on System Sciences
(HICSS18), 2018, pp. 5504—5513.

J. Walden, “The impact of a major security event on an open source project: The case of
OpenSSL,” in Proceedings of the 17th International Conference on Mining Software Reposi-
tories, 2020, pp. 409—419.

A.D.Householder, J. Chrabaszcz, T. Novelly, D. Warren, and J. M. Spring, “Historical analysis
of exploit availability timelines,” in 13th USENIX Workshop on Cyber Security Experimentation
and Test (CSET 20), 2020.

H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for vulnerabilities in open-source soft-
ware libraries,” in zors IEEE International Conference on Software Maintenance and Evolution
(ICSME), IEEE, 2015, pp. 411-420.

G. Antal, M. Keleti, and P. Hegeduins, “Exploring the Security Awareness of the Python and
JavaScript Open Source Communities,” in Proceedings of the 17th International Conference on
Mining Software Repositories, 2020, pp. 16—20.

H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl, and Y. Acar, “VC-
CFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assist Code Audits,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-16, 2015, 2015, pp. 426—437.

Y. Zhou and A. Sharma, “Automated Identification of Security Issues from Commit Messages
and Bug Reports,” in Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 914—919.

N. Imtiaz, B. Murphy, and L. Williams, “How do developers act on static analysis alerts? an
empirical study of coverity usage,” in zo19 IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE), IEEE, 2019, pp. 323-333.

K. Hogan, N. Warford, R. Morrison, D. Miller, S. Malone, and J. Purtilo, “The challenges
of labeling vulnerability-contributing commits,” in zor9 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), IEEE, 2019, pp. 270-275.

N. Zahan, S. Shohan, D. Harris, and L. Williams, “PREPRINT: Do OpenSSF Scorecard Prac-
tices Contribute to Fewer Vulnerabilities?” arXzv preprint arXiv:2210.14884, Oct. 2022.

N. Zahan, P. Kanakiya, B. Hambleton, S. Shohan, and L. Williams, “PREPRINT: Can the
OpenSSF Scorecard be used to measure the security posture of npm and PyPI?” arXiv preprint
arXiv:2208.03412, Aug. 2022.

J. Sliwerski, T. Zimmermann, and A. Zeller, “When Do Changes Induce Fixes?” SIGSOFT
Softw. Eng. Notes, vol. 30, no. 4, pp. 1-5, May 200s.

F.Liand V. Paxson, “A large-scale empirical study of security patches,” in Proceedings of the zor7
ACM SIGSAC Conference on Computer and Communications Security, 2017, pp. 2201-2215.
V. Piantadosi, S. Scalabrino, and R. Oliveto, “Fixing of Security Vulnerabilities in Open Source
Projects: A Case Study of Apache HTTP Server and Apache Tomcat,” in 2019 12th IEEE Con-
ference on Software Testing, Validation and Verification (ICST), 2019, pp. 68-78.

R. Ramsauer, L. Bulwahn, D. Lohmann, and W. Mauerer, “The Sound of Silence: Mining

Security Vulnerabilities from Secret Integration Channels in Open-Source Projects,” in Pro-
ceedings of the 2020 ACM SIGSAC Conference on Cloud Computing Security Workshop, 2020.

20I

Bibliography

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[239]

[240]

[241]

202

C. Miller, S. Cohen, B. Vasilescu, and C. Kistner, ““Did You Miss My Comment or What?”
Understanding Toxicity in Open Source Discussions,” in 1z 44th International Conference on
Software Engineering (ICSE ’22), May 21-29, 2022, May 2022.

D. Sondhi, A. Gupta, S. Purandare, A. Rana, D. Kaushal, and R. Purandare, “Dataset to Study
Indirectly Dependent Documentation in GitHub Repositories,” in 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
2021, pp. 215—216.

R.Li, P. Pandurangan, H. Frluckaj, and L. Dabbish, “Code of Conduct Conversations in Open
Source Software Projects on Github,” Proc. ACM Hum.-Comput. Interact., vol. s, no. CSCWi,
Apr. 2021

W. Li, N. Meng, L. Li, and H. Cai, “Understanding Language Selection in Multi-Language
Software Projects on GitHub,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), 2021, pp. 256-257.

H. Hata, R. G. Kula, T. Ishio, and C. Treude, “Research Artifact: The Potential of Meta-
Maintenance on GitHub,” in 2021 IEEE/ACM 43rd International Conference on Software En-
gineering: Companion Proceedings (ICSE-Companion), 2021, pp. 192-193.

J. Coelho and M. T. Valente, “Why Modern Open Source Projects Fail,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, 2.017.

S.-F. Wen, “Learning Secure Programming in Open Source Software Communities: A Socio-
Technical View,” in Proceedings of the 6th International Conference on Information and Edu-
cation Technology, 2.018.

C. Hannebauer and V. Gruhn, “Motivation of Newcomers to FLOSS Projects,” in Proceedings
of the 12th International Symposium on Open Collaboration, 2016.

L. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social Barriers Faced by Newcomers
Placing Their First Contribution in Open Source Software Projects,” in Proceedings of the
18th ACM Conference on Computer Supported Cooperative Work € Social Computing, 201s,
pp- 1379-1392.

G. Pinto, I. Steinmacher, and M. A. Gerosa, “More Common Than You Think: An In-depth
Study of Casual Contributors,” in 2016 IEEE 23rd International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER), vol. 1, 2016, pp. 112-123.

L. Steinmacher, T. U. Conte, C. Treude, and M. A. Gerosa, “Overcoming Open Source Project
Entry Barriers with a Portal for Newcomers,” in Proceedings of the 38th International Conference
on Software Engineering, 2016, pp. 273-284.

G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who is Going to Mentor Newcomers
in Open Source Projects?” In Proceedings of the ACM SIGSOFT zoth International Symposium
on the Foundations of Software Engineering, 2012.

I. Steinmacher, C. Treude, and M. A. Gerosa, “Let Me In: Guidelines for the Successful On-
boarding of Newcomers to Open Source Projects,” IEEE Software, vol. 36, no. 4, pp. 41-49,
2019.

J. Dominic, J. Houser, I. Steinmacher, C. Ritter, and P. Rodeghero, “Conversational Bot for
Newcomers Onboarding to Open Source Projects,” in Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, 2020, pp. 46—50.

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

Bibliography

V. N. Subramanian, I. Rehman, M. Nagappan, and R. G. Kula, “Analyzing first contributions
on GitHub: what do newcomers do,” IEEE Software, 2020.

S. Balali, U. Annamalai, H. S. Padala, B. Trinkenreich, M. A. Gerosa, I. Steinmacher, and A.
Sarma, “Recommending Tasks to Newcomers in OSS Projects: How Do Mentors Handle It?”
In Proceedings of the 16th International Symposium on Open Collaboration, 2020.

C. Overney, J. Meinicke, C. Kistner, and B. Vasilescu, “How to not get rich: An empirical study
of donations in open source,” in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engl’ne‘en’ng, 2020, pp. 1209-1221.

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software developers use
static analysis tools to find bugs?” In 2013 35th International Conference on Software Engineering
(ICSE), IEEE, 2013, pp. 672—681.

W. Bai, M. Namara, Y. Qian, P. G. Kelley, M. L. Mazurek, and D. Kim, “An inconvenient trust:
User attitudes toward security and usability tradeoffs for key-directory encryption systems,”
in Twelfth Symposium on Usable Privacy and Security (SOUPS 2016), 2016, pp. 113-130.

K. Gallagher, S. Patil, and N. Memon, “New me: Understanding expert and non-expert percep-
tions and usage of the Tor anonymity network,” in Thirteenth Symposium on Usable Privacy
and Security (SOUPS z2017), 2017, pp. 385—398.

T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford, “Security during application develop-
ment: An application security expert perspective,” in Proceedings of the zo18 CHI Conference
on Human Factors in Computing Systems, 2018, pp. 1-12.

R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber, L. A. Takayama, and M. Prabaker, “Field
studies of computer system administrators: analysis of system management tools and prac-
tices,” in Proceedings of the 2004 ACM conference on Computer supported cooperative work, 2004,

pp- 388-39s.
D. Botta, R. Werlinger, A. Gagné, K. Beznosov, L. Iverson, S. Fels, and B. Fisher, “Towards

Understanding I'T Security Professionals and Their Tools,” in Proceedings of the 3rd Symposium
on Usable Privacy and Security, 2007, pp. 100-11L

L. Bauer, L. F. Cranor, R. W. Reeder, M. K. Reiter, and K. Vaniea, “Real life challenges in
access-control management,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2009, pp. 899—908.

M. Silic and A. Back, “Information Security and Open Source Dual Use Security Software:
Trust Paradox,” in Open Source Software: Quality Verification, 2013, pp. 194—206.

R. A. Bridges, M. D. Iannacone, J. R. Goodall, and J. M. Beaver, “How do information secu-
rity workers use host data? A summary of interviews with security analysts,” arXzv preprint
arXiv:1812.02867, 2.018.

J. M. Haney, M. Theofanos, Y. Acar, and S. S. Prettyman, “” We make it a big deal in the
company”: Security Mindsets in Organizations that Develop Cryptographic Products.,” in
SOUPS USENIX Security Symposium, 2018, pp. 357-373.

S. E. McGregor, P. Charters, T. Holliday, and F. Roesner, “Investigating the computer security
practices and needs of journalists,” in 2¢42h USENIX Security Symposium (USENIX Security

15), 2015, Pp. 399—414.

203

Bibliography

[256]

[257]

[259]

[260]

[261]

[262]

[263]

204

S.E. McGregor, E. A. Watkins, M. N. Al-Ameen, K. Caine, and F. Roesner, “When the weakest
link is strong: Secure collaboration in the case of the Panama Papers,” in 26th USENIX Security
Symposium (USENIX Security 17), 2017, pp. 505—522.

C. Chen, N. Dell, and F. Roesner, “Computer security and privacy in the interactions between

victim service providers and human trafficking survivors,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 89—104.

S. Zhou, B. Vasilescu, and C. Kistner, “How has forking changed in the last 20 years? a study
of hard forks on github,” in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, 2020, pp. 445—456.

C. Bogart, C. Kistner,]. Herbsleb, and F. Thung, “When and how to make breaking changes:
Policies and practices in 18 open source software ecosystems,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 30, no. 4, pp. 1-56, 2021

F.Jansen, S. Jansen, and F. Hou, “TrustSECO: an interview survey into software trust,” 27Xzv
preprint arXiv:2101.06138, Jan. 202.1.

J. Ghofrani, P. Heravi, K. A. Babaei, and M. D. Soorati, “Trust challenges in reusing open
source software: an interview-based initial study,” in Proceedings of the 26th ACM International
Systems and Software Product Line Conference-Volume B, Sep. 2022, pp. 110-116.

S. Butler, J. Gamalielsson, B. Lundell, C. Brax, A. Mattsson, T. Gustavsson, J. Feist, B. Kvarn-
strém, and E. Lonroth, “On business adoption and use of reproducible builds for open and
closed source software,” Software Quality Journal, Nov. 2022.

M. Gutfleisch, J. H. Klemmer, N. Busch, Y. Acar, M. A. Sasse, and S. Fahl, “How Does Usable
Security (Not) End Up in Software Products? Results From a Qualitative Interview Study,”
in 437d IEEE Symposium on Security and Privacy, IEEE S €FP 2022, May 22-26, 2022, May 2022.

M. Fourné, D. Wermke, W. Enck, S. Fahl, and Y. Acar, “It’s like flossing your teeth: On the
Importance and Challenges of Reproducible Builds for Software Supply Chain Security,” in
44th IEEE Symposium on Security and Privacy (S€P3), IEEE, May 2023.

GitHub, The State oftbe Octoverse, https://octoverse.github.com/, 2020.
Microsoft, GitHub, https://github.com, 2008.
GitLab Inc., GitLab, https://gitlab.com, 2014.

Cybersecurity and I. S. A. (CISA), Malware Discovered in Popular NPM Package, na-parser-
j.r, https://us-cert.cisa.gov/ncas/current-activity/2021/10/22/malware-
discovered-popular-npm-package-ua-parser-js, 2021.

L. Abrams, Popular NPM library hijacked to install password-stealers, miners, https: / /www.
bleepingcomputer.com/news/security/popular-npm-library-hijacked-to-install-

password-stealers-miners/, 2021.

M. Hanley, GitHub’s commitment to npm ecosystem security, https://github.blog/2021-11-
15-githubs-commitment-to-npm-ecosystem-security/#security-issues-related-to-

the-npm-registry, Nov. 2021.

A. Sharma, NPM fixes private package names leak, serious authorization bug, https: / /www.
bleepingcomputer . com/ news / security /npm- fixes -private-package-names - leak -

serious-authorization-bug/, Nov. 2021.

https://octoverse.github.com/
https://github.com
https://gitlab.com
https://us-cert.cisa.gov/ncas/current-activity/2021/10/22/malware-discovered-popular-npm-package-ua-parser-js
https://us-cert.cisa.gov/ncas/current-activity/2021/10/22/malware-discovered-popular-npm-package-ua-parser-js
https://www.bleepingcomputer.com/news/security/popular-npm-library-hijacked-to-install-password-stealers-miners/
https://www.bleepingcomputer.com/news/security/popular-npm-library-hijacked-to-install-password-stealers-miners/
https://www.bleepingcomputer.com/news/security/popular-npm-library-hijacked-to-install-password-stealers-miners/
https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-security/#security-issues-related-to-the-npm-registry
https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-security/#security-issues-related-to-the-npm-registry
https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-security/#security-issues-related-to-the-npm-registry
https://www.bleepingcomputer.com/news/security/npm-fixes-private-package-names-leak-serious-authorization-bug/
https://www.bleepingcomputer.com/news/security/npm-fixes-private-package-names-leak-serious-authorization-bug/
https://www.bleepingcomputer.com/news/security/npm-fixes-private-package-names-leak-serious-authorization-bug/

[272]

[273]

[274]

[275]

[276]

[277]

[278]

[279]

[280]

[281]

[282]

[283]

[284]

[285]

[286]

Bibliography

The Linux Foundation, “Open Source Software Supply Chain Security,” Tech. Rep., Feb.

2020.

RedHat, The State of Enterprise Open Source z020: Enterprise open source use rises, proprietary
Joﬁ‘wdre declz'nes, https://www.redhat.com/en/blog/state-enterprise-open-source-

2020-enterprise-open-source-use-rises-proprietary-software-declines, Feb. 2020.

Linux Foundation’s Technical Advisory Board, Report on University of Minnesota Breach-
of-Trmt Incz'dent, https : // lwn . net /ml / linux - kernel / 202105051005 . 49BFABCE \
spacefactor\@m{}keescook/, May 2021.

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social Coding in GitHub: Transparency and
Collaboration in an Open Software Repository,” in Proceedings of the ACM zorz Conference
on Computer Supported Cooperative Work, 2012, pp. 1277-1286.

B. Vasilescu, K. Blincoe, Q. Xuan, C. Casalnuovo, D. Damian, P. Devanbu, and V. Filkov,
“The Sky is Not the Limit: Multitasking across GitHub Projects,” in Proceedings of the 38th
International Conference on Software Engineering, 2016, pp. 994—100s.

K. Constantino, M. Souza, S. Zhou, E. Figueiredo, and C. Kistner, “Perceptions of open-source
software developers on collaborations: An interview and survey study,” Journal of Software:
Evolution and Process, €2393, 2021

G. Gousios, M. Pinzger, and A. v. Deursen, “An Exploratory Study of the Pull-Based Soft-
ware Development Model,” in Proceedings of the 36th International Conference on Software
Engineering, 2014, pp. 345-355.

J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of Social and Technical Factors for Evaluating
Contribution in GitHub,” in Proceedings of the 36th International Conference on Software
Engineering, 2014, pp. 356—366.

D. Ford, M. Behroozi, A. Serebrenik, and C. Parnin, “Beyond the Code Itself: How Program-
mers Really Look at Pull Requests,” in Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Society, 2019, pp. s1-60.

W. Scacchi,]. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani, Understanding free/open source
software development processes, 2006.

N. Raman, M. Cao, Y. Tsvetkov, C. Kistner, and B. Vasilescu, “Stress and Burnout in Open
Source: Toward Finding, Understanding, and Mitigating Unhealthy Interactions,” in Proceed-
ings of the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and
Emerging Results, 2020, pp. s57-60.

A.Harsand S. Ou, “Working for Free? Motivations for Participating in Open-Source Projects,”
Int. J. Electron. Commerce, vol. 6, no. 3, pp. 25—39, Apr. 2002.

C. Miller, D. G. Widder, C. Kistner, and B. Vasilescu, “Why Do People Give Up FLOSSing? A
Study of Contributor Disengagement in Open Source,” in Open Source Systems, 2019, pp. 16—
129.

K. Blincoe, F. Harrison, and D. Damian, “Ecosystems in GitHub and a Method for Ecosystem
Identification Using Reference Coupling,” in Proceedings of the 12th Working Conference on
Mining Software Repositories, 201s, pp. 202-207.

C. Casalnuovo, B. Vasilescu, P. Devanbu, and V. Filkov, “Developer Onboarding in GitHub:
The Role of Prior Social Links and Language Experience,” in Proceedings of the zo15 10th Joint
Meeting on Foundations of Software Engineering, 201s, pp. 817—-828.

205

https://www.redhat.com/en/blog/state-enterprise-open-source-2020-enterprise-open-source-use-rises-proprietary-software-declines
https://www.redhat.com/en/blog/state-enterprise-open-source-2020-enterprise-open-source-use-rises-proprietary-software-declines
https://lwn.net/ml/linux-kernel/202105051005.49BFABCE\spacefactor \@m {}keescook/
https://lwn.net/ml/linux-kernel/202105051005.49BFABCE\spacefactor \@m {}keescook/

Bibliography

[287]

[288]

[289]
[290]
[291]

[292]
[293]
[294]

[299]

[300]

[301]

[302]

[303]

206

J. Salter, Linux kernel team rejects University of Minnesota researchers’ apology, https : / /
arstechnica.com/ gadgets/2021/04 / linux-kernel-team-rejects-university-of-

minnesota-researchers-apology/, Apr. 2021.

T. Holzand A. Oprea, IEEE S€P1 Program Committee Statement Regarding The “Hypocrite
Commits” Paper, https : / /www . ieee-security.org/TC/SP2021/downloads /2021 _PC_
Statement.pdf, May 2021

K. Charmaz, Constructing Grounded Theory. Sage, 2014.
A. Strauss and J. M. Corbin, Grounded theory in practice. Sage, 1997.

J. Corbin and A. Strauss, “Grounded theory research: Procedures, canons and evaluative crite-
ria,” Zeitschrift fiir Soziologie, vol. 19, no. 6, pp. 418—427, 1990.

C. Urquhart, Grounded theory for qualitative research: A practical guide. Sage, 2012.
M. Birks and J. Mills, Grounded theory: A practical guide. Sage, 2015.

E. Kenneally and D. Dittrich, “The Menlo Report: Ethical principles guiding information and
communication technology research,” SSRN Electronic Journal, Aug. 2012.

Guidelines for research on the kernel community, https://lwn.net/Articles/888891/, Mar.
2022.

W. Turton and K. Mehrotra, FireEye Discovered Solar Winds Breach While Probing Own Hack,
https://www.bloomberg.com/news/articles/2020-12-15/fireeye-stumbled-across-
solarwinds-breach-while-probing-own-hack, 2020.

C. Cimpanu, SEC filings: Solar Winds says 18,000 customers were impacted by recent hack, https:
/ /www . zdnet . com/article/sec-filings-solarwinds-says-18000-customers-are-

impacted-by-recent-hack/, Dec. 2020.

Check Point Research, Cloud Guard Spectral detects several malicious packages on PyPI - the
official software repository for Python developers, https: //research.checkpoint.com/2022/
cloudguard-spectral-detects-several-malicious-packages-on-pypi-the-official-

software-repository-for-python-developers/, Aug. 2022.

M. Alfadel, D. E. Costa, and E. Shihab, “Empirical Analysis of Security Vulnerabilities in
Python Packages,” in 2021 IEEE international conference on software analysis, Evolution and
Reengineering (SANER), IEEE, 2021, pp. 446—457.

S.E. Ponta, H. Plate, and A. Sabetta, “Detection, Assessment and Mitigation of Vulnerabilities
in Open Source Dependencies,” Empirical Software Engineering, vol. 25, no. s, pp. 3175-321s,
2020.

F. Lépez de la Mora and S. Nadi, “Which Library Should I Use?: A Metric-Based Comparison
of Software Libraries,” in 2018 IEEE/ACM 4oth International Conference on Software Engi-
neering: New Ideas and Emerging Technologies Results (ICSE-NIER), 2018, pp. 37—40.

J. M. Haney, M. Theofanos, Y. Acar, and S. S. Prettyman, ““We make it a big deal in the com-
pany’: Security mindsets in organizations that develop cryptographic products,” in Fourteenth
Symposium on Usable Privacy and Security (SOUPS 2018), 2018, pp. 357-373.

N. McDonald, S. Schoenebeck, and A. Forte, “Reliability and Inter-Rater Reliability in Qual-
itative Research: Norms and Guidelines for CSCW and HCI Practice,” Proc. ACM Hum.-
Comput. Interact., vol. 3, no. CSCW, Nov. 2019.

https://arstechnica.com/gadgets/2021/04/linux-kernel-team-rejects-university-of-minnesota-researchers-apology/
https://arstechnica.com/gadgets/2021/04/linux-kernel-team-rejects-university-of-minnesota-researchers-apology/
https://arstechnica.com/gadgets/2021/04/linux-kernel-team-rejects-university-of-minnesota-researchers-apology/
https://www.ieee-security.org/TC/SP2021/downloads/2021_PC_Statement.pdf
https://www.ieee-security.org/TC/SP2021/downloads/2021_PC_Statement.pdf
https://lwn.net/Articles/888891/
https://www.bloomberg.com/news/articles/2020-12-15/fireeye-stumbled-across-solarwinds-breach-while-probing-own-hack
https://www.bloomberg.com/news/articles/2020-12-15/fireeye-stumbled-across-solarwinds-breach-while-probing-own-hack
https://www.zdnet.com/article/sec-filings-solarwinds-says-18000-customers-are-impacted-by-recent-hack/
https://www.zdnet.com/article/sec-filings-solarwinds-says-18000-customers-are-impacted-by-recent-hack/
https://www.zdnet.com/article/sec-filings-solarwinds-says-18000-customers-are-impacted-by-recent-hack/
https://research.checkpoint.com/2022/cloudguard-spectral-detects-several-malicious-packages-on-pypi-the-official-software-repository-for-python-developers/
https://research.checkpoint.com/2022/cloudguard-spectral-detects-several-malicious-packages-on-pypi-the-official-software-repository-for-python-developers/
https://research.checkpoint.com/2022/cloudguard-spectral-detects-several-malicious-packages-on-pypi-the-official-software-repository-for-python-developers/

[304]

[305]

[306]

[307]

[308]

[309]

[310]

[311]

[312]

[313]

[314]

[315]

[316]

[317]

[318]

[319]

Bibliography

S. Gallagher, Rage-quit: Coder unpublished 17 lines of JavaScript and “broke the Internet”,
https://arstechnica. com/information-technology /2016 /03 /rage-quit-coder -
unpublished-17-lines-of-javascript-and-broke-the-internet/, Mar. 2016.

W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A Study of Android Application Secu-
rity,” in zoth Usenix Security Symposium (SEC’1), 2011, pp. 21-21.

H. Lockheimer, Android and Security, http: / / googlemobile . blogspot . com/2012/02/
android-and-security.html, Feb. 2012.

S. Chakradeo, B. Reaves, P. Traynor, and W. Enck, “MAST: Triage for Market-scale Mobile
Malware Analysis,” in 6th ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec’13), 2013, pp. 13—24.

S.Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A Scalable System for De-
tecting Code Reuse among Android Applications,” in 9th Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA’12), Jul. 2013, pp. 62-81.

F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “ViewDroid: Towards Obfuscation-resilient
Mobile Application Repackaging Detection,” in 7th ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WiSec’14), 2014, pp. 25-36.

M. Linares-Visquez, A. Holtzhauer, C. Bernal-Cdrdenas, and D. Poshyvanyk, “Revisiting An-
droid Reuse Studies in the Context of Code Obfuscation and Library Usages,” in 1ith Working
Conference on Mining Software Repositories (MSR 14), 2014, pp. 242-251.

B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient Privilege De-Escalation for Ad Libraries in
Mobile Apps,” in Proceedings of the 13th Annual International Conference on Mobile Systems,
Applications, and Services, 2015, pp. 89-103.

Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization and Evolution,” in 8¢
Symposium on Usable Privacy and Security (SOUPS’12), May 2012, pp. 95-109.

N. Viennot, E. Garcia, and J. Nieh, “A Measurement Study of Google Play,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 42, no. 1, pp. 221-233, Jun. 2014.

J. Crussell, C. Gibler, and H. Chen, “AnDarwin: Scalable Detection of Android Applica-
tion Clones Based on Semantics,” IEEE Transactions on Mobile Computing, vol. 14, no. 10,
pp. 2007-2019, Oct. 201s.

W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting Repackaged Smartphone Applications in
Third-party Android Marketplaces,” in 2znd ACM Conference on Data and Application Security
and Privacy (CODASPY1z), 2012, pp. 317-326.

W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, Scalable Detection of "Piggybacked”
Mobile Applications,” in 37d ACM Conference on Data and Application Security and Privacy
(CODASPY’13), 2013, pp. 185-196.

V. Tendulkar and W. Enck, “An application package configuration approach to mitigating
Android SSL vulnerabilities,” in zor4 Mobile Security Technologies Workshop (MoST14), 2014.
M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano, and P. Tonella, “The
effectiveness of source code obfuscation: An experimental assessment,” in 77¢h IEEE Interna-
tional Conference on Program Comprebension (ICPC09), IEEE, 2009, pp. 178-187.

M. Ceccato, M. Penta, P. Falcarin, F. Ricca, M. Torchiano, and P. Tonella, “A Family of Exper-
iments to Assess the Effectiveness and Efficiency of Source Code Obfuscation Techniques,”
Empirical Software Engineering, vol. 19, no. 4, pp. 1040-1074, Aug. 2014.

207

https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/
https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html

Bibliography

[320]

[321]

[322]

[323]

[324]

[325]

[326]

(327]

[330]

[331]

[332]

(333]

[334]

[335]

208

D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto, “Stealth attacks: An extended
insight into the obfuscation effects on Android malware,” Computers € Security, vol. s1, pp. 16—
31, 2015.

J.-M. Borello and L. M¢, “Code obfuscation techniques for metamorphic viruses,” Journal in

Computer Vz'mlogy, vol. 4, no. 3, pp. 211-220, 2008.

C. Collberg and J. Nagra, Surreptitions Software: Obfuscation, Watermarking, and Tamper-
proofing for Software Protection, 1st. Addison-Wesley Professional, 2009.

J.-T. Chan and W. Yang, “Advanced Obfuscation Techniques for Java Bytecode,” Journal of
Systems and Software, vol. 71, no. 1-2, pp. 1-10, Apr. 2004.

Y. Sakabe, M. Soshi, and A. Miyaji, “Java obfuscation approaches to construct tamper-resistant
object-oriented programs,” IPS] Digital Courier, vol. 1, pp. 349—361, 200s.

T. W. Hou, H. Y. Chen, and M. H. Tsai, “Three control flow obfuscation methods for Java
software,” IEE Proceedings - Software, vol. 153, no. 2, pp. 80-86, Apr. 2006.

S. Ghosh, S. R. Tandan, and K. Lahre, “Shielding Android Application Against Reverse Engi-
neering,” International Journal of Engineering Research € Technology, vol. 2, no. 6, 2013.

P. Faruki, A. Bharmal, V. Laxmi, M. S. Gaur, M. Conti, and M. Rajarajan, “Evaluation of
Android Anti-malware Techniques against Dalvik Bytecode Obfuscation,” in 13th IEEE In-
ternational Converence on Trust, Security and Privacy in Computing and Communications
(TrustCom’14), Sep. 2014, pp. 414—421.

S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: reverse engineering obfuscated
code,” in 12th Working Conference on Reverse Engineering (WCRE o5), Nov. 2005, 10pp.

B. Bichsel, V. Raychev, P. Tsankov, and M. Vechev, “Statistical Deobfuscation of Android
Applications,” in 23nd ACM Conference on Computer and Communication Security (CCS’16),
2016, pp. 343-355.

C. Linn and S. Debray, “Obfuscation of Executable Code to Improve Resistance to Static
Disassembly,” in roth ACM Conference on Computer and Communication Security (CCS 03),
2003, pp. 290-299.

P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal, “AndroSimilar: Robust Sta-

tistical Feature Signature for Android Malware Detection,” in 6zh International Conference on
Security of Information and Networks (SIN'13), 2013, pp. 152—159.

M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann, “Mobile-sandbox:
Having a Deeper Look into Android Applications,” in 28th ACM Annual Symposium on
Applied Computation (SAC13), 2013, pp. 1808-1815.

J. Garcia, M. Hammad, B. Pedrood, A. Bagheri-Khaligh, and S. Malek, “Obfuscation-resilient,
efficient, and accurate detection and family identification of Android malware,” Department
of Computer Science, George Mason University, Virginia, Tech. Rep., 201s.

M. Backes, S. Bugiel, and E. Derr, “Reliable Third-Party Library Detection in Android and Its
Security Applications,” in 23nd ACM Conference on Computer and Communication Security
(CCS’16), 2016, pp. 356—367.

C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What Do Programmers Know About
Software Energy Consumption?” IEEE Software, vol. 33, no. 3, pp. 83-89, May 2016.

[336]

(337]

[338]

[339]

[340]

[341]

[342]

[343]

[344]
[345]
[346]
[347]

[348]

[349]

[350]

[351]

[352]

[353]

Bibliography

S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang, and K. Zhang,
“Understanding Android Obfuscation Techniques: A Large-Scale Investigation in the Wild,”
arXiv:18o1.01633 [cs], vol. 1801, Jan. 2018.

Google Inc., Shrink Your Code and Resources, https: //developer .android.com/studio/
build/shrink-code.html, Apr. 2017.

R. Potharaju, M. Rahman, and B. Carbunar, “A Longitudinal Study of Google Play,” /EEE
Transactions on Computational Social Systems, vol. 4, no. 3, pp. 135-149, Sep. 2017.

D. Morris, General Dynamics Wins 87.6 Billion Contract to Supply Microsoft Office Software
to the Penmgon, https: / / fortune.com/ 2019 /08 /29 /general -dynamics - pentagon -
contract/, Aug. 2019.

C. Schaer, Microsoft Office 365: Banned in German schools over privacy fears, https: / /www .
zdnet . com / article / microsoft - office - 365 - banned - in - german - schools - over -
privacy-fears/, Jul. 2019.

J. Salter, Office 365 declared illegal in German schools due to privacy risks, https: / /arstechnica.
com / information - technology / 2019 / 07 / germany - threatens - to - break —up -with -
microsoft-office-again/, Jul. 2019.

E. Dedezade, Microsoft to deliver clond services from new datacentres in Germany in 2019 to meet
c‘vo[uz’ng customer needj, https://news.microsoft.com/europe/2018/08/31/microsoft-
to-deliver-cloud-services-from-new-datacentres-in-germany-in-2019-to-meet-
evolving-customer-needs/, Aug. 2019.

P. Lorimer, Microsoft Office 365 and Dynamics 365 now available from new German datacenter
regz'om, https://www.microsoft.com/en-us/microsoft-365/blog/2020/02/20/
microsoft-office-365-dynamics-365-now-available-from-new-german-datacenter-

regions/, Feb. 2020.

Google, Google Drive - Google, https://www.google.com/intl/en/drive/, Jun. 2020.
Microsoft, Office 365 - Microsoft Office, https: //www.office.com/, Jun. 2020.

A.Inc., i Work - Apple, https://www.apple.com/iwork/, Jun. 2020.

T. D. Foundation, Lz’bre‘Oﬁce, https://www.libreoffice.org/download/libreoffice-
online/, Jun. 2020.

A.S. SIA, OnlyOffice, https: / /www.onlyoffice.com/cloud-office.aspx, Jun. 2020.

S. Presser, M. P. Couper, J. T. Lessler, E. Martin, J. Martin, J. M. Rothgeb, and E. Singer,
“Methods for Testing and Evaluating Survey Questions,” Public Opinion Quarterly, vol. 68,
no. 1, pp. 109-130, Mar. 2004.

E. Peer, J. Vosgerau, and A. Acquisti, “Reputation as a Sufficient Condition for Data Quality
on Amazon Mechanical Turk,” Bebavior research methods, vol. 46, Dec. 2013.

N. C. Schaefter and S. Presser, “The science of asking questions,” Annual review of sociology,
vol. 29, no. 1, pp. 65—88, 2003.

P. V. Marsden and J. D. Wright, Handbook of survey research. Emerald Group Publishing, 2010,
pp- 263-314.

K. Krippendorft, Content Analysis: An Introduction to Its Methodology (2nd ed.) SAGE Publi-

cations, 2004.

209

https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://fortune.com/2019/08/29/general-dynamics-pentagon-contract/
https://fortune.com/2019/08/29/general-dynamics-pentagon-contract/
https://www.zdnet.com/article/microsoft-office-365-banned-in-german-schools-over-privacy-fears/
https://www.zdnet.com/article/microsoft-office-365-banned-in-german-schools-over-privacy-fears/
https://www.zdnet.com/article/microsoft-office-365-banned-in-german-schools-over-privacy-fears/
https://arstechnica.com/information-technology/2019/07/germany-threatens-to-break-up-with-microsoft-office-again/
https://arstechnica.com/information-technology/2019/07/germany-threatens-to-break-up-with-microsoft-office-again/
https://arstechnica.com/information-technology/2019/07/germany-threatens-to-break-up-with-microsoft-office-again/
https://news.microsoft.com/europe/2018/08/31/microsoft-to-deliver-cloud-services-from-new-datacentres-in-germany-in-2019-to-meet-evolving-customer-needs/
https://news.microsoft.com/europe/2018/08/31/microsoft-to-deliver-cloud-services-from-new-datacentres-in-germany-in-2019-to-meet-evolving-customer-needs/
https://news.microsoft.com/europe/2018/08/31/microsoft-to-deliver-cloud-services-from-new-datacentres-in-germany-in-2019-to-meet-evolving-customer-needs/
https://www.microsoft.com/en-us/microsoft-365/blog/2020/02/20/microsoft-office-365-dynamics-365-now-available-from-new-german-datacenter-regions/
https://www.microsoft.com/en-us/microsoft-365/blog/2020/02/20/microsoft-office-365-dynamics-365-now-available-from-new-german-datacenter-regions/
https://www.microsoft.com/en-us/microsoft-365/blog/2020/02/20/microsoft-office-365-dynamics-365-now-available-from-new-german-datacenter-regions/
https://www.google.com/intl/en/drive/
https://www.office.com/
https://www.apple.com/iwork/
https://www.libreoffice.org/download/libreoffice-online/
https://www.libreoffice.org/download/libreoffice-online/
https://www.onlyoffice.com/cloud-office.aspx

Bibliography

[354]

[355]

[358]

[359]

210

K. P. Burnham, “Multimodel Inference: Understanding AIC and BIC in Model Selection,”
Sociological Methods € Research, vol. 33, no. 2, pp. 261-304, 2004.

D. Dittrich and E. Kenneally, “The Menlo Report: Ethical Principles Guiding Information
and Communication Technology Research,” U.S. Department of Homeland Security, Tech.
Rep., Aug. 2012.

R. Kennedy, S. Clifford, T. Burleigh, R. Jewell, and P. Waggoner, The Shape of and Solutions
to the M Turk Quality Crisis, Oct. 2018.

E. M. Redmiles, S. Kross, and M. L. Mazurek, “How I Learned to Be Secure: A Census-
Representative Survey of Security Advice Sources and Behavior,” in 23nd ACM Conference on
Computer and Communication Security (CCS’16), 2016.

N. Heath, From Linux to Windows 10: Why did Munich switch and why does it matter? https:
/ /www . techrepublic.com/article/ linux-to-windows-10-why-did-munich-switch-
and-why-does—it-matter/, Nov. 2017.

G. D’Angelo, F. Vitali, and S. Zacchiroli, “Content Cloaking: Preserving Privacy with Google
Docs and Other Web Applications,” in Proc. zsth ACM Symposium on Applied Computing
(SAC’10), 2010, pp. 826-830.

L. Adkinson-Orellana, D. A. Rodriguez-Silva, F. Gil-Castifieira, and J. C. Burguillo-Rial, “Pri-
vacy for Google Docs: Implementing a transparent encryption layer,” in Proc. znd Cloud Com-
puting International Conference - Cloud Views, 2010.

W. Hu, T. Yang, and J. N. Matthews, “The good, the bad and the ugly of consumer cloud
storage.,” Operating systems review, vol. 44, no. 3, pp. LIO—IIS, 201I0.

L. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadre, and A. Pras, “Inside Dropbox: Un-
derstanding Personal Cloud Storage Services,” in Proceedings of the zo12 Internet Measurement
Conference, ACM, 2012, pp. 481-494.

D. Svantesson and R. Clarke, “Privacy and consumer risks in cloud computing,” Computer
Law & Security Review, vol. 26, no. 4, pp. 391-397, 2010.

S. Nestori and V. Tessa, “Is My Office 365 GDPR Compliant? - Security Issues in Authenti-
cation and Administration,” in Proceedings of the zoth International Conference on Enterprise
Information Systems, ICEIS 2018, Funchal, Madeira, Portugal, March 21-24, 2018, Volume 2.,

2018, pp. 299-30s.
K. M. Ramokapane, A. Rashid, and J. M. Such, ““I feel stupid I can’t delete ...”: A Study of

Users’ Cloud Deletion Practices and Coping Strategies,” in Proc. 13th Symposium on Usable
Privacy and Security (SOUPS’17), 2017, pp. 241-256.

M. van Dijk and A. Juels, “On the Impossibility of Cryptography Alone for Privacy-Preserving
Cloud Computing,” in 6th USENIX Workshop on Hot Topics in Security (HotSec 1), 2010,
pp- 1-8.

M. Nebeling, M. Geel, O. Syrotkin, and M. C. Norrie, “MUBox: Multi-user aware personal

cloud storage,” in Proceedings of the 33rd Annual ACM Conference on Human Factors in Com-
puting Systems, ACM, 2015, pp. 1855-1864.

X. Tan and Y. Kim, “User acceptance of SaaS-based collaboration tools: a case of Google Docs,”
Journal of Enterprise Information Management, vol. 28, no. 3, pp. 423—442, 201s.

https://www.techrepublic.com/article/linux-to-windows-10-why-did-munich-switch-and-why-does-it-matter/
https://www.techrepublic.com/article/linux-to-windows-10-why-did-munich-switch-and-why-does-it-matter/
https://www.techrepublic.com/article/linux-to-windows-10-why-did-munich-switch-and-why-does-it-matter/

[369]

[370]

[371]

[372]

(373]

[374]

[375]

[376]

Bibliography

C. Marshall and J. C. Tang, “That syncing feeling: early user experiences with the cloud,” in
Proceedings of the designing interactive systems conference, ACM, 2012, pp. 544553

D. Burda and F. Teuteberg, “The role of trust and risk perceptions in cloud archiving—Results
from an empirical study,” The Journal of High Technology Management Research, vol. 25, no. 2,
pp- 172—187, 2014.

J. W. Clark, P. Snyder, D. McCoy, and C. Kanich, “I saw images I didn’t even know I had:
Understanding user perceptions of cloud storage privacy,” in Proc. 33rd ACM Conference on
Human Factors in Computing Systems (CHI'Is), 2015, pp. 1641-1644.

M. T. Khan, M. Hyun, C. Kanich, and B. Ur, “Forgotten But Not Gone: Identifying the
Need for Longitudinal Data Management in Cloud Storage,” in Proc. 36th ACM Conference
on Human Factors in Computing Systems (CHI'18), 2018, 543:1-543:12.

C. Massey, T. Lennig, and S. Whittaker, “Cloudy forecast: an exploration of the factors un-
derlying shared repository use,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM, 2014, pp. 2461-2470.

A. Mijuskovic and M. Ferati, “User awareness of existing privacy and security risks when stor-
ing data in the cloud,” in International Conference on e-Learning and the Knowledge Society,
European Commission, 2015, pp. 268-273.

I. Ton, N. Sachdeva, P. Kumaraguru, and S. Capkun, “Home is Safer Than the Cloud!: Privacy
Concerns for Consumer Cloud Storage,” in 7th Symposium on Usable Privacy and Security
(SOUPS’11), 2011.

L. Arpaci, K. Kilicer, and S. Bardakci, “Effects of security and privacy concerns on educational
use of cloud services,” Computers in Human Bebavior, vol. 45, pp. 93-98, 2015.

211

Acronyms

2FA two-factor authentication. 21, 124, 137
BDFL Benevolent Dictator for Life. 56

CAPEC Common Attack Pattern Enumeration and Classification. 15
Cl continuous integration. 29

CI/CD continuous integration and continuous delivery. 2, 17,18, 29, 137
CIPAC Ciritical Infrastructure Partnership Advisory Council. 12

CISA Cybersecurity and Infrastructure Security Agency. 20

CLA Contributor License Agreement. 48, 57, 58

CRA Cyber Resilience Act. 17

CVE Common Vulnerabilities and Exposures. 13, 32, 33, 43

CVSS Common Vulnerability Scoring System. 14, 15

CWE Common Weakness Enumeration. 15
DPO Data Protection Officer. 24, 25

ENISA European Union Agency for Cybersecurity. 16
EPSS Exploit Prediction Scoring System. 15

ESF Enduring Security Framework. 12, 13
GDPR General Data Protection Regulation. 49, 74
IRB Institutional Review Board. 49, 74, 121

NGO non-governmental organization. 14
NIST National Institute of Standards and Technology. 16

NTIA National Telecommunications and Information Administration. 16

OpenSSF Open Source Security Foundation. 1s, 33, 69, 77, 84, 86

OSC open source component. 35, 67-78, 80-82, 84-87, 135, 136, 138

213

Acronyms
OoSsP open source project. 41, 42, 44, 48, 52, 58—60, 68, 135, 138
0SS open source software. 19, 22, 31-35, 41-44, 46, 57-59, 61, 67, 68, 81, 83, 86, 136, 137

SAT static analysis tool. 30, 33, 34, 86

SBOM Software Bill of Materials. 15, 16, 76, 77, 86
SME small and medium enterprises. 8

SSC software supply chain. 2, 11, 16, 21

SSO single sign-on. 18
TLS Transport Layer Security. 14, 31, 94

VCC vulnerability-contributing commit. 33

VEX Vulnerability-Exploitability Exchange. 15

214

	Summary
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 This Dissertation
	1.2.1 Statement
	1.2.2 Contributions
	1.2.3 Structure
	1.2.4 Typesetting and Typography

	2 Background
	2.1 Software Supply Chain
	2.1.1 Vulnerabilities
	2.1.2 Metrics and Frameworks
	2.1.3 Targeted Attacks

	2.2 Open Source Software
	2.2.1 Dependencies
	2.2.2 Unique Challenges and Opportunities

	2.3 Usable Security
	2.3.1 Approaches and Populations
	2.3.2 Usable Security for Software Experts

	2.4 Summary

	3 Related and Concurrent Work
	3.1 Software Supply Chain Security
	3.2 Security and Trust in the Open Source Ecosystem
	3.3 Interview Studies in a Security Context

	4 Security & Trust in Open Source Software Projects
	4.1 Preamble
	4.1.1 Contribution
	4.1.2 Structure

	4.2 Introduction
	4.3 Related Work
	4.3.1 Research with Repositories
	4.3.2 Interview Studies in a Security Context
	4.3.3 Security and Trust in the Open Source Community

	4.4 Methodology
	4.4.1 Study Setup
	4.4.2 Interview Structure
	4.4.3 Coding and Analysis
	4.4.4 Ethical Considerations and Data Protection
	4.4.5 Limitations

	4.5 Results
	4.5.1 Project Demographics
	4.5.2 Security Challenges
	4.5.3 Guidance and Policies
	4.5.4 Project Structure
	4.5.5 Releases and Updates
	4.5.6 Roles and Responsibilities
	4.5.7 Trust Processes
	4.5.8 Opinions and Improvements

	4.6 Discussion
	4.7 Summary

	5 Security Challenges of the Open Source Supply Chain
	5.1 Preamble
	5.1.1 Contribution
	5.1.2 Structure

	5.2 Introduction
	5.3 Related Work
	5.3.1 Dependency Analysis & Selection
	5.3.2 Security Research with Software Developers
	5.3.3 Security Interview Studies

	5.4 Interview Study
	5.4.1 Study Setup
	5.4.2 Interview Structure
	5.4.3 Coding and Analysis
	5.4.4 Ethical Considerations & Data Protection
	5.4.5 Limitations

	5.5 Results
	5.5.1 Projects and Participants
	5.5.2 Usage of Open Source Components
	5.5.3 Thoughts about Open Source Components
	5.5.4 Security Policies and Guidance
	5.5.5 Experiences with Open Source Components
	5.5.6 Challenges and Incidents
	5.5.7 Problems and Improvements

	5.6 Discussion
	5.7 Conclusion

	6 Large Scale Investigation of Obfuscation Use in Android
	6.1 Preamble
	6.1.1 Contribution
	6.1.2 Structure

	6.2 Introduction
	6.3 Related Work
	6.4 Android Obfuscation Techniques
	6.4.1 Complications for Obfuscation
	6.4.2 ProGuard

	6.5 Detecting ProGuard Obfuscation
	6.5.1 How LetterSpace=-4Obfuscan Works
	6.5.2 Feature Detection
	6.5.3 Other Tools
	6.5.4 Evaluation
	6.5.5 Limitations

	6.6 Large Scale Obfuscation Analysis
	6.6.1 Obfuscation Trends

	6.7 Developer Survey
	6.7.1 Recruiting
	6.7.2 Results and Takeaways

	6.8 Obfuscation Experiment
	6.8.1 Study Design
	6.8.2 The Tasks
	6.8.3 Results and Takeaways

	6.9 Discussion
	6.9.1 Ethical Considerations
	6.9.2 Threats to Validity

	6.10 Summary

	7 Security & Privacy Perceptions of Cloud Office Suites
	7.1 Preamble
	7.1.1 Contribution
	7.1.2 Structure

	7.2 Introduction
	7.3 Cloud Office Suites
	7.4 Methodology
	7.4.1 Study Procedure
	7.4.2 Survey Structure
	7.4.3 Coding and Analysis
	7.4.4 Data Collection and Ethics
	7.4.5 Limitations

	7.5 Results
	7.5.1 Use of Office Tools
	7.5.2 Document Security
	7.5.3 Document Access
	7.5.4 Document Storage
	7.5.5 Document Responsibility
	7.5.6 Scenario Perception
	7.5.7 Data Protection

	7.6 Related Work
	7.7 Discussion
	7.7.1 Recommendations

	7.8 Summary

	8 Conclusion and Future Work
	8.1 Future Work

	A Security & Trust in Open Source Software Projects
	A.1 Interview Guide in English
	A.2 Interview Guide in German
	A.3 Codebook

	B Security Challenges of the Open Source Supply Chain
	B.1 Interview Guide
	B.2 Codebook

	C Large Scale Investigation of Obfuscation Use in Android
	C.1 Online Survey
	C.2 Programming Experiment - Exit Survey

	D Security & Privacy Perceptions of Cloud Office Suites
	D.1 Survey

	Bibliography
	Acronyms

