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Abstract 

In the transformation towards climate neutral consumption, electric alternatives rise in favour of fossil 

energy sources in a variety of different fields. Lithium and several elements from the group of Rare 

Earth Elements (REEs) are of particular importance for modern battery production and the supply of 

green energy, and therefore play a crucial role for this transformation. Their demand has increased 

constantly over the last years and an ongoing trend is expected for the future. New instruments and 

analytical methods for the geochemical investigation of drill cores can support mineral exploration and 

active mining and thereby help to cope with the growing demand.  

Laser-Induced Breakdown Spectroscopy (LIBS) is an analytical technique with many advantages for the 

analysis of drill core material. It has a high measurement speed, no sample preparation is needed, and 

major, minor as well as trace elements can be detected in a single spectrum under atmospheric 

conditions. Nevertheless, physical and chemical matrix effects prevent a straightforward analysis of 

heterogeneous material, which is especially relevant for spatially resolved investigations of drill core 

samples. This work displays novel methods that enable the analysis of LIBS mappings of large REE- and 

Li-bearing drill core samples by overcoming the problematic matrix effects with different un- semi- and 

supervised machine learning algorithms.  

In the first application, drill core samples of brecciated carbonatites were spatially investigated with 

LIBS to establish an intensity limit for La using the k-means clustering algorithm. Based on this intensity 

limit, REE enrichments were detected in the investigated sample. Afterwards, the REE content of the 

sample was estimated with mass balance calculations.    

For the second application, different Li-bearing drill core samples were mapped in high resolution with 

LIBS and a new classification model was developed. It combines Linear Discriminant Analysis (LDA) and 

One-Class Support Vector Machines (OC-SVM) to enable the classification of minerals that were 

covered by a train set, while also identifying LIBS matrices that are unknown to the model.  

The third application combined Laser Ablation – Inductively Coupled Plasma – Time of Flight Mass

Spectrometry (LA-ICP-TOFMS) with LIBS measurements of the same sample. After image registration, 

this reference sample was used to create a Least-Square Support Vector Machine (LS-SVM) 

quantification model, which can be employed to convert LIBS intensities of similar material into 

element concentrations. The model allows a pixel-specific, spatially resolved quantification of multiple 

minerals with a single model.    

Each application displays possible solutions to minimize the influence of physical and chemical matrix 

effects on the spatial analysis of LIBS mappings of large drill core samples, which enables different 

kinds of analysis. Thereby, the great potential but also the challenges of LIBS as an analytical tool in 

geology and mining are highlighted.  

Keywords: laser-induced breakdown spectroscopy, drill core scanner, machine learning, spodumene 

pegmatite, storkwitz carbonatite 
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Zusammenfassung 

Durch die Transformation zu klimaneutralem Konsum gewinnen elektrische Alternativen gegenüber 

fossilen Energiequellen an immer größerer Bedeutung in einer Vielzahl verschiedener Bereiche. 

Lithium und diverse Elemente der seltenen Erden (REEs) spielen eine besonders wichtige Rolle in der 

Produktion moderner Batterien und der Herstellung grüner Energie, weshalb sie für diese 

Transformation unabdingbar sind. Entsprechend ist ihre Nachfrage in den vergangenen Jahren 

konstant gestiegen und ein gleichbleibender Trend wird auch für die Zukunft erwartet. Neue 

Instrumente und Methoden können die geochemische Untersuchung von Bohrkernen während der 

Exploration und des Abbaus unterstützen und so dabei helfen, den wachsenden Bedarf zu decken.  

Laserinduzierte Plasmaspektroskopie (LIBS) ist eine analytische Methode, die für die Untersuchung von 

Bohrkernmaterial viele Vorteile bietet. Es ist keine Probenvorbereitung erforderlich und Haupt-, 

Neben- und Spurenelemente können in einem einzigen Spektrum mit hoher Messgeschwindigkeit 

unter atmosphärischen Bedingungen nachgewiesen werden. Nichtsdestotrotz ist die Untersuchung 

von komplexem Material mit LIBS herausfordernd, da verschiedene physische und chemische 

Matrixeffekte eine unkomplizierte Auswertung erschweren. Dies ist besonders bei der räumlich 

aufgelösten Analyse von heterogenen Bohrkernen relevant. In dieser Arbeit werden neu entwickelte 

Methoden präsentiert, die den Einsatz von LIBS zur räumlich hochaufgelösten Untersuchung von 

großen REE- und Li-haltigen Bohrkernproben ermöglichen. Dabei wurden verschiedene unüberwachte, 

semi-überwachte und überwachte Algorithmen des maschinellen Lernens verwendet, um die 

problematischen Matrixeffekte zu überwinden.  

In der ersten Anwendung wurden brekziierte Karbonatit-Bohrkerne flächendeckend mit LIBS 

analysiert, um Intensitätslimits für La mit Hilfe des k-means Clusteralgorithmus zu bestimmen. Mit 

Hilfe dieser Intensitätsgrenze konnten REE-Anreicherungen erkannt werden, bevor darauf aufbauend 

die REE-Gehalte der Probe mit Hilfe von Massenbilanzierung berechnet wurden. 

Für die zweite Anwendung wurden mehrere Li-haltige Bohrkernproben in hoher räumlicher Auflösung 

mit LIBS gemessen. Anschließend wurde ein neues Klassifizierungsmodell entwickelt, das auf einer 

Kombination von Linear Discriminant Analysis (LDA) und One-Class Support Vector Machines (OC-SVM) 

beruht. Das Modell erlaubt sowohl die Klassifizierung der vom Trainingsdatensatz abgebildeten 

Minerale als auch die Identifikation unbekannter LIBS-Matrix, die nicht durch das Modell abgedeckt 

sind.  

In einer dritten Anwendung wurden Laser Ablation – Inductively Coupled Plasma – Time of Flight Mass

Spectrometry (LA-ICP-TOFMS) Messungen und LIBS-Messungen derselben Gesteinsprobe kombiniert. 

Auf Basis dieser Referenzprobe wurde ein Least-Square Support Vector Machines (LS-SVM) 

Quantifizierungsmodell erstellt, mit dessen Hilfe die LIBS-Intensitäten ähnlichen Materials in 

Elementkonzentrationen umgewandelt werden können. Dadurch ermöglicht das Modell eine 

ortsaufgelöste, pixelgenaue Quantifizierung mehrerer Minerale mit einem einzigen Modell. 

Jede Anwendung zeigt dabei Lösungen, um den Einfluss physischer und chemischer Matrixeffekte in 

räumlich hochaufgelösten LIBS Mappings zu minimieren und so verschiedene Arten der Auswertung 

zu ermöglichen. Dabei werden das große Potential aber auch die bestehenden Herausforderungen der 

LIBS-Technologie als Analysetool in der Geologie und der Bergbauindustrie verdeutlicht. 

Schlagwörter: Laserinduzierte Plasmaspektroskopie, Bohrkernscanner, maschinelles Lernen, 

Spodumen Pegmatit, Storkwitz Karbonatit
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Introduction and Background 

1. Introduction and Background

1.1 The importance of Rare Earth Elements and Lithium – LIBS as a promising 

technique for their spatial detection in drill core samples 

Modern climate change is a critical thread for us and future generations. In the “Paris Agreement,” 

2015, 196 nations signed a legally binding international treaty on climate change with the goal to keep 

global warming below 2 °C. Thereto, most states, their industry sectors as well as their inhabitants 

must reduce their greenhouse gas emissions until 2030, and an increasing number of countries are 

claiming progress towards carbon free consumption. Several high-emitting sectors started the 

transformation process towards net-zero emissions until 2050 (World Economic Forum, 2022), and in 

this context, the mobility sector is focusing on its electrification as well. To continue with this trend, 

specific elements are crucial. Especially Li and the so-called Rare Earth Elements (REEs) are urgently 

needed for this transformation. Numerous publications assess their future demand. They all agree 

that, despite a growing interest in recycling, active mining and ongoing exploration campaigns will be 

needed to fully cover the consumption of REEs and Li in the future (for REEs: e.g. Ganguli and Cook, 

2018; Goodenough et al., 2018; Charalampides et al., 2015; for Li: e.g. Kushnir and Sandén, 2012; 

Martin et al., 2017; Maxwell, 2014; Xu et al., 2020).  

In most geological definitions, REEs cover the elements Y as well as the lanthanides (La, Ce, Pr, Nd, Sm, 

Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu). The lanthanides from La to Eu are conventionally termed light 

REEs (LREE), whereas the remaining lanthanides and Y are called heavy REEs (HREE). Variations in this 

classification exist, since some authors define an additional class of mid REEs (MREE) or label Eu as 

heavy (Chakhmouradian and Wall, 2012; Hatch, 2012). Due to their characteristic properties, REEs are 

used in modern technology for various products (Charalampides et al., 2015), predominantly for 

magnets and catalysts (Goodenough et al., 2018). Electric vehicles and wind turbines heavily rely on 

REE magnets, making them crucial for climate neutral locomotion and the production of green 

electricity. Especially Ce, Nd and La are of high interest for a variety of applications (Alonso et al., 2012; 

Christmann, 2014), and, as a result, their demand is expected to grow in the next decades (Alonso et 

al., 2012). Contrary to the demand, only view countries operate feasible REE mining (Ganguli and Cook, 

2018) and high supply risks are presented. Therefore, the European Comission has classified REEs as a 

critical material for the European Union (Romppanen et al., 2017).  

Although REEs are relatively abundant in the Earth’s crust, their concentration often not exceeds the 

feasibility limits for mining (Balaram, 2019). The existing deposits are divided into primary deposits 

connected to magmatic, hydrothermal and/or metamorphic processes, and secondary deposits 

formed by weathering and erosion. Primary REE deposits are often bound to carbonatites, which 

include many of the most important REE-bearing minerals (Balaram, 2019). Despite the vast number 

of Rare Earth Minerals found in primary deposits, only few can be processed to yield a marketable 

product (Chakhmouradian and Wall, 2012). REEs are often considered green elements due to their 

importance for energy transition, but mining and processing propose environmental problems.  

Chemicals used to leech the elements are often toxic, and by-products can be radioactive due to 

potential Th and U abundances in the same ore (Balaram, 2019; Schulz et al., 2017).  

Lithium is also crucial for a wide variety of modern products. Most importantly, Li is needed for lithium-

ion batteries, which, up to today, are irreplaceable for electric vehicles and other electronic gadgets of 

today’s society (Scrosati and Garche, 2010). Especially the former led to an increasing Li consumption 
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Introduction and Background 

in the last years, and although the prediction of its future demand is difficult and forecasts from 

different years expect varying growths in production and consumption, no publication expects a 

reversing trend in the future (e.g Kushnir and Sandén, 2012; Sonoc and Jeswiet, 2014; Greim et al., 

2020; Xu et al., 2020).  

First companies investigate the possible extraction of Li as a by-product of geothermal energy 

(Goldberg et al., 2022) and an increasing effort is put into the recycling of lithium-ion batteries  (Gaines 

et al., 2018; Wu et al., 2022). Nevertheless, most of today’s Li is mined from two primary geological 

sources, evaporative brines and pegmatites, and corresponding deposits are found in various countries 

(Kesler et al., 2012). The Li-bearing pegmatites are mostly granitic and often incorporate a variety of 

economically interesting metals, including REEs. Spodumene is the most important Li-bearing mineral 

in pegmatites, although petalite, eucryptite and lepidolite rarely occur as well (Kesler et al., 2012).   

During exploration and mining, extensive drilling campaigns are necessary to detect the relevant areas 

that show element enrichments. Thereby, spatial analysis of drill core samples could offer crucial 

information on elemental distributions and a wide variety of machine learning models could be 

employed to extract additional information like mineral assemblages or element concentrations. This 

could enhance the precision in mining, support a targeted processing, and, thus, reduce cost, emission, 

and the ecological impact.  

Different analytical techniques allow the spatial analysis of geological samples, but their reliable use in 

exploration and mining requires further research.  

So far, hyperspectral imaging, energy dispersive X-ray fluorescence (µ-EDXRF), Raman, laser ablation-

inductively coupled plasma-time of flight mass spectrometry (LA-ICP-TOFMS) and laser-induced 

breakdown spectroscopy (LIBS) are already used to spatially analyse rocks and ore with different 

resolutions (e.g. Berkh and Rammlmair, 2022; Booysen et al., 2022; Chew et al., 2021; Neff et al., 2020; 

Nikonow et al., 2019). Every technique offers specific (dis-)advantages, and for the profitable use of 

spatially resolved analysis of REE- and Li-bearing drill core samples, important requirements are only 

met by few analytical techniques. LIBS shows several advantages for drill core measurements and 

allows a detailed spatial analysis of large samples or complete drill core meters (e.g. Kuhn et al., 2016; 

Meima et al., 2022; Rifai et al., 2020). It is therefore especially promising for mining and exploration 

(e.g. Kuhn and Meima, 2019; Rifai et al., 2018). As an emerging analytical technique in the field of 

geology, further research is needed to promote its use.  

1.2 Laser-Induced Breakdown Spectroscopy (LIBS) – fundamentals and history 

LIBS is an analytical technique that uses laser-generated plasma to vaporize, atomize and excite the 

investigated samples (Noll, 2012). Figure 1 displays the theoretical procedure of a LIBS measurement. 

A short but powerful laser-beam is focused onto the samples surface, which can be solid, liquid or even 

gaseous. The submitted energy heats the surface and transfers minor amounts of the sample into a 

plasma that contains the elemental information of the evaporated area. Small volumes of solid 

surfaces are ablated during this process. The plasma cools rapidly, emitting specific radiation that is 

collected with two connected optical instruments: a spectrometer and a detector. In the resulting 

spectral information, elements show peak intensities at element specific wavelengths, which allows 

the detection of multiple elements within a single spectrum (Cremers and Radziemski, 2013). In 

addition to element specific intensity peaks, molecular emission can be measured as well (Cremers 
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Introduction and Background 

and Radziemski, 2013). This can be exploited for elements that are difficult to detect under normal 

circumstances (e.g. in Gaft et al., 2014; Labutin et al., 2016; Vogt et al., 2020). 

Figure 1: Theoretical procedure of a typical LIBS measurement. After laser ablation and heating, the created plasma cools 

rapidly and emits the elemental and molecular information in the form of light. The resulting emission is measured by a 

spectrometer and a detector. 

The fundamental principles, laser-induced plasma and optically-induced breakdown, have been 

observed shortly after the first working laser was invented in 1960 (Radziemski and Cremers, 2013). In 

1963, LIBS was analytically used for the first time, but it took nearly 20 years until research was 

intensified at the Los Alamos National Laboratory. The extended knowledge proved the distinct 

advantages of LIBS and made the method applicable to a wide variety of different fields (Noll, 2012; 

Radziemski and Cremers, 2013). Up to now, LIBS applications continuously increased, which is reflected 

in the steady growth of LIBS-related publications in peer-review journals displayed in Figure 2a.  

Correlated with the increasing use for different applications, LIBS-based instruments were 

commercially accessible (Radziemski and Cremers, 2013). Nevertheless, each instrument is still mostly 

adapted to its specific area of operation until today, although the main components of every LIBS setup 

are identical. They always include a laser, a spectrometer able to monitor specific regions of the 

spectrum, a detector to collect the spectrally emitted light, and a computer to save and analyse the 

results (Noll, 2012). This general composition has not changed throughout the years, although great 

improvements in price and quality have been made for laser, spectrometer, detector, and computer, 

respectively. First handheld devices were developed in the mid 1990’s, but it took several years until 

they became commercially available (Rakovský et al., 2014).  
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Figure 2: Number of LIBS related articles published in peer-reviewed journals from 1980 onwards. Figure 2a shows publications 

for all fields that LIBS was used in; Figure 2b only displays geology related publications. The number of publications was 

determined using the adjusted search results from https://www.semanticscholar.org (25.01.2022). 

LIBS offers several advantages for many distinct applications (Noll, 2012), summarized in Table 1. It 

allows fast measurements of samples of all states of aggregation, in-situ and under atmospheric 

conditions. No sample treatment is required, and measurements can be performed remotely, which 

enables the use of LIBS even in areas not accessible by humans, e.g. melting furnaces or remote planets 

of our solar system (Myakalwar et al., 2021; Sirven et al., 2007; Wiens et al., 2013). Major, minor and 

trace elements can be detected at the same time within a single spectrum and even light elements like 

Li can be measured, which is especially challenging for many other analytical techniques (Fabre, 2020). 

Contrary to the numerous advantages, physical and chemical matrix effects propose severe challenges 

for the analysis of LIBS measurements, especially for complex heterogeneous material like drill core 

samples.  

Table 1: Advantages and challenges of LIBS analytics. The bold points are especially important for geological applications. 

Advantages Challenges 

Fast Physical matrix effects 

In-situ measurements possible Chemical matrix effects 

Measurements under atmospheric 

conditions 

No transferability between different LIBS 

systems possible yet 

Remote control possible 

Solid, liquid and gas can be measured 

No sample treatment required 

Multi-element analysis 

Light elements can be detected 

Physical matrix effects arise from the physical properties of the investigated sample, which influence

the amount of material that is ablated by each laser pulse. Consequently, differences in e.g. surface 

structure or roughness, density, material hardness, transparency or even colour can alter the laser-

induced plasma and therefore the resulting spectrum. Chemical matrix effects are a result of elements
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interfering with the emission behaviour of other elements in the same plasma. Therefore, equal 

concentrations of the same element in different samples can lead to varying LIBS emission intensities

(Harmon and Senesi, 2021; Tucker et al., 2010). These matrix effects usually prevent a straightforward 

analysis of heterogeneous material (Harmon and Senesi, 2021). This particularly applies to drill cores, 

since they include a variety of rocks, which themselves comprise a wide variety of different minerals.   

1.3 LIBS in geology, from point measurements to imaging analysis 

Several advantages are specifically important for geological applications (highlighted in Table 1 in bold) 

and one of the reasons for the increasing interest in LIBS for geological analytics (Figure 2b). First 

applications of LIBS in geology were published in the early 1990’s, where the associated disadvantages, 

i.e. challenges concerning matrix effects, were already pointed out (Fabre, 2020). Since then, LIBS has

seen an increasing interest in the geological community for element and mineral detection, as well as

(semi-)quantitative analysis. The most famous application is the successful extra-terrestrial

employment of LIBS in space, more specifically on Mars on board of the Curiosity rover (Wiens et al.,

2013).

Continuous improvements in laser spot size and laser energy, as well as the development of fast and 

sensitive detectors enabled the use of LIBS for precise mappings of large geological samples. To create 

an elemental image with LIBS, a sample has to be scanned continuously, by moving either the sample 

or the laser after every single measurement. Thereto, the measurements can be performed “on-the-

fly”, or with a short stop at each measurement position. The latter allows the use of cleaning shots, 

which can remove dust or unwanted debris from the sample, whereas the former allows a significantly 

faster measurement speed. The chosen step size determines the resolution of the resulting image 

(Jolivet et al., 2019). The first elemental mappings of geological material were published in 1998, where 

5 x 5 cm large granite samples and manganese nodules were scanned (Yoon et al., 1997). Ten years 

later, Novotný et al., 2008 used LIBS imaging to create element maps of 2 x 2 cm large areas of a granitic 

samples, before Ma et al., 2010 presented multi-element maps using LIBS on an area covering 0.6 x 

1.2 cm.  

With improvements in technology, LIBS imaging of geological samples became more frequent, 

providing valuable information on the structure and the elemental distribution (Fabre, 2020; Jolivet et 

al., 2019). As a result, publications providing accurate maps of LIBS-based element distributions for 

various geological material and polymetallic ore in the size of up to 2.5 x 2.5 cm increased during the 

last decade (e.g. El Haddad et al., 2019; Fabre et al., 2018; Klus et al., 2016; Meima and Rammlmair, 

2020; Nardecchia et al., 2020; Novotný et al., 2014; Rifai et al., 2018; Xu et al., 2016). Additionally, the 

first LIBS mapping of a complete drill core meter was performed on mine waste (Kuhn et al., 2016). 

Due to the size of the sample (100 x 1 cm), the measurements step size was set to 400 µm at a spot 

size of 200 µm.  

The advances in LIBS instrumentation and computing power enabled a complex, multivariate analysis 

of the mappings. Different unsupervised and supervised methods were applied, and in addition to 

element imaging, first spatial results for mineralogical analysis were published in the last years (El 

Haddad et al., 2019; Fabre et al., 2018; Meima and Rammlmair, 2020; Nardecchia et al., 2020).  

1.4 State-of-the-art for LIBS-based analysis of REEs and Li 

Overall, only few publications analysed REEs with LIBS. Most REEs show only small intensity peaks in 

LIBS spectra of natural, unprocessed material under atmospheric conditions. As a consequence, a 
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Introduction and Background 

common approach is to use powder, pellets or synthetic materials to detect or quantify the REE 

content or establish a theoretical LOD (e.g. Bhatt et al., 2020, 2018, 2017; Labutin et al., 2016; Martin 

et al., 2015; Rethfeldt et al., 2021; Wang et al., 2013). In 2017, Romppanen et al. presented the first 

measurement of a natural REE-bearing rock sample with LIBS. They were able to detect Y in a 1.5 x 1.5 

cm LIBS-based mapping of grennaite ore from Sweden and perform mineral classification on the 

measured data. Two years later, Gaft et al., 2019 used a specialized LIBS setup with a very small laser 

spot size of approximately 15 µm to measure different REE-bearing minerals. They were the first to 

present intensity peaks for molecular lines of LaO and YO and display imaging results for Ce and La in 

LIBS measurements of single mineral samples covering 0.1 x 0.15 cm in size.  

Compared to REEs, Li is highly emissive and even small amounts can be traced in LIBS measurements 

of geological material (Fabre, 2020). The first paper on Li detection in natural minerals was published 

by Fabre et al., 2002. They accurately quantified single measurement points of LIBS on homogeneous 

Li-bearing minerals with univariate calibration curves that were obtained with synthetic glasses, 

lepidolite and muscovite. In the last year, LIBS-based quantification of Li in homogeneous minerals has 

also been provided for a handheld device (Fabre et al., 2022), as well as crushed spodumene ore (Rifai 

et al., 2022). Both publications used bulk- and inductively coupled plasma mass spectrometry (ICP-MS) 

analysis of complementary material as references to build the univariate calibration curve.  

Additionally, other possible methods for the quantification of Li with LIBS have been investigated for 

different and more complex mineral and rock samples with a variety of approaches. Calibration-free 

LIBS (CF-LIBS) was applied to quantify Li in different gemstones (Rossi et al., 2014). Since emission lines 

of Li can show significant amounts of self-absorption during LIBS measurements, this approach was 

not successful. In the investigations of Sweetapple and Tassios, 2015, matrix-effects and self-

absorption prevented an accurate LIBS-based Li quantification of the first 0.5 x 0.5 cm mapping of a 

hydrothermally altered spodumene pegmatite. They used synthetic glasses and whole-rock analysis of 

natural samples as reference samples, which resulted in semi-quantitative Li distribution maps. Several 

years later, Li concentrations could be provided indirectly for 1.2 x 1.3 cm mappings of granitic samples 

(Janovszky et al., 2021). Here, the ablated volume was used to calculate the Li concentrations of each 

measurement point. By comparing a handheld LIBS instrument with a laboratory setup, Ferreira et al., 

2022 predicted the Li content of complete drill core meters using ICP-MS measurements as reference. 

Non-linear algorithms could produce semi-quantitative results for the laboratory instrument, whereas 

linear models performed significantly worse. For the more complex material, none of the publications 

were able to accurately quantify Li directly from the measured LIBS intensities. They showed that an 

accurate spatial quantification of heterogeneous rock samples with LIBS remains challenging due to 

matrix effects and saturation.  

1.5 Challenges of spatial LIBS analysis and new contributions of this work 

Despite the increasing interest in LIBS as an imaging tool in geosciences, the enormous amount of 

existing minerals, their varying colours, densities, structures, transparencies, and crystal sizes, as well 

as the variety of elemental compositions result in numerous physical and chemical matrix effects. 

These effects are especially prominent in LIBS measurements of large, heterogeneous drill core 

samples, and, depending on the investigated material, even the imaging of element distributions can 

remain challenging. As a result, most spatially resolved LIBS measurements of REE- or Li-bearing rocks 

cover only smaller parts of a complete sample or include single minerals larger than the laser spot size. 
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This work expands the existing scientific research concerning LIBS measurements of natural, REE- or 

Li-bearing rock samples with spatially resolved LIBS analysis of large and heterogeneous drill core 

samples from REE- and Li-bearing deposits. Thereby, the size of the presented LIBS mappings exceeds 

those of existing publications, and due to their heterogeneity and the variety of minerals involved, 

severe matrix effects were observed. To overcome these matrix effects, novel machine learning 

methods had to be implemented and new methods were developed to enable different kinds of 

spatially resolved LIBS analysis of large, heterogeneous drill core samples.  

So far, LIBS imaging of REE-bearing material did not exceed the size of thin sections, and in the two 

existing publications on natural REE-bearing rocks (Gaft et al., 2019; Romppanen et al., 2017), the spot 

size of the LIBS instrument was smaller than the crystal size of the minerals. Detecting areas enriched 

in REEs in large mappings composed of small minerals remains challenging due to different matrix 

effects. In chapter 2, novel methods are employed to overcome these effects and enable the detection 

of La in large drill core samples of brecciated material, although the REE-bearing minerals are 

significantly smaller than the laser spot size and loosely distributed in the rock matrix. Spatially detailed 

LIBS mappings of heterogeneous drill core samples often include large numbers of different LIBS 

matrices in the form of minerals or areas problematic for the focus-dependant LIBS analysis, e.g. micro- 

or macro-porosities. To ensure the credibility of element detection, mineral classification or 

quantification, the detection of new LIBS matrices is an important addition to LIBS-based mineral 

classification of drill core samples. In chapter 3, a new classification model is developed, which allows 

the classification of minerals while also detecting unknown LIBS matrices. LIBS-based quantification of 

Li has successfully been performed for single or averaged shots of minerals surfaces. Nevertheless, 

matrix effects prevented a pixel-specific quantification of large mappings that include a variety of 

different minerals. Chapter 4 displays a novel approach for an accurate and spatially resolved LIBS-

based quantification of large LIBS measurements.   

1.6 LIBS instrumentation used in this work 

All measurements for this dissertation were performed using a LIBS drill core scanner prototype at the 

Federal Institute of Geosciences and Natural Resources (BGR), developed by Lasertechnik Berlin (LTB) 

in 2011. The instrument is displayed in Figure 3. It operates under atmospheric conditions with a Q-

switch Nd:YAG laser (20 Hz, 11 ns repetition rate at 1064 nm, 35 mJ energy, 200 µm spot size), an 

Echelle spectrometer (285–964 nm spectral range, 0.029–0.096 nm resolution) and a charge-coupled 

device (CCD)-detector. To enable consecutive profile measurements of complete drill cores and 

mappings of coherent areas, the laser can move up to 100 cm in X- and 2.5 cm in Y-direction, while the 

sample stays in place. The instrument stops for every laser shot, before moving a desired distance in X 

or Y. This way, cleaning shots can be applied before the actual measurement is performed.  

The sample chamber allows the measurement of drill cores with up to 1 m length in a single run. If the 

width of a mapping exceeds 2.5 cm, the sample is moved by hand parallel to the stage after the first 

area of the sample is measured. To avoid cross-crater contamination and the ionization of small dust 

particles between sample and laser head, a suction is mounted, moving alongside the laser. An optical 

camera is mounted on the X-axis of the movable rail to record an optical imaging of the analysed 

sample before or after the measurement. 

The emitted light is collected with an optical fibre and transported to the Echelle spectrometer and 

the CCD-detector. The duration of large mappings can exceed several hours, potentially causing small 

temperature changes in the laboratory. To avoid spectral shifts due to the changes in temperature, the 
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spectrometer as well as the CCD-detector are consistently held at 27 °C. The software allows manual 

adaptions of measurement settings, which are optimized according to the measured material. Optimal 

values for the measurement parameters may change, depending on the main mineralogy of the 

sample. Therefore, the specific adjustments are explained in detail in every publication.  

Figure 3: LIBS drill core scanner prototype used for all LIBS measurements performed in this work. The movable laser head 

allows measurements and mappings of complete drill core meters.   

1.7 Reference measurements 

The evaluation of LIBS measurements can be difficult, especially for large mappings, since only few 

instruments are able to provide adequate spatially resolved reference measurements. Nevertheless, 

validation measurements are crucial, and a variety of different methods have been used throughout 

the different publications, and a detailed description of the distinct instruments, as well as the 

measurement setups can be found therein. This chapter introduces the theoretical background of 

every method used for validation.   

1.7.1 Electron microprobe 

An electron microprobe is a well-established instrument to quantify even small concentrations of most 

elements accurately (Llovet, 2018). The sample is inserted into a chamber and a strong vacuum is 

created. Accordingly, the sample size is restricted in width and height, making sample preparation of 

drill core samples inevitable. Often, thin sections are created and coated with carbon, before they are 

inserted into an electron microprobe. To measure the material, a beam of electrons is fired at the 

sample surface, where it interacts with electrons of different atomic shells of each element present in 

the sample. As a result, X-rays are emitted with characteristic frequencies that are detected by the 

instrument (Llovet, 2018). To quantify the chemical composition of the investigated spot, element 

specific X-rays are compared to standardized materials.  
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The results obtained with an electron microprobe are very accurate, but the spot sizes are significantly 

smaller than those of the LIBS instrument used, only covering few µm in size. Since the measurement 

time is relatively high, mappings of large areas are not feasible. Electron microprobe measurements 

were therefore used in the first publication to proof the occurrences of REEs in the sample, to estimate 

the limit of detection (LOD) for La that can be achieved with the LIBS drill core scanner, and to estimate 

REE-oxide concentrations based on mass balance calculations.  

1.7.2 Laser ablation-inductively coupled plasma-time of flight mass spectrometer (LA-ICP-

TOFMS) 

LA-ICP-TOFMS is an analytical technique that, like LIBS, is also based on laser ablation. Contrary to LIBS, 

the laser is not directly used as an excitation source, and instead, a carrier gas transports the ablated 

material to the ICP. While passing the high-energy ICP, it is atomized and ionized, before it is 

transferred to the time of flight mass analyser. There, the ion signal intensity of all elements of interest 

can be measured (Kendra, 2017). The signal strength corresponds to the abundance of the specific 

element in the sample. For quantification, known standards are measured and used to calibrate the 

instrument (Gundlach-Graham et al., 2015; Sylvester and Jackson, 2016).  

LA-ICP-TOFMS generates quantitative mappings of small samples in a short amount of time. These 

spatially resolved element concentration maps were used in the third paper as a pixel-matched 

reference sample for LIBS measurements. Thereto, the same surface must be mapped with LIBS as 

well, and both datasets have to be matched pixel perfect. A detailed explanation of this procedure is 

given in chapter 4. Since the sample chamber limits the sample size of LA-ICP-TOFMS measurements, 

only a combination with LIBS enables the quantification of large drill core samples.  

1.7.3 Energy dispersive X-ray fluorescence (µ-EDXRF) 

Contrary to the more common X-ray fluorescence (XRF) analysis, µ-EDXRF is a non-destructive 

technique that is able to determine element distributions (semi-)quantitatively on a spatial level. 

Thereto, an X-ray from a primary X-ray source is shot onto the sample surface. Upon interaction, the 

primary X-ray ejects electrons from an inner shell of the targeted atom. When the empty spot is filled, 

a secondary, name-giving fluorescent X-ray is emitted. Contrary to XRF, an energy dispersive detection 

system directly measures the different energies of the X-rays emitted from the excited sample, instead 

of physically separating the X-rays by their distinct wavelengths. As a result, µ-EDXRF can be used to 

detect multiple elements within a single spectrum, but its quantification accuracy is limited.  

µ-EDXRF can be used for geological applications to create distribution maps of large samples for most 

elements (Nikonow and Rammlmair, 2016), and it was therefore applied to validate the LIBS mappings 

qualitatively. Like LIBS, quantitative analysis directly from the spectrum is difficult, and the µ-EDXRF 

results were not used as quantitative references.  
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A B S T R A C T

This paper presents a novel approach to calculate matrix-matched intensity limits for the spatially resolved 
detection of rare earth element (REE) enrichments in highly heterogeneous geological material from the 
Storkwitz carbonatite based on scanning Laser Induced Breakdown Spectroscopy (LIBS). A drill core from the 
Storkwitz carbonatite was mapped in detail with a LIBS drill core scanner. For reference purposes, μ-EDXRF was 
applied for qualitative REE detection, and a microprobe was used for quantitative REE analysis. 

Microprobe analysis of thin sections verified the existence of rare earth elements and revealed an accumu-
lation of REEs around mineral rims. Microprobe measurements also revealed that the main carrier of rare earth 
elements in the analysed drill core are REE-carbonates with contents as high as 24.4 wt% for Ce, 15.4 wt% for La, 
and 9.2 wt% for Nd. Apatite and pyrochlore are carrier for rare earth elements as well, however, with signifi-
cantly lower concentrations of Ce (1.0 wt%), La (0.3 wt%), and Nd (0.3 wt%). 

K-means clustering was applied on the LIBS mapping to separate classes that show similarities in chemical
composition. The classes represent carbonates, silicates, and rock matrix, respectively. According to the 
microprobe results, most REE-carbonates were found to be related to elevated porosity or microfractures in the 
rock matrix, forming very thin rims of idiomorphic and hypidiomorphic minute crystals and rarely dense ag-
gregates around exposed minerals and fractured rock fragments. Therefore, a buffer zone calculation was per-
formed on the distinct mineral classes to extract pixel belonging to mineral rims only. Rims without any 
enrichment in rare earth elements were then used to calculate matrix-matched intensity limits for REE enrich-
ments. Based on the observed similarity in chemical composition for rim pixel and rock matrix pixel, this in-
tensity limit could be transferred to all pixels belonging to the rock matrix. 

Based on the calculated intensity limits for La, 1.4 area % of the sample was found to be enriched in REE- 
carbonates. This result was validated qualitatively by comparing it to a μ-EDXRF mapping of the same sam-
ple. Optical comparison showed good agreement and pixel counting confirmed similar zones of enrichment. The 
results reveal that La enrichments in REE-carbonates are reliably detected with LIBS. A mass balance calculation 
has shown that about 88% of the REE enrichments in the investigated drill core seem to occur as pure REE- 
carbonates. The fast detection of drill core areas that are enriched in REEs makes LIBS a viable addition to 
the currently used methods in REE exploration.   

1. Introduction

Rare earth elements (REE) play a crucial role in several fields of to-
day’s technology and their demand is growing year-by-year (Ganguli 
and Cook, 2018; Goodenough et al., 2018; Charalampides et al., 2015). 
Only few deposits are known where REEs are enriched to a point that 
mining is feasible and lots of these deposits are bound to carbonatitic 
host rocks (Goodenough et al., 2018; Kanazawa and Kamitani, 2006). 
Often, several hundred meters of drill cores have to be taken for the 

detection of relevant formations or new deposits. 
Fast and detailed spatial information on the distribution of REEs and 

other relevant components in drill cores would facilitate both core 
logging and sample selection processes. Samples could be taken selec-
tively and very precisely for quantitative geochemical and mineralogical 
analyses with established but more time-consuming methods (Fabre, 
2020). Core scanner technologies may offer these new possibilities for 
spatially resolved analysis of REEs and other components in drill cores. 
Examples for different core scanner approaches and technologies based 
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on XRF, LIBS and visible light and near infrared spectrometry can be 
found in Croudace et al. (2006), Haavisto et al. (2013), Kuhn et al. 
(2016), Liang et al. (2012), Meima and Rammlmair (2020), Ross et al. 
(2013) and Zuo (2013). 

In the case of REE exploration, Laser Induced Breakdown Spectros-
copy (LIBS) is a promising technology for fast detection of enriched 
areas in drill cores on the mining site. LIBS is a spectroscopic technique 
based on emission of plasma. A laser beam is focused on the surface of a 
sample (solid, liquid or gas) and its energy creates a plasma out of the 
ablated material. During cooling, spectral emission correlated to atomic 
or molecular lines can be observed and measured with optical in-
struments. Specific elements show peak intensities at element specific 
wavelengths, which allows the detection of multiple elements in one 
atomic spectrum (Cremers and Radziemski, 2013; Hahn and Omenetto, 
2012, 2010). REEs are sometimes difficult to measure due to weak 
emission lines but several authors showed examples for a successful 
detection of a number of different rare earth elements in different ma-
terials (Abedin et al., 2011; Bhatt et al., 2018; Fabre et al., 2018; Gaft 
et al., 2019; Martin et al., 2015; Romppanen et al., 2017; Wang et al., 
2013). 

LIBS offers the possibility to analyse single samples and even com-
plete drill cores in 1D or 2D fast with high resolution and nearly no 
sample preparation needed (e.g. Kuhn et al., 2016; Meima and 
Rammlmair, 2020). Additionally, the measurements can be performed 
in-situ under atmospheric conditions and practically all elements can be 
measured (Effenberger and Scott, 2010; Galbács, 2015; Hahn and 
Omenetto, 2012). Nevertheless, especially the quantification of hetero-
geneous materials is challenging due to various physical and chemical 
matrix effects (Cremers and Radziemski, 2013; Hahn and Omenetto, 
2012; Miziolek et al., 2006; Takahashi and Thornton, 2017). This is why 
LIBS in geology has mostly been used for classification problems and 
qualitative analysis of rocks or minerals (e.g. El-Saeid et al., 2019; 
Gottfried et al., 2009; Harmon et al., 2013; Khajehzadeh and Kauppinen, 
2015; Lui and Koujelev, 2011; Meima and Rammlmair, 2020; Nikonow 
et al., 2019; Sirven et al., 2007). However, an increasing number of 
applications aims at using LIBS for quantitative geological applications 
as well (e.g. Death et al., 2008; El Haddad et al., 2019; Kuhn et al., 2016; 
Kuhn and Meima, 2019; Meima and Rammlmair, 2020; Pagnotta et al., 
2020; Pořízka et al., 2014; Sanghapi et al., 2016; Tucker et al., 2010; 
Wiens et al., 2013). 

Most carbonatitic REE deposits are exposed to various phases of 
hydrothermal alteration leading to their REE enrichment (Nadeau et al., 
2015). The relevant rare earth bearing minerals mostly occur in the form 
of small aggregates at pathways of hydrothermal fluids, like fracture 
zones or as thin crusts around mineral rims, which they sometimes 
replace completely (Deng et al., 2017). Scanning LIBS has been shown to 
be capable of the detection of trace elements in small aggregates in a 
highly heterogeneous geological material (Díaz et al., 2017; Fabre et al., 
2018; Meima and Rammlmair, 2020). The reliable detection of REEs in a 
highly heterogeneous geological environment, however, could be 
strongly improved by matrix-matched intensity limits. In this paper, an 
innovative combination of unsupervised clustering and raster analysis 
has been investigated for this purpose. To be able to detect aggregates 
that are enriched in REEs, it is necessary to separate the LIBS spectra that 
belong to the rock matrix on the one hand, and the spectra belonging to 
the mineral rims on the other hand. So far, unsupervised clustering 
techniques have only rarely been applied on LIBS mappings, and for 
different purposes, e.g. to investigate the composition of archaeological 
samples, identify brass alloy compositions, evaluate damage in concrete 
samples or detect wavelengths for the quantification of heavy metals in 
shellfish (Gottlieb et al., 2017; Pagnotta et al., 2015, 2017; Yuan et al., 
2018). 

In this paper, we present a novel approach to detect spots with 
increased REE contents in a large geological LIBS mapping using a 
combination of k-means clustering and raster analysis. We analysed a 
highly heterogeneous drill core from the central complex of the 

Storkwitz carbonatite in eastern Germany. This carbonatitic complex 
has been investigated in detail by Krüger et al. (2013) and Seifert 
(2000). The dominant rock type is a poly-breccia that contains broken 
mineral or rock fragments, so called clasts of both, country rock and 
earlier stage carbonatites that are embedded in a matrix with different or 
similar composition as the clasts. For REE detection, rock matrix and 
clasts were divided using k-means clustering before raster analysis was 
performed to extract all points that belong to mineral rims. In a last step, 
mineral rims without REE enrichment were used as a matrix-matched 
subset to establish a limit for the spectral intensity above which REE- 
carbonates can be detected with our LIBS system. 

2. Materials and methods

2.1. Sampled material and reference measurements

The Storkwitz complex includes a mixture of carbonatite related 
fragments such as carbonates (containing CO3), apatite and phlogopites. 
Additionally, host rock fragments of silicates (containing high concen-
trations of SiO2 and combinations of K2O and Na2O) and palaeozoic 
sediments can be found. These clasts are embedded in a carbonatitic 
matrix (Krüger et al., 2013; Seifert, 2000), which appears to be a mixture 
of multiple breccia generations of a mainly carbonatitic mineral 
assemblage and variable amounts of host rock fines. It is important to 
notice that despite not being indicated by its name, the Storkwitz car-
bonatite still contains roughly 50% of felsic components, which are not 
composed of carbonate. For more detailed information on the Storkwitz 
complex, we refer to Krüger et al. (2013), Seifert (2000) and Niegisch 
et al. (2020). 

The analysed drill core is part of drilling SES 1/2012 carried out by 
the Seltenerden Storkwitz AG in 2012. It comes from a depth of 493 m 
and stratigraphically belongs to the centre of the central complex. 
Table 1 gives an overview of the relevant petrographic unit of the 
Storkwitz complex, the occurring rock types, their major and minor rock 
forming minerals and the associated compositions as identified by 
Krüger et al. (2013) and Seifert (2000). The investigated drill core be-
longs to the carbonatites, more precisely to the Dolomite-Carbonatite 
breccia, and seems to be representative for the central complex of 
Storkwitz. 

The analysed sample contains a large variety of clasts ranging from 
millimetres up to several centimetres in size. The clasts cover various 
minerals of carbonatite and silicate origin (Table 1) and are embedded 
in a matrix of carbonatite minerals and rock fines. The core was cut in 
half and a 1 cm thick slice was removed. Three quadratic thin sections 
with a length of 2.2 cm were cut out of the removed cuboid for micro-
probe measurements, covering clasts with varying compositions as well 

Table 1 
List of minerals with formulae occurring in host rock fragments and attributed to 
different stages of the Storkwitz Dolomite-Carbonatite breccia itself.  

Rock types Major and minor rock 
forming minerals 

Formulae 

Granitoid clasts Richterite Na[CaNa](Mg, 
Fe2+)5[(OH)2|Si8O22] 

Aegirine NaFe3+[Si2O6] 
Alkali feldspar KAlSi3O8 
Quartz SiO2 

Clasts of palaeozoic 
sediments 

Quartz, clays  
Plagioclase, clays  

Early-stage 
carbonatite-related 
clasts 

Dolomite CaMg[CO3]2 
Calcite Ca[CO3] 
Ankerite CaFe[CO3]2 
Apatite Ca5[(F,Cl,OH)|(PO4)3] 
Pyrochlore Ca2Nb2O7 
Phlogopite KMg3[(F,OH)2|AlSi3O10] 

Post brecciation 
matrix 

Various interfragmentoidal 
carbonates 

(CaMgFeMnSr)2[CO3]2 

Late stage crystallites REE-carbonates (Ce,La,Nd,Y)[(F,OH)|CO3]  
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as the rock matrix (Fig. 1A). The area below the removed slice (Fig. 1B) 
was mapped with μ-EDXRF and LIBS, revealing a slightly different sur-
face than the thin sections. Since the main purpose of microprobe 
measurements was the quantitative verification of REE existence in the 
core, measuring the exact same surface is not necessary for the method 
presented. 

The electron microprobe measurements were performed with a JEOL 
JXA-8530F Hyperprobe. For analysis, an acceleration voltage of 20 kV, a 
sample current of 50 nA and a beam diameter of 10 μm were used. 
Measurement time varies between 10 and 60 s depending on the specific 
element. Elements were calibrated against topaz (F), celestine (Sr) and 
monazite (La, Ce, Nd). Additionally, the standards periclase (Mg), quartz 
(Si), calcite (Ca), rhodochrosite (Mn), siderite (Fe), smithsonite (Zn) and 
REE-glass (Pr, Sm, Gd, Dy) were used for the calibration of carbonates. 
For apatite and pyrochlore, the additional standards willemite (Zn), 
almandine (Fe), jadeite (Na), xenotime (Y), zircon (Zr), rhodonite (Mn), 
tugtupite (Cl), columbite (Nb, Ta), baryte (Ba, S), monazite (Pr, Sm), 
albite (Si), pyrope (Mg), plagioclase (Al), orthoclase (K), apatite (Ca, P) 
and rutile (Ti) were chosen. Corrections were performed using the PRZ 
(phi-rho-z) method and an in-house spreadsheet. Detailed information 
on the PRZ method can be found in Brown (1991). The total number of 
measurement points per mineral varies according to the mineral distri-
butions in the sample. Additionally, ankerite, dolomite and calcite were 
combined, leading to an elevated number of measurement points for 
carbonates. 

A proper validation of spatially resolved LIBS-based REE enrichment 
results would ideally require space-resolved REE reference measure-
ments with an analytical technology capable of REE analysis. However, 
this solution, using a scanning microprobe or LA-ICP-MS for example, 
would be extremely time consuming, cost intensive and not possible 
with such a large sample. At this stage of our research, we opted for a 
qualitative validation of the results. Thereto, the sample that was 
mapped with LIBS was mapped beforehand with the Energy Dispersive 
X-Ray Fluorescence (μ-EDXRF) spectrometer M4 Tornado (Bruker Nano 
GmbH, Germany). The Rh-tube, equipped with a polycapillary at an 

incident angle of 51◦ was operated with an excitation energy of 50 kV, 
600 μA (30 W) and a spot size of 20 μm. Data acquisition was done 
sequentially by two opposing detectors with 51◦ take off angle each at 
2 ms per pixel acquisition time. Data evaluation was done by calculating 
the minimum signal per pixel of both detectors to eliminate diffraction 
signals in 2D element distribution patterns. The complete mapping also 
covers 10 × 15 cm. For further information on the instrument, its spec-
ifications and the methodology, we refer to Nikonow and Rammlmair 
(2016). 

2.2. LIBS setup 

The LIBS mappings were carried out with a drill core scanner pro-
totype developed by Lasertechnik Berlin (LTB) in 2011. The LIBS aper-
ture consists of a 20 Hz Q-switch Nd-YAG laser that fires 11 ns pulses at 
1064 nm with an energy of 50 mJ, an Echelle spectrometer (285–964 nm 
spectral range, 0.029–0.096 nm resolution) with a CCD detector and an 
optical camera. An exhaust system is mounted to avoid cross-crater 
contamination and the ionization of dust particles between laser head 
and focus point. The laser can move up to 1 m in X and 2.5 cm in Y di-
rection and has a spot size of 200 μm. To reduce the effects of temper-
ature change on the spectrometer to a minimum, spectrometer and CCD 
are constantly held at 27 ◦C. Additional information on the parts and the 
general structure of the scanner can be found in Kuhn et al. (2016) and 
Meima and Rammlmair (2020). 

Delay time and the number of laser shots to accumulate were opti-
mized beforehand based on the maximum line emission of major ele-
ments in similar material. For this experiment, a delay time of 1 μs was 
chosen. The scans were produced point by point with a short stop for 
each specific point measurement. For every measurement position, three 
laser pulses were accumulated. All spectra were background-corrected 
using a built-in dark measurement subtraction. The entire sample sur-
face of 10 × 15 cm was mapped with a step size of 200 μm in four distinct 
measurements (Fig. 1C). After one area was mapped, the sample was 
moved by hand parallel to the stage for 2.5 cm in the specified direction 

Fig. 1. (A) Positions of the thin sections 1828314, 1828315, and 1828317 on the core before a 1 cm slice was removed. Thin sections were used for microprobe 
analysis. (B) Core sample of the Storkwitz deposit measured with μ-EDXRF and LIBS after the 1 cm slice was removed. (C) Distinct areas mapped with the LIBS drill 
core scanner. The arrows indicate the direction of the laser movement for mapping. Area 1, 2 and 3 cover 2.5 × 15 cm, area 4 covers 2.4 × 15 cm in size. 
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(Fig. 1C). Areas 1 to 3 cover 2.5 × 15 cm, area 4 covers 2.4 × 15 cm. The 
four distinct mappings were merged to one dataset that comprises the 
entire surface. Fig. 2 shows parts of a typical spectrum from a mea-
surement spot rich in REEs and zooms in on spectral regions with 
characteristic emission lines for Ce, La and Nd. 

2.3. Data processing 

The raw data of the LIBS measurements were processed as described 
below. All software-dependant processing from step 2 onward was done 
using the open-source software R, Version 3.5.1 (R Core Team, 2018). 

2.3.1. Step 1 
The spectrometer covers 36,400 distinct bands. Since the sample 

contains only a certain number of key elements (Table 1), using all bands 
would create a huge amount of redundant information, whereas spectral 
binning could result in a loss of information. Therefore, a total number 
of 66 emission lines were selected beforehand (Table 2), based on the 
expected minerals and their corresponding element composition 
(Table 1). Accordingly, all major rock forming elements (i.e. Al, Ca, Fe, 
K, Mg, Mn, Na, Si and Ti) were considered. Beryllium, Li, Ba, and Sr are 
often associated with REE occurrences and were therefore added to the 
list. Phosphor is an indicator for apatite, a possible carrier of REEs. 
Carbon was included because of the abundance of calcite and dolomite. 
The remaining elements are the rare earth elements Ce, La, Pr, Sm, Gd 
and Nd, as well as Nb, Y, and Ta. 

The selected elements as well as their wavelengths are listed in 
Table 2. Where possible, at least three distinct wavelengths of different 
strength were selected to be able to identify possible interferences or 
self-absorption effects on individual emission lines. References for 
element specific wavelengths were the NIST-, Kurucz and AtomTrace- 
Databases available online (AtomTrace, 2020; Kramida et al., 2017; 
Smith et al., 2001), as well as Kuhn et al. (2016), Meima and Rammlmair 
(2020) and the U.S. Army Research Laboratory (2010). Additionally, 
some REE specific wavelengths were taken from Abedin et al. (2011) 

and Bhatt et al. (2018). Furthermore, for reference purposes, the stan-
dardized reference sample CGL 111, containing 2.90 wt% Ce, 1.93 wt% 
La and 8800 ppm Nd, was also analysed with our LIBS system. 

Fig. 2. LIBS spectrum enriched in REEs, with emphasis on spectral regions with characteristic emission lines for Ce, La, and Nd.  

Table 2 
Selected emission lines for major rock forming elements, 
minor elements, and REE.  

Element Spectral line (nm) 
Al I 308.22, 394.40, 396.15 
Ba II 553.55, 614.17, 712.03 
Be II 313.04, 313.11 
C I 909.48 
Ca I 430.25 
Ca II 315.89, 396.85 
Ce II 394.28, 415.20, 457.23 
Fe I 358.12, 371.99, 373.49 
Gd I 371.36, 405.36, 419.08 
Gd II 342.28 
K I 766.49, 769.90 
La I 394.91 
La II 333.75, 338.09, 408.67 
Li I 610.36, 670.78 
Mg I 285.21, 517.27, 518.36 
Mn I 403.08, 403.31, 403.45 
Na I 588.99, 589.59, 819.48 
Nb I 379.12, 412.38, 416.37 
Nb II 313.06 
Nd II 401.23, 415.63 
P II 603.4, 604.31 
Pr I 513.38 
Pr II 417.94 
Si I 288.16, 390.55 
Si II 634.71 
Sm I 429.67, 447.09 
Sr I 460.73 
Sr II 407.77, 421.55 
Ta I 331.12, 406.14 
Ta II 301.25 
Ti II 308.80, 336.12, 337.28 
Y II 371.03, 377.43, 417.75  
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Peak integration was performed with an in-house C-program using
an integration window of 0.05 nm. The size of the integration window 
was set relatively small to avoid overlap between emission lines close to 
each other. To prevent an unrealistic fit due to the integration of very 
close peaks, the intensity change around the centre of the expected 
peaks is monitored. If the intensity change does not follow a peak shape, 
the integration is aborted. 

2.3.2. Step 2 
Intensities of the extracted emission lines were stored in a LIBS 

hyperspectral data cube of stacked images, where each image represents 
the intensity distribution for one extracted emission line and each pixel 
corresponds to a single LIBS measurement. A more detailed description 
of the data cube can be found in Meima and Rammlmair (2020). 

2.3.3. Step 3 
The cumulative intensity of all extracted emission lines was used to 

normalize the raw LIBS data to reduce shot-to-shot variations. Thereto, 
for every single pixel, the cumulative intensity of all extracted emission 
lines of Table 2 was calculated. The raw intensity of every single emis-
sion line was then divided by the corresponding cumulative intensity. 

2.3.4. Step 4 
K-means clustering was applied to divide rock matrix and clasts as a

first step in the extraction of mineral rims. We used the algorithm in-
tegrated in the R-stats package (R Core Team, 2018) and used as input 
the normalized intensities for all LIBS spectra as described in step 1, 2 
and step 3. The algorithm divides n observations into k cluster. Each 
observation, which in our case represents one pixel, is connected to its 
nearest cluster centre based on the distance. The number of centres k has 
to be predefined. K-means was first introduced by MacQueen (1967) 
after an idea of Steinhaus (1956) and we refer to those papers for a 
detailed description. 

The first cluster centres are initialized randomly, which can lead to a 
different partition of the data in different runs, even though the amount 
of centres remains constant. To avoid this problem of reproducibility, 
multiple initial configurations are created. In our case, using ten initial 
configurations lead to identical clustering results for five runs. The 
partitioning with the most replications is chosen as the output. The 
predefined number of maximum iterations was set to 200 but was never 
reached. 

The optimal number for k is not known beforehand and several 
different internal criteria exist to calculate the optimum for k. We used 
the PBM-Index developed by Pakhira et al. (2004), which is integrated in 
the R package ‘clusterCrit’ (Desgraupes, 2018). It is has been shown to 
deliver excellent results, mostly superior over several other criteria 
(Vendramin, 2010; Wang and Zhang, 2007). The computational inten-
sive PBM-Index was calculated for a representative subset of the data. 
We therefore subsampled the data randomly into 40,000 observations n, 
clustered the subset and calculated the optimal number of clusters based 
on the PBM-Index. Here, three cluster centres were found to be optimal 
and therefore used. Subsequently the k-nearest neighbour (knn) algo-
rithm was used to fit the complete dataset to its closest cluster centre. In 
three runs with differently randomized sample sets, only 0.05% of the 
points showed differences in classification. Three clusters would also 
correspond to the number of major rock types, i.e. silicates, carbonates 
and the rock matrix and therefore, the complete dataset was clustered 
with k-means using three cluster centres. 

The application of k-means for highly heterogeneous materials using 
spectral data e.g. from LIBS experiments may seem surprising, as the 
convex nature of k-means may lead to inappropriate classification with 
hard borders unable to consider potential outliers. However, we initially 
also tested other clustering algorithms such as DBSCAN, EM-clustering, 
and Self-Organizing-Maps. The results were nearly identical to those 
obtained with k-means. In comparison, k-means is computationally fast 
and easy to employ. This allows the establishment of meaningful 

internal cluster criteria to find the optimal parameter k by testing a large 
number of different cluster centres. This is especially useful for large 
datasets like the one used in this paper, which otherwise would take a 
long time to process. Although sample heterogeneity is high, the three 
rock types show typical differences in several emission lines, which 
explains why meaningful results could be obtained with k-means as well. 
Additionally, we investigated the use of Principal Component Analysis 
(PCA) for dimensionality reduction before clustering. However, as there 
was no difference in the clustering result and no enhancement regarding 
computing time, we discarded PCA. 

2.3.5. Step 5 
A majority filter with 5 × 5 kernel was applied to smooth the image 

and integrate single pixel into their surrounding class. This is important 
from a geological point of view for two reasons: (1) Single pixel that are 
assigned as a clast but are inside the rock matrix are too small to be clasts 
and (2) Single pixel that are defined as rock matrix but are inside of 
clasts are falsely classified and instead are part of the specific clast. In 
both cases, the class was assigned wrong since a single point with a 
diameter of 200 μm is neither a complete clast nor matrix. To integrate 
these pixels into their surroundings, we used an approach similar to 
closing in image analysis: A majority filter was employed to the clus-
tering result and the central pixel of the 5 × 5 kernel was assigned to the 
most frequent class in the 25 considered pixel. Padding was used to 
prevent size reduction at the edges. This can lead to an equal distribution 
of classes for edge pixel, in which case the class of the central pixel was 
not changed. 

The size of the moving window is crucial for the result. Since three 
classes were produced during clustering, a 3 × 3 window is not effective 
in case each class is assigned three pixels, whereas a 7 × 7 window 
covers 49 pixel in total. Since this is a large area, parts of the matrix 
between bigger clasts would wrongly be assigned as a clast. Due to the 
spot size of 200 μm, a 5 × 5 window corresponds to a square with 1 mm 
length, which is suitable for assigning even small minerals as well as the 
rock matrix correctly. This way, single particles with a small grain size 
around 200 μm are adjusted according to their surrounding material. 
Although this causes finest fractions to disappear, it increases geological 
accuracy, since clasts are rarely this small and rock matrix normally does 
not occur in such small fractions inside of clasts. 

2.3.6. Step 6 
A buffer zone was calculated corresponding to mineral rims of 

separated clasts. We used the ‘raster’ package in R (Hijmans, 2019) to 
calculate a buffer zone around the clasts identified with k-means. This 
buffer zone matches the mineral rims and consists of pixel belonging to 
the Matrix-Cluster and its size is important: If the buffer zone is too big, 
information on mineral border chemistry will be mixed with chemistry 
of the pure rock matrix. One pixel in our mapping already corresponds to 
200 μm, so only one pixel was used as the buffer distance. 

2.3.7. Step 7 
As a last step, matrix-matched intensity limits were calculated for La. 

These limits enable the identification of a spectral intensity, above 
which REE-carbonates can be detected with the LIBS system used. Cal-
culations are based on the La emission lines, which showed much higher 
abundancies compared to the other investigated REE lines. A matrix- 
matched background signal without any excitation was created using 
only pixel of rims that are not enriched in La as a subset. Outliers were 
removed using an iterative Z-score to receive a normal distribution 
(Spiegel et al., 2013). The intensity limit was then calculated based on 
the mean and 3 times the standard deviation of the background signal. 
The normalization described in step 3 is not expected to affect this 
calculation, because all processing is matrix-matched and the calculated 
intensity limit is applied only to pixel with similar matrix. 

The different steps are summarized in Table 3, where the performed 
task as well as a short description can be found. 
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3. Results and discussion

3.1. Microprobe reference measurements

Table 4 shows the average composition of REE-carbonates, apatite, 
pyrochlore, and carbonate minerals based on the microprobe measure-
ments. Quantitative microprobe measurements on 33 different spots 
covering rock matrix and rims have shown that REE-carbonates are the 
main carrier for REEs in this sample (Table 4). Cerium, La and Nd show 
highest concentrations of up to 24.4, 15.4 and 9.2 wt%, respectively. 
Praseodymium, Sm and Gd are present but only to minor extends with 
values of 3.5, 1.2 and 3.2 wt%. Yttrium was also measured, but did not 
show concentrations higher than 0.8 wt%. The average size of the 
observed REE-carbonates is around 25 μm, whereas some aggregates 
cover larger areas. Measurements of pyrochlore revealed Nb contents as 
high as 50.2 wt%, whereas ∑REE contents were about 1.5 wt%. 

Fig. 3 shows Back Scattered Electron (BSE) images, in which the 
weight of an element correlates with its optical appearance. Heavier 
elements, like REEs, visually appear brighter on screen and therefore, 
the BSE image is a first indication of the possible REE distribution in the 
sample. However, Ba, which is another heavy element present in 
Storkwitz samples, may be optically indistinguishable from REEs. 
Therefore, quantitative electron microprobe point measurements were 
performed as described in the Materials and methods section to obtain 
an accurate chemical composition of several REE-carbonates. 

Fig. 3 shows that REE enrichments occur in small aggregates, either 
at mineral rims (A and B) or at porosities or microfractures in the rock 
matrix (C and D). This is in accordance with other carbonatite REE de-
posits, where REE bearing minerals were also found as thin layers at 

grain boundaries or in fracture zones (Deng et al., 2017; Lottermoser, 
1990). Twenty-one of the 33 measured REEs were analysed at mineral 
rims, the 12 remaining spots cover microfractures or porosities in the 
matrix. Average element concentrations of both areas are displayed in 
Table 4. The measured spots shown in Fig. 3 are representative for all 
REE-rich spots in the thin sections shown in Fig. 1A. 

To estimate REE concentrations in other carbonates and possible 
carrier minerals (e.g. apatite and pyrochlore), several spots have been 
measured covering these minerals. Forty-six of these spots cover apatite 
and 28 pyrochlore. Overall, 109 other carbonates were measured, 
divided into ankerite, dolomite and calcite. The averaged results are 
shown in Table 4. Apatite shows average Ce concentrations of 0.69 wt%, 
pyrochlore of 0.96 wt%. Averaged contents for all other carbonates are 
0.03 wt%. Silicate clasts were measured as well but did not contain any 
La, Ce, Pr, Nd, Sm, or Gd. 

3.2. LIBS measurements and clustering 

Fig. 4 shows an RGB-image of normalized intensities representing the 
major rock forming elements Si, Ca and K as red, green and blue, 
respectively. This reveals two main types of clasts, one with mixed in-
tensities of Si and K (purple) and one only containing Ca (green), missing 
the silicate components completely. Looking at these three elements, the 
rock matrix mostly consists of Ca with varying proportions of Si and K, 
making it distinguishable from both the carbonate clasts and the Si and K 
rich silicate clasts. Fig. 4 also shows a close-up of the intensity distri-
bution of emission line La I – 394.91 nm for areas where the thin sections 
were taken. Since the extracted Ce and Nd emission lines show 
distinctively lower peak intensities than the La lines (Fig. 2), we focused 
on La to detect pixel enriched in REEs. 

To make sure that the observed low intensities of Ce and Nd are not 
due to poorly chosen emission lines, we closely investigated several REE- 
rich spectra from different spots in the measured area. Thereto, the REE- 
rich spectra were compared to emission lines of REEs proposed by other 
researchers and to the NIST database (e.g. Abedin et al., 2011; Bhatt 
et al., 2018; Kramida et al., 2017). Unfortunately, no alternative 
interference-free emission lines with significantly higher intensities for 
Ce and Nd could be found. Additionally, we closely examined LIBS 
spectra of the CGL 111 reference standard, containing 2.90 wt% Ce, 
1.93 wt% La and 8800 ppm Nd. The chosen emission lines for REEs 
(Table 2) were detected most conveniently and with similar intensities 
as displayed in Fig. 2. La on the other hand shows sufficiently strong 
emission lines useful for the determination of REE-carbonates and we 
therefore focused on La as a tracer for REE-carbonates. Strong La lines 
were also found in earlier LIBS measurements of REEs on hydrothermal 
ores by Fabre et al. (2018) or homogeneous minerals by Gaft et al. 
(2019). 

The highest La intensities were found at the rims of clasts as well as in 
distinct particles related to porosities and microfractures that are loosely 
distributed in the rock matrix (Fig. 4). Most rims are often not fully 
surrounded by pixel enriched in La, and some mineral rims do not show 
any enrichment at all. These LIBS-based observations correspond very 
well to the microprobe-based observations shown in Fig. 3. Cerium, Nd, 
Pr, Sm, and Gd show coinciding results for most of the selected emission 
lines. However the noise for these REEs seems extensively higher, which 
is due to lower element concentrations and/or weaker emission lines. 

It is important to notice that the average REE-carbonate in the 
investigated sample is significantly smaller than the laser spot size of 
200 μm of the LIBS system used (Fig. 3). If the average size of a REE- 
carbonate is about 25 μm (Fig. 3), the resulting contribution of a REE- 
carbonate to the overall spectral emission of a pixel featuring a REE- 
carbonate is roughly 13%. The residual 87% emission is based on the 
surrounding material, which dilutes the peak intensity of the REE 
emission lines and increases the heterogeneity of REE-rich spectra. This 
makes it difficult to use a simple signal-to-noise ratio for the 2D map-
ping, with which REE-rich spectra could be found. Establishing a 

Table 3 
Overview of the applied steps during data processing.  

Step Action Description 
1 Integration of relevant emission 

lines. 
At least 2–3 emission lines were 
selected for major rock forming 
elements and relevant REEs ( 
Table 2). The spectra were 
integrated with an integration 
window of 0.05 nm around the 
peaks. 

2 Generation of the LIBS hyper- 
spectral data cube. 

Conversion of the extracted 
emission lines into an ENVI 
compatible format. This allows an 
easy visualization of spatially 
resolved element distribution maps. 

3 Normalization to correct for shot-to- 
shot variations. 

For every pixel, the integrated 
intensity of every single emission 
line was divided by the cumulated 
intensity of all extracted emission 
lines. 

4 The k-means algorithm was used to 
separate clasts and rock matrix in the 
mapping. 

K-means clustering was applied to 
all pixels using the normalized 
intensities of the selected set of 
emission lines. The optimal number 
of clusters was defined using the 
PBM-Index. 

5 Smoothing to remove noise and 
falsely classified single pixel. 

A moving window of size 5 × 5 was 
applied. The central pixel was 
assigned to the majority of all 25 
pixels in the window. 

6 Extraction of mineral rims. A one-pixel buffer zone was 
calculated around every clast. The 
buffer zones correspond to mineral 
rims. 

7 Establishment of a matrix-matched 
intensity limit, above which REE- 
rich areas can be detected. 

Mineral rims without any REE 
enrichment were used to define a 
matrix-matched background signal 
to calculate an intensity limit for 
REEs. This intensity limit was 
transferred to all pixel of the 
formerly separated matrix (Step 3).

S. Müller et al.                                                     

28



Journal of Geochemical Exploration 221 (2021) 106697

7

Table 4 
Quantitative chemical composition of REE-carbonates, apatite, pyrochlore and carbonate minerals as measured with the microprobe. The numbers give both the 
average chemical composition as well as the measured natural compositional variation based on microprobe measurements of n different minerals.   

REE-carbonate (n = 33) REE-carbonate at rims (n = 21) REE-carbonate in matrix (n = 12) Carbonate (n = 109) Apatite (n = 46) Pyrochlore (n = 28) 
Si wt% 0.4 ± 0.5 0.5 ± 0.6 0.2 ± 0.3 0.0 ± 0.1 0.0 ± 0.1 0.2 ± 0.5 
Ti wt% – – – – 0.0 ± 0.1 1.4 ± 0.5 
Al wt% – – – – 0.0 ± 0.0 0.0 ± 0.0 
Fe wt% 0.5 ± 0.5 0.7 ± 0.5 0.3 ± 0.3 3.2 ± 2.6 0.1 ± 0.1 0.6 ± 0.6 
Mn wt% 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 1.4 ± 1.4 0.1 ± 0.0 0.1 ± 0.0 
Mg wt% 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 6.7 ± 4.3 0.1 ± 0.1 0.0 ± 0.0 
Ca wt% 5.6 ± 2.9 5.0 ± 1.6 6.6 ± 4.1 27.0 ± 8.0 37.3 ± 1.3 10.6 ± 1.5 
F wt% 7.0 ± 1.1 7.3 ± 0.5 6.4 ± 0.5 0.0 ± 0.0 2.7 ± 0.6 4.1 ± 0.8 
Na wt% – – – – 0.3 ± 0.1 4.7 ± 0.9 
K wt% – – – – 0.0 ± 0.1 0.0 ± 0.0 
Cl wt. – – – – 0.0 ± 0.0 0.0 ± 0.0 
P wt% – – – – 17.6 ± 1.1 0.0 ± 0.0 
S wt% – – – – 0.0 ± 0.0 0.0 ± 0.0 
Ba wt% – – – – 0.0 ± 0.0 0.1 ± 0.0 
C wt% 4.3 ± 0.7 4.3 ± 0.3 4.5 ± 1.0 12.5 ± 0.3 – – 

Ce wt% 24.4 ± 1.8 24.4 ± 1.6 24.3 ± 2.2 0.03 ± 0.1 0.7 ± 0.4 1.0 ± 0.2 
Dy wt% 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.0 – – 

Gd wt% 3.2 ± 0.3 3.2 ± 0.2 3.2 ± 0.3 0.00 ± 0.0 – – 

La wt% 14.8 ± 2.5 15.4 ± 1.5 13.8 ± 3.4 0.01 ± 0.0 0.3 ± 0.3 0.3 ± 0.1 
Nb wt% – – – – 0.0 ± 0.0 47.9 ± 2.5 
Nd wt% 8.3 ± 1.8 7.8 ± 0.8 9.2 ± 2.6 0.01 ± 0.0 0.3 ± 0.2 0.3 ± 0.1 
Pr wt% 2.3 ± 0.3 2.3 ± 0.1 2.5 ± 0.5 0.00 ± 0.0 0.1 ± 0.2 0.1 ± 0.0 
Sm wt% 1.1 ± 0.4 1.0 ± 0.1 1.2 ± 0.5 0.00 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 
Sr wt% 0.4 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 0.6 ± 0.5 1.8 ± 1.0 1.2 ± 0.7 
Ta wt% – – – – 0.0 ± 0.1 0.4 ± 0.6 
Y wt% – – – – 0.1 ± 0.1 0.0 ± 0.0 
Zn wt% 0.0 ± 0.0 0.00 ± 0.0 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 
Zr wt% – – – – 0.0 ± 0.0 0.2 ± 0.2 
O wt% 23.7 ± 2.4 23.3 ± 1.2 24.3 ± 3.6 50.0 ± 1.2 37.4 ± 1.5 26.8 ± 0.7 
Total wt% 96.1 ± 2.7 95.8 ± 2.3 97.0 ± 3.0 101.4 ± 1.8 99.0 ± 2.2 100.0 ± 3.9  

Fig. 3. BSE-images showing typical examples of analysed microprobe spots in the thin sections 1828314 and 1829317. Black circles indicate the measured spots. REE 
minerals show a bright colour. (A) and (B) are representative for areas were mineral rims are enriched in REEs, (C) and (D) show occurrences in elevated porosity or 
microfractures in the matrix. 
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normalized intensity limit despite the spectral heterogeneity and the 
varying contributions of REE-carbonates to a spectrum is discussed in 
Section 3.3. 

Fig. 5A shows the result of k-means clustering using the three pre-
defined cluster centres. In the following sections, the three identified 
clusters are referred to as Silicate-Cluster, Carbonatite-Cluster, and 
Matrix-Cluster, corresponding to silicates, carbonates and the rock ma-
trix. The main drivers of the separation can be traced more precisely by 
looking at Fig. 6, which shows the mean intensities of the selected 
emission lines for the three clusters. 

The Silicate-Cluster shows - in comparison with the Carbonatite- 
Cluster and the Matrix-Cluster - the highest emission intensities for 
Na, K, and Al, and the lowest emission intensities for Ca, Mg, Sr and Ba. 
This result is consistent with the mineralogy of the silicate clasts, which 
are generally rich in K and Na (i.e. richterite, aegirine, alkali feldspar 
and phlogopite) but poor in Ca, Mg, Sr, and Ba. The Carbonatite-Cluster 

shows the highest emission intensities for Ca, Mg, and Sr, and the lowest 
emission intensities for Na, K, and Al. Minerals of the Carbonatite- 
Cluster are indeed enriched in these elements (i.e. dolomite, ankerite 
and calcite). The Matrix-Cluster shows intermediate emission intensities 
for Na, K, Ca, Mg, and Sr and is representative for a mixture of very fine 
grained silicates and carbonates, which explains why the intensities are 
in between those from the Silicate- and the Carbonatite-Cluster. 

However, there are no particular emission lines that are distinctively 
unique to a specific cluster and therefore, no single element can be used 
for a clear separation. Accordingly, the results based on clustering only 
(Fig. 5A) show a lot of scattering in the data and reveal relatively diffuse 
class boundaries. The moving window step, however, effectively 
removed the scattering in the data and created sharp boundaries be-
tween the three classes (Fig. 5B). Fig. 5C shows the resulting rims that 
were calculated on the basis of Fig. 5B. 

For validation purposes, Fig. 5B is compared to the LIBS element 

Fig. 4. RGB-image with Si I 288.16 nm (red), Ca I 430.25 nm (green) and K I 766.49 nm (blue) on the left to illustrate the chemical differences between Si- and K-rich 
silicates, Ca-rich carbonatitic clasts and the matrix in between. A more detailed overview of the areas corresponding to the thin sections is presented for La I 
394.91 nm with enrichments at the rims of some clasts or in the matrix. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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Fig. 5. (A) Result of k-means clustering using three predefined cluster centres. (B) Results after the application of a 5 × 5 moving window. (C) Calculated buffer zones 
around silicate (pink) and carbonate clasts (green). (D) Buffer zones over optical image for validation. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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mapping for Si288-Ca430-K766 (Fig. 4) and to the optical image of the 
physical sample (Fig. 5D). A distinct quantitative validation of the 
quality of the classification result is hardly possible, as the only refer-
ence is geological knowledge of the optical sample assisted by element 
mappings (e.g. Fig. 4). Therefore, the results of Fig. 5B were carefully 
compared to changes in texture (Fig. 5D) as well as to colour differences 
in the element mapping (Fig. 4). The differences in colour (Fig. 4) and 
texture (Fig. 5D) are generally in good agreement with the class distri-
bution shown in Fig. 5B. Therefore, we assume that the final classifi-
cation results shown in Fig. 5B are valid. 

Nevertheless, clustering may fail when the chemical composition of 
the clasts becomes too similar to the composition of the matrix. This 
seems only to apply to small parts of the lower left area of the investi-
gated sample. These areas are assigned to the Silicate-Cluster, whereas 
Fig. 4 and the optical image (Fig. 5D) indicate that they belong to the 
Matrix-Cluster instead. 

3.3. Raster analysis and possibilities to calculate a matrix-matched 
intensity limit for REEs 

Applying the moving window results in Fig. 5B. Single pixel are 
clearly integrated in their surroundings, and noise introduced by 
wrongly classified pixel is reduced. Fig. 5B was subsequently used to 
calculate buffer zones around the Silicate-Cluster and the Carbonatite- 
Cluster, respectively. Overall, the Silicate-Cluster comprises 484 and 
the Carbonatite-Cluster 446 clasts. Accordingly, as many buffer zones 
were calculated and extracted (Fig. 5C). The buffer zones correspond to 
mineral rims with a width of 200 μm. 

The mean normalized intensities for rim pixel around the Silicate- 
and Carbonatite-Clusters are very similar to those of pixel belonging to 
the Matrix-Cluster (Fig. 6). This indicates that the chemical composition 
of rim pixel is very similar to pixel belonging to the Matrix-Cluster and 
independent of the surrounding clast. Based on these similarities, we 
assume similar chemically induced matrix effects for pixel around rims 
as for pixel belonging to the Matrix-Cluster. This finding is relevant for 
the calculation and application of matrix-matched intensity limits, 
above which REE-carbonates can be detected with the LIBS system used. 

Fig. 6. Mean normalized intensities of individual emission lines for the three clusters produced with k-means clustering as well as for the extracted rims of the 
carbonate and silicate clasts. 
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The calculation of a Limit of Detection (LOD) usually requires
matrix-specific blank measurements (Ismail et al., 2004; Windom and 
Hahn, 2009). However, these are not easily available for our measure-
ments, which is a common problem for LIBS measurements on hetero-
geneous geological samples (Fabre, 2020). Since there is no possibility to 
create a sample with the same matrix and varying but known concen-
trations of La, LOD calculations normally used in analytical chemistry 
cannot be applied here. Instead, a set of representative matrix-specific 
blanks was selected directly from the LIBS mapping as described in 
Section 3.3.1. 

3.3.1. Creating a matrix-matched blank measurement with normal 
distribution 

In order to calculate an intensity limit above which REE-carbonates 
can be detected, a suitable blank measurement representing rims and 
Matrix-Cluster is needed. The blank dataset should be matrix-matched 
and not enriched in La. Consequently, the required matrix-matched 
dataset should show a Gaussian distribution towards the La intensity. 
Fig. 7A shows that the density plot for La II 333.75 nm for all pixel 
belonging to the Matrix-Cluster is indeed heavily shifted towards high La 
intensities. 

A matrix-matched blank dataset, therefore, was prepared based on 
the finding that several mineral rims are not enriched in La at all. This 
was observed in the LIBS mapping and in the microprobe measurements. 
Since chemically induced matrix effects for pixel belonging to rims and 
Matrix-Cluster are likely to be similar (Fig. 6), an intensity limit calcu-
lated for each group can be used for the other group as well. Thereto, all 
930 rims were analysed separately and if only a single rim-pixel was 
assigned as an outlier for any emission line of La by showing a value 
greater than the median plus three times the median absolute deviation, 
all pixel of this rim were dismissed. Although this dataset shows sig-
nificant improvement concerning a normal distribution, a shift towards 
the right can still be observed (Fig. 7A). 

To eliminate the skewness, outliers were removed using the Z-score 
(Spiegel et al., 2013). This approach was applied for both datasets dis-
played in Fig. 7. Since extreme outliers influence the mean and the 
standard deviation largely, an iterative approach was used starting with 
a Z-score of 10. It was decreased by one during every step until a Z-score 
of 3 was reached. After each iteration, we validated the distribution of 
the remaining dataset based on visible skewness and potential outliers 

causing an offset. At a Z-score of 3, which corresponds to a confidence 
level of 99.73% (Spiegel et al., 2013), the treated subset of pixel from 
rims not enriched in La displayed a normal distribution for every 
emission line of La. The pixel of the Matrix-Cluster, however, still dis-
played a visible shift towards higher La intensities (Fig. 7B). 

Since a Z-score of 10 is very high, only extreme outliers are found 
during this iteration step. For pixel of the Matrix-Cluster, only 80 pixel 
were found above this value. This number increased with decreasing Z- 
score to 3979 pixel above a Z-score of 3. For rim pixel without enrich-
ment, the first outlier was found and removed at a Z-score of 5, whereas 
the major amount of outlier in this dataset were removed at a Z-score of 
3. The specific Z-scores for pixel from the Matrix-Cluster and pixel from
rims not enriched in La are indicated in Fig. 7A with grey lines and
dotted black lines, respectively. Fig. 7 only shows La II 333.75 nm, but
the other extracted La lines displayed similar behaviour. Therefore, the
rim-based dataset shown in Fig. 7B was used as a matrix-matched blank
measurement to calculate the normalized intensity limit.

3.3.2. Using the normalized intensity limit to detect enriched pixel in the 
Matrix-Cluster 

Using the mean plus three times the standard deviation as suggested 
for LOD calculations by the IUPAC (1978), La II 333.75 nm shows a 
normalized intensity limit of 23.9, La II 338.09 nm of 33.5, La I 
394.91 nm of 28.1 and La II 408.67 nm of 19.2. The different intensity 
limits for different lines are a result of the intensity distribution of the 
background signal around each individual emission line. Furthermore, 
the extracted emission lines of La are not equally strong (Fig. 2). Because 
of matrix issues, it is important to notice that these normalized intensity 
limits are valid for pixel belonging to the rims and to the Matrix-Cluster 
only. 

These normalized intensity limits are subsequently used to find areas 
enriched in La (and thereto REE-carbonates) in the mineral rims and in 
the Matrix-Cluster. Only if a pixel shows intensity values greater than 
the limits calculated in 3.3.2 for all emission lines of La simultaneously, 
it is treated as enriched. This way, the risk of errors due to element in-
terferences in single La emission lines is reduced. Fig. 8 illustrates the 
importance of using several emission line intensity limits simulta-
neously. The proportion of La II 338.09 nm to La I 394.91 nm of all 
enriched points depicted in grey show a near linear trend with 
increasing intensities observed in both lines. Considering all points 

Fig. 7. (A) Density plot of La II 333.75 nm for all 159,694 pixel belonging to the Matrix-Cluster (grey) and the 5211 pixel from rims not enriched in La (black line). 
Initial and final Z-scores for both subsets are highlighted with vertical lines. (B) Density plot of the same emission line and the remaining 150,618 pixel from the 
Matrix-cluster and 5161 pixel from rims not enriched in La after outlier removal using the iterative Z-score. The vertical line indicates the intensity limit of 23.9 for La 
II 333.75 nm calculated with the 5161 pixel from rims not enriched in La after outlier removal. The application of Z-scores for outlier removal is explained in the text. 

S. Müller et al.                                                     

33



Journal of Geochemical Exploration 221 (2021) 106697

12

shown in Fig. 8, several points form a second trend in which increasing 
values of La I 338.09 nm correspond to near constant values of La I 
394.09 nm, indicating that La enrichment cannot be detected looking at 
only one emission line. Overall, 1.4% of all pixel of the complete map-
ping are above the intensity limit of every extracted La emission line and 
therefore found to be enriched in REEs. 

3.4. Comparison of REE enrichments observed with LIBS and μ-EDXRF 

Fig. 9 shows the spatial distribution of REE enrichments in the 
investigated core as obtained with LIBS as well as with μ-EDXRF. The 
LIBS-data show La-enrichments as a tracer for REE-carbonates around 
mineral rims and in the rock-matrix. Only pixel above the calculated 
intensity limits (Section 3.3.2) were considered to be enriched in La. The 
μ-EDXRF data show pixel that were excited in both Ce Lα and Nd Lα. 
Since La Lα could not be measured with μ-EDXRF, the combination of Ce 
Lα and Nd Lα was used as a tracer for REE-carbonates instead. This 
combination also effectively prevents interferences with e.g. Ba. The 
μ-EDXRF measurement was resized from an original resolution of 
4850 × 5450 pixel to the size of the LIBS measurement 
(495 × 755 pixel). Pixel aggregation was used to calculate the value for 
the resulting pixel, i.e. the mean of all pixel that were merged together. 
Fig. 9 (middle) shows the percentage of REE enriched pixel in every row 
of the image for both the LIBS- and the μ-EDXRF-based images. 

In general, the LIBS-based results seem to be consistent with the 
μ-EDXRF-based results. The μ-EDXRF mapping shows similar spots of 
enrichment as the LIBS analysis. Mostly, Ce Lα and Nd Lα are present at 
rims of minerals and fill porosities inside the matrix. Although an 
identical trend can be observed for the LIBS-based and EDXRF-based 
results (Fig. 9 middle), when looking more closely at the data, minor 
differences can also be seen. The small shift along the intensity profile 

Fig. 8. Correlation between La I 394.91 nm and La II 338.09 nm intensities for 
the Matrix-Cluster. The dots represent all pixel that belong to the Matrix- 
Cluster, the grey dots only those above the normalized intensity limit of both 
emission lines. 

Fig. 9. Comparison of pixel enriched in La with LIBS (left) and Ce Lα and Nd Lα with μ-EDXRF (right). The detected pixel are highlighted in yellow. The two diagrams 
in the centre correspond to the percentage of enriched pixel per row of the LIBS and the μ-EDXRF measurement, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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could eventually sign for a small horizontal misalignment of the mea-
surement area affecting the more morphology-sensitive μ-EDXRF mea-
surement. Since irradiation is performed at a 51◦, a change in focal 
distance would drive the signal slightly out of the pixel under investi-
gation showing some degree of signal attenuation. 

A proper validation of the results would require space-resolved REE 
reference measurements with an analytical technology capable of 
quantitative REE analysis, which is a subject for future research. The 
μ-EDXRF data are not precise enough for a quantitative validation due to 
the rather short spectral acquisition time of 2 ms that resulted in rela-
tively bad signal statistics, the spectral interferences described above, 
the absence of a calibration, and also the differences in sampling depth 
between LIBS and EDXRF. Whereas the LIBS craters are about 50 μm in 
depth (Meima and Rammlmair, 2020), the μ-EDXRF signal saturation 
depth for Ce Lα and Nd Lα could vary between a few tens of μm and a few 
hundreds of μm. This depends on the bulk density at an investigated 
pixel, which is the density of the sum of phases diluted by porosity over 
the excited volume. Typical penetration depths for 90% escape are in the 
range of 5–500 μm, depending on the atomic number of the analyte 
element and composition of the sample (Markowicz, 2011). 

3.5. General discussion 

3.5.1. Mass balance calculation for REE-carbonates and other REE carrier 
minerals 

Microprobe measurements (Table 4) have revealed that small con-
centrations of REEs also occur in apatite and pyrochlore (~0.3 wt% La 
and ~1.0 wt% Ce), as well as in different carbonate minerals (~0.01 wt 
% La and ~0.03 wt% Ce). These concentrations were below the limit of 
detection for our LIBS system, as the corresponding LIBS spectra did not 
show any La and/or Ce peaks. Despite these relatively low concentra-
tions, an unknown amount of REEs could be missed with LIBS simply 
due to the large area that is covered especially by the carbonate min-
erals. Therefore, a mass balance calculation was performed to explore 
the significance of the different REE carrier minerals. 

Table 5 shows the assumptions for the mass balance calculation as 
well as the resulting ∑REE2O3 concentrations for the identified REE 
carrier minerals. The ∑REE2O3 represents the total amount of REE 
expressed as oxide. The ∑REE2O3 weight percentages were calculated 
using specific REE concentrations for each carrier mineral, mineral 
densities, and the area percent covered by each carrier mineral on the 
analysed sample surface. The ∑REE2O3 concentrations in the different 
carrier minerals are based on the microprobe measurements (Table 4). 
Densities were taken from (Barthelmy, 2012). With respect to the car-
bonate minerals, the average density for dolomite, ankerite and calcite 
was taken. For REE-carbonates, bastnaesite was adopted as the main 
carrier and therefore its density was employed. To determine the area 
percent covered by apatite, pyrochlore, and the different carbonates 
(dolomite, ankerite and calcite), the in-house tool “petrographic ana-
lyst” described by Nikonow et al., 2019 was used on the μ-EDXRF 

measurement data. The size of these carrier minerals is usually greater 
than the LIBS spot size of 200 μm. The effect of internal porosity on the 
signal was ignored since high variation is assumed to occur pixel per 
pixel. 

REE-carbonates, however, are distinctively smaller than the spot size 
of the LIBS instrument. Therefore, the calculated amount of La-enriched 
pixel (1.4%) does not represent the amount of pure REE-carbonates. 
However, the average La content of the La-enriched pixel could be 
estimated on the basis of Fig. 8 as described below. Considering the 
observed La emission intensities shown in Fig. 8, it is assumed that the 
greatest La intensity corresponds to a pixel-volume that is fully covered 
by a relative pore free REE-carbonate aggregate and therefore corre-
sponds to the REE concentration for pure REE-carbonate (Table 4). The 
lowest La intensities on the other hand, are close to the detection limit. 
The La detection limit of our instrument was assumed to be 1 wt%, 
which is in between the La concentrations in apatite and pyrochlore, 
which could not be detected with our LIBS system, and the La concen-
trations in standard CGL 111, which could indeed be detected with our 
LIBS system. Based on a linear equation to fit all La intensities into 
concentrations, the average pixel above the La intensity limit (Section 
3.3.1) would represent a La concentration of ~4 wt%. Accordingly, 27% 
of the 1.4% pixel above the La intensity limit would refer to pure REE- 
carbonates. Table 5, therefore, includes 0.4 area % for pure REE- 
carbonates. 

According to Table 5, the investigated sample would contain a total 
of 0.8 wt% REE oxides, of which 0.1 wt% are present in apatite and 
0.7 wt% in REE-carbonates. Therefore, about 88% of total REE oxides 
were detected with LIBS in this study. 

Goodenough et al. (2016) combined data of different REE deposits 
and their expected REE concentrations. For the Storkwitz diatreme, a 
total of 0.45% REE oxides were reported. Additionally, Niegisch et al. 
(2020) determined REE2O3 concentrations of 0.64 wt% for the upper 
part of the Storkwitz carbonatite. Notably, Niegisch et al. (2020) found 
monazite to be one of the REE bearing minerals, but it was not present in 
our investigated sample. Assuming that the central complex, out of 
which the investigated sample was taken, contains higher amounts of 
REE oxides than the neighbouring parts of the diatreme, 0.8 wt% seems 
to be a reasonable result. Since the highly enriched carbonates represent 
the last stage of hydrothermal alteration, additional information can be 
obtained by the REE partitioning in primary or secondary phases. The 
ratio bulk to secondary enrichment might be a key parameter for 
applying the proper mineral treatment strategy for REE mineral 
recovery. 

3.5.2. Clustering and possible improvements for REE detection with LIBS 
Clustering is a viable option for unsupervised classification of classes 

with similar matrices in LIBS mappings of heterogeneous geological 
samples. Romppanen et al. (2017) have shown that there are more al-
gorithms, such as Singular Value Decomposition (SVD) that can be used 
for this task. Creating matrix-matched subsets for geochemically similar 
spectra of a heterogeneous sample could also be performed using su-
pervised algorithms (e.g. Random Forest, Support Vector Machines or 
feedforward Artificial Neural Networks) instead of the unsupervised 
clustering that was applied in this paper. One major advantage of clus-
tering is exactly this unsupervised nature, which allows a separation into 
chemically similar areas solely based on emission line intensities 
without any prior knowledge. 

In contrast, a supervised classification approach would require 
detailed prior knowledge on material characteristics. This is because in a 
supervised scenario representative subsets for training have to be 
selected carefully beforehand. For an accurate classification of pixel 
enriched in REEs, this subset needs to cover a wide variety of pixels 
containing different proportions of REE-carbonates mixed with sur-
rounding material as well as pixel without any REE enrichment. These 
pixels must in turn cover the different clasts and matrix to be repre-
sentative for the heterogeneity of the sample. However, when such prior 

Table 5 
Assumptions and resulting weight percentages of ∑REE2O3 in the measured 
sample for all minerals containing significant amounts of REE2O3.   

∑REE2O3 in 
mineral 
wt% 

Mineral 
area 
% 

Density 
g/cm3 

∑REE2O3 in 
sample 
wt% 

Carbonate 
minerals  

0.06a 42b 2.9d 0.04 

Apatite  1.8a 4b 3.2d 0.1 
Pyrochlore  1.9a 0.3b 4.1d 0.01 
REE-carbonate  63.3a 0.4c 5.0d 0.7  
a REE concentrations based on microprobe measurements (Table 4). 
b Area % based on mineral classification of μ-EDXRF data (see text). 
c Based on LIBS intensity limits calculated for all La emission lines (see text). 
d Mineral densities taken from Barthelmy (2012). 
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knowledge is available, supervised methods may find application on 
other cores of the same lithology. We have tested a supervised approach 
using as prior knowledge the results obtained in this paper. Thereto, we 
used the pixels enriched in REEs as input for a supervised random forest 
classification. Treating all other pixels as not enriched in REEs and using 
2/3 of each pixel set as training, we were able to classify over 80% of 
testset pixel enriched in REEs correctly. 

Clustering proved to be a useful pre-step prior to separate matrix- 
matched spectra. Working only with matrix-matched spectra (i.e. 
similar LIBS matrices) also helps to overcome interferences within 
emission lines (Fabre et al., 2018), which is important for heterogeneous 
materials that cover various elements of interest. It is especially 
important for the detection of rare earth elements, since emission lines 
of REEs show significant spectral interferences and mostly occur only in 
low concentrations in geological material (Gaft et al., 2019). Using 
several emission lines of the same element simultaneously minimizes the 
risk of spectral interferences in heterogeneous material even further. 

Clustering is also a useful pre-step prior to quantification. Quanti-
fying LIBS data is mostly done with homogeneous reference samples of 
similar matrix and known concentrations, which are difficult to obtain 
for heterogeneous samples (Fabre et al., 2018). Calibration free LIBS 
(CF-LIBS) allows the quantification based on the measured LIBS spec-
trum directly, but several time consuming calculations have to be 
applied in the process (Pagnotta et al., 2018). Quantifying only selected 
areas or even only single spectra of interest reduces the time needed 
greatly. Therefore, combining the extraction methods described in this 
paper with CF-LIBS could be a promising approach to quantify REEs 
directly from the LIBS measurement. 

Due to the small size of REE-carbonates (Fig. 3) compared to the size 
of the LIBS laser spot, REEs are mixed with surrounding material and 
pores, and only minerals with sufficiently high concentrations of REEs 
can be detected with certainty. Therefore, the method described here 
only works well for punctual REE enrichments but fails to detect small 
concentrations diffusively distributed. Without punctual enrichment, 
REE oxide contents are not high enough to be above the detection limit 
for LIBS, which is the reason why we were not able to detect Ce or La 
sufficiently in apatite and pyrochlore. Low concentrations of REEs in the 
material show lower LIBS intensities in general (Bhatt et al., 2018; Gaft 
et al., 2019). Bhatt et al. (2018) showed that measuring samples in noble 
gas atmosphere increases the spectral line intensity of REEs and Gaft 
et al. (2019) were able to detect molecular lines of LaO and YO although 
only minor concentrations of both elements were present. These en-
hancements could enable the detection of REEs appearing in small 
concentrations in mappings of carbonatite REE deposits. Additionally, 
reducing the laser spot size could further reduce dilution, but multiply 
measurement times. 

Several known major REE deposits are geologically similar to 
Storkwitz. They are associated with carbonatites, and different minerals 
show REE enrichments (Deng et al., 2017; Kanazawa and Kamitani, 
2006). Additionally, REE bearing minerals precipitate at grain bound-
aries and fractures, and some, especially those related to hydrothermal 
overprint show stronger REE enrichment then potential precursor min-
erals (Deng et al., 2017), and we can therefore assume that the method 
proposed here can be applied for other major REE deposits as well, 
providing insight into REE portioning due to redistributions. 

LIBS drill core scanners allow detailed 1D or 2D detection of various 
zones of REE enrichment in complete drill cores, with results available 
during or right after measurement on the site of mining. Traditional 
methods usually rely on meter wise sampling where information of the 
spatial distribution of REE enrichment is mostly lost and sections of 
interest need to be shipped to a laboratory for further analysis. Never-
theless, concentrations for the mapped surface can only roughly be 
estimated with LIBS based on a semi-quantitative basis and the result is 
prone to 3D effects since the surface of the material may not resemble 
the bulk concentrations. Therefore, LIBS drill core analysis adds valu-
able spatial information, but cannot fully replace traditional lab 

analyses. 

4. Conclusion

This paper presents a novel approach for the spatially resolved
detection of REE enrichments in highly heterogeneous geological ma-
terial from the Storkwitz carbonatite based on scanning LIBS. 

We have shown that a LIBS-based analysis of REE enrichments in 
highly heterogeneous geological material requires detailed spatially 
resolved LIBS measurements of sufficiently large surface areas. 
Furthermore, we have shown that k-means clustering and raster analysis 
offer opportunities to reduce sample heterogeneity by automatically 
separating different matrices and extracting REE-relevant features. 
Mineral clasts and rock matrix were divided using k-means clustering, 
before raster analysis was performed to extract all points that belong to 
mineral rims. Finally, we have successfully tested the application of 
matrix-matched intensity limits above which REE-carbonates can be 
detected with LIBS. Following the LOD approach, these limits are based 
on blank measurements, which consist of REE-free matrix-matched 
subsets of the data. Four strong La emission lines (La II 333.75 nm, La II 
338.09 nm, La I 394.91 nm and La II 408.67 nm), which show distinc-
tively higher emission intensities than the Ce and Nd emission lines, 
were detected with our LIBS system and used as a tracer for REE- 
carbonates. 

About 88% of the REE-enrichments in the investigated drill core 
seem to occur as pure REE-carbonates. These REE-carbonates, which 
most prominently occur at the rims of different minerals or in areas of 
elevated porosity or microfractures that are loosely distributed in the 
matrix of the breccia, were successfully detected with scanning LIBS. 
The LIBS-based results could be confirmed with μ-EDXRF and micro-
probe reference measurements. According to the microprobe measure-
ments, low concentrations of additional REEs were found in the minerals 
apatite and pyrochlore (~1.6 wt% ∑REE), as well as diffusively 
distributed in normal carbonates (~0.05 wt% ∑REE). A mass balance 
calculation shows how the different REE-carrier minerals contribute to 
the total amount of REEs in the investigated sample. 
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A B S T R A C T

Mineral exploration and active mining relies on extensive drilling campaigns that produce large numbers of drill 
cores. LIBS is ideally suited for their fast and effective measurement, but matrix effects complicate quantitative 
geological LIBS applications due to the extensive amount of different minerals, rock types, and lithologies, as well 
as all textural and optical parameters increasing physical matrix effects. This is challenging for the application of 
LIBS in geological exploration, since LIBS data processing highly depends on matrix-matched models. The fast 
acquisition of new data is in conflict with the large amount of existing minerals and lithologies. As a result, new 
appearances are common during ongoing drilling campaigns, resulting in incomplete train sets for supervised 
classification and quantification. 

This paper presents a novel semi-supervised learning (SSL) classification model to resolve related issues by 
separating known minerals in geological drill cores based on a set of train samples, while also detecting unknown 
material, i.e. new lithologies and/or minerals not in the train set. Using a combination of supervised Linear 
Discriminant Analysis (LDA) and semi-supervised One-Class Support Vector Machines (OC-SVM), main minerals 
and known accessory minerals were effectively separated from unknown material in LIBS mappings of Spodu-
mene and Muscovite pegmatite, as well as from Metagreywacke in drill cores from the Rapasaari lithium deposit 
in Finland. Self-learning was applied to automatically increase the number of train samples, which effectively 
decreased the number of unknowns due to physical matrix effects in coherent crystals. 

Validation with respect to the main minerals revealed an almost perfect classification of albite, spodumene, K- 
feldspar, quartz, and muscovite. Measurement points of Metagreywacke, which were only included in the test set, 
were correctly detected as unknown. Transferring the developed model onto LIBS mappings and drill core profile 
measurements displayed excellent classification results for main and accessory minerals included in the train set. 
Mixed spectra at mineral borders, as well as accessory minerals not in the train set were correctly identified as 
unknown.   

1. Introduction

Laser-Induced Breakdown Spectroscopy (LIBS) is an analytical
technique receiving increasing interest in a wide variety of fields during 
recent years [1–5]. A highly energetic laser beam is focused onto the 
investigated sample (solid, liquid or gas), ablating small amounts of 
material to create a plasma that contains the elemental information of 
the ablated surface. During plasma cooling, atomic signatures are 
emitted and the resulting spectrum is collected with optical instruments 
(e.g. in [6,7]). Elements show emission peaks at element specific 
wavelengths, which enables the detection of multiple elements in a 

single spectrum. 
Measurements can be performed in-situ with high speed and high 

resolution under atmospheric conditions and nearly no sample treat-
ment is required [1]. Practically all elements can be measured, which 
makes LIBS especially useful for geological applications since it allows 
the detection of major, minor, and trace elements at the same time (e.g. 
in [1–3]). It has already been used to address different kinds of 
geological subjects (e.g. in [8–15]) and unlike most analytical methods, 
LIBS can detect even small traces of Li. It has therefore been applied to 
detect and (semi-)quantitatively analyse various Li-bearing minerals in 
different geological samples with unsupervised methods and univariate 
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regression models [16–18]. 
Major drawback of LIBS are the physical and chemical matrix effects 

that make the analysis of LIBS measurements especially challenging for 
heterogeneous material [19–21]. Physical and chemical matrix effects 
are often problematic in geological applications, since differences in 
surface topography, grain size, elemental concentrations, transparency 
of individual minerals, or the way the laser hits the mineral lattice in-
fluence the LIBS plasma, resulting in different responses in the spec-
trometer [22–24]. Additionally, phase transitions from one mineral to 
another cannot be perfectly resolved, which results in mixed spectra on 
mineral borders [9,25]. Despite these challenges, its speed coupled with 
its high resolution makes LIBS an especially promising technique for 
geological exploration and mining campaigns, where large amounts of 
drill cores are analysed [9,26–30]. 

Contrary to the speed of measurement, preparing reference samples 
for LIBS quantification is time consuming and difficult, since matrix- 
matched standards are needed (e.g. in [8,21,31]). Unfortunately, 
existing LIBS-based mineral libraries cannot be transferred between 
different LIBS systems yet [32]. This requirement of matrix-matched 
standards, however, can become especially challenging for the appli-
cation of LIBS in exploration settings. The appearance of new lithologies 
or minerals is common during ongoing drilling campaigns, resulting in 
incomplete train sets. To avoid unreliable quantification or classification 
results, it is necessary to explicitly identify new data not covered by the 
reference data. The majority of conventional supervised classification 
algorithms lack this possibility of identifying “unknown” samples [33], 
although, for example, Spectral Angle Mapper (SAM) or Minimum Dis-
tance allow the detection of unknown data points based on thresholds. 
Nevertheless, defining these thresholds manually is time consuming and 
difficult, since they may be matrix-dependent and have to be validated 
for each mineral individually. 

Semi-supervised learning (SSL) has been used to classify large 
amounts of unknown data based on a small set of known reference 
samples. If the unknown data point is similar to the set of reference 
samples, it is classified accordingly, otherwise, it is labelled as unknown 
[33]. Here, SSL can help to detect unknown measurement points in LIBS 
data of geological drill cores. To our knowledge, no LIBS-based publi-
cation used SSL for this purpose. Instead, several approaches exist in 
other disciplines (e.g. in [34–37]). Various methods exist to enhance 
classification results of SSL algorithms. One involves a manual selection 
of data points initially classified as unknown. After an identification 
based on expert knowledge, they are added to the set of reference 
samples and a new classification model is calculated (e.g. in [38]). 
Another possible option – self-learning – iteratively increases the set of 
reference samples automatically with the newly classified measurement 
points and classifies the remaining unknown data again [33]. 

The objective of this paper was the novel application and validation 
of the SSL classification algorithm One-Class Support Vector Machines 
(OC-SVM) for LIBS measurements in geological settings, with the pur-
pose of detecting known minerals and unknown matrix with a limited 
set of train data. To cope with the strong physical matrix effects in the 
investigated pegmatite samples, self-learning was investigated to auto-
matically increase the reference dataset iteratively. This SSL-based 
method was tested for well-known drill cores from the Rapasaari 
lithium-deposit in Finland, containing Spodumene pegmatite, Muscovite 
pegmatite and Metagreywacke. Prior to OC-SVM, the LIBS data were 
transformed with Linear Discriminant Analysis (LDA) to increase class 
separability and to create distinct clusters. This is important for the 
density-based class boundary calculation performed with OC-SVM, 
which enables the creation of narrow class boundaries used to identify 
known minerals, while also detecting unknown material. Although there 
are no publications combining LDA and OC-SVM, different approaches 
successfully employ LDA to improve the classification of LIBS mea-
surements (e.g. in [39–43]). OC-SVM on the other hand has only been 
used for classification in other fields of spectroscopic analysis (e.g. in 
[44–46]). 

2. Material and methods

2.1. Sample description

The Rapasaari lithium deposit is part of the Kaustinen lithium 
pegmatite province in Finland and hosts Spodumene pegmatite with 
modelled Li2O concentrations between 1.02 and 1.46 wt% [47]. Rocks 
typically found in the Rapasaari area cover Spodumene pegmatite, 
Muscovite pegmatite, mica schists (mostly Metagreywacke), interme-
diate volcanic rocks and rarely sulphide rich schists [47]. Nine drill core 
meters from the Rapasaari lithium deposit were analysed in this project, 
consisting of three different rock types: The first 7.9 m cover drill cores 
from the Spodumene and Muscovite pegmatite that were cut in half, 
whereas the remaining 1.1 m contain Metagreywacke left intact. 

Table 1 lists the main minerals of Spodumene and Muscovite 
pegmatite together with their mineral formula and optical characteris-
tics relevant for LIBS, which both highly influence the resulting spec-
trum. Optical characteristics may vary from sample to sample, 
depending on the angle that the minerals are cut or, in the case of 
transparency, the underlying minerals. Crystal sizes in the Spodumene 
pegmatite range from 0.5 to several centimetres and especially spodu-
mene and albite show large crystals with lengths up to 10 cm [47–49], 
which is also observed in the investigated drill cores. The Muscovite 
pegmatite includes identical minerals as the Spodumene pegmatite but 
with varying distributions. The number of spodumene crystals decreases 
strongly, whereas proportions of muscovite increase. The sizes of feld-
spar and quartz grains are similar to the Spodumene pegmatite, whereas 
the average size of spodumene and muscovite crystals decreases to 
several millimetres. Additionally, the Muscovite pegmatite developed 
porosities between the small crystals, which is not found in the Spodu-
mene pegmatite. Both pegmatites may include grains of the accessory 
minerals apatite, zinnwaldite, Nb-Ta-oxides, beryl, garnet (grossular), 
arsenopyrite, and sphalerite [47–49]. The two pegmatites are optically 
difficult to distinguish, due to identical minerals and similar colours. 

The Metagreywacke of the Rapasaari complex mostly consists of 
mica schists with additional minerals of feldspar, quartz, different mica, 
and matrix, which is also mostly comprised by mica. In general, grey-
wacke is a very broad term lacking a clear definition and for the 
investigated samples in this paper, estimating the mineral proportions is 
difficult due to the small size of the crystals that mostly lie in the sub- 
millimetre scale. Nevertheless, the whole lithology is clearly separable 
from the pegmatites through its darker colour. Fig. 1 displays the 
investigated drill cores and highlights the areas of the LIBS mappings, 
the different lithologies, and their transitions. 

2.2. LIBS measurements 

All LIBS measurements were performed with a drill core scanner 
prototype developed by Lasertechnik Berlin (LTB) in 2011. The instru-
ment includes a Q-switch Nd-YAG laser, operating with a repetition rate 
of 20 Hz, a pulse duration of 11 ns, an excitation wavelength of 1064 nm 

Table 1 
Main minerals of Spodumene and Muscovite pegmatite, their corresponding 
formula and relevant optical characteristics for LIBS.  

Mineral Formula Optical 
characteristics 

Albite (feldspar - pure Na- 
endmember) 

Na[AlSi3O8] Opaque 

K-feldspar (feldspar - pure K- 
endmember) 

K[AlSi3O8] Opaque 

Quartz SiO2 Transparent 
Muscovite KAl2[(OH, F)2| 

AlSi3O10] 
Reflective, shiny, 
flaky 

Spodumene LiAlSi2O6 Visible cleavage, 
shiny  
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and a laser energy of 35 mJ. The plasma is captured with an Echelle 
spectrometer covering a spectral range of 285–964 nm with a resolution 
of 0.029–0.096 nm and a CCD detector. The laser has a spot size of 200 
μm and can move up to 1 m in X and 2.5 cm in Y direction, the inves-
tigated sample remains in place. To avoid cross-crater contamination 
and the ionization of small dust particles between laser head and focus 
point during laser movement, an exhaust system is attached and moves 
with the laser. Spectrometer and CCD are constantly held at 27 ◦C to 
minimize the effects of temperature change during measurements. More 
information on the LIBS setup can be found in [8]. 

Delay time and number of accumulated laser shots were optimized 
based on signal-to-noise ratio and line intensities of elements present in 
the main minerals of the Spodumene pegmatite (i.e. Si, Al, Na, K, and 
Li). Optimal results were achieved with three accumulated shots. A 1D- 
profile measurement was performed point by point by moving the laser 
for 200 μm in X direction through the centre of every drill core, with a 
short stop for each distinct point measurement. The Spodumene and 
Muscovite pegmatite were measured along their cut surface, whereas 
the exterior part of the uncut Metagreywacke was measured. To ensure 

comparability, core measurements of uncut Metagreywacke were vali-
dated with spectra of a cut surface from a Metagreywacke sample and 
similar intensities were achieved. 

Additionally, six selected areas highlighted in Fig. 1 were mapped 
with a step size of 200 μm in Y and X direction. Their length ranges from 
4.8 to 16 cm with a consistent width of 4.8 cm. The samples cover all 
main minerals of the Spodumene and Muscovite pegmatite in various 
proportions and sizes, representative for both lithologies. Due to their 
width above 2.5 cm, every sample was divided into two areas that were 
measured independently. After one area was mapped, the sample was 
moved by hand parallel to the stage for 2.5 cm in the specific direction. 
Afterwards, the two corresponding areas were merged into one dataset 
that was used for analysis. 

2.3. Spectral processing 

Fig. 2 displays a typical spectrum of every main mineral present in 
the pegmatites and one typical spectrum of the Metagreywacke. Using 
the entire spectrum for classification purposes would result in large 

Fig. 1. Drill cores from the Rapasaari complex investigated in this study. A LIBS profile was taken through the centre of every drill core and detailed LIBS mappings 
were taken for the six rectangles. The three lithologies are highlighted, the arrow indicates the measurement direction. 
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amounts of redundant information. Therefore, relevant emission lines 
were chosen based on elemental compositions of the main minerals 
shown in Table 1 (Al, K, Li, Mg, Na, and Si). Additionally, lines for Be, 
Ca, Nb, P, and Zn were extracted to cover elements of all accessory 
minerals described in the literature [47]. Since the developed classifi-
cation model aims at detecting unknown geological material of all kinds, 
emission lines for the major rock forming elements Fe, Mn, and Ti were 
added as well. At least two lines were extracted for every element 
covering different regions of the spectrum. The lines were located using 
knowledge of previous work [10] as well as [18] for the three relevant Li 
I lines at 610.36 nm, 670.79 nm, and 812.64 nm. 

The emission lines were extracted using peak integration performed 
with an in-house C-program and an integration window of 1.0 nm for 
spectral regions below 600 nm and 1.5 nm for spectral regions above 
600 nm, which is in accordance with the observed peak widths. All 
emissions line intensities were normalized using the total intensity of the 
corresponding spectrum collected by the spectrometer to reduce shot-to- 
shot variations. Collinearity of variables introduces severe problems for 
the discrimination ability of LDA [50], and since different emission lines 
of the same element show collinearity, the number of extracted emission 
lines was ultimately reduced to one line per element. The optimal set of 
emission lines for LDA was determined based on the best separation of 
mineral classes and unknown material using the developed classification 
model. Best results were achieved using the emission lines displayed in 
Table 2, which were then used to generate LIBS hyperspectral data 
cubes, where each pixel represents a single LIBS measurement and each 
image the spectral intensity of a single target emission line (see [9] for a 
detailed explanation). This allows an uncomplicated visualization and 
processing of spatially resolved element distributions. For the extraction 
of mineral-specific measurement points, the ENVI image analysis soft-
ware (version 5.5) was applied. 

2.4. Creation of train and test data 

The reference data for the initial SSL classification model were 
extracted from regions of interest (ROIs) that belong to one of the main 
minerals shown in Table 1, which will be the known classes for the SSL 
classification model. This initial model does not yet contain any acces-
sory minerals, to be able to test the models ability to detect accessory 
mineral as unknowns. ROIs for distinct minerals were identified by 
comparing optical images of the six detailed LIBS mappings highlighted 
in Fig. 1 with RGB images covering different LIBS emission lines. Fig. 3 
shows a grey value image of emission line Al I 396.15 nm with the 
mineral-specific ROIs extracted from mappings BK199a and BK199b. 
This way, 70 ROIs were extracted from the six LIBS mappings, covering 
14 ROIs of albite, 12 of K-feldspar, 19 of quartz, 12 of muscovite, and 13 

Fig. 2. Representative spectra of the main minerals present in the Spodumene and Muscovite pegmatite and a typical spectrum of the Metagreywacke lithology.  

Table 2 
Final set of emission lines showing best classification results.  

Element Spectral line (nm) Ei (eV) Ek (eV) Aki (108 s−1) 
Al I 396.15 0.014 3.14 0.99 
Ca II 315.89 3.12 7.05 3.10 
Fe I 373.49 0.86 4.18 0.90 
K I 766.49 0.00 1.62 0.38 
Li I 812.64 1.85 3.37 0.22 
Mg I 285.21 0.00 4.35 4.91 
Mn I 403.08 0.00 3.08 0.17 
Na I 818.33 2.10 3.62 0.42 
Si I 288.16 0.78 5.08 2.17 
Ti II 308.80 0.049 4.06 1.50 
P II 603.40 10.74 12.79 0.38 
Be II 313.04 0.00 3.96 1.13 
Nb I 379.12 0.13 3.40 0.64 
Zn I 334.50 4.08 7.78 1.50  
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of spodumene. Three ROIs of every mineral (i.e. every class) were 
randomly removed from the reference set and stored for testing. The 
measurement points of the remaining 55 ROIs were used to build the 
train set. 

Every ROI covers a varying number of measurement points. Physical 
matrix effects can lead to variations in the measured LIBS intensities 
within a single crystal (i.e. one ROI), even in chemically homogeneous 
material [23]. Using only the average intensity of each ROI was not 
sufficient to cover the observed intensity variations. Therefore, an 
arbitrary number of 25 measurement points was selected from every ROI 
using the Kennard-stone algorithm [51] implemented in the R-package 
prospectr [52]. The algorithm samples the desired amount of data points 
based on pairs of measurement points with maximum Euclidean dis-
tance from one another. This allows the creation of a reproducible subset 
with uniform intensity distribution over each ROI. To enable a valida-
tion of the algorithms ability to detect unknown samples, 40 single 
measurement points of Metagreywacke were randomly selected and 
included in the test set. The train set contains the five classes albite, K- 
feldspar, quartz, muscovite, and spodumene, whereas the test set in-
cludes the additional unknown class Metagreywacke. 

The large crystals in the pegmatite allow relatively easy identifica-
tion of mineral phases based on optical appearance and LIBS intensities, 
which is why the described procedure for collecting reference samples 
works especially well for the investigated material. Additional Raman 
measurements were performed on a few typical crystals in smaller 
samples to verify the correct identification of the main minerals. 

2.5. Creation of a reference image 

In addition to the train and test set, a pixel-matched reference image 
of LIBS mapping BK199a was created. Sample BK199a consists of the 
five main minerals listed in Table 1 and does not contain significant 
accessory minerals. A random forest model was built and used as the 
foundation for the ground truth image. To capture areas not represent-
ing albite, K-feldspar, quartz, muscovite, and spodumene with the 
random forest model (i.e. mineral borders at transition zones, porosities 
or accessory minerals), over 3000 pixel from various mineral borders 
and coherent ROIs from different accessory minerals were labelled as an 
unknown class. Wrongly classified pixel from the random forest model 
were customized based on geological expertise and macroscopic analysis 
of the physical sample, as well as RGB images of different mineral- 
specific combinations of LIBS emission lines. Special attention was 
paid to label the visible porosities and transition zones between minerals 
as unknown. Extracting single pixel from mineral transitions and small 
accessory minerals for the random forest model, as well as the manual 
adaption of wrongly classified pixel was very time consuming and 
inefficient, but necessary to validate the results of the newly developed 
SSL classification model in Section 3.2.1. 

2.6. Workflow of the SSL classification model 

Fig. 4 illustrates the workflow of the developed SSL classification 
model, using the open-source software R, version 3.5.1 [53]. Three in-
dependent steps are performed, before the newly classified data is added 
to the train set and the classification model is run again. 

In the first step, the training data are transformed into the LDA-space 
with the LDA algorithm included in the MASS package available in R 
[54]. This supervised method enhances class separability and reduces 
dimensionality by calculating between-class variance and within-class 
variance as the distance between the means of the different classes 
and the distance between mean and samples of an individual class, 
respectively. It contains n-1 dimensions, where n is the number of 
classes. For a detailed description of LDA, we refer to [55]. 

Subsequently, the LDA-transformed data of the train set is used to 
calculate an individual class boundary for every mineral class with OC- 
SVM. Thereto, OC-SVM computes a binary function to capture regions in 
the input space where the probability density of the investigated class 
lives [56]. The function results in positive values for unknown data 
points that are in regions with a high density of labelled reference data 
and in negative values for the rest. This function is used to check class 
boundaries of unknown data in step 2. In this paper, the OC-SVM al-
gorithm of R-package e1071 [57] was applied. It is based on the algo-
rithm proposed by [56] to which we refer for a detailed explanation. To 
compute an optimal class boundary with OC-SVM, the radial basis 
Kernel (RBF) was applied and parameter ‘nu’ was automatically tuned 
using a grid search with values from 0.01 to 0.2 and a step size of 0.01, 
while gamma was left at default. 

In the second step, the unknown data are transformed into the LDA 
space of the train samples using the LDA function calculated in the first 
step. The transformed data are inserted into the binary OC-SVM func-
tions of every class and the results are stored for label assignment. 

The third step predicts class membership of the unknown data. If the 
results of all OC-SVM functions are negative for an unknown data point, 
it is classified as unknown. If one single mineral-specific boundary 
function is positive, the sample is labelled according to the corre-
sponding mineral class. Class boundaries might overlap and a mea-
surement point can therefore show positive values for more than one 
mineral-specific boundary function. The questionable data point is 
then classified according to the class centre with smallest Euclidean 
distance. 

Subsequently, self-learning begins, which means that the newly 
labelled data are added to the train set and a new classification model is 
built in step 1 to predict the remaining unknown samples in step 2 and 3. 
Due to the increased number of reference data, the LDA-space may 
change and, as a result, change the boundary calculation as well. In this 
paper, self-learning was applied iteratively for an arbitrary number of 
seven times or until no more changes to the classification results were 
observed. 

Fig. 3. Grey value image of LIBS mappings BK199a and BK199b for emission line Al I 396.15 nm with all ROIs that were extracted from these mappings.  
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3. Results and discussion

3.1. Evaluating the SSL classification model using train and test data

To evaluate the results of the developed classification model, the test 
set was predicted and classified as described in Section 2.6. Classifica-
tion results of the test set are shown in the confusion matrix in Table 3. 
Misclassification between the known mineral classes does not exist and 
all points of Metagreywacke, the lithology unknown to the train set, 
were correctly identified as unknown. Self-learning did not show any 
improvement for the test set, since the low number of test samples did 
not influence the newly calculated LDA-space and therefore no new 
boundaries were created with OC-SVM. Despite the good results, 1 out of 
75 reference points of muscovite as well as 2 out of 75 reference points of 
K-feldspar and quartz were incorrectly classified as unknown. It is

important to investigate possible reasons for this misclassification to 
understand the classification results of the detailed LIBS mappings 
described in Section 3.2. 

Fig. 5 indicates the separation ability of LDA for the different min-
erals of the train and test set including the unknown class (here Meta-
greywacke). Due to their distinct chemical compositions, spodumene 
(high LiO2 values) and quartz (only SiO2) form distinct clusters in 
several combinations of the LDA-space. Containing similar major ele-
ments but in varying proportions, muscovite, albite, and K-feldspar 
show mineral clusters close to each other, sometimes even overlapping. 
Nevertheless, the different element ratios allow a distinct separation of 
feldspar and muscovite, visible in the combination LD1 – LD2. K-feldspar 
and albite are endmember of a solid solution with varying contents of K 
and Na. Their chemical similarity leads to overlapping clusters in some 
combinations of the LDA-space. Nevertheless, distinct differences can be 

Fig. 4. Workflow implemented for the SSL classification model of minerals and unknown matrix. The number of reference data increases after each iteration using 
the newly labelled data as additional training samples, until there are no more changes to the classification results or a pre-defined number of iterations has 
been reached. 

Table 3 
Confusion matrix with classification results of the test set using the combination of emission lines shown in Table 2. The reference data is shown vertically, the 
prediction results horizontally.   

Albite K-feldspar Quartz Muscovite Spodumene Unknown 
Albite 75 0 0 0 0 0 
K-feldspar 0 73 0 0 0 0 
Quartz 0 0 73 0 0 0 
Muscovite 0 0 0 74 0 0 
Spodumene 0 0 0 0 75 0 
Unknown 0 2 2 1 0 40  
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observed in the combination LD2 – LD3 and Table 3 does not show 
misclassification of albite as K-feldspar or vice versa. The Meta-
greywacke samples are correctly labelled as unknown, forming distinct 
clusters in LD1 – LD2 and LD1 – LD4. 

The misclassified points of muscovite, K-feldspar, and quartz plot at 
the edges of their corresponding mineral cluster in several LD- 
combinations (Fig. 5). This implies that the mineral boundaries calcu-
lated with OC-SVM follow the density distribution of the corresponding 
mineral cluster very closely and as a result, small intensity deviations of 
newly measured material can lead to a classification as unknown. The 
scattering of the training data reflects the spectral variations of each 
mineral class, which in this particular case are induced by physical 
matrix effects, mostly due to varying optical properties of the investi-
gated minerals. Consequently, not all intensity variations of every in-
dividual LIBS spectrum may be covered by the train set, and outliers are 
in turn classified as unknown. Increasing the train set by hand is a 
possible option to cover more intensity variations. This time consuming 
practice was not very successful and, therefore, self-learning was 
investigated in detail in Section 3.2, to automatically increase the train 
set with the newly classified data. 

3.2. Evaluating the SSL classification model for detailed drill core 
measurements 

3.2.1. LIBS mapping BK199a consisting mostly of main minerals 
For further validation purposes, the SSL classification model for the 

main minerals was subsequently applied on mapping BK199a (Fig. 1). It 
mostly includes main minerals and therefore allows an evaluation of the 
results obtained with the initial train set. To be able to evaluate the 
classification results, a customized reference image was created as 
described in Section 2.5. Fig. 6 displays the optical image as well as an 
RGB image of BK199a, together with the reference image and the clas-
sification results of the SSL classification model without- and after the 
first iteration of self-learning. 

The RGB image in Fig. 6 features the selected emission lines for Si, Al, 
and Li (Table 2). Blue areas indicate high intensities of Li I 812.64 nm 
correlated to spodumene, red areas display high intensities of Si I 
288.16 nm, corresponding to quartz. With high Al I 394.15 nm in-
tensities, green pixels mostly indicate albite, K-feldspar, and muscovite, 
respectively. The customized reference image and the classification re-
sults without- and after the first iteration of self-learning are displayed in 
the bottom three images of Fig. 6. In general, a very good correspon-
dence between the SSL classification result and the reference image can 
be observed. The main minerals represented by the train set are well 
recognized by the SSL classification model. 

In total, 14.2% of all pixels of the reference image are labelled as 

Fig. 5. Different combinations of dimensions of the LDA-space calculated with samples of the train set (circles). The crosses correspond to measurement points of the 
test set, the magnified diamonds represent the measurement points that were wrongly classified as unknown. 
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unknown. The number of unknowns in the SSL classification result 
without self-learning, however, is higher than in the reference image 
(20.1%), decreasing with the first iteration of self-learning to 12.9%. 
Overall, three main reasons for the occurrence of unknowns were 
revealed: 

(1) Unknown measurement points are found at mineral borders be-
tween different mineral grains. Here, the laser spot covers two or
more distinct minerals, resulting in mixed spectra at transition
zones. Since the train set only comprises measurement points of
pure minerals, mixed spectra lie outside the mineral boundaries
calculated with OC-SVM and are accordingly classified as un-
known. This is shown in Fig. 7, where exemplary measurement
points from different mineral borders were extracted from LIBS
mapping BK199a and transformed into the LDA-space without
self-learning. Accordingly, the measurement points plot between
the clusters formed by minerals of the train set. With self- 
learning, the mineral cluster variability increases due to the
increased number of train samples. As a result, fewer pixel from
mineral transition zones lie outside the mineral boundaries
calculated with OC-SVM and therefore, fewer pixel from mineral
transition zones are classified as unknown.

(2) Single measurement points inside of large crystals are occasion-
ally classified as unknown. They correspond to pixel with in-
tensity variations not fully covered by the limited number of 
training samples, as discussed in Section 3.1. Individual mineral 
crystals do not seem to have constant optical properties (Fig. 6). 
In particular, the degree of porosity and transparency seems to 
vary, leading to increased intensity variations and a possible 
classification as unknown for single points in large crystals. After 
the first iteration of self-learning, the image shows significantly 

less single measurement points that are classified as unknown 
(Fig. 6).  

(3) Minerals unknown to the train set, e.g. the coherent areas in the
middle and top-left part of BK199a, are classified as unknown.
Since only the main minerals were included in the initial train set,
these measurement points were correctly identified as unknown.

The total number of unknowns is highly influenced by the crystal size 
of the minerals, since large accessory minerals or small crystals (i.e. 

Fig. 6. Optical image of Spodumene pegmatite mapping BK199a and an RGB image with Si I 288.16 nm (red), Al I 394.15 nm (green) and Li I 812.64 nm (blue), as 
well as the reference image and the classification results without- and after the first iteration of self-learning. In the RGB image, quartz (red), muscovite and albite 
(both green), as well as spodumene (blue) can be identified. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 7. LD1 and LD3 of the LDA-space without self-learning and selected 
measurement points from exemplary mineral transitions of sample BK199a, 
labelled as unknown (crosses). 
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more mixed spectra due to mineral transitions) result in higher numbers 
of unclassified points. 

Fig. 8 shows the influence of self-learning on the classification result, 
using the parameters recall (Eq. (1)) and precision (Eq. (2)). These pa-
rameters were calculated with the reference image and the classification 
results of sample BK199a after each iteration of self-learning. Because 
only 0.15 area-% of sample BK199a consists of K-feldspar and changes in 
precision are not representative, K-feldspar has not been considered for 
assessing the influence of self-learning. 

Recall =
correctly classified pixel of a class

total number of existing pixel of a class
(1)  

Precision =
correctly classified pixel of a class

total number of predicted pixel of a class
(2) 

Recall values increase with every iteration of self-learning for albite, 
quartz, muscovite, and spodumene, but decrease for pixel classified as 
unknown (Fig. 8). From the first iteration of self-learning onwards, recall 
values are above 0.9 for the main minerals. This is explained by the 
decreasing number of measurement points classified as unknown due to 
physical matrix effects, as compared to the classification model without 
self-learning. Precision values, however, display opposing behaviour for 
every class (Fig. 8). The slow decrease observed for the main minerals is 
explained by the increasing number of mineral boundary points that are 
wrongly classified as albite, quartz, muscovite or spodumene. With 
respect to the unknowns, the decreasing number of mineral boundary 
points result in gradually decreasing recall values to below 0.53 after 
seven iterations of self-learning. Simultaneously, overcoming the phys-
ical matrix effects decreases the number of wrong predictions as un-
knowns and, thus, increases precision values of the unknown class from 
0.54 to values above 0.73 after the first iteration of self-learning. 

Due to the opposing behaviour of recall and precision, as well as the 
opposing behaviour of main minerals and unknown class, the combi-
nation of both indices has to be evaluated for every iteration of self- 
learning to get best results. Fig. 8 indicates an optimal combination of 
recall and precision after the first iteration of self-learning, which, 
therefore, was applied throughout this paper. 

The corresponding confusion matrix for sample BK199a (Table 4) 
shows that misclassification between the classes that are included in the 
train set is nearly not existent, an observation that supports the findings 
of Section 3.1. The unknown measurement points mostly correspond to 
transition zones between the different minerals. The mineral crystals of 

the investigated area are relatively small and therefore many transition 
zones exist. The discrepancy between reference sample and prediction 
concerning the unknown class is mostly a result of the increased number 
of train samples for the first iteration of self-learning. This increases the 
variability of each mineral cluster greatly, and, therefore, the mineral 
boundaries calculated with OC-SVM are expanded. As a result, pixel at 
mineral boundaries, which are unknown in the reference image, may be 
predicted as a neighbouring mineral instead. 

3.2.2. Updating the SSL classification model by including accessory 
minerals 

Fig. 9 shows for the consecutive mappings BK199a and BK199b the 
optical image, an RGB image with Si I 288.16 nm, Al I 394.15 nm and Li I 
812.64 nm, and the classification result based on the SSL classification 
model developed in Section 3.1 after the first iteration of self-learning. 
The classification result displays large coherent areas that are labelled 
as unknown. These areas are associated with crystals of accessory 
minerals, inconsistently occurring throughout the selected drill core 
samples. The spectral differences of the corresponding measurement 
points are also reflected in the LDA-space (Fig. 10), where several 
measurement points of the unknown minerals are displayed. They form 
distinct clusters outside the calculated borders of the main minerals. 

Specifying these accessory minerals allows an update of the SSL 
classification model and a classification of the unknown minerals in 
future samples. To identify the unknown areas, typical LIBS spectra for 
these unknown areas were compared to the mineral chemistry of all 
possible accessory minerals for this ore deposit [47–49]. Emission peaks 
for major elements, Be, Zn, and P suggest that the questionable areas 
presumably cover beryl (Be₃Al₂SiO₆), apatite (Ca5[(F,Cl,OH)|(PO4)3]), 
and a Zn-bearing phase (Fig. 11). The beryl spectrum shows the char-
acteristic duplet at Be II 313.042 nm and Be II 313.107 nm, as well as the 

Fig. 8. Recall and precision of sample BK199a for the initial classification model without self-learning and every following iteration of self-learning.  

Table 4 
Confusion matrix with classification results of sample BK199a after the first 
iteration of self-learning. The reference data is shown vertically, the prediction 
results horizontally.   

Albite Quartz Muscovite Spodumene Unknown 
Albite 16,370 0 0 0 1298 
Quartz 0 16,408 0 0 1112 
Muscovite 0 0 5187 6 59 
Spodumene 1 0 47 10,088 258 
Unknown 860 324 367 464 5507  
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characteristic Al emission lines. The apatite spectrum is dominated by 
Ca emission lines and shows emission at P II 603.404 nm. The Zn- 
bearing spectrum is characterized by emission lines for Zn. Low emis-
sion at S I 921.29 nm is observed as well, but no specific mineral 
assignment could be made. This results is supported by the RGB image of 
samples BK199a and BK199b shown in Fig. 12, which displays Be II 
313.04 nm, Zn I 334.50 nm, and P II 603.40 nm, as green, red, and blue, 

respectively. As a result, areas covered by beryl would appear green, the 
Zn-bearing phase red, and phosphate-bearing apatite would appear 
blue. 

After their identification, representative measurement points of 
beryl, apatite, and the Zn-bearing phase were included in the train set 
and the SSL classification model was run again. The new classification 
result for samples BK199a and BK199b after the first iteration of self- 

Fig. 9. Optical image, RGB image and classification result after the first iteration of self-learning for samples BK199a and BK199b, using the initial train set without 
accessory minerals. 

Fig. 10. Two different combinations of dimensions of the LDA-space without self-learning, showing selected measurement points of coherent areas classified as 
unknown in BK199a and BK199b (crosses). The distinct clusters formed by unknown measurement points belong to minerals that were not included in the initial 
train set. 
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learning is shown below the RGB image in Fig. 12. Most of the coherent 
areas formerly labelled as unknown are now correctly classified as beryl, 
apatite, and the Zn-bearing phase, respectively. Mostly transition zones 
and some individual points inside of large minerals remain unknown, 
whereas the majority of the large crystals are now correctly classified. 
Some small coherent areas remain unknown, even after updating the 
train set. These areas optically correspond to macro porosities. 

3.2.3. Various LIBS mappings 
Fig. 13 shows for all six LIBS mappings that the total number of 

unknown measurement points decreases with every iteration of self- 
learning. Samples BK199a, BK199b, BK200, BK202, and BK203 cover 
Spodumene pegmatite and include the main minerals of Table 1 in 
various proportions and crystal sizes. Sample BK204 is part of the 

Muscovite pegmatite, showing increased porosities and smaller crystal 
sizes, although the main minerals are identical. Accessory minerals were 
only identified in the samples BK199a, BK199b, BK200, and BK204, 
with varying types, crystal sizes and proportions. 

For BK199a and BK199b, the model without self-learning classified 
23.4% and 26.8% of the sample as unknown, decreasing to 14.6% and 
18.6% after the first iteration of self-learning, respectively. The larger 
percentage of unknowns in sample BK199b compared to BK199a has 
been identified as a result of increased porosities. Since the accessory 
minerals are included in the updated train set, the reduction of unknown 
points due to self-learning can mostly be explained by the decrease of 
mineral transition zones and due to the better capability of the model to 
deal with various matrix effects. 

Subsequent iterations of self-learning only show minor changes, 

Fig. 11. Individual spectra of the accessory minerals beryl, apatite and a Zn-bearing phase. Several mineral specific element lines are highlighted.  

Fig. 12. RGB image of samples BK199a and BK199b, as well as the final classification result after the first iteration of self-learning. The RGB image features Zn I 
334.50 nm, Be II 313.04 nm, and P II 603.40 nm, which reveals the accessory minerals beryl (green), apatite (blue) and a Zn-bearing phase (red). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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which reinforces the use of one iteration of self-learning for the classi-
fication of the investigated samples. Similar trends are visible for the 
other LIBS mappings. Samples BK202 and BK203 show the lowest per-
centages of unknown measurement points, which is due to their large 
crystal sizes. Sample BK204 on the other hand, displays the highest 
percentages of unknown points. This sample was taken from the 
Muscovite pegmatite, which shows an increased porosity, holes and 
smaller crystal sizes (Fig. 14). The porosities can be traced in the optical 
image as well as in the first RGB image of Fig. 14, where the dark tracks 
and light green areas correspond to porosities with varying LIBS in-
tensities. Several coherent areas remain unknown after the first iteration 
of self-learning. These areas are associated with holes inside and at the 
border of the right hand side of the sample. They can be identified 
optically, and by the teal colour in the first RGB image. Spodumene 
crystals are found inside both holes, which explains the elevated Li I 
812.64 nm intensities. As a result of the varying focus depth, their Li 
intensities differ from spodumene crystals at the plane surface and the 
specific areas are correctly identified as unknown. Despite high Be II 
313.04 nm intensities, the two elongated areas in the centre of the image 
are not classified as beryl (Fig. 14, second RGB image). Optically, they 
are associated to fractures and the elevated Be II 313.04 nm intensities 
are most certainly a result of fluid interactions without the crystalliza-
tion of beryl. As a result, these areas correctly remain classified as 
unknown. 

3.2.4. LIBS drill core profile measurements 
The drill core profile measurements were used to validate the SSL 

classification model's ability to identify a new lithology as unknown. 
Table 5 shows the classified mineral percentages for every individual 
lithology, as well as the percentage of data points classified as unknown, 
using the updated SSL classification model without- and after one iter-
ation of self-learning. After one iteration of self-learning, 99.5% of the 
Metagreywacke was correctly identified as unknown. The percentages of 
unknown measurement points in Spodumene and Muscovite pegmatite 
are in accordance with the results displayed in Section 3.2.3. The 
increasing number of unknown measurement points after the transition 
from Spodumene to Muscovite pegmatite is likely a result of the 

increased surface porosity in combination with the decreased particle 
size (i.e. more mixed spectra), which was also observed in Figs. 13 and 
14. 

Nominative mineral percentages of the Spodumene pegmatite profile 
measurements were validated with literature values. From all mea-
surement points of the Spodumene pegmatite that were not classified as 
unknown after the first iteration of self-learning, 26.6% were classified 
as albite, 21.5% as K-feldspar, 31.0% as quartz, 3.2% as muscovite, and 
16.6% as spodumene. Especially the mineral percentage of spodumene 
is very similar to the mineralogical analysis presented in [47], but also 
albite, K-feldspar, quartz, and muscovite are in accordance with the 
percentage ranges defined in the same publication. 

3.3. General discussion 

Reliable quantitative analysis with LIBS can usually only be provided 
with matrix-matched quantification models and reference samples [14]. 
With respect to lithium, [39] have also shown that correct quantification 
results of Li in material with similarly large crystals can only be ensured 
for minerals that are already included in the train set. With the proposed 
SSL classification model, it is possible to detect mineral crystals un-
known to the train set prior to quantification. Although it has only been 
demonstrated for pegmatites, a transfer onto various geological mate-
rials is likely, and, therefore, the developed SSL classification model may 
be applied to avoid unreliable predictions in geological LIBS measure-
ments. Self-learning can be particularly helpful to reduce the influence 
of physical matrix effects on the classification of unknown measurement 
points in samples with crystal sizes greater than the LIBS laser spot. The 
developed workflow is especially interesting for geological materials 
because of the enormous amount of existing minerals and extreme 
sample heterogeneities. For example, in geological exploration projects, 
where hundreds of consecutive drill core meters are investigated, 
incomplete train sets can hardly be avoided. In worst-case scenarios, the 
predicted concentrations of unknown areas are not conspicuous, 
although being distorted by matrix effects. 

Mixed spectra at mineral transitions were detected as unknown 
measurement points by the developed SSL model. Their influence on 
geological classification models has been investigated by [9], who 
explicitly included both pure and mixed spectra as individual classes. In 
[25], it was shown that the quantification of mixed spectra is possible, if 
the mixture components are known and are of distinct mineral chem-
istry. In the scenario presented in this paper, corresponding endmember 
could be discovered in the LDA-space and the models could be adapted 
accordingly. 

The developed classification model uniformly labels all unknown 
minerals as unknown, despite them representing different material. 
Raman analysis could be added to simplify the task of identifying e.g. 
unknown accessory minerals. As LIBS, it relies on high-energy lasers and 
a combination of both techniques is already used for different applica-
tions (e.g. in [58–60]), while first attempts use Raman for drill core 
scanning exist, too [61,62]. After fast profile measurements with LIBS, 
questionable areas of the drill core that were classified as unknown 
could be measured with Raman. This would enhance mineral classifi-
cation of questionable unknowns, which could then be included in the 
train set for future classification of newly taken drill cores of the same 
deposit. 

4. Conclusion

This paper introduces a novel SSL classification model able to classify
known minerals and detect material unknown to the train set in LIBS 
measurements of pegmatitic geological samples. Thereto, LDA and OC- 
SVM were combined to calculate mineral boundaries for a train set 
including main and accessory minerals of the investigated sample ma-
terial (albite, K-feldspar, quartz, muscovite, spodumene, beryl, apatite 
and a Zn-bearing phase). Unknown data is transformed into the same 

Fig. 13. Remaining percentages of unknown measurement points for the six 
LIBS mappings for the final classification model without- and after each itera-
tion of self-learning. All LIBS mappings of Spodumene pegmatite are displayed 
in black, the one of Muscovite pegmatite is displayed in red. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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LDA-space and predictions are made based on mineral boundaries 
calculated with OC-SVM. To adjust the mineral boundary to the 
observed LIBS intensity variations, self-learning was applied. 

The SSL classification model achieved high classification accuracies 
for a prepared test set, which included an artificially added class of 
Metagreywacke, unknown to the train set. Separating the main minerals 
from each other worked perfectly, whereas two single measurement 
points of quartz and K-feldspar, as well as a single measurement point of 
muscovite were classified as unknown due to physical matrix effects. 

The Metagreywacke test data were indeed recognized as unknown. 
To provide validation results for real life applications, large, spatially 

detailed LIBS mappings and ten drill core profiles of the same deposit 
were analysed with the SSL classification model with self-learning. The 
model achieved reliable classification results for LIBS measurements of 
the investigated geological drill cores, and its ability to detect known 
minerals as well as unknown material that is not represented by the train 
set was proven. 

Three different categories of measurement points classified as 

Fig. 14. Muscovite pegmatite mapping BK204 showing the optical image, two LIBS-based RGB images, and the classification results without- and after the first 
iteration of self-learning. 
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unknown could be identified: (1) Single pixel inside of large mineral 
crystals can be wrongly classified as unknown due to physical matrix 
effects. Their number significantly decreased with self-learning. (2) 
Mixed spectra at transition zones between two or more different min-
erals were correctly classified as unknown. Their number decreased with 
self-learning. (3) Holes, macro porosities, and minerals not represented 
by the train set were correctly classified as unknown in LIBS mappings 
and drill core profiles. Their numbers did not change with self-learning. 

Self-learning was validated with a pixel-matched reference image of 
a large LIBS mapping, revealing contradicting behaviour of recall and 
precision for main minerals and the unknown class. For the investigated 
material, the best combination of recall and precision was achieved with 
one iteration of self-learning. The main advantage of self-learning was 
its ability to overcome physical matrix effects with a limited number of 
training samples. 
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[28] O. Haavisto, T. Kauppinen, H. Häkkänen, Laser-induced breakdown spectroscopy 
for rapid elemental analysis of Drillcore, IFAC Proc. Vol. 46 (2013) 87–91, https:// 
doi.org/10.3182/20130825-4-US-2038.00047. 

Table 5 
Classification results for every lithology available in the drill cores using the 
updated classification model without (in brackets) and after the first iteration of 
self-learning. Numbers represent area-%.   

Spodumene pegmatite Muscovite pegmatite Metagreywacke 
Albite 20 (14.8) 27 (19.5) 0.2 (0.1) 
K-feldspar 16.2 (14.8) 20.1 (18.6) 0 (0) 
Quartz 23.3 (22) 17.8 (17.2) 0.3 (0.2) 
Muscovite 2.4 (1.7) 1.9 (1.2) 0 (0) 
Spodumene 12.5 (10.6) 2.9 (2.2) 0 (0) 
Beryl 0.7 (0.4) 0.2 (0.1) 0 (0) 
Apatite 0.1 (0.1) 0.1 (0.1) 0 (0) 
Unknown 24.8 (35.6) 30 (41.1) 99.5 (99.7)  

S. Müller and J.A. Meima                                                                          

53

https://doi.org/10.1016/j.sab.2020.105799
https://doi.org/10.1016/j.sab.2020.105799
https://doi.org/10.1007/s00216-015-8855-3
https://doi.org/10.1007/s00216-015-8855-3
https://doi.org/10.1016/j.apgeochem.2021.104929
https://doi.org/10.1016/j.apgeochem.2021.104929
https://doi.org/10.1016/j.aca.2020.12.054
https://doi.org/10.1016/j.sab.2014.09.015
https://doi.org/10.1016/j.sab.2014.09.015
https://doi.org/10.1366/11-06574
https://doi.org/10.1366/11-06574
https://doi.org/10.1366/000370210793561691
https://doi.org/10.1016/j.gexplo.2015.11.005
https://doi.org/10.1016/j.gexplo.2015.11.005
https://doi.org/10.1016/j.chemgeo.2019.119376
https://doi.org/10.1016/j.chemgeo.2019.119376
https://doi.org/10.1016/j.gexplo.2020.106697
https://doi.org/10.1016/j.gexplo.2020.106697
https://doi.org/10.1007/s00710-019-00657-z
https://doi.org/10.1007/s00710-019-00657-z
http://refhub.elsevier.com/S0584-8547(22)00014-3/rf0060
http://refhub.elsevier.com/S0584-8547(22)00014-3/rf0060
http://refhub.elsevier.com/S0584-8547(22)00014-3/rf0060
https://doi.org/10.1039/b704868h
https://doi.org/10.1016/j.chemgeo.2010.07.016
https://doi.org/10.1016/j.aca.2020.04.005
https://doi.org/10.1016/S0016-7037(01)00858-4
https://doi.org/10.1080/05704928.2021.1963977
https://doi.org/10.1080/05704928.2021.1963977
https://doi.org/10.2138/am-2015-5165
https://doi.org/10.2138/am-2015-5165
https://doi.org/10.1002/9781118567371
https://doi.org/10.1017/CBO9780511541261
https://doi.org/10.1017/CBO9780511541261
https://doi.org/10.1016/j.sab.2017.09.010
https://doi.org/10.1016/j.sab.2017.09.010
https://doi.org/10.1016/j.aca.2006.05.077
https://doi.org/10.1016/j.apsusc.2012.04.026
http://refhub.elsevier.com/S0584-8547(22)00014-3/rf0120
http://refhub.elsevier.com/S0584-8547(22)00014-3/rf0120
http://refhub.elsevier.com/S0584-8547(22)00014-3/rf0120
https://doi.org/10.1016/j.mineng.2019.02.025
https://doi.org/10.1016/j.mineng.2019.02.025
http://refhub.elsevier.com/S0584-8547(22)00014-3/rf0130
http://refhub.elsevier.com/S0584-8547(22)00014-3/rf0130
https://doi.org/10.1016/j.sab.2009.07.017
https://doi.org/10.3182/20130825-4-US-2038.00047
https://doi.org/10.3182/20130825-4-US-2038.00047


Spectrochimica Acta Part B: Atomic Spectroscopy 189 (2022) 106370

15

[29] K. Kuhn, J.A. Meima, Characterization and economic potential of historic tailings 
from gravity separation: implications from a mine waste dump (Pb-Ag) in the Harz 
Mountains Mining District, Germany, Minerals 9 (2019) 303, https://doi.org/ 
10.3390/min9050303. 
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[45] J. Mũnoz-Marí, F. Bovolo, L. Gómez-Chova, L. Bruzzone, G. Camp-Valls, 
Semisupervised one-class support vector Machines for Classification of remote 
sensing data, IEEE Trans. Geosci. Remote Sens. 48 (2010) 3188–3197, https://doi. 
org/10.1109/TGRS.2010.2045764. 
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Abstract 

Lithium is a crucial element for today’s technology but difficult to detect with many micro-analytical 

methods and its quantification during geological exploration is so far mostly performed with bulk 

analysis on whole rock samples of complete drill core meters. However, quantified spatial Li 

distributions in drill core samples would support the assessment of local potentials in Li exploration 

projects. Laser-induced breakdown spectroscopy (LIBS) can be used to detect the spatial distribution 

of traces of Li in e.g. pegmatitic samples, but physical and chemical matrix effects influence the LIBS 

spectra, so that especially spatial quantification in samples with varying matrices remains challenging. 

To overcome this problem, LIBS datasets were calibrated by quantified laser ablation-inductively 

coupled plasma-time of flight mass spectrometry (LA-ICP-TOFMS) data. For calibration, both methods 

were applied on the same sample area and aligned pixel-by-pixel. Different machine learning 

algorithms were used to calculate multivariate calibration models. As a result, quantified spatial 

distributions of Li2O, SiO2, Al2O3, Na2O, and K2O from LIBS measurements are obtained for spodumene 

pegmatite drill core samples from the Rapasaari complex in Finland. 

A linear Partial Least Square Regression (PLSR) quantification model and a non-linear Least Square 

Support Vector Machines (LS-SVM) quantification model were built and the results were compared. 

Root mean square error and R² showed improved values for the LS-SVM quantification model for Li2O, 

SiO2, Al2O3, Na2O and K2O and for a varying number of training pixel from the pixel-matched reference 

sample. The LS-SVM model was further validated with an additional test area of the reference sample, 

showing excellent spatially-resolved quantification results. The calibrated LS-SVM model was then 

validated with a distinct area of a drill core sample from a different part of the same deposit, which 

was measured with LA-ICP-TOFMS as well. The spatially-resolved LIBS based concentrations of the 

independent validation sample show reliable results for Li2O, SiO2, Al2O3 and Na2O. Only minor 

differences were observed for Li2O and Na2O, since the reference sample did not cover the complete 

concentration range of the sample for these elements. Special attention is required for LIBS and its 

experimental set-up in order to obtain spectra with high signal-to-noise ratios on all relevant lines but 

no saturation on the K emission lines. In general, it was shown that the combination of LA-ICP-TOFMS 

and LIBS yields a comprehensive dataset for robust multivariate calibration for spatially-resolved LIBS-

based quantification of pegmatite samples that are subject to significant physical and chemical matrix 

effects.  

Keywords: Laser-Induced Breakdown Spectroscopy (LIBS); laser ablation-inductively coupled plasma-

time of flight mass spectrometry (LA-ICP-TOFMS); Least-Square Support Vector Machines (LS-SVM); 

core scanner; spatial quantification; Li-bearing Spodumene Pegmatite 

4.1 Introduction 

Lithium is important for modern battery production and the worlds demand for Li increased drastically 

during the last decades (Martin et al., 2017; Maxwell, 2014). Several studies predict continuously rising 

demands in the future due to ongoing efforts towards electric motorization and increasing 

consumption of electronic gadgets (Kushnir and Sandén, 2012; Xu et al., 2020). Economically 

interesting Li-deposits are either bound to brines, magmatic formations or a combination of both 

(Kesler et al., 2012). Concerning the magmatic ore deposits, pegmatites are the most important rock 

type, with Li bound to a variety of different Li-bearing minerals, e.g. spodumene, lepidolite, petalite or 

zinnwaldite (Kesler et al., 2012; Martin et al., 2017). Various Li-bearing minerals may occur in the same 

deposit, often showing different stages of paragenesis and/or alteration. Together with the large 

variety of possible mineral assemblages in pegmatites, significant variations in the Li distribution may 

arise (examples in Sweetapple and Tassios, 2015).  
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Nevertheless, detecting or quantifying these variations directly on the sample surface is difficult for 

most analytical techniques like XRF (e.g. in Reed, 2005). As a result, Li concentrations of pegmatites 

are mostly presented based on bulk analysis of whole rock samples. Due to the variability of Li in 

pegmatite rock, its spatial quantification would allow the precise identification of Li-rich regions and 

monitor changes in concentration in drill cores samples. Several analytical techniques can already 

provide Li distributions in 2D for small samples, but the sample size is limited through the sample 

chamber and the associated instruments may be difficult to access or impractical to apply (Sweetapple 

and Tassios, 2015). A promising technology for fast detection of Li is Laser-induced breakdown 

spectroscopy (LIBS). It has been shown that LIBS can effectively detect even small traces of Li in 

geological samples in the laboratory (e.g. Fabre et al., 2002; Janovszky et al., 2021; Müller and Meima, 

2022; Romppanen et al., 2021; Sweetapple and Tassios, 2015), as well as in the field (e.g. Fabre et al., 

2022; Rammelkamp et al., 2021; Wise et al., 2022).  

In LIBS analysis, a highly energetic laser beam is focused onto the samples surface, creating a plasma 

out of the ablated material. The plasma contains the elemental information in the form of light, which 

is emitted during cooling and collected with optical instruments (Hahn and Omenetto, 2012). Elements 

show peak intensities at element specific positions of a spectrum, which allows the detection of 

multiple elements in a single spectrum (Cremers and Radziemski, 2013). The ability to measure under 

atmospheric conditions with nearly no sample treatment needed makes LIBS an ideal tool for a wide 

variety of geochemical applications (Harmon and Senesi, 2021), including the fast measurement of 

large sample areas and even complete drill core meters with high spatial resolution.  

Several approaches for LIBS-based drill core scanner applications already exist (e.g. Bolger, 2000; 

Haavisto et al., 2013; Khajehzadeh et al., 2016; Kuhn et al., 2016; Meima et al., 2022; Müller et al., 

2021; Rifai et al., 2018), but LIBS based quantification of heterogeneous material remains challenging 

due to chemical and physical matrix effects (e.g. in Takahashi and Thornton, 2017). Multivariate 

calibration can be applied to overcome these effects to some extend and different algorithms have 

been employed for the quantification of specific elements in geological material with LIBS (e.g. 

Pagnotta et al., 2020; Rethfeldt et al., 2021). Matrix effects are also very relevant for Li-bearing 

pegmatites, since severe physical matrix effects exist if different minerals interact with the same laser 

light (Müller and Meima, 2022). Additionally, the ablation of areas consisting of different minerals and 

hence the mixing of different chemical matrix effects leads to mixed spectra, which complicate reliable 

quantification at mineral borders (El Haddad et al., 2019; Meima and Rammlmair, 2020). Fabre et al., 

2002 were able to quantify Li in single LIBS shots on small spodumene crystals using synthetic glasses. 

Recently, Fabre et al., 2022 quantified averaged spectra of specific Li-bearing minerals and Rifai et al., 

2022 quantified the Li content of crushed spodumene ore with LIBS. Nevertheless Sweetapple and 

Tassios, 2015 encountered problems for the quantification of spatially detailed LIBS measurements of 

Li in spodumene pegmatite mappings. Semi-quantitative analysis could still be provided, but the two 

different reference samples – fused synthetic glass discs and pressed powder pellets – were not 

compatible with the original rock crystals regarding their matrix effects. A calibration model based on 

whole rock analysis of homogenized powder samples can be used to quantify homogeneous geological 

material with similar matrices with LIBS, but the accurate quantification of pure minerals is difficult 

using this method (Anderson et al., 2011). Therefore, the spatial LIBS-based quantification of pure 

minerals present in a pegmatitic rock needs a different approach to overcome the spatially resolved 

variations in physical and chemical matrix effects.  

During the last decade, laser ablation-inductively coupled plasma-time of flight mass spectrometry (LA-

ICP-TOFMS) has enabled the acquisition of quantitative compositional maps that include all elements 

with high resolution (Chew et al., 2021) and different geological applications have been published (e.g. 

Burger et al., 2015; Neff et al., 2020; Rubatto et al., 2020; Stanković et al., 2022; Ubide et al., 2019).

57



Improving spatially-resolved Lithium quantification 

For LA-ICP-TOFMS measurements, sample size is restricted to the sample chamber of the instrument. 

So far, in several papers, LA-ICP-MS mappings were used to validate LIBS imaging results of geological 

samples optically (e.g. Chirinos et al., 2014; Novotný et al., 2008), but to our knowledge, no study used 

LA-ICP-TOFMS mappings as a pixel-matched reference standard for LIBS quantification yet. 

The goal of this paper was to develop a LIBS application for the accurate quantification of Li and other 

rock-forming elements in different main minerals of spodumene pegmatite drill core samples. In order 

to deal with the severe matrix effects in the pegmatite material, LIBS and LA-ICP-TOFMS 

measurements were superimposed to create a pixel-matched reference sample, which was used for 

the spatial quantification of Li and other rock-forming elements by applying a linear Partial-Least-

Square Regression (PLSR) and a non-linear Least-Square Support Vector Machine (LS-SVM) model. The 

LS-SVM calibration model was further validated with another 2D scan of a sample from the same 

deposit from a different part of the drill core.  

4.2 Material and Methods 

4.2.1 Sample material 

The investigated samples cover spodumene pegmatite from a 10 m long drill core from the Rapasaari 

lithium deposit, which is part of the Kaustinen lithium pegmatite province in Finland. They are part of 

the drill cores investigated in Müller and Meima, 2022, where detailed information can be found. The 

Li-bearing spodumene pegmatite shows average Li2O concentrations of 1.18 wt.%, mainly bound to 

spodumene minerals (LiAlSi2O6) with average Li2O concentrations of 7.21 wt.% (Kuusela et al., 2011). 

Additional main minerals of the spodumene pegmatite are albite (Na[AlSi3O8]), K-feldspar (K[AlSi3O8]), 

quartz (SiO2), and muscovite (KAl2[(OH, F)2|AlSi3O10]), as well as the accessory minerals apatite, 

zinnwaldite, Nb-Ta-oxides, beryl, garnet (grossular), arsenopyrite, and sphalerite (Ahtola, 2015; 

Kuusela et al., 2011; Rasilainen et al., 2018). Crystal sizes range from 0.5 cm to several centimetres and 

especially spodumene and albite show large crystals with lengths of up to 10 cm (Ahtola, 2015; Kuusela 

et al., 2011; Rasilainen et al., 2018).  

The measured area of the reference sample BK203_S12 covers 1.0 x 2.5 cm in size and was extracted 

from a representative part of the drill core. It contains four of the five main minerals, i.e. albite, 

muscovite, quartz, and spodumene with varying distributions. K-feldspar is missing in this particular 

area of the sample. Additionally, two small crystals of the accessory mineral apatite were found. This 

sample was used as the pixel-matched reference sample as described in sections 2.2 – 2.4. Thereto, it 

was mapped with LIBS (first) and LA-ICP-TOFMS (second). The LIBS mapping covers a larger area of the 

sample, fully including the surface that was measured with LA-ICP-TOFMS afterwards.  

Sample BK200 is an independent piece from a different location of the spodumene pegmatite drill 

core. It covers 4.8 x 5.3 cm in size and shows a similar mineral distribution as sample BK203_S12. 

However, at specific positions of BK200 the main mineral K-feldspar and the two accessory minerals 

beryl and apatite appear. The whole sample surface was mapped with LIBS and a reference area of 

0.76 x 4.3 cm was measured with LA-ICP-TOFMS as well. The measurements of sample BK200 represent 

an independent sample from a different part of the drill core and were thereby used to analyse and 

validate the developed quantitative LIBS-based mapping tool applied on an unknown drill core sample 

of the same deposit.  

4.2.2 LA-ICP-TOFMS measurements and pre-processing 

Quantified element distribution maps were obtained by laser ablation-inductively coupled plasma-

time of flight mass spectrometry (LA-ICP-TOFMS) from rock samples previously analysed by LIBS. The 

applied LA-ICP-TOFMS system is described in Stanković et al., 2022. It uses the 193 nm laser ablation 
system IRIDIA (Teledyne CETAC Technologies, Omaha, USA), which is equipped with a fast washout

Cobalt Sample Cell and an Aerosol Rapid Introduction System (ARIS). The laser ablation system is  
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coupled to an icpTOF 2R inductively coupled plasma-time of flight mass spectrometer from TOFWERK 

AG, Thun, Switzerland. The laser ablation system is controlled by the software Chromium 2.7 (Teledyne 

CETAC Technologies, Omaha, USA) while the mass spectrometer is controlled by the software TOFpilot

(TOFWERK AG, Thun, Switzerland). Helium is used for the transport of the ablated material into the 

torch of the mass spectrometer. The ICP-TOFMS was operated with a tune setting that covers the mass 

range from 7 to about 90 amu. A square 10 µm or 20 µm spot was used for ablation of sample material 

at a fluence of 6.0, 7.2, or 9.0 J/cm² with a repetition rate of 50, 80, or 120 Hz and a dosage of 1 

pulse/spot resulting in a scan speed of 1.0, 1.2, or 1.6 mm/s. In this way 475-900 lines of about 25 to 

43 mm in length were gapless ablated for a single map. Ten to 25 gas blanks and 10-25 lines on a 

calibration material (CM) were recorded at equally distributed time intervals together with the sample. 

The reference material GSE-1G (United States Geological Survey, Denver, USA) was used as CM.

The HDIP software (Teledyne CETAC Technologies, Omaha, USA) was used to process the raw data of 
the TOF instrument. Based on the recorded gas blanks, background correction was performed and 

element distribution maps in counts per seconds (cps) were calculated. The records of the CM were 

used to calculate calibration functions, which were applied on the sample data to obtain 

concentration-related element distribution maps. Sum normalisation of the previously external 

calibrated concentrations was applied to account for different ablation yields of sample and CM. In the 

sum normalisation step the sum of Li2O, Na2O, MgO, Al2O3, SiO2, K2O, MnO, and Fe2O3 was normalised 

to 100%.  

Only very little material is ablated from quartz crystals during the LA-ICP-TOFM ablation process. As a 

result, background correction and sum normalisation can lead to unrealistic concentrations of specific 

quartz pixel. This problem was mainly solved during the image registration process described in section 

2.4. 

4.2.3 LIBS measurements and spectral processing 

The LIBS measurements were performed with a drill core scanner prototype developed by Lasertechnik 

Berlin (LTB) in 2011. It operates with a Q-switch Nd:YAG laser (20 Hz repetition rate, 11 ns pulse 

duration, 1064 nm excitation wavelength, 35 mJ laser energy and 200 µm spot size), an Echelle 

spectrometer (285-964 nm spectral range and 0.029-0.096 nm resolution) and a charge coupled device 

(CCD). Spectrometer and CCD are held at a constant temperature of 27 °C to avoid spectral shifts during 

longer measurements. The laser can move up to 100 cm in X and 2.5 cm in Y direction. To prevent 

cross-crater contamination and the ionization of small dust particles between laser head and focus 

point, an exhaust system moves alongside the laser. Parameter optimization for all samples was based 

on signal-to-noise ratio of the major rock forming elements present in the main minerals of the 

Rapasaari complex. More details can be found in Müller and Meima, 2022. 

For the detailed 2D-scans, gapless point measurements (200 µm) were performed shot-by-shot, 

accumulating three shots at each position. A 1 s pause is necessary to save the data, before the laser 

moves to the next measurement position. This results in a scan speed of 0.2 mm/s. Both samples 

BK203_S12 and BK200 were mapped with LIBS in detail. Figure 1 shows selected spectra for pure 

phases of four main minerals found in sample BK203_S12, i.e. spodumene, albite, quartz, and 

muscovite. Mineral specific element peaks are highlighted in the spectra. For further analysis, 37 

element specific emission lines were extracted from every spectrum using peak integration with an 

integration window of 0.1 nm for wavelengths below 600 nm and 0.15 nm for wavelengths above 600 

nm, respectively. The selection is shown in Table 1 and based on the stoichiometry of the main 

minerals (section 2.1) and potential accessory minerals. To minimize shot-to-shot variations, all 

emission lines were normalised using the total intensity of the corresponding spectrum. 
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Figure 1: Selected spectra of spodumene, albite, quartz, and muscovite, taken from sample BK203_S12.  

Table 1: Extracted emission lines used for the quantification models. 

Element Spectral line (nm) 

Al I 309.28, 394.40, 396.15 

Be II 313.04, 313.11 

Ca I 430.25 

Ca II 315.89, 396.85 

F I 685.60 

Fe I 358.12, 371.99, 373.49 

K I 766.49, 769.90 

Li I 610.36, 670.78, 812.62 

Mg I 285.21, 517.27, 518.36 

Mn I 403.08, 403.31 

Mn II 294.92 

Na I 588.99, 818.33, 819.48 

P II 603.40, 604.31 

Si I 288.16, 390.55 

Si II 634.71 

Ti II 308.80, 336.12, 337.28 

Zn I 330.25, 334.50, 472.22 
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4.2.4 Image registration workflow 

LIBS and LA-ICP-TOFMS datasets were obtained from the same sample areas, but due to the use of 

different instruments with different sample stages the datasets have to be superimposed to obtain 

pixel-matched datasets. This process is called image registration. Thereto, hyperspectral data cubes of 

both datasets were generated. In the data cubes, each pixel represents a single measurement point 

and each image gives the concentration distribution of a specific element (LA-ICP-TOFMS) or the 

normalised intensity distribution of the target emission line (LIBS), respectively. This allows 

straightforward visualization using the ENVI image analysis software (version 5.5). LIBS and LA-ICP-

TOFMS measurements show offsets to various degrees, and lateral shifts and rotation were necessary 

to overlap both datasets pixel by pixel. Thereto, the following steps were executed in ENVI: 

(1) The resolution of all LA-ICP-TOFMS images was adjusted to the LIBS pixel size of 200 µm.

Thereto, the median concentration of 10 x 10 (20 µm square) or 20 x 20 (10 µm square) LA-

ICP-TOFMS pixels was determined and used as the representative concentration for all

involved pixels. By using the median concentration, unrealistic LA-ICP-TOFMS concentrations

of specific quartz pixel (see section 2.2) were mostly avoided.

(2) The LIBS images were cut to match the area covered by the LA-ICP-TOFMS measurement as

close as possible.

(3) Three tie points were selected for image registration of sample BK203_S12 and sample BK200

for ENVIs built-in image registration tool. Every tie point covers an identical pixel in LA-ICP-

TOFMS and LIBS images.

(4) Using ENVIs rotation, scaling and translation (RST) algorithm, overlapping areas of the LA-ICP-

TOFMS data cube were warped onto the LIBS images based on the tie points selected in (3).

(5) After image registration, a moving window with a 3 x 3 kernel was applied to both datasets.

Thereto, the intensity/concentration values of the central pixel were averaged using all nine

pixel of the window. Padding was used to prevent size reduction at the edges. This filter

smooths the images and reduces the possibility of miss-fitted pixel at mineral borders.

LA-ICP-TOFMS calibration was performed on silicates only. Since small areas of the samples BK203_S12 

and BK200 appear to consist of apatite, these pixels were removed from both pixel-matched datasets. 

Thereto, all pixels with P2O5 concentrations above 10 wt.% were discarded. Additionally, 82 quartz 

pixel of sample BK200 still showed unrealistic LA-ICP-TOFMS concentrations after step (1) of the image 

registration process. These pixels were discarded as well. 

4.2.5 LIBS-based quantification models and the creation of train- and test sets 

Two different sets of test data were provided for validation. Thereto, the pixel-matched datasets of 

BK203_S12 were spatially divided according to Figure 2. The larger area (BK203_S12a, covering 4416 

pixel) was used to build train- and test sets for model creation. The smaller area (BK203_S12b, covering 

1900 pixel) provides an additional independent test area for model validation purposes.  

To investigate the influence of varying numbers of train pixels on the quantification model, ten 

different train sets were created from BK203_S12a, covering 100, 150, 200, 250, 500, 750, 1000, 1250, 

1500 and 2000 pixel, respectively. Thereto, the predefined number of pixels was selected with the 

Kennard-Stone algorithm (Kennard and Stone, 1969), included in the ‘prospector’ package in R 

(Stevens and Ramirez–Lopez, 2020). It was applied to the normalised LIBS intensities and ensures that 

the complete intensity range is covered in every train set. The 2416 pixels that were not included in 

the 2000 pixels train set were used as the test set for all studied train sets of different sizes. Afterwards, 

the final pixel-matched model was applied to all 1900 pixels of BK203_S12b for additional validation. 
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BK203_S12a and BK203_S12b both include the same minerals, as displayed in the classified image in 

Figure 2.   

The two algorithms PLSR and LS-SVM regression were compared to evaluate the performance of a 

linear (PLSR) and a non-linear (LS-SVM) quantification model based on the pixel-matched reference 

sample. The open-source software R, version 3.6.3 (R Core Team, 2018), was applied for all 

calculations.  

PLSR is a multivariate method widely used to quantify a variety of geological materials with LIBS (e.g. 

Clegg et al., 2009; Tucker et al., 2010; Ytsma and Dyar, 2019). It models the relationship and structure 

of the two matrices X (matrix of predictors) and Y (matrix of responses), extending the traditional 

multiple regression approach. This enables good quantification results, even if noisy or collinear 

variables are used as input. For further information on the method itself, we refer to Wold et al. (2001). 

We applied the PLS2 algorithm in the R package pls (Mevik and Wehrens, 2021). The PLSR-model was 

tuned by hand for every train set independently, and 5 latent variables were applied for every train 

set. The data was scaled and centred; cross validation was used to fit the PLSR model.   

LS-SVM is an extension of the conventional SVM algorithm, but linear equations are used to solve the 

optimization problem, instead of quadratic programming. It was introduced by Suykens and 

Vandewalle (1999) and we refer to their paper for a detailed explanation. We used the algorithm 

included in the R package liquidSVM (Steinwart and Thomann, 2017) to create the quantification 

model for the scaled data. This LS-SVM algorithm uses the Radial Basis Kernel and tunes its parameters 

gamma and lambda for each element automatically, using a two-dimensional grid with a range of 

0.1677 to 6.3357 and 0.000001250 to 0.01 for gamma and lambda, respectively.  

Figure 2: Optical image and classification result for sample BK203_S12. The optical image shows two areas, used for model 

creation (BK203_S12a) and additional validation (BK203_S12b). The classification results were obtained using the SSL 

classification model presented in Müller et al. 2022.  

4.3 Results and Discussion 

4.3.1 Comparing LA-ICP-TOFMS and LIBS datasets of reference sample BK203_S12 

To evaluate the image registration process for reference sample BK203_S12 presented in section 2.4, 

the LA-ICP-TOFMS dataset was compared to the LIBS dataset in terms of pixel-matching. Figure 3 shows 

the pixel-matched images for normalised LIBS intensities of selected emission lines (left) and 

corresponding LA-ICP-TOFMS oxide concentrations (right) of the same element. The pixel-matched 

images of Si, Li and Na display high similarities for all minerals, where areas with high normalised LIBS 

intensities overlap with high concentrations of SiO2, Li2O and Na2O, respectively. K2O displays a good 

correlation for most parts of the image, although some pixels show elevated normalised LIBS 

intensities, while the correlated concentrations are low. Contrary behaviour is seen for Al2O3. While 

areas with small and medium concentrations of Al2O3 overlap with low normalised LIBS intensities of 

Al I 394.40 nm, several muscovite crystals (see classification in Figure 2) show the anticipated, high 
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concentrations of Al2O3, but no increase in the normalised LIBS intensity of Al I 394.60 nm can be 

observed. This is true for all extracted Al lines. Since Al2O3 concentrations of albite, quartz-, and 

spodumene crystals are correlated with their corresponding normalised LIBS intensities, it is assumed 

that different optical properties of muscovite can result in matrix effects. This is supported by Figure 

2, in which muscovite crystals of sample BK203_S12 are associated with a dark brown colour, whereas 

spodumene, quartz and albite appear grey.  

Figure 3: Comparison of different elements of the LIBS and the LA-ICP-TOFMS dataset for sample BK203_S12 after the image 

registration process described in section 2.4. The left images show normalised LIBS intensities, the right images show oxide 

concentrations of the same elements, measured with LA-ICP-TOFMS. The missing white pixel correspond to apatite crystals, 

which were excluded from the calibration model.  

To evaluate the degree of pixel matching, correspondence factors between normalised LIBS intensities 

and LA-ICP-TOFMS concentrations were calculated for Si and Li pixel by pixel after Hoekzema et al., 

1998. A correspondence factor of 1 indicates a perfect positive correlation of every pixel of the two 

datasets and with correspondence factors of 0.91 for Si and 0.97 for Li, both elements display a high 

degree of correlation. This indicates a successful image registration of LIBS and LA-ICP-TOFMS 

measurement. The pixel-matched datasets were therefore used to build the quantification models.  
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4.3.2 Comparing PLSR and LS-SVM results for sample BK203_S12a for varying numbers of 

train pixels  

The root mean square error (RMSE) and the coefficient of determination R² are measures that describe 

the deviation of modelled values from reference values and the accuracy of the linear fitting, 

respectively. In combination, both figures of merit indicate how well model results fit to observed 

values (Takahashi and Thornton, 2017). Based on these indices, different models can be compared if 

RMSE and R² are calculated for an identical test set. As the number of train pixels obviously influences 

model quality, this parameter is evaluated as well. Figure 4 displays the development of RMSE and R² 

with increasing numbers of train pixels based on the identical test set. Results are shown for Li2O, SiO2, 

Al2O3, Na2O and K2O for the PLSR and LS-SVM models that have been developed as described in section 

2.5. For interpretation purposes, the LA-ICP-TOFMS concentration range of every element is shown at 

the top. For LS-SVM, R² values are continuously increasing and RMSE values are continuously 

decreasing with an increasing number of train samples. Especially Na2O and K2O show significant 

improvements using a larger number of train samples.  

Figure 4: Development of RMSE (top) and R² (bottom) with increasing numbers of train pixels for Li2O, SiO2, Al2O3, Na2O and 

K2O for LS-SVM (black) and PLSR (red). Results are based on an identical set of test pixels extracted from sample BK203_S12a 

(Figure 2), as explained in section 2.5. 

Figure 4 shows that the non-linear LS-SVM algorithm outperforms linear PLSR for every train set and 

every element. Increasing the number of PLS components for the PLSR model did not change this 

observation. For PLSR, RMSE values do not continuously decrease and/or R2 continuously increase with 

an increasing number of train pixel for Li2O, Al2O3 and K2O. This may be explained by the fixed number 

of 5 PLS components that was applied throughout the tests, since the optimal number of PLS 

components may vary from element to element and from experiment to experiment. Overall, the non-

linear function build by LS-SVM is able to model the relationship of LIBS intensities of the different 

minerals and their concentrations significantly better than PLSR, which results in the improved RMSE 

and R² values. In the presented example, a single LS-SVM or PLSR model was used for the complete 

concentration range. Further enhancements for PLSR, therefore, could probably be achieved, if 
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different models would be created for different concentration ranges (Anderson et al., 2017). Here, 

the non-linear function is clearly advantageous in the presented example, because it needs only one 

model for the whole concentration range.  

Due to the numerous possible physical matrix effects and different transition zones between minerals, 

a large number of train pixel can result in better RMSE and R² values. For most elements, lowest RMSE 

and highest R² are received using the maximum applied number of 2000 train pixels. Compared to the 

train sets with 100 to 250 train pixel, the 500 train pixel LS-SVM model shows significant improvements 

especially for Na2O and K2O, slowly improving further until only minor changes are displayed for more 

than 1000 pixels. To provide a generalizable model, the smallest number of necessary train samples 

should be used for future applications. Here, 1000 train pixel show very good results and only small 

improvements are made using even more pixel for training. Therefore, the quantification model with 

1000 train pixel was used for further investigations.  

4.3.3 Quantification results of the LS-SVM model for sample BK203_S12b 

To evaluate the LS-SVM model for an adjacent test area not involved in model creation, LIBS-based 

concentrations of sample BK203_S12b (Figure 2) were determined and compared to the LA-ICP-TOFMS 

results. Figure 5 shows the LIBS-based concentration images and reference mappings for Li2O, SiO2, 

Al2O3, Na2O and K2O. Overall, good agreement is observed, and areas with high LA-ICP-TOFMS 

concentrations display similarly high LIBS-based concentrations for all investigated elements. 

Especially the observed drop of the normalised LIBS intensity on muscovite crystals (see section 3.1) 

does not have any significant effect on the LS-SVM calibrated Al2O3 concentrations obtained by LIBS 

anymore. This demonstrates one advantage of a multivariate calibration approach.  

Figure 5: Modelled LIBS-based concentrations of Li2O, SiO2, Al2O3, Na2O and K2O for sample BK203_S12b (bottom), compared 

to LA-ICP-TOFMS reference concentrations of the same area (top). The optical image is shown on the left for comparison.  

The promising results of Figure 5 are supported by the scatterplots shown in Figure 6, which display 

the LIBS-based concentrations and the corresponding LA-ICP-TOFMS reference values for every 

individual pixel of sample BK203_S12b. Every pixel is coloured according to the classification result 

shown in Figure 2. According to their associated class, quartz pixels show high SiO2 values, spodumene 

pixel high Li2O concentrations. Muscovite pixels are high in K2O, whereas albite shows highest Na2O 

values. Most pixels that are classified as pure minerals show results that fit well to their stoichiometric 
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element concentrations. Nevertheless, several points classified as spodumene show Li2O 

concentrations below 6 wt.%, although microprobe point measurements of spodumene from the same 

deposit only yielded values above 6 wt.% Li2O (Kuusela et al., 2011). Due to the moving window applied 

in section 2.4, concentrations of formerly pure spodumene pixels are mixed with their surrounding 

material at mineral borders. Therefore, some pixel classified as spodumene show Li2O concentrations 

below 6 wt.%.   

A clear correlation between the LIBS-based concentrations and the LA-ICP-TOFMS reference values is 

observed for pure minerals and all elements. Especially Li2O, SiO2 and Al2O3 follow the regression line 

closely.  
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Figure 6: LIBS-based concentrations and reference values for every pixel of the independent test area of sample BK203_S12b. 

The pixels are coloured according to the classification result shown in Figure 2. 
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4.3.4 Transferability of the LIBS LS-SVM calibration model onto sample BK200 

The LS-SVM calibration model was applied to the drill core sample BK200 to test its performance on a 

different sample of the same deposit. A rectangular area of this sample (Figure 7) was mapped by LA-

ICP-TOFMS for validation. 

Sample BK200 contains small crystals of K-Feldspar. To account for this mineral in the train set, 

additional areas from the original hand specimen of sample BK203_S12 covering only K-Feldspar were 

selected. These areas were measured with LIBS and LA-ICP-TOFMS (using the same instrument settings 

as described in sections 2.2 and 2.3), pixel-matched, and added to the train set. An updated LS-SVM 

calibration model was calculated and applied on the LIBS data for sample BK200. Figure 7 displays an 

optical image of sample BK200, highlighting the area that was measured with LA-ICP-TOFMS for 

validation purposes. Modelled LIBS-based and LA-ICP-TOFMS distribution maps for Li2O, SiO2, Al2O3, 

Na2O and K2O are shown and compared as well.  

Figure 7: Optical image of sample BK200, LIBS-based concentrations, as well as LA-ICP-TOFMS reference values for the 

highlighted rectangle. The missing values correspond to apatite and unrealistic LA-ICP-TOFMS concentrations for quartz pixels 

(see section 2.4). 

LIBS-based and LA-ICP-TOFMS concentrations of SiO2 and Al2O3 are in excellent agreement, and only 

minor deviations between the calibrated LS-SVM model and the LA-ICP-TOFMS reference data can be 

observed for Li2O and Na2O. LIBS-based Li2O concentrations of specific spodumene crystals (areas with 

high Li2O concentrations) are underestimated by 0.8 – 1.0 wt.%. Main reason are the particularly high 

Li2O values of these spodumene crystals in sample BK200. They show average LA-ICP-TOFMS 
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concentrations of 7.8 wt.% Li2O, whereas the spodumene minerals of the reference sample BK203_S12 

display average LA-ICP-TOFMS values of 6.8 wt.% Li2O. Similarly, Na2O is underestimated by 1.0-2.0 

wt.% in several albite crystals (areas with high Na2O concentrations). LA-ICP-TOFMS Na2O values of 

albite crystals in reference sample BK203_S12 average at 11.0 wt.%, whereas Na2O concentrations of 

albite minerals in the measured area of sample BK200 average at 12.0 wt.%. Since the non-linear LS-

SVM function models new concentrations very close to its trained concentration range (Valyon and 

Horváth, 2005), LIBS-based concentrations of Li2O and Na2O are slightly underestimated in the affected 

spodumene and albite crystals of sample BK200.  

Although the large K-feldspar crystal in the upper right corner (area with high K2O concentrations) 

shows elevated LIBS-based K2O concentrations averaging at 10.4 wt.%, LA-ICP-TOFMS measurements 

of the same crystal display average K2O values of 14.5 wt.%. Inspecting the corresponding LIBS spectra 

revealed a saturation for K I 766.49 nm and K I 769.90 nm in BK200 and the additional reference area, 

which was not observed for spectra of spodumene, albite, quartz or muscovite. Since saturation can 

affect the LIBS-based quantification accuracy (Takahashi and Thornton, 2017), this is likely the reason 

for the underestimated K2O concentrations of the K-feldspar crystal. No other reliable K lines are 

present in the spectral range covered by our spectrometer and, therefore, special attention is required 

for LIBS instrumentation and experimental set-up in order to obtain spectra with high signal-to-noise 

ratios on all relevant lines but no saturation on the K target emission lines for all minerals present in 

pegmatitic samples. Nevertheless, LIBS-based K2O concentrations of BK203_S12b show that the 

developed quantification model is reliable for concentrations of up to 9.0 wt.% (Figure 6).  

The developed multivariate quantification approach can therefore be applied onto drill core samples 

of the same deposit for Li2O, SiO2, Al2O3, Na2O, as well as areas with K2O concentrations up to at least 

9.0 wt.%. Multivariate calibration successfully overcomes severe physical matrix effects in crystals of 

pure minerals and chemical matrix effects between different minerals with one calibration model. The 

multivariate approach facilitates the description of the multidimensional nature of the data (i.e. the 

different minerals), as well as the collinearity in the LIBS data. The resulting function recognizes each 

mineral based on its normalised LIBS intensities and converts the intensities ‘mineral specific’ into 

element concentrations. 

4.4 Conclusion 

This paper demonstrates the use of LA-ICP-TOFMS to calibrate LIBS to obtain quantified, spatially 

resolved maps of Li and other major rock forming elements for heterogeneous spodumene pegmatites 

showing severe matrix effects. Based on a pixel-matched reference sample a multivariate calibration 

model can be trained that recognizes different types of minerals which show a large variety of matrix 

effects. The developed model is able to apply a calibration function on normalised LIBS intensity data 

to convert these data into element concentrations for heterogeneous spodumene pegmatite drill core 

samples. 

Investigating the number of training pixel necessary to achieve good results with the pixel-matched 

approach showed increasing accuracies with an increasing number of training pixel. Good results were 

already obtained with 500 train pixel, and only minor changes were observed with more than 1000 

pixel used for training. The non-linear LS-SVM algorithm outperforms the PLSR approach for the 

calibration model in terms of model accuracy, which is reflected in the RMSE and R² values.  

The developed LIBS calibration approach was successfully validated by applying it on an adjacent test 

area of the reference sample and on an independent spodumene pegmatite sample from another part 

of the drill core. Representative samples of the target deposit are needed for the multivariate 

calibration approach, which should cover all target minerals, their concentrations ranges and physical 
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and chemical matrix effects. However, the calibration model can easily be extended by including 

additional pixel-matched reference samples if new matrices (minerals) occur in the target material, 

e.g. during an exploration campaign.

Combining LA-ICP-TOFMS with LIBS enables the creation of a pixel-matched quantification model that 

allows fast and accurate spatial quantification of Li and other major rock forming elements in 

heterogeneous geological samples. The developed method provides a LIBS-based quantitative drill 

core scanner application for pegmatitic material.  
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5. Summary and Outlook

5.1 Developed applications and their combination 

The presented publications extend the existing applications of LIBS in geology by spatially detailed LIBS 

measurements of highly heterogeneous drill core samples of different deposits. Each application 

addresses an important aspect of the spatial analysis of heterogeneous LIBS measurements, although 

especially the wide variety of physical and chemical matrix effects are of specific importance in every 

investigated application. Due to the large number of existing minerals, matrix effects are always 

present in large geological mappings of heterogeneous material, preventing the straightforward 

analysis of LIBS drill core measurements.  

The minimization of matrix effects is explained in detail for brecciated material with mineral crystals 

smaller than the laser spot size (chapter 2), as well as pegmatitic material with large minerals up to 10 

cm in size (chapter 3 and 4). A variety of different machine learning algorithms and chemometric 

methods were applied to overcome these matrix effects, and LIBS could be used for spatially resolved 

detection of REE enrichments in brecciated carbonatite, as well as mineral classification and pixel 

specific quantification of Li and other major rock forming elements in spodumene pegmatite.    

Chapter 2 describes the use of k-means clustering and image analysis to establish instrument specific 

intensity limit for La, which can be used to detect areas enriched in REEs in in spatially detailed LIBS 

mappings. The intensity limit was used to find all pixels with high La contents, and, based on this 

information, REE concentrations were estimated by using electron microprobe information of distinct 

REE minerals of the same deposit as a reference.  

A novel classification algorithm was developed in chapter 3, which allows the classification of minerals 

and the detection of unknown LIBS spectra that are not covered by the train set. These spectra either 

belong to macro porosities, new minerals, or mineral borders, indicating a new LIBS matrix that needs 

further investigation. This is especially important for spatially resolved LIBS analysis of drill cores, 

where the occurrence of new minerals is common.  

Chapter 4 describes the preparation of matrix-matched reference samples for pixel-specific 

quantification. These samples are mapped with LA-ICP-TOFMS as well as LIBS, before both data sets 

are matched pixel-by-pixel and used to train a LS-SVM quantification model that is able to convert LIBS 

intensities into element concentrations. This allows pixel-specific quantification of LIBS mappings of Li-

bearing drill core samples.  

While every chapter itself covers different applications and methodologies, the developed algorithms 

can be combined to enable a workflow that allows a classification of minerals, the identification of new 

minerals not covered by the train set, the selection of mineral borders, and the pixel specific 

quantification of all minerals that are covered by a pixel-matched reference sample.  

LIBS-based quantification and classification of geological samples are only possible for minerals that 

are also covered by reference samples, and both can be especially problematic for measurement 

points at mineral borders. The developed classification algorithm (chapter 3) is able to identify minerals 

that are not present in a reference sample, and the combination of cluster- and image analysis 

presented in chapter 2 can be employed to detect mineral borders automatically. By combining these 
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methods, problematic LIBS spectra can be identified, and only trustworthy quantification and 

classification results are provided.      

5.2 Instrument specific challenges 

Employing LIBS based drill core scanners for the investigation of complete drill holes can drastically 

reduce the time of geochemical analysis, displaying highly detailed information of large samples or 

even complete drill core meters rapidly. The drill core scanner that was used for the measurements 

presented in this work was still at a prototype level, and therefore revealed different instrument 

specific challenges with room for improvement: 

1) Laser spot size. The REE bearing minerals of the brecciated carbonatite showed high concentrations

of Ce and Nd, but no emission could be detected with the instrument used. Under atmospheric

conditions, their detection with LIBS is generally difficult (Bhatt et al., 2018; Gaft et al., 2019), and

since the REE-bearing minerals in the brecciated rock matrix were significantly smaller than the

laser spot size, the elemental information measured with LIBS displayed a mixture of REE-bearing- 

and other minerals of the rocks matrix. Therefore, the concentrations of Ce and Nd were diluted by

the surrounding material, which increased the difficulty to accurately detect them even further.

Using a smaller laser spot size would have increased the concentrations of Ce and Nd in the resulting

spectrum, and, as a result, both elements might have become detectable. Although, the emission

lines of Li are very sensitive (Fabre, 2020), the LIBS-based quantification of spodumene pegmatite

revealed difficulties to predict concentrations at mineral transition zones. These transition zones

could be minimized by using a smaller laser spot size, and, therefore, this could also be

advantageous for the analysis of pegmatitic ore.

2) Measurement time. Smaller laser spot sizes lead to higher resolutions, and, in turn, more shots are

needed to cover the same area of the sample. Especially the measurement of large surfaces in high

resolution can easily include over a million single measurement points (Nardecchia et al., 2020).

This increases the measurement time accordingly, and while a spectrum itself is formed and

detected in micro-seconds, saving the data can take significantly longer. With the drill core scanner

prototype used in this work, a scan speed of roughly 1 measurement per second could not be

exceeded.

3) Spatial restrictions. The drill core scanner prototype allowed consecutive measurements of up to

2.5 cm in Y-direction. Larger samples had to be moved by hand parallel to the stage, leaving a

potential risk to produce man-made offsets in mappings of samples broader than 2.5 cm. Although

this problem can be minimized through precise movements of the sample, small offsets were

difficult to avoid and therefore not uncommon.

4) Spectral comparability. Due to the extensive throughput, different parts of the LIBS instrument had

to be replaced at some point during the work on this thesis. It was therefore essential to monitor

the comparability of the LIBS spectra taken from similar material but at different times frequently.

Thereto, a monitoring system was developed, which ensured comparable spectra and enabled a 

reliable classification and quantification throughout each measuring campaign.

The successor of the drill core scanner prototype is already in use, and the aforementioned challenges 

have been solved. It has a highly increased scanning speed, no significant spatial restriction in the Y-

direction, and a smaller laser spot size. Additionally, the durability of all components is increased. 
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5.3 Software and algorithm specific challenges 

Different software and various machine learning models were essential to quickly analyse the large 

amount of data that was acquired in a short amount of time. Thereby, different algorithm specific 

challenges were observed:  

1) Semi-supervised learning. Incomplete trainsets for quantification and classification can lead to

wrong predictions of element concentrations or mineral labels. This problem became especially

apparent while working with highly heterogeneous drill core material from different deposits.

Chapter 3 displays one example on how to solve this problem. The developed workflow is based on

semi-supervised learning, which is an emerging field in machine learning. Although it is already used

in other geoscientific communities like remote sensing (e.g. Tan et al., 2014), room for

improvement still exists, and new and potentially more effective algorithms may emerge in the

future.

2) Image registration. Pixel-specific quantifications of complex geological material are still difficult

with LIBS due to the severe matrix effects observed in heterogeneous samples. Therefore, many

publications could only provide semi-quantitative analysis for LIBS mappings and drill core samples

(e.g. J. A. Bolger, 2000; Lefebvre et al., 2016; Sweetapple and Tassios, 2015). In chapter 4, the use

of a pixel-matched reference sample allows pixel-specific predictions with high accuracy. The

necessary image registration of LA-ICP-TOFMS reference data and LIBS measurements had to be

done by hand, which can be time consuming if many reference samples are necessary. Future

developments will probably provide easy applications of already existing algorithms that are able

to pixel-match datasets measured with different instruments, different angles, and different

resolution automatically. This would reduce time and could potentially further enhance accuracy

of the following quantification.

3) Necessary resolution of the reference data. To pixel-match the LA-ICP-TOFMS measurements in

chapter 4 with LIBS, the data had to be rescaled to match the LIBS resolution. This was done using

the median value and depending on the spot size of the LA-ICP-TOFMS measurement, between 100

and 400 single points were considered during this process. Since only a single value was used to

produce the rescaled image, fewer measurement points could have yielded an identical result.

Especially for material with large mineral crystals, a larger distance between each measurement

line and/or row is potentially sufficient, reducing the LA-ICP-TOFMS measurement time drastically.

4) Spectral comparability. The spectral comparability of different LIBS instruments and settings is

difficult because the detected spectral response depends on the deployed hardware (laser-,

detector- or spectrometer-type), as well as their individual measurement settings. Nevertheless,

future research might provide algorithmic solutions for this problem. If measurements performed

with different settings, different instruments and on different material are comparable, an

expandable mineral database could be created. This database could then be used to classify newly

measured geological samples across different LIBS instruments.

The world of machine learning is evolving fast, and it is difficult to keep up with the different 

developments that are made day by day. It is therefore important to monitor potential improvements 

concerning data fusion, data assimilation and transfer learning regularly. 

5.4 Future potential of LIBS for geological applications 

This thesis highlights the potential of LIBS to measure and analyse high-resolution mappings of large 

geological drill core samples. Additionally, drill core scanners can also be employed for single profile 
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measurements of complete drill core meters (Kuhn and Meima, 2019; Meima et al., 2022), which is 

significantly faster than spatially detailed 2D-measurements. By analysing complete drill holes with 

multiple profiles in a short amount of time – potentially even in-situ on the mining site – important

geochemical information can be revealed to the prospectors in real time. Based on this information, 

promising areas for for the spatially detailed but also more time-consuming LIBS analysis can be 

selected.  

The increasing success of LIBS as an analytical tool for a variety of geological applications in the last 

two decades is undeniable and reflected in the increasing number of publications. Nevertheless, LIBS 

is still unknown to many geoscientific researchers and mining companies, and, as a result, often 

ignored in favour of more established techniques. A continuously growing number of relevant 

geological publications that are based on LIBS can attract the attention of a larger audience. Enormous 

improvements in laser, spectrometer and detector quality, size and costs have already been made, and 

this trend will most likely continue in the future. Similarly, computational power is expected to increase 

as well, and new machine learning models are developed constantly. With updated hard- and software, 

the many advantages of LIBS could increase its popularity in analytical geology.  

Irrespective of future development, LIBS cannot be used to solve every geoscientific problem. Luckily, 

it is possible to combine LIBS with a variety of analytical instruments. It is especially easy to combine 

LIBS with other laser-dependant techniques, e.g. Raman or LA-ICP-(TOF)MS, and a number of 

publications already exist for various applications in- and outside the field of geology (e.g. Chirinos et 

al., 2014; Dong et al., 2020; Shameem et al., 2017). First multi-sensor systems are planned, and it is 

likely that new multi-sensor core logging systems will include LIBS and see increasing use in the field 

of geological exploration and mining in the future. This might lead to the establishment of benchmark 

datasets that can improve mineral classification or LIBS-based quantification.  

The extensive work with LIBS that was performed during this work underlined its great potential for 

various geological applications. I sincerely hope that the published articles demonstrate some of the 

many advantages and possibilities of LIBS and thereby help to establish LIBS-based analytics in 

geochemistry.  
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