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Introduction

This paper is devoted to the proof and an application of a general Simonenko’s
local principle to G-invariant operators on closed manifolds. Local principles
first appeared in Simonenko’s work [52] and more general forms appeared in
[1,28,31]. Since then local principles were intensively used to obtain Fredholm
condition for singular operators, see for examples [14,37,46,51,58] and the
references therein. As a consequence of the general Simonenko’s local principle,
we derive Fredholm conditions for restriction of G-invariant pseudodifferential
operators to isotypical components.

Let G be a compact Lie group and denote by ̂G the set of isomorphism
classes of irreducible unitary representations of G. If P : H → H′ is a G-
invariant continuous linear map between Hilbert spaces and α ∈ ̂G, then
the operator P induces a well defined continuous linear map between the α-
isotypical components

πα(P ) : Hα → H′
α.

In this paper, we are interested in the case where P is a pseudodifferential
operator acting between sections of two vector bundles.

Assume that our compact Lie group G acts smoothly and isometrically
on a compact Riemannian manifold M and on two hermitian vector bundles
E0 and E1. Furthermore, let P : C∞(M,E0) → C∞(M,E1) be a G-invariant,
classical, order m, pseudodifferential operator on M . Since P is G-invariant,
its principal symbol σm(P ) belongs to C∞(T ∗M �{0}; Hom(E0, E1))G. Let Gξ

and Gx denote the isotropy subgroups of ξ ∈ T ∗
x M and x ∈ M , as usual. Then

Gξ ⊂ Gx acts linearly on the fibers E0x and E1x. Following [4], denote by T ∗
GM

the G-transverse cotangent space, see Eq. (1) and by S∗
GM := S∗M ∩ T ∗

GM
the set of unit covectors in the G-transverse cotangent space T ∗

GM .
The previous set leads to the definition of G-transversally elliptic oper-

ators [4,54]. Recall that a G-transversally elliptic pseudodifferential operator
on M is a G-invariant pseudodifferential operator whose principal symbol be-
comes invertible when restricted to T ∗

GM � {0}. Since M is compact, we know
that this operators are generally not Fredholm due to the lack of full ellipticity.
Nevertheless, the, now well known, Atiyah-Singer’s result states that if P is
G-transversally elliptic then πα(P ) is Fredholm for any α ∈ ̂G, [4,54]. This
allows directly to define an index for G-transversally elliptic operators as an
element of the K-homology of C∗G, the group C∗-algebra of G. Furthermore,
with little more work, Atiyah and Singer showed that this index is, in fact, a
Ad-invariant distribution on G. See also [6,8,33,35,36] for related results and
[7,12,44] for index theorems on G-transversally elliptic operators using equi-
variant cohomology. The Fredholm property of this restrictions to isotypical
component was the starting point for the study carried out in [11].

We now proceed to state the main result studied in this paper but first
we need few more notations and definitions from [9–11].
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Assume M/G connected and let K be a minimal isotropy subgroup of G,
see [16,56]. We shall say that P is transversally α-elliptic if for all ξ ∈ (S∗

GM)K

the linear map

σm(P )(ξ) ⊗ Idα∗ : (E0ξ ⊗ α∗)K → (E1ξ ⊗ α∗)K

is invertible.
One of the main results of [11] states that P is transversally α-elliptic

if, and only if, πα(P ) is Fredholm. Here, we point out that the transversal 1-
ellipticity is related with transversal ellipticity on (singular) foliations [3,25].
For G finite, this results were proved before [9,10].

In the present paper, we recall, in Definition 3.1, the notion of locally α-
invertible operator at x ∈ M introduced in [10] and we show in full generality
the following result, see Theorem 3.11.

Theorem. Assume that M is a closed, smooth manifold and that G is a com-
pact Lie group acting smoothly on M . Let P ∈ ψm(M ;E0, E1)G and α ∈ ̂G.
Then the following are equivalent:
(1) πα(P ) : Hs(M ;E0)α → Hs−m(M ;E1)α is Fredholm for any s ∈ R,
(2) P is transversally α-elliptic,
(3) P is locally α-invertible.

Notice that in [10], the equivalence between (1) and (2) was stated with-
out proof under the hypothesis that dimG < dim M . Moreover, the triple
equivalence was then deduced in the case of finite group using the main result
of [10]. Here care is taken to state it in full generality and relax the hypothesis
dim G < dim M . This proposition enlightens the results from [9–11] in the
sense that it explains the local computations done.

The previous theorem, as well as intermediate results in this paper, were
obtained during discussions with R. Côme, M. Lesch and V. Nistor.

We point out that the Fredholm conditions obtained in this paper are
closely related to the ones in [48], for G-operators, and the ones in [18], for
complexes of operators. Fredholm conditions were also investigated in different
forms in [15,49,50,55] for boundary problems and in [23,29,30,32,40–42,45]
using techniques of limit operators and also C∗-algebras methods. The tech-
niques of limit operators are similar to the one used in [11] to obtain the
Fredholm criterion for α-transversally elliptic operator, see also Sect. 1.3. Re-
cent developments on singular operators including groupoid and C∗-algebras
were accomplished in [2,13,19–22,24,26,38,39].

1. Preliminaries

This section is devoted to background material and results. The reader can find
more details in [9–11]. The reader familiar with [9–11] can skip this section at
a first reading.
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1.1. Group Actions

Throughout the paper, we let G be a compact Lie group. Assume that G acts
on a space X and that x ∈ X, then Gx is the G orbit of x and

Gx := {g ∈ G | gx = x} ⊂ G

the isotropy group of the action at x.
If H ⊂ G is a subgroup, then X(H) will denote the set of elements of X

whose isotropy Gx is conjugated to H in G and G ×H X the space

G ×H X := (G × X)/ ∼,

where (gh, x) ∼ (g, hx) for all g ∈ G,h ∈ H, and x ∈ X.
Let V and W be locally convex spaces and L(V ;W ) be the set of con-

tinuous, linear maps V → W . We let L(V ) := L(V ;V ). A representation of
G on V is a continuous group morphism G → L(V ), where L(V ) is equipped
with the strong operator topology. Said differently, the map G×V → V given
by (g, v) �→ gv is continuous and v �→ gv is linear. We shall also call V a
G-module.

For any two G-modules H and H′, we shall denote by

HomG(H,H′) = Hom(H,H′)G = L(H,H′)G,

the set of continuous linear maps T : H → H′ that commute with the action
of G, that is, T (gv) = gT (v) for all v ∈ H and g ∈ G.

Let H be a G-module and α an irreducible representation of G. Then pα

will denote the G-invariant projection onto the α-isotypical component Hα of
H, defined as the largest (closed) G-submodule of H that is isomorphic to a
multiple of α. In other words, Hα is the sum of all G-submodules of H that
are isomorphic to α. Notice that Hα 	 α ⊗ HomG(α,H) and

Hα 
= 0 ⇔ HomG(α,H) 
= 0 ⇔ HomG(H, α) 
= 0.

Recall that we denote by ̂G the set of equivalence classes of irreducible unitary
representations of G. Let χα be the character of α ∈ ̂G and zα := dim αχα ∈
C∗G be the central projection associated in the group C∗-algebra C∗G of G.
Then pα is the image of zα induced by the group action on H. If T ∈ L(H)G

then T (Hα) ⊂ Hα and we let

πα : L(H)G → L(Hα) , πα(T ) := pαT |Hα
,

be the associated morphism. The morphism πα will play an essential role in
what follows.

As before, we consider a compact Lie group G and we now assume that
G acts by isometries on a closed Riemannian manifold M . Let TM and T ∗M
be respectively the tangent and cotangent bundle on M and recall that they
can be identified using the G-invariant Riemannian metric on M . Let S∗M
denote the unit cosphere bundle of M , that is, the set of unit vectors in T ∗M ,
as usual. Denote by g the Lie algebra of G. Then any Y ∈ g defines as usual
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the vector field YM given by YM (m) = d
dt |t=0

etY ·m. Denote by π : T ∗M → M

the canonical projection and let us introduce as in [4] the G-transversal space

T ∗
GM := {ξ ∈ T ∗M | ξ(YM (π(ξ))) = 0,∀Y ∈ g}. (1)

We denote by TGM the image of T ∗
GM in TM obtained using the Rie-

mannian metric. In other words, TGM is the orthogonal to the orbits in
TM . Finally, let S∗

GM be the set of unit covectors in T ∗
GM , that is S∗

GM =
S∗M ∩ T ∗

GM .
Recall that if M/G is connected, there is a minimal isotropy subgroup

K such that any isotropy subgroup of G acting on M contains a subgroup
conjugated to K and M(K) is an open dense submanifold of M called the
principal orbit bundle, see [16, Section IV. 3] and [56, Section I. 5].

1.2. Pseudodifferential Operators

Let G be a compact Lie group acting smoothly by isometries on a compact,
Riemannian manifold without boundary M as before. We shall denote by
ψm(M ;E) the space of order m, classical pseudodifferential operators on M .
Let ψ0(M ;E) and ψ−1(M ;E) denote the respective norm closures of ψ0(M ;E)
and ψ−1(M ;E). The action of G then extends to a continuous action on
ψm(M ;E), ψ0(M ;E), and ψ−1(M ;E), see [5] for example. We shall denote
by K(H) the algebra of compact operators acting on a Hilbert space H. Of
course, we have ψ−1(M ;E) = K(L2(M ;E)).

We shall denote, as usual, by C(S∗M ; End(E)) the set of continuous sec-
tions of the lift of the vector bundle End(E) → M to S∗M . We have the
following well known exact sequence

0 → K(L2(M ;E))G → ψ0(M ;E)G
σ0−−→ C(S∗M ; End(E))G → 0 .

See, for instance, [9, Corollary 2.7], where references are given.
Recall that a G-invariant classical pseudodifferential operator P of order

m is said elliptic if its principal symbol is invertible on T ∗M � {0} and G-
transversally elliptic if its principal symbol is invertible on T ∗

GM �{0} [4,5,44],
see Eq. (1) for the definition of T ∗

GM .
We may now state the classical result of Atiyah and Singer [4, Corollary

2.5].

Theorem 1.1. (Atiyah-Singer [4,54]) Let P be a G-transversally elliptic opera-
tor. Then, for every irreducible representation α ∈ ̂G, πα(P ) : Hs(M ;E0)α →
Hs−m(M ;E1)α, is Fredholm.

Let us recall the following fact which is a direct consequence of the fact
that G acts by unitary multiplier on K(H).

Proposition 1.2. We have natural isomorphisms

pαψ−1(M ;E)G 	 πα(ψ−1(M ;E)G)
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= πα(K(L2(M ;E))G) = K(L2(M ;E)α)G ,

where the first isomorphism map is simply πα and

K(L2(M ;E))G = ψ−1(M ;E)G 	 ⊕α∈ ̂GK(L2(M ;E)α)G .

Proof. See, for example, [9, Section 3] for a proof. �

1.3. α-transversally Elliptic Operators

Let G be a compact Lie group acting smoothly by isometries on a compact,
Riemannian manifold without boundary M as before. Let P : C∞(M,E0) →
C∞(M,E1) be a G-invariant pseudodifferential operator. Let p : M → M/G
be the projection. Let M/G =

⊔

i∈I Ci be the decomposition into connected
components of M/G. Notice that I is finite and let Ki ⊂ G be a minimal
isotropy group for Mi := p−1(Ci). Denote by (S∗

GMi)Ki the subset of Ki-
invariant elements of S∗

GMi, see Eq. (1).

Definition 1.3. [11] We shall say that P ∈ ψm(M ;E0, E1)G is transversally
α-elliptic if for any i ∈ I, and ξ ∈ (S∗

GMi)Ki ,

σm(P )(ξ) ⊗ Idα∗ : (E0ξ ⊗ α∗)Ki → (E1ξ ⊗ α∗)Ki

is invertible.

Let us recall the main result of [11], see also [9,10] for finite groups.

Theorem 1.4. [11] Let m ∈ R, P ∈ ψm(M ;E0, E1)G and α ∈ ̂G. Then

πα(P ) : Hs(M ;E0)α → Hs−m(M ;E1)α

is Fredholm if, and only if P is transversally α-elliptic.

We now briefly relate Definition 1.3 with the notion of limit operators, see
[23,29,30,32,40–42,45]. In order to simplify notations, let us assume α = 1 and
M/G connected and let K be the minimal isotropy subgroup. We follow [11].
Let (x0, ξ) ∈ S∗

GM(K) and assume Gx0 = K. Let U ⊂ (TGM)x0 	 (T ∗
GM)x0 be

a slice at x0, let W = G expx0
(U) ∼= G/K × U be the associated tube around

x0, and let

η ∈ EK
x0

and f ∈ C∞
c (U) , f(x0) = 1 .

Notice that (S∗
KU)x0 = S∗

x0
U , because x0 ∈ M(K) and hence ξ ∈ S∗

x0
U . Let

us define sη ∈ C∞
c (W ;E)G and et ∈ C∞(W )G by sη(g expx0

(y)) := f(y)gη

and et(g expx0
(y)) := eıt〈y,ξ〉, t ∈ R. In other words, they are the functions

on W extending the functions y �→ f(y)η and y �→ eıt〈y,ξ〉 defined on U ⊂
Tx0U = (TKU)x0 by G-invariance via W = G expx0

(U). Using oscillatory
testing techniques, see, for instance [34,57], the following proposition can be
shown, see [11].
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Proposition 1.5. Assume that 0 
= η ∈ EK
x0
. Then, for every P ∈ ψ0(M ;E),

we have limt→∞ P (etsη)(x0) = σ0(P )(ξ)η. In particular, if P ∈ ψ0(M ;E)G,
then

lim
t→∞ π1(P )(etsη)(x0) = σ0(P )(ξ)η =: π(ξ,1)

(

σ0(P )
)

η .

Remark 1.6. Let t > 0 and V0 = Id : EK
x0

→ EK
x0

. Let Vt : EK
x0

→ C∞(M,E)G

be the map given by Vt(η) = etsη and let V−t = evx0 : C∞(M,E)G → EK
x0

be
the evaluation map at x0. Then we have V−tVt = V0 = IdEK

x0
and

σ0(P )(ξ) = lim
t→∞ V−tπ1(P )Vt : EK

x0
→ EK

x0
. (2)

Equation (2) is similar to the definition of limit operators, see [23,29,30,32,40–
42,45].

2. Simonenko’s General Localization Principle

In this section, we recall the essentials of the usual Simonenko’s localization
principle [52], see also [53]. The results of this section are well-know from
experts, we shall include proofs for the convenience of the reader. We refer in
particular to [45, Chapter 2] and [47, Chapter 2], where more general situations
are treated. The general localization principle of this section will be used in the
sequel to deduce Fredholm conditions for restriction to isotypical components
of invariant operators on closed manifolds.

Throughout this section, we let T be a compact Hausdorff topological
space and C(T ) be the C∗-algebra of complex valued continuous functions on
T . Let A be a unital C∗-algebra and assume that C(T ) identifies with a unital
sub-C∗-algebra in A, meaning, in particular, that the image of the unit 1C(T )

of C(T ) is the unit 1A of A.

Definition 2.1. An element a ∈ A is said to have the strong Simonenko local
property with respect to C(T ) if, for every φ, ψ ∈ C(T ) with compact disjoint
supports, we have φaψ = 0.

The following lemma follows for example from similar arguments as in
[45, Theorem 2.1.6] and [47, Theorem 2.5.6].

Lemma 2.2. The set B ⊂ A of elements a ∈ A satisfying the strong Simonenko
local property is the set of elements of A commuting with C(T ).

Proof. We are going to show that the set of elements a ∈ A with the strong
Simonenko local property is a C∗-algebra B containing C(T ) and that every
irreducible representation of B restricts to a scalar valued representation on
C(T ), and hence that C(T ) commutes with B.

Let us show first that B is a sub-C∗-algebra of A. Note that B is not
empty since C(T ) ⊂ B. To show that B is a sub-C∗-algebra, the only fact that
is non-trivial to prove is that ab ∈ B, for all a, b ∈ B. Let φ and ψ ∈ C(T )
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with disjoint compact supports and let θ be a function equal to 1 on supp(ψ)
and 0 on supp(φ), which exists by Urysohn’s lemma. Then we have

φabψ = φa(θ + 1 − θ)bψ = φaθbψ + φa(1 − θ)bψ = 0,

since φaθ = 0 and (1 − θ)bψ = 0.
Let π : B → L(H) be an irreducible representation of B. First, let us

show that for any φ, ψ ∈ C(T ) with disjoint support, we either have π(φ) = 0
or π(ψ) = 0. Indeed we have π(φ)π(a)π(ψ) = 0 since φaψ = 0, for any a ∈ B.
Assume that π(ψ) 
= 0 then there is η ∈ H such that π(ψ)η 
= 0. Now, π is
irreducible so we get that the set {π(a)π(ψ)η, a ∈ B} is dense in H. Thus
π(φ) = 0 on a dense subspace of H and so on H.

Assume now that π(C(T )) 
= C1H . Then there exist two distinct charac-
ters χ0, χ1 ∈ Sp(π(C(T ))). Denote by hπ : Sp(π(C(T ))) → Sp(C(T )) = T the
injective map adjoint to π, and choose φ, ψ ∈ C(T ) with disjoint supports such
that φ(hπ(χ0)) = 1 and ψ(hπ(χ1)) = 1. Then π(φ)(χ0) = 1 and π(ψ)(χ1) = 1,
which contradicts the fact that either π(φ) = 0 or π(ψ) = 0. �

We now fix notations and hypothesis that will remain valid until the end
of this section.

Notation and hypothesis 2.3. As before, let T be a compact Hausdorff topo-
logical space and denote by C(T ) the C∗-algebra of continuous functions on
T . Let G be a Hilbert space and let C(T ) → L(G) be a non degenerate faithful
representation (i.e. C(T ) identifies with its image in L(G) and the image of
the constant function 1 is Id ∈ L(G)). Assume that the image of C(T ) does
not intersect K(G) � {0}. In other words, we are assuming that C(T ) identifies
with a unital sub-C∗-algebra of the Calkin algebra Q(G) := L(G)/K(G). We
shall denote by Mφ the image of a function φ ∈ C(T ) in L(G) and call it the
multiplication operator by φ.

Remark 2.4. If X is a locally compact space and G = L2(X,μ) then the repre-
sentation of C0(X) is faithful if and only if μ is a strictly positive measure, i.e.
μ(U) > 0 for every open set U ⊂ X. In this case, the only compact operator
in Cb(X) is zero, where Cb(X) denotes the C∗-algebra of bounded continuous
function, see Lemma 3.9 below for more details.

We shall now turn to the definition of local invertibility. The definition in
the present paper and in for example [47, Section 2.5] are at the first reading
not the same but they describe the same property by Lemma 2.2. See also [47,
Section 2.4.1].

Definition 2.5. An operator P ∈ L(G) is said to be locally invertible at x ∈ T
if there exist:

(i) a neighbourhood Vx of x and
(ii) operators Qx

1 and Qx
2 ∈ L(G)
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such that, for all φ ∈ Cc(Vx)

Qx
1PMφ = Mφ = MφPQx

2 ∈ L(G).

The operator P is said to be locally invertible on T if it is locally invertible at
any x ∈ T .

Notation 2.6. We let ΨT (G) ⊂ L(G) denote the C∗-algebra consisting of all
P ∈ L(G) such that MφPMψ ∈ K(G), for all φ, ψ ∈ C(T ) with disjoint support.
We let BT (G) denote the image of ΨT (G) in the Calkin algebra Q(G).

In other words, BT (G) = q(ΨT (G)) where q : L(G) → Q(G) is the canon-
ical projection.

Remark 2.7. We know by Lemma 2.2 that

BT (G) = {P ∈ Q(G) | MφP = PMφ for all φ ∈ C(T )}.

Said differently, ΨT (G) is the essential commutant of C(T ), that is

ΨT (G) = {P ∈ L(G), MφP − PMφ ∈ K(G), ∀φ ∈ C(T )},

see the relation with the work [59]. Moreover, the family of morphisms

BT (G) → BT (G)/ ker(evx)BT (G),

x ∈ T is exhaustive, see [43, Definition 3.1] for the precise definition. This
follows from the definition of the central character map, see for example [10,
Remark 2.11].

I would like to thank an anonymous referee for pointing out to me
how to simplify the proof of the next proposition and for the reference
[45, Proposition 2.2.3] where a more general situation is treated.

Proposition 2.8. Assume that P ∈ ΨT (G) is locally invertible on T . Then P is
Fredholm.

Proof. By assumption P is locally invertible on T therefore for any x ∈ T there
are open neighborhood Vx and operators Qx

1 , Qx
2 such that for all φ ∈ Cc(Vx),

Qx
1PMφ = Mφ = MφPQx

2 ∈ L(G).

Since T is compact, there are x1, · · · , xN such that (Vxj
)N
j=1 is a finite open

cover of T . Now let (φj)N
j=1 be a partition of unity subordinated to (Vj)N

j=1

then for all j = 1, · · · , N , we have

Q
xj

1 PMφj
= Mφj

= Mφj
PQ

xj

2 ∈ L(G).

It follows that Q1 :=
∑N

j=1 Q
xj

1 Mφj
and Q2 :=

∑N
j=1 Mφj

Q
xj

2 are respec-
tively left inverse and right inverse of P modulo compact operators. Indeed, if
[A,B] = AB − BA denotes the commutator, we have

Q1P =
N

∑

j=1

Q
xj

1 Mφj
P =

N
∑

j=1

Q
xj

1 [Mφj
, P ] +

N
∑

j=1

Q
xj

1 PMφj
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=
N

∑

j=1

Q
xj

1 [Mφj
, P ] +

N
∑

j=1

Mφj

=
N

∑

j=1

Q
xj

1 [Mφj
, P ] + Id,

and similarly

PQ2 =
N

∑

j=1

[P,Mφj
]Qxj

2 + Id .

Since P ∈ ΨT (G), we know from Remark 2.7 that [P,Mφj
] is compact. Thus,

∑N
j=1 Q

xj

1 [Mφj
, P ] and

∑N
j=1[P,Mφj

]Qxj

2 are compact operators and therefore
P is Fredholm �

Definition 2.9. We shall say that the representation C(T ) → L(G) of Notations
and Hypothesis 2.3 has the property of strong convergence to 0 if for any x ∈ T
MχV

converges strongly to zero, where V runs the set of neighborhoods of x
and χV ∈ C(T, [0, 1]) is equal to 1 on a neighborhood of x, with values in [0, 1]
and is supported in V . Said differently, C(T ) → L(G) as the property of strong
convergence to 0 if ∀x ∈ T , ∀h ∈ G, ∀ε > 0, there is a neighborhood V ′ of x
such that for any neighborhood V of x, if V ⊂ V ′ then ‖MχV

h‖ < ε.

Proposition 2.10. (General Simonenko’s localization principle) Let P ∈ ΨT (G).
Assume that C(T ) → L(G) is as in Notation and Hypothesis 2.3 and has the
property of strong convergence to 0, see Definition 2.9. Then P is locally in-
vertible on T if, and only if, P is Fredholm.

Proof. The first implication is exactly Proposition 2.8.
Let us prove the opposite implication. That is, let us assume that P is

Fredholm and let us prove that P is locally invertible at x ∈ T , where x is
fixed, but arbitrary. To this end, let Q ∈ L(G) be an inverse modulo K(G) for
P , i.e. PQ = Id +K and QP = Id +K ′, with K,K ′ ∈ K(G). Using Lemma
[27, Proposition 1.3.10], we can assume that Q ∈ ΨT (G) if one desires. Let
χ ∈ C(T ) be equal to 1 on a neighbourhood Vx of x, with values in [0, 1] and
supported in a neighborhood V ′

x. Let φ ∈ Cc(Vx) then

MφMχPQMχ = MφM2
χ + MφMχKMχ and

MχQPMχMφ = M2
χMφ + MχK ′MχMφ .

Since φ is supported in Vx, we have φχ = φ and so

MφPQMχ = Mφ(1 + MχKMχ) and MχQPMφ = (1 + MχK ′Mχ)Mφ .

As V ′
x becomes small, we have that Mχ converges strongly to 0 because

C(T ) → L(G) has the property of strong convergence to 0, see Definition 2.9.
Since K is compact, we obtain that ‖MχKMχ‖ → 0. Thus, by choosing V ′

x

small enough, we may assume that ‖MχKMχ‖ < 1 and ‖MχK ′Mχ‖ < 1.
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It follows that (1 + MχKMχ) and (1 + MχK ′Mχ) are invertible and this
implies

MφP
(

QMχ(1 + MχKMχ)−1
)

= Mφ and
(

(1 + MχK ′Mχ)−1MχQ
)

PMφ = Mφ ,

that is, P is locally invertible. This completes the second implication, and
hence the proof. �

Simonenko’s principle is then [52]:

Proposition 2.11. [Simonenko’s principle] Let M be a closed manifold, E
a hermitian vector bundle on M , ΨM (L2(M,E)) be as in 2.6 and let P ∈
ΨM (L2(M,E)). We have that P is locally invertible on M if, and only if, it
is Fredholm.

Proof. The hypothesis of Proposition 2.10 are satisfied because if h ∈ L2(M,E)
then

∫

V
|h|2dvol goes to 0 when the volume of V goes to 0, see also Remark

2.4. �

3. Equivariant Local Principle for Closed Manifolds

Let G be a compact Lie group that we assume to act smoothly by isometries
on a closed Riemannian manifold M as before. We shall denote, as before, by
̂G the set of isomorphism classes of irreducible unitary representations of G.
Let H := L2(M,E) and let Hα

∼= α⊗(α∗⊗H)G be the α-isotypical component
associated to α ∈ ̂G, as in the introduction and Sect. 1.

Any φ ∈ C(M)G acts by multiplication on Hα and we shall denote also by
Mφ the induced multiplication operator, as in Sect. 2. Furthermore, the repre-
sentation of C(M/G) = C(M)G given by the previous multiplication operator
on H and Hα are non degenerate.

Definition 3.1. We shall say that P ∈ L(H)G is locally α-invertible at x ∈ M
if πα(P ) is locally invertible

at Gx ∈ M/G, see Definition 2.5.

We let ΨG
M (H) denote the G-invariant elements in the C∗-algebra ΨM (H),

which was defined in 2.6, in the previous subsection. More precisely, using
Remark 2.7

ΨG
M (H) = {P ∈ L(H)G | [P,Mφ] ∈ K(H), ∀φ ∈ C(M)}. (3)

Before tackling the Simonenko’s equivariant localization principle, let us
first justify our hypothesis with the following simple example.

Example 3.2. Let M = G be our manifold with its standard action by trans-
lation. In this case, T ∗

GM = G × {0} and then every G-invariant pseudodif-
ferential operator P is G-transversally elliptic. It follows that the restriction
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πα(P ) to any isotypical component is Fredholm. Let us then consider the null
operator 0 : L2(G) → 0. Clearly, the restriction to the isotypical component
associated with the trivial representation 1 = C of G is Fredholm. In other
words, 0 = π1(0) : L2(G)G = C → 0 is Fredholm. But obviously, 0 = π1(0) is
not locally 1-invertible.

This pathological example arises from the fact that there are points x ∈
M such that the slice at x are discrete (and in fact on the whole space M = G
in the previous example). Nevertheless, we can extract such a pathological
points using the following interesting fact.

Lemma 3.3. Let X be a not necessarily compact G-manifold without boundary
and let x ∈ X be such that (T ∗

GX)x = {0}. Then the orbit of x is a union
of connected components of X in bijection with the connected component of
G/Gx.

Proof. Since (T ∗
GX)x = {0}, we obtain that Sx = {x} is the only slice at x.

From the slice theorem, we deduce that the orbit Gx ∼= G×Gx
{x} = G×Gx

Sx is
open but it is also compact. Therefore, Gx is a union of connected components
of X in bijection with the connected components of G/Gx

∼= Gx. �

Consider the set of points

P := {x ∈ M, (T ∗
GM)x = {0}}. (4)

Then M is the disjoint union of the closed manifolds M �P and P. Indeed, P
is a union of clopen orbits and therefore it is also compact because M is. The
same argument also implies that M � P is a closed submanifold of M .

Remark 3.4. The set P will be empty for example in the following cases:
(1) if M is connected and not reduced to a single orbit,
(2) if dim M > dim G,
(3) in particular, if M/G is an orbifold of dimension > 0.

In other cases, we can use the following useful result.

Lemma 3.5. Let P = {x ∈ M, (T ∗
GM)x = {0}} be the clopen introduced in

Eq. (4). Let χ be the characteristic function of the clopen M �P. Let then Mχ

be the multiplication operator by χ. Let P ∈ ΨM (H) then P = P1 + P2 + P3

with P1 = MχPMχ ∈ ΨM�P(H), P2 = M1−χPM1−χ ∈ ΨP(H) and P3 =
MχPM1−χ + M1−χPMχ ∈ K(H). Furthermore, if P ∈ ΨG

M (H) then πα(P2)
is Fredholm for any α ∈ ̂G and therefore πα(P ) is Fredohlm if, and only if,
πα(P1) is.

Proof. The first part is clear since Mχ and M1−χ have disjoint supports. For
the second part, decompose P = �N

i=1Pi into clopen orbits and let φi be
the corresponding characteristic functions then as before we can write P2 =
∑N

i=1 Mφi
P2Mφi

+ C, where C =
∑

i	=j Mφi
P2Mφj

is compact because the



Vol. 77 (2022) Simonenko’s Local Principle and Fredholm Conditions Page 13 of 20 121

supports of φi and φj are disjoint for i 
= j. The previous decomposition is
in fact a decomposition into G-invariant operators since φi is G-invariant.
Therefore, for every α ∈ ̂G, πα(P2) is Fredholm if, and only if, πα(Mφi

P2Mφi
)

is Fredholm for any i. Now notice that Pi
∼= G ×Gx

{x} for some x ∈ P
therefore ∀α ∈ ̂G,

L2(Pi, E|Pi
)α

∼= α ⊗
(

α∗ ⊗ L2(Pi, E|Pi
)
)G

∼= α ⊗
(

α∗ ⊗ L2(G ×Gx
{x}, G ×Gx

Ex)
)G

∼= α ⊗
(

α∗ ⊗ Ex

)Gx

is finite dimensional.
It follows that there are no condition for the restriction πα(P2) to be

Fredholm, ∀α ∈ ̂G. In other words, for every α ∈ ̂G, πα(P ) is Fredholm if, and
only if, πα(P1) is. �

Remark 3.6. Notice that the previous proof implies that the image of C(M)G

in L(Hα) intersects K(Hα) when P 
= ∅.

Recall that if x ∈ M then Wx
∼= G ×Gx

Ux denotes a tube around x
and Ux a slice at x, see [56, Section I. 5]. Moreover, we have a G-equivariant
isomorphism of vector bundles E ∼= G ×Gx

(Ux × Ex). The next lemma could
also be deduced from [17, Corollary 1.5].

Lemma 3.7. Let α ∈ ̂G and let Hα = L2(M,E)α
∼= α ⊗ L2(M,E ⊗ α∗)G. The

subset

Nα :=
{

x ∈ M, ∃Wx, such that L2(Wx, E)α = {0}} (5)

is a G-invariant clopen.

Proof. Replacing E with E⊗α, we see that we can assume that α is the trivial
representation and therefore that L2(Wx, E)α = L2(Wx, E)G. Clearly, Nα is
G-invariant. We shall denote simply Nα by N is this proof since we consider
the trivial representation.

Notice now that

N =
{

x ∈ M, ∀Wx, L2(Wx, E)G = {0}} (6)

because if Wx and W ′
x are two tubes around x ∈ M then

L2(Wx, E)G ∼= L2(Ux, Ex)Gx ∼= L2(U ′
x, Ex)Gx ∼= L2(W ′

x, Ex)G.

Let us show that N is open. Let x ∈ N . By definition, there is Wx

such that L2(Wx, E)G = {0}. Let y ∈ Wx and assume that there is a tube
Wy around y such that L2(Wy, E)G 
= {0}. By G-invariance of Wx and Wy,
we see that we can assume Wy small enough such that Wy ⊂ Wx. But then
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{0} 
= L2(Wy, E)G ⊂ L2(Wx, E)G which contradicts the fact that x ∈ N .
Therefore, Wx ⊂ N and N is open.

We now show that N is closed. Let x ∈ M � N . By Eq. (6), there is Wx

such that L2(Wx, E)G = L2(Ux, Ex)Gx 
= {0}. Let K be a minimal isotropy
subgroup for the linear action of Gx on Ux, see [56, Section 5]. Notice that
K acts trivially on Ux by minimality. Then we have {0} 
= L2(Ux, Ex)Gx ⊂
L2(Ux, Ex)K = L2(Ux, EK

x ). It follows that there is v ∈ EK
x � {0}. Let y ∈ Ux

and denote by W ′
y

∼= Gx ×Gy
U ′

y ⊂ Ux a tube around y in Ux. Denote by
W ′

y(K) the principal orbit bundle of W ′
y that is the dense open subset of W ′

y

given by the points with stabilizer conjugated with K in Gx. Each point of
W ′

y(K) has a neighborhood of the form Gx/K × V with K acting trivially on
V . Let s ∈ C(Gx/K ×V,Ex) be given by s([g], z) = gv. The section s does not
depend on the representative of [g] in Gx because v ∈ EK

x and is clearly Gx-
invariant. If f ∈ Cc(Gx/K × V )Gx is any compactly supported function then
fs ∈ Cc(Gx/K × V,Ex)Gx ⊂ L2(W ′

y, Ex)Gx . Now if Wy
∼= G ×Gy

Uy is a tube
around y in Wx then assuming U ′

y small enough we have G×Gx
W ′

y ⊂ G×Gy
Uy

and thus 0 
= L2(W ′
y, Ex)Gx ∼= L2(G ×Gx

W ′
y, E)G ⊂ L2(Wy, E)G. It follows

that y ∈ M � N and therefore Wx ⊂ M � N . In other words, M � N is open.
This complete the proof. �

Remark 3.8. Let Nα =
{

x ∈ M, ∃Wx, such that L2(Wx, E)α = {0}} be the
clopen defined in Lemma 3.7. We have L2(Nα, E)α = {0} and therefore there
is no condition on L2(Nα, E)α for an operator to be Fredholm. By a discussion
similar to the one of Lemma 3.5, we see that P ∈ ΨM (H)G is such that πα(P ) is
Fredholm if, and only, if χM�Nα

PχM�Nα
is Fredholm, where χM�Nα

denotes
the characteristic function of M � Nα.

Moreover, we see that if Nα is not empty then the image of C(Nα)G in
L(Hα) is 0, i.e. Mφ = 0, ∀φ ∈ C(Nα)G. It follows that the image of C(M)G is
the same as the image of C(M � Nα)G.

For example, let G = SO(3), let M = S2
1 �S2

1 be the disjoint union of two
spheres S2 ⊂ R

3 with a trivial action on S2
1 and the induced action from R

3 on
S2
2 . Let then E = M × C

3 with the natural action on C
3. Then L2(M,E)G =

L2(S2
2 , C3)G 
= 0. Indeed, (C3)G = 0 because C

3 is an irreducible representa-
tion of SO(3) therefore L2(S2

1 , C3)G = L2(S2
1 , (C3)G) = 0. Moreover, the func-

tion f(x) = x ∈ R
3 ⊂ C

3 is G-invariant and belongs to L2(S2
2 , C3)G. Now if

χS2
1

is the characteristic function of S2
1 then Mχ

S2
1

: L2(M,E)G → L2(M,E)G

is zero.

Lemma 3.9. Let P be the clopen introduced in Eq. (4) and let Nα be the clopen
introduced in Eq. (5). Let α ∈ ̂G and let Hα = L2(M,E)α

∼= α ⊗ L2(M,E ⊗
α∗)G. Let f ∈ C(M � (P ∪ Nα))G then Mf ∈ K(Hα) if, and only, if f = 0.

Proof. We may assume α to be the trivial representation 1 ∈ ̂G. Let f ∈
C(M � (P ∪Nα))G be non zero such that Mf is compact on H1 = L2(M,E)G.
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Let then Wx
∼= G ×Gx

Ux be a tube on which |f | > ε > 0. Denote by
χx the characteristic function of Wx and let ˜Mf be the restriction of Mf

to L2(Wx, E)G ∼= L2(Ux, Ex)Gx . Then ˜Mf is invertible with inverse Mfχx
.

Thus by Banach open mapping theorem ˜Mf is open but also compact there-
fore L2(Ux, Ex)Gx is finite dimensional. Notice that L2(Ux, Ex)Gx 
= 0 since
x ∈ M � Nα. Let then s ∈ L2(Ux, Ex)Gx be non zero. For any n ∈ N, we can
certainly find n + 1 disjoint Gx-invariant annulus in Ux such that the restric-
tion of s to each of this annulus is non zero because the action is isometric
and dim Ux > 0 since x ∈ M � P. By considering the characteristic functions
χi of this n + 1 annulus, we get n + 1 linearly independent functions χis, thus
a contradiction. �

Recall that we denote by H = L2(M,E). Let α ∈ ̂G, let P ∈ L(H)G

and recall that πα(P ) : Hα → Hα is the restriction of P to the α-isotypical
component Hα

∼= α ⊗ (α∗ ⊗ H)G of H.

Proposition 3.10. (Simonenko’s equivariant localization principle) Let M be
a closed G-manifold as before. Let P be as in Eq. (4) and let α ∈ ̂G. Let
P ∈ ΨG

M (H) = {P ∈ L(H)G|[P,Mφ] ∈ K(H),∀φ ∈ C(M)}. Then P is locally
α-invertible on M � P (see Definition 3.1) if, and only if, πα(P ) is Fredholm.

Proof. Let Nα be as in Eq. (5). Notice that any operator is locally α-invertible
at x ∈ Nα as operator between the null vector space. Similarly, on Nα the
operator πα(P ) is Fredholm.

By Lemma 3.5 and Remark 3.8, we may replace M with M � (P ∪ N)
and assume that for any x ∈ M , (T ∗

GM)x is not reduce to {0} and that there
is a tube Wx around x such that L2(Wx, Ex)α 
= {0}. Under this hypothesis,
we have that C(M/G) → L(Hα) is faithful, non degenerate and does not inter-
sect K(Hα)�{0}, see Lemma 3.9 and Notation and Hypothesis 2.3. Moreover,
C(M/G) → L(Hα) has the property of strong convergence to 0, see Definition
2.9. Indeed, this is equivalent to say that the volume of the slice at x goes to
zero when it becomes small. Let us now introduce the C∗-algebra ΨM/G(Hα)
defined in 2.6. Clearly, πα(ΨG

M (H)) is a sub-C∗-algebra of ΨM/G(Hα). There-
fore, πα(P ) ∈ πα(ΨG

M (H)) ⊂ ΨM/G(Hα) is Fredholm if, and only if, it is locally
invertible on M/G. By definition, P is locally α-invertible at x ∈ M if, and
only, if πα(P ) is locally invertible at Gx ∈ M/G, thus the result follows from
Proposition 2.10. �
Theorem 3.11. Let M be a closed G-manifold as before and let P be as in Eq.
(4). Let P ∈ ψm(M ;E0, E1)G and α ∈ ̂G. Then the following are equivalent:
(1) πα(P ) : Hs(M ;E0)α → Hs−m(M ;E1)α is Fredholm for any s ∈ R,
(2) P is transversally α-elliptic (see Definition 1.3),
(3) P is locally α-invertible on M � P (see Definition 3.1).

Proof. The first equivalence is given by Theorem 1.4. Now Proposition 3.10
implies that (1) is equivalent to (3). �
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In particular, we obtain the following consequence of the localization
principle.

Corollary 3.12. Let P ∈ ψm(M ;E)G be a G-transversally elliptic operator,
see Sect. 1.2. Then P is locally α-invertible on M � P for any α ∈ ̂G, as in
Definition 3.1.

Proof. Using Theorem 1.1 we obtain that πα(P ) is Fredholm. Therefore by
Proposition 3.10 P is locally α-invertible. �
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