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Abstract
We show that the André motive of a hyper-Kähler variety X over a field K ⊂ C with
b2(X) > 6 is governed by its component in degree 2. More precisely, we prove that if X1 and
X2 are deformation equivalent hyper-Kähler varieties with b2(Xi ) > 6 and if there exists a
Hodge isometry f : H2(X1,Q) → H2(X2,Q), then the André motives of X1 and X2 are
isomorphic after a finite extension of K , up to an additional technical assumption in presence
of non-trivial odd cohomology. As a consequence, the Galois representations on the étale
cohomology of X1 and X2 are isomorphic as well. We prove a similar result for varieties
over a finite field which can be lifted to hyper-Kähler varieties for which the Mumford–Tate
conjecture is true.

Keywords Hyper-Kähler varieties · Motives · Hodge theory · Galois representations

Mathematics Subject Classification 14C30 · 14F20 · 14J20 · 14J32

1 Introduction

A guiding principle in the study of hyper-Kähler manifolds is that many of their geometric
properties are governed by their cohomology in degree 2. Perhaps the most spectacular
illustration of this principle is the global Torelli theorem due to Huybrechts, Markman and
Verbitsky, which precisely explains to what extent the birational class of a hyper-Kähler
manifold X can be recovered from the integral Hodge structure on the lattice H2(X ,Z).

As another example, it is known that the total Hodge structure on the rational singular
cohomology H∗

X :=H∗(X ,Q) is determined by the Hodge structure on H2
X . This fact is

a consequence of the properties of the Looijenga–Lunts–Verbitsky Lie algebra that was
introduced in [18,30]; a complete proof of this result has been given by Soldatenkov in [27].

Let now K ⊂ C be a subfield which is finitely generated over Q and let X be a hyper-
Kähler variety over K . We fix a prime number � and consider the étale cohomology groups
H∗

X ,�:=H∗
ét(X K̄ ,Q�) of X . It is then natural to ask whether the Galois representation on the
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�-adic cohomology H∗
X ,� of X is determined by its restriction to H2

X ,�. Going even further,
we may ask the analogous question at the level of homological or Chow motives—however,
in this setting the existence of Künneth components is not known in general.

To circumvent this difficulty, we will work with André’s category of motives [2].
We prove that, up to a finite field extension of the base field, the total André motive

H∗
X = ⊕

j H
j
X of a hyper-Kähler variety X is governed by its component in degree 2. In

what follows we say that two hyper-Kähler varieties X1 and X2 over a field K ⊂ C are
deformation equivalent if the complex varieties X1,C and X2,C are deformation equivalent
in the analytic sense. We let H∗

Xi
:=⊕

j H j (Xi,C,Q).

Theorem 1.1 (= Theorem 4.7) Let X1, X2 be deformation equivalent hyper-Kähler varieties
with b2(Xi ) > 6 over a field K ⊂ C. If Xi has non-trivial cohomology in odd degree,
assume that, for i = 1, 2, the motive H1

Ai
belongs to the tannakian category generated

by H∗
Xi

, where Ai is the Kuga–Satake variety on H2
Xi

. Assume that there exists a Hodge

isometry f : H2
X1

→ H2
X2

. Then, there exist a finite field extension K ′/K and an isomorphism
of graded algebras F : H∗

X1
→ H∗

X2
which is the realization of an isomorphism of André

motives H∗
X1,K ′ → H∗

X2,K ′ over K ′.

The map F obtained in the theorem is in particular an isomorphism of Hodge structures.
The assumption on the second Betti number is needed to show that deformation equivalent
hyper-Kähler varieties can be connected via a chain of polarized deformations; see Theorem
5.1 for the precise statement. All known hyper-Kähler varieties have b2 ≥ 7.

In presence of non-trivial odd cohomology we need an extra assumption to control the odd
part of the motive. The Kuga–Satake variety Ai is an abelian variety closely related to H2

Xi
[8]; we expect that its motive belongs to the tannakian category generated by H∗

Xi
. By [10]

this happens for the known hyper-Kähler varieties with non-trivial odd cohomology, which
are those of generalized Kummer deformation type. We obtain the following consequence of
Theorem 1.1.

Corollary 1.2 (=Corollary 4.8)Let K ⊂ C be a subfield which is finitely generated overQ and
let X1, X2 be deformation equivalent hyper-Kähler varieties over K such that b2(Xi ) > 6. If
Xi has non-trivial cohomology in odd degree, assume further that, for i = 1, 2, the motiveH1

Ai
belongs to the tannakian category generated by H∗

Xi
, where Ai is the Kuga–Satake variety

on H2
Xi

. Assume that there exists a Gal(K̄/K )-equivariant isometry f : H2
X1,�

→ H2
X2,�

.

Then, there exist a finite field extension K ′/K and a Gal(K̄/K ′)-equivariant isomorphism
of graded algebras F : H∗

X1,�
→ H∗

X2,�
.

The corollary is the �-adic counterpart of the Hodge theoretic result from [27]. This is
not surprising: if the Mumford–Tate conjecture was true, the corollary would be a direct
consequence of its analogue in Hodge theory. Even though the Mumford–Tate conjecture
is not known for arbitrary hyper-Kähler varieties, in [10] we proved it for all hyper-Kähler
varieties of known deformation type. When the conjecture holds, we obtain a more precise
result on the Galois representations H∗

Xi,�
. Let us say that two hyper-Kähler varieties X1

and X2 are H∗
� -equivalent if there exists an isomorphism of graded algebras H∗

X1,�
∼= H∗

X2,�

which restricts to an isometry in degree 2 with respect to the Beauville–Bogomolov pairings.
Deformation equivalent X1 and X2 are H∗

� -equivalent as well, since in this case X1,C and
X2,C are homeomorphic.
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Galois representations on… 895

Theorem 1.3 (= Theorem 3.5) Let K1, K2 be subfields ofC, finitely generated overQ, and let
Xi be a hyper-Kähler variety over Ki , for i = 1, 2. Assume that X1 and X2 are H∗

� -equivalent,
and that the Mumford–Tate conjecture holds for both of them. Let � ⊂ Gal(K̄1/K1) be a
subgroup, let ε : � → Gal(K̄2/K2) be a homomorphism; � acts on H∗

X1,�
via its inclusion

into Gal(K̄1/K1) and on H∗
X2,�

via ε. Assume that there exists a �-equivariant isometry

f : H2
X1,�

→ H2
X2,�

. Then, there exist a subgroup �′ ⊂ � of finite index and an isomorphism
F : H∗

X1,�
→ H∗

X2,�
of graded algebras which is �′-equivariant.

This result leads to similar conclusions for hyper-Kähler varieties over finite fields. The
study of such varieties is still in its early stages: besides K3 surfaces, it is not clear how to
define these objects (but a possible definition is proposed in [11]). Despite this, certain higher
dimensional moduli spaces of sheaves on K3 surfaces play a key role in Charles’s proof of
the Tate conjecture for K3 surfaces [7] over finite fields; other examples of hyper-Kähler
varieties over finite fields can be obtained from moduli spaces of sheaves on abelian surfaces
[11]. All these varieties can be lifted to some hyper-Kähler variety in characteristic 0. We
will therefore consider smooth and projective varieties over finite fields which can be lifted
to a hyper-Kähler variety in characteristic 0; see Sect. 3.2 for the precise meaning of this.
The recent article [32] shows that this approach yields at least a good notion of varieties of
K3[n]-type.

Let k be a finite field and let � be a prime number invertible in k. For a smooth and
projective variety Z over k, we let H∗

Z ,�:=H∗
ét(Zk̄,Q�); if Z can be lifted to a hyper-Kähler

variety in characteristic 0 then the second cohomology group H2
Z ,� inherits a non-degenerate

Q�-valued symmetric bilinear pairing, see Remark 3.7.

Theorem 1.4 (= Theorem 3.8) Let Z1, Z2 be smooth projective varieties over k such that
there exist H∗

� -equivalent hyper-Kähler varieties X1, X2 in characteristic 0 which lift Z1

and Z2 respectively. Assume that the Mumford–Tate conjecture holds for both X1 and X2

and that there exists a Gal(k̄/k)-equivariant isometry f : H2
Z1,�

→ H2
Z2,�

. Then, there exist

a finite field extension k′ of k and a Gal(k̄/k′)-equivariant isomorphism of graded algebras
F : H∗

Z1,�
→ H∗

Z2,�
.

In particular Z1,k′ and Z2,k′ have the same zeta function. In the special case when Z1 and
Z2 are moduli spaces of stable sheaves on K3 surfaces over k the above statement has already
been proven by Frei in [13] via a different method, which uses Markman’s results from [19].

The structure of this article is reversed with respect to the order of the introduction.
Namely, after reviewing in Sect. 2 the construction of the Looijenga-Lunts-Verbitsky (LLV)
Lie algebra, we use the properties of this Lie algebra to prove Theorems 1.3 and 1.4 in Sect. 3.
We then prove Theorem 1.1 and Corollary 1.2 in Sect. 4. These last results rely fundamentally
on the defect groups of hyper-Kähler varieties introduced in [10] with Lie Fu and Ziyu Zhang.
The proof ofTheorem1.1 also uses the fact that deformation equivalent hyper-Kähler varieties
can be connected using polarized deformations, which is proven in Sect. 5.

Notation and conventions

By a hyper-Kähler variety over a field K ⊂ C we mean a smooth and projective variety X
over K such that X(C) is a complex hyper-Kähler manifold, i.e. it is simply connected and
H0(X(C),�2) is spanned by the cohomology class of a nowhere degenerate holomorphic
2-form. If X1, X2 are hyper-Kähler varieties over subfields K1, K2 ⊂ C respectively, we say
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that X1 and X2 are deformation equivalent if the complex manifolds X1(C) and X2(C) are
deformation equivalent (in the analytic sense). For a smooth and projective variety X over a
subfield K ⊂ C we use the notation H j

X :=H j (X(C),Q) and H j
X ,�:=H j

ét(X K̄ ,Q�), where

K̄ ⊂ C is the algebraic closure of K in C and � is a prime number.

2 The LLV-Lie algebra

In this section, we let X be a complex hyper-Kähler variety of dimension 2n. We let
H∗

X := ⊕
j H j (X ,Q); the second cohomology group H2

X is equipped with the Beauville–
Bogomolov pairing q , a non-degenerate symmetric bilinear form, see [5, Théorème 5].
We define the Mukai extension of the quadratic space (H2

X , q) as the vector space
H̃2

X :=Q · v ⊕ H2
X ⊕ Q · w, equipped with the pairing

q̃
(
(av, b, cw), (a′v, b′, c′w)

) = q(b, b′) − ac′ − a′c.

Given x ∈ H2
X , let Lx : H∗

X → H∗+2
X be given by cup-product with x . We say that x has

the Lefschetz property if the maps Lk
x : H2n−k

X → H2n+k
X are isomorphisms for all k > 0.

Let θ denote the endomorphism of the cohomology which acts on H j
X as multiplication by

j − 2n. It is well-known that the class x has the Lefschetz property if and only if there exists
�x : H∗

X → H∗−2
X such that (Lx , θ,�x ) is an sl2-triple, meaning that we have

[θ, Lx ] = 2Lx , [θ,�x ] = −2�x , [Lx ,�x ] = θ.

If it exists, �x is uniquely determined. The subset of x ∈ H2
X with the Lefschetz property

is Zariski open in H2
X , and the first Chern class of an ample divisor on X has the Lefschetz

property by the Hard Lefschetz theorem.

Definition 2.1 The LLV-Lie algebra g(X) of X is the Lie subalgebra of gl(H∗
X ) generated

by all sl2-triples (Lx , θ,�x ) for x ∈ H2
X with the Lefschetz property. We let g0(X) ⊂ g(X)

denote the centralizer of the semisimple element θ .

In other words, g0(X) consists of those endomorphisms in g(X)whose action on H∗
X preserve

the grading.
The LLV-Lie algebras of hyper-Kähler varieties have been fully described.

Theorem 2.2 [18,30]

(a) There exists a unique isomorphism of Q-Lie algebras

ϕ : g(X)
∼−−→ so(H̃2

X , q̃),

such that:

– ϕ(θ) vanishes on H2
X , ϕ(θ)(v) = −2v and ϕ(θ)(w) = 2w, and

– for any x ∈ H2
X with the Lefschetz property, we have ϕ(Lx )(v) = x, ϕ(Lx )(w) = 0

and ϕ(Lx )(y) = q(x, y) · w, for all y ∈ H2
X .

(b) The isomorphism ϕ restricts to an isomorphism

g0(X) ∼= so(H2
X , q) ⊕ Q · ϕ(θ);

the induced representation of so(H2
X , q

)
on H2

X is the standard representation.
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Galois representations on… 897

For later use, we note the following functoriality property of the LLV-construction.

Lemma 2.3 Let X1 and X2 be hyper-Kähler varieties and let F : H∗
X1

→ H∗
X2

be an iso-
morphism of graded algebras. Then the induced isomorphism F∗ : GL(H∗

X1
) → GL(H∗

X2
)

given by A 
→ F AF−1 restricts to an isomorphism g(X1) → g(X2).

Proof Let x ∈ H2
X1

be an element with the Lefschetz property, and consider the correspond-

ing sl2-triple (Lx , θX1 ,�x ). Then (F Lx F−1, FθX1 F−1, F�x F−1) is again an sl2-triple;
moreover, since F is an isomorphism of graded algebras it is immediate to check that
F Lx F−1 = L F(x) and FθX1 F−1 = θX2 . Further, F(x) has the Lefschetz property as
well, and it follows that F∗(�x ) = �F(x). Since the Lie algebra g(X1) is generated by
the sl2-triples (Lx , θX1 ,�x ) as above, this concludes the proof. ��
Remark 2.4 Together with Theorem 2.2, Lemma 2.3 implies that any linear isomorphism
f : H2

X1
→ H2

X2
which extends to an isomorphism H∗

X1
→ H∗

X2
of graded algebras induces

an isomorphism f∗ : so(H2
X1

) → so(H2
X2

). This fact can be seen as a consequence of Fujiki’s
relation, which gives positive rational constants λi , for i = 1, 2, such that q(α, α)n =
λi

∫
Xi

α2n for any α ∈ H2
Xi
, see [15, Sect. 1.11].

2.1 The integrated representation

We let G(X) be the semisimple simply connected algebraic group with Lie algebra g(X), and
let G0(X) ⊂ G(X) be the unique connected subgroup with Lie algebra g0(X). By Theorem
2.2 we have an isomorphism

ϕ̃ : G(X)
∼−−→ Spin(H̃2

X , q̃).

Let U :=〈v,w〉, equipped with the restriction of q̃. Since H̃2
X = H2

X ⊕ U , we can view
Spin(H2

X , q) and Spin(U ) as algebraic subgroups of Spin(H̃2
X , q̃). We have Spin(U ) ∼= Gm ,

and the Lie algebra of Spin(U ) ⊂ Spin(H̃2
X , q̃) is Q · ϕ(θ). Moreover, Spin(H2

X , q) ∩
Spin(U ) = {±1}. We conclude that ϕ̃ restricts to an isomorphism

ϕ̃ : G0(X)
∼−−→ CSpin(H2

X , q) = Spin(H2
X , q) · Spin(U ).

The above assertions are checked as follows.With respect to the basis {v,−w
2 }, the matrix

of q̃|U is
(

0 1/2
1/2 0

)
. Let Cl(U ) be the Clifford algebra on U . Then Cl(U ) is identified with

the algebra of 2 by 2 matrices with coefficients in Q; an isomorphism is given by

v 
→
(
0 0
1 0

)

, −w

2

→

(
0 1
0 0

)

.

The even Clifford algebra Cl+(U ) consists of the diagonal matrices, while Cl−(U ) consists
of those matrices with 0 on the diagonal. The spinor norm Cl(U )× → Q

× is the determinant.
Therefore Spin(U ) ∼= Gm is the standardmaximal torus of SL2. The adjoint action of Spin(U )

on H̃2
X is trivial on the summand H2

X , and we have
(

λ 0
0 λ−1

)

v

(
λ−1 0
0 λ

)

= λ−2v,

(
λ 0
0 λ−1

)

w

(
λ−1 0
0 λ

)

= λ2w.

This implies that the subgroup Spin(U ) ⊂ Spin(H̃2
X , q̃) corresponds to the Lie subalgebra

Q · θ of so(H̃2
X , q̃). Finally, since Cl(H̃2

X , q̃) = Cl(H2
X , q) ⊗ Cl(U , q̃|U ), it is clear that we

have Spin(H2
X , q) ∩ Spin(U ) = {±1}.
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The action of g(X) on H∗
X integrates to a representation ρ̃ : G(X) → GL(H∗

X ), which
restricts to

ρ̃0 : G0(X) →
∏

j

GL(H j
X ).

We denote by ρ̃
(2)
0 : G0(X) → GL(H2

X ) its degree 2 component.
Inwhat follows, we identifyG(X)with Spin(H̃2

X , q̃) andG0(X)withCSpin(H2
X , q) via ϕ̃.

If there is no risk of confusion, we simply write CSpin(H2
X ) for CSpin(H2

X , q), and similarly
for other groups.

Remark 2.5 Consider the element −1 ∈ CSpin(H2
X ) ⊂ Spin(H̃2

X ). It has been shown by

Verbitsky in [29, Sect. 8] that for all j ≥ 0 and any v ∈ H j
X we have ρ̃(−1)(v) = (−1) j .

Combining this with Theorem 2.2, it follows that ρ̃ is faithful if X has non-trivial cohomology
in some odd degree, and that ρ̃ has kernel {±1} otherwise.

The connected center of the algebraic group CSpin(H2
X ) is the subgroupGm of invertible

scalars in the Clifford algebra, and we have short exact sequences of algebraic groups

1 Gm CSpin(H2
X ) SO(H2

X ) 1π

and

1 Spin(H2
X ) CSpin(H2

X ) Gm 1Nm

such that for all z ∈ Gm ⊂ CSpin(H2
X ) we have Nm(z) = z2.

In addition to the representation ρ̃0, we will consider a second, twisted, action of
CSpin(H2

X ) on H∗
X , which we will refer to as the R-action. It is defined via the homo-

morphism

R : CSpin(H2
X ) →

∏

j

GL(H j
X )

given by R(g) = Nm(g)n · ρ̃0(g).

Lemma 2.6 The R-action on H∗
X is an action by graded algebra automorphisms.

Proof It has been shown in [18, (4.4)] that the semisimple part so(H2
X ) of the Lie algebra

of CSpin(H2
X ) acts on the cohomology algebra via derivations; it follows that the subgroup

Spin(H2
X ) acts on H∗

X by graded algebra isomorphisms. Moreover for any z ∈ Gm and y ∈
H j

X we have ρ̃0(z)(y) = z j−2n · y. Thus the factor Nm(z)n = z2n ensures that also the action
ofGm ⊂ CSpin(H2

X ) on H∗
X is by algebra automorphisms. As CSpin(H2

X ) = Gm ·Spin(H2
X ),

this concludes the proof. ��
Remark 2.7 The homomorphism

(Nm, π) : CSpin(H2
X ) → Gm × SO(H2

X )

is surjective with kernel {±1}. By Remark 2.5, the R-action on the even cohomology factors
through (Nm, π). If g ∈ CSpin(H2

X ), then the degree 2 component R(2)(g) of R(g) equals

Nm(g) · π(g), while for ρ̃0(g) we have ρ̃
(2)
0 (g) = Nm(g)1−n · π(g).

The combination of this observation with Theorem 2.2 implies that the natural homomor-
phism R

(
G0(X)

) → R(2)
(
G0(X)

)
is an isomorphism if the odd cohomology of X vanishes,

and it has kernel {±1} otherwise.
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2.2 Hodge structures of hyper-Kähler varieties

Given a Q-Hodge structure V , we let MT(V ) denote its Mumford–Tate group. As a conse-
quence of a result of Verbitsky [30], it is known that the LLV-Lie algebra of a hyper-Kähler
variety controls the Hodge structure on its cohomology. We summarize this result as follows,
see [10, Lemma 6.7].

Theorem 2.8 The Mumford–Tate group MT(H∗
X ) is contained in the image of the represen-

tation R : CSpin(H2
X ) → ∏

j GL(H j
X ).

We have the following consequence.

Proposition 2.9 Let X1 and X2 be complex hyper-Kähler varieties and let F : H∗
X1

→ H∗
X2

be

an isomorphism of graded algebras. Assume that the degree 2 component F (2) : H2
X1

→ H2
X2

is an isomorphism of Hodge structures. Then F is an isomorphism of Hodge structures.

Proof LetS :=ResC
R
(Gm)be theDeligne torus. The totalHodge structure on H∗

Xi
corresponds

to a real representation

h Xi : S →
∏

j

GL(H j
Xi

) ⊗ R;

by definition, h Xi factors through MT(H∗
Xi

)(R). By Theorem 2.8 the group MT(H∗
Xi

) is

contained in the image of the representation R : G0(Xi ) → ∏
j GL(H j

Xi
). By Lemma 2.3,

the induced isomorphism F∗ : GL(H∗
X1

) → GL(H∗
X2

) restricts to an isomorphism g(X1) ∼=
g(X2); sincemoreover F preserves the cohomological grading, F∗ restricts to an isomorphism
R
(
G0(X1)

) ∼= R
(
G0(X2)

)
.

We have to prove that the diagram

S

R
(
G0(X1)

)
(R) R

(
G0(X2)

)
(R)

R(2)
(
G0(X1)

)
(R) R(2)

(
G0(X2)

)
(R)

h X1 h X2

pr1

F∗

pr2

F (2)∗

is commutative. By Remark 2.7, the morphism pr2 : R
(
G0(X2)

) → R(2)
(
G0(X2)

)
is either

an isomorphism or a central isogeny of degree 2; let C be the kernel. Since F (2) is an
isomorphism of Hodge structures, we have F (2)∗ ◦ pr1 ◦ h X1 = pr2 ◦ h X2 . Hence, there is a
morphism ξ : S → C such that F∗ ◦ h X1 = ξ · h X2 . But S is connected and C is finite, so ξ

is trivial and F is an isomorphism of Hodge structures. ��
Remark 2.10 In fact Theorem 2.8 (and hence also the Proposition) holds more generally for
complex hyper-Kähler manifolds which are not necessarily projective.

3 Galois representations

Throughout this section, � will denote a fixed prime number. Let K ⊂ C be a field that is
finitely generated over Q, and let K̄ be the algebraic closure of K in C. By a hyper-Kähler
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900 S. Floccari

variety over K we mean a smooth projective variety X over K such that the base change XC

is a complex hyper-Kähler variety. For all integers j and m, we have canonical comparison
isomorphisms

H j
ét (X K̄ ,Q�)(m) ∼= H j (XC,Q)(m) ⊗Q Q�.

We let H∗
X :=⊕

j H j (XC,Q) and adopt the notation from the previous section. We define

H∗
X ,�:=

⊕
j H j

ét(X K̄ ,Q�).Wewill identify H j
X ,� with H j

X ⊗QQ�; the Beauville–Bogomolov

form extends to a non-degenerate Q�-valued bilinear pairing on H2
X ,�.

There is a continuous representations

σX : Gal(K̄/K ) →
∏

j

GL(H j
X ,�).

We denote by G(H∗
X ,�) ⊂ GL(H∗

X ,�) the Zariski closure of the image of σX . The group

G(H∗
X ,�) is not connected in general. The identity componentG(H∗

X ,�)
0 of this group remains

invariant under finitely generated field extensions of K . After replacing K with a finite field
extension K̂/K , the group G(H∗

X ,�) becomes connected, see [22, Remarks 2.2.2].

Let K ⊂ K̄ ⊂ C be as above. The Mumford–Tate conjecture aims to compare the Hodge
structure on H∗

X with the Galois representation σX on H∗
X ,�.

Conjecture 3.1 (Mumford–Tate conjecture) For any smooth and projective variety X over
K , the comparison isomorphism H∗

X ,�
∼= H∗

X ⊗ Q� induces an isomorphism of connected
algebraic groups

G(H∗
X ,�)

0 ∼= MT(H∗
X ) ⊗Q Q�.

Let us note that the version of the Mumford–Tate conjecture given here is stronger than
the one which says that under the comparison isomorphism H j

X ,�
∼= H j

X ⊗Q Q� the group

G(H j
X ,�)

0 is identified with MT(H j
X ) ⊗ Q� for all j .

The Mumford–Tate conjecture does not depend on the base field, and it may even be
formulated for varieties over the complex numbers, see [23, Sect. 1.6].

At present, four deformation types of complex hyper-Kähler varieties are known besides
K3 surfaces, commonly referred to as the deformation types K3[n] and Kumn [5], for all
n ≥ 2, and O’Grady’s deformation types OG10 [24] and OG6 [25]. Together with Lie Fu
and Ziyu Zhang, we have proven theMumford–Tate conjecture for all hyper-Kähler varieties
of one of these types (the case of K3[n]-type varieties was dealt with in [12]).

Theorem 3.2 [10, Theorem 1.18] Let X be a hyper-Kähler variety over K . Assume that X
is deformation equivalent to one of the known examples, that is, XC is of deformation type
K3[n], Kumn, OG10 or OG6. Then the Mumford–Tate Conjecture 3.1 holds for X.

The Mumford–Tate conjecture in degree 2 is known for arbitrary hyper-Kähler varieties
X with b2(X) > 3 by [1]; see also [23].

3.1 Galois representations of hyper-Kähler varieties

Let now K1, K2 be subfields of C, finitely generated over Q, and consider hyper-Kähler
varieties X1, X2 over K1 and K2 respectively.
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Galois representations on… 901

Definition 3.3 We say that X1 and X2 are H∗
� -equivalent if there exists an isomorphism of

graded algebras H∗
X1,�

∼= H∗
X2,�

which is an isometry in degree 2.

Note that if X1 and X2 are deformation equivalent then they are H∗
� -equivalent, since in

this case the manifolds X1,C and X2,C are homeomorphic, and both the graded algebra H∗
Xi

and the Beauville–Bogomolov form on H2
Xi

only depend on the topology of the complex
manifold Xi,C.

Proposition 3.4 Let X1 and X2 be H∗
� -equivalent hyper-Kähler varieties over K1 and K2

respectively. Assume given a subgroup � ⊂ Gal(K̄1/K1) and a homomorphism ε : � →
Gal(K̄2/K2); we let � act on H∗

X1,�
via σX1 and on H∗

X2,�
via ε ◦ σX2 . If there exists an

isometry f : H2
X1,�

→ H2
X2,�

which is �-equivariant, then there exists an isomorphism
F : H∗

X1.�
→ H∗

X2,�
of graded algebras whose degree 2 component is again �-equivariant.

Proof Since X1 and X2 are H∗
� -equivalent, there exists an isomorphism of graded algebras

� : H∗
X1,�

→ H∗
X2,�

which is an isometry in degree 2; let ψ = �(2) be its component in

degree 2. We have ψ−1 ◦ f ∈ O(H2
X1

)(Q�). We may assume this isometry has determinant
1, for if it has determinant −1 we can choose an ample line bundle on X1 with first Chern
class e ∈ H2

X1,�
and replace f with the isometry given by e 
→ − f (e) and v 
→ f (v) for

any v ∈ 〈e〉⊥, which is again �-equivariant.
The morphism π : CSpin(H2

X1
) → SO(H2

X1
) is surjective on Q�-points. Indeed, by

Hilbert’s theorem 90 [26, Chapter X, Sect. 1], the short exact sequence

1 → Gm → CSpin(H2
X1

) → SO(H2
X1

) → 1

yields a short exact sequence

1 → Q
×
� → CSpin(H2

X1
)(Q�) → SO(H2

X1
)(Q�) → 1.

Therefore, there exists g ∈ CSpin(H2
X1

)(Q�) such thatπ(g) = ψ−1◦ f . ByLemma2.6, R(g)

is a graded algebra automorphism of H∗
X1,�

. It follows that F :=� ◦ R(g) : H∗
X1,�

→ H∗
X2,�

is an isomorphism of graded algebras. By Remark 2.7, the degree 2 component F (2) of F is
Nm(g) · f , and hence it is �-equivariant. ��

We can now prove Theorem 1.3, whose statement is recalled below.

Theorem 3.5 Let K1, K2 be subfields of C, finitely generated over Q, and let Xi be a hyper-
Kähler variety over Ki , for i = 1, 2. Assume that X1 and X2 are H∗

� -equivalent and that the
Mumford–Tate conjecture holds for both of them. Let � ⊂ Gal(K̄1/K1) be a subgroup, let
ε : � → Gal(K̄2/K2) be a homomorphism and let f : H2

X1,�
→ H2

X2,�
be a �-equivariant

isometry. Then, there exist a subgroup �′ ⊂ � of finite index and a �′-equivariant isomor-
phism of graded algebras F : H∗

X1,�
→ H∗

X2,�
.

Proof Replacing Ki by a finite field extension if necessary, we may assume that G(H∗
Xi ,�

) is
connected for i = 1, 2. Since theMumford–Tate conjecture holds for Xi , by Theorem 2.8 the
representation σXi : Gal(K̄i/Ki ) → GL(H∗

Xi ,�
) factors through the Q�-points of the image

of the LLV-representation R : G0(Xi ) → ∏
j GL(H j

Xi
).

By Proposition 3.4 there exists an isomorphism F : H∗
X1,�

→ H∗
X2,�

of graded algebras

whose degree 2 component F (2) is �-equivariant. Now the argument is the same as in the
proof of Proposition 2.9. We consider the isomorphism F∗ : GL(H∗

X1,�
) → GL(H∗

X2,�
)
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902 S. Floccari

given by A 
→ F AF−1, and the analogous isomorphism F (2)∗ : GL(H2
X1,�

) → GL(H2
X2,�

).

By Lemma 2.3 the isomorphism F∗ restricts to an isomorphism R
(
G0(X1)

)
(Q�) ∼=

R
(
G0(X2)

)
(Q�).

We consider the diagram

�

Gal(K̄1/K1) Gal(K̄2/K2)

R
(
G0(X1)

)
(Q�) R

(
G0(X2)

)
(Q�)

R(2)
(
G0(X1)

)
(Q�) R(2)

(
G0(X2)

)
(Q�)

ε

σX1 σX2

pr1

F∗

pr2

F (2)∗

Wehave to show that, up to replacing� by a subgroup of finite index, this diagram commutes.
Since F (2) is �-equivariant by assumption, we have F (2)∗ ◦ pr1 ◦ σX1 = pr2 ◦ σX2 ◦ ε. By

Remark 2.7, the homomorphismpr2 : R
(
G0(X2)

) → R(2)
(
G0(X2)

)
is either an isomorphism

or a central isogeny of degree 2; let C be its kernel. Then there exists a homomorphism
χ : � → C(Q�) such that F∗ ◦ σX1(γ ) = χ(γ ) · σX2(γ ) for any γ ∈ �. The kernel �′ ⊂ �

of χ is a subgroup of finite index such that F is �′-equivariant. ��

Remark 3.6 Note that in the above proofwe have only used thatG(H∗
Xi ,�

)0 ⊂ MT(H∗
Xi

)(Q�),
so we only need one of the two inclusions predicted by the Mumford–Tate conjecture.

3.2 An application to hyper-Kähler varieties over finite fields

We apply Theorem 3.5 to the study of Galois representations on the cohomology of hyper-
Kähler varieties over finite fields. We will consider the following situation. Let k be a finite
field, and let Z1 and Z2 be smooth projective varieties over k. We assume that there exist
hyper-Kähler varieties X1 and X2 over fields of characteristic 0 which lift Z1 and Z2. More
precisely, we assume that there exist:

– normal integral domains Ri ⊂ C essentially of finite type over Z (i.e. the localization of
a finite type algebra over Z) with fraction fields Ki of characteristic 0;

– smooth and projective morphisms Xi → Spec(Ri ) whose generic fibres Xi are hyper-
Kähler;

– homomorphisms Ri → k together with isomorphisms Xi ⊗Ri k ∼= Zi of k-schemes.

We let � be a prime number invertible in k and consider H∗
Zi ,�

= ⊕
j H j

ét(Zi,k̄,Q�). By the
smooth and proper base-change theorems we have an isomorphism H∗

Xi ,�
∼= H∗

Zi ,�
of graded

algebras. Via this isomorphism, the Beauville–Bogomolov form induces a non-degenerate
symmetric bilinear form on H2

Zi ,�
.

Remark 3.7 A priori, the bilinear form that we obtain on H2
Zi ,�

depends on the choices of Ri

and Xi . However, by [16, Sect. 4], the formula

α 
→
∫

Xi

α2 ∧ √
td(Xi )
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defines a non-degenerate quadratic form on H2
Xi

which is a non-zero multiple of the

Beauville–Bogomolov form. The induced form on H2
Zi ,�

is α 
→ ∫
Zi

α2 ∧ √
td(Zi ), and

it is thus independent from the choices of Ri and Xi .

We now prove Theorem 1.4.

Theorem 3.8 With notations and assumptions as above, assume that X1 and X2 are H∗
� -

equivalent, and that the Mumford–Tate conjecture holds for both of them. Let f : H2
Z1,�

→
H2

Z2,�
be a Gal(k̄/k)-equivariant isometry. Then, there exist a finite field extension k′ of k

and a Gal(k̄/k′)-equivariant isomorphism of graded algebras F : H∗
Z1,�

→ H∗
Z2,�

.

Proof Let |k| = pr , and let Frk ∈ Gal(k̄/k) be the Frobenius automorphism. With notations
as in above, let mi ⊂ Ri be the kernel of Ri → k; let |Ri/mi | = pr/ai and denote by
φi ∈ Gal(K̄i/Ki ) a Frobenius element at mi , for i = 1, 2.

By construction, we have isomorphisms 〈φai
i 〉 = 〈Frk〉 (both isomorphic to Z) such that

the action of φai on H∗
Zi ,�

via the base-change isomorphism H∗
Xi ,�

∼= H∗
Zi ,�

corresponds to
that of Frk .

Let now � = 〈φa1
1 〉 ⊂ Gal(K̄1/K ) and let ε : � → Gal(K̄2/K2) be the homomorphism

such that φ
a1
1 
→ φ

a2
2 . By Theorem 3.5, there exists an integer m and an isomorphism

H∗
Z1,�

→ H∗
Z2,�

of graded algebras which is Frm
k -equivariant. ��

4 Motives

Let K ⊂ C be a subfield. We will work with the category of motives over K introduced
by André in [2], which we denote by AMK . It is a neutral tannakian semisimple abelian
category, with functors

SmProjopK
H j−−→ AMK

r−→ HSpol
Q

such that r ◦ H j is the functor H j which associates to a smooth and projective variety X
the rational Hodge structure H j

X . We denote byH∗
X :=⊕

j H
j
X the motive of the smooth and

projective variety X .
The composition of the realization functor r with the forgetful functor toQ-vector spaces

is a fibre functor on AMK ; the tensor automorphisms of this functor form a pro-reductive
group Gmot(AMK ) over Q, and AMK is equivalent to the category of finite dimensional
Q-representations of Gmot(AMK ).

We denote by 〈M〉 the tannakian subcategory of AMK generated by a motive M. Via
restriction to 〈M〉 of the fibre functor described above, we obtain a reductive algebraic group
Gmot(M) ⊂ GL

(
r(M)

)
whose category of representations is equivalent to 〈M〉; we have a

canonical surjective homomorphism Gmot(AMK ) → Gmot(M). If M, N ∈ AMK , a linear
isomorphism f : r(M) → r(N ) between their realizations comes from an isomorphism of
motives if and only if it is Gmot(AMK )-equivariant.

Remark 4.1 If K ′ is any field extension of K , the group Gmot(MK ′) is a subgroup of finite
index ofGmot(M), and there exists a finite field extension K † of K such that for any extension
K ′/K † we have Gmot(MK ′) = Gmot(MK †), see [22, Sect. 3.1]. In particular Gmot(MC) is
a subgroup of finite index of Gmot(M).
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904 S. Floccari

4.1 Families of motives

We will need to work with motives in families. For our purposes, it will be sufficient to treat
the case in which the base field is C. Let S be a non-singular and connected complex quasi-
projective variety. We will use the category AM/S of families of motives over S defined
by Moonen [22]. The category AM/S is a semisimple, neutral tannakian, abelian category,
and there is a realization functor r : AM/S → VHSQ/S to polarized variations of Q-Hodge
structures over S.

The prototype of an object of AM/S is the motive H∗
X/S = ⊕

j H
j
X/S of a smooth and

projective morphism X → S. For any s ∈ S the fibre of H∗
X/S at s is the motive H∗

Xs
of the

fibre. The realization of the motive H∗
X/S is the variation of Hodge structures H∗

X/S over S.
In general, an objectM/S ∈ AM/S is cut out inside someH∗

X/S as above by a global section

p of the local system End
(
r(M)/S

)
such that p ◦ p = p and ps is a motivated cycle for all

s ∈ S.
Let M/S ∈ AM/S and let M/S ∈ VHSQ/S be its realization. We denote by Ms and

Ms the fibre at s of M/S and M/S respectively. Then there are local systems of algebraic
groups over S

Gmono(M/S)0 � MT(M/S) ⊂ Gmot(M/S) ⊂ GL(M/S),

where:

– Gmono(M/S)0 is the connectedmonodromygroup: for each s ∈ S thefibreGmono(M/S)0s
is the identity component of the Zariski closure of the image of the monodromy repre-
sentation π1(S, s) → GL(Ms);

– MT(M/S) is the generic Mumford–Tate group: for each s ∈ S we have an inclusion
MT(Ms) ⊂ MT(M/S)s , and equality holds for very general s, that is, for s in the
complement of a countable union of closed subvarieties of S;

– Gmot(Ms) is the generic motivic Galois group: for each s ∈ S we have an inclusion
Gmot(Ms) ⊂ Gmot(M/S)s , and equality holds for very general s.

The key result needed to develop the above theory is André’s deformation principle for
motivated cycles [2, Théorème 0.5].

4.2 Defect groups of hyper-Kähler varieties

We now review some of the results on the André motives of hyper-Kähler varieties which
we obtained in [10]. To any complex hyper-Kähler variety X with b2(X) > 3 we attached
an algebraic group

P(X) ⊂ Gmot (H∗
X ),

called the defect group of X , that is defined as follows.
If the odd cohomology of X is trivial, then P(X) is simply defined as the kernel of the

projection Gmot(H∗
X ) → Gmot(H2

X ) corresponding to H2
X ⊂ H∗

X .
If instead X has non-trivial cohomology in some odd degree, we need to consider the

abelian variety A obtained from H2
X via the Kuga–Satake construction [8] in order to control

the odd part of the cohomology. In the case when X has non-trivial odd cohomology we will
assume the following:

Assumption 4.2 The motive H1
A belongs to the tannakian category of motives generated by

H∗
X .
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We then define the defect group P(X) as the kernel of the induced projectionGmot(H∗
X ) →

Gmot(H1
A). We expect Assumption 4.2 to be always satisfied; for the only known class of

hyper-Kähler varieties with odd cohomology, that is, the deformation class of generalized
Kummer varieties, we verified this in [10]. In general, contrarily to what claimed in loc. cit.,
the question remains open, see the Erratum [9] where we show that this assumption is not
necessary to define the defect group; Assumption 4.2 may be translated into a question on
the representation of the LLV-Lie algebra on the odd cohomology.

By construction, P(X) acts on H∗
X via graded algebra automorphisms and it acts trivially

on H2
X . We summarize below themain properties of the defect group P(X), which are proven

in [10, Lemma 6.8, Theorems 6.9 and 6.12].

Theorem 4.3 Let X be a complex hyper-Kähler variety with b2(X) > 3. If X has non-trivial
cohomology in odd degree, assume that it satisfies Assumption 4.2. Then:

(a) the action of P(X) on H∗
X commutes with the LLV-Lie algebra g(X);

(b) we have Gmot (H∗
X ) = P(X) × MT (H∗

X );
(c) if X → S is a smooth and projective morphism to a non-singular connected variety S

with fibres hyper-Kähler varieties with b2 > 3, then s 
→ P(Xs) defines a local system
of algebraic groups P(X/S) ⊂ GL(H∗

X/S) over S.

If X → S is a family as in (c), the decomposition in (b) spreads over S and gives a decom-
position at the level of local systems of algebraic groups

Gmot(H∗
X/S) = P(X/S) × MT(H∗

X/S).

For all s ∈ S, the inclusion of Gmot(H∗
Xs

) into Gmot(X/S)s is the direct product of
MT(H∗

Xs
) ⊂ MT(H∗

X/S)s and P(Xs) = P(X/S)s . Since the connected component of the
identity of the monodromy group is a subgroup of the generic Mumford–Tate group of the
family and the latter commutes with the defect group, the local system P(X/S) becomes
constant after a finite base change S′ → S.

Remark 4.4 Conjecturally, the group P(X) is trivial for any hyper-Kähler variety X with
b2 > 3. In fact, the triviality of the defect group is equivalent to the conjecture which says that
MT(H∗

X ) = Gmot(H∗
X ) (i.e. Hodge classes are motivated), which would be a consequence

of the Hodge conjecture.

4.3 Proof of themain result

With these preliminaries behind us we can proceed towards the proof of Theorem 1.1. To
start with, we will need a stronger version of the deformation invariance of defect groups
from Theorem 4.3.(c).

With X as in Theorem 4.3, we have a canonical surjective homomorphism πX :
Gmot(AMC) → Gmot(H∗

X ). We also let

prX : Gmot(AMC) → P(X)

be the composition of πX with the projection coming from the isomorphism Gmot(H∗
X ) =

P(X)×MT(H∗
X ). Via Tannaka duality, the projection prX corresponds to the subcategory of

〈H∗
X 〉 of motives on which MT(H∗

X ) acts trivially, i.e. the motives in 〈H∗
X 〉 with realization

a direct sum of trivial Hodge structures Q(0).
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906 S. Floccari

Remark 4.5 Composing πX with the other projection we obtain

pX : Gmot(AMC) → MT(H∗
X ).

By the definition of the defect group this homomorphism corresponds via Tannaka duality to
the subcategory 〈H2

X 〉 of AMC if the odd cohomology of X is trivial, and to the subcategory
〈H1

A〉otherwise,where A is theKuga–Satake abelian variety associated to H2
X . Sinceb2(X) >

3, the work of André [1] ensures that the motiveH2
X is abelian, i.e. it belongs to the tannakian

subcategory AMab
C

of AMC generated by the motives of abelian varieties. Hence, in any
case the homomorphism pX factors through the quotient homomorphism Gmot(AMC) →
Gmot(AMab

C
), where Gmot(AMab

C
) is the motivic Galois group of the tannakian category AMab

C

of abelian motives.

Proposition 4.6 Let X → S be a smooth projective family of hyper-Kähler varieties with
b2 > 3; if the odd cohomology of the fibres is not trivial, assume that they satisfy Assumption
4.2. Assume that the monodromy group Gmono(H∗

X/S) is connected. Let a, b be points in S.
Choose a continous path γ from a to b and let � : P(Xa) → P(Xb) be the isomorphism
obtained via parallel transport along γ in the local system P(X/S). Then � does not depend
on the choice of γ and the diagram

P(Xa)

Gmot(AMK )

P(Xb)

�

prXa

prXb

is commutative.

Proof Since the monodromy group is connected by assumption, the local system P(X/S) is
constant and � does not depend on the choice of the path γ .

Consider any motive over S of the form

T /S:=(H∗
X/S)⊗t1 ⊗ (H∗

X/S)∨,⊗t2 ⊗ QS(t3) ∈ AM/S,

for integers t1, t2, t3. Let T /S be its realization. For any s ∈ S we let Ws ⊂ Ts be the subspace
of invariants for the generic Mumford–Tate group MT(T /S)s ; this yields a sub-variation of
Hodge structures W/S ⊂ T /S. Moreover, as MT(T /S)s is normal in Gmot(T /S)s , the
variation W/S is the realization of a submotive W/S ⊂ T /S over S.

The motive W/S is a constant motive over S. Indeed, let us denote by D the motive Wb,
and let D/S be the constant motive over S with fibre D; let D/S be the realization of D/S.
Then idb : Wb → Db is monodromy invariant and obviously an isomorphism of motives; by
[2, Théorème 0.5] it extends to an isomorphism of families of motives W/S

∼−−→ D/S.
It follows that parallel transport along γ in the local system W/S gives a linear map

� : Wa → Wb which is the realization of an isomorphism of motives Wa ∼= Wb. Hence the
induced isomorphism �∗ : GL(Wa) → GL(Wb) fits into a commutative diagram

Gmot(Wa)

Gmot(AMC)

Gmot(Wb)

�∗
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Note that since the generic Mumford–Tate group acts trivially on Ws by construction, the
group Gmot(Ws) is a quotient of the defect group P(Xs).

We now choose the tensor construction T /S in such a way that the action of P(Xs) on the
subspace Ws is faithful; in this case we have Gmot(Ws) = P(Xs) for all points s ∈ S, and the
homomorphism Gmot(AMC) → Gmot(Ws) is identified with prXs

: Gmot(AMC) → P(Xs).
Moreover, P(X/S) ⊂ GL(W/S) is a sub-local system of algebraic groups, and therefore
the isomorphism � obtained via parallel transport along γ in the local system P(X/S) is
the restriction of the isomorphism �∗ : GL(Wa) → GL(Wb) to P(Xa). This concludes the
proof. ��

By Remark 4.1, Theorem 1.1 is equivalent to the following statement.

Theorem 4.7 Let X1 and X2 be deformation equivalent complex hyper-Kähler varieties with
b2 > 6; if they have non-trivial odd cohomology, assume that they satisfy Assumption 4.2.
Assume that f : H2

X1
→ H2

X2
is a Hodge isometry. Then there exists an isomorphism of

graded algebras F : H∗
X1

→ H∗
X2

which is the realization of an isomorphism of motives
H∗

X1
→ H∗

X2
.

Proof By Theorem 5.1 there exist smooth and projective families of hyper-Kähler varieties
Xi → Si over non-singular connected quasi-projective varieties Si , for i = 1, . . . , N , and
points ai , bi ∈ Si with isomorphisms

X1
∼−−→ X1

a1 , Xi
bi

∼−−→ Xi+1
ai+1

, for i = 1, . . . , N − 1, XN
bN

∼−−→ X2.

We may and will assume that the monodromy groups Gmono(H∗
Xi /Si

) are connected. For

each i , let γi be a path in Si from ai to bi ; let � : H∗
X1

→ H∗
X2

be the isomorphism obtained
as composition of the isomorphisms �i given by parallel transport along γi . We denote by
ψ :=�(2) : H2

X1
→ H2

X2
the isometry induced by �.

Let f : H2
X1

→ H2
X2

be a Hodge isometry. We construct the isomorphism of graded
algebras F : H∗

X1
→ H∗

X2
as in the proof of Proposition 3.4: wemay assume that the isometry

ψ−1 ◦ f : H2
X1

→ H2
X1

has determinant 1; thanks to Hilbert’s Theorem 90 and the short exact
sequence

1 → Gm → CSpin(H2
X1

)
π−→ SO(H2

X1
) → 1,

the morphism π : CSpin(H2
X1

) → SO(H2
X1

) is surjective onQ-points and hence there exists

g ∈ CSpin(H2
X1

)(Q) such that π(g) = ψ−1 ◦ f . By Lemma 2.6, R(g) is a graded algebra
automorphism of H∗

X1
, and we define

F := � ◦ R(g) : H∗
X1

→ H∗
X2

.

We claim that F is the realization of an isomorphism of motives H∗
X1

→ H∗
X2
. If

F∗ : GL(H∗
X1

) → GL(H∗
X2

) denotes the induced isomorphism, we have to prove that F∗
restricts to an isomorphism Gmot(H∗

X1
)

∼−−→ Gmot(H∗
X2

) such that the diagram

Gmot(H∗
X1

)

Gmot(AMC)

Gmot(H∗
X2

)

F∗

π1

π2
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is commutative.
By Theorem 4.3.(a), the automorphism R(g) of H∗

X1
commutes with P(X1). Since � is

the composition of parallel transport operators and the defect group is constant in families,
F∗ identifies P(X1) with P(X2), and the induced isomorphism F∗ : P(X1) → P(X2) is the
restriction to P(X1) of �∗ : GL(H∗

X1
) → GL(H∗

X2
).

Since the degree 2 component of F is a multiple of the Hodge isometry f , by Proposi-
tion 2.9, F is an isomorphism of Hodge structures, and hence F∗ identifies MT(H∗

X1
) with

MT(H∗
X2

). By Theorem 4.3.(b), Gmot(H∗
Xi

) = P(Xi ) × MT(H∗
Xi

), and
it suffices to show the commutativity of the two diagrams

P(X1) MT(H∗
X1

)

Gmot(AMC) Gmot(AMC)

P(X2) MT(H∗
X2

)

�∗ F∗

pr1

pr2

p1

p2

The left triangle is commutative by repeated application of Proposition 4.6, since the
restriction of �∗ to P(X1) is the composition of the isomorphisms �i obtained via parallel
transport along γi in the local system P(Xi/Si ).

For the right one, we proceed as follows. By Remark 4.5, pi corresponds to the inclusion
of a subcategory of abelian motives; equivalently, for i = 1, 2, the homomorphism pi factors
through Gmot(AMC) → Gmot(AMab

C
). If we let HSab

Q
⊂ HSpol

Q
be the tannakian subcategory

generated by the Hodge structures of abelian varieties, we haveMT (HSab
Q

) = Gmot(AMab
C

),
by [2, Théorème 0.6.4]. But now the diagram

MT(H∗
X1

)

Gmot(AMab
C

) = MT (HSab
Q

)

MT(H∗
X2

)

F∗

p′
1

p′
2

is commutative, since F is an isomorphism of Hodge structures. ��
Finally, we prove Corollary 1.2 from the introduction.

Corollary 4.8 Let K ⊂ C be a subfield which is finitely generated over Q, and let X1, X2

be deformation equivalent hyper-Kähler varieties over K with b2(Xi ) > 6. If their odd
cohomology is not trivial, assume that Assumption 4.2 holds for X1 and X2. Assume that
f : H2

X1,�
→ H2

X2,�
is a Gal(K̄/K )-equivariant isometry. Then, there exist a finite field

extension K ′/K and an isomorphism F : H∗
X1,�

→ H∗
X2,�

of graded algebras which is

Gal(K̄/K ′)-equivariant.

Proof By [1], theMumford–Tate conjecture in degree 2 holds for X1 and X2, and the motives
H2

X1
and H2

X2
are abelian. Hence, there exists a finite extension K ′ of K such that the

isometry f is the realization of an isomorphism of motives over K ′ with Q�-coefficients.
The same argument as in the proof of Theorem 4.7 produces an isomorphism of graded
algebras F : H∗

X1,�
→ H∗

X2,�
which, up to further replacing K ′ with a finite extension, is
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the realization of an isomorphism of motives over K ′ with Q�-coefficients. Hence, F is
Gal(K̄/K ′)-equivariant. ��

5 Projective families of hyper-Kähler varieties

In the proof of Theorem 1.1 we used the following result.

Theorem 5.1 Let X1, X2 be deformation equivalent complex projective hyper-Kähler vari-
eties. Assume that b2(Xi ) > 6. Then there exist:

– smooth and projective families Xi → Si with fibres hyper-Kähler varieties over con-
nected and non-singular quasi-projective complex varieties Si , for i = 1, . . . , N;

– points ai , bi ∈ Si , for i = 1, . . . , N, together with isomorphisms

X1
∼−−→ X1

a1 , Xi
bi

∼−−→ Xi+1
ai+1

, for i = 1, . . . , N − 1, XN
bN

∼−−→ X2.

If X1 and X2 satisfy the conclusion of the Theorem, we will write X1 ∼ X2.

Remark 5.2 In similar spirit, Soldatenkov [28] shows that, under the assumption that b2 > 3,
the varieties X1 and X2 can be joined via smooth and proper (but not necessarily projective)
families over curves; however, the total space of such a family is not an algebraic variety in
general.

Before giving the proof of Theorem 5.1 we recall some facts on polarized hyper-Kähler
varieties. The positive cone of a hyper-Kählermanifold X is the connected component of {x ∈
H1,1(X ,R) such that (x, x) > 0} containing the Kähler cone, where (·, ·) is the Beauville–
Bogomolov pairing. We denote by NS+(X) ⊂ NS(X) the intersection of the positive cone
with the Néron-Severi group. In analogy to the case of K3 surfaces and−2-classes, the ample
cone Amp(X) ⊂ NS+(X) of a projective hyper-Kähler manifold can be described in terms
of so-called MBM classes [3] (this notion is equivalent to that of wall divisors introduced in
[21]). The proof of Theorem 5.1 relies on the following result due to Amerik and Verbitsky.
Let MBM(X) ⊂ NS(X) be the subset of MBM classes on X .

Theorem 5.3 (i) [3] Let X be a projective hyper-Kähler manifold. The ample cone of X is
one of the connected components of

NS+(X) \
⋃

z∈MBM(X)

z⊥.

In particular, if MBM(X) = ∅ then Amp(X) = NS+(X).
(ii) [4]Fix a deformation class of hyper-Kähler manifolds with b2 ≥ 5. There exists a positive

integer N, depending only on the deformation class, such that for any projective X of
the given deformation type, every MBM class z on X satisfies

−N < (z, z) < 0.

Let X be a hyper-Kähler manifold and let � be a lattice isometric to H2(X ,Z) equipped
with the Beauville–Bogomolov form. Let

� = {x ∈ P(� ⊗ C) | (x, x) = 0, (x, x̄) > 0}
be the period domain. We fix a connected component M of the moduli space of �-marked
hyper-Kähler manifolds containing X (with a chosenmarking). By the global Torelli theorem
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[17,31], the period map P : M → � is surjective with finite fibres, and each fibre consists
of bimeromorphic hyper-Kähler manifolds.

By Huybrechts’ projectivity criterion [15], a hyper-Kähler manifold Y is projective if and
only if NS(Y ) contains a class h with (h, h) > 0. For any positive class h ∈ �, we have a
hypersurface

�h⊥ = {x ∈ � | (x, h) = 0} ⊂ �.

The period space �h⊥ has two connected components; we denote by �+
h⊥ the component

parametrizing those (Y , τ ) ∈ M such that τ−1(h) belongs to the positive cone.
We letMa

h⊥ ⊂ M be the subset consisting of (Y , τ ) such that τ−1(h) represents an ample
class on Y . ThenMa

h⊥ is Hausdorff and connected, and its image �a
h⊥ via the period map is

open and dense in �+
h⊥ , by [20, Corollary 7.3].

5.1 Proof of Theorem 5.1

The rest of the article is devoted to the proof of Theorem 5.1. Let X be a hyper-Kähler
manifold and assume that b2(X) > 6. We fix a connected componentM of the moduli space
of �-marked hyper-Kähler manifolds.

We will show that given any (X1, τ1) and (X2, τ2) in M with X1 and X2 projective,
then X1 ∼ X2, in the notation of the Theorem. We start with the following case.

Proposition 5.4 Let h ∈ � be a positive class, and let (X1, τ1), (X2, τ2) be points of Ma
h⊥ .

Then X1 ∼ X2.

Proof Let (Y , L) be a hyper-Kähler variety equipped with an ample divisor L . Following
André [1, Sect. 3.3] (see also [14]) there exists a polarized deformation Y → S of (Y , L)

which is a smooth and projective family of hyper-Kähler varieties over a non-singular and
connected quasi-projective variety S, with a distinguished fibre Ys = Y and the following
property: denoting by S̃ → S the universal covering of S, the image of the period map
S̃ → �a

h⊥ contains an open subset. Here, h = φ(c1(L)) for a fixed marking φ on Y . Upon

replacing S with a finite cover, we find a torsion free arithmetic subgroup � ⊂ O(h⊥) acting
freely on �+

h⊥ such that the period map descends to � : S → �\�+
h⊥ . By [6], �\�+

h⊥ is a
non-singular quasi-projective variety, and the map � is a dominant morphism of algebraic
varieties.

Let now (X1, τ1) and (X2, τ2) be as in the statement of the proposition. Consider the
respective polarized deformationsX1 → S1 andX2 → S2 of (X1, τ

−1
1 (h)) and (X2, τ

−1
2 (h))

described above. For a suitable torsion free arithmetic subgroup� ⊂ O(h⊥) and finite covers
of S1 and S2, we have dominant period maps �1 : S1 → �\�+

h⊥ and �2 : S2 → �\�+
h⊥ .

As �+
h⊥ is connected, �1(S1) ∩ �2(S2) is not empty. By the surjectivity of the period map,

there exists (Y , τ ) ∈ M whose period gives a point in this intersection via the quotient map
�+

h⊥ → �\�+
h⊥ ; if (Y , τ ) is very general with the above property, then Y is of Picard rank

1. In this case (Y , τ ) is the unique point in the fibre of the period map containing it, and it
belongs toMa

h⊥ . It follows that there exist s1 ∈ S1 and s2 ∈ S2 and an isomorphism between
the fibres X1,s1

∼= Y ∼= X2,s2 .
��

The next case is the key step in the proof.
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Proposition 5.5 Let h1 and h2 be positive classes in � such that the lattice 〈h1, h2〉 is of
signature (1, 1) and (h1, h2) > 0. Assume that (X1, τ1) ∈ Ma

h⊥
1

and (X2, τ2) ∈ Ma
h⊥
2

. Then

X1 ∼ X2.

Proof Let h1 and h2 be as above. Then �+
h⊥
1

∩ �+
h⊥
2

�= ∅. If Ma
h⊥
1

∩ Ma
h⊥
2
is also not empty,

we can directly apply Proposition 5.4 to conclude; however in general this is not the case,
and we need to modify h1 and h2 before applying that proposition.

We fix the constant N given by Theorem 5.3 for our deformation type. First of all, we
replace h1 and h2 with classes ofwhichwe can control the square. There exist (Y1, φ1) ∈ Ma

h⊥
1

and (Y2, φ2) ∈ Ma
h⊥
2
of maximal Picard rank. Then NS(Yi ) is an indefinite lattice of rank

b2−2 ≥ 5, and hence it contains a non-zero isotropic vector φ−1
i (yi ) ∈ NS(Yi ), for i = 1, 2.

Lemma 5.6 There exist a prime number p > N congruent to 3 modulo 4, an odd integer
j � 0 and positive classes l1 and l2 in � such that:

– φ−1
1 (l1) (resp. φ−1

2 (l2)) represents an ample divisor on Y1 (resp. Y2);
– (l1, l1) = p j f1 and (l2, l2) = p j f2, with f1 and f2 not divisible by p and such that f1

and f2 are both quadratic residues modulo p;
– the lattice generated by l1 and l2 has signature (1, 1), and (l1, l2) > 0.

Proof Choose a large prime p > N congruent to 3 modulo 4 and which does not divide any
of the integers (h1, h1), (h2, h2), (h1, y1) and (h2, y2). Replacing yi with a suitable multiple,
we may assume that 2(h1, y1) and 2(h2, y2) are (non-zero) quadratic residues modulo p.
Consider

l1 := p j h1 + y2 and l2 := p j h2 + y2.

Then we have

(l1, l1) = p j
(

p j (h1, h1) + 2(h1, y1)
)

=: p j f1,

(l2, l2) = p j
(

p j (h2, h2) + 2(h2, y2)
)

=: p j f2.

For a large enough odd integer j , the classφ−1
1 (l1) (resp.φ

−1
2 (l2)) represents an ample divisor

on Y1 (resp. Y2). Moreover 〈l1, l2〉 has signature (1, 1) and (l1, l2) > 0. Therefore l1 and l2
have the required properties. ��

Thanks to Proposition 5.4 it suffices to prove Proposition 5.5 for li , Yi , φi as above in
place of hi , Xi , τi .

Lemma 5.7 There exist vectors v1 ∈ l⊥1 and v2 ∈ l⊥2 such that:

– (v1, v1) = pr1ε1, where r1 is an odd natural number and ε1 is a negative integer not
divisible by p and it is a quadratic residue modulo p;

– (v2, v2) = pr2ε2, where r2 is an odd natural number and ε2 is a negative integer not
divisible by p and it is a quadratic residue modulo p;

– (v1, v2) = 0 = (l2, v1).

Proof The orthogonal to 〈l1, l2〉 in � is an indefinite lattice of rank at least 5; hence, we can
find isotropic vectors u1, u2 ∈ 〈l1, l2〉⊥ such that (u1, u2) = t < 0. The self-intersection of
a linear combination au1 + bu2 is 2abt . It is then clear that a suitable linear combination v1
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of u1 and u2 will satisfy (v1, v1) = pr1ε1 for some odd natural number r1 and a negative
integer ε1 which is a non-zero square modulo p.

The orthogonal to 〈l2, v1〉 is an indefinite lattice of rank at least 5; hence, it contains
isotropic vectors z1, z2 ∈ 〈l2, v1〉⊥ such that (z1, z2) = s < 0. As above, a suitable linear
combination v2 of z1 and z2 satisfies (v2, v2) = pr2ε2, for some odd natural number r2 and
a negative integer ε2 which is a non-zero square modulo p. ��

Consider now the rank 2 sub-lattices of �:

L1 = 〈l1, v1〉 and L2 = 〈l2, v2〉.
The proof of the next Claims 5.8 and 5.9 below will be given at the end of the section.

Claim 5.8 For i = 1 or 2, let v ∈ Li ⊗ Q. If (v, v) ∈ Z, then p divides (v, v).

Since the lattices L1 and L2 are of signature (1, 1), there exist (W1, ψ1) and (W2, ψ2)

in M such that NS(W1) = ψ−1
1 (L1) and NS(W2) = ψ−1

2 (L2) and ψ−1
1 (l1) (resp. ψ

−1
2 (l2))

belongs to NS+(W1) (resp. NS+(W2)). Claim 5.8 ensures that NS(W1) and NS(W2) contain
no MBM classes; hence, by Theorem 5.3,

Amp(W1) = NS+(W1) and Amp(W2) = NS+(W2).

In particular, ψ−1
1 (l1) (resp. ψ

−1
2 (l2)) represents an ample class on W1 (resp. W2).

For k > 0, we define w1,k ∈ L1 and w2,k ∈ L2 as:

w1,k :=pkl1 + v1 w2,k :=pkl2 + v2.

For k large enough, ψ−1
1 (w1,k) (resp. ψ

−1
2 (w2,k)) represents an ample class on W1 (resp. on

W2). We let Sk ⊂ � be the lattice generated by w1,k and w2,k .

Claim 5.9 Let v ∈ Sk ⊗ Q, for k � 0. If (v, v) ∈ Z, then p divides (v, v).

If k � 0, the lattice Sk has signature (1, 1), because this is the signature of the lattice
generated by l1 and l2. By the surjectivity of the period map, there exists (Z , η) ∈ M such
that NS(Z) = η−1(Sk) and both the classes η−1(w1,k) and η−1(w2,k) belong to NS+(Z);
this is possible because (w1,k, w2,k) > 0 for k � 0.

By Claim 5.9, there are no MBM classes in NS(Z); hence, Amp(Z) = NS+(Z), by
Theorem 5.3. We therefore obtain:

(W1, ψ1) ∈ Ma
l⊥1

∩ Ma
w⊥
1,k

, (Z , η) ∈ Ma
w⊥
1,k

∩ Ma
w⊥
2,k

, (W2, ψ2) ∈ Ma
w⊥
2,k

∩ Ma
l⊥2

.

By Proposition 5.4, this concludes the proof of Proposition 5.5. ��
Finally, Proposition 5.5 implies Theorem 5.1 via the next lemma.

Lemma 5.10 Let h1, h2 be linearly independent positive classes in �. Then there exist finitely
many vectors l1, l2, . . . , lk ∈ � such that:

– l1 = h1 and lk = h2;
– (li , li ) > 0, for each i = 1, . . . , k;
– 〈li , li+1〉 has signature (1, 1) and (li , li+1) > 0, for each i = 1, . . . , k − 1.

Proof The argument presented here is due to Soldatenkov [28, Sect. 6.3]. If 〈h1, h2〉 is of
signature (1, 1) and (h1, h2) > 0 there is nothing to do.

Assume that 〈h1, h2〉 is positive definite.Wemay assume that (h1, h2) = 0, for, otherwise,
we pick a positive class h3 ∈ 〈h1, h2〉⊥ and apply the argument below to h1, h3 and h3, h2.
Consider V consisting of l ∈ � ⊗ R such that:
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– (l, l) > 0, (h1, l) > 0 and (h2, l) > 0;
– 〈h1, l〉 and 〈l, h2〉 are both of signature (1, 1).

Then V is an open cone in�⊗R and it suffices to show that V is not empty. Letw ∈ 〈h1, h2〉⊥
be such that (w,w) < 0 and let u1, u2, u3 be the orthogonal basis of 〈h1, h2, w〉 ⊗ R such
that (u1, u1) = 1, (u2, u2) = 1, (u3, u3) = −1, and h1 = αu1, h2 = βu2, w = γ u3, for
positive real numbers α, β and γ . A computation shows that the vector l = u1 + u2 + δu3 is
positive for δ2 < 2, and both the real vector spaces 〈h1, l〉 and 〈h2, l〉 are of signature (1, 1)
for δ2 > 1. Moreover, (h1, l) = α and (h2, l) = β are positive. Hence, if 1 < δ2 < 2, the
vector l ∈ V .

If 〈h1, h2〉 is of signature (1, 1) and (h1, h2) < 0, we simply let l be a positive class in
〈h1, h2〉⊥. Then 〈h1, l〉 and 〈h2, l〉 are positive definite, and we conclude as above.

Finally, let 〈h1, h2〉 be degenerate. The set V of l ∈ � ⊗ R such that

– (l, l) > 0, and
– 〈h1, l〉 and 〈l, h2〉 are both non-degenerate,

is a non-empty open cone in � ⊗ R. Hence, there exists a positive class l ∈ � such that
〈h1, l〉 and 〈l, h2〉 are both non-degenerate. This concludes the proof. ��

Below are proven the statements used in the proof of Proposition 5.5.

Proof (of Claim 5.8) By construction, the intersection matrices of L1 and L2 are
(

p j f1 0
0 pr1ε1

)

and

(
p j f2 0
0 pr2ε2

)

,

respectively, with j � 0 odd and f1, f2, ε1, ε2 all non-zero squares modulo p. In particular,
ε1 f1 and ε2 f2 are squares modulo p.

Let v ∈ L1 ⊗ Q; the case of v ∈ L2 ⊗ Q is analogous. Assume that (v, v) is an integer.
There exist integers γ , λ, δ such that γ v = λl1 + δv1. Assume that j ≥ r1 (otherwise we
proceed similarly). We then have

γ 2(v, v) = pr1(λ2 p j−r1 f1 + δ2ε1).

Assume by contradiction that (v, v) is not divisible by p, and let m be the biggest integer
such that pm divides both λ and δ. We can then write

γ 2(v, v) = p2m+r1(λ20 p j−r1 f1 + δ20ε1),

where p does not divide both λ0 and δ0. The left hand-side is divisible by an even power of
p. Since r1 is odd, if j − r1 > 0 this forces δ0 to be divisible by p, and hence δ0 = pδ1 for
some integer δ1. Therefore, λ0 is not divisible by p. We obtain

γ 2(v, v) = p2m+r1+2(λ20 p j−r1−2 f1 + δ21ε1).

If j − r1 − 2 > 0, we again find that p has to divide δ1, so δ0 = p2δ2 and

γ 2(v, v) = p2m+r1+4(λ20 p j−r1−4 f1 + δ22ε1).

Proceeding in this way we eventually find δ̄ such that δ0 = p( j−r1)/2δ̄ and

γ 2(v, v) = p2m+ j (λ20 f1 + δ̄2ε1).

Now, since j is odd, p has to divide λ20 f1+ δ̄2ε1. But− f1ε1 is not a square modulo p because
p ≡ 3 modulo 4, and therefore λ20 f1 + δ̄2ε1 ≡ 0 modulo p has no non-trivial solutions. It
follows that p divides λ0, a contradiction. ��
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Proof (of Claim 5.9) We let b := (l1, l2) and s := (l1, v2). The intersection matrix of Sk is
(

p2k+ j f1 + pr1ε1 p2kb + pks
p2kb + pks p2k+ j f2 + pr2ε2

)

.

Let v ∈ Sk ⊗Q be such that (v, v) ∈ Z. We have γ v = λw1,k + δw2,k for integers γ, λ, δ.
Without loss of generality, we may assume that r1 ≤ r2. Then:

γ 2(v, v) = pr1
(
λ2ε1 + δ2 pr2−r1ε2 + D

)
,

where

D = λ2 p2k+ j−r1 f1 + 2λδ(p2k−r1b + pk−r1s) + δ2 p2k+ j−r1 f2

is divisible by a large power of p, since k � 0. Let m be such that λ = pmλ0 and δ = pmδ0,
with at least one among λ0 and δ0 not divisible by p. We can then write

γ 2(v, v) = p2m+r1(λ20ε1 + δ20 pr2−r1ε2 + D0).

Assume by contradiction that p does not divide (v, v). Then γ 2(v, v) is divisible by an
even power of p, and hence, being r1 odd, p necessarily divides the term in brackets on the
right hand side. If r2 > r1 this forces λ0 to be divisible by p, so λ0 = pλ1. Proceeding as in
the previous proof, we obtain λ̄ such that λ0 = p(r2−r1)/2λ̄ and

γ 2(v, v) = p2m+r2(λ̄2ε1 + δ20ε2 + D0/pr2−r1),

Note that D0/pr2−r1 is still an integer divisible by p. But then we must have

λ̄2ε1 + δ20ε2 ≡ 0 modulo p.

Since ε1ε2 is a square modulo p and p ≡ 3 modulo 4, this equation has no non-trivial
solutions; hence λ̄ ≡ δ0 ≡ 0 modulo p, which is a contradiction. ��
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