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Abstract
Microwave control of trapped ions can provide an implementation of high-fidelity two-qubit gates
free from errors induced by photon scattering. Furthermore, microwave conductors may be
embedded into a scalable trap structure, providing the chip-level integration of control that is
desirable for scaling. Recent developments have demonstrated how amplitude modulation of the
gate drive can permit a two-qubit entangling operation to become robust against motional mode
noise and other experimental imperfections. Here, we discuss a method for the numerical
optimization of the microwave pulse envelope to produce gate pulses with noise resilience,
considerably faster operation and high energy efficiency.

1. Introduction

Trapped ions are a leading scalable platform for the implementation of quantum algorithms [1–3]. Scaling
any hardware will ultimately require the implementation of quantum error correction codes [4, 5] to
prevent error propagation in large-scale algorithms. This will require quantum gates with fidelities beyond
the fault-tolerance threshold [6, 7]. A universal set of quantum gates requires single-qubit gates and one
two-qubit gate capable of entanglement generation [8]. For trapped ions, single-qubit operations have
already reached error rates well below 10−4 [9, 10]. A major experimental challenge is to obtain similar
error rates for a two-qubit entangling gate. Experimental results are approaching the desired gate fidelity
[11–14] where large-scale error correction could reasonably be implemented [15, 16]. Unfortunately,
two-qubit entangling gates can be affected by a variety of imperfections, the seriousness of which depend on
the type of gate itself. Quantum control methods allow to analytically or numerically improve the
performance of the gate, providing resilience and robustness against specific error sources. The specifics of
the protocol implemented depend on the source of errors addressed for the gate. In the case of noise
connected to the qubit frequency, the most straightforward control protocol is the Hahn echo [17], but
depending on the gate protocol more advanced schemes can be required. There are multiple protocols
which employ pulsed dynamical decoupling [18, 19] and continuous dynamical decoupling [20] or other
forms of error suppression [21, 22]. In the case of errors connected to the ion’s state of motion, several
methods have been studied: Walsh modulation [23], multi-tone fields [24–26], phase modulation [27],
frequency modulation [28] and amplitude modulation [29, 30]. The latter has been extensively used in
laser-driven operations [29–32], and more recently demonstrated for microwave-driven operations [33].
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Hybrid schemes to provide simultaneous insensitivity to motional mode and qubit frequency instabilities
have been proposed [34, 35].

Here we present a method to perform numerical optimization of a pulse envelope for amplitude-
modulation in Mølmer–Sørensen entangling gates. The method described here allows the phase-space
trajectories of the ion motion to be resistant to trap and pulse parameters, like the gate detuning, allowing
faster operations while maintaining the same previously demonstrated insensitivity [33]. The optimization
itself could be potentially extended to other problems because the technique is rather general. The energy
used for the gate is minimized, an important feature in the case of microwave driven operations [36–38],
especially in cryogenic environments where cooling power should be limited [39, 40], as excess energy could
affect the trapping potential and consequently the ion’s motional frequencies.

2. Numerical optimization

The numerical method presented here aims to optimize the amplitude of the bichromatic microwave field
which drives the Mølmer–Sørensen entangling gate with the Hamiltonian

H =
�

2
Ω(t)

2∑
j=1

(σ+
j + σ−

j )(a eiδt + a† e−iδt) (1)

described in [41–43]. Here Ω(t) is the Rabi frequency of the microwave pulse.
The gate dynamics can be described by introducing a basic control function Ω : [0, τ] → R. Such

functions modulate the motion in phase space of the harmonic oscillator describing the ions’ secular
motion

p(t) =

∫ t

0
ds sin(δs)Ω(s)

q(t) =

∫ t

0
ds cos(δs)Ω(s),

(2)

where δ is the detuning from the motional mode frequency of the bichromatic drive. At a specific time τ ,
the gate time, the trajectory described in equation (2) should ideally constitute a loop with an enclosed area
A such that |A| = π/2. In case the trajectory does not return to the initial phase space position or the
enclosed area differs from π/2 the gate fidelity F will be affected by an error. As a fidelity measure we use
the overlap of the generated state with the target Bell state |ψ〉 = 1√

2
(|↑↑〉 − i|↓↓〉). Other measures like

quantum tomography [44] exist, and should eventually be considered too. The used measure is chosen
because it needs less resources [45]. In the future the fidelities could also be measured using a
computational approach like randomized benchmarking [46, 47]. In terms of Ω the area is

A =

∫
pdq =

∫ τ

0
dt cos(δt)Ω(t)

∫ t

0
ds sin(δs)Ω(s)

=
1

2

∫ τ

0
dt

∫ τ

0
dsΩ(t)K(t, s)Ω(s) (3)

with the kernel
K(t, s) = cos(δ max(t, s)) sin(δ min(t, s)), (4)

with t, s ∈ [0, τ]. Furthermore, as previously stated, it is of interest to minimize the energy dissipated in the
trap. Since the gate Rabi rate is proportional to the current flowing in the trap conductors, the energy will
be proportional to

E =

∫ τ

0
dt Ω(t)2. (5)

The optimization done here generates pulses that have a fixed area in phase space while minimizing a cost
function, which includes the energy. Since both quantities are given by quadratic expressions, this amounts
to finding the pulse Ω which satisfies the generalized eigenvalue equation

ÂΩ = λÊΩ (6)

with the smallest possible eigenvalue λ [48]. This is because we aim to find the smallest energy for a fixed
area, which needs to be π/2 for the entangling gate interaction. Eigenvectors with a larger eigenvalue
therefore have a higher energy. Here Â and Ê are the operators representing the quadratic expressions
A and E. That is 〈Ω, ÂΩ〉 = A, so Â is given by the above kernel K/2, and Ê is the identity operator. The
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inner product is defined on the Hilbert space L2([0, t], dt). This general form will also apply in the
discretized version that we solve numerically, although Ê will then be more complicated. One can use the
scheme to achieve additional desirable features, for example, smoothness. To that end we will add to the
cost function E a small penalty term with the norm square of the derivative Ω

′
, i.e., use a so-called Sobolev

norm [49]. This prevents the derivative of Ω from becoming too large. Moreover, it is easy to include
arbitrary linear constraints 〈φ,Ω〉 = 0, by solving the generalized eigenvalue problem on a subspace [48].
The most important of these is that the loop closes in phase space, i.e., p(τ) = q(τ) = 0 in equation (2). We
can also ensure that small variations in the detuning δ do not disturb the loop closure, by demanding that
the derivatives of p(τ ) and q(τ ) with respect to δ vanish as well. That is we demand Ω to be orthogonal to
the following four functions

φ1 = cos(δt), φ2 = sin(δt)

φ3 = t sin(δt), φ4 = t cos(δt).

φ1 and φ2 ensure that p(τ) = q(τ ) = 0 because

〈φ1,Ω〉 =
∫ τ

0
dt cos(δt)Ω(t) = 0 (7)

and

〈φ2,Ω〉 =
∫ τ

0
dt sin(δt)Ω(t) = 0. (8)

Therefore they ensure a closed loop in phase space but do not increase resilience against mode detunings.
The functions φ3 and φ4 are the derivatives of φ1 and φ2 with respect to δ and ensure that small variations
in the detuning change the trajectory minimally. Potentially the amount of excluded functions can be
increased. One might consider to include even higher derivatives of φ1 and φ2 for more stability with
respect to the detuning in higher derivatives. We restricted ourselves to these four functions to not make the
subspace too small, which would come at the expense of increased energy. Additional constraints would
introduce additional metrics that the numerical method needs to optimize on effectively decreasing the
subspace size for each new constraint added. This derivative strategy is reminiscent of the approach used to
construct composite pulses [50]. However, here it is used to construct the shape of the pulse rather than the
phases of the composite sequence of pulses.

For a numerical analysis, the gate time interval is discretized into n + 1 pieces, with cut points
0=: t0 < t1 < t2 < · · · < tn < tn+1 := τ . Typically n = 100, to ensure smoothness between subsequent
steps. In the optimization, various functions have to be evaluated at these points. The following basis is used
for Ω

χk(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t − tk−1

tk − tk−1
, tk−1 < t � tk

tk+1 − t

tk+1 − tk
, tk < t � tk+1

0, otherwise.

(9)

Note that χk(tj) = δkj, so the expansion coefficients in

Ω(t) =
n∑

k=1

ωkχk(t) (10)

are exactly the values ωk = Ω(tk). These coefficients give the gate Rabi rate value at a specific moment tk.
When φi are the excluded functions, the projection onto their complement is

p = 𝟙−
∑

ij

|φi〉G−1
ij 〈φ j| , (11)

where Gij = 〈φi,φ j〉 is the corresponding Gram matrix [51], and G−1 is its matrix inverse. The energy
kernel Êij = 〈χi,χj〉 of equation (5) is adjusted with the Sobolev norm so that

Êij = 〈χi,χj〉+ c · 〈χ′
i,χ

′
j〉 (12)

to ensure a soft start, necessary to avoid pseudopotential kicks from parasitic electric fields [52]. This is
ensured through the second term, where the parameter c parametrizes the emphasis placed on the ‘soft
start’ condition. In the following we restrict ourselves to the case c = 1. This specific choice was made in
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Figure 1. Pulse shape and phase space trajectory for δτ = 6π. The gate time is τ = 1000.4 μs with a detuning of
δ/2π = 2.998 kHz. These values are obtained for a specific Rabi frequency of ΩMS/2π = 1.18 kHz.

Figure 2. Calculated energy dissipated in the trap for different values of δτ . Blue circles correspond to the square gate, green
diamonds to the sin2 and orange squares to the optimized shapes. The energy dissipated depends on the actual experimental
conditions, the values reported here are normalized for comparison.

order to ensure a soft start without increasing the cost function too much. If c = 0 then a soft start of the
pulse is not guaranteed.

The objective is to minimize the energy E while keeping the area A constant. This can be achieved by
solving the generalized eigenvalue problem ÂΩ = λÊΩ where Â = pÂp and Ê = pÊp are the kernels
mentioned above but projected onto the subspace with the projector p defined earlier in equation (11). The
eigenvector with the lowest eigenvalue provides the coefficients ωk that have the best ratio of energy to area.
Eigenvectors with larger eigenvalues are therefore not considered. The ratio of δ and τ defines the
corresponding eigenvector because the area kernel is dependent on the detuning. Therefore solving the
generalized eigenvalue problem for different detunings leads to diverse trajectories. For the
Mølmer–Sørensen gate, δτ = K · 2π, where K is an integer number, needs to hold. The possibility to
perform a gate starts with K = 1. A possible eigenvector and its phase space trajectory is shown in figure 1
for δτ = 6π. Instead of performing circles in phase space, as for the square gate, the trajectory starts and
ends with narrow loops around the origin. In case of experimental imperfections e.g. in the detuning δ, the
resulting (undesired) displacement of the final state from the starting point in phase space is smaller than
for the corresponding square-pulse gate. This is the key reason for the robustness of shaped pulses.

Figure 2 shows the energy dissipated in the trap for the square, sin2 [33] and the numerically optimized
gates. The energy E is calculated with equation (5) for all shapes while maintaining ΩMS constant. For the
same value of δτ , the optimized pulses dissipate approximately 25% less energy than the square pulses. The
main reason for this is the soft start of the pulses, which lowers the integral of Ω(t)2 over the gate time τ .
The largest energy corresponds to the square pulse with δτ = 36π. All energies in figure 2 are normalized to
this value. The numerically optimized gates dissipate more energy than the sin2 gates. This is due to the fact
that the sinusoidal pulses have an even softer start. The dissipated energy can contribute to gate errors
because it may introduce dynamical changes in the mode frequency. Therefore pulses that dissipate less
energy are generally preferred to minimize effects such as the mode frequency chirp [53]. On the other
hand, pulses with more loops in phase space (higher δτ ) and thus typically higher energy also feature
increased robustness to experimental imperfections (see above). Therefore in our previous work [33] the
sin2 pulse with δτ = 36π was chosen even though it dissipates more energy than lower orders. The
numerical optimization could achieve even lower energies if the parameter c, which imposes the ‘soft start’

4



Quantum Sci. Technol. 7 (2022) 045005 M Duwe et al

condition, were changed. However, this would come at the cost of a longer gate time τ . Compared to the
sin2 pulses, the optimal pulses identified here require a gate time about 15% shorter for the same value of
δτ , which is of particular interest for longer sequences in a computational context.

3. Experimental demonstration

The experimental demonstration of the entangling gate pulse envelopes obtained using the method
described in section 2 has been done in the setup described in [53, 54]. The experiments have been
performed on 9Be+ ions at a static magnetic field of |B0| = 22.3 mT, where the chosen qubit transition,
2S1/2|F = 2, mF = 1〉 ↔ 2S1/2|F = 1, mF = 1〉, at ω0 = 2π · 1082.55 MHz is first-order field independent.
F and mF are the quantum numbers for the total angular momentum of the ion and its projection on the
quantization axis. The enhanced frequency stability of the qubit transition leads to an increased coherence
time of the qubit [55]. Doppler cooling and detection is performed with a 313 nm laser resonant with the
2S1/2|F = 2, mF = 2〉 ↔ 2P3/2

∣∣mJ =
3
2 , mI =

3
2

〉
transition. Here mJ and mI represent the projections of

the total electronic and nuclear angular momenta onto the quantization axis. For integrated microwave
control, three conductors are embedded in the surface-electrode trap: two conductors for driving carrier
transitions and one for sideband operations. The latter is designed [56] to produce a strong magnetic field
gradient optimized for spin-motional coupling. The microwave amplitude modulation setup is described in
[33] and more experimental details can be found in [53]. For implementation purposes, optimized pulse
envelopes are produced with δτ = 6π, 10π, 18π, 24π and 36π. For a maximum gate Rabi rate of
ΩMS/2π = 1.18 kHz, the pulse durations are 1000.4 μs, 1324.8 μs, 1793.77 μs, 2083.4 μs and 2548.7 μs.

The maximally entangled states generated have been analyzed with a partial tomography procedure [57].
All state populations have been estimated from the global fluorescence emission of the ions by using
appropriately placed thresholds in the photon count histograms. Experimental results are reported in
figure 3 and compared with the expected theoretical performance of a standard square-pulse gate, the sin2

pulses and the simulated results of the numerical pulses. π and π/2 rotations used for state preparation,
shelving and analysis are implemented using composite pulses. Specifically, the U5a sequence has been used
for π pulses [58] and the five pulse sequence for the π/2 analysis pulse [50].

The fidelities for simulated Mølmer–Sørensen gates have been obtained using Qutip [59] simulations
and an error model adjusted to reflect the experimental conditions. For the addressed out-of-phase radial
motional mode, we considered an average motional state occupation of n̄ = 0.4, a heating rate of ˙̄n = 8 s−1

and an intrinsic linewidth of 2π × 61 Hz. A single spectator in-phase mode was included, detuned by
δs/2π = 96 kHz, but considered to be initialized to its motional ground state. Experimentally this mode
was effectively Doppler cooled to n̄ = 1. This approximation was done to allow the simulations to be
performed in reasonable time by limiting the amount of simulated Fock states. Evaluation of individual
points without this approximation showed no significant variation in the resulting fidelity. The experiments
have been performed without a warm-up pulse employed in earlier experiments to minimize dynamical
motional mode frequency transients (called ‘frequency chirp’), induced by thermal transients in the trap
[53]. The absence of this thermalization process before the gate means that the full frequency chirp has to
be included in the simulation with a ramp of 0.3 Hz μs−1 for up to 1000 μs. For each simulated point, the
gate detuning δ has been optimized to yield the highest resulting fidelity. Parameters regarding the
imperfection of the microwave pulse shape have been left as in the model of [54]. The decoherence time of
our qubit transition has not been considered as it is expected to be much longer than the other
experimentally relevant timescales. Dynamical (gate-drive induced) transients of the qubit transition
frequency due to AC Zeeman shifts (ACZS) have not been included as an error source in the simulation.
One of the reasons behind this choice is that ideally the gate is performed at the same point of null ACZS as
for the amplitude-modulated gates. Note that despite this choice, it is expected that fast variations, or
non-perfect calibrations, of the ACZS could lead to errors in AM gates. Fast variations of the ACZS can
occur due to the ions being displaced from the RF null to reach the null ACZS point. The residual RF field
can induce micromotion which in turn will effectively make the ion explore a region of non-null ACZS with
both a geometrical and temporal dependence, as discussed in [60]. Further details of the error model are
described in [61]. The experimental results shown in figure 3 consistently show infidelities below 1%. The
large difference in the fidelity between amplitude-modulated and square-pulse gates at the highest values of
δτ demonstrates the resilience of the optimized gates. The infidelities of the sin2 pulses are of the same
order as the newly developed pulses. Therefore the resilience to experimental imperfections is comparable
but with faster gate operation.
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Figure 3. Entangled state fidelity for different values of δτ . Blue circles represent an estimation using an error model for
square-pulse gates. Green diamonds show an estimation for sin2 gates under the same error model. Orange squares represent
simulated (full) and measured values (empty) for different amplitude-modulated gates generated by numerical optimization.

4. Conclusions

The numerical method described here provides a framework to design optimized amplitude-modulated
gates that are robust with respect to disturbances of the motional mode and possibly obey other desirable
constraints. The optimization can be adjusted to include stability to other chosen parameters. In addition,
the algorithm minimizes the energy per pulse used to generate a maximally entangled Bell state in
microwave driven operations. The experimental verification has been done by implementing multiple
optimized pulse envelopes, consistently demonstrating an infidelity of less than 1%. All gates produced with
this method were faster than the one described in our previous work [33], which was 2938 μs long. The
fastest gate in this work had τ ≈ 1000 μs.

In the future, such shaped gates can be integrated with other protocols, such as dynamical decoupling
[20], to suppress gate errors connected to the ACZS affecting the qubit frequency during gate operation.
The integration of these decoupling protocols would ease the requirements concerning the minimization of
the ACZS and provide resilience to small changes of the ACZS [60]. To further increase the gate speed, it is
necessary to increase the magnetic field gradient driving the gate. One possibility is given by advanced
three-dimensional microwave structures [62]. Given the large errors resulting from the global detection of
two-ion fluorescence, more advanced schemes of error characterization are required, possibly in a
computational context, such as benchmarking methods [47, 63, 64].
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