
Improved Calibration Procedure for Wireless Inertial
Measurement Units without Precision Equipment

Fritz Webering∗, Sarah Kleinjohann†, Nils Stanislawski∗, Holger Blume∗
∗Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany

†Student at Leibniz University Hannover, Hannover, Germany
∗{webering, stanislawski, blume}@ims.uni-hannover.de

†sarah.kleinjohann@stud.uni-hannover.de

Abstract—Inertial measurement units (IMUs) are used in
medical applications for many different purposes. However, an
IMU’s measurement accuracy can degrade over time, entailing
re-calibration. In their 2014 paper, Tedaldi et al. presented
an IMU calibration method that does not require external
precision equipment or complex procedures. This allows end-
users or personnel without expert knowledge of inertial mea-
surement to re-calibrate the sensors by placing them in several
suitable but not precisely defined orientations. In this work,
we present several improvements to Tedaldi’s method, both on
the algorithmic level and the calibration procedure: adaptions
for low noise accelerometers, a calibration helper object, and
packet loss compensation for wireless calibration. We applied
the modified calibration procedure to our custom-built IMU
platform and verified the consistency of results across multiple
calibration runs. In order to minimize the time needed for re-
calibration, we analyzed how the calibration result accuracy
degrades when fewer calibration orientations are used. We found
that N=12 different orientations are sufficient to achieve a very
good calibration, and more orientations yielded only marginal
improvements. This is a significant improvement compared to the
37 to 50 orientations recommended by Tedaldi. Thus, we were
reduced the time required to calibrate a single IMU from ca. 5
minutes to less than 2 minutes without sacrificing any meaningful
calibration accuracy.

Index Terms—inertial measurement unit, calibration, wireless

I. INTRODUCTION

Inertial measurement units (IMUs) are used in a wide
variety of medical and sports applications, like injury re-
habilitation, training progress monitoring, or fall detection
in elderly patients, among many others [1]–[3]. Even more
complex tasks such as full-body human motion capture have
also been addressed using inertial sensors [4], [5]. In areas
where precise measurements and orientation estimates are
required, for example in sports or motion capturing, correct
calibration of each unit is crucial.

When the parameters of the embedded inertial sensors
change over long times or varying temperatures, the unit
will no longer adhere to its specified accuracy limits, and
a re-calibration becomes necessary. The method proposed by
Tedaldi et al. [6] in 2014 allows users to re-calibrate their
IMUs in the field without the presence of any specialized
and often expensive reference equipment like right angles,
turntables, or high precision servo platform [7]. When we
implemented this method using our in-house wireless IMU

platform, which is described in Section III, we noticed some
problems. After careful examination of the algorithm and
associated procedures, we were able to overcome the issues
as described in Section IV.

The calibration method presented by Tedaldi et al. uses raw
accelerometer and gyroscope data [6] which is processed on
a host device. The original implementation is in C++ [8], but
for our experiments, we used the MATLAB implementation
written by Jianzhu Huai [9] because we found the source code
easier to use, understand, and modify.

II. RELATED WORK

Another calibration scheme without external equipment was
proposed by Ren et al. [10] in 2015 and is based on the concept
of rotating the IMU on an inclined plane, thereby determining
the heading using the accelerometer. The underlying principle
is fundamentally similar to the concept of Tedaldi’s algorithm,
but the calibration protocol is more complex than simply
laying the IMU in different random orientations. While Ren
et al. reported exceptional calibration accuracy and mentioned
Tedaldi’s earlier work, they do not compare the accuracy of
the two methods.

Peng et al. [11] presented a similar approach to ours
in 2022, who also used a 3D-printed icosahedron to orient
the IMU during calibration. They implement a simplified
calibration procedure based on an iterative weighted Leven-
berg–Marquardt algorithm on an embedded microcontroller.
However, they disregard axis misalignment and suppose the
availability of an expensive precision multi-axis servo stage
for gyroscope calibration. This makes the algorithm a bit
pointless because that same platform could also calibrate the
accelerometer.

III. IMU PLATFORM

In order to have a fully configurable IMU development
platform, we developed our own wireless sensor device. The
development platform was optimized regarding sensor data
accuracy, size, weight, and power consumption.

The System-on-Chip (SoC) CC2652R1 by Texas Instru-
ments was chosen as microcontroller (µC). It includes a
32-bit ARM Cortex M4F core, a 2.4 GHz Bluetooth-Low-
Energy (BLE) transceiver powered by an ARM Cortex M0

ar
X

iv
:2

20
7.

04
80

1v
1

 [
ee

ss
.S

P]
 1

1
Ju

l 2
02

2

Fig. 1: Left: PCB of the 6th generation of our in-house de-
veloped wireless IMU. Right: 3D-printed case, which contains
the PCB (IMU #9, case version 11).

core, and a low-power sensor-controller core for interact-
ing with peripheral components without requiring the main
core. The wireless IMU features a single-chip IMU sen-
sor containing both a triaxial accelerometer and gyroscope
(BMI160 by Bosch), an additional high-precision accelerom-
eter (ADXL355BEZ by Analog Devices), and a magnetic
sensor (MMC3416xPJ by MEMSIC). The magnetic sensor
is used for magnetic, angular rate, and gravity (MARG)
sensing applications and enables distortion and gyroscope bias
drift compensation. A barometric pressure sensor (BMMP388
by Bosch) is included for floor-level detection. A Serial-to-
USB interface (FT230XQ) facilitates wired data transmission
charging of the integrated 120mAh lithium-ion battery.

Component placement and routing are realized on a four-
layer printed circuit board (PCB) with two component sides
and dimensions of 34.5mm by 18mm. The populated PCB
and its 3D-printed enclosure are depicted in Figure 1.

All sensors are sampled with a rate of 100Hz, and raw sen-
sor data is fused using an algorithm published by Madgwick
for either IMU or MARG sensing applications [12]. Sensor
fusion can be performed directly on the microcontroller if
desired and reduces the amount of data to be transmitted
significantly compared to the transmission of raw sensor data.
This allows for the simultaneous operation of multiple wireless
IMUs at a refresh rate of 100Hz.

IV. CALIBRATION IMPROVEMENTS

A. Orientation Helper Object

The calibration algorithm requires at least nine different
orientations to construct a well-defined optimization prob-
lem [6], [13]. In Tedaldi’s original work, the IMU is placed
in 37 ≤ N ≤ 50 distinct static positions, each held for 1−4s.

Without support, a cuboid IMU case can only be placed on
six faces – or less if some are rounded, as seen in Figure 1.
In [6], Tedaldi et al. show an IMU with a cable attached resting
on the edge of a slab, which is a very unstable position for an
IMU weighing only a few grams. The rigid cable can move
the lightweight IMU by tiny amounts, preventing the algorithm
from identifying static phases.

To avoid these problems in our evaluation, we use wire-
less transmission (see also Section IV-D) and a 3D-printed

Fig. 2: The icosahedral enclosure allows the IMU to rest in
20 different orientations. It can hold the IMU case (orange)
and has a hole opposite for pushing the IMU back out.

icosahedral orientation helper object based on Tim Edwards’
OpenSCAD model [14] as shown in Figure 2. The 3D-
printed regular icosahedron has a distance of 66mm between
opposing vertices. The enclosed IMU is press-fit into a slot
on one of the triangular faces and can be released by pushing
through a hole on the opposing face. The orientation helper
object allowed us to place the IMUs to be calibrated in
20 easily reproducible orientations with at least 42 degrees
rotation between them and without interfering cables. This
enabled a more systematic approach to capturing calibration
sequences, as explained in Section V.

B. Improved Static Phase Selection

Running the calibration algorithm [9] on our captured
sequences of the low noise accelerometer revealed a weakness
of the static phase detection algorithm. This issue was found in
both the original C++ code [8] and the MATLAB implementa-
tion [9]. The variance of the long static phase in the beginning
ςinit is used as a baseline for finding a suitable variance
threshold for the short static segments later in the sequence.
However, ςinit is so small due to the low noise floor of the
ADXL355 that even tiny perturbations in the short sequences
are above the maximum threshold of 10ςinit variance. Increas-
ing the maximum variance threshold factor from 10 to 225
solved this problem for our case but revealed another problem:
v In Tedaldi’s algorithm, the best static phase threshold (an
integer multiple k · ςinit) is determined by performing a non-
linear least-squares minimization of the accelerometer cost
function L(θacc) for each k and selecting the k with the
smallest residual. As stated in [6], this approach does not
require parametrization, but favors calibration sequences in
which the same orientation is repeated multiple times. Thus,
the algorithm would select a k for which the long sequence
at the beginning was split into multiple smaller segments
of length > 1 s because the variance ς(t) was too close to
kςinit, crossing the threshold multiple times. This problem can
be fixed by rejecting segments where the acceleration vector

direction did not change relative to the previously accepted
segment, minimizing the number of redundant segments.

However, the selection of the k with the minimum resid-
ual was still susceptible to the slightest perturbation of the
accelerometer data. When truncating the calibration sequence
even slightly, the algorithm would seemingly at random select
very different values of k, which led to wildly varying numbers
of segments: Fewer segments for smaller k because static
phases would be broken into multiple parts, which were then
rejected for being shorter than 1 s. Thus, we modified the static
phase selection to always select the k which produced the
largest number of usable static segments, excluding segments
that were duplicates or too short. If there are multiple k, we
select the one with the lowest residual.1

C. Division by zero

The MATLAB implementation [9] contained a division by
zero in the function fromOmegaToQ when the angular rates
were [0, 0, 0] in a single packet. This is a very unlikely event
due to the measurement noise, but it occurred in at least one
calibration sequence, so we corrected the issue.

D. Wireless Packet Loss Correction

For data transmission between IMU and host PC, we used
Bluetooth 5.0 Low Energy (LE) Generic ATTribute Pro-
file (GATT) notifications since they provide a significant im-
provement in data transmission speed compared to indication
messages [15]. Even though the Bluetooth link layer L2CAP
provides acknowledgments and retransmissions, any wireless
transmission includes a risk of packet loss. Depending on the
application, the loss of a single quaternion may not be critical,
but the loss of raw gyroscope data in a calibration sequence
will result in integration errors. Loss of accelerometer data is
not critical because it is only sampled in static periods.

Thus, we implemented simple and a power-efficient erasure
code (EC) for forward error correction of lost gyroscope
samples in order to prevent this problem. The EC data Ei

is the same size as the raw gyroscope data i (6 bytes) and
consists of the XOR of the previous M raw gyroscope values
Ei = Gi−1

⊕
Gi−2

⊕
. . .

⊕
Gi−M . This allows the receiver

to reconstruct arbitrary packet losses in a window of length
M when followed by a sequence of M correctly received
packets. Computing Ei for a new packet consists of only two
XOR operations: One for adding the next Gi−1 and one for
removing the oldest element Gi−M from the running XOR
sum. Apart from the running sum Ei, only an additional ring
buffer for storing Gi...Gi−M+1 is required on the IMU.

V. EVALUATION

To determine the minimum required number of static po-
sitions N for a sufficiently accurate calibration, we recorded
five calibration sequences with each of our four working IMUs
(units #1, #2, #6 and #9) with N ≥ 37. For each sequence, we
recorded the following raw IMU data: Packet index, ADXL355

1Our changes to the MATLAB code, including evaluation scripts, will be
published under https://github.com/IMS-AS-LUH/imu_tk_matlab

acceleration, BMI160 acceleration, and BMI160 gyroscope
values. The initial static phase was 40 s long, followed by static
segments of ≥ 3 s. For the first 20 orientations, we placed
the icosahedron on all 20 faces, with increasing numbers
pointing up. After the ascending sequence, we placed the
icosahedron on random faces until at least 37 poses were
recorded. One calibration run of IMU #9 contained only 34
usable poses, so we discarded all results for IMU #9 for
N > 34. For each IMU, we performed a full calibration for
each captured sequence with maximum N using our improved
MATLAB code, resulting in 4 times five sets of 18 calibration
parameters θ = [θacc,θgyro], as described in [6]). For each
IMU, we calculated the mean parameters θmean over the five
sets, which were subsequently regarded as the ‘reference’
calibration coefficients for that IMU.

We then incrementally truncated each individual sequence,
thereby reducing the effective N = Neff. For each truncated
sequence, we performed another calibration run with Neff seg-
ments and compared the resulting θNeff to θmean by calculating
the mean absolute difference for each subset of coefficients.
This allows an assessment of how the calibration quality
deteriorates with decreasing N , relative to the ‘full’ calibration
recommended by Tedaldi, without needing an absolute ‘gold
standard’ reference of the calibration parameters.

We also captured an additional set of calibration runs
without the icosahedron just by placing the IMUs on the
five orthogonal faces of their case in four different horizontal
attitudes. The calibration using these sequences completed
successfully, but the calibration error for these runs was much
larger than θmean, so we omitted the results.

VI. RESULTS

The results of the evaluation are shown in Figures 3, 4
and 5. Since the conclusion is the same for the BMI160
accelerometer, we only show the results from the calibra-
tion runs using the ADXL355 values. For the accelerometer

9 12 15 18 21 24 27 30 33 36
Number of orientations N

0

0.1

0.2

0.3

0.4

M
ea

n
ab

so
lu

te
 b

ia
s

er
ro

r
(m

g)

IMU #1
IMU #2
IMU #6
IMU #9

imu_tk Test Data

Fig. 3: Mean absolute difference of accelerometer bias esti-
mation to θmean for varying N . Mean of 5 calibration runs for
each IMU except imu tk Test Data (only 1 calibration run).
Units are 1mg = 9.807× 10−3 m/s2

.

9 12 15 18 21 24 27 30 33 36
Number of orientations N

0

0.05

0.1

0.15

0.2
M

ea
ns

 a
bs

ol
ut

e
an

gl
e

er
ro

r
(°

)

IMU #1
IMU #2
IMU #6
IMU #9

imu_tk Test Data

(a) Gyroscope axis misalignment estimation error over N

9 12 15 18 21 24 27 30 33 36
Number of orientations N

0

0.02

0.04

0.06

0.08

0.1

M
ea

n
ab

so
lu

te
 a

ng
le

 e
rr

or
 (

°)

IMU #1
IMU #2
IMU #6
IMU #9

imu_tk Test Data

(b) Accelerometer axis misalignment estimation error over N

Fig. 4: Axis misalignment estimation errors (including non-orthogonality) for different N , when compared to θmean. Typical
mean absolute misalignment angles of θmean for our IMUs were in the range between 0.4 and 0.6 degrees.

9 12 15 18 21 24 27 30 33 36

Number of orientations N

0

0.1

0.2

0.3

0.4

M
ea

n
ab

so
lu

te
 s

ca
le

 e
rr

or
 (

%
)

IMU #1
IMU #2
IMU #6
IMU #9
imu_tk Test Data

(a) Gyroscope scaling factor estimation error over N

9 12 15 18 21 24 27 30 33 36
Number of orientations N

0

0.02

0.04

0.06

0.08

M
ea

n
ab

so
lu

te
 s

ca
le

 e
rr

or
 (

%
)

IMU #1
IMU #2
IMU #6
IMU #9

imu_tk Test Data

(b) Accelerometer scaling factor estimation error over N

Fig. 5: Scaling factor estimation errors for different numbers of orientations N , when compared to θmean. Values are given in
percent of the measured quantity (angular rate and acceleration respectively).

calibration, we see a slight decrease in error with larger N .
However, the errors around N = 12 orientations are already
less than 0.1% of the reference values from θmean for scaling
and misalignment. For bias, the calibration error is already
close to the noise floor of the ADXL355 (200 µg at 100Hz).
Thus, it is questionable whether the additional effort for triple
the orientations is justified.

For the gyroscopes, the results are even clearer: As soon
as enough orientations have been captured to compute a
successful calibration, the accuracy barely increases at all
when more positions are considered.

The results for imu tk Test Data are unrealistically low
because θmean is calculated from only one calibration run
instead of five, so the calibration sequence is essentially
compared to itself. Despite this, the main conclusion for N
holds for this IMU as well.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we presented improvements to a calibration
procedure for wireless IMUs which does not require expensive

calibration equipment. The procedures presented in the initial
publication by Tedaldi et al. [6] and its MATLAB implementa-
tion [9] were improved upon by correcting errors occurring in
rare instances and enhancing the static phase detection when
using low-noise accelerometers. A low-cost and low-accuracy
3D-printed icosahedron served as the only additional and
optional calibration equipment and enabled easy positioning
of the IMU in 20 distinct attitudes, although our results show
that a dodecahedron would probably suffice. Evaluation of
the calibration procedure showed that positioning the IMU in
N = 12 distinct position already results in a minimal error in
for the gyroscope calibration and a very small error for the
accelerometer N as recommended by Tedaldi et al. [6].

In the next step, it is planned to implement the algorithm
presented by Tedaldi et al. directly on the CC2652R1 SoC
of our in-house wireless IMU using an approach similar to
Peng et al. [11], but without sacrificing gyroscope and axis
misalignment calibration. For this purpose, the algorithm’s
structure will need to be completely remodeled, optimizing
for computational complexity, program size, and RAM usage.

REFERENCES

[1] X. Hu and X. Qu, “Pre-impact fall detection,” BioMedical Engineering
OnLine, vol. 15, no. 1, Jun. 2016. [Online]. Available: https:
//doi.org/10.1186/s12938-016-0194-x

[2] N. Ahmad, R. A. R. Ghazilla, N. M. Khairi, and V. Kasi, “Reviews on
various inertial measurement unit (imu) sensor applications,” Interna-
tional Journal of Signal Processing Systems, vol. 1, no. 2, pp. 256–262,
2013.

[3] Y. Ganesan, S. Gobee, and V. Durairajah, “Development of an upper
limb exoskeleton for rehabilitation with feedback from EMG and
IMU sensor,” Procedia Computer Science, vol. 76, pp. 53–59, 2015.
[Online]. Available: https://doi.org/10.1016/j.procs.2015.12.275

[4] C. Malleson, A. Gilbert, M. Trumble, J. Collomosse, A. Hilton, and
M. Volino, “Real-time full-body motion capture from video and imus,”
in 2017 International Conference on 3D Vision (3DV), 2017, pp. 449–
457.

[5] S. Zihajehzadeh and E. J. Park, “A novel biomechanical model-aided
imu/uwb fusion for magnetometer-free lower body motion capture,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47,
no. 6, pp. 927–938, 2017.

[6] D. Tedaldi, A. Pretto, and E. Menegatti, “A robust and easy to implement
method for imu calibration without external equipments,” 2014 IEEE
International Conference on Robotics and Automation (ICRA), pp.
3042–3049, 2014.

[7] J. Botero-Valencia, D. Marquez-Viloria, L. Castano-Londono, and
L. Morantes-Guzmán, “A low-cost platform based on a robotic
arm for parameters estimation of inertial measurement units,”
Measurement, vol. 110, pp. 257–262, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0263224117304360

[8] A. Pretto, “imu tk c++ implementation,” 2014. [Online]. Available:
https://bitbucket.org/alberto pretto/imu tk/

[9] J. Huai, “imu tk matlab implementation,” 2017. [Online]. Available:
https://github.com/JzHuai0108/imu tk matlab

[10] C. Ren, Q. Liu, and T. Fu, “A novel self-calibration method for mimu,”
IEEE Sensors Journal, vol. 15, no. 10, pp. 5416–5422, 2015.

[11] C.-C. Peng, J.-J. Huang, and H.-Y. Lee, “Design of an embedded icosa-
hedron mechatronics for robust iterative imu calibration,” IEEE/ASME
Transactions on Mechatronics, vol. 27, no. 3, pp. 1467–1477, 2022.

[12] S. Madgwick et al., “An efficient orientation filter for inertial and
inertial/magnetic sensor arrays,” Report x-io and University of Bristol
(UK), vol. 25, pp. 113–118, 2010.

[13] Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-
Sheimy, “A new multi-position calibration method for MEMS
inertial navigation systems,” Measurement Science and Technology,
vol. 18, no. 7, pp. 1897–1907, may 2007. [Online]. Available:
https://doi.org/10.1088/0957-0233/18/7/016

[14] T. Edwards, “Openscad polyhedral dice,” 2015. [Online]. Available:
https://www.thingiverse.com/thing:1043661

[15] Generic Attribute Profile (GATT), Bluetooth SIG, 1 2022, rev.
GATT.TS.p21.

	I INTRODUCTION
	II RELATED WORK
	III IMU PLATFORM
	IV CALIBRATION IMPROVEMENTS
	IV-A Orientation Helper Object
	IV-B Improved Static Phase Selection
	IV-C Division by zero
	IV-D Wireless Packet Loss Correction

	V EVALUATION
	VI RESULTS
	VII CONCLUSIONS AND OUTLOOK
	References

