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Zusammenfassung 

Die Regulierungsbehörden haben die Verwendung eines risikobasierten 

Monitoringsystems (RBM) in klinischen Versuch gefördert. Die risikobasierte Monitoring 

beinhaltet neben der Identifizierung möglicher Risiken auch deren Bewertung , um eine 

gezielte Monitoring zu ermöglichen. Risiken sind dabei definiert als Gegebenheiten, die 

die Sicherheit der Patienten und die Integrität der Studie beeinträchtigen könnten. 

Verschiedene Studien haben gezeigt, dass RBM in der Praxis zunehmend eingesetzt wird. 

Die Anwendung der zahlreichen verfügbaren RBM-Instrumente wurde jedoch nicht 

untersucht. Die zentrale statistische Monitoring (CSM), die unter die FernMonitoring des 

RBM-Systems fällt, hat ebenfalls an Aufmerksamkeit gewonnen, da ihre Effizienz bei der 

Monitoring klinischer Studien anerkannt wurde. Diese Dissertation widmet sich der 

Verbesserung der Qualitätsbewertungen im risikobasierten Monitoring und im zentralen 

statistischen Monitoring. 

 Das erste Kapitel der Dissertation gibt einen Überblick über die klinische Forschung und 

die Arten von klinischen Studien. Darüber hinaus wird speziell auf die klinische 

Forschung in klinischen Versuch eingegangen. Es werden die verschiedenen Arten von 

klinischen Versuch dargestellt, gefolgt vom Managementprozess der Versuch und den 

Monitoringsaktivitäten. In Abschnitt 2.1 werden die Grenzen der derzeitigen RBM-

Instrumente aufgezeigt. Es wird gezeigt, wie unterschiedlich eine Risikobewertung der 

Ergebnisse einer klinischen Versuch ausfallen kann, wenn sie mit verschiedenen RBM-

Instrumenten bewertet wird.  Darüber hinaus zeigt dieser Abschnitt die verschiedenen 

Risiken auf, die von den RBM-Instrumenten abgedeckt werden. Es wird deutlich, dass ein 

Risikobewertungsinstrument benötigt wird, das jedes Risiko in einer klinischen Versuch 

abdecken kann. Daher wird in Abschnitt 2.3 eine neue Risikomethodenbewertung (RMA) 

vorgeschlagen, die auf jede klinische Versuch angewendet werden kann und die 

Möglichkeit bietet, zusätzliche Risiken in die Bewertung aufzunehmen.  Es wird eine 

Bewertungsmethode vorgestellt, die es den Beteiligten ermöglicht, das Ausmaß eines 

Risikos zu visualisieren und zu quantifizieren. Dies kann die Beteiligten leiten und ihnen 

bei der Entscheidungsfindung helfen, ein bestimmtes Risiko durch eine wirksame 

Maßnahme zu mindern und es zu überwachen. Der theoretische RMA-Ansatz wird in 

einer Web-App mit einer benutzerfreundlichen Schnittstelle präsentiert, um seine 

Umsetzung in der Praxis zu erleichtern.  In Abschnitt 2.4 wird ein neuer Ansatz zum 

Nutzen von CSM vorgeschlagen. Er stellt Mehrfachvergleiche der Mittelwerte einzelner 

Zentren mit dem großen Mittelwert aller Zentren vor. Der Ansatz ist bereits verfügbar 

und wurde in verschiedenen Kontexten angewandt. Hier wird seine Anwendung 

vorgeschlagen, um ein auffälliges  Zentrum zu erkennen. Da der Ansatz für verschiedene 

Datentypen verfügbar ist, wird speziell der Vergleich für kontinuierliche, binomiale und 

ordinale Datentypen gezeigt. In einer Monte-Carlo-Simulationsstudie werden 

verschiedene Modelltypen, die GM-Vergleiche schätzen, auf die Kontrolle des Typ-I-

Fehlers und die höchste Power für ausgeglichene und unausgewogene Szenarien getestet, 

die in klinischen Studien und Beobachtungsstudien beobachtet werden. Außerdem wird 

die Validierung des Ansatzes anhand von Real-World-Daten (RWD) aus dem Deutschen 

Multiple-Sklerose-Register (GMSR) gezeigt. Schließlich wird der Ansatz in Form von Web-

Apps vorgestellt, um eine gemeinsame grafisch dargestellte Schlussfolgerungl für 

unterschiedliche  Endpunkte zu ermöglichen. 
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Abstract 

Regulatory authorities have encouraged the usage of a risk-based monitoring (RBM) 

system in clinical trials. In addition to the identification of possible risks, risk-based 

monitoring also includes their evaluation to enable targeted monitoring. Risks are defined 

as conditions that could affect patient safety and the integrity of the study. Various studies 

demonstrated the increasing usage of RBM in practice. The application of the many RBM 

tools available has not been investigated. Central statistical monitoring (CSM) which falls 

under the remote monitoring of the RBM system has also been gaining more attention due 

to the recognition of its efficiency in monitoring clinical trials. This dissertation is 

dedicated to improving the quality assessments in risk-based monitoring and central 

statistical monitoring. 

 The first chapter of the thesis provides an overview of clinical research and the types of 

clinical studies. Furthermore, it specifically focuses on clinical research structure, 

management, and activities in clinical trials. The different types of clinical trials are 

illustrated, followed by the management process of the trial and monitoring activities. 

Section 2.1 highlights the limitations of the current RBM tools. It shows how different an 

outcome risk assessment of a clinical trial can be when assessed with different RBM tools.  

Furthermore, this section shows the different risks covered within RBM tools. It shows 

the need for a risk assessment tool that can cover any risk in a clinical trial. Hence section 

2.3 proposes a new risk methodology assessment (RMA) that can be applied to any clinical 

trial with the ability to add additional risks to the assessment.  It presents a scoring 

method that allows stakeholders to visualize and quantify a risk size. This would guide 

stakeholders and assist them in the decision plan for mitigating a certain risk by an 

effective measure and monitoring degree in the monitoring plan. The theoretical RMA 

approach is presented in a shiny web app with a user-friendly interface to ease its 

implementation in practice.  Section 2.4 proposes a new approach for the benefit of CSM. 

It presents multiple comparisons of individual center means to the Grand Mean of all 

centers. The approach is available and has been applied in different contexts. Here its 

implementation to detect a deviating center is recommended. As it is available for 

different data types, it shows specifically the comparison for continuous, binomial, and 

ordinal data types. In a Monte-Carlo simulation study, different model types estimating 

GM comparisons were tested for the control of Type I error and the highest power for 

balanced scenarios and unbalanced scenarios observed in clinical trials and observational 

studies. It also shows the validation of the approach on Real-world data (RWD) from the 

German Multiple Sclerosis Registry (GMSR). Finally, the approach is presented in shiny 
web apps to facilitate a common graphical conclusion style for different endpoints.  
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Chapter 1 

Introduction 
 

1.1 Clinical Studies 

1.1.1 Types of clinical research 

 Clinical studies involve research carried out on human participants to enrich medical 

knowledge (Food and Drug Administration, 2019). Various types of clinical studies exist 

(Collier, 2009; Food and Drug Administration, 2018; Fortwengel, 2011). Based on the 

objective of the study, the type is determined. The National Institute of Health (NIH) 

classifies clinical studies into two types clinical trials and observational studies (National 

Institute of Health, 2019).  

Research carried out on human beings investigating an intervention is referred to as 

Clinical trials (M. Friedman et al., 2015). They present the primary way in which 

researchers determine if a new drug or a medical device is both safe and effective 

(National Institute on Aging, 2020). They are the golden standard for answering a specific 

research question (Shamley & Wright, 2017), specifically, they answer questions about 

health and illness (UK Clinical Research Collaboration, 2014).  Clinical trials are the best 

way to determine whether a treatment works for a specific disease. Furthermore, they 

inform researchers whether the investigated treatment can be an alternative option to a 

standard treatment. (e.g., not being effective in some people or causing side effects) 

(American Cancer Society, 2020). The type of intervention could be an investigational 

medicinal product (IMP), a new medical device, or a new approach to surgery/therapy 

(Food and Drug Administration, 2018). While observational studies do not involve any 

sort of intervention (Song & Chung, 2010). Similar to clinical trials, observational studies 

do involve human participants, however, there is no direct intervention (Gilmartin-

Thomas et al., 2018). A distinguishing characteristic is that the intervention is determined 

by clinical practice and not through a study protocol (Thiese, 2014; Yang et al., 2010).  
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1.1.2 Overview of Clinical Trials  

Clinical trials are regulated through specific guidelines to ensure the rights, safety, and 

well-being of trial participants are protected and the reported results are reliable 

(European Medicines Agency, 2018).  Good Clinical Practice (GCP) is an international 

ethical and scientific guideline used as the primary standard for the conduct of clinical 

trials developed by the International Council for Harmonization of Technical 

Requirements for Registration of Pharmaceuticals for Humans (ICH) in 1996 (Imperial 

College Clinical Research Governance Office, 2007). Since its establishment, it has been 

modified to tackle unclear, inconsistent, and contradictory definitions (Landray et al., 

2017). These guidelines are under continuous improvement regarding their ethical and 

regulatory challenges (Bhatt, 2010).  

The new intervention examined in a clinical trial must pass through several phases. Each 

phase answers a specific research question regarding the safety and efficacy of the 

intervention. Figure 1 shows the goals and the study participants required in each phase 

the IMP must pass through before receiving market approval from regulatory authorities 

such as the EMA or the FDA (National Institute of Health, 2015; Umscheid et al., 2011).  

Clinical trials involve an intervention according to a protocol established by clinical 

investigators.  Accordingly, each trial has a specific protocol detailing the study objectives, 

design, and organization of the trial phase(Chan et al., 2013; Jones & Abbasi, 2004; Rivera 

et al., 2020).    

 

Figure 1: Structural differences and goals of clinical trial phases. 
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1.2 Clinical trial management 

1.2.1 Clinical trial team  

The clinical trial team is one of the most essential factors for the conducted trial. All 

clinical trials require a team of people with specific qualifications to perform their 

corresponding tasks. Members can come from a wide range of skills and expertise. 

Throughout the complete trial period, the team must follow the protocol of the trial and 

the GCP standards (World Health Organization, 2005). A clinical trial team consists of 

sponsors, principal investigators, study coordinators, biostatisticians, and data managers. 

Additional individuals such as nurses and pharmacists could be part of the trial team 

depending on the trial requirements (Baer et al., 2011; Canter & Lewis, 2014). The 

responsibilities and duties of individuals vary based on their role in the trial. Figure 2 

shows the major tasks performed by each research team member. Ensuring the well-

being and safety of participants is a common task for all team members from the moment 

the trial starts till the end, in some cases also the post-trial period. (e.g., follow-up visits) 

(Fortwengel, 2004). 

 

 

Figure 2: Main responsibilities of clinical trial team members. 

1.2.2 General activities in a clinical trial  

Trial activities start from the first-day stakeholders decide on running a clinical trial. The 

sponsor develops the trial protocol detailing the specifics of how the study will be 

conducted (ICH, 2016). All team members of the trial participate in the protocol 

development in which they contribute to the section related to their expertise e.g., a 
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biostatistician calculates the power and the sample size of the trial as well as determines 

and implements the statistical methods to detect a true difference between treatment 

groups (Ellen van Bavel, 2016). Following protocol development, a feasibility report is 

established for recruiting study center(s) in the trial. The clinical research associate (CRA) 

conducts interviews with the potential clinical investigator(s) from the study center(s). 

Once the foundation of the trial is established, the sponsor is required to register the trial 

and request authorization from competent authorities (Dupin-Spriet, 2005; Poolman et 

al., 2007).   

 

1.2.3 Traditional Monitoring and ICH recommendation 

The ICH-GCP requires the sponsor to simultaneously develop a monitoring plan before 

the trial initiation which the CRA follows (ICH, 2016). Monitoring procedures should be 

as detailed as possible. (National Institute for Health Research (NIHR) Clinical Trials 

Toolkit, 2012). This would enhance the participant’s safety throughout the trial as well as 

improve data integrity. Traditional monitoring involves intensive on-site monitoring 

visits at clinical trial centers and exhaustive SDV of clinical trial data (FDA, 2020).  

Onsite monitoring entails visits conducted to study sites before and during the trial. The 

monitoring team verifies whether a center is following the study protocol. Specifically, a 

monitor e.g., a CRA checks whether case report forms (CRF) filled comply with the study 

protocol. Specifically, the monitor verifies the consistency of data collected with 

participants’ medical files (Dupin-Spriet, 2005). Additionally, the monitor inspects for 

missing data, faulty completion of forms, questionable values, or other protocol violations.  

In recent years, clinical researchers have questioned the validity and necessity of 

traditional monitoring methods (Uren et al., 2013). Many consider it to be an expensive, 

time-consuming, and resource-demanding activity that does not improve the quality of 

clinical trial data or the protection of trial participants (Olsen et al., 2016). Onsite 

monitoring might be realistic or easily implemented in a single-center trial phase I or II, 

however, it becomes complicated for a large trial or even multi-center trial. Additionally, 

Clinical trials have developed in different aspects such as complexity, globalization, and 

technological means. Intensive onsite monitoring showed to be of high cost and does not 

always identify errors (Baigent et al., 2008a).  To tackle these difficulties and the 

advancement in clinical trial setups, regulatory authorities recommended the 
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implementation of a novel risk monitoring approach. The ICH recognized this need and 

released a new GCP guideline requiring sponsors to implement a risk-based approach to 

improve the effectiveness and efficiency of monitoring.  (International Council for 

Harmonisation, 2018). This facilitates the option for sponsors to divide monitoring 

activities between onsite and centralized monitoring or a combination of both. The ICH 

defines centralized monitoring as a remote evaluation conducted at a location other than 

the study centers conducting the trial. Due to the current advancement in electronic data 

capture (EDC), centralized monitoring can offer a greater advantage (International 

Council for Harmonisation, 2018). It incorporates the utilization of statistical methods to 

detect deviating or erroneous data. Following the recommendation several risk-based 

monitoring approaches became available. Hurley et al. identified and summarized RBM 

tools available for clinical trial monitoring (Hurley et al., 2016). However, the state-of-the-

art RBM tool was not identified. Similarly, since centralized monitoring became available, 

the approaches focused on presenting summary statistics, principal component analysis 

(PCA), and detecting inlier/outlier data.  

This thesis focuses on the procedures that fall under the RBM umbrella. In detail, it 

presents a risk assessment methodology of a trial and a statistical approach to monitoring 

centers in a clinical trial. First, differences are distinguished between current non-

commercial RBM monitoring tools in practice by their application to real clinical trial 

protocols.  Secondly, a thorough risk methodology assessment (RMA) of clinical trials is 

developed. The proposed method is adaptive, it can include any potential risk. The risk 

assessment within the existing RBM tools is predefined to fixed risks, lacking the option 

of tallying new ones. Finally, for the benefit of CSM, the use multiple comparisons of single 

centers to the Grand mean (GM) of all centers is proposed. It can be used to detect centers 

that are significantly deviating from GM. In a Monte Carlo simulation study, the approach 

is assessed for the ability to control type I error (𝛼) and achieve the highest possible 

power (1 − 𝛽)  for specific data types in different parameter settings. Further, the 

approach is demonstrated to real-world data (RWD) from the German Multiple Sclerosis 

Registry (GMSR). 

The following sections describe background information and the basis for research 

conducted in this thesis. Thus, the findings of the three manuscripts are summarized and 

set into context. 
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1.3 Risk-Based Monitoring 

1.3.1 State of the art 

A risk-based monitoring approach entails the identification of any risk that might 

influence areas routinely subject during monitoring activities. These risks should be 

identified at the system and clinical trial level, followed by a systematic evaluation of these 

risks and their likelihood of occurring and the extent of detecting these errors, and their 

impact on human subject protection, trial data reliability, and GCP- and protocol 

compliance (International Council for Harmonisation, 2018). To date, various tools for 

risk identification have been developed as either paper-based or electronic RBM. These 

tools have been compared on their characteristics, and their respective strategy to 

minimize the risk. Jungen et al. formulated a risk indicator taxonomy (RIT) to serve the 

RBM purpose (Jongen et al., 2016). Hurley et al. compared RBM tools to RIT and found 

only 12 RBM tools cover risk indicators listed in RIT. However, Hurley et al. indicate that 

the risks covered within most RBM tools do cover ICH-GCP demands for RBM (Hurley et 

al., 2016).  This research aimed to study the effectiveness of RBM tools and their 

differences in practice. Specifically, a special interest was focused on the implementation 

and outcome processes when applied to real clinical trial protocols.  . 

 

1.3.2 Application of non-commercial RBM tools 

Non-commercial RBM tools were applied (ADAMON (Brosteanu et al., 2009), OPTIMON 

(Journot et al., 2011), Transcelerate (TransCelerate, 2012), SWISS (Swiss Clinical Trial 

Organisation, 2014), NORM (NORM, 2015), YEE (Yee, 2017), and MHRA (MRC/DH/MHRA, 

2011)) to real clinical trial protocols covering all phases (I-IV) to compare the overall risk 

assessment of each. Real clinical trial protocols were retrieved from the registry of clinical 

trials “ClinicalTrials.gov”. Moreover, a direct comparison was performed between risks 

covered between the Transcelerate tool and other RBM tools.  Almost all investigated 

RBM tools showed different overall risk assessments. Furthermore, the risks detected and 

their impact within each RBM tool were different, hence the outcome mitigation plans of 

each RBM tool varied as well. The broad differences between the RBM tools indicate that 

an ideal risk assessment tool is currently missing. Each RBM tool focuses on predefined 

risk areas lacking the option of adding additional ones. Given the different risks each 

clinical trial can have, a main setback for the risk assessment is to be fixed on specified 
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risks. A vital characteristic feature of an RBM tool is the identification and classification of 

potential risks associated with a planned study. As risks are different from one trial to 

another, current risk assessments within investigated RBM tools partially fulfill this 

requirement. Potential risks in a clinical trial can be identified in a well-structured study 

protocol. Further, risks must be recognized in advance to enable a systematic screening 

by RBM tools. The potential risks should be weighted to allow for an internal assessment 

of a risk characteristic and thus enable the generation of a study risk score. Preparatory 

work on this is still missing and was, therefore, the next step in the further development 

of RBM systems whose developmental approach then no longer decides which risk level 

a clinical study has.  

 

1.4 Risk Methodology assessment 

 

1.4.1 ICH-GCP requirement for risk identification and evaluation 

A key quality feature of RBM entails a robust risk assessment. The ICH-GCP requires 

sponsors to identify potential risks critical to the trial process and data (ICH, 2016).  It is 

left to the sponsor to decide on an appropriate system to identify risks in a clinical trial. 

The ICH specified the criteria each risk should be evaluated on: 

• The likelihood of errors occurring. (Probability) 

• The extent to which such errors would be detectable. (Detectability) 

• The impact of such errors on human subject protection and reliability of trial 

results. (Impact) 

However, the ICH did not specify the standards each of the above criteria should be 

assessed on. Most of the risk assessment methods within current RBM tools provide an 

overall assessment score of the trial. Although the ICH did not specify this need, it does 

play a helpful role in indicating the critical level of the overall risks present in a specific 

trial. Still, a general limitation of current risk assessment methods within the RBM tools 

is the lack of transparency of the final decision rule for the determined monitoring plan. 

In this research, faults detected by the Good Clinical Practice - Inspectors Working Group 

(EMA GCP-IWG) are considered as the main risks that should be covered by a risk 

assessment tool (EMA-IWG, 2018). Since clinical trials are diverse in complexity and 
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structure, hints are provided on how the identification process should be and a rationale 

for a risk assessment process is established. Specifically, standards for the Impact and 

detectability criteria of the evaluation process are provided.  

 

1.4.2 Individual assessment of each risk  

The ICH indicates that the monitoring team must verify the rights and well-being of 

human subjects, the reliability of data, and compliance to study protocol and GCP 

guidelines must be followed. Since these points are the main tasks the monitoring team 

must observe, they are used as the main aspects for impact criteria of risk evaluation. 

Additionally, different weights for the individual points are provided.  As for the 

detectability criteria, the detection technique required to point out the risk outcome is 

suggested, hence either as onsite or remote monitoring.  Table 1 shows the assessment 

category and weights for each criterion of potential risk.  

Criteria Assessment category Score 

 

 

Impact 

1. Well-being/safety of subjects 

2. Reliability of data 

3. Compliance with GCP/protocol guidelines 

3 

2 

1 

 

Probability 

1. Very likely  

2. Likely  

3. Even chance  

4. Unlikely  

5. Very unlikely  

5 

4 

3 

2 

1 

 

Detectability 

1. Onsite Monitoring  

2. Remote Monitoring 

       2 

       1 

Table 1: Risk assessment criteria. Following risk identification, each risk is evaluated based on the category it impacts, 
the probability of a risk occurring, and the monitoring technique required for detection (Fneish et al., 2021b). 

The main challenge in risk assessment is understanding the consequence of a certain risk 

on the trial. In the presented RMA, radar charts are utilized to aid the stakeholders in the 

assessment and decision process for individual risk. This would support them in having a 

better understanding of the risk effect. The proposed assessment scale shows the 

importance of the risk in the trial. Together with the radar chart, it gives indications to the 

assessor how the monitoring plan should tackle the assessed risk. The area under the 
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radar chart is computed by the assessment criteria of the risk. This means the larger the 

area under the chart, the more monitoring is required to control the assessed risk. Figure 

3 shows an example of a specific risk assessment. Assuming a risk would be having a 

discrepancy between source data documents and case report forms, this would impact 

the reliability of data and GCP/protocol compliance, with the assumption it would have a 

probability score of 3 and a detection technique by performing an onsite visit. Then with 

the proposed algorithm, this risk has a score of 40% of 100. This score aids the sponsor 

in deciding the frequent visits to be taken to check this risk.  The risk assessment must be 

an ongoing process performed before, during, and after the trial. Any amendments to the 

study protocol require a new risk assessment procedure. Additionally, any new faults 

detected during onsite visits require a reassessment as well. Whereas any faults detected 

during remote procedures might indicate a trigger for an onsite visit.  

 

 

Figure 3: Individual risk assessment. Each risk must be evaluated on Impact, Probability, and Detectability.  
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1.4.3 Overall score for risk assessment  

The overall score of the trial is represented by the average score of the risks assessed. 

Although it should not play a major role in any decisive measure, it still conveys an idea 

of how critical a trial is. Thus, an established monitoring plan would be reflected in the 

overall score. For example, a monitoring plan consisting mainly of remote monitoring 

techniques where an overall score is 80% means the established monitoring plan does 

not reflect the assessment procedure. Accordingly, an overall score of 40% would be 

reflected in the monitoring plan by having more remote procedures and some onsite 

visits.  

Remote monitoring also known as Centralized statistical monitoring (CSM) has been 

proposed as an effective way and less costly than on-site monitoring (Bakobaki et al., 

2012). In the next section, current methods of CSM implementations are presented and a 

new approach to improve CSM was investigated and validated on real-world data.  

 

1.5 Centralized statistical monitoring 

 

1.5.1 State of the art  

The EDC has revolutionized the monitoring strategies in clinical trials enabling the remote 

monitoring approach. As regulatory authorities indicated CSM was introduced to improve 

data reliability. It ensures the quality and validity of data collected in multicenter clinical 

trials (Desmet et al., 2014a). Different approaches have been implemented for CSM 

(Baigent et al., 2008a; Oba, 2016a; Venet et al., 2012b). These approaches mainly focused 

on implementing visualization techniques, outlier/inlier detection, data distributions, and 

principal component analysis (PCA). They have proven to be effective in detecting unusual 

or fraudulent data. Furthermore, they may indicate some issues in a certain center, but 

they do not elucidate whether a center deviation is due to chance. The main objective of 

CSM is improving data reliability (International Council for Harmonisation, 2018), this 

means CSM should be able to detect single centers that might deviate from a study 

protocol or detect a center that has misunderstandings concerning data reporting such as 

adverse events (AEs). These types of deviations will not produce single extreme values in 

the data, they would rather lead to deviating summary statistics, AE rates, or class 

frequencies of categorical data. The literature related to CSM does not include a clear 
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overview in detecting a deviating center that would eventually alarm the monitoring team 

to initiate an onsite visit to a center due to data variation likely due to chance or not.  

1.5.2 Comparisons to Grand Mean 

All centers participating in a clinical trial are expected to follow the study protocol. 

Accordingly, if a center is violating any of the protocol requirements it should be reflected 

by the data collected and thus detected by comparing the data coming from an individual 

center to the data of all centers. In this research, the utilization of multiple comparisons 

of single centers to the Grand Mean (GM) of all centers is proposed. This approach has 

been applied in fields comparing treatments in laboratory experiments (Silverstein, 

1974). It is also available in the analysis of means (ANOM) context for quality control 

(Pallmann & Hothorn, 2016). Hothorn et al. (2008) provide a general framework software 

for simultaneous inference procedures in general parametric models, which includes 

multiple comparisons to the GM procedure (Hothorn et al., 2008a). Konietschke et al. 

(2015) provide a software for non-parametric multiple comparisons which could perform 

GM comparisons (Konietschke et al., 2015a). For several data types, this approach allows 

the detection of centers that are deviating from the GM. A simulation study was carried to 

investigate whether this contrast can be implemented by different statistical methods for 

continuous, binary, and ordinal endpoints while controlling type I error and achieving the 

highest power for balanced and unbalanced designs common in clinical registries and 

clinical trials. 

1.5.3 Model Types and Endpoints 

In this research, the GM comparisons is considered for three data types (Continuous, 

Binomial, and Ordinal). Different statistical approaches were investigated for the 

performance in the multiple comparisons. Specifically, the control of type I error and the 

power for performing the contrasts of individual center mean to GM of data for different 

statistical approaches was investigated. 

For a continuous non-normally distributed endpoint, the non-parametric approach 

available in Nparcomp (Multiple Comparisons and Simultaneous Confidence Intervals) R 

package  was implemented (Konietschke et al., 2012a). Konietschke et al. indicate that the 

non-parametric method is based on asymptotic results on the distribution of rank 

statistics. Thus, this hints at a limitation in the non-parametric approach for small sample 

sizes. For this reason, it was noteworthy to test whether the non-parametric would 
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manage to control type I error for small sample sizes that could be found in clinical trial 

phases 1 or 2 where the number of patients is limited. Nparcomp was also implemented 

for an ordinal outcome and tested for the same scenarios as the continuous endpoint. 

A binary outcome such as a patient suffering from an AE is common in clinical trials. Study 

protocols might be misunderstood, where for example a vaccination reaction to a vaccine 

might be reported as an AE in a specific center. Another misconception would a 

misunderstanding of a relapse definition by the clinical trial staff when they report an 

observed symptom as an indication of a patient relapse. In both examples, the center 

would be pointed out by GM comparisons. This would trigger the monitoring team to visit 

the center for further checkups and training. For such binary endpoints, the classical 

generalized linear model (GLM) with logit link was implemented. However, GLMs have 

limitations when 0 excess is present (Fneish & Schaarschmidt, 2019a) and since 0s are 

commonly seen in clinical trials, two alternative methods to account for the 0 problem 

were investigated. A Bayesian generalized linear model based on the prior distribution 

(Gelman et al., 2008a) and Bias-reduced generalized linear model which is based on 

Jeffreys-prior (Kosmidis & Firth, 2021a) are proposed to handle the 0 problem. In the 

simulations, methods are compared for their performance and ability to control type I 

error and achieve the highest power when implementing the comparisons to GM for 

scenarios with and without 0 problem. Figure 4 summarizes the data types and model 

types considered in this research.  
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Figure 4: Proposed estimators for each data endpoint. Non-parametric method (Nparcomp), Generalized linear model 
(GLM), Bayesian Generalized Linear model (BayesGLM), Bias-reduced Generalized Linear Model (BrGLM). 

 

1.5.4 Application on Real-World Data  

Current practices of CSM focus on visualization techniques such as the distribution of data 

in specific centers. RWD found in clinical trials can be very diverse, it might include a few 

to hundreds of patients within a varying number of centers. The complexity of clinical 

trials and registries makes it more challenging in identifying a proper methodology for 

performing CSM. Some visualization methods on data from the GMSR are shown, followed 

by the demonstration of GM implementation on specific data types. Fifteen largest centers 

that are part of the GMSR’s pharmacovigilance module were included.  The data consists 

of a wide range of variables covering demographic and clinical data such as patient profile, 

disease status, and medication treatments. Ohle et al. (2021) cover further details on the 

GMSR (Ohle et al., 2021).  In this research, three endpoints are covered (Continuous, 

Binomial, and Ordinal), the age at diagnoses, data missingness, and diseases severity as 

continuous, binomial, and ordinal data types respectively. The approach of multiple 
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comparisons is investigated. Specifically, center means are compared to the Grand Mean 

of all centers. If a center behaves differently from other centers, then it would be reflected 

by the reported data. This would indicate to atypical center, specifically when there is a 

significant mean difference between an individual center mean and the GM.  This would 

eventually trigger an onsite visit if the deviations cannot be justified.  

Continuous Endpoint: Age at diagnosis 

Figure 5 shows the distribution of patient cohorts for age at diagnoses in each center. This 

graph clearly illustrates a difference in the distribution among centers. It also shows that 

some centers include some data outliers. As intuitive as this graph may be, it does not 

identify a problem in a specific center. It won’t directly serve CSM purposes where the 

focus lies on checking the compliance of centers to study protocol and GCP guidelines. 

 

 

Figure 5: Violin plot including kernel density estimates of age at diagnoses indicating possible violations of normality. 
pval<0.05 indicates a non-normally distributed data. 

 

The implementation to GM comparison clearly illustrates that C 6 has a larger mean 

compared to the GM whereas C 8 and C 15 have smaller means compared to GM (Figure 

6). In a real clinical trial, this would indicate whether a certain center has a cohort 

significantly different from the inclusion criteria indicated in a study protocol. However, 

in the GMSR data, this could be justified since some centers might have a specific 

specialization in which a difference would not be alarming. 
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Figure 6: Simultaneous confidence intervals for contrasts of center means with GM for continuous variable age at 
diagnosis using the non-parametric method (Nparcomp). 

 

Binary Endpoint: Missing data  

Poor data quality affects any research and hence decreases its respective power, 

specifically if it includes a lot of missing data. Although it’s best to have complete data, it 

is not uncommon to have missing’s in a data set. For this reason, the GM comparison for 

such scenarios would serve the detection of a deviating center having more missingness 

compared to the GM of centers.  In this way, it would be pointing out a center that would 

require some attention for better documentation. Figure 7 shows a binary endpoint for a 

patient with missingness for age at diagnoses or age at onset variables in each center. It 

shows the performance of the centers in documenting these variables. Most of the centers 

have the required documentation needed for almost all their patients, however, some 

centers have higher proportions of missingness. Statistically, this would indicate whether 

a center has more deviations of non-documented data than the GM.  
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Figure 7: Centers documentation of age at diagnosis and age at onset for each patient (%). 

 

The utilization of GM comparisons to center means indicates that centers C 3, C 12, and C 

13 have higher means than the GM of the data. In other words, these centers have more 

missingness for age at onset or diagnoses than the average (Figure 8). C 6 has a smaller 

mean compared to the GM, in this context it would indicate a higher documentation 

performance for this center than the average. The BayesGLM model type for binary 

endpoint is preferred in these scenarios since 0s could be present in the data. 

 

Figure 8: Simultaneous confidence intervals for contrasts of center means with GM for a binary variable missing age at 
diagnosis or age at onset reported using Bayesian Generalized Linear model (BayesGLM).  
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Ordinal Endpoint: Disease severity  

Another endpoint commonly observed would be an ordinal variable. Figure 9 presents 

the disease severity level of patients documented at the latest visit in each center. Here 

the comparison would be whether a certain center would have a different mean compared 

to the GM of all centers. In other words, it would indicate whether a specific center has a 

cohort that has a higher or a lower disease severity compared to the GM. (since the disease 

severity is in increasing order). Unlike clinical trials, the GMSR does not have a strict 

inclusion criterion for patient recruitment regarding the level of disability. Centers would 

include any patients diagnosed with multiple sclerosis. Hence the difference between 

center cohorts for disease severity is not unforeseen in this specific case, specifically if a 

center is specialized such as a rehabilitation center.   

 

 

Figure 9: Histograms of disease severity (EDSS) for patients at the latest visit. 

 

 

Figure 10 shows the comparisons of GM to the mean of individual centers for disease 

severity. C 4, C 6, and C 10 show a mean larger than the GM, in other words, it indicates 

that the cohorts belonging to these centers have a higher disease severity than the GM of 

the whole cohort. As for C 1, C 3, C 14, and C 15 they have a smaller mean than the GM. 

These differences could be alarming and could be a natural deviation due to the cohort 
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itself. Stakeholders at the registry would indicate whether this difference is expected or 

not. However, in a clinical trial where cohorts are likely to be comparable, it would 

indicate whether a center tends to give smaller or higher measurements, then in this case 

an onsite visit should be conducted to have a justification for the deviation.  

Figure 10: Ordinal variable of disease severity (EDSS) comparison for each center to the GM using the non-parametric 
method (Nparcomp) . 

1.6 Contributions to the field 

In the framework of this thesis, the differences between current RBM tools were 

recognized through their implementation in clinical trial protocols. This revealed their 

heterogeneity and thus their output when implemented for the same clinical trial. 

Furthermore, to tackle the wide differences clinical trials have, a rationale for a robust 

risk assessment methodology was established. The approach presented has an adaptive 

ability to include any risk in the assessment regardless of clinical trial phase or 

complexity. It gives the assessor the chance to include or exclude risks related or not 

related to the trial. To ease the implementation of RMA, a user-friendly shiny web 

application is formed. The user can run the web app locally, run the analysis, and 

document the risk assessment performed to further develop a monitoring plan. Each 

assessed risk would be summarized and assigned a mitigation technique. This would also 

help the assessor in reviewing the risk assessment previously done when needed.  The 
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syntax of RMA is available on GitHub under the following path: 

https://github.com/firasfneish/Risk-Methodology-Assessment 

For remote monitoring techniques, this thesis proposed the utilization of Grand Mean 

comparisons to individual centers. This comparison would direct to a deviating center 

that is unlikely due to chance. The comparison to GM was implemented for binary, ordinal, 

and continuous endpoints using different statistical methods. The deviating settings were 

identified when performing the comparisons to GM. Nparcomp fails to control type I error 

for 𝑛𝑖 < 20 and for extremely unbalanced designs. BayesGLM outperforms GLM and 

BrGLM for small sample sizes and can deal with the 0 problem. Since the available models 

for GM comparisons are scattered between different R packages, a unified interface for 

their implementation is shown and the same graphical output displaying simultaneous 

confidence intervals of GM comparisons for different variable types is presented. Their 

implementation is also verified on RWD from the German Multiple Sclerosis Registry. Two 

shiny apps for BayesGLM and Nparcomp methods are provided as an interactive and 

visual platform for users to easily implement the comparisons by providing their datasets. 

Both shiny apps run the comparisons of each center to the GM and plot simultaneous 

confidence intervals for contrasts of center means with the GM of the given dataset. Syntax 

of both apps can be found on GitHub under the following path: 

https://github.com/firasfneish/CSM.  

1.7 Conclusions and future research 

1.7.1 Risk Methodology Assessment 

The established RMA currently provides stakeholders the ability to assess any risk in a 

clinical trial that can be covered by RBM. It also gives stakeholders the chance to 

incorporate additional risks into the assessment process. Future work should include real 

problems found in clinical trials in the assessment list. It would allow stakeholders to 

further include risks they did not previously consider. A database that combines historic 

faults and errors in clinical trials is currently missing. Thus, a database that includes risks 

found in clinical trials would be a major step that would benefit clinical research. This 

would give RMA the ability to forecast a certain risk. Such predictions require a database 

consisting of numerous factors. This requirement is currently lacking and hence would be 

the focus for future work. The COVID-19 pandemic has pushed pharmaceutical companies 

further to implement RBM and adopt remote monitoring strategies (Barnes et al., 2021). 

https://github.com/firasfneish/Risk-Methodology-Assessment
https://github.com/firasfneish/CSM
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Therefore, the risk assessment within the RBM system should be under continuous 

development to tackle the changes and shifts in the possible monitoring activities. 

1.7.2 Centralized Statistical Monitoring 

The multiple comparisons of center mean to GM means of all centers were investigated 

and validated for the identification of a deviating center. This research focused on 

performing the comparisons for specific data endpoints (Binomial, ordinal, Continuous). 

This approach can be further implemented for more data types such as Time to 

Event(time2event) endpoint, Poisson/count data, and Nominal data. Monte Carlo 

simulations are needed to identify appropriate estimators and detect limitations in each 

type. Future work would focus on considering Weibull models and Cox regression for 

time2event data. GLM and BayesGLM and negative binomial model for count data. Desmet 

et al. (2017) investigated the detection of a deviating center by employing a beta-binomial 

(Desmet et al., 2017a), it would be noteworthy to compare beta-binomial, GLM, and 

BayesGLM for GM comparisons. Ordered categorical regression and cumulative link 

models should also be investigated for ordinal data since the Nparcomp method failed to 

control type I error for small sample sizes and heavily unbalanced designs. Some centers 

could naturally differ from other centers due to their patient cohort selection. This is more 

relevant to registry data rather than clinical trials as registries could include data coming 

from centers with different specializations whereas clinical trials include centers with 

very specific inclusion criteria. This natural difference could be accounted for by 

considering the effect of additional covariates (e.g. center type) when performing the 

comparisons by each estimator. In the current approach, many tests are performed, thus 

false positive conclusions might be concluded. To counteract the multiple testing problem, 

𝛼 correction methods such as Bonferroni adjustment, and False Discovery Rate (FDR) 

should be examined, however, clinicians and statisticians should decide whether this 

correction is needed. Equivalence intervals are a further option that could serve CSM. 

Nevertheless, this would require clinicians to determine an interval in which a certain 

center deviation could still be accepted.  
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Background

Source data veri�ication (Monitoring) is an essential 
requirement for all clinical trials in phases I-IV as stated by 
World Health Organization (WHO) guidelines for good clinical 
practice (GCP) of clinical trials on pharmaceutical products, the 
Food and Drug Administration (FDA) code of federal regulations, 
and by the International Council for Harmonization (ICH) [1]. 
However, regulatory agencies have stressed the need for oversight 
approaches to identify different risk levels in each speci�ic trial 
prior its commencement [1]. Moreover, it has been reported that 
onsite monitoring is costly with a limited outcome to clinical trial 
data quality onsite monitoring/SDV [2].

Clinical trial monitoring often involves intensive on-site 
monitoring visits at clinical trial centers and extensive SDV of  

 
clinical trial data [3]. Clinical researchers have questioned the 
validity and necessity of traditional monitoring methods [4]. It has 
been considered to be an expensive, time-consuming and resource 
demanding activity that does not necessarily improve the quality of 
clinical trial data or the protection of trial participants [5].

Over the years, clinical trials have developed complex designs, 
became more globalized, and used advanced technological means 
at various stages, which resulted in more recommendations to 
the guidelines for GCP. ICH has given the sponsors �lexibility 
to utilize innovative approaches to plan, conduct and evaluate 
clinical trials. Nevertheless, greater emphasis has been placed on 
data completeness and accuracy than on critical aspects such as 
risk management of outcome data. For this reason, an integrated 
addendum to the ICH (GCP) Guideline was released in order to 

Abstract

Clinical trial monitoring involves intensive on-site monitoring visits at clinical trial sites and exhaustive source data veri�ication (monitoring) of 
clinical trial data [1]. Clinical researchers have questioned the validity and necessity for traditional monitoring methods [2], which have been under 
investigation due to their ineffectiveness in improving the quality of clinical trial data or in protecting trial participants [3]. Implementing a risk 
based monitoring (RBM) system is suggested by the ICH’s newly adapted guidelines to improve overall quality management [3]. The RBM involves 
the identi�ication of any risk that might have an effect on areas routinely subject during monitoring activities. Risks should be identi�ied by a RBM 
system followed by an evaluation of their likelihood of occurring and the extent to detect these errors and their impact on human subject protection, 
trial data reliability, and GCP- and protocol compliance [4]. To date various tools for risk identi�ication have been developed with both in paper 
based or electronic RBM [5,6]. These tools have been compared on their characteristics and the strategy to decrease risk. However the application 
and subsequent effectiveness of RBM tools is yet to be examined [6]. The aim of this research is to apply each non-commercial RBM tool to clinical 
protocols and compare the potential risks detected in each, additionally the overall risk assessment of the protocols. Here we show that RBM tools 
result in different overall risk assessment when applied to the same clinical trial protocols, interestingly, each RBM tool detected distinct risks which 
thus resulted in a variation in the outcome mitigation.
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request improved and more effective methods to protect the rights 
of clinical trial participants, and to ensure data reliability as well 
as GCP and trial protocol compliance. The existing ICH guideline 
has been modi�ied with respect to points such as principles of 
GCP, investigator responsibilities, sponsor responsibilities, and the 
essential documents [6]. The amended ICH (GCP) guideline suggests 
different recommendations to the sponsor to improve overall 
quality management in a clinical trial. One of the recommendations 
is to implement a risk based approach monitoring system.

A risk based monitoring (RBM) approach involves the 
identi�ication of any risk that might have an effect on areas routinely 
subjected to monitoring activities. These risks should be identi�ied 
based on protocol mandated requirements and procedures, 
protocol related logistics, clinical trial phase and country of conduct. 
Identi�ication should be followed by risk evaluation instead, risk 
likelihood, the extent to detect these errors and their impact on 
human subject protection, trial data reliability, GCP, and protocol 
compliance [7].

To date various tools for risk identi�ication have been developed 
as either paper based or in electronic format [8,9]. These tools have 
been compared regarding their characteristics and their employed 
strategies in identi�ication and classi�ication of potential risks. 
Additionally it has been stated that the lack of evidence to show 
superiority of RBM over traditional onsite monitoring has held 
back their utilization [10]. Recent research using ADAMON negates 
the inferiority of risk adapted monitoring to extensive monitoring 
[10]. We aim to evaluate the effectiveness of RBM as a tool for onsite 
risk based monitoring, given the lack of investigation into such a 
method so far [9].

Methods

Search Strategy on RBM tools and Clinical Trial Protocols

For RBM tools: 

Google Scholar was used in October 2018 to search the following 
key terms: risk based monitoring tools, risks assessment of clinical 
trials and risk analysis of clinical trials. The search resulted in 

16 pages and after page 10 there were no suitable publications. 
Additional restrictions for the advance search option in Google 
Scholar were not used. Additionally, PubMed search engine was 
used with the terms: risk based monitoring tools, risks assessment 
of clinical trials where it resulted in 4 pages.

For Protocols: 

Google Scholar was used with following terms: clinical trial 
protocols and summary protocols of clinical trials phases. The 
search resulted in 13 pages of results of which 10 were suitable. 
We did not use any additional restrictions for the advance search 
option in Google Scholar. Additionally “clinicaltrial.gov” has been 
used with the terms clinical trial protocols. An advanced search was 
used to specify available study protocols.

Assessment of Clinical Trial Protocols: 

The �irst objective was to �ind out whether non-commercial 
RBM tools give similar overall risk assessment for the selected 
protocols. Noncommercial RBM tools (ADAMON [10], NORM [11], 
MHRA [12], Yee [13], Transcelerate [14], OPTIMON [15] and SWISS 
[16]) were applied to perform risk assessment of 18 clinical trial 
protocols from different phases with different indications. Based on 
the outcome the risk was categorized into high, medium, low for the 
respective clinical trial.

Comparison of RBM Tools Risk Covered

The second objective was to investigate whether the tools cover 
different risk aspects. Transcelerate RBM tool has been used as a 
standard by six commercial RBM tools [9]. For this reason it was 
used for the second investigation as a base for risk category to be 
compared to each RBM tool by its risk category structure: safety, 
study phase, complexity, technology, subject population, data 
collection, endpoints, staff experience, Investigational medicinal 
drug (IMP), logistics, blinding, operation complexity, geography in 
order to investigate the different risks covered between the RBM 
tools. Evaluation of the different risk statements was done by the 
following rating scale that we developed to identify whether the 
risk is also investigated by the other RBM tools and to which level 
as shown in Table 1.

Table 1: Rating scale for risks covered by Risk Based Monitoring tool.

Rating scale of risk

Addressed Partially Not addressed

Description Risk is investigated by several 
questions relating to its importance

Risk is investigated as a minor risk 
of limited importance

Risk is not addressed by the tool 
at all

Statistical methods

Fisher test was used to detect differences between the risks 
investigated by the RBM tools if any using R statistical software 
version (3.6.0). The �low chart (Figure 1) was developed in R as well 
using packages “grid” and “Gmisc”.

Ethical consideration

Neither human subjects were involved nor were personal 
subjects data were collected and/or processed in this research, 
hence no ethical permission needed for this study.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Am J Biomed Sci & Res 

American Journal of Biomedical Science & Research 218

Copy@ Firas Fneish

Figure 1: Selection of 18 Clinical Trial Protocols to be assessed by 7 noncommercial RBM tools.

Results & Discussion

Search Strategy

In total 24 RBM tools were identi�ied based on a systematic review article [9], of which 7 were publicly available (Figure 1). 

Assessment of Clinical Trial Protocols (Figure 2)

Figure 2: Overall risks assessment of Clinical Trial Protocols by each RBM tool.
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For the overall risk assessment of each protocol by different 
RBM tools, results are reported anonymously. Out of the 18 
protocols, 4 protocols belonged to phase 1(P12, P11, P2, P5), six 
protocols to Phase 2 (P1, P3, P4, P7, P8, P9), four protocol to Phase 
3 (P10, P13, P14, P15), and four protocols to Phase 4 (P6, P16, P17, 
P18). Out of the 7 RBM tools, one tool did not provide an overall 
outcome assessment of the whole trial.

For phase 1, four (T1, T2, T3, T5) out of six tools classi�ied the above 
mentioned protocols as high risk level. While tool T6 categorized 
these protocols into moderate risk level. Remaining tool (T4) 
categorized the protocol P12 as low, P11 as moderate and two 
protocols P2, P5 as high risk level. While for phase 2 trials, three 
(T1, T2, T3) out of 6 tools classi�ied 4 protocols into high risk level, 
while T4 classi�ied them as high and low risk levels. The other two 
tools (T4, T5) assessed 3 protocols as Medium risk while 1 protocol 
was assessed as Medium and Low risk levels. For phase 3 protocols, 
3 tools (T1, T2, T3) categorized P10, P13, P14 as High risks and P15 
as Moderate risks while T4 categorized P10, P13 as Low risks while 
P14 and P15 as Moderate risks, nevertheless T5 categorized all 
phase 3 protocols as Low risks and remaining tool T7 categorized 
P10, P13 and P15 as Low risks and P14 as Moderate risks. For 
phase 4 protocols, all tools categorized P6 as Low risks while 3 
tools (T1, T2, T3) categorized P16, P17 and P18 as Moderate risks 
but T4 categorized P16 and P17 as Moderate risks and P18 as Low 
risk. Remaining Tools (T5, T6) categorized all Phase 4 Protocols as 
Low risks.

Risk category covered by each RBM Tool (Figure 3)

Tool 6 is the Transcelerate RBM tool being compared to the 
other non-commercial RBM tools. Risk category “blinding in the 
study design” is fully addressed by T7, while it is addressed partially 
by T1, T2, T3 and is not addressed by T4 and T5. Complexity risk 
category is fully addressed in 4 tools (T1, T2, T3, T7), partially 
addressed by T5 and not addressed in T4. Data collection is only 
addressed in T7. Endpoints are partially covered in 4 tools (T1, 
T2, T3, T7), while not addressed in 2 tools (T4, T5). Geography 
risk is not covered by any of the tools. Risk category related to 
investigational medicinal product (IMP) is addressed in T7 while 
partially addressed by 5 tools (T1, T2, T3, T4, T5). Logistics risk 
category is addressed in T7 and partially addressed in 5 tools 
(T1, T2, T3, T4, T5). Operation Complexity risk category is only 
addressed in T7 and not addressed in other tools as well (T1, T2, 
T3, T4, T5). As for safety risk category, it is addressed by 4 tools 
(T1, T2, T3, T7) while partially addressed and not addressed by 
2 tools, T4 and T5 respectively. Staff experience risk category is 
addressed in 4 tools (T1, T2, T3, T7) and not addressed by 2 tools 
(T4, T5). Study phase is addressed by all tools except 1 tool (T4) 
where it is partially addressed. Risks related to subject population 
are addressed by 3 tools (T1, T2, T3) while partially addressed by 2 
tool (T4, T5) moreover not addressed by 1 tool (T7). Risks related 
to Technology are only addressed by T7. Signi�icant differences (p 
< 0.05) were observed between risks covered by each RBM tool.

Figure 3: Risk area covered by each RBM Tool.

The assessment of protocols by the non-commercial RBM tools 
has shown that they result in different risk outcomes regardless of 
the clinical trial phase. Hence the mitigation plan to manage these 
risks will differ as well. The mitigation plan of an assessed risk 

should be implemented with either onsite monitoring or centralized 
monitoring [3]. The observed differences in the assessment clearly 
show that there is not yet an ideal non-commercial RBM. Each 
RBM tool focuses on speci�ic risk aspects. Our �indings highlight 
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differential risk considerations between RBM tools. Of the latter 
that fail to cover risk categories, their comparison revealed a 
signi�icant difference. Moreover the weight age of a certain risk and 
its importance is usually assessed by the individual risk assessor 
implementing the RBM tool. The risks covered by each RBM tool 
should guarantee the safety and rights of the human subjects 
nevertheless the accuracy and reliability of data [3]. Our research 
points to apparent heterogeneity in the different risks being 
covered by each RBM tool.

Conclusion

An ideal RBM tool should cover risks related to a clinical trial. 
Further classi�ication and scoring system should be included for 
the RBM tool user. Furthermore, a detailed monitoring strategy 
equipped with a proper plan to prevent detected risk should be 
readily available for the user.

A key quality feature of an RBM tool is the identi�ication and 
classi�ication of potential risks associated with a planned study. 
As described, the requirements are very different and sometimes 
only partially ful�illed by selected software tools as investigated. 
The development of such software requires a well-structured 
illustration of a clinical trial as it should be in the study protocol. 
In addition to this structural mapping, potential risks have to be 
de�ined in advance in order to enable a systematic screening by the 
software. Ideally, the potential risks should be weighted to allow for 
an internal assessment of a risk characteristic and thus to enable 
the generation of a study risk score. A corresponding preparatory 
work on this is still missing and is therefore, in the opinion of the 
authors, the next step in the further development of RBM systems 
whose developmental approach then no longer decides which risk 
level a clinical study has.

Limitations

The quality of the protocols was not taken into consideration, as 
our aim was to assess the protocols that follow ICH GCP guidelines 
and have already been reviewed, approved and accepted by the 
institutional review board (IRB). The author has solely done the 
assessment of the protocols with RBM tools, critical questions 
have been discussed within the author’s group before the decision 
making process.
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Abstract 

Monitoring of clinical trials is a fundamental process required by regulatory agencies. It 

assures the compliance of a center to the required regulations and the trial protocol. 

Traditionally, monitoring teams relied on extensive on-site visits and source data 

verification. However, this is costly, and the outcome is limited. Thus, central statistical 

monitoring (CSM) is an additional approach recently embraced by ICH to detect 

problematic or erroneous data by using visualizations and statistical control measures. 

Existing implementations have been primarily focused on detecting inlier and outlier 

data. Other approaches include principal component analysis and distribution of the data. 

Here we focus on the utilization of comparisons of centers to the Grand mean for different 

model types and assumptions for common data types, such as binomial, ordinal, and 

continuous response variables. We implement the usage of multiple comparisons of single 

centers to the Grand mean of all centers. This approach is also available for various non-

normal data types that are abundant in clinical trials. Further, using confidence intervals, 

an assessment of equivalence to the Grand mean can be applied. In a Monte Carlo 

simulation study, the applied statistical approaches have been investigated for their 

ability to control type I error and the assessment of their respective power for balanced 

and unbalanced designs which are common in registry data and clinical trials. Data from 

the German Multiple Sclerosis Registry (GMSR) including proportions of missing data, 
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adverse events and disease severity scores were used to verify the results on Real-World-

Data (RWD).  

Keywords: Monitoring, Data quality control, Multicenter clinical trials, Grand mean, 

Registry data 

 

Introduction 

Multicenter clinical trials are imperative to obtain a conclusive assessment concerning the 

safety and efficacy of medical treatments. They involve diverse clinics or hospitals, and 

their respective personnel(1). This requires the monitoring team to ensure the compliance 

of each center to the study protocol and the requirements of good clinical practice. 

Compliance of a center to the required regulations will make the center’s data more 

reliable. Non-compliance events may lead to errors in patient inclusion criteria, operating 

procedures and to various types of data entry errors(2,3). Additionally, data tampering or 

fraud may occur in a single center(4). All these difficulties may result in biased estimates 

of the investigated treatments efficacy as well as to false positive or false negative 

detection of safety issues. The monitoring team traditionally performs on-site visits to 

each study center to ensure compliance of the regulatory requirements; however, these 

activities have been reported to be costly and of  limited outcome with regards to  data 

quality(5,6). In the preceding years, central statistical monitoring (CSM) was proposed as 

an amendment to a thorough source data verification (SDV) that requires on-site 

visits(7,8). 

CSM utilizes graphical approaches, summary statistics and statistical tests to assess 

incoming data from all centers in the trial(9–11). The assessment of center compliance can 

be achieved by statistical models to assess adherence levels. The primary aim is to detect 

data entry errors, adverse event rates in single centers or safety issues related to 

individual patients. Moreover, CSM serves to identify centers that could require additional 

monitoring activities due to deviations or outlier detection. A robust risk assessment of 

the key risk indicators (KRIs) in clinical trials can target onsite-monitoring 

activities(12,13). Risk assessment prior to trial initiation can facilitate whether an onsite-

monitoring technique or CSM technique is needed to monitor a certain risk. Timmerman 

et al. (2016) illustrates how CSM can be a means to identify KRIs to target adaptive 

monitoring(14). 
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Numerous statistical methods have been applied for monitoring approaches for the 

implementation of CSM(9,15,16). Based on covariate type, statistical methods were 

applied to detect atypical/outlier data. For the purpose of risk based centralized 

monitoring, classical statistical methods have been categorized as unsupervised and 

supervised monitoring techniques(17). Existing publications on CSM focused on 

outlier/inlier detection on different levels e.g., , center, country and regional and 

demonstrated the usage of principle component analysis on the center level. 

However, single centers in multicenter clinical trials might deviate from the study 

protocol or inclusion criteria. They might also deviate in clinical practice, or there might 

be misunderstandings concerning the definition of adverse events or categorical variables 

or disease severity scores to be recorded. Such deviations will not produce single extreme 

values in the data. They will rather lead to deviating summary statistics, adverse event 

rates, or class frequencies of categorical data. Desmet et al. (2014) proposed the usage of 

linear mixed effects models to detect location differences between center and other 

centers for a continuous outcome and a beta binomial model for proportion comparison 

for a certain event in a center(18,19). In the following paper we propose to use multiple 

comparisons of single centers to the Grand mean (GM) of all centers. This approach is 

available for various data types that are abundant in clinical trials. It can be used to detect 

centers that are significantly deviating from average. Further, confidence intervals are 

available, such that an assessment of equivalence to the average can be applied. Center 

comparisons to the GM of the data has been an overlooked aspect. In the following, we will 

firstly define comparisons to the GM for different model types and assumptions for 

common data types, such as binomial, ordinal, and continuous response variables. 

Generalized linear models (GLM), bayesian linear models (BayesGLM), and bias-reduced 

generalized linear models (BrGLM) were applied for binomial outcomes. For continuous 

outcomes, a non-parametric and a linear approach are investigated. As for ordinal data, a 

non-parametric approach is assessed. The correction for multiple testing is accounted for 

when performing the contrasts. Since approaches are asymptotic and thus depend on the 

sample size, they were investigated in a Monte Carlo simulation for their ability to control 

type I error (𝛼) and achieve the highest possible power (1 − 𝛽). We demonstrate the 

implementation of these methods on examples based on data from the German Multiple 

Sclerosis Registry (GMSR)(20). 
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Real-world data from GMSR 

CSM aids clinical trials and registries in data monitoring for many variables. GMSR collects 

data directly from participating centers through a certified web-based data capture (EDC) 

system. The data collected includes a wide range of variables such as patient profile, 

disease status and medication treatments. We refer to Ohle et al. (2021) for further details 

on the GMSR(20). We included centers that are participating in the pharmacovigilance 

module at the GMSR each having at least 50 patients under observation in the database. 

An overview of the GMSR data is shown in Table 1 for specific variable types considered 

in this research. 

[Table 1 insert here] 

Figure 1 shows the dataset of three variables for each center. The dataset covers age at 

onset, adverse events (AE), expanded disability status scale (EDSS) representing 

continuous, binomial, and ordinal data types respectively. EDSS and AE are reported for 

each visit. Figure 1a shows the distribution of patients’ age at onset and highlights that 

data may not be normally distributed. Shapiro test was used to indicate whether the data 

of individual centers follow the normal distribution. Violations of the normality 

assumption suggest the need for non-parametric methods to perform center comparisons 

to the GM. For the same variable Figure 1b shows the missingness found in each center. It 

illustrates the center performance in terms of data completeness. Although it is common 

to have missing data, the question arises at what level it is unacceptable? Similarly for 

adverse events, one center (C3) reports 38% of patients having adverse events while 

other centers range between 0% and 24% (Figure 1c), this observation again designates 

a variation in the proportions for a certain event between centers and shows the need for 

a test to hint for the problematic center(s). As for EDSS measurements (Figure 1d) it 

exhibits a clear difference for disease severity for patients between centers. 

The visualization of these variables provides to the stakeholders an overview of the data 

at hand. However, it does not directly pinpoint or highlights a problematic center. 

Although the observed differences between centers could be natural due to patient 

variation or other factors, it is essential to confirm deviating centers at a given statistical 

certainty. In some cases, inference of a center being problematic can only be deduced with 

appropriate statistical testing e.g., complex multicenter clinical trial. This dataset will be 



51 
 

used to demonstrate comparisons of the individual mean center to the GM of all centers 

for different scales of measurement. 

 

[Figure 1 insert here] 

 

Materials and Methods 

We consider a wide spectrum of scenarios relevant to registry and clinical trial data with 

several centers for the response outcome variable. Let 𝑖 be the index of the centers in a 

clinical trial 𝑖 = 1, … , 𝐼. Within each center 𝑖 there are 𝑛𝑖  subjects, with subject index 𝑗 =

1, … , 𝑛𝑖. The GM of all centers within the trial is denoted by �̂�. . 

Comparisons to �̂�. 

 

For a given model with parameters mi and possibly unbalanced samples sizes 𝑛𝑖  the GM 

𝑚.  can be computed by 𝑚. = ∑
𝑛𝑖

𝑁

𝐼
𝑖=1 𝑚𝑖, where N is the total sample size, 𝑁 = ∑ 𝑛𝑖

𝐼
𝑖=1 . 

Comparisons of each centers parameter mi to the GM m. can then be written as a set of 

k=1,…,K linear contrasts, with contrast coefficients 𝑐𝑘 = (𝑐𝑘1, 𝑐𝑘2, 𝑐𝑘3, … , 𝑐𝑘𝐼): 
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The deviation of the kth center from the GM can then be written as: 

𝑑𝑘 = 𝑚𝑖=𝑘 − 𝑚. = ∑ 𝑐𝑘𝑖𝑚𝑖

𝐼

𝑖=1

 

Written in this way, the comparisons to GM are a special case of the framework of testing 

general linear hypotheses(21). In this framework it is possible to perform hypotheses tests 

adjusted for multiple comparisons and to compute simultaneous confidence intervals for 

the parameters defined by the contrasts. 
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In this application, it can be of interest to test the null hypothesis that no center deviates 

from the overall mean, 

𝐻0: 𝑑𝑘 = (𝑚𝑖=𝑘 − 𝑚.) = 0, for all k=1,…K, 

versus the alternative hypothesis that at least one center deviates from the overall mean, 

𝐻𝐴: 𝑑𝑘 = (𝑚𝑖=𝑘 − 𝑚.) ≠ 0, for at least one k=1,…K. 

In some cases, a test decision concerning a significant deviation might not be of interest. 

Like in tests on equivalence, objective can be to infer whether single centers do not show 

a relevant difference from the overall mean. In this case, a prior definition of relevant 

deviations or equivalence margins,[−𝛿, 𝛿], has to be specified based on subject 

knowledge. Then, it can be inferred whether the upper and lower confidence limits for 

each center’s deviation dk are included in this range or not.  

For the full details of computing p-values of the above hypothesis tests and simultaneous 

confidence intervals, we refer to Hothorn et al. (2008)(21). The most important steps from 

Hothorn et al. (2008) are outlined below. Stacking the k=1,…,K vectors of contrast 

coefficients, ck, yields a contrast matrix C with K rows and I columns. Fitting linear or 

generalized linear models yields a vector of estimates of the model parameters with 

elements �̂�𝑖, �̂� = (�̂�1, �̂�2, �̂�3, … , �̂�𝐼)𝑇 and the corresponding estimated variance-

covariance matrix of model parameters, �̂�. Estimates for the deviations of centers from 

the GM are then �̂� = 𝐶�̂�, the corresponding variance-covariance matrix of these 

deviations is �̂� = 𝐶�̂�𝐶𝑇 , where T denotes a transposed vector or matrix. The estimated 

variance of the elements �̂�𝑘 in �̂� = (�̂�1, �̂�2, �̂�3 … , �̂�𝐾) are the diagonal elements of �̂�, �̂� =

𝑑𝑖𝑎𝑔(�̂�), with elements �̂�𝑘. Their square roots are then the estimated standard errors of 

the �̂�𝑘, that is, 𝑠�̂�(�̂�𝑘) = √�̂�𝑘. Finally, the estimated correlation matrix �̂� of 

(�̂�1, �̂�2, �̂�3 … , �̂�𝐾) follows from standardizing the matrix �̂� with its diagonal elements √�̂�𝑘 . 

Tests of the hypotheses presented above are then based on the test statistics 𝑡𝑘 =
�̂�𝑘

𝑠�̂�(�̂�𝑘)
, 

the corresponding adjusted p-values are computed from a multivariate t distribution (or 

asymptotically from a multivariate normal distribution) with correlation matrix �̂�, for 

linear models or generalized linear models, respectively. 
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Simultaneous confidence intervals for each center’s deviation from GM, �̂�𝑘, can be 

computed using the formula 

[�̂�𝑘 ± 𝑞1−𝛼,𝑡𝑤𝑜−𝑠𝑖𝑑𝑒𝑑,�̂�𝑠�̂�(�̂�𝑘)]=[(�̂�𝑖=𝑘 − �̂�.) ± 𝑞1−𝛼,𝑡𝑤𝑜−𝑠𝑖𝑑𝑒𝑑,�̂�𝑠�̂�(�̂�𝑖=𝑘 − �̂�.)] 

where 𝑞1−𝛼,𝑡𝑤𝑜−𝑠𝑖𝑑𝑒𝑑,�̂� is the two-sided equicoordinate (1-𝛼) quantile of multivariate t or 

multivariate normal distribution, respectively. For further details of computing adjusted 

p-values and quantiles of multivariate t and normal distributions, we refer to Genz and 

Bretz (2009)(22). 

For a thorough data interpretation, merely relying on rejection/non-rejection at one 

significance at level, say 0.05, or merely relying on the presented p-values is discouraged 

(e.g. ASA statement on p-values, Wasserstein & Lazar,2016)(23). Rather, estimated effects 

(here, deviations from grand mean) and the corresponding confidence limits should be 

displayed and used for interpretation: Then, the relevance of observed effects can be 

assessed, or, non-inferiority or equivalence can be assessed based on inclusion of 

confidence limits in pre-specified equivalence margins for the corresponding parameter. 

 

Response variables  

Continuous outcomes 

Continuous data may follow the normal distribution, possibly after a suitable data 

transformation to achieve normality and homogeneous variances. It can then be analyzed 

by the model used in 1-way analysis of variance 

𝑌𝑖𝑗  ~ 𝑚𝑖 + 휀𝑖𝑗    ,    휀𝑖𝑗 ~ 𝑁(0, 𝜎2) 

Here, 𝑚𝑖 is the expected value of center 𝑖. In this case, the above multiple comparison 

procedure is well established and exact. In case of continuous outcomes which are in 

contradiction to normality before and after transformations, a non-parametric method is 

described in section 3.3.3 as an alternative. 

Binomial outcome 

The number of events 𝑌𝑖  is assumed to follow a binomial distribution in which 𝜋𝑖  is the 

event probability in a center i.  

𝑌𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖 , 𝜋𝑖) 
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For binomial data, we will assume that a generalized linear model (glm) is fitted with the 

canonical logit link:  

𝑚𝑖 =  log(
𝜋𝑖

1 − 𝜋𝑖
) 

Thus, comparisons to GM will be performed on the logit scale(24). 

Excess 0s in binomial data 

Fitting a classical generalized linear model for binomial data with zero excess 𝑌𝑖 = 0 

successes/failures is a common problem in different scientific fields such as clinical trials 

and toxicological experiments(25). As soon as 𝑌𝑖 = 0 in one or several centers, numerically 

𝑚𝑖 = log(
𝜋𝑖

1−𝜋𝑖
) becomes very small and 𝑠𝑒(𝑚𝑖) will be very large. Several alternatives are 

available to avoid extreme 𝑠𝑒. In the next subsection we consider two alternatives, a 

Bayesian linear model(26) and the Bias-reduced generalized linear model(27).  

Estimators and models assumptions 

Bayesian generalized linear models (BayesGLM) for binomial endpoint. 

The first approach we consider for dealing with zero excess binomial data 𝑌𝑖 = 0 in one 

or several centers is a Bayesian linear model with non-informative priors. Gelman et al. 

(2008) used scaled Cauchy distributions as priors for each model parameters that 

estimate effects, e.g. differences on the logit scale. Cauchy priors for a model parameter 

entail the assumption that extreme center effects on the logit scale are implausible. Prior 

assumptions for a baseline risk or control group allows a wider range such that 10−9 < 

log(𝜋𝑖/1 − 𝜋𝑖) < 1 − 109 (Gelman et al. 2008)(28). Prior assumptions on parameters 

impose a restriction on the parameter estimation; this prevents that estimated parameter 

from becoming extreme and thus prevents the standard error from becoming extreme as 

well. 

Bias-reduced generalized linear models (BrGLM) for binomial endpoint. 

A second option to account for binomial data with 0 excess  observations 𝑌𝑖 = 0 in one or 

several centers is a bias reduced glm(26). In this approach, the iteratively reweighted least 



55 

square algorithm used for fitting generalized linear models is modified by adding pseudo-

observations depending on the estimated parameters, such that bias is reduced 

iteratively(29). This approach always leads to finite estimates of the logits mi, and of its 

related variance covariance matrix �̂�, such that computation can proceed as described in 

earlier sections. For the computational details we refer to Kosmidis and Firth, 2009(27), 

and Kosmidis and Firth (2021)(29). 

Non-parametric approach for multiple comparisons (Nparcomp) for continuous 

and ordinal endpoints. 

Konietschke et al. (2012) proposed a non-parametric procedure to perform general 

multiple contrast tests between several samples without relying on assuming any specific 

distribution for the data 𝑌𝑖𝑗(30). Very briefly, they assume that the data are independent 

realizations 𝑌𝑖𝑗~𝐹𝑖 , where the 𝐹𝑖  denote, in our context, the distributions in centers 𝑖 =

1, … , 𝐼. These distribution functions need not to be explicitly specified, they may differ 

between centers, including cases like heteroscedastic data, or different levels of 

skewedness between centers. Their procedure further allows 𝑌𝑖𝑗 to be heavily tied data, 

including ordinal data, such as disease severity scores. The comparisons between centers 

rely on the generalized relative effects 𝜋𝑖 , which are defined as the probability that 

observations from center 𝑖 is lower or equal than an observation from the average 

distribution 𝐺 resulting from the averaging 𝐹𝑖  across all centers. Applying the above 

contrast matrix C allows to compute adjusted p-values for the deviations of centers from 

the average as well as simultaneous confidence intervals, again using multivariate-t- (or -

normal-) distribution for the test statistics derived from the generalized relative effects. 

For full computational details we refer to Konietschke et al. (2012). 

The method of Konietschke et al. (2012) is an asymptotic one, in other words the control 

of type-I-error for small samples is unclear. Specifically, Konietschke et al. (2012) state 

that convergence to normality is slow, especially for many groups (i.e. centers) and small 

sample sizes. Their simulation study only includes cases with 𝑖 = 3, 4, 5 groups, and only 

mildly unbalanced sample sizes. Moreover, their simulation study involved only 

continuous data, while results for highly discrete ordinal data were not shown. In 

application to real data with ordinal variables, we observed simultaneous confidence 

intervals indicating quite clear deviations from the null hypotheses, when sample sizes 
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were extremely small. We therefore ran additional simulation studies specifically tailored 

for the applications described in this paper.  

Simulation Study 

A Monte Carlo simulation study was performed to assess the control of type I error (𝛼), 

the probability to reject  𝐻0 for at least one center if no center deviates from GM in which 

𝐻0: 𝑚𝑖 − 𝑚. = 0,  and the power (1 − 𝛽) against an alternative hypothesis 𝐻𝐴: 𝑚𝑖 − 𝑚. ≠ 

0 for each method applied on its respective data type, the power represents the 

probability to reject  𝐻0 for at least one center if 𝐻𝐴is true for at least one center. Both 

GLM and Nparcomp are valid asymptotic methods that require large sample sizes; 

however, we are interested in their performance under small and unbalanced sample 

sizes. Since GLM has computational problems when 𝑌𝑖 = 0, it is additionally compared to 

the alternative approaches (BayesGLM and BrGLM) under same settings. Here, power 

comparisons are of special interest as the three approaches handle the case of 𝑌𝑖 = 0 

differently. Nparcomp is also assessed when applied to ordinal data with few categories 

and small sample sizes.  Ordinal outcome was simulated from normally distributed data 

which was then round to 0 digits to create discrete ordinal data. 

Simulations were run for balanced and unbalanced designs with varying parameter 

settings: 𝐼 = (5, 10) for number of centers in a trial, subjects per center varied between 

balanced and unbalanced scenarios of  𝑛𝑖𝑗  = (2, 3, 4, 5, 6, 10, 20, 40, 50, 80, 100, 150, 200, 

…., 4000). Complete list of parameter settings for all simulations are available in the 

supplementary material. The 𝑛𝑖  in power simulations for unbalanced designs, deviating 

center constantly had half the number of observations as in other individual centers for 

covered scenarios, some additional scenarios where run for extreme small  𝑛𝑖  in deviating 

center. For continuous and ordinal power simulations, the true difference between 

means (𝛿) were chosen such that for a given sample size a power of 80% is achieved in a 

two-sample t-test thus one center had a 𝛿 deviating from other centers. As for binomial 

power simulations, the success proportions of centers were chosen such that for a given 

sample size, a power of 80% is achieved in a two-sample proportion test, consequently, 

centers had a different success proportion from deviating center. For each parameter 

setting, a number of 1000 datasets were generated and tested by each method. Note that, 

with 1000 simulation runs to estimate the type I error, the standard error of an estimated 
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type I error is ≈ 0.007 and 95% of simulation results are expected in the range 

[0.036, 0.063 ] if a method accurately controls type I error at 𝛼 = 0.05.  

Software and packages 

All simulations were performed in R, version 4.0.5. Implemented methods Linear Model, 

Generalized Linear Model, Bayesian Generalized Linear Model, Bias Reduction in Binomial 

response Generalized Linear Models and Non-parametric multiple comparisons are 

available in R-packages stats v4.0.5(31) (R-core Team), arm v1.11-1(32), brglm v0.6.2(33) 

and nparcomp v3.0(34) respectively. To compute GM contrasts, “multcomp” package was 

used(35). 

Results 

This section shows the results of the simulation study. We describe first the results of the 

type I error control simulations and then the results of power simulations in comparison 

contrast to the GM. 

Simulations of type I error: 

The simulations of type I error for all methods are shown in Figure 2. For a binomial 

outcome, Figure 2a shows the experimental setup used for a balanced design. Simulations 

show as the sample size per center N increases with increasing success probability of a 

certain response variable, the more a 5% rejection rate is achieved. For events with a low 

expected number of events (𝑛𝑖𝜋𝑖) all three methods tend to show 𝛼 below the nominal 

level. While for unbalanced designs, Figure 2b shows no difference between the three 

methods.  In extreme settings however, i.e. centers having a smaller number of patients 

compared to other centers that have a smaller success probability of a certain response 

variable, the methods appear to be conservative in achieving a 5% rate. For continuous 

outcomes, Figure 2c and Figure 2d show the simulations of linear model as a comparator 

to the non-parametric approach for balanced and unbalanced experimental design 

respectively. As anticipated, the non-parametric method shows increased type I error for 

small sample sizes (3, 5, 10). A linear model is known to control the familywise type I 

error rate, the purpose of this comparison is to show the ability of the non-parametric 

method to control the type I error similarly to the linear model, specifically for extreme 

settings. For extreme settings such as centers with <10 patients per center, the non-
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parametric method rejects up to 10% for balanced designs, however its control is sounder 

for unbalanced designs for all covered scenarios. For ordinal outcome, Figure 2e and 

Figure 2f show the simulations of the non-parametric method for balanced and 

unbalanced experimental designs respectively. Similarly, to the continuous outcome, for 

centers having <10 patients the control of type error reaches to 18% for balanced designs 

and is maintained for all scenarios of unbalanced designs. Additional simulations with 

5000 runs were performed for the non-parametric method with the same settings, similar 

type I error control is observed to the 1000 runs (Supplementary figure 1).  

[Figure 2 insert here] 

Power simulations: 

The power simulations for all methods are shown in Figure 3. For a binomial outcome, 

Figure 3a and Figure 3b show the experimental setups used for balanced and unbalanced 

designs respectively. Methods show power increase as sample size per center N and 

success probability increase. Furthermore, BayesGLM is superior in power for small 

sample sizes relative to GLM and BrGLM, while controlling the type I error. Therefore, we 

recommend the use of Bayesglm for binomial outcomes that might contain rare events 

(𝑌𝑖 = 0). For continuous outcome, similarly, to type I error simulations linear model was 

chosen as comparator to the non-parametric method. Figure 3c and Figure 3d show 

power simulations of both methods for balanced and unbalanced scenarios respectively. 

Both methods achieve greater power for balanced designs than unbalanced ones. 

Additionally, the Non-parametric method has a trivial decrease in power compared to the 

linear model in all scenarios. Power rather decreases to ~50% for both methods in 

extreme settings of having small 𝑛𝑖  per center. For ordinal outcome, Figure 3e and Figure 

3f show the power simulations of the non-parametric method for balanced and 

unbalanced experimental designs respectively. For balanced designs as the 𝑛𝑖  per center 

increases the power of the non-parametric method increase as well. Power decreases 

substantially for extreme settings of having small 𝑛𝑖  per center in which it reaches a 

maximum of 35%.  

[Figure 3 insert here] 
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Application to the GMSR dataset: 

We illustrate the proposed methods (except GLM and BrGLM as they show inferiority to 

BayesGLM) by the analysis of GMSR data. Methods were implemented on the 

corresponding variable type as appropriate. Figure 4 shows simultaneous confidence 

intervals of the deviations of the 15 centers from GM, for continuous, binary, and ordinal 

outcomes.  

The Non-parametric method was applied on the age at onset variable (Figure 4a), C9 

shows a cohort relatively smaller than GM of other centers, whereas C12 shows a cohort 

larger than the GM. In both cases, it is not a foremost observation for the GMSR data as it 

does not have a specific inclusion criteria for age onset of patients. However, it could be 

imperative for clinical trials as they do have a detailed inclusion criterion. A binary 

variable was derived presenting a missing input of the age at onset variable for each 

patient (Figure 4b). C3 shows that it has 149 patients, however 41 of them do not have 

age onset information, although it’s not uncommon to have missing data for some 

variables, C3 shows a higher average than the GM. C12 and C13 have a similar pattern to 

C3 where both have a higher mean than the GM. While C7 has only five patients with 

missing information out of 460 patients, it shows a smaller mean for missing information 

than the GM of other centers. In other words, C7 signifies a superior documentation for 

age onset than other centers. Another binary variable presenting adverse events (per 

patient) reported per center is presented in figure 4c. C1, C2, C3 and C5 show higher 

proportions of adverse events reported than the GM of all centers. Looking in more detail 

into the AEs documented, C3 reports COVID-19 vaccination reactions as adverse events. 

This shows a clear example of how centers could perform differently from other centers. 

The results could indicate the need for stakeholders to approach under reporting centers, 

in other words it would point the centers that have a significantly smaller average than 

the GM. Finally Figure 4d shows the contrasts of the centers EDSS measurements to the 

GM. It shows how center’s cohort disease severity for the specific center is different. C4, 

C7 and C14 show significantly higher EDSS measurements than the GM, while C1 and C15 

show a smaller one. These results may alert stakeholders to further investigate the 

reasons for such differences. Particularly for C7, as it includes a cohort with higher disease 

severity than average and yet they report fewer adverse events. 

[Figure 4 insert here] 
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Discussion 

In this paper we present methods and their implementation to detect center(s) that differ 

from GM of other centers for a specific variable. The utilization of these procedures serves 

the aim of CSM in performing data quality checks to improve data integrity. It also 

minimizes the costs of data monitoring and improves their quality. We were able to show 

how different statistical methods can be implemented to identify centers in multi-center 

trials or registry data that might need additional training or is a candidate for on-site 

monitoring visits. The approach allows the recognition of centers that are significantly 

deviating from the average. This would eventually enable the monitoring teams to point 

their attention to problematic sites. 

The three methods investigated for Binomial data never strongly exceed type I error. 

Nevertheless, BayesGLM is superior to GLM and BrGLM in detecting a deviating center 

when 𝑛𝑖𝑗 < 50. The fact that all three methods tend to be too conservative for small 

sample sizes and rare events resembles similar problems found for other binomial 

methods: Due to the discreteness of binomial data, various methods are reported to be 

either over-conservative or liberal depending on the specific method and parameter 

configuration (36–38). The non-parametric method has harsh violations of the type I error 

control; especially for 𝑛𝑖𝑗 < 10, and ordinal data.  In other words, the non-parametric 

method can be applied for clinical trials and registries where centers do not have a 

relatively small sample size, i.e., centers should have at least 10 patients to identify a true 

deviation. Our results show that the non-parametric method may result in an increased 

rate of falsely detecting deviating centers, when sample sizes are small. In some cases, an 

alternative would be to choose a suitable data transformation followed by application of 

parametric methods. However, in other cases, like contamination with outliers, bi- or 

multi-modal distributions, transformation may not settle the problems and non-

parametric methods may still be the best choice. Further, it should be noted that the 

simulation studies in this paper are not suitable for fairly comparing non-parametric with 

parametric methods, because situations where non-parametric methods may outperform 

parametric approaches have not been involved. 

Desmet et al. (2014, 2017) proposed alternative approaches to detect deviating centers, 

with differing assumptions(18,19). They assume that some variability between centers 
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has to be expected and is not of concern, particularly if the number of centers is large. 

Consequently, they focus on detecting the deviations of a small proportion of 

contaminated centers from the distribution of the large majority of centers. They cover 

the important cases of continuous data under the additional 

assumption of normally distributed center means in a mixed effect model(18), and of 

binomial data with the assumption of beta distributed variability between centers(19). 

Conversely, the models underlying the methods in this paper make no assumptions on the 

distribution of center means and are currently available for a wider range of model types 

and distributional assumptions for the data, including the non-parametric approach. 

However, this comes at the price of overfitting and possibly flagging more deviating 

centers than necessary in cases where variability between centers is allowed, particularly 

in trials involving a large number of centers. Further research is needed to investigate the 

approach practically for large multicenter clinical trials covering 20-100 centers with 

many being very low recruiters. 

As Buyse et al. (2020) indicates, the power of a statistical approach lays in performing 

statistical tests on all variables. This would lead into many numbers of tests conducted 

and thus the need to combine their conclusions(39). For this reason, a scoring system for 

an individual center could be further developed for the assessment of the individual data 

type with appropriate method. Parameters of the scoring system must be individually 

weighted by stakeholders. Although clinical trials and registries are similar in many 

aspects, a robust scoring system must be adaptable to consider their differences(40,41). 

For example, the inclusion criteria of patients differ between both systems. The deviations 

found in clinical trials are relatively smaller than in registry data as the latter usually have 

less strict inclusion criteria. Alternatively, it is possible to assess each center for how many 

variables it has been flagged for and treat it as a binomial measure to finally compare the 

actual number of how many variables are differing from other centers (see 

Supplementary Table 1). In other situations, expert knowledge in the CSM team may be 

used to assess what level of deviations is still acceptable for what variable. The proposed 

methods are then a statistical tool to assess which centers are within or outside such a 

range of acceptable deviations for a given variable. In such situations, a method that 

automatically processes all variables might not be desirable. 
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Several straightforward extensions of the approach are available. First, in some situations, 

it might be known that some centers differ from others. For example, centers located at 

well-known university hospitals might differ in frequencies of disease severity scores 

from centers at smaller, local hospitals. This again might lead to differences between 

distributions or summary statistics of several further variables. If it is desired to account 

for such expected differences between centers, the comparisons to GM can be stratified 

by the type of center. Alternatively, variables that are known to reflect such expected 

differences between centers can be included as covariates into (generalized) linear 

models, such that the comparisons between centers are performed while accounting for 

the effect of the covariates. Second, there are several variable types for which 

comparisons to GM can be performed but are not mentioned in detail in this paper. 

Ordinal data like disease severity scores can be analyzed by cumulative link models(42) 

with centers (and possibly further covariates) as explanatory variables, such that the 

tendency to show higher or lower scores can be compared between centers. Additional 

approaches for ordinal data such as ordered categorical regression and multinomial 

models for nominal data are available. Time-to-event data or survival times are abundant 

in clinical trials, and multiple comparisons can be performed for such data, because the 

cox model as well as Weibull models for survival time are special cases of the framework 

implemented in the multcomp package(21). Moreover, skewed continuous data can be 

modelled in generalized linear models assuming exponential, gamma, or inverse Gaussian 

distribution. Several types of heteroscedasticity can be modelled by generalized least 

square models. Again, for these model types, comparisons to grand mean can be 

performed using the multcomp package. Further research is needed to assess the 

performance of these extensions for limited sample sizes for the investigated approach. 

Currently methods are scattered between different packages in R. We provide an easy to 

use and interactive graphical user interface for the two methods BayesGLM & Nparcomp 

as two separate shinyapps, https://central-statistical-

monitoring.shinyapps.io/BayesGLM-GM/ and https://central-statistical-

monitoring.shinyapps.io/Nparcomp-GM/.Users can upload their datasets to compute 

comparisons to GM, and graphically represent simultaneous confidence intervals for 

contrasts of center means with GM. We plan to introduce a universal form of the methods 

demonstrated in a standard R package to tackle different data types easing their 

implementation and drawing respective decision charts for the benefit of CSM. Central 

https://central-statistical-monitoring.shinyapps.io/BayesGLM-GM/
https://central-statistical-monitoring.shinyapps.io/BayesGLM-GM/
https://central-statistical-monitoring.shinyapps.io/Nparcomp-GM/
https://central-statistical-monitoring.shinyapps.io/Nparcomp-GM/
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statistical monitoring serves the core purpose of monitoring goals. It facilitates the 

detection of deviating centers that are not likely due to chance. This would eventually 

support monitoring teams to initiate an onsite visit and target their activities. 
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Age of onset (Median, Quan�les) 30.25 (23.42, 38.42) 

Missing Age of onset 153 (8.1%) 

Gender 

Females 1356 (72%) 

Males 538 (28%) 

Adverse Events reported 

Number of Adverse events reported 232 

 Number of pa�ents experiencing 
Adverse evenets 

183 

Disease Course (at last visit) 

RRMS 1623 (86%) 

SPMS 237 (13%) 

KIS 15 (0.8%) 

Unknown 19 (1) 

Table 1: Basic and clinical characteriza�on of pa�ent’s part of pharmacovigilance 
module in the GMSR data.  
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Figure 1: GMSR data strati�ed by center for four variables A-D. (A) Violin plot including kernel density estimates of age at disease onset indicating possible violations of normality. (B) Patients with missing age onset (%). (C) Reported number of 
patients having adverse events (%). (D) Histograms of disease severity (EDSS) for patients at latest visit.



 
Figure 2: The probability of falsely rejecting the null hypothesis for at least one center as a function of sample size for each method applied on relevant response
 outcome for balanced (left panel) and unbalanced designs (right panel). The nominal type I error rate (α=0.05) is shown as a horizontal line. BayesGLM Bayesian 
Generalized Linear model, BrGLM Bias-reduced Generalized Linear Model, GLM Generalized linear Model. 



Figure 3: The probability of rejecting at least one null hypothesis (1-β) as a function of sample size for each method applied on relevant response outcome for balanced

horizontal line. BayesGLM Bayesian Generalized Linear model, BrGLM Bias-reduced Generalized Linear Model, GLM Generalized linear Model.
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Figure 4
variable of missingness of the age at onset followed by contrasts of center mean towards GM. (C) Fitting a BayesGLM for AEs as binary variable followed by contrasts of center mean and GM. (D) Ordinal variable of disease severity (EDSS) comparison
for each center to the GM using the non-parametric method. BayesGLM Bayesian Generalized linear model, AE Adverse events, *** signi�cant p < 0.05. 



 

 

Supplementary �gure 1: The probability of falsely rejecting the null hypothesis for at least one center as a function of sample size for each method applied 
on relevant response outcome for balanced (left panel) and unbalanced designs (right panel). The nominal type I error rate (α=0.05) is shown as a horizontal line. 
Dotted blue lines indicate error margins for simulations with 5000 runs. Simulated type-I-errors falling outside [0.044; 0.056] indicate a signi�cant deviation from 
the prespeci�ed level alpha=0.05).  



Age onset Age 
onset 

missing 

Adverse 
events 

Disease 
severity 

Total 
variables 

flagged for 
C1 0 0 1 1 2 

C2 0 0 1 0 1 

C3 0 1 1 0 2 

C4 0 0 0 1 1 

C5 0 0 1 0 1 

C6 0 0 0 0 0 

C7 0 1 0 1 2 

C8 0 0 1 0 1 

C9 1 0 0 0 1 

C10 0 0 0 0 0 

C11 0 0 0 0 0 

C12 1 1 0 0 2 

C13 0 1 0 0 1 

C14 0 0 0 1 1 

C15 0 0 0 1 1 

     Supplementary Table S1: Summarized table for flagged variables in each center 
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