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Zusammenfassung

Die  Regulierungsbehorden haben die Verwendung eines risikobasierten
Monitoringsystems (RBM) in klinischen Versuch geférdert. Die risikobasierte Monitoring
beinhaltet neben der Identifizierung moéglicher Risiken auch deren Bewertung , um eine
gezielte Monitoring zu ermoglichen. Risiken sind dabei definiert als Gegebenheiten, die
die Sicherheit der Patienten und die Integritit der Studie beeintrachtigen konnten.
Verschiedene Studien haben gezeigt, dass RBM in der Praxis zunehmend eingesetzt wird.
Die Anwendung der zahlreichen verfiigharen RBM-Instrumente wurde jedoch nicht
untersucht. Die zentrale statistische Monitoring (CSM), die unter die FernMonitoring des
RBM-Systems fallt, hat ebenfalls an Aufmerksamkeit gewonnen, da ihre Effizienz bei der
Monitoring klinischer Studien anerkannt wurde. Diese Dissertation widmet sich der
Verbesserung der Qualitdtsbewertungen im risikobasierten Monitoring und im zentralen
statistischen Monitoring.

Das erste Kapitel der Dissertation gibt einen Uberblick iiber die klinische Forschung und
die Arten von klinischen Studien. Dariiber hinaus wird speziell auf die klinische
Forschung in klinischen Versuch eingegangen. Es werden die verschiedenen Arten von
klinischen Versuch dargestellt, gefolgt vom Managementprozess der Versuch und den
Monitoringsaktivitiaten. In Abschnitt 2.1 werden die Grenzen der derzeitigen RBM-
Instrumente aufgezeigt. Es wird gezeigt, wie unterschiedlich eine Risikobewertung der
Ergebnisse einer klinischen Versuch ausfallen kann, wenn sie mit verschiedenen RBM-
Instrumenten bewertet wird. Dartiiber hinaus zeigt dieser Abschnitt die verschiedenen
Risiken auf, die von den RBM-Instrumenten abgedeckt werden. Es wird deutlich, dass ein
Risikobewertungsinstrument bendtigt wird, das jedes Risiko in einer klinischen Versuch
abdecken kann. Daher wird in Abschnitt 2.3 eine neue Risikomethodenbewertung (RMA)
vorgeschlagen, die auf jede klinische Versuch angewendet werden kann und die
Moglichkeit bietet, zusatzliche Risiken in die Bewertung aufzunehmen. Es wird eine
Bewertungsmethode vorgestellt, die es den Beteiligten ermdglicht, das Ausmafi eines
Risikos zu visualisieren und zu quantifizieren. Dies kann die Beteiligten leiten und ihnen
bei der Entscheidungsfindung helfen, ein bestimmtes Risiko durch eine wirksame
Mafdnahme zu mindern und es zu iiberwachen. Der theoretische RMA-Ansatz wird in
einer Web-App mit einer benutzerfreundlichen Schnittstelle prasentiert, um seine
Umsetzung in der Praxis zu erleichtern. In Abschnitt 2.4 wird ein neuer Ansatz zum
Nutzen von CSM vorgeschlagen. Er stellt Mehrfachvergleiche der Mittelwerte einzelner
Zentren mit dem grofden Mittelwert aller Zentren vor. Der Ansatz ist bereits verfiigbar
und wurde in verschiedenen Kontexten angewandt. Hier wird seine Anwendung
vorgeschlagen, um ein auffalliges Zentrum zu erkennen. Da der Ansatz fiir verschiedene
Datentypen verfligbar ist, wird speziell der Vergleich fiir kontinuierliche, binomiale und
ordinale Datentypen gezeigt. In einer Monte-Carlo-Simulationsstudie werden
verschiedene Modelltypen, die GM-Vergleiche schatzen, auf die Kontrolle des Typ-I-
Fehlers und die héchste Power fiir ausgeglichene und unausgewogene Szenarien getestet,
die in klinischen Studien und Beobachtungsstudien beobachtet werden. Auferdem wird
die Validierung des Ansatzes anhand von Real-World-Daten (RWD) aus dem Deutschen
Multiple-Sklerose-Register (GMSR) gezeigt. Schliefilich wird der Ansatz in Form von Web-
Apps vorgestellt, um eine gemeinsame grafisch dargestellte Schlussfolgerungl fir
unterschiedliche Endpunkte zu erméglichen.
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Abstract

Regulatory authorities have encouraged the usage of a risk-based monitoring (RBM)
system in clinical trials. In addition to the identification of possible risks, risk-based
monitoring also includes their evaluation to enable targeted monitoring. Risks are defined
as conditions that could affect patient safety and the integrity of the study. Various studies
demonstrated the increasing usage of RBM in practice. The application of the many RBM
tools available has not been investigated. Central statistical monitoring (CSM) which falls
under the remote monitoring of the RBM system has also been gaining more attention due
to the recognition of its efficiency in monitoring clinical trials. This dissertation is
dedicated to improving the quality assessments in risk-based monitoring and central
statistical monitoring.

The first chapter of the thesis provides an overview of clinical research and the types of
clinical studies. Furthermore, it specifically focuses on clinical research structure,
management, and activities in clinical trials. The different types of clinical trials are
illustrated, followed by the management process of the trial and monitoring activities.
Section 2.1 highlights the limitations of the current RBM tools. It shows how different an
outcome risk assessment of a clinical trial can be when assessed with different RBM tools.
Furthermore, this section shows the different risks covered within RBM tools. It shows
the need for a risk assessment tool that can cover any risk in a clinical trial. Hence section
2.3 proposes a new risk methodology assessment (RMA) that can be applied to any clinical
trial with the ability to add additional risks to the assessment. It presents a scoring
method that allows stakeholders to visualize and quantify a risk size. This would guide
stakeholders and assist them in the decision plan for mitigating a certain risk by an
effective measure and monitoring degree in the monitoring plan. The theoretical RMA
approach is presented in a shiny web app with a user-friendly interface to ease its
implementation in practice. Section 2.4 proposes a new approach for the benefit of CSM.
[t presents multiple comparisons of individual center means to the Grand Mean of all
centers. The approach is available and has been applied in different contexts. Here its
implementation to detect a deviating center is recommended. As it is available for
different data types, it shows specifically the comparison for continuous, binomial, and
ordinal data types. In a Monte-Carlo simulation study, different model types estimating
GM comparisons were tested for the control of Type I error and the highest power for
balanced scenarios and unbalanced scenarios observed in clinical trials and observational
studies. It also shows the validation of the approach on Real-world data (RWD) from the
German Multiple Sclerosis Registry (GMSR). Finally, the approach is presented in shiny
web apps to facilitate a common graphical conclusion style for different endpoints.
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Chapter 1

Introduction

1.1 Clinical Studies

1.1.1 Types of clinical research
Clinical studies involve research carried out on human participants to enrich medical
knowledge (Food and Drug Administration, 2019). Various types of clinical studies exist
(Collier, 2009; Food and Drug Administration, 2018; Fortwengel, 2011). Based on the
objective of the study, the type is determined. The National Institute of Health (NIH)
classifies clinical studies into two types clinical trials and observational studies (National

Institute of Health, 2019).

Research carried out on human beings investigating an intervention is referred to as
Clinical trials (M. Friedman et al., 2015). They present the primary way in which
researchers determine if a new drug or a medical device is both safe and effective
(National Institute on Aging, 2020). They are the golden standard for answering a specific
research question (Shamley & Wright, 2017), specifically, they answer questions about
health and illness (UK Clinical Research Collaboration, 2014). Clinical trials are the best
way to determine whether a treatment works for a specific disease. Furthermore, they
inform researchers whether the investigated treatment can be an alternative option to a
standard treatment. (e.g., not being effective in some people or causing side effects)
(American Cancer Society, 2020). The type of intervention could be an investigational
medicinal product (IMP), a new medical device, or a new approach to surgery/therapy
(Food and Drug Administration, 2018). While observational studies do not involve any
sort of intervention (Song & Chung, 2010). Similar to clinical trials, observational studies
do involve human participants, however, there is no direct intervention (Gilmartin-
Thomas et al.,, 2018). A distinguishing characteristic is that the intervention is determined

by clinical practice and not through a study protocol (Thiese, 2014; Yang et al., 2010).



1.1.2 Overview of Clinical Trials
Clinical trials are regulated through specific guidelines to ensure the rights, safety, and
well-being of trial participants are protected and the reported results are reliable
(European Medicines Agency, 2018). Good Clinical Practice (GCP) is an international
ethical and scientific guideline used as the primary standard for the conduct of clinical
trials developed by the International Council for Harmonization of Technical
Requirements for Registration of Pharmaceuticals for Humans (ICH) in 1996 (Imperial
College Clinical Research Governance Office, 2007). Since its establishment, it has been
modified to tackle unclear, inconsistent, and contradictory definitions (Landray et al.,
2017). These guidelines are under continuous improvement regarding their ethical and

regulatory challenges (Bhatt, 2010).

The new intervention examined in a clinical trial must pass through several phases. Each
phase answers a specific research question regarding the safety and efficacy of the
intervention. Figure 1 shows the goals and the study participants required in each phase
the IMP must pass through before receiving market approval from regulatory authorities
such as the EMA or the FDA (National Institute of Health, 2015; Umscheid et al., 2011).
Clinical trials involve an intervention according to a protocol established by clinical
investigators. Accordingly, each trial has a specific protocol detailing the study objectives,
design, and organization of the trial phase(Chan et al., 2013; Jones & Abbasi, 2004; Rivera
et al., 2020).

.~ InvestigationalNewDrug

+ Goal: studies the R AR AR AVE MMMMMMM
tolerability of m mm m M m m NM NM ’M‘M ’M‘

the IND ee 00 00 o0 00 o0 oo

« Participants: 20- m mm m‘ IM\ 'm m m m m Mﬂ ﬂ M
subjectf;)healthy « Goal: dose-finding e o9 *ee 09 NM M m MM m
concept of the IND N m m M m m
+ Participants: 100- + Goal: studies the efficacy and m m M M
I;OO : dose-finding while ensuring M 'M‘ m ’M
subjects/patients the safety of the IND ]
+ Goal: studies the long term

* Participants: 1000-3000 safety and efficacy of the NDA

subjects/patients
+ Participants: 1000+
subjects/patients

Figure 1: Structural differences and goals of clinical trial phases.



1.2 Clinical trial management

1.2.1 Clinical trial team
The clinical trial team is one of the most essential factors for the conducted trial. All
clinical trials require a team of people with specific qualifications to perform their
corresponding tasks. Members can come from a wide range of skills and expertise.
Throughout the complete trial period, the team must follow the protocol of the trial and
the GCP standards (World Health Organization, 2005). A clinical trial team consists of
sponsors, principal investigators, study coordinators, biostatisticians, and data managers.
Additional individuals such as nurses and pharmacists could be part of the trial team
depending on the trial requirements (Baer et al., 2011; Canter & Lewis, 2014). The
responsibilities and duties of individuals vary based on their role in the trial. Figure 2
shows the major tasks performed by each research team member. Ensuring the well-
being and safety of participants is a common task for all team members from the moment
the trial starts till the end, in some cases also the post-trial period. (e.g., follow-up visits)

(Fortwengel, 2004).

Figure 2: Main responsibilities of clinical trial team members.

1.2.2 General activities in a clinical trial
Trial activities start from the first-day stakeholders decide on running a clinical trial. The
sponsor develops the trial protocol detailing the specifics of how the study will be
conducted (ICH, 2016). All team members of the trial participate in the protocol

development in which they contribute to the section related to their expertise e.g., a



biostatistician calculates the power and the sample size of the trial as well as determines
and implements the statistical methods to detect a true difference between treatment
groups (Ellen van Bavel, 2016). Following protocol development, a feasibility report is
established for recruiting study center(s) in the trial. The clinical research associate (CRA)
conducts interviews with the potential clinical investigator(s) from the study center(s).
Once the foundation of the trial is established, the sponsor is required to register the trial
and request authorization from competent authorities (Dupin-Spriet, 2005; Poolman et

al,, 2007).

1.2.3 Traditional Monitoring and ICH recommendation
The ICH-GCP requires the sponsor to simultaneously develop a monitoring plan before
the trial initiation which the CRA follows (ICH, 2016). Monitoring procedures should be
as detailed as possible. (National Institute for Health Research (NIHR) Clinical Trials
Toolkit, 2012). This would enhance the participant’s safety throughout the trial as well as
improve data integrity. Traditional monitoring involves intensive on-site monitoring

visits at clinical trial centers and exhaustive SDV of clinical trial data (FDA, 2020).

Onsite monitoring entails visits conducted to study sites before and during the trial. The
monitoring team verifies whether a center is following the study protocol. Specifically, a
monitor e.g., a CRA checks whether case report forms (CRF) filled comply with the study
protocol. Specifically, the monitor verifies the consistency of data collected with
participants’ medical files (Dupin-Spriet, 2005). Additionally, the monitor inspects for

missing data, faulty completion of forms, questionable values, or other protocol violations.

In recent years, clinical researchers have questioned the validity and necessity of
traditional monitoring methods (Uren et al,, 2013). Many consider it to be an expensive,
time-consuming, and resource-demanding activity that does not improve the quality of
clinical trial data or the protection of trial participants (Olsen et al., 2016). Onsite
monitoring might be realistic or easily implemented in a single-center trial phase I or II,
however, it becomes complicated for a large trial or even multi-center trial. Additionally,
Clinical trials have developed in different aspects such as complexity, globalization, and
technological means. Intensive onsite monitoring showed to be of high cost and does not
always identify errors (Baigent et al, 2008a). To tackle these difficulties and the

advancement in clinical trial setups, regulatory authorities recommended the
4



implementation of a novel risk monitoring approach. The ICH recognized this need and
released a new GCP guideline requiring sponsors to implement a risk-based approach to
improve the effectiveness and efficiency of monitoring. (International Council for
Harmonisation, 2018). This facilitates the option for sponsors to divide monitoring
activities between onsite and centralized monitoring or a combination of both. The ICH
defines centralized monitoring as a remote evaluation conducted at a location other than
the study centers conducting the trial. Due to the current advancement in electronic data
capture (EDC), centralized monitoring can offer a greater advantage (International
Council for Harmonisation, 2018). It incorporates the utilization of statistical methods to
detect deviating or erroneous data. Following the recommendation several risk-based
monitoring approaches became available. Hurley et al. identified and summarized RBM
tools available for clinical trial monitoring (Hurley et al.,, 2016). However, the state-of-the-
art RBM tool was not identified. Similarly, since centralized monitoring became available,
the approaches focused on presenting summary statistics, principal component analysis

(PCA), and detecting inlier/outlier data.

This thesis focuses on the procedures that fall under the RBM umbrella. In detail, it
presents arisk assessment methodology of a trial and a statistical approach to monitoring
centers in a clinical trial. First, differences are distinguished between current non-
commercial RBM monitoring tools in practice by their application to real clinical trial
protocols. Secondly, a thorough risk methodology assessment (RMA) of clinical trials is
developed. The proposed method is adaptive, it can include any potential risk. The risk
assessment within the existing RBM tools is predefined to fixed risks, lacking the option
of tallying new ones. Finally, for the benefit of CSM, the use multiple comparisons of single
centers to the Grand mean (GM) of all centers is proposed. It can be used to detect centers
that are significantly deviating from GM. In a Monte Carlo simulation study, the approach
is assessed for the ability to control type I error («) and achieve the highest possible
power (1 —pf) for specific data types in different parameter settings. Further, the
approach is demonstrated to real-world data (RWD) from the German Multiple Sclerosis

Registry (GMSR).

The following sections describe background information and the basis for research
conducted in this thesis. Thus, the findings of the three manuscripts are summarized and

set into context.



1.3 Risk-Based Monitoring

1.3.1 State of the art
A risk-based monitoring approach entails the identification of any risk that might
influence areas routinely subject during monitoring activities. These risks should be
identified at the system and clinical trial level, followed by a systematic evaluation of these
risks and their likelihood of occurring and the extent of detecting these errors, and their
impact on human subject protection, trial data reliability, and GCP- and protocol
compliance (International Council for Harmonisation, 2018). To date, various tools for
risk identification have been developed as either paper-based or electronic RBM. These
tools have been compared on their characteristics, and their respective strategy to
minimize the risk. Jungen et al. formulated a risk indicator taxonomy (RIT) to serve the
RBM purpose (Jongen et al.,, 2016). Hurley et al. compared RBM tools to RIT and found
only 12 RBM tools cover risk indicators listed in RIT. However, Hurley et al. indicate that
the risks covered within most RBM tools do cover ICH-GCP demands for RBM (Hurley et
al, 2016). This research aimed to study the effectiveness of RBM tools and their
differences in practice. Specifically, a special interest was focused on the implementation

and outcome processes when applied to real clinical trial protocols. .

1.3.2 Application of non-commercial RBM tools
Non-commercial RBM tools were applied (ADAMON (Brosteanu et al., 2009), OPTIMON
(Journot et al.,, 2011), Transcelerate (TransCelerate, 2012), SWISS (Swiss Clinical Trial
Organisation, 2014), NORM (NORM, 2015), YEE (Yee, 2017), and MHRA (MRC/DH/MHRA,
2011)) to real clinical trial protocols covering all phases (I-IV) to compare the overall risk
assessment of each. Real clinical trial protocols were retrieved from the registry of clinical
trials “ClinicalTrials.gov”. Moreover, a direct comparison was performed between risks
covered between the Transcelerate tool and other RBM tools. Almost all investigated
RBM tools showed different overall risk assessments. Furthermore, the risks detected and
their impact within each RBM tool were different, hence the outcome mitigation plans of
each RBM tool varied as well. The broad differences between the RBM tools indicate that
an ideal risk assessment tool is currently missing. Each RBM tool focuses on predefined
risk areas lacking the option of adding additional ones. Given the different risks each

clinical trial can have, a main setback for the risk assessment is to be fixed on specified
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risks. A vital characteristic feature of an RBM tool is the identification and classification of
potential risks associated with a planned study. As risks are different from one trial to
another, current risk assessments within investigated RBM tools partially fulfill this
requirement. Potential risks in a clinical trial can be identified in a well-structured study
protocol. Further, risks must be recognized in advance to enable a systematic screening
by RBM tools. The potential risks should be weighted to allow for an internal assessment
of a risk characteristic and thus enable the generation of a study risk score. Preparatory
work on this is still missing and was, therefore, the next step in the further development
of RBM systems whose developmental approach then no longer decides which risk level

a clinical study has.

1.4 Risk Methodology assessment

1.4.1 ICH-GCP requirement for risk identification and evaluation
A key quality feature of RBM entails a robust risk assessment. The ICH-GCP requires
sponsors to identify potential risks critical to the trial process and data (ICH, 2016). Itis
left to the sponsor to decide on an appropriate system to identify risks in a clinical trial.

The ICH specified the criteria each risk should be evaluated on:

e The likelihood of errors occurring. (Probability)
e The extent to which such errors would be detectable. (Detectability)
e The impact of such errors on human subject protection and reliability of trial

results. (Impact)

However, the ICH did not specify the standards each of the above criteria should be
assessed on. Most of the risk assessment methods within current RBM tools provide an
overall assessment score of the trial. Although the ICH did not specify this need, it does
play a helpful role in indicating the critical level of the overall risks present in a specific
trial. Still, a general limitation of current risk assessment methods within the RBM tools
is the lack of transparency of the final decision rule for the determined monitoring plan.
In this research, faults detected by the Good Clinical Practice - Inspectors Working Group
(EMA GCP-IWQG) are considered as the main risks that should be covered by a risk

assessment tool (EMA-IWG, 2018). Since clinical trials are diverse in complexity and

7



structure, hints are provided on how the identification process should be and a rationale
for a risk assessment process is established. Specifically, standards for the Impact and

detectability criteria of the evaluation process are provided.

1.4.2 Individual assessment of each risk
The ICH indicates that the monitoring team must verify the rights and well-being of
human subjects, the reliability of data, and compliance to study protocol and GCP
guidelines must be followed. Since these points are the main tasks the monitoring team
must observe, they are used as the main aspects for impact criteria of risk evaluation.
Additionally, different weights for the individual points are provided. As for the
detectability criteria, the detection technique required to point out the risk outcome is
suggested, hence either as onsite or remote monitoring. Table 1 shows the assessment

category and weights for each criterion of potential risk.

Criteria Assessment category Score
1. Well-being/safety of subjects 3
2. Reliability of data 2
Impact
3. Compliance with GCP/protocol guidelines 1
1. Very likely 5
2. Likely 4
Probability 3. Even chance 3
4. Unlikely 2
5. Very unlikely 1
1. Onsite Monitoring 2
Detectability 2. Remote Monitoring 1

Table 1: Risk assessment criteria. Following risk identification, each risk is evaluated based on the category it impacts,
the probability of a risk occurring, and the monitoring technique required for detection (Fneish et al., 2021b).

The main challenge in risk assessment is understanding the consequence of a certain risk
on the trial. In the presented RMA, radar charts are utilized to aid the stakeholders in the
assessment and decision process for individual risk. This would support them in having a
better understanding of the risk effect. The proposed assessment scale shows the
importance of the risk in the trial. Together with the radar chart, it gives indications to the

assessor how the monitoring plan should tackle the assessed risk. The area under the
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radar chart is computed by the assessment criteria of the risk. This means the larger the
area under the chart, the more monitoring is required to control the assessed risk. Figure
3 shows an example of a specific risk assessment. Assuming a risk would be having a
discrepancy between source data documents and case report forms, this would impact
the reliability of data and GCP/protocol compliance, with the assumption it would have a
probability score of 3 and a detection technique by performing an onsite visit. Then with
the proposed algorithm, this risk has a score of 40% of 100. This score aids the sponsor
in deciding the frequent visits to be taken to check this risk. The risk assessment must be
an ongoing process performed before, during, and after the trial. Any amendments to the
study protocol require a new risk assessment procedure. Additionally, any new faults
detected during onsite visits require a reassessment as well. Whereas any faults detected

during remote procedures might indicate a trigger for an onsite visit.

1. Having discrepancies between source data such as medical history,
concomitant medication etc. and the CRF for a sample of subjects

such as Risk has an Impact on Probability Detectabilty
Wellbeing/safety of subjects 3 2
¢ Reliability of data

¢ GCP/protocol compliance

Source data discrepancy

Monitoring Technique
# Onsite Monitoring
Remote Monitoring

Both - Occasionally

Source data discrepancy

Impact

&

e i
Probability Detectability

Figure 3: Individual risk assessment. Each risk must be evaluated on Impact, Probability, and Detectability.




1.4.3 Overall score for risk assessment
The overall score of the trial is represented by the average score of the risks assessed.
Although it should not play a major role in any decisive measure, it still conveys an idea
of how critical a trial is. Thus, an established monitoring plan would be reflected in the
overall score. For example, a monitoring plan consisting mainly of remote monitoring
techniques where an overall score is 80% means the established monitoring plan does
not reflect the assessment procedure. Accordingly, an overall score of 40% would be
reflected in the monitoring plan by having more remote procedures and some onsite

visits.

Remote monitoring also known as Centralized statistical monitoring (CSM) has been
proposed as an effective way and less costly than on-site monitoring (Bakobaki et al,,
2012). In the next section, current methods of CSM implementations are presented and a

new approach to improve CSM was investigated and validated on real-world data.

1.5 Centralized statistical monitoring

1.5.1 State of the art
The EDC has revolutionized the monitoring strategies in clinical trials enabling the remote
monitoring approach. As regulatory authorities indicated CSM was introduced to improve
data reliability. It ensures the quality and validity of data collected in multicenter clinical
trials (Desmet et al., 2014a). Different approaches have been implemented for CSM
(Baigent et al., 2008a; Oba, 2016a; Venet et al., 2012b). These approaches mainly focused
on implementing visualization techniques, outlier/inlier detection, data distributions, and
principal component analysis (PCA). They have proven to be effective in detecting unusual
or fraudulent data. Furthermore, they may indicate some issues in a certain center, but
they do not elucidate whether a center deviation is due to chance. The main objective of
CSM is improving data reliability (International Council for Harmonisation, 2018), this
means CSM should be able to detect single centers that might deviate from a study
protocol or detect a center that has misunderstandings concerning data reporting such as
adverse events (AEs). These types of deviations will not produce single extreme values in
the data, they would rather lead to deviating summary statistics, AE rates, or class

frequencies of categorical data. The literature related to CSM does not include a clear
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overview in detecting a deviating center that would eventually alarm the monitoring team

to initiate an onsite visit to a center due to data variation likely due to chance or not.

1.5.2 Comparisons to Grand Mean
All centers participating in a clinical trial are expected to follow the study protocol.
Accordingly, if a center is violating any of the protocol requirements it should be reflected
by the data collected and thus detected by comparing the data coming from an individual
center to the data of all centers. In this research, the utilization of multiple comparisons
of single centers to the Grand Mean (GM) of all centers is proposed. This approach has
been applied in fields comparing treatments in laboratory experiments (Silverstein,
1974). It is also available in the analysis of means (ANOM) context for quality control
(Pallmann & Hothorn, 2016). Hothorn et al. (2008) provide a general framework software
for simultaneous inference procedures in general parametric models, which includes
multiple comparisons to the GM procedure (Hothorn et al,, 2008a). Konietschke et al.
(2015) provide a software for non-parametric multiple comparisons which could perform
GM comparisons (Konietschke et al., 2015a). For several data types, this approach allows
the detection of centers that are deviating from the GM. A simulation study was carried to
investigate whether this contrast can be implemented by different statistical methods for
continuous, binary, and ordinal endpoints while controlling type I error and achieving the
highest power for balanced and unbalanced designs common in clinical registries and

clinical trials.

1.5.3 Model Types and Endpoints
In this research, the GM comparisons is considered for three data types (Continuous,
Binomial, and Ordinal). Different statistical approaches were investigated for the
performance in the multiple comparisons. Specifically, the control of type I error and the
power for performing the contrasts of individual center mean to GM of data for different

statistical approaches was investigated.

For a continuous non-normally distributed endpoint, the non-parametric approach
available in Nparcomp (Multiple Comparisons and Simultaneous Confidence Intervals) R
package was implemented (Konietschke et al., 2012a). Konietschke et al. indicate that the
non-parametric method is based on asymptotic results on the distribution of rank
statistics. Thus, this hints at a limitation in the non-parametric approach for small sample

sizes. For this reason, it was noteworthy to test whether the non-parametric would
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manage to control type I error for small sample sizes that could be found in clinical trial
phases 1 or 2 where the number of patients is limited. Nparcomp was also implemented

for an ordinal outcome and tested for the same scenarios as the continuous endpoint.

A binary outcome such as a patient suffering from an AE is common in clinical trials. Study
protocols might be misunderstood, where for example a vaccination reaction to a vaccine
might be reported as an AE in a specific center. Another misconception would a
misunderstanding of a relapse definition by the clinical trial staff when they report an
observed symptom as an indication of a patient relapse. In both examples, the center
would be pointed out by GM comparisons. This would trigger the monitoring team to visit
the center for further checkups and training. For such binary endpoints, the classical
generalized linear model (GLM) with logit link was implemented. However, GLMs have
limitations when 0 excess is present (Fneish & Schaarschmidt, 2019a) and since Os are
commonly seen in clinical trials, two alternative methods to account for the 0 problem
were investigated. A Bayesian generalized linear model based on the prior distribution
(Gelman et al., 2008a) and Bias-reduced generalized linear model which is based on
Jeffreys-prior (Kosmidis & Firth, 2021a) are proposed to handle the 0 problem. In the
simulations, methods are compared for their performance and ability to control type I
error and achieve the highest power when implementing the comparisons to GM for
scenarios with and without O problem. Figure 4 summarizes the data types and model

types considered in this research.

12



Continuous

(Age of onset, Age at

diagnoses)

Binomial

{Adverse Events,

Normally Non-Normally Ordinal

distributed distributed

(EDSS levels: Mild,

Symptoms) Moderate, Severe)

. Linear model
. Nparcomp
(Small n)

e GLM (excess
llos")

+ BayesGLM

 BrGLM

* Nparcomp

e Nparcomp
(Small n)

(Small n)

Figure 4: Proposed estimators for each data endpoint. Non-parametric method (Nparcomp), Generalized linear model
(GLM), Bayesian Generalized Linear model (BayesGLM), Bias-reduced Generalized Linear Model (BrGLM).

1.5.4 Application on Real-World Data
Current practices of CSM focus on visualization techniques such as the distribution of data
in specific centers. RWD found in clinical trials can be very diverse, it might include a few
to hundreds of patients within a varying number of centers. The complexity of clinical
trials and registries makes it more challenging in identifying a proper methodology for
performing CSM. Some visualization methods on data from the GMSR are shown, followed
by the demonstration of GM implementation on specific data types. Fifteen largest centers
that are part of the GMSR’s pharmacovigilance module were included. The data consists
of a wide range of variables covering demographic and clinical data such as patient profile,
disease status, and medication treatments. Ohle et al. (2021) cover further details on the
GMSR (Ohle et al.,, 2021). In this research, three endpoints are covered (Continuous,
Binomial, and Ordinal), the age at diagnoses, data missingness, and diseases severity as

continuous, binomial, and ordinal data types respectively. The approach of multiple
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comparisons is investigated. Specifically, center means are compared to the Grand Mean
of all centers. If a center behaves differently from other centers, then it would be reflected
by the reported data. This would indicate to atypical center, specifically when there is a
significant mean difference between an individual center mean and the GM. This would

eventually trigger an onsite visit if the deviations cannot be justified.
Continuous Endpoint: Age at diagnosis

Figure 5 shows the distribution of patient cohorts for age at diagnoses in each center. This
graph clearly illustrates a difference in the distribution among centers. It also shows that
some centers include some data outliers. As intuitive as this graph may be, it does not
identify a problem in a specific center. It won’t directly serve CSM purposes where the

focus lies on checking the compliance of centers to study protocol and GCP guidelines.
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Figure 5: Violin plot including kernel density estimates of age at diagnoses indicating possible violations of normality.
pval<0.05 indicates a non-normally distributed data.

The implementation to GM comparison clearly illustrates that C 6 has a larger mean
compared to the GM whereas C 8 and C 15 have smaller means compared to GM (Figure
6). In a real clinical trial, this would indicate whether a certain center has a cohort
significantly different from the inclusion criteria indicated in a study protocol. However,
in the GMSR data, this could be justified since some centers might have a specific

specialization in which a difference would not be alarming.
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Figure 6: Simultaneous confidence intervals for contrasts of center means with GM for continuous variable age at
diagnosis using the non-parametric method (Nparcomp).

Binary Endpoint: Missing data

Poor data quality affects any research and hence decreases its respective power,
specifically if it includes a lot of missing data. Although it’s best to have complete data, it
is not uncommon to have missing’s in a data set. For this reason, the GM comparison for
such scenarios would serve the detection of a deviating center having more missingness
compared to the GM of centers. In this way, it would be pointing out a center that would
require some attention for better documentation. Figure 7 shows a binary endpoint for a
patient with missingness for age at diagnoses or age at onset variables in each center. It
shows the performance of the centers in documenting these variables. Most of the centers
have the required documentation needed for almost all their patients, however, some
centers have higher proportions of missingness. Statistically, this would indicate whether

a center has more deviations of non-documented data than the GM.

15



col @ emen

C 6
C 71
C 81
c9
C 101
C 111
Cc12
C 131
C 141
C 151

-
=9

Missing age

at onset/diagnosis
M Yes

B No

Centers

w

o
N
a

=3
~J
o

1

o

0

Figure 7: Centers documentation of age at diagnosis and age at onset for each patient (%).

The utilization of GM comparisons to center means indicates that centers C 3, C 12, and C
13 have higher means than the GM of the data. In other words, these centers have more
missingness for age at onset or diagnoses than the average (Figure 8). C 6 has a smaller
mean compared to the GM, in this context it would indicate a higher documentation
performance for this center than the average. The BayesGLM model type for binary

endpoint is preferred in these scenarios since Os could be present in the data.
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Figure 8: Simultaneous confidence intervals for contrasts of center means with GM for a binary variable missing age at
diagnosis or age at onset reported using Bayesian Generalized Linear model (BayesGLM).
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Ordinal Endpoint: Disease severity

Another endpoint commonly observed would be an ordinal variable. Figure 9 presents
the disease severity level of patients documented at the latest visit in each center. Here
the comparison would be whether a certain center would have a different mean compared
to the GM of all centers. In other words, it would indicate whether a specific center has a
cohort that has a higher or alower disease severity compared to the GM. (since the disease
severity is in increasing order). Unlike clinical trials, the GMSR does not have a strict
inclusion criterion for patient recruitment regarding the level of disability. Centers would
include any patients diagnosed with multiple sclerosis. Hence the difference between
center cohorts for disease severity is not unforeseen in this specific case, specifically if a

center is specialized such as a rehabilitation center.

| 2 | €3 | c4 |
29 75 30 g
- tllhlhse_. :
25 o I AT
0 lm Illl- ==l =g III llll m_ gl— [ [ [ ——— %II || III [ ("N
123456 7 89 123456 78 9 1 2 3 45 6 789 12345672839
| c7 | c8 |
20 60 25 15
12 40 72 10
) 15
| |||| 2|1/ g Y sl .l
‘ﬁ 0 — e o= .I.. .--_ O. . | | ...--.l_ 0 -{m= l m=l B l--
& 1 2 3 45 678 9 123456789 12 3 4 5 6 789 1 2 34 5 6 789
g | Cc10 | C 11 | C12 |
2 20 125
€ 9 15 10.0
S 15 28
Z?III L Ll S ikl 2 il
0 .I. .I [ ] g-. I--I.I- 0= I l ._----._ (2)8- II l. -...l
23456789 123456 7 89 12 3 4 5 6 789 123456 7 89
c13 c14 | c15 |
15 50
E II I §§ I
III —--ll ol I-I---—-—-- — 18 .-—.____._.._
123456 789 2 3 4 56 789 1 2 3 456789

Disease severity

Figure 9: Histograms of disease severity (EDSS) for patients at the latest visit.

Figure 10 shows the comparisons of GM to the mean of individual centers for disease
severity. C 4, C 6, and C 10 show a mean larger than the GM, in other words, it indicates
that the cohorts belonging to these centers have a higher disease severity than the GM of
the whole cohort. As for C 1, C 3, C 14, and C 15 they have a smaller mean than the GM.

These differences could be alarming and could be a natural deviation due to the cohort
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itself. Stakeholders at the registry would indicate whether this difference is expected or
not. However, in a clinical trial where cohorts are likely to be comparable, it would
indicate whether a center tends to give smaller or higher measurements, then in this case

an onsite visit should be conducted to have a justification for the deviation.
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Figure 10: Ordinal variable of disease severity (EDSS) comparison for each center to the GM using the non-parametric
method (Nparcomp) .

1.6 Contributions to the field

In the framework of this thesis, the differences between current RBM tools were
recognized through their implementation in clinical trial protocols. This revealed their
heterogeneity and thus their output when implemented for the same clinical trial.
Furthermore, to tackle the wide differences clinical trials have, a rationale for a robust
risk assessment methodology was established. The approach presented has an adaptive
ability to include any risk in the assessment regardless of clinical trial phase or
complexity. It gives the assessor the chance to include or exclude risks related or not
related to the trial. To ease the implementation of RMA, a user-friendly shiny web
application is formed. The user can run the web app locally, run the analysis, and
document the risk assessment performed to further develop a monitoring plan. Each
assessed risk would be summarized and assigned a mitigation technique. This would also

help the assessor in reviewing the risk assessment previously done when needed. The
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syntax of RMA is available on GitHub under the following path:

https://github.com/firasfneish /Risk-Methodology-Assessment

For remote monitoring techniques, this thesis proposed the utilization of Grand Mean
comparisons to individual centers. This comparison would direct to a deviating center
that is unlikely due to chance. The comparison to GM was implemented for binary, ordinal,
and continuous endpoints using different statistical methods. The deviating settings were
identified when performing the comparisons to GM. Nparcomp fails to control type [ error
for n; < 20 and for extremely unbalanced designs. BayesGLM outperforms GLM and
BrGLM for small sample sizes and can deal with the 0 problem. Since the available models
for GM comparisons are scattered between different R packages, a unified interface for
their implementation is shown and the same graphical output displaying simultaneous
confidence intervals of GM comparisons for different variable types is presented. Their
implementation is also verified on RWD from the German Multiple Sclerosis Registry. Two
shiny apps for BayesGLM and Nparcomp methods are provided as an interactive and
visual platform for users to easily implement the comparisons by providing their datasets.
Both shiny apps run the comparisons of each center to the GM and plot simultaneous
confidence intervals for contrasts of center means with the GM of the given dataset. Syntax
of both apps can be found on GitHub wunder the following path:
https://github.com/firasfneish/CSM.

1.7 Conclusions and future research

1.7.1 Risk Methodology Assessment
The established RMA currently provides stakeholders the ability to assess any risk in a
clinical trial that can be covered by RBM. It also gives stakeholders the chance to
incorporate additional risks into the assessment process. Future work should include real
problems found in clinical trials in the assessment list. It would allow stakeholders to
further include risks they did not previously consider. A database that combines historic
faults and errors in clinical trials is currently missing. Thus, a database that includes risks
found in clinical trials would be a major step that would benefit clinical research. This
would give RMA the ability to forecast a certain risk. Such predictions require a database
consisting of numerous factors. This requirement is currently lacking and hence would be
the focus for future work. The COVID-19 pandemic has pushed pharmaceutical companies

further to implement RBM and adopt remote monitoring strategies (Barnes et al., 2021).
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https://github.com/firasfneish/Risk-Methodology-Assessment
https://github.com/firasfneish/CSM

Therefore, the risk assessment within the RBM system should be under continuous

development to tackle the changes and shifts in the possible monitoring activities.

1.7.2 Centralized Statistical Monitoring
The multiple comparisons of center mean to GM means of all centers were investigated
and validated for the identification of a deviating center. This research focused on
performing the comparisons for specific data endpoints (Binomial, ordinal, Continuous).
This approach can be further implemented for more data types such as Time to
Event(timeZevent) endpoint, Poisson/count data, and Nominal data. Monte Carlo
simulations are needed to identify appropriate estimators and detect limitations in each
type. Future work would focus on considering Weibull models and Cox regression for
time2event data. GLM and BayesGLM and negative binomial model for count data. Desmet
etal. (2017) investigated the detection of a deviating center by employing a beta-binomial
(Desmet et al., 2017a), it would be noteworthy to compare beta-binomial, GLM, and
BayesGLM for GM comparisons. Ordered categorical regression and cumulative link
models should also be investigated for ordinal data since the Nparcomp method failed to
control type I error for small sample sizes and heavily unbalanced designs. Some centers
could naturally differ from other centers due to their patient cohort selection. This is more
relevant to registry data rather than clinical trials as registries could include data coming
from centers with different specializations whereas clinical trials include centers with
very specific inclusion criteria. This natural difference could be accounted for by
considering the effect of additional covariates (e.g. center type) when performing the
comparisons by each estimator. In the current approach, many tests are performed, thus
false positive conclusions might be concluded. To counteract the multiple testing problem,
a correction methods such as Bonferroni adjustment, and False Discovery Rate (FDR)
should be examined, however, clinicians and statisticians should decide whether this
correction is needed. Equivalence intervals are a further option that could serve CSM.
Nevertheless, this would require clinicians to determine an interval in which a certain

center deviation could still be accepted.
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Abstract

Clinical trial monitoring involves intensive on-site monitoring visits at clinical trial sites and exhaustive source data verification (monitoring) of
clinical trial data [1]. Clinical researchers have questioned the validity and necessity for traditional monitoring methods [2], which have been under
investigation due to their ineffectiveness in improving the quality of clinical trial data or in protecting trial participants [3]. Implementing a risk
based monitoring (RBM) system is suggested by the ICH’s newly adapted guidelines to improve overall quality management [3]. The RBM involves
the identification of any risk that might have an effect on areas routinely subject during monitoring activities. Risks should be identified by a RBM
system followed by an evaluation of their likelihood of occurring and the extent to detect these errors and their impact on human subject protection,
trial data reliability, and GCP- and protocol compliance [4]. To date various tools for risk identification have been developed with both in paper
based or electronic RBM [5,6]. These tools have been compared on their characteristics and the strategy to decrease risk. However the application
and subsequent effectiveness of RBM tools is yet to be examined [6]. The aim of this research is to apply each non-commercial RBM tool to clinical
protocols and compare the potential risks detected in each, additionally the overall risk assessment of the protocols. Here we show that RBM tools
result in different overall risk assessment when applied to the same clinical trial protocols, interestingly, each RBM tool detected distinct risks which

thus resulted in a variation in the outcome mitigation.

Keywords: Clinical Trial Protocols, Risk Based Monitoring Tools, Risk Adapted Monitoring

Background

Source data verification (Monitoring) is an essential
requirement for all clinical trials in phases I-IV as stated by
World Health Organization (WHO) guidelines for good clinical
practice (GCP) of clinical trials on pharmaceutical products, the
Food and Drug Administration (FDA) code of federal regulations,
and by the International Council for Harmonization (ICH) [1].
However, regulatory agencies have stressed the need for oversight
approaches to identify different risk levels in each specific trial
prior its commencement [1]. Moreover, it has been reported that
onsite monitoring is costly with a limited outcome to clinical trial

data quality onsite monitoring/SDV [2].

Clinical trial monitoring often involves intensive on-site
monitoring visits at clinical trial centers and extensive SDV of

clinical trial data [3]. Clinical researchers have questioned the
validity and necessity of traditional monitoring methods [4]. It has
been considered to be an expensive, time-consuming and resource
demanding activity that does not necessarily improve the quality of
clinical trial data or the protection of trial participants [5].

Over the years, clinical trials have developed complex designs,
became more globalized, and used advanced technological means
at various stages, which resulted in more recommendations to
the guidelines for GCP. ICH has given the sponsors flexibility
to utilize innovative approaches to plan, conduct and evaluate
clinical trials. Nevertheless, greater emphasis has been placed on
data completeness and accuracy than on critical aspects such as
risk management of outcome data. For this reason, an integrated
addendum to the ICH (GCP) Guideline was released in order to
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request improved and more effective methods to protect the rights
of clinical trial participants, and to ensure data reliability as well
as GCP and trial protocol compliance. The existing ICH guideline
has been modified with respect to points such as principles of
GCP, investigator responsibilities, sponsor responsibilities, and the
essential documents [6]. The amended ICH (GCP) guideline suggests
different recommendations to the sponsor to improve overall
quality management in a clinical trial. One of the recommendations
is to implement a risk based approach monitoring system.

A risk based monitoring (RBM) approach involves the
identification of any risk that might have an effect on areas routinely
subjected to monitoring activities. These risks should be identified
based on protocol mandated requirements and procedures,
protocol related logistics, clinical trial phase and country of conduct.
Identification should be followed by risk evaluation instead, risk
likelihood, the extent to detect these errors and their impact on
human subject protection, trial data reliability, GCP, and protocol

compliance [7].

To date various tools for risk identification have been developed
as either paper based or in electronic format [8,9]. These tools have
been compared regarding their characteristics and their employed
strategies in identification and classification of potential risks.
Additionally it has been stated that the lack of evidence to show
superiority of RBM over traditional onsite monitoring has held
back their utilization [10]. Recent research using ADAMON negates
the inferiority of risk adapted monitoring to extensive monitoring
[10]. We aim to evaluate the effectiveness of RBM as a tool for onsite
risk based monitoring, given the lack of investigation into such a
method so far [9].

Methods
Search Strategy on RBM tools and Clinical Trial Protocols
For RBM tools:

Google Scholar was used in October 2018 to search the following
key terms: risk based monitoring tools, risks assessment of clinical

trials and risk analysis of clinical trials. The search resulted in

Copy@ Firas Fneish

16 pages and after page 10 there were no suitable publications.
Additional restrictions for the advance search option in Google
Scholar were not used. Additionally, PubMed search engine was
used with the terms: risk based monitoring tools, risks assessment

of clinical trials where it resulted in 4 pages.
For Protocols:

Google Scholar was used with following terms: clinical trial
protocols and summary protocols of clinical trials phases. The
search resulted in 13 pages of results of which 10 were suitable.
We did not use any additional restrictions for the advance search
option in Google Scholar. Additionally “clinicaltrial.gov” has been
used with the terms clinical trial protocols. An advanced search was
used to specify available study protocols.

Assessment of Clinical Trial Protocols:

The first objective was to find out whether non-commercial
RBM tools give similar overall risk assessment for the selected
protocols. Noncommercial RBM tools (ADAMON [10], NORM [11],
MHRA [12], Yee [13], Transcelerate [14], OPTIMON [15] and SWISS
[16]) were applied to perform risk assessment of 18 clinical trial
protocols from different phases with different indications. Based on
the outcome the risk was categorized into high, medium, low for the
respective clinical trial.

Comparison of RBM Tools Risk Covered

The second objective was to investigate whether the tools cover
different risk aspects. Transcelerate RBM tool has been used as a
standard by six commercial RBM tools [9]. For this reason it was
used for the second investigation as a base for risk category to be
compared to each RBM tool by its risk category structure: safety,
study phase, complexity, technology, subject population, data
collection, endpoints, staff experience, Investigational medicinal
drug (IMP), logistics, blinding, operation complexity, geography in
order to investigate the different risks covered between the RBM
tools. Evaluation of the different risk statements was done by the
following rating scale that we developed to identify whether the
risk is also investigated by the other RBM tools and to which level
as shown in Table 1.

Table 1: Rating scale for risks covered by Risk Based Monitoring tool.

Rating scale of risk

Addressed

Partially Not addressed

Risk is investigated by several

Description . . o
p questions relating to its importance

Risk is investigated as a minor risk
of limited importance

Risk is not addressed by the tool
atall

Statistical methods

Fisher test was used to detect differences between the risks
investigated by the RBM tools if any using R statistical software
version (3.6.0). The flow chart (Figure 1) was developed in R as well
using packages “grid” and “Gmisc”.

Ethical consideration

Neither human subjects were involved nor were personal
subjects data were collected and/or processed in this research,
hence no ethical permission needed for this study:.
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Figure 1: Selection of 18 Clinical Trial Protocols to be assessed by 7 noncommercial RBM tools.

Results & Discussion

Search Strategy

In total 24 RBM tools were identified based on a systematic review article [9], of which 7 were publicly available (Figure 1).

Assessment of Clinical Trial Protocols (Figure 2)

Application of RBM Tools to Clinical Trial Protocols
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Figure 2: Overall risks assessment of Clinical Trial Protocols by each RBM tool.
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For the overall risk assessment of each protocol by different
RBM tools, results are reported anonymously. Out of the 18
protocols, 4 protocols belonged to phase 1(P12, P11, P2, P5), six
protocols to Phase 2 (P1, P3, P4, P7, P8, P9), four protocol to Phase
3 (P10, P13, P14, P15), and four protocols to Phase 4 (P6, P16, P17,
P18). Out of the 7 RBM tools, one tool did not provide an overall
outcome assessment of the whole trial.

For phase 1, four (T1, T2, T3, T5) out of six tools classified the above
mentioned protocols as high risk level. While tool T6 categorized
these protocols into moderate risk level. Remaining tool (T4)
categorized the protocol P12 as low, P11 as moderate and two
protocols P2, P5 as high risk level. While for phase 2 trials, three
(T1, T2, T3) out of 6 tools classified 4 protocols into high risk level,
while T4 classified them as high and low risk levels. The other two
tools (T4, T5) assessed 3 protocols as Medium risk while 1 protocol
was assessed as Medium and Low risk levels. For phase 3 protocols,
3 tools (T1, T2, T3) categorized P10, P13, P14 as High risks and P15
as Moderate risks while T4 categorized P10, P13 as Low risks while
P14 and P15 as Moderate risks, nevertheless T5 categorized all
phase 3 protocols as Low risks and remaining tool T7 categorized
P10, P13 and P15 as Low risks and P14 as Moderate risks. For
phase 4 protocols, all tools categorized P6 as Low risks while 3
tools (T1, T2, T3) categorized P16, P17 and P18 as Moderate risks
but T4 categorized P16 and P17 as Moderate risks and P18 as Low
risk. Remaining Tools (T5, T6) categorized all Phase 4 Protocols as

Copy@ Firas Fneish

Risk category covered by each RBM Tool (Figure 3)

Tool 6 is the Transcelerate RBM tool being compared to the
other non-commercial RBM tools. Risk category “blinding in the
study design” is fully addressed by T7, while it is addressed partially
by T1, T2, T3 and is not addressed by T4 and T5. Complexity risk
category is fully addressed in 4 tools (T1, T2, T3, T7), partially
addressed by T5 and not addressed in T4. Data collection is only
addressed in T7. Endpoints are partially covered in 4 tools (T1,
T2, T3, T7), while not addressed in 2 tools (T4, T5). Geography
risk is not covered by any of the tools. Risk category related to
investigational medicinal product (IMP) is addressed in T7 while
partially addressed by 5 tools (T1, T2, T3, T4, T5). Logistics risk
category is addressed in T7 and partially addressed in 5 tools
(T1, T2, T3, T4, T5). Operation Complexity risk category is only
addressed in T7 and not addressed in other tools as well (T1, T2,
T3, T4, T5). As for safety risk category, it is addressed by 4 tools
(T1, T2, T3, T7) while partially addressed and not addressed by
2 tools, T4 and T5 respectively. Staff experience risk category is
addressed in 4 tools (T1, T2, T3, T7) and not addressed by 2 tools
(T4, T5). Study phase is addressed by all tools except 1 tool (T4)
where it is partially addressed. Risks related to subject population
are addressed by 3 tools (T1, T2, T3) while partially addressed by 2
tool (T4, T5) moreover not addressed by 1 tool (T7). Risks related
to Technology are only addressed by T7. Significant differences (p
< 0.05) were observed between risks covered by each RBM tool.
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Figure 3: Risk area covered by each RBM Tool.

The assessment of protocols by the non-commercial RBM tools
has shown that they result in different risk outcomes regardless of
the clinical trial phase. Hence the mitigation plan to manage these
risks will differ as well. The mitigation plan of an assessed risk

should be implemented with either onsite monitoring or centralized
monitoring [3]. The observed differences in the assessment clearly
show that there is not yet an ideal non-commercial RBM. Each
RBM tool focuses on specific risk aspects. Our findings highlight
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differential risk considerations between RBM tools. Of the latter
that fail to cover risk categories, their comparison revealed a
significant difference. Moreover the weight age of a certain risk and
its importance is usually assessed by the individual risk assessor
implementing the RBM tool. The risks covered by each RBM tool
should guarantee the safety and rights of the human subjects
nevertheless the accuracy and reliability of data [3]. Our research
points to apparent heterogeneity in the different risks being

covered by each RBM tool.
Conclusion

An ideal RBM tool should cover risks related to a clinical trial.
Further classification and scoring system should be included for
the RBM tool user. Furthermore, a detailed monitoring strategy
equipped with a proper plan to prevent detected risk should be
readily available for the user.

A key quality feature of an RBM tool is the identification and
classification of potential risks associated with a planned study.
As described, the requirements are very different and sometimes
only partially fulfilled by selected software tools as investigated.
The development of such software requires a well-structured
illustration of a clinical trial as it should be in the study protocol.
In addition to this structural mapping, potential risks have to be
defined in advance in order to enable a systematic screening by the
software. Ideally, the potential risks should be weighted to allow for
an internal assessment of a risk characteristic and thus to enable
the generation of a study risk score. A corresponding preparatory
work on this is still missing and is therefore, in the opinion of the
authors, the next step in the further development of RBM systems
whose developmental approach then no longer decides which risk
level a clinical study has.

Limitations

The quality of the protocols was not taken into consideration, as
our aim was to assess the protocols that follow ICH GCP guidelines
and have already been reviewed, approved and accepted by the
institutional review board (IRB). The author has solely done the
assessment of the protocols with RBM tools, critical questions
have been discussed within the author’s group before the decision
making process.
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Regulatory authorities have encouraged the usage of a risk-based monitoring (RBM) system in clinical
trials before trial initiation for detection of potential risks and inclusion of a mitigation plan in the moni-
toring strategy. Several RBM tools were developed after the International Council for Harmonization gave
sponsors the flexibility to initiate an approach to enhance quality management in a clinical trial. How-
ever, various studies have demonstrated the need for improvement of the available RBM tools as each
does not provide a comprehensive overview of the characteristics, focus, and application.
This research lays out a rationale for a risk methodology assessment (RMA) within the RBM system. The
core purpose of RMA is to deliver a scientifically based evaluation and decision of any potential risk in a
clinical trial. Thereby, a monitoring plan can be developed to elude prior identified risk outcome.
To demonstrate RMA’s theoretical approach in practice, a Shiny web application (R Foundation for Statis-
tical Computing) was designed to describe the assessment process of risk analysis and visualization tools
that eventually aid in focusing monitoring activities.
RMA focuses on the identification of an individual risk and visualizes its weight on the trial. The scoring
algorithm of the presented approach computes the assessment of the individual risk in a radar plot and
computes the overall score of the trial. Moreover, RMA’s novelty lies in its ability to decrease biased
decision making during risk assessment by categorizing risk influence and detectability; a characteristic
pivotal to serve RBM in assessing risks, and in contributing to a better understanding in the monitoring
technique necessary for developing a functional monitoring plan.
Future research should focus on validating the power of RMAs to demonstrate its efficiency. This would
facilitate the process of characterizing the strengths and weaknesses of RMA in practice.
© 2021 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

tion.* With this methodology, not only would the occurrence of the
assessed risk be prevented, but it would also minimize onsite mon-

Clinical trials are conventionally monitored by source data ver-
ification that is costly, requires ample resources, and exhibits sev-
eral limitations.!"? The International Council for Harmonization
(ICH) has provided sponsors with the flexibility to initiate a novel
approach called risk-based monitoring (RBM) to enhance quality
management in a clinical trial.> Regulatory authorities such as Eu-
ropean Medicines Agency (EMA) define RBM as a systematic pro-
cess that involves identification, assessment, controlling, commu-
nicating, and reviewing the risks in a clinical trial before its initia-

* Address correspondence to: Firas Fneish, Institute of Cell Biology and Bio-
physics, Department of Biostatistics, Leibniz University Hannover, Hannover,
Germany.

E-mail address: fneish@cell.uni-hannover.de (F. Fneish).

https://doi.org/10.1016/j.curtheres.2021.100643

itoring duties to some extent. Following the ICH recommendation
for approach utilization, several RBM tools were developed. The
available RBM tools have been identified and summarized based
on their structural approaches, similarities, and differences.” Addi-
tionally, noncommercial RBM tools were compared in their appli-
cation on real clinical trial protocols to assess the overall risk level
of each protocol by each tool; furthermore, each noncommercial
RBM tool was compared directly with the Transcelerate RBM tool
(commonly accepted as the standard in pharmaceutical industry)
to investigate the risk category and risk coverage in each.’

These studies reveal distinct approaches employed by the avail-
able RBM tools to assess a certain risk, demonstrate the unique as-
sessment of each RBM Tool to the same clinical trial protocol, and

0011-393X/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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exhibit the different risks investigated within each RBM tool. The
Food and Drug Administration (FDA) encourages all clinical trials
regardless of the phase to implement RBM. Currently a standard-
ized RBM approach for clinical trials is lacking,” which presents a
challenge to implement RBM by the industry.® Our objective is to
fill the gap by presenting a systematic risk analysis in clinical tri-
als to standardize RBM. To have an efficient RBM tool, a potent risk
assessment has to be performed first. For this reason, we propose
a novel methodology and a robust algorithm to assess any risk in a
clinical trial. The methodology can be implemented on any clinical
trial regardless of the phase and complexity. Moreover, the algo-
rithm aids the assessor in the decision-making process of moni-
toring technique needed and monitoring level required during the
development of the monitoring plan.

Risk Identification Process

The quality feature of an RBM system entails risk assessment of
a study and a mitigation plan that details a monitoring strategy for
the concerned trial. However, the crucial question arising is how to
define a certain risk.

The presence of varying risk criteria covered and examined
within the risk assessment by each RBM tool suggests the need to
restructure the definition of a certain risk. A risk is defined as the
unsolicited outcome of a certain process. Any event that is likely
to have a negative influence on the trial should be counted as a
risk. The identified risk must be assessed through its influence on
the safety of the human participant, trial integrity, the chance of
its occurrence, and the ease by which it can be detected. Several
systems such as Delphi® or SWOT analysis'” can be oriented to-
ward identifying risks in clinical trials. The Delphi method is a pro-
cess that utilizes a questionnaire circulated among experts such
as clinical research associates, statisticians, clinical investigators,
sponsors, and any member involved in a clinical trial stage.” SWOT
analysis is yet another strategy that aids organizations to pinpoint
strengths, weaknesses, opportunities, and threats to a business or
a project planning, in this case a clinical trial.!? The application
of both methods is simple, and their outcome is highly depen-
dent on the diverse groups involved."" Another approach is utiliz-
ing risk summaries from monitoring reports of completed clinical
trials; however, it is unlikely to access those reports as they are
only accessible by the sponsors.!!

An Ideal RBM System

Clinical trial sponsors along with the involved clinical trial
members are responsible for guaranteeing the safety and well-
being of the human participants, their rights, and the data qual-
ity.!> The regulatory authorities require sponsors to ensure proper
monitoring during the initiation and progress of a clinical trial.'?
RBM is expected to be an imperative tool in guiding the sponsor
to identify and mitigate risks.'* Similarly, EMA’s reflection article
concerning risk-based management demonstrates that a risk-based
approach is needed to enhance quality management of clinical tri-
als.’> To date, FDA’s guidance on RBM approach is divided into 3
parts, the detection of critical data and processes, the risk assess-
ment categorization tool, and developing an appropriate monitor-
ing plan following the risk-based approach.’® Such a revolution-
ized technology played a huge role in achieving RBM in the field
of mitigation monitoring techniques developed as remote monitor-
ing.!” The focus of any mitigation plan is shaped by the outcome
of a risk assessment. Although 100% source data verification can
certainly be reduced by the available mitigation plans, it does not
reflect the focus of the personnel carrying out onsite monitoring
activities, as the FDA entailed.®

Current Therapeutic Research 95 (2021) 100643
Proposed Risk Methodology Assessment in Clinical Trials

An RBM tool that covers risks in any clinical trial including a
monitoring plan of appropriate technique is still missing.’® Addi-
tionally, there still exists ambiguity in the assessment methodol-
ogy behind a certain risk. In this study we propose a novel risk
methodology assessment (RMA) that enables the user to visualize
the assessment of individual or overall risks present in a specific
trial. RMA follows the concept of failure mode and effect analy-
sis, specifically a systematic failure mode and effect analysis.’® The
focus is on system-related deficiencies in which hazards are iden-
tified, studied, and prevented.

The fundamental process is to initially focus on the most com-
mon faults detected in previous trials. For this reason, the RMA
approach includes the frequent findings detected by Good Clinical
Practice- Inspectors Working Group (EMA GCP-IWG) report.?® The
EMA GCP-IWG objective is to harmonize and coordinate GCP activ-
ities in the European Union. The annual report, which emphasizes
GCP practice in the European Union, can be used as a reference for
risk identification. The report sheds light on the number of inspec-
tions done routinely and non-routinely to active clinical trial sites
and reports deficiencies detected in the trials.

Our article follows the recommendation of the ICH to favor risk
based monitoring by providing a methodology of risk assessment
that evaluates the occurrence likelihood of a risk, summarizes the
extent of monitoring required with the help of a radar plot-based
visualization of said risk and hence aids in the decision making of
the mitigation step to be put forth. RMA does not suggest a pre-
vention strategy due to the miscellaneous outcome of a certain risk
in an individual trial. For instance, a risk associated with investiga-
tional medicinal products in a Phase I trial might have a higher
impact than a Phase III trial. The anticipation step and the overall
mitigation plan should be developed by the stakeholders responsi-
ble for the planning procedure. The FDA specifically highlights the
sponsors’ responsibility to have a mitigation approach for defined
risks irrespective of the implemented risk assessment technique.'#
Figure 1 shows RMA’s approach to identify, assess, and form a mit-
igation plan.

Theoretical Implementation of RMA Methodology

Each clinical trial is based on an explicit study protocol out-
lining the study end point(s), study procedures, medical investi-
gations, and so on, which necessitate appropriate consideration
during risk identification. The results presented by the GCP-IWG
annual report signify the definite complications that a monitor-
ing team can detect during a routine site visit. For this reason,
the identification process of potential risks could be derived from
GCP-IWG report as a starting point. Accordingly, a risk assessment
should reflect the detected faults as risks that must be assessed
before trial initiation.

A risk assessment system should consist of components in
which a risk is identified, assessed, visualized for its monitoring
level, and classified into the type of monitoring required. The as-
sessment process is classified based on the FDA's recommendation
of impact, probability, and detectability.” Nonetheless it does not
indicate standards each category should be assessed on. It is left
to the stakeholders to decide the appropriate decision process. In
the presented methodology we propose defined standards required
for impact and detectability measurements.

According to the ICH-GCP guidelines,?! monitoring is conducted
to ensure the well-being/safety of participants, the reliability of
data and compliance with GCP/protocol guidelines. A risk that does
not affect at least 1 of these criteria must not be deliberated as a
risk that can be covered by RBM monitoring. The individual criteria
should be differentially weighted based on the critical aspect re-
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Findings detected by
EMA GCP-IWG
considered as risks in clinical
trials

N
Risk assessment based on:

1. Impact

* Well being/safety of subjects

* GCP/protocol compliance

* Reliability of data

Before Trial Initiation
2. Probability

3. Detectability

Risk can be mitigated by
monitoring technique:

1. Remote Monitoring
2. Onsite Monitoring

Visualization tools that help focus

|After Trial Initiation

activities during the development
of the mitigation plan

Amendments to RBM established
based on onsite monitoring
reports of faults/erros discovered

Figure 1. Flowchart of risk methodology assessment (RMA) risk assessment process before and after trial initiation. This flowchart shows the methodological approach of
risk-based monitoring (RBM). Following risk identification, each risk is evaluated and assigned a mitigation technique. Following the assessment, stakeholders develop the
monitoring plan based on the assessment. The assessment must be repeated if any amendments were established to the protocol or when unidentified faults are discovered.

Table 1

Risk assessment criteria. Following risk identification, each risk is evalu-
ated based on the category it impacts, the probability of risk occurring,
and the monitoring technique required for detection.

Criteria Assessment category Score

Impact 1. Well-being/safety of subjects

2. Reliability of data

3. Compliance with GCP/protocol guidelines
Probability 1. Very likely
2. Likely

3. Even chance
4. Unlikely

5. Very unlikely

1. Onsite monitoring
2

. Remote monitoring

Detectability

= NN=NWAU=DNDW

GCP =Good clinical practice.

sulting from each separately. For instance, a risk affecting the well-
being/safety of participants alone will have a higher impact than a
risk affecting GCP/protocol compliance. The detectability and prob-
ability should be assessed by the stakeholders based on their de-
cision process. However, probability is weighed based on the like-
lihood of a risk occurrence and detectability is evaluated based on
the monitoring detection technique either as remote monitoring or
onsite monitoring. We propose a score measure for the category of
each criterion (Table 1).

Scoring Method

The scoring algorithm of RMA allows the stakeholders a unique
prospect to visualize the risk size and quantify it. The goal of risk
communication is to guide the stakeholders in the risk assessment
in a transparent manner and to assist them in the decision plan
to mitigate its occurrence by an effective measure.?? Visual repre-
sentation can help stakeholders observe the assessment of the risk
and understand its needed monitoring level. The visualization pro-
cess can be achieved by radar charts as they enhance comparisons
of quality measurements.??

With the defined scaling system, the area would reflect the
extent of how critical a risk is, which subsequently hints to the
extent of monitoring required. The larger the area, the more
monitoring is required; however, it does not reflect the type of
monitoring technique needed as this must be decided by the
stakeholders themselves (Figure 2). Following the assessment, a
monitoring technique should be assigned. According to regulatory
agencies, the main techniques can either be traditional onsite
monitoring, remote monitoring, or a combination of both.

Area Under the Radar Chart
The aim of radar chart is to present multivariate data, the main

advantage is to translate the data to a meaningful sense. The area
under the radar is equivalent to the cumulative area of the sep-
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Risk A
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Detectability Probability
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Detectability Probability

Total Area =A1 + A2 + A3

Figure 2. The area under the radar chart. This figure shows the total area of the radar chart. Each area of the subtriangles is calculated based on the conventional formula.

arate triangles (Figure 2). The area under the radar chart is then
reported as a percentage of the maximum score possible.

Each area is detected by the sides of the respective triangle
input

Area A1 = 0.5 x input (Impact) x input (Detectability)
x sin(120)

Area A2 = 0.5 x input (Impact) x input (Probability) x sin(120)

Area A3 = 0.5 x input (Probability) x input (Detectability)
x sin(120)

Total Radar Area = Area Al + Area A2 + Area A3
Practical Implementation of RMA

A shiny web application was formed to illustrate the theoreti-
cal approach of RMA. The application includes risks that could be
assessed and visualized under the radar plot (Figure 3).

Following the assessment of the individual risks, the input
scores provided by the assessor and the subsequent score areas are
documented. The following process can aid stakeholders in com-
paring the assessment report with monitoring reports after trial
initiation to get a better understanding of the faults/weaknesses
and strengths of the performed assessment (Figure 4).

The score of the distinct risks assessed allows stakeholders to
distinguish high score risks that necessitate more extensive moni-
toring in the monitoring plan (Figure 5a). Consequently, based on
the profile input of each risk (Figure 5b) and its relation to the
threshold for maximum score, represented by dashed lines, stake-
holders can decide on the extent of monitoring visits/checks re-
quired in the monitoring plan. Finally, an overview of the sum
of risks to be monitored by each technique (Figure 5c) imparts
a clearer understanding of the type of monitoring plan needed,
which is highly essential in the application of RBM.

The assessment process should repeated as soon as amend-
ments are made to the trial protocol or when identifying new risks
during monitoring process after trial initiation. This would require
the stakeholders to conduct a new risk assessment to engage a
proper mitigation action in the monitoring plan. It is essential to
act on a new identified risk to understand its direct effect on the
overall score of the risk assessment as a whole and on the moni-
toring technique required to prevent its occurrence.

Generally, the monitoring activities of the clinical research co-
ordinator/monitoring team should focus on the requirements, re-
sponsibilities, and hazards that can carry potential liabilities to
the trial assurances. The final assessment report will stipulate
the potential risks to be monitored and frequency of monitoring
needed.

Because RBM is becoming a principle stage in clinical trials,2*
both RMA’s strategy and approach have the potential to improve
data quality and reduce clinical costs. Undoubtedly, the risk as-
sessment within other RBM systems can also identify certain risks;
however, the assessment methodology of the individual risk crite-
ria is either not reported or vague. As for their systems, they are
fixed on prespecified risks lacking the ability of tallying new ones.
For this reason, RMA'’s scoring system provides a means to facili-
tate confirmation of a certain risk and assess its outcome measure.
Additionally, it incorporates flexibility in directly, including an ad-
ditional risk area in the assessment report. Finally, once the en-
tire risk assessment is completed, risks could be grouped based
on the monitoring technique to assist the stakeholders in the trial
monitoring plan development. The established method can be con-
sidered a primary step toward a practical monitoring guidance in
which a monitoring plan form will be based on different risks in a
trial, individual process, and required monitoring.>>

The innovative approach of RBM will facilitate establishment of
adequate and focused monitoring activities, reduce 100% source
data verification activities, and enhance the quality of the trial
and patient safety.”® This goal should be clearly communicated to
stakeholders and clinical trials to prevent misconceptions among
clinical research coordinators regarding RBM’s outcome in increas-
ing workload, a concern that has been previously reported, despite

472



F. Fneish, F. Schaarschmidt and G. Fortwengel
Risk 1 Risk has an Impact on
Wellbeing/safety of subjects
Reliability of data
GCP/protocol compliance

Monitoring Technique
Onsite Monitoring
Remote Monitoring

Both - Occasionally

Probabil?t:)'/

Probability
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Detectabilty

Impact

Dé%ectability

Figure 3. The individual risk assessment presented by the radar chart. This figure shows the criteria of risk assessment that should be completed by the assessor. The
individual risk is assessed by its impact, probability, and detectability. Accordingly, the total area of the risk is presented by the radar chart.

Risk

Impact

Probability Detectability Monitoring Score

1 Missing/Lack of essential document(s)
2 Receipt of IMP shipment to site (Delay, ect.)

Records of blood samples shipment to the central
laboratories(Delay, etc.)

4 Having incomplete documentation

Incomplete screening list (Not following screening
appointments)

lack of contemporaneous independent copy of the CRF
filed on site

7 SOPs won't be followed/used
8 SOPs won't be updated as required

The implementation of an efficient quality management
system by the Sponsor

Risk of having discrepancies between source data and
data reported in the CSR

Figure 4. Assessment score of each individual risk with corresponding input. This figure shows the documentation of the individual risks assessed with its input criteria

score and the computed overall score.

its capacity to do the opposite. RBM is a continued improvement
process that requires all stakeholders and clinical trial staff to ini-
tiate the risk assessment before and during the trial period. An
effective monitoring plan can only be achieved after a successful
implementation of RBM.?” We believe the RMA approach can aid
stakeholders in distinguishing and evaluating any potential risk.
Future investigation should focus on validating the power of RMAs
to demonstrate efficiency in practice.

RMA could be further developed to software that utilizes ex-
isting data to forecast a certain risk outcome and provide a mit-
igation plan based on the risk score. Further work is required to
achieve the desired prediction. Classification models may be em-

ployed to predict the existence of a specific risk and measure its
individual score; however, numerous factors such as data quality
and model fit variability require consideration during the utiliza-
tion of such models.?® Artificial intelligence algorithms should be
the next phase of any risk assessment. Transparent risk method-
ologies such as RMA should be made available to both regula-
tory authorities and the public. The prospect of being able to es-
timate a risk outcome and potential mitigation serves as a con-
tinuous incentive for future research. We believe the efficiency
of RBM has been well established and proven; yet the ulti-
mate design of RBM development will be a challenge for us for
years.
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Figure 5. Risk methodology assessment. (A) Overall scores (area under the radar) of each risk. (B) Risks based on the input of the assessment; red, green, and blue points
are compared with their respectively colored dashed lines representing the maximum score. (C) Overall counts of risks covered by each monitoring technique.
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Abstract

Monitoring of clinical trials is a fundamental process required by regulatory agencies. It
assures the compliance of a center to the required regulations and the trial protocol.
Traditionally, monitoring teams relied on extensive on-site visits and source data
verification. However, this is costly, and the outcome is limited. Thus, central statistical
monitoring (CSM) is an additional approach recently embraced by ICH to detect
problematic or erroneous data by using visualizations and statistical control measures.
Existing implementations have been primarily focused on detecting inlier and outlier
data. Other approaches include principal component analysis and distribution of the data.
Here we focus on the utilization of comparisons of centers to the Grand mean for different
model types and assumptions for common data types, such as binomial, ordinal, and
continuous response variables. We implement the usage of multiple comparisons of single
centers to the Grand mean of all centers. This approach is also available for various non-
normal data types that are abundant in clinical trials. Further, using confidence intervals,
an assessment of equivalence to the Grand mean can be applied. In a Monte Carlo
simulation study, the applied statistical approaches have been investigated for their
ability to control type I error and the assessment of their respective power for balanced
and unbalanced designs which are common in registry data and clinical trials. Data from

the German Multiple Sclerosis Registry (GMSR) including proportions of missing data,
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adverse events and disease severity scores were used to verify the results on Real-World-

Data (RWD).

Keywords: Monitoring, Data quality control, Multicenter clinical trials, Grand mean,
Registry data

Introduction

Multicenter clinical trials are imperative to obtain a conclusive assessment concerning the
safety and efficacy of medical treatments. They involve diverse clinics or hospitals, and
their respective personnel(1). This requires the monitoring team to ensure the compliance
of each center to the study protocol and the requirements of good clinical practice.
Compliance of a center to the required regulations will make the center’s data more
reliable. Non-compliance events may lead to errors in patient inclusion criteria, operating
procedures and to various types of data entry errors(2,3). Additionally, data tampering or
fraud may occur in a single center(4). All these difficulties may result in biased estimates
of the investigated treatments efficacy as well as to false positive or false negative
detection of safety issues. The monitoring team traditionally performs on-site visits to
each study center to ensure compliance of the regulatory requirements; however, these
activities have been reported to be costly and of limited outcome with regards to data
quality(5,6). In the preceding years, central statistical monitoring (CSM) was proposed as
an amendment to a thorough source data verification (SDV) that requires on-site

visits(7,8).

CSM utilizes graphical approaches, summary statistics and statistical tests to assess
incoming data from all centers in the trial(9-11). The assessment of center compliance can
be achieved by statistical models to assess adherence levels. The primary aim is to detect
data entry errors, adverse event rates in single centers or safety issues related to
individual patients. Moreover, CSM serves to identify centers that could require additional
monitoring activities due to deviations or outlier detection. A robust risk assessment of
the key risk indicators (KRIs) in clinical trials can target onsite-monitoring
activities(12,13). Risk assessment prior to trial initiation can facilitate whether an onsite-
monitoring technique or CSM technique is needed to monitor a certain risk. Timmerman
et al. (2016) illustrates how CSM can be a means to identify KRIs to target adaptive

monitoring(14).
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Numerous statistical methods have been applied for monitoring approaches for the
implementation of CSM(9,15,16). Based on covariate type, statistical methods were
applied to detect atypical/outlier data. For the purpose of risk based centralized
monitoring, classical statistical methods have been categorized as unsupervised and
supervised monitoring techniques(17). Existing publications on CSM focused on
outlier/inlier detection on different levels e.g., , center, country and regional and

demonstrated the usage of principle component analysis on the center level.

However, single centers in multicenter clinical trials might deviate from the study
protocol or inclusion criteria. They might also deviate in clinical practice, or there might
be misunderstandings concerning the definition of adverse events or categorical variables
or disease severity scores to be recorded. Such deviations will not produce single extreme
values in the data. They will rather lead to deviating summary statistics, adverse event
rates, or class frequencies of categorical data. Desmet et al. (2014) proposed the usage of
linear mixed effects models to detect location differences between center and other
centers for a continuous outcome and a beta binomial model for proportion comparison
for a certain event in a center(18,19). In the following paper we propose to use multiple
comparisons of single centers to the Grand mean (GM) of all centers. This approach is
available for various data types that are abundant in clinical trials. It can be used to detect
centers that are significantly deviating from average. Further, confidence intervals are
available, such that an assessment of equivalence to the average can be applied. Center
comparisons to the GM of the data has been an overlooked aspect. In the following, we will
firstly define comparisons to the GM for different model types and assumptions for
common data types, such as binomial, ordinal, and continuous response variables.
Generalized linear models (GLM), bayesian linear models (BayesGLM), and bias-reduced
generalized linear models (BrGLM) were applied for binomial outcomes. For continuous
outcomes, a non-parametric and a linear approach are investigated. As for ordinal data, a
non-parametric approach is assessed. The correction for multiple testing is accounted for
when performing the contrasts. Since approaches are asymptotic and thus depend on the
sample size, they were investigated in a Monte Carlo simulation for their ability to control
type I error (a) and achieve the highest possible power (1 — ). We demonstrate the
implementation of these methods on examples based on data from the German Multiple

Sclerosis Registry (GMSR)(20).
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Real-world data from GMSR

CSM aids clinical trials and registries in data monitoring for many variables. GMSR collects
data directly from participating centers through a certified web-based data capture (EDC)
system. The data collected includes a wide range of variables such as patient profile,
disease status and medication treatments. We refer to Ohle et al. (2021) for further details
on the GMSR(20). We included centers that are participating in the pharmacovigilance
module at the GMSR each having at least 50 patients under observation in the database.
An overview of the GMSR data is shown in Table 1 for specific variable types considered

in this research.

[Table 1 insert here]

Figure 1 shows the dataset of three variables for each center. The dataset covers age at
onset, adverse events (AE), expanded disability status scale (EDSS) representing
continuous, binomial, and ordinal data types respectively. EDSS and AE are reported for
each visit. Figure 1a shows the distribution of patients’ age at onset and highlights that
data may not be normally distributed. Shapiro test was used to indicate whether the data
of individual centers follow the normal distribution. Violations of the normality
assumption suggest the need for non-parametric methods to perform center comparisons
to the GM. For the same variable Figure 1b shows the missingness found in each center. It
illustrates the center performance in terms of data completeness. Although it is common
to have missing data, the question arises at what level it is unacceptable? Similarly for
adverse events, one center (C3) reports 38% of patients having adverse events while
other centers range between 0% and 24% (Figure 1c), this observation again designates
a variation in the proportions for a certain event between centers and shows the need for
a test to hint for the problematic center(s). As for EDSS measurements (Figure 1d) it

exhibits a clear difference for disease severity for patients between centers.

The visualization of these variables provides to the stakeholders an overview of the data
at hand. However, it does not directly pinpoint or highlights a problematic center.
Although the observed differences between centers could be natural due to patient
variation or other factors, it is essential to confirm deviating centers at a given statistical
certainty. In some cases, inference of a center being problematic can only be deduced with

appropriate statistical testing e.g., complex multicenter clinical trial. This dataset will be
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used to demonstrate comparisons of the individual mean center to the GM of all centers

for different scales of measurement.

[Figure 1 insert here]

Materials and Methods

We consider a wide spectrum of scenarios relevant to registry and clinical trial data with
several centers for the response outcome variable. Let i be the index of the centers in a
clinical trial i = 1, ..., I. Within each center i there are n; subjects, with subject index j =

1, ...,n;. The GM of all centers within the trial is denoted by m .

Comparisons to m

For a given model with parameters mi; and possibly unbalanced samples sizes n; the GM
m_can be computed by m = Z{=1%mi, where N is the total sample size, N = Y1_; n;.
Comparisons of each centers parameter m; to the GM m. can then be written as a set of

k=1,..,K linear contrasts, with contrast coefficients ¢, = (cx1, Ck2, Ck3» ++-» Ck1):

The deviation of the kth center from the GM can then be written as:

I
dy =mi— —m = z Crim;

=1
Written in this way, the comparisons to GM are a special case of the framework of testing
general linear hypotheses(21). In this framework it is possible to perform hypotheses tests
adjusted for multiple comparisons and to compute simultaneous confidence intervals for

the parameters defined by the contrasts.
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In this application, it can be of interest to test the null hypothesis that no center deviates

from the overall mean,

Hy: dy = (mj—, —m) =0, for all k=1,...K,

versus the alternative hypothesis that at least one center deviates from the overall mean,
Hy: dy = (mj—p —m) # 0, for at least one k=1,...K.

In some cases, a test decision concerning a significant deviation might not be of interest.
Like in tests on equivalence, objective can be to infer whether single centers do not show
a relevant difference from the overall mean. In this case, a prior definition of relevant
deviations or equivalence margins,[—8,5], has to be specified based on subject
knowledge. Then, it can be inferred whether the upper and lower confidence limits for

each center’s deviation dk are included in this range or not.

For the full details of computing p-values of the above hypothesis tests and simultaneous
confidence intervals, we refer to Hothorn et al. (2008)(21). The most important steps from
Hothorn et al. (2008) are outlined below. Stacking the k=1,..,K vectors of contrast
coefficients, ck, yields a contrast matrix C with K rows and I columns. Fitting linear or
generalized linear models yields a vector of estimates of the model parameters with
elements m;, M = (M, My, M3, ...,M;)T and the corresponding estimated variance-
covariance matrix of model parameters, V. Estimates for the deviations of centers from
the GM are then d = C#, the corresponding variance-covariance matrix of these
deviations is U = CVCT, where T denotes a transposed vector or matrix. The estimated
variance of the elements dy, in d = (dy,d,, ds ..., dy ) are the diagonal elements of U, @i =

diag(0), with elements . Their square roots are then the estimated standard errors of

the dk, that is, Q(&k)z,/ﬁk. Finally, the estimated correlation matrix R of

S

(dl, d, ds ..., &K) follows from standardizing the matrix U with its diagonal elements +/i.

dk

Tests of the hypotheses presented above are then based on the test statistics ¢, = 2@
k

the corresponding adjusted p-values are computed from a multivariate t distribution (or
asymptotically from a multivariate normal distribution) with correlation matrix R, for

linear models or generalized linear models, respectively.
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Simultaneous confidence intervals for each center’s deviation from GM, dj, can be

computed using the formula

[dAk i Q1—a,two—sided,ﬁ§é(dAk)]=[(mi=k - T’fl) i Q1—a,two—sided,1?§?(mi=k - ﬁ\l)]

where q1_q rwo-sidea z 1S the two-sided equicoordinate (1-a) quantile of multivariate t or
multivariate normal distribution, respectively. For further details of computing adjusted

p-values and quantiles of multivariate t and normal distributions, we refer to Genz and

Bretz (2009)(22).

For a thorough data interpretation, merely relying on rejection/non-rejection at one
significance at level, say 0.05, or merely relying on the presented p-values is discouraged
(e.g. ASA statement on p-values, Wasserstein & Lazar,2016)(23). Rather, estimated effects
(here, deviations from grand mean) and the corresponding confidence limits should be
displayed and used for interpretation: Then, the relevance of observed effects can be
assessed, or, non-inferiority or equivalence can be assessed based on inclusion of

confidence limits in pre-specified equivalence margins for the corresponding parameter.

Response variables
Continuous outcomes

Continuous data may follow the normal distribution, possibly after a suitable data
transformation to achieve normality and homogeneous variances. It can then be analyzed

by the model used in 1-way analysis of variance
Yij~m +e; , & ~N(Q, %)

Here, m; is the expected value of center i. In this case, the above multiple comparison
procedure is well established and exact. In case of continuous outcomes which are in
contradiction to normality before and after transformations, a non-parametric method is

described in section 3.3.3 as an alternative.
Binomial outcome

The number of events Y; is assumed to follow a binomial distribution in which r; is the

event probability in a center i.
Y;~Binomial(n;, ;)
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For binomial data, we will assume that a generalized linear model (glm) is fitted with the

canonical logit link:

T
)

=]
ml Og(l _ T[l

Thus, comparisons to GM will be performed on the logit scale(24).

Excess 0s in binomial data

Fitting a classical generalized linear model for binomial data with zero excess Y; = 0
successes/failures is a common problem in different scientific fields such as clinical trials

and toxicological experiments(25). As soon as ¥; = 0 in one or several centers, numerically

Ty

m; = log(——) becomes very small and se(m;) will be very large. Several alternatives are

1-m;
available to avoid extreme se. In the next subsection we consider two alternatives, a

Bayesian linear model(26) and the Bias-reduced generalized linear model(27).

Estimators and models assumptions

Bayesian generalized linear models (BayesGLM) for binomial endpoint.

The first approach we consider for dealing with zero excess binomial data ¥; = 0 in one
or several centers is a Bayesian linear model with non-informative priors. Gelman et al.
(2008) used scaled Cauchy distributions as priors for each model parameters that
estimate effects, e.g. differences on the logit scale. Cauchy priors for a model parameter
entail the assumption that extreme center effects on the logit scale are implausible. Prior
assumptions for a baseline risk or control group allows a wider range such that 1079 <
log(m;/1 —m;) < 1—10° (Gelman et al. 2008)(28). Prior assumptions on parameters
impose a restriction on the parameter estimation; this prevents that estimated parameter
from becoming extreme and thus prevents the standard error from becoming extreme as

well.

Bias-reduced generalized linear models (BrGLM) for binomial endpoint.
A second option to account for binomial data with 0 excess observations ¥; = 0 in one or

several centers is a bias reduced glm(26). In this approach, the iteratively reweighted least
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square algorithm used for fitting generalized linear models is modified by adding pseudo-
observations depending on the estimated parameters, such that bias is reduced
iteratively(29). This approach always leads to finite estimates of the logits mi, and of its
related variance covariance matrix V, such that computation can proceed as described in
earlier sections. For the computational details we refer to Kosmidis and Firth, 2009(27),

and Kosmidis and Firth (2021)(29).

Non-parametric approach for multiple comparisons (Nparcomp) for continuous
and ordinal endpoints.

Konietschke et al. (2012) proposed a non-parametric procedure to perform general
multiple contrast tests between several samples without relying on assuming any specific
distribution for the data Y;;(30). Very briefly, they assume that the data are independent
realizations Y;;~F;, where the F; denote, in our context, the distributions in centers i =
1, ..., 1. These distribution functions need not to be explicitly specified, they may differ
between centers, including cases like heteroscedastic data, or different levels of
skewedness between centers. Their procedure further allows Y;; to be heavily tied data,
including ordinal data, such as disease severity scores. The comparisons between centers
rely on the generalized relative effects m;, which are defined as the probability that
observations from center i is lower or equal than an observation from the average
distribution G resulting from the averaging F; across all centers. Applying the above
contrast matrix C allows to compute adjusted p-values for the deviations of centers from
the average as well as simultaneous confidence intervals, again using multivariate-t- (or -
normal-) distribution for the test statistics derived from the generalized relative effects.

For full computational details we refer to Konietschke et al. (2012).

The method of Konietschke et al. (2012) is an asymptotic one, in other words the control
of type-I-error for small samples is unclear. Specifically, Konietschke et al. (2012) state
that convergence to normality is slow, especially for many groups (i.e. centers) and small
sample sizes. Their simulation study only includes cases with i = 3,4, 5 groups, and only
mildly unbalanced sample sizes. Moreover, their simulation study involved only
continuous data, while results for highly discrete ordinal data were not shown. In
application to real data with ordinal variables, we observed simultaneous confidence

intervals indicating quite clear deviations from the null hypotheses, when sample sizes
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were extremely small. We therefore ran additional simulation studies specifically tailored

for the applications described in this paper.

Simulation Study

A Monte Carlo simulation study was performed to assess the control of type I error («),
the probability to reject H, for at least one center if no center deviates from GM in which
Hy: m; —m = 0, and the power (1 — f8) against an alternative hypothesis Hy;: m; —m_#
0 for each method applied on its respective data type, the power represents the
probability to reject H, for at least one center if H,is true for at least one center. Both
GLM and Nparcomp are valid asymptotic methods that require large sample sizes;
however, we are interested in their performance under small and unbalanced sample
sizes. Since GLM has computational problems when Y; = 0, it is additionally compared to
the alternative approaches (BayesGLM and BrGLM) under same settings. Here, power
comparisons are of special interest as the three approaches handle the case of ¥; =0
differently. Nparcomp is also assessed when applied to ordinal data with few categories
and small sample sizes. Ordinal outcome was simulated from normally distributed data

which was then round to 0 digits to create discrete ordinal data.

Simulations were run for balanced and unbalanced designs with varying parameter
settings: I = (5, 10) for number of centers in a trial, subjects per center varied between
balanced and unbalanced scenarios of ni; = (2,3,4,5,6,10, 20,40, 50, 80, 100, 150, 200,
..., 4000). Complete list of parameter settings for all simulations are available in the
supplementary material. The n; in power simulations for unbalanced designs, deviating
center constantly had half the number of observations as in other individual centers for
covered scenarios, some additional scenarios where run for extreme small n; in deviating
center. For continuous and ordinal power simulations, the true difference between
means (&) were chosen such that for a given sample size a power of 80% is achieved in a
two-sample t-test thus one center had a § deviating from other centers. As for binomial
power simulations, the success proportions of centers were chosen such that for a given
sample size, a power of 80% is achieved in a two-sample proportion test, consequently,
centers had a different success proportion from deviating center. For each parameter
setting, a number of 1000 datasets were generated and tested by each method. Note that,

with 1000 simulation runs to estimate the type [ error, the standard error of an estimated
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type 1 error is = 0.007 and 95% of simulation results are expected in the range

[0.036,0.063 ] if a method accurately controls type I error at « = 0.05.

Software and packages

All simulations were performed in R, version 4.0.5. Implemented methods Linear Model,
Generalized Linear Model, Bayesian Generalized Linear Model, Bias Reduction in Binomial
response Generalized Linear Models and Non-parametric multiple comparisons are
available in R-packages stats v4.0.5(31) (R-core Team), arm v1.11-1(32), brglm v0.6.2(33)
and nparcomp v3.0(34) respectively. To compute GM contrasts, “multcomp” package was

used(35).

Results

This section shows the results of the simulation study. We describe first the results of the
type I error control simulations and then the results of power simulations in comparison

contrast to the GM.

Simulations of type I error:

The simulations of type I error for all methods are shown in Figure 2. For a binomial
outcome, Figure 2a shows the experimental setup used for a balanced design. Simulations
show as the sample size per center N increases with increasing success probability of a
certain response variable, the more a 5% rejection rate is achieved. For events with a low
expected number of events (n;m;) all three methods tend to show a below the nominal
level. While for unbalanced designs, Figure 2b shows no difference between the three
methods. In extreme settings however, i.e. centers having a smaller number of patients
compared to other centers that have a smaller success probability of a certain response
variable, the methods appear to be conservative in achieving a 5% rate. For continuous
outcomes, Figure 2c and Figure 2d show the simulations of linear model as a comparator
to the non-parametric approach for balanced and unbalanced experimental design
respectively. As anticipated, the non-parametric method shows increased type I error for
small sample sizes (3, 5, 10). A linear model is known to control the familywise type I
error rate, the purpose of this comparison is to show the ability of the non-parametric
method to control the type I error similarly to the linear model, specifically for extreme

settings. For extreme settings such as centers with <10 patients per center, the non-
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parametric method rejects up to 10% for balanced designs, however its control is sounder
for unbalanced designs for all covered scenarios. For ordinal outcome, Figure 2e and
Figure 2f show the simulations of the non-parametric method for balanced and
unbalanced experimental designs respectively. Similarly, to the continuous outcome, for
centers having <10 patients the control of type error reaches to 18% for balanced designs
and is maintained for all scenarios of unbalanced designs. Additional simulations with
5000 runs were performed for the non-parametric method with the same settings, similar

type I error control is observed to the 1000 runs (Supplementary figure 1).

[Figure 2 insert here]

Power simulations:

The power simulations for all methods are shown in Figure 3. For a binomial outcome,
Figure 3a and Figure 3b show the experimental setups used for balanced and unbalanced
designs respectively. Methods show power increase as sample size per center N and
success probability increase. Furthermore, BayesGLM is superior in power for small
sample sizes relative to GLM and BrGLM, while controlling the type I error. Therefore, we
recommend the use of Bayesglm for binomial outcomes that might contain rare events
(Y; = 0). For continuous outcome, similarly, to type I error simulations linear model was
chosen as comparator to the non-parametric method. Figure 3c and Figure 3d show
power simulations of both methods for balanced and unbalanced scenarios respectively.
Both methods achieve greater power for balanced designs than unbalanced ones.
Additionally, the Non-parametric method has a trivial decrease in power compared to the
linear model in all scenarios. Power rather decreases to ~50% for both methods in
extreme settings of having small n; per center. For ordinal outcome, Figure 3e and Figure
3f show the power simulations of the non-parametric method for balanced and
unbalanced experimental designs respectively. For balanced designs as the n; per center
increases the power of the non-parametric method increase as well. Power decreases
substantially for extreme settings of having small n; per center in which it reaches a

maximum of 35%.

[Figure 3 insert here]
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Application to the GMSR dataset:

We illustrate the proposed methods (except GLM and BrGLM as they show inferiority to
BayesGLM) by the analysis of GMSR data. Methods were implemented on the
corresponding variable type as appropriate. Figure 4 shows simultaneous confidence
intervals of the deviations of the 15 centers from GM, for continuous, binary, and ordinal

outcomes.

The Non-parametric method was applied on the age at onset variable (Figure 4a), C9
shows a cohort relatively smaller than GM of other centers, whereas C12 shows a cohort
larger than the GM. In both cases, it is not a foremost observation for the GMSR data as it
does not have a specific inclusion criteria for age onset of patients. However, it could be
imperative for clinical trials as they do have a detailed inclusion criterion. A binary
variable was derived presenting a missing input of the age at onset variable for each
patient (Figure 4b). C3 shows that it has 149 patients, however 41 of them do not have
age onset information, although it's not uncommon to have missing data for some
variables, C3 shows a higher average than the GM. C12 and C13 have a similar pattern to
C3 where both have a higher mean than the GM. While C7 has only five patients with
missing information out of 460 patients, it shows a smaller mean for missing information
than the GM of other centers. In other words, C7 signifies a superior documentation for
age onset than other centers. Another binary variable presenting adverse events (per
patient) reported per center is presented in figure 4c. C1, C2, C3 and C5 show higher
proportions of adverse events reported than the GM of all centers. Looking in more detail
into the AEs documented, C3 reports COVID-19 vaccination reactions as adverse events.
This shows a clear example of how centers could perform differently from other centers.
The results could indicate the need for stakeholders to approach under reporting centers,
in other words it would point the centers that have a significantly smaller average than
the GM. Finally Figure 4d shows the contrasts of the centers EDSS measurements to the
GM. It shows how center’s cohort disease severity for the specific center is different. C4,
C7 and C14 show significantly higher EDSS measurements than the GM, while C1 and C15
show a smaller one. These results may alert stakeholders to further investigate the
reasons for such differences. Particularly for C7, as it includes a cohort with higher disease

severity than average and yet they report fewer adverse events.

[Figure 4 insert here]
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Discussion

In this paper we present methods and their implementation to detect center(s) that differ
from GM of other centers for a specific variable. The utilization of these procedures serves
the aim of CSM in performing data quality checks to improve data integrity. It also
minimizes the costs of data monitoring and improves their quality. We were able to show
how different statistical methods can be implemented to identify centers in multi-center
trials or registry data that might need additional training or is a candidate for on-site
monitoring visits. The approach allows the recognition of centers that are significantly
deviating from the average. This would eventually enable the monitoring teams to point

their attention to problematic sites.

The three methods investigated for Binomial data never strongly exceed type I error.
Nevertheless, BayesGLM is superior to GLM and BrGLM in detecting a deviating center
when n;; < 50. The fact that all three methods tend to be too conservative for small
sample sizes and rare events resembles similar problems found for other binomial
methods: Due to the discreteness of binomial data, various methods are reported to be
either over-conservative or liberal depending on the specific method and parameter
configuration (36—38). The non-parametric method has harsh violations of the type I error
control; especially for n;; < 10, and ordinal data. In other words, the non-parametric
method can be applied for clinical trials and registries where centers do not have a
relatively small sample size, i.e., centers should have at least 10 patients to identify a true
deviation. Our results show that the non-parametric method may result in an increased
rate of falsely detecting deviating centers, when sample sizes are small. In some cases, an
alternative would be to choose a suitable data transformation followed by application of
parametric methods. However, in other cases, like contamination with outliers, bi- or
multi-modal distributions, transformation may not settle the problems and non-
parametric methods may still be the best choice. Further, it should be noted that the
simulation studies in this paper are not suitable for fairly comparing non-parametric with
parametric methods, because situations where non-parametric methods may outperform

parametric approaches have not been involved.

Desmet et al. (2014, 2017) proposed alternative approaches to detect deviating centers,

with differing assumptions(18,19). They assume that some variability between centers
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has to be expected and is not of concern, particularly if the number of centers is large.
Consequently, they focus on detecting the deviations of a small proportion of
contaminated centers from the distribution of the large majority of centers. They cover
the important  cases of  continuous data under  the additional
assumption of normally distributed center means in a mixed effect model(18), and of
binomial data with the assumption of beta distributed variability between centers(19).
Conversely, the models underlying the methods in this paper make no assumptions on the
distribution of center means and are currently available for a wider range of model types
and distributional assumptions for the data, including the non-parametric approach.
However, this comes at the price of overfitting and possibly flagging more deviating
centers than necessary in cases where variability between centers is allowed, particularly
in trials involving a large number of centers. Further research is needed to investigate the
approach practically for large multicenter clinical trials covering 20-100 centers with

many being very low recruiters.

As Buyse et al. (2020) indicates, the power of a statistical approach lays in performing
statistical tests on all variables. This would lead into many numbers of tests conducted
and thus the need to combine their conclusions(39). For this reason, a scoring system for
an individual center could be further developed for the assessment of the individual data
type with appropriate method. Parameters of the scoring system must be individually
weighted by stakeholders. Although clinical trials and registries are similar in many
aspects, a robust scoring system must be adaptable to consider their differences(40,41).
For example, the inclusion criteria of patients differ between both systems. The deviations
found in clinical trials are relatively smaller than in registry data as the latter usually have
less strict inclusion criteria. Alternatively, it is possible to assess each center for how many
variables it has been flagged for and treat it as a binomial measure to finally compare the
actual number of how many variables are differing from other centers (see
Supplementary Table 1). In other situations, expert knowledge in the CSM team may be
used to assess what level of deviations is still acceptable for what variable. The proposed
methods are then a statistical tool to assess which centers are within or outside such a
range of acceptable deviations for a given variable. In such situations, a method that

automatically processes all variables might not be desirable.
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Several straightforward extensions of the approach are available. First, in some situations,
it might be known that some centers differ from others. For example, centers located at
well-known university hospitals might differ in frequencies of disease severity scores
from centers at smaller, local hospitals. This again might lead to differences between
distributions or summary statistics of several further variables. If it is desired to account
for such expected differences between centers, the comparisons to GM can be stratified
by the type of center. Alternatively, variables that are known to reflect such expected
differences between centers can be included as covariates into (generalized) linear
models, such that the comparisons between centers are performed while accounting for
the effect of the covariates. Second, there are several variable types for which
comparisons to GM can be performed but are not mentioned in detail in this paper.
Ordinal data like disease severity scores can be analyzed by cumulative link models(42)
with centers (and possibly further covariates) as explanatory variables, such that the
tendency to show higher or lower scores can be compared between centers. Additional
approaches for ordinal data such as ordered categorical regression and multinomial
models for nominal data are available. Time-to-event data or survival times are abundant
in clinical trials, and multiple comparisons can be performed for such data, because the
cox model as well as Weibull models for survival time are special cases of the framework
implemented in the multcomp package(21). Moreover, skewed continuous data can be
modelled in generalized linear models assuming exponential, gamma, or inverse Gaussian
distribution. Several types of heteroscedasticity can be modelled by generalized least
square models. Again, for these model types, comparisons to grand mean can be
performed using the multcomp package. Further research is needed to assess the

performance of these extensions for limited sample sizes for the investigated approach.

Currently methods are scattered between different packages in R. We provide an easy to
use and interactive graphical user interface for the two methods BayesGLM & Nparcomp

as two separate shinyapps, https://central-statistical-

monitoring.shinyapps.io/BayesGLM-GM / and https://central-statistical-

monitoring.shinyapps.io/Nparcomp-GM/.Users can upload their datasets to compute

comparisons to GM, and graphically represent simultaneous confidence intervals for
contrasts of center means with GM. We plan to introduce a universal form of the methods
demonstrated in a standard R package to tackle different data types easing their
implementation and drawing respective decision charts for the benefit of CSM. Central
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statistical monitoring serves the core purpose of monitoring goals. It facilitates the
detection of deviating centers that are not likely due to chance. This would eventually

support monitoring teams to initiate an onsite visit and target their activities.

Contributions

FF designed and conceptualized study, ran simulations, analyzed the data, programmed
the shinyapps and wrote the original draft. DE participated in the study design, helped in
the analysis of the GMSR data and revised the manuscript. NK revised the manuscript. AS
participated in the study design as head of the German MS Register and revised the
manuscript. GF participated in the study design, revised the manuscript. FS designed and

conceptualized study, helped in drafting the manuscript and revised the manuscript.

Acknowledgments
We would like to thank Zeinab Fneish for proofreading the manuscript.
Funding

The author(s) received no financial support for the research, authorship, and/or
publication of this article

Supplementary

The Syntax of all simulations and respective datasets as well as for the shinyapps are
available on Github under https://github.com/firasfneish/CSM.

Competing interests

FF is an employee of Leibniz University Hannover and the German MS Registry. DE had no
personal financial interests to disclose other than being an employee of the German MS
Registry. NF is an employee of the MSFP. Moreover, he received travel funds for research
meetings from Novartis. AS has no personal financial interests to disclose, other than being
the leader of the German MS Registry, which receives (project) funding from a range of public
and corporate sponsors, recently including G-BA, The German MS Trust, German MS Society,
The German Retirement Insurance, Biogen, Celgene (Bristol Myers Squibb), Merck, Novartis,

Roche, Sanofi and Viatris. GF has nothing to disclose. FS has nothing to disclose.

63



References

1.

10.

11.

12.

13.

Chung KC, Song JW, WRIST Study Group. A guide to organizing a multicenter clinical trial.
Plast Reconstr Surg. 2010 Aug;126(2):515-23.

Goldberg SI, Niemierko A, Turchin A. Analysis of Data Errors in Clinical Research
Databases. AMIA Annu Symp Proc. 2008;2008:242—6.

Barchard KA, Pace LA. Preventing human error: The impact of data entry methods on
data accuracy and statistical results. Computers in Human Behavior. 2011 Sep
1;27(5):1834-9.

Buyse M, George SL, Evans S, Geller NL, Ranstam J, Scherrer B, et al. The role of
biostatistics in the prevention, detection and treatment of fraud in clinical trials. Stat
Med. 1999 Dec 30;18(24):3435-51.

Baigent C, Harrell FE, Buyse M, Emberson JR, Altman DG. Ensuring trial validity by data
quality assurance and diversification of monitoring methods. Clin Trials. 2008;5(1):49—
55.

Smith CT, Stocken DD, Dunn J, Cox T, Ghaneh P, Cunningham D, et al. The Value of
Source Data Verification in a Cancer Clinical Trial. PLOS ONE. 2012 Dec 12;7(12):e51623.

EMA. Reflection paper risk based quality management clinical trials [Internet]. 2013
[cited 2023 Apr 27]. Available from:
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-risk-
based-quality-management-clinical-trials_en.pdf

FDA. Oversight of Clinical Investigations — A Risk-Based Approach to Monitoring
[Internet]. U.S. Food and Drug Administration. FDA; 2022 [cited 2023 Apr 27]. Available
from: https://www.fda.gov/regulatory-information/search-fda-guidance-
documents/oversight-clinical-investigations-risk-based-approach-monitoring

Venet D, Doffagne E, Burzykowski T, Beckers F, Tellier Y, Genevois-Marlin E, et al. A
statistical approach to central monitoring of data quality in clinical trials. Clin Trials. 2012
Dec;9(6):705-13.

Oba K. Statistical challenges for central monitoring in clinical trials: a review. Int J Clin
Oncol. 2016 Feb;21(1):28-37.

Kirkwood AA, Cox T, Hackshaw A. Application of methods for central statistical
monitoring in clinical trials. Clin Trials. 2013 Oct;10(5):783-806.

Fneish F, Schaarschmidt F, Fortwengel G. Improving Risk Assessment in Clinical Trials:
Toward a Systematic Risk-Based Monitoring Approach. Current Therapeutic Research.
2021 Jan 1;95:100643.

Fneish F, Limaye D, Striiver V, Fortwengel G. Comparison of Non-Commercial Risk Based
Monitoring Tools by Their Application on Clinical Trial Protocols. American Jounal of
Biomedical Science & Research. 2020;8(3):216-20.

64



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Timmermans C, Venet D, Burzykowski T. Data-driven risk identification in phase lll
clinical trials using central statistical monitoring. Int J Clin Oncol. 2016 Feb 1;21(1):38-45.

Kahan BC. Accounting for centre-effects in multicentre trials with a binary outcome —
when, why, and how? BMC Medical Research Methodology. 2014 Feb 10;14(1):20.

Trotta L, Kabeya Y, Buyse M, Doffagne E, Venet D, Desmet L, et al. Detection of atypical
data in multicenter clinical trials using unsupervised statistical monitoring. Clinical Trials.
2019 Oct 1;16(5):512-22.

Afroz MA, Schwarber G, Bhuiyan MAN. Risk-based centralized data monitoring of clinical
trials at the time of COVID-19 pandemic. Contemporary Clinical Trials. 2021 May
1;104:106368.

Desmet L, Venet D, Doffagne E, Timmermans C, Burzykowski T, Legrand C, et al. Linear
mixed-effects models for central statistical monitoring of multicenter clinical trials.
Statistics in Medicine. 2014;33(30):5265-79.

Desmet L, Venet D, Doffagne E, Timmermans C, Legrand C, Burzykowski T, et al. Use of
the Beta-Binomial Model for Central Statistical Monitoring of Multicenter Clinical Trials.
Statistics in Biopharmaceutical Research. 2017 Jan 2;9(1):1-11.

Ohle LM, Ellenberger D, Flachenecker P, Friede T, Haas J, Hellwig K, et al. Chances and
challenges of a long-term data repository in multiple sclerosis: 20th birthday of the
German MS registry. Sci Rep. 2021 Jun 25;11(1):13340.

Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models.
Biom J. 2008 Jun;50(3):346-63.

Genz A, Bretz F. Computation of Multivariate Normal and t Probabilities [Internet].
Berlin, Heidelberg: Springer; 2009 [cited 2023 Apr 27]. (Lecture Notes in Statistics; vol.
195). Available from: https://link.springer.com/10.1007/978-3-642-01689-9

Wasserstein RL, Lazar NA. The ASA Statement on p-Values: Context, Process, and
Purpose. The American Statistician. 2016 Apr 2;70(2):129-33.

McCullagh P, Nelder J. Generalized Linear Models [Internet]. 2nd ed. Chapman & Hall;
1983 [cited 2023 Apr 27]. Available from:
https://www.utstat.toronto.edu/~brunner/oldclass/2201s11/readings/glmbook.pdf

Fneish F, Schaarschmidt F. Multiple Treatment Comparisons Of Binomial Data With Only
Os In One Treatment Group. 2019 Mar 23;

Gelman A, Su YS, Yajima M, Hill J, Grazia Pittau M, Kerman J, et al. Data Analysis Using
Regression and Multilevel/Hierarchical [Internet]. 2022 [cited 2023 Apr 27]. Available
from: https://cran.r-project.org/web/packages/arm/arm.pdf

Kosmidis I, Firth D. Bias reduction in exponential family nonlinear models. Biometrika.
2009 Dec 1;96(4):793-804.

65



28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

Gelman A, Jakulin A, Pittau MG, Su YS. A weakly informative default prior distribution for
logistic and other regression models. Ann Appl Stat [Internet]. 2008 Dec 1 [cited 2023
Apr 27];2(4). Available from: https://projecteuclid.org/journals/annals-of-applied-
statistics/volume-2/issue-4/A-weakly-informative-default-prior-distribution-for-logistic-
and-other/10.1214/08-A0AS191 full

Kosmidis I, Firth D. Jeffreys-prior penalty, finiteness and shrinkage in binomial-response
generalized linear models. Biometrika. 2021 Mar 1;108(1):71-82.

Konietschke F, Hothorn LA, Brunner E. Rank-based multiple test procedures and
simultaneous confidence intervals. Electronic Journal of Statistics. 2012
Jan;6(none):738-59.

R: The R Stats Package [Internet]. [cited 2023 Apr 27]. Available from:
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html

arm.pdf [Internet]. [cited 2023 Apr 27]. Available from: https://cran.r-
project.org/web/packages/arm/arm.pdf

brglm function - RDocumentation [Internet]. [cited 2023 Apr 27]. Available from:
https://www.rdocumentation.org/packages/brglm/versions/0.7.2/topics/brglm

Konietschke F, Placzek M, Schaarschmidt F, Hothorn LA. nparcomp: An R Software
Package for Nonparametric Multiple Comparisons and Simultaneous Confidence
Intervals. Journal of Statistical Software. 2015 Mar 20;64:1-17.

Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A, Scheibe S. multcomp:
Simultaneous Inference in General Parametric Models [Internet]. 2023 [cited 2023 Apr
27]. Available from: https://cran.r-project.org/web/packages/multcomp/index.html

Brown LD, Cai TT, DasGupta A. Interval Estimation for a Binomial Proportion. Statistical
Science. 2001 May;16(2):101-33.

Agresti A, Caffo B. Simple and Effective Confidence Intervals for Proportions and
Differences of Proportions Result from Adding Two Successes and Two Failures. The
American Statistician. 2000 Nov 1;54(4):280-8.

Schaarschmidt F, Sill M, Hothorn LA. Approximate Simultaneous Confidence Intervals for
Multiple Contrasts of Binomial Proportions. Biometrical Journal. 2008;50(5):782-92.

Buyse M, Trotta L, Saad ED, Sakamoto J. Central statistical monitoring of investigator-led
clinical trials in oncology. Int J Clin Oncol. 2020;25(7):1207-14.

Gliklich R. Clinical Trials vs Registries. 2009 Apr 1 [cited 2023 Apr 27];0(0). Available from:
https://www.appliedclinicaltrialsonline.com/view/clinical-trials-vs-registries

Is this an Interventional Clinical Trial or Observational Study? How- and Why- it is
Important to Write Protocols that Make This Distinction Clear [Internet]. WCG IRB. 2018
[cited 2023 Apr 27]. Available from: https://www.wcgirb.com/insights/is-this-an-

66



interventional-clinical-trial-or-observational-study-how-and-why-it-is-important-to-
write-protocols-that-make-this-distinction-clear/

42. Agresti A. Categorical Data Analysis, 3rd Edition | Wiley [Internet]. Wiley; 2013 [cited
2023 Apr 27]. Available from: https://www.wiley.com/en-
gb/Categorical+Data+Analysis%2C+3rd+Edition-p-9780470463635

67



Age of onset (Median, Quantiles) 30.25(23.42, 38.42)

Missing Age of onset 153 (8.1%)
Gender
Females 1356 (72%)
Males 538 (28%)
Adverse Events reported
Number of Adverse events reported 232
Number of patients experiencing 183

Adverse evenets
Disease Course (at last visit)

RRMS 1623 (86%)
SPMS 237 (13%)
KIS 15 (0.8%)

Unknown 19 (1)

Table 1: Basic and clinical characterization of patient’s part of pharmacovigilance
module in the GMSR data.
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Figure 1: GMSR data stratified by center for four variables A-D. (A) Violin plot including kernel density estimates of age at disease onset indicating possible violations of normality. (B) Patients with missing age onset (%). (C) Reported number of
patients having adverse events (%). (D) Histograms of disease severity (EDSS) for patients at latest visit.

69



Binomial

P e =i el et~ i B

0.06 H @ ™ Hﬁ u (1. .

% - g} r Y Ne Xéﬁj % él'\?. o [ ] [ J L4 @ \Y%
& b

004 ___________ o B A SR L 004 . B, I AT B

3 + o 4 X 3 AT * *
X A
0.02 X 0.02 ® &
A % x B XX X @
@] |
0.00 o A e 0.00 B ® b g © ® 2 @
BayesGLM BrGLM GLM BayesGLM BrGLM GLM
Methods Assessed Methods Assessed
Y; per center _ 5 30 150 (0 500 Y, per center _ 10:4:20:5:40 15:6:30:8:60 25:10:50:12:100 50:20:100:25:200
10 /50 200 || 1000 100:40:200:50:400 150:60:300:75:600 < 250:100:500:125:1000 /| 500:200:1000:250:2000
0 100 200 280 MiPercenter 1 og 0 gy 77 300 M 1500 0 100 200 280 Mmjpercenter [ o0 400:2000:500:4000 | 2:1:5:1:10 [ 40:16:80:20:160 W 75:30:150:38:300
25 1 100 [ 400 @ 2000 ) 12:5:25:6:50 | 200:80:400:100:800 | 5:2:10:2:20 @ 750:300:1500:375:3000
c0.10 ——a Contlngous
0.07 o,
! ! 1 1 91 | 1 | === T < S
0.08 0.06 o ™

e TECEEEETT PP PP PP S oo 6 10 20 40 80 “1¥o” 160 200 400
3 5 10 20 40 50 80 100 200 n; per center
n; per center !
Metlrod n; in unbalanced center g ' ;8 gg ] ?go v 200
Method — Linear Model - Non-parametric — Linear Model
--- Non-parametric
Ordinal
Eo.18 F0.065
045 0.060
0.055
0.12 3
3 0.050
0.045
0.08
__________________________ 0.040
5 e o @
0.05 P -
“““““““““““““““““““““““““““““ n; per center
3 5 10 20 40 50 80 100 200
n; per center n; in unbalanced center g ;g gg ) ’1380 v 200

Figure 2: The probability of falsely rejecting the null hypothesis for at least one center as a function of sample size for each method applied on relevant response
outcome for balanced (left panel) and unbalanced designs (right panel). The nominal type | error rate (a=0.05) is shown as a horizontal line. BayesGLM Bayesian
Generalized Linear model, BrGLM Bias-reduced Generalized Linear Model, GLM Generalized linear Model.
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Figure 3: The probability of rejecting at least one null hypothesis (1-f) as a function of sample size for each method applied on relevant response outcome for balanced
(left panel) and unbalanced designs (right panel). The group differences (6) are chosen based on a two-sample test at a power level of 80%, which is shown as a
horizontal line. BayesGLM Bayesian Generalized Linear model, BrGLM Bias-reduced Generalized Linear Model, GLM Generalized linear Model.

71



Centers N P.val : Centers Known Unknown P.val :

C1 186 1 — C1 186 11 0.99 i

c2 62 0.99 | B i C2 62 7 067 ——

c3 108 0.18 —a— c3 108 41 o e =

c4 72 0.99 | = : C4 72 2 099 —

c5 58 0.99 ' — ' C5 58 9 007 —=—

c6 124 0.99 —— Cé 124 1041 | —

c7 455 0.10 —=— c7 455 5w ——!

cs 116 0.97 — c8 116 0 0.40 | = —

co 70 | = o co9 70 5 099 ——

C10 71 0.99 | = : C 10 71 3 099 ——

C 11 93 0.89 | S C 11 93 1070 | -

C12 58 'y = i C12 58 15w D

C13 27 0.99 | — | C13 27 43 e ! ——

C 14 87 0.99 C = i C 14 87 2 097 ———

C15 154 0.61 ——— C15 154 8 1 ——

-02 -0.1 0.0 01 02 -50 25 0.0 25

C Centers Patients with AE ~ Without AE  P.val : D Centers N P.val :

C1 47 153 . C1 197 — |

c2 8 59w | —— c2 71 0.96 ———

c3 73 "y o I i c3 149 0.31 ——

C4 0 79 0.90 ! = I i C4 74 ! ——

C5 15 53 e Ll C5 70 0.40 ——

cé 3 124 0.99 —— C6 125 0.99 ——

c7 0 468  0.20 | — Ly c7 461 B

cs 24 94 e e c8 116 0.99 ——

co 4 79 0.98 —HE— C9 75 1 —.—

C10 3 73 0.99 —_— C 10 74 0.99 —

C 11 0 99 082 | = ! : C 11 94 0.55 —

c12 3 74 099 —— c12 73 0.99 ——

Cc13 2 73 1 —— Cc13 70 0.77 —a—

C 14 0 82 0.88 C = : { C 14 89 —a—

C15 1 167 0.69 — C15 162 —— !

5 0 -0.3 -0.2 -0.1 0.0 0.1 0.2 03

Figure 4: Simultaneous confidence intervals for contrasts of center means with GM for GMSR data set. (A) Continuous variable age onset comparison for each center to GM using non-parametric method. (B) Fitting a BayesGLM for the binary
variable of missingness of the age at onset followed by contrasts of center mean towards GM. (C) Fitting a BayesGLM for AEs as binary variable followed by contrasts of center mean and GM. (D) Ordinal variable of disease severity (EDSS) comparison
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Supplementary figure 1: The probability of falsely rejecting the null hypothesis for at least one center as a function of sample size for each method applied
on relevant response outcome for balanced (left panel) and unbalanced designs (right panel). The nominal type | error rate (0=0.05) is shown as a horizontal line.
Dotted blue lines indicate error margins for simulations with 5000 runs. Simulated type-I-errors falling outside [0.044; 0.056] indicate a significant deviation from

the prespecified level alpha=0.05).
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Age onset Age Adverse Disease Total
onset events severity variables
missing flagged for
Cc1 0 0 1 1 2
C2 0 0 1 0 1
C3 0 1 1 0 2
C4 0 0 0 1 1
c5 0 0 1 0 1
Cé 0 0 0 0 0
c7 0 1 0 1 2
c8 0 0 1 0 1
C9 1 0 0 0 1
Cc10 0 0 0 0 0
Cc11 0 0 0 0 0
C12 1 1 0 0 2
C13 0 1 0 0 1
C14 0 0 0 1 1
C15 0 0 0 1 1

Supplementary Table S1: Summarized table for flagged variables in each center
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