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Abstract
Formative assessment is considered to be helpful 
in students' learning support and teaching design. 
Following Aufschnaiter's and Alonzo's framework, 
formative assessment practices of teachers can be 
subdivided into three practices: eliciting evidence, 
interpreting evidence and responding. Since students' 
conceptions are judged to be important for meaningful 
learning across disciplines, teachers are required to 
assess their students' conceptions. The focus of this 
article lies on the discussion of learning analytics for 
supporting the assessment of students' conceptions 
in class. The existing and potential contributions of 
learning analytics are discussed related to the named 
formative assessment framework in order to enhance 
the teachers' options to consider individual students' 
conceptions. We refer to findings from biology and 
computer science education on existing assess-
ment tools and identify limitations and potentials with 
respect to the assessment of students' conceptions.
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INTRODUCTION

Learning processes may aim at the acquirement of skills, knowledge, practices or the individ-
uals' understanding. One responsibility of teachers is to support students' learning processes 
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(Gropengießer, 2006). Several fields of domain-specific educational research have found 
that students' conceptions are important in learning processes and need to be considered in 
teaching if the students' understanding is to be addressed (Amin, 2015). Formative assess-
ment (FA) is seen as a possibility to support learning processes by considering individual 
students' conceptions (von Aufschnaiter & Alonzo, 2018). Nevertheless, teacher profession 
research has found that the FA of students' conceptions is a challenging task even for expe-
rienced teachers (von Aufschnaiter & Alonzo, 2018). This article focuses on the discussion 
of learning analytics (LA), for example, using machine learning (ML) methods, as potential 
support tools for the assessment of students' conceptions in class. In this article, we contrib-
ute to the work on learning analytics for assessment (Gašević et al., 2022) by

• identifying challenges of FA regarding students' conceptions,
• carving out some relevant data that needs to be analysed and presenting ideas on how 

LA can inform and support FA of students' conceptions.

Similar to the FaSMEd (Formative Assessment in Science and Mathematics Education) 
model that has been built to characterise and analyse technology enhanced FA (Cusi 
et al., 2019), we also combine the dimensions, FA strategies and functionalities of technol-
ogy. As for the agents dimension, we focus on support for the teacher. In contrast to the 
FA strategies’ dimension of the FaSMEd model (Cusi et al., 2019), we base our analysis 
on a model of formative assessment as practices, which has been widely used in science 
education (Alonzo, 2018; von Aufschnaiter & Alonzo, 2018) (see Section 2). The model 
by Alonzo (2018) and von Aufschnaiter and Alonzo (2018) is suitable to characterise the 

Practitioner notes
What is already known about this topic
• Students' conceptions are considered to be important for learning processes, 

but interpreting evidence for learning with respect to students' conceptions is 
challenging for teachers.

• Assessment tools have been developed in different educational domains for 
teaching practice.

• Techniques from artificial intelligence and machine learning have been applied for 
automated assessment of specific aspects of learning.

What does the paper add
• Findings on existing assessment tools from two educational domains are 

summarised and limitations with respect to assessment of students' conceptions 
are identified.

• Relevent data that needs to be analysed for insights into students' conceptions is 
identified from an educational perspective.

• Potential contributions of learning analytics to support the challenging task to elicit 
students' conceptions are discussed.

Implications for practice and/or policy
• Learning analytics can enhance the eliciting of students' conceptions.
• Based on the analysis of existing works, further exploration and developments 

of analysis techniques for unstructured text and multimodal data are desirable to 
support the eliciting of students' conceptions.
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STANJA et al.60

involved practices and to discuss possible contributions of LA to the further development of 
technology-enhanced FA.

In Section 3, we look at a selection of assessment tools used in biology education and 
computer science education. The examples from the two educational disciplines illus-
trate the current state of FA with regard to different targets of assessments and highlight 
domain-specific differences. Potential contributions of LA to the identified challenges and 
desirable further developments from an educational perspective are discussed in Section 4, 
together with research questions that could guide future work. The article concludes in 
Section 5.

THEORETICAL BACKGROUND

In this section, we expose the characteristics of students' conceptions and their relevance 
for understanding processes. Based on this, a model for FA is introduced that can be used 
to characterise the involved practices for teachers and, thus, can serve as a promising refer-
ence point for LA. Finally, we provide information on the application of learning analytics to 
the educational field.

The importance of students' conceptions in learning processes

In education, the need to consider students' conceptions in teaching is widely accepted across 
disciplines (Amin et al., 2011; Bascandziev et al., 2018; diSessa, 2014; Gropengießer, 2006; 
Groß et al., 2019; Hammann & Asshoff, 2014; Kattmann, 2015; Krüger et al., 2018; 
Vosniadou, 2013). Multiple studies and models since the 1970s reflect the importance that is 
attributed to students' conceptions (Amin, 2015; Potvin et al., 2020)—not only as a prereq-
uisite but also as a helpful and necessary resource for understanding. Different theoretical 
approaches have been used in research (Amin, 2015; Potvin et al., 2020). The used theory 
frames how learning is conceptualised and modelled and therefore affects the evaluation 
of the appropriateness of assessment techniques. Furthermore, the design of supporting 
materials and tools for FA purposes is determined by the conceptualisation of learning. The 
conceptualisation of learning has implications for learner modelling, what shall be elicited 
and how it can be interpreted (see Section 2.2).

The theory of experience-based understanding assumes that humans actively 
construct a basic understanding of their environment and reality based on their experi-
ences (Krüger, 2007). This experience-based understanding further determines learning 
(Krüger, 2007, p. 83)—even in areas that do not allow experiences. This theory is based 
on the cognitive linguistic theory by Lakoff and Johnson (Lakoff & Johnson, 1980). Accord-
ing to the theory of experience-based understanding, students' conceptions are conceptu-
alised as embodied cognitions that are constructed based on sensomotorical experiences. 
In contexts that do not allow experiences, these embodied cognitions are used in a meta-
phorical mapping process in order to make sense (Krüger, 2007). In many cases, we are 
not aware of these mapping processes. In everyday life, biological phenomena are often 
explained using metaphors that are contrary to a biological understanding of the phenom-
enon (Gropengießer, 2006). This understanding differs from other conceptualisations—
for  example, with regard to the value of students' conceptions. Some researchers use the 
terms misconceptions, naive ideas, non-normative or alternative ideas to refer to ‘inaccu-
rate explanatory elements’ from a normative scientific perspective (Nehm & Ha, 2011). In 
the frame of the theory of experience-based understanding, these conceptions are termed 
as “everyday conceptions” and the development of conceptions does not incorporate a 
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FORMATIVE ASSESSMENT STRATEGIES FOR STUDENTS’ CONCEPTIONS 61

judgemental perspective. Everyday conceptions have been useful to the learners in their 
day-to-day life and may represent potential as well as obstacles for individualised learning 
(Gropengießer & Marohn, 2018; Kattmann, 2015; Zabel & Gropengiesser, 2011). Therefore, 
we use the term “everyday conception” to refer to conceptions that differ from biological ones. 
To support individual learning processes, it is considered as important to diagnose both, 
the students' everyday and biological conceptions (Gropengießer, 2006; von Aufschnaiter 
& Alonzo, 2018). For the both of them combined, we use the term “students' conceptions”. 
This means, that learning is not understood as a substitution of ‘inaccurate’ conceptions but 
rather an enrichment, modification or differentiation (Baalmann et al., 2004). The structure of 
students' learning paths with respect to their development of conceptions may differ individ-
ually and have found to be non-hierarchical and complex (Zabel & Gropengiesser, 2011). As 
students' conceptions necessarily need to be considered in the teaching design, formative 
assessments of students' conceptions are necessary to support learning as understanding.

Formative assessments

Formative assessments—also called assessments for learning—aim at support of learning 
and teaching (Zhai et al., 2021) by assessing a learner's state and inferring next steps. In this 
article, we focus on FA for the support of teaching. According to the work of Alonzo (2018)  and 
von Aufschnaiter and Alonzo (2018), FA is seen as a process consisting of the following three 
practices:

1. eliciting,
2. interpreting and
3. responding.

Eliciting is about the collection of evidence for students' learning using tasks and questions 
(eg, in classroom discussions or with the use of tasks or instruments). Alonzo argues for inter-
pretable evidence to gain more precise and actionable information than the number of correct 
answers or a norm-referenced score (Alonzo, 2018). With respect to students' conceptions, 
findings on scientifically” wrong” but common ideas have to be included (Alonzo, 2018). 
Alonzo and Aufschnaiter subdivide interpreting into two practices: First, analysing what 
students are saying, writing or doing and what this indicates about their thinking; second, 
identifying implications for learning based on the previous analysis, and responding then 
regards feedback to students or adaptation of instruction. Educational research can inform 
about hindering, productive or necessary conceptions for further learning. The practice of 
interpreting is particularly challenging for teachers (Alonzo, 2018). Often, characterisations 
of students' understanding are simplified and dichotomous (right/wrong; “gets it”/“doesn't get 
it”). Alonzo and Aufschnaiter have pointed out that dichotomous characterisations of students' 
understanding are problematic since they do not uncover students' learning resources and 
learning needs and therefore have negative effects for all three practices (limited focus on 
vocabulary or facts, holistic judgements as “right”/“wrong” instead of nuanced information, 
difficulties in/no orientation for responding) (von Aufschnaiter & Alonzo, 2018).

There are many challenges that arise when the theoretical demand to consider students' 
conceptions shall be implemented by teachers in practice. This includes the frequent 
assessment of students' conceptions. Assuming that teachers usually teach a large number 
of students, time is a critical factor. Besides time, the variety of topics and the application 
of corresponding educational models to gain differentiated insights as well as the analysis 
process itself pose more challenges for teachers. To mitigate the challenges of FA, educa-
tional research has suggested to provide support for teachers in form of resources like 
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STANJA et al.62

frameworks or models that could be used to reason about students' conceptions or assess-
ment instruments (Alonzo, 2018). Section 3 will present and discuss current assessment 
tools in biology and computer science education and identify limitations and options for a 
further development of data-based support from an educational perspective.

Learning analytics

According to Siemens et al. (2011), ‘Learning analytics (LA) is the measurement, collection, 
analysis and reporting of data about learners and their contexts, for purposes of understand-
ing and optimising learning and the environments in which it occurs.’ In a similar sense, 
Tempelaar et al. (2013) describe the goals of LA: ‘to apply the outcomes of analysing data 
gathered by monitoring and measuring the learning process, as feedback to assist directing 
that same learning process.’

Data

Wise (2019) distinguishes between three different types of data:

• Activity, that is, data describing what the learners are doing (eg, log files).
• Artefact, that is, data created by learners (eg, quiz answers).
• Association, that is, data describing connections between entities (eg, students interact-

ing with other students or resources).

The data generated can be used to derive conclusions about the student or instructor (eg, 
engagement (Yilmaz & Yilmaz, 2022), sentiment (Kaliisa & Dolonen, 2022), etc.) in order to 
improve the learning process. A limiting aspect to consider using LA methods when analysing 
the data is that only a slice of reality is represented (Selwyn, 2019). For example, it is unlikely 
that notes on paper or conversations in the classroom will be fully captured and processed 
and ready for automatic analysis. When it comes to ML models, important requirements are 
the availability and representativity of training data for the target application to ensure gener-
alisability of the models (Nehm, Ha, et al., 2012).

Common analytic methods

Data collected during learning can be used in a variety of ways. Typical classes of methods 
used in LA are as follows:

• Prediction.
• Structure discovery.
• Temporal analysis.
• Visual analytics.
• Natural language processing (NLP).

For example, predictive models (eg, classification and regression) can be used for early alert 
systems to inform learners about their current progress (Arnold & Pistilli, 2012) or to forecast 
student success (Gardner & Brooks, 2018). Structural analysis (eg, clustering or network anal-
ysis) on the other hand, can detect isolated and active students (Saqr & Alamro, 2019). Tempo-
ral analyses (eg, hidden Markov models) attempt to analyse time-related aspects of students' 
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FORMATIVE ASSESSMENT STRATEGIES FOR STUDENTS’ CONCEPTIONS 63

behaviour patterns, for example, of online assignment submissions (Kokoç et al., 2021). Visual 
analysis can be used for learners and instructors to convey information more easily, for exam-
ple, via dashboards (Broos et al., 2020). NLP can be used for the automatic evaluation of texts 
like essays and provide feedback to instructors or students (Knight et al., 2020).

Learning analytics and formative assessments

There is a variety of analysis techniques for automatic assessments, which include item 
response theory, diagnostic classification models, hidden Markov models, factor analysis and 
deep learning based models (Minn, 2022) or combinations of techniques (eg, Liu et al., 2021 
or Misiejuk et al., 2021). They have been used for assessments of different kinds of learners' 
abilities like skills, factual knowledge, and problem solving abilities (Minn, 2022) or perceptions 
of peer feedback (Misiejuk et al., 2021). Whether and how they could be used for the assess-
ments of students' conceptions still needs further research. ML techniques have been used for 
the development of assessments to” (1) evaluate complex constructs in science, (2) enhance 
inferences about student comprehension and (3) advance automation and accuracy of scoring” 
(Zhai et al., 2021, pp. 193–194; see also Bertolini et al., 2021; Nehm, Ha, et al., 2012).

Jensen et al. (2021) attempt to increase learning and retention with interventions of form-
ative assessment quizzes that students are likely to answer correctly. The quizzes are asked 
immediately after watching a video on its content. They consist of three items and the tasks 
are to fill in blanks, describe graphs or explain why a statement is true or false. Students get 
instant feedback on how many answers were correct after completing the quizzes. Also with 
students in mathematics, Zheng et al. (2019) used assessments embedded in an adaptive 
system as a type of formative assessment for mathematics students in grades 6–8. They 
used a platform which had assessment modalities like equation solving or proofs and subse-
quently provides insights for teachers like identified knowledge gaps. In contrast, Öncel 
et al. (2021) attempted to estimate vocabulary using essays with the goal of providing more 
individualised feedback to learners on their writing skills. Therefore, they derive linguistic 
properties at four different levels: descriptive, lexical, syntax and cohesion and automatically 
predict the students' vocabulary score using several ML algorithms. In addition, there are 
also approaches that attempt to externalise students' implicit knowledge by using concept 
maps (Giabbanelli & Tawfik, 2020; Kim et al., 2019; Kim & McCarthy, 2021; Wu et al., 2012). 
Wu et al. (2012) compare concept maps of students with those of teachers using an existing 
key word list and provide hints on what students need to change. However, this assumes that 
the students use the same vocabulary as in the reference model. Therefore, Giabbanelli and 
Tawfik (2020) use a thesaurus database in order not to depend on an exact match between 
student and expert concept maps. Other works even analysed the effect of automatically 
generated knowledge structures (KS) from text as a reflection method to improve summary 
writings (Kim et al., 2019; Kim & McCarthy, 2021). They compared interventions using these 
KS with video instructions and multiple choice questions and found, that the reflection with 
KS improved the similarity to expert KS the most (Kim et al., 2019; Kim & McCarthy, 2021).

The presented work attempts to automatically identify, analyse or present students' 
knowledge gaps. Graphs are used to map concepts and their connections to each other, but 
to the best of our knowledge, no approach deals with eliciting students' conceptions.

ASSESSMENTS IN EDUCATION

This section present a selection of existing assessment tools used in biology education 
and computer science education. We use the examples to illustrate the current state of 
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STANJA et al.64

data-based FA with respect to students' conceptions and to identify desirable further devel-
opments from educational perspectives. We chose two topics that are of great interest in the 
respective field:

1. The biology education part addresses three successively developed assessment tools 
regarding the topic of evolutionary change. Students' conceptions in this topic has been 
widely researched in biology education. All tools have been recommended for teachers 
to be used in assessments with the purpose to gain insights in students' thinking and to 
support teaching.

2. The computer science education part focuses on students' skills and conceptions 
concerning programming and the automated assessment of students' code. We address 
the potential and limitations of existing automated assessments of code.

Assessments in biology education

The review of Kuschmierz et al. (2020) gives an overview of instruments that have been 
used for knowledge and understanding assessment in the domain of evolution. Existing 
instruments provide a score associated with levels of knowledge or understanding from a 
scientific perspective. The main item formats that were used are multiple choice, binary 
choice or scale items. Only few instruments used open-response formats. By design, closed 
formats have limited explanatory power for students' conceptions (Laskowski et al., 2018; 
von Aufschnaiter & Alonzo, 2018). However, assessment research provided information on 
frequencies of used biological conceptions (as variation) and some typical everyday concep-
tions (as need for adaptation). Moreover, they found that students' conceptions depend on 
the contexts used (like plants vs. animals or gain vs. loss of traits) (Anderson et al., 2002; 
Nehm & Ha, 2011). The biological conceptions and everyday conceptions considered in 
these tools subsume conceptions described in biology education (Hammann & Asshoff, 2014; 
Kampourakis, 2020; Weitzel, 2006).

In order to demonstrate assessment instruments on biological topics, we will refer to 
the CINS (Conceptual inventory of natural selection (Anderson et al., 2002)), the ACORNS 
(Assessing Contextual Reasoning about Natural Selection (Nehm, Beggrow, et al., 2012)) 
and EvoGrader (Moharreri et al., 2014). Table 1 gives a brief overview of the three instru-
ments. All of them are tools to inform teachers about their students' conceptions (Anderson 
et al., 2002; Moharreri et al., 2014; Nehm, Beggrow, et al., 2012). They all address biological 
conceptions as well as everyday conceptions.

The CINS was designed to support constructivist and socioconstructivist learning 
(Anderson et al., 2002). Therefore, open question formats were used to gather informa-
tion about everyday conceptions when the test was developed. The test itself uses multiple 
choice question formats. Everyday conceptions are used as distractors. The answers are 
evaluated as correct/incorrect. This question format has been criticised as it may lead to inac-
curate scoring (Nehm & Schonfeld, 2008). The ACORNS instrument answered the critique 
of forced choice by using open response formats. In these formats, students have to give a 

Assessment Topic Constructs Question format

CINS (Anderson et al., 2002) Evolution 10 key ideas Multiple choice

ACORNS (Nehm, Beggrow, et al., 2012) Evolution 7 key concepts, 6 naive ideas Constructed response

EvoGrader (Moharreri et al., 2014) Evolution 6 key concepts, 3 naive ideas Constructed response

T A B L E  1  Assessment instruments used in biology education
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FORMATIVE ASSESSMENT STRATEGIES FOR STUDENTS’ CONCEPTIONS 65

short text-based answer. Here, the presence/absence of biological conceptions and every-
day conceptions is assessed based on students' expressions and the total number of both, 
biological conceptions and everyday conceptions is determined. A closer look reveals that 
ACORNS aims at grading of students. The inclusion of biological conceptions has positive 
score impact and the usage of everyday conceptions has negative score impact (Bertolini 
et al., 2021). Thus, the assessment itself is rather normative than aiming at an individual 
support of learning processes. Based on ACORNS items and ACORNS-like items, a free 
online automated assessment tool—the EvoGrader 1 (Moharreri et al., 2014)—has been 
developed. The automated scoring replaces the time-consuming manual scoring. Answers 
are scored for the presence/absence of biological conceptions and everyday conceptions. 
The tool uses automated scoring models that have been built using large human-scored data 
sets. EvoGrader (Moharreri et al., 2014) provides information on groups of learners. The 
information provided are visualisations of percentages of biological and everyday concep-
tions as well as their co-occurrences and a summarised categorisation of students' answers. 
The website proposes usages of the tool and provides teaching suggestions (learning activ-
ities like comparing and contrasting different types of explanations). Looking at the CINS, 
ACORNS and the EvoGrader, we can observe differences regarding

• the question formats used (which have changed from multiple choice formats to open 
response formats),

• the scoring (from non-automated to automated) and
• the information provided (either the individual presence or absence of conceptions or 

summarised frequencies of conceptions, co-occurrences and the summarised evaluation 
for a learning group also using visualisations).

We can see differences between the assessment tools that answer some practical needs of 
teachers as well as observed problems. Scoring, as offered by the above tools, however, is 
not considered helpful for the support of individual learning processes at all according to von 
Aufschnaiter and Alonzo (2018). Desirable future developments include more fine-grained 
assessments that provide nuanced information on students' individual biological conceptions 
and everyday conceptions in order to foster individualised learning (see Section 4).

Assessment in computer science education

Students' (mis-)conceptions have also been studied for various topics in computer science 
education at least since the 1980s (Bayman & Mayer, 1983).

A very important topic in computer science education is traditionally programming 
because of its long tradition and wide-spread use. The conceptions of learners (including 
preconceptions and misconceptions) in this field have been investigated regarding various 
programming concepts. A literature review of learners' misconceptions and other difficulties 
is provided, for example, by Qian and Lehman (2017).

There are various (often independent) initiatives to develop concept inventories for 
computer science in general and for introductory programming in particular (Caceffo 
et al., 2016, 2019; Henry & Dumas, 2020; Rachmatullah et al., 2020).

Caceffo et al. (2016, 2019) use a combination of different methods (theoretical identi-
fication of fundamental concepts, analysis of students' exam solutions, and interviews) to 
develop a concept inventory for basic programming concepts such as parameters, variables, 
recursion, loops, structures, pointers and Boolean expressions. They furthermore investigate 
the application of the items in different programming languages and highlight the difficulty of 
translating misconceptions into another programming language.
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STANJA et al.66

Rachmatullah et al. (2020) developed a concept inventory using a block-based program-
ming language. The items focus on similar programming concepts (variables, loops, etc.) but 
on a more basic level compared to Caceffo et al. (2019).

Concept inventories usually consist of single-choice or multiple choice questions. 
However, in the context of learning programming, a very frequent exercise format is the 
submission of learners' source code. Such source code is a very open answer format, but 
more structured/formalised compared to natural language texts.

The assessment of learners' solutions is nowadays often supported by automated assess-
ment systems (Keuning et al., 2018), in particular due to the high and increasing number 
of learners in this field which makes manual assessment infeasible. Keuning et al. (2018) 
provide an extensive systematic literature review of automated feedback generation for 
programming exercises (arguably one of the most important aspects of automatic FA). They 
state that most automatic feedback systems mainly report errors of the submitted solutions 
and that only very few systems explicitly take conceptions of the learners into account.

Keuning et al. (2018) furthermore find that most automatic assessment systems are 
not easily and flexibly adaptable by teachers to a specific learning setting. Flexible adap-
tions using custom models or rules are reported to be ‘too specialised and time-consuming’ 
(Keuning et al., 2018).

A recent literature review by Paiva et al. (2022) continues in this research direction and 
gives an overview of the state-of-the-art of automatic assessment in computer science 
education (with a focus on programming exercises). They additionally also consider aspects 
of LA and find that only 3 out of 30 assessment tools offer more than simple statistics for 
the teachers; those three tools provide in particular insights into the program development 
process of the learners (Paiva et al., 2022, Table 7). The authors furthermore conclude that 
a significant gap in this field is the lack of a standardised data format; this has partly been 
addressed by the proposal of Price et al. (2020).

For programming solutions, it is possible to infer (mis-)conceptions and competencies of 
learners from the submitted source code; this is often complemented by other methods like 
interviews or think-aloud etc. (Teague & Lister, 2014). A recent project aims to empirically 
identify competencies and (mis-)conceptions for object-oriented programming by perform ing 
a large-scale analysis of students' source code, complemented by manual qualitative code 
analyses and interviews (Krugel et al., 2020). The students' source code is stored in a 
graph-oriented data base which efficiently supports an automatic static analysis by using 
complex queries to identify solutions that contain certain sub-patterns (Koegl et al., 2022). 
However, the automatic elicitation and interpretation of students' conceptions regarding 
programming concepts as well as adequate automatic responses are still open problems.

Comparison between biology and computer science assessments

Here, we reflect on assessments with respect to the target (construct being assessed). The 
examples from Biology education and Computer Science education illustrate that learning 
subjects and targets of assessments might differ in nature:

1. Does the focus lie on the development of domain-specific skills, knowledge, the acquire-
ment of practices or understanding/sense making of students?

2. What is assessed by existing tools?

The examples from biology education show steps from a normative to a more constructiv-
ist understanding of learning by integrating everyday conceptions in the reference model 
on students' conceptions. Particularly the last example, EvoGrader, supports insights for 
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the design of group teaching/learning by providing explanatory visualisations. In biology, 
developments of FA tools aiming at individualised learning support are desirable. Moreover, 
the biological and everyday conceptions used in existing biology assessments are each 
rather a collection of selected conceptions (see Section 3.1) and provide a rather rough 
picture. More fine-grained, precise and more complex models of students' conceptions might 
be more appropriate to represent an individuals' conceptions and to assess what different 
students think. In CS education, tools have been developed that allow to evaluate source 
code provided by students. However, adaptability of the tools and usability by teachers seem 
to be an issue (Keuning et al., 2018). In CS education research, inferences from source code 
to students' conceptions or competencies are supported by the human-based analysis of 
additional data (text data). Therefore, further developments of FA tools targeted at students' 
conceptions could also profit from multimodal LA. For both subjects, more differentiated 
insights into students' conceptions, would necessarily need adapted forms of assessments.

DISCUSSION/SYNTHESIS

Challenges of formative assessment for students' conceptions

In Section 2.2, we have formulated the following basic challenges for teachers when they are 
required to consider students' conceptions in teaching:

1. FA of individual students' conceptions is time-consuming, as it has to be done regularly for 
a large number of students, and is therefore hardly practicable.

2. The analysis of students' statements aiming at differentiated insights about their thinking 
is challenging for teachers.

To meet these challenges would allow to address individual students' conceptions and to 
support meaningful learning processes. This has been described as an essential educational 
aim for different subjects (Reinfried et al., 2009) for geography, history and biology. With 
respect to question formats, current approaches to assessment often use closed-response 
type question formats like binary or multiple choice or short-answer formats that are easy to 
implement and score at large scale (Laskowski et al., 2018; Nehm, Ha, et al., 2012). These 
formats are limited in capturing the complexity and variety of students' conceptions. Assess-
ments that target the construction of complex scientific explanations in science class also 
suffer in this regard (Nehm, Ha, et al., 2012). In non-technology-based education research, 
open-response formats (like asking for explanations) have often been used to assess 
students' conceptions (Nehm, Ha, et al., 2012). When scored manually, some challenges 
of open-response formats according to Nehm, Ha, et al. (2012) are rubric development and 
validation costs, grading time or grading fatigue. On the other hand, in order to gain insights 
into students' conceptions and their complexity, open question formats are more appropriate 
than closed formats since they allow students to express their ideas. This results in more 
unstructured data (text data) and therefore calls for different analysis techniques.

The review of Zhai et al. (2021) on ML-based science assessments shows that almost 
all (except one) considered studies aiming at the assessment of students' conceptual under-
standing used constructed-response formats where students have to give short text-based 
answers. Limitations and challenges with respect to the application of ML techniques have 
already been discussed in Section 2.3. Even a method that allows a succeeding categorisation 
of students' statements would offer a fundament for individualised learning processes. 
Furthermore, even if prominent conceptions are subject-specific (see Section 3.3), this 
method could be adapted for the conceptual structures of different subjects.
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Clustering and classification of text data

In education research, the work of Sherin (2013) is an example for the application of statistical 
NLP techniques in the domain of physics education for the analysis of students’ explanations 
about the existence of seasons. He wanted to explore whether the analysis would provide 
interpretable results similar to those found with more traditional human-based qualitative 
analyses (Sherin, 2013). He selected passages from transcribed one-on-one standardised 
clinical interviews and preprocessed the transcripts by removing annotations (eg, gestures), 
interviewer prompts, punctuation and stop words as well as by segmenting the remaining 
text in overlapping 100 word chunks. Sherin used a vector space model (bag-of-words 
assumption) and clustering to identify types of explanations. He interpreted the resulting 
clusters with respect to existing findings on typical explanation types and observed that not 
all of the elements that appeared in traditional human analyses could be captured by his 
analysis technique. He used visualisations (bar charts) to identify the dominant explanation 
types for each segment and explanation type shifts in the course of the interviews. Sherin's 
approach to use NLP techniques for the analysis of students' explanations seems promising 
and should be further explored for FA purposes.

The example shows that rather simple techniques could be applied to separate different 
explanation types and detect changes in explanation types. In the example of the four seasons, 
explanation types consist of closer-farther, side-based and tilt-based connections between the 
earth and the sun. If these classes are known, both supervised and unsupervised approaches 
(as in Sherin, 2013) could be used, depending on whether sample data is available or not. 
Both technology groups could be used to sort and select student texts in formative assess-
ment, and inform teacher actions. This classification may ease the step of eliciting in formative 
assessment. In this approach, however, the step of interpretation still needs to be performed by 
a human with respect to existing educational theory. The necessity of this manual step might 
represent a drawback. Moreover, for the studied topic, educational research had revealed only 
three explanation types. It would be interesting to see, whether this procedure may be used for 
other topics to generate meaningful clusters of explanation types also for more complex topics. 
Such a topic could be, for instance, evolution in biology education, for which nine explanation 
pattern where identified and described (Zabel & Gropengiesser, 2011).

Challenges of written texts

Sherin (2013) used transcribed interviews for his analyses. An open question is how the 
analysis would have worked on written text. Not at least since written texts from students 
come with further challenges:

• students' typing errors,
• punctuation mistakes,
• incomplete sentences,
• idiosyncratic usage of technical terms,
• ambiguous referents and
• verbosity of students' impacts explanation performance measures (Federer et al., 2015).

NLP techniques could be used to handle or mitigate some of these problems (Jurafsky 
et al., 2009; Jurafsky & Martin, 2021). As an example, Lee, Kim, et al. (2020) supposes an 
approach to detect typing errors by using a deep learning language model. Another example 
is the transformer-based method of Švec et al. (2021) for reconstructing punctuation in auto-
matically generated speech transcripts.
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Incorporating semantics using deep learning-based language models

Sherin's work (2013) was published in 2013, long before the rise of large deep learning 
based language models such as BERT (Devlin et al., 2019) or GPT-3 (Brown et al., 2020). 
These are able to represent natural text in numerical vectors and ideally encapsulate seman-
tics. However, these are trained on domain-independent texts. It would be exciting to test the 
above proposals using these, or specialised language models such as BioBERT (Lee, Yoon, 
et al., 2020), SciBERT (Beltagy et al., 2019) or EduBERT (Clavié & Gal, 2019). While BERT 
(Devlin et al., 2019) is based on large corpora consisting of Wikipedia articles and books, 
BioBERT (Lee, Yoon, et al., 2020) additionally used abstracts and full texts from biomedical 
papers on PubMed 2 for training. SciBERT (Beltagy et al., 2019) instead was trained on a 
large corpus from SemanticScholar (Ammar et al., 2018), which consists of papers from the 
computer science and biomedical domain. The authors of EduBERT (Clavié & Gal, 2019) 
aimed to build a language model that can be used for LA tasks. For this purpose, it was 
trained on forum data from MOOCs and courses at universities. New methods could use 
their representations to determine similarity to other student or reference solutions. There-
fore, these technologies could provide support for the eliciting step, but also for the classifi-
cation of the students' answers.

Visual analytics

Visual dashboards could provide visual summaries of student information to support the 
teacher in choosing successful interventions. Kim et al. (2019) and Kim and McCarthy (2021) 
automatically extracted and visualised graph structures from students' written text to facili-
tate students' own reflections. They have colour-coded the connections between concepts 
to indicate whether connections are (incorrectly) present or missing compared to a reference 
model. A similar view, which provides aggregated information the essays of a whole class 
could be a valuable support for a teacher as it allows to obtain a quick overview over the 
contents of the students' writings. Future work could focus on the extraction and labelling of 
the links between terms and provide insights about the similarities and differences among 
students (eg, one specific link between concepts is missing among the whole class).

Multimodal solutions

In this article, we focused on the analysis of textual student artefacts. Another interesting 
direction for future research efforts could be the analysis of both text and image (Shelton 
et al., 2016). For example, students could draw a concept map or an image of a conception 
or process in class and use a text to explain their illustration (Smith et al., 2019). Analyses 
of commonalities and differences between text and image are widely used in research on 
students' conceptions (Kattmann, 2015).

CONCLUSION AND FUTURE DIRECTIONS

LA has already been successfully used for assessment purposes (eg, automated scoring, 
visualisations of students' data) and to inform teachers. In this article, we focused on poten-
tial contributions of LA to support teachers FA practices with regard to the assessment of 
students' conceptions. We synthesised findings on existing assessment tools for FA support 
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in biology and CS education and identified limitations with regard to the assessment of 
students' conceptions. The need to use open question formats results in more unstructured 
text data. NLP techniques for the analysis of unstructured text data with the purpose of elic-
iting students' explanation types seems to be promising (Sherin, 2013), but should further be 
explored. Chen et al. (2020) also argue to seek the potential of NLP in promoting precision 
and personalised education and NLP has been one technological focus in the AI in Educa-
tion field (Feng & Law, 2021). Moreover, using different modalities of data, like drawings, 
concept maps, text or even source code (or their combination), seems promising to develop 
more informative assessments targeted at students' conceptions. The approach to apply 
different modalities of data has already been successfully used in educational research on 
students' conceptions (eg, see Gropengießer, 1997 or Kattmann, 2015). Therefore, the use 
of multimodal LA should be further explored. Future work on the application of LA techniques 
as support for FA on students' conceptions should include a thorough investigation of quality 
criteria of methods and measurements as has been done for other applications of LA (eg, 
see Winne, 2020). When aiming at teachers support, explanatory models with interpretable 
structures (Rosé et al., 2019) from which insights about the students' conceptions might 
be derived are preferable. These models could be built based on educational findings on 
students' conceptions or student data. Visual learning analytics (VLA) has been used to 
support teachers FA practices by providing visualisations of data for the learning group (in 
biology education) or for individual learners (in CS education). Future work could continue 
to study how FA practices of teachers may be supported by VLA techniques (Echeverria 
et al., 2018).
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ENDNOTES
  1 http://www.evograder.org/.
  2 https://pubmed.ncbi.nlm.nih.gov/.
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