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We find a two-parameter family of solutions of the Yang–Mills equations for gauge group SO(1,3) on 
Minkowski space by foliating different parts of it with non-compact coset spaces with SO(1,3) isometry. 
The interior of the lightcone is foliated with hyperbolic space H3 ∼= SO(1, 3)/SO(3), while the exterior 
of the lightcone employs de Sitter space dS3 ∼= SO(1, 3)/SO(1, 2). The lightcone itself is parametrized 
by SO(1,3)/ISO(2) in a nilpotent fashion. Equivariant reduction of the SO(1,3) Yang–Mills system on the 
first two coset spaces yields a mechanical system with inverted double-well potential and the foliation 
parameter serving as an evolution parameter. Its known analytic solutions are periodic or runaway except 
for the kink. On the lightcone, only the vacuum solution remains. The constructed Yang–Mills field 
strength is singular across the lightcone and of infinite action due to the noncompact cosets. Its energy-
momentum tensor takes a very simple form, with energy density of opposite signs inside and outside 
the lightcone.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and summary

Analytic solutions of the vacuum Yang–Mills equations (without Higgs fields) in Minkowski space are few and far between. This holds 
in particular for compact gauge groups such as SU(2) and when finite energy or action is imposed (see however [1–3] for examples). The 
situation is less daunting when one allows for a noncompact gauge group, in particular the Lorentz group.1 Indeed, as we shall show, 
there exists a highly symmetric and geometrically distinguished class of such field configurations. The task of this paper is to present their 
geometric and algebraic construction and to work out their basic properties.

The construction is based on the natural action of the Lorentz group on Minkowski space, which foliates the latter into SO(1,3) orbits. 
One must distinguish four types of orbits: The hyperbolic 3-space H3 in the future T+ or past T− interior of the lightcone and the pseudo-
Riemannian de Sitter space dS3 in the exterior S of the lightcone are generic three-dimensional orbits coming in one-parameter families. 
The future and past lightcones L± and the Minkowski origin are exceptional. The generic orbits are reductive symmetric spaces SO(1, 3)/H
with H = SO(3) and H = SO(1, 2), respectively, and they are labeled by a foliation parameter u ∈ R. Therefore, on the domains T± and 
S we encounter SO(1,3) Yang–Mills theory on R × SO(1, 3)/H . Since we have taken the Yang–Mills structure group to agree with the 
isometry group of our symmetric spaces, it is straightforward to write down the most general SO(1,3)-symmetric gauge connection A and 
find it dependent on a single real function φ(u). The Yang–Mills equations then translate to Newton’s equation for a particle in position φ

in an inverted double-well potential V (φ) = − 1
2 (φ2−1)2. The two-dimensional family of solutions φ(u) (parametrized by the double-well 

“energy” ε and a reference u0) then produce a family of classical Yang–Mills field configurations. Given an explicit parametrization of the 
foliation, we can write down the Yang–Mills connections and the field strength in Minkowski coordinates.

Here we perform this program and obtain explicit SO(1,3)-symmetric Yang–Mills fields inside and outside the Minkowski lightcone 
(of an arbitrary reference point) in terms of Minkowski coordinates xμ and the function φ

( 1
2 ln |x·x|), where x·x = ημνxμxν = ±e2u with 

Minkowski metric η. The action for either domain (T± or S) is infinite due to the infinite volume of the (noncompact) orbits. The field 
strengths diverge as |x·x|−3/2 at the lightcone, and the energy-momentum tensor on T± and on S takes the common form
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Tμν = ε

g2

4 xμxν − ημνx·x
(x·x)3

= ∂ρ Sρμν with Sρμν = ε

g2

xρημν − xμηρν

(x·x)2
(1.1)

where g denotes the Yang–Mills coupling constant. Curiously, this energy-momentum tensor is of a pure “improvement” form, which 
suggests the total energy and momentum to vanish on any spatial slice provided a sufficient fall-off at spatial infinity. However, due to 
the singular behavior on the lightcone, the energy and momentum integrals each reduce to a divergent boundary term. Matching of the 
field configurations on the two domains for a solution covering the entire Minkowski space then requires some regularization across the 
lightcone, where all densities change sign due to the denominator in (1.1). A standard principal-value prescription does not suffice since 
the pole is of third order.2 Alternatively, additional degrees of freedom localized on the lightcone may provide a source which compensates 
for the singularity in (1.1).

Finally, we investigate the non-reductive coset structure L± = SO(1, 3)/ISO(2) of the lightcone itself. It is not a symmetric space but 
another subgroup generated by two nilpotent (of degree 3) translations and one dilatation (which squares to a projector). This provides a 
curious parametrization of the null hypersurface L± .

2. G-invariant Yang–Mills fields on R × G/H

Throughout this paper, we will discuss G-invariant Yang–Mills theories over some spacetime M ⊂ R1,3, where the gauge group G
also acts naturally on M . One can then use the orbit-stabilizer theorem to foliate M by orbits of G , and then parametrize each orbit by 
the coordinates of some appropriate coset space. More specifically, the aforementioned theorem states that, ∀x ∈ M , there is a bijection 
between the orbit G · x and the quotient G/Gx , where Gx =: H is the stabilizer of x. By foliating M with orbits of G , one can then use 
coordinates of each coset space (together with the foliation parameter(s)) to also parameterize M . Such coset coordinates are conveniently 
obtained from a parametrization of G by acting with G on some base vector x0, for each orbit.

For all the cases treated here we will be dealing with homogeneous spaces G/H with 6-dimensional Lie groups G and 3-dimensional 
stabilizer subgroups H . For reductive cosets, the Lie algebra g = Lie(G) splits into a 3-dimensional subalgebra h and its orthogonal com-
plement m with respect to the Cartan–Killing metric.3 This means that, for some specific basis of g, the generators {I A} with structure 
constants f C

AB satisfying

[I A, I B] = f C
AB IC , with A, B, C = 1, ...,6 , (2.1)

inherit a likewise splitting:

g= h⊕m =⇒ {I A} = {Ii} ∪ {Ia} with a = 1,2,3 and i = 4,5,6. (2.2)

That is, {Ii} is a basis of h and {Ia} is a basis of m. Furthermore, the commutation relations (2.1) for a reductive homogeneous space 
decompose as

[Ii, I j] = f k
i j Ik , [Ii, Ia] = f b

ia Ib , and [Ia, Ib] = f i
ab Ii + f c

ab Ic , (2.3)

where the structure constants f c
ab = 0 for the special case of symmetric spaces,4 which we will be mostly interested in. The Cartan–Killing 

metric is defined on g using its adjoint action on itself and can be written explicitly using the structure constants:

gAB = −trad(I A I B) = f C
AD f D

C B , (2.4)

where the trace is taken in the adjoint representation (this will be true for all trace operations in this paper). Note that gAB is positive-
definite for compact Lie groups G but is indefinite for the Lorentz group SO(1, 3) to be considered later on.

To formulate the Yang–Mills gauge theory on R × G/H we start with the principal bundle P (G, G/H, π) with the structure group G
and canonical projection

π : G −→ G/H , g �→ g · H . (2.5)

The Lie algebra g has an alternative formulation in terms of left-invariant vector fields L A , satisfying commutation relations with the same 
structure constants as in (2.1). One can obtain one-forms ẽ A dual to L A via the Maurer–Cartan prescription:

g−1 dg = ẽ A I A , for g ∈ G , (2.6)

which can then be pulled back to the coset space G/H using any local section σ : G/H ⊃ U −→ G to obtain e A = σ ∗ẽ A . For reductive 
cosets, these one-forms split into {eA} = {ei} ∪ {ea} and satisfy (with proper normalization) the following structure equations consistent 
with (2.3):

dea + f a
ib ei ∧ eb = 0 and dei + 1

2 f i
jk e j ∧ ek + 1

2 f i
ab ea ∧ eb = 0 . (2.7)

Here, ei = ei
a ea are linearly dependent on the three ea on G/H , in terms of some real functions ei

a . When the coset space is reductive, the 
set {eu :=du, ea}, with the foliation parameter u ∈ R, provides an orthonormal frame on the cotangent bundle T ∗(R × U ). A generic gauge 
connection A and its curvature F = dA +A ∧A can be expressed in this frame as

2 A second-order pole will remain, although a fine-tuned principal-value recipe can remove all poles.
3 In reductive homogeneous spaces, m remains invariant under the adjoint action of H , i.e., h−1 m h ⊂m, ∀ h ∈ H . This condition can also be written as [h, m] ⊂m.
4 Symmetric spaces are those reductive homogeneous spaces that additionally satisfy the condition [m, m] ⊂ h.
2
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A = Au eu +Aa ea =⇒ F = Fua eu ∧ ea + 1
2Fab ea ∧ eb , (2.8)

where we set Au=0 using the “temporal” gauge. Now expanding the gauge field in terms of the generators (2.2), i.e. Aa = Ai
a Ii +Ab

a Ib , 
and imposing G-invariance [4] yields5

Ai
a = ei

a and Aa
b = Aa

b(u) , with f c
ia Aa

b = f a
ib Ac

a , (2.9)

where for a symmetric space the remaining functions reduce to Aa
b(u) = φ(u) δa

b with a single real function φ. As a result, our G-invariant 
gauge field A is a deviation from the canonical H-connection Ii ei :

A = Ii ei + φ(u) Ia ea . (2.10)

This yields, after some calculation involving (2.9) and (2.7), the components of the field strength F :

Fua = φ̇ Ia and Fab = (φ2−1) f i
ab Ii , with φ̇ := ∂uφ , (2.11)

which gives us the color-magnetic field Ba = 1
2 εabcFbc ∈ h valued in the Lie subalgebra and the color-electric field Ea =Fau ∈m valued in 

the subalgebra’s orthogonal complement. The dynamics of φ(u) can then be extracted from the Yang–Mills equation by an extremization 
of the action:

δ

∫
trad(F ∧ ∗F) = 0 =⇒ d∗F +A∧∗F − ∗F∧A = 0 . (2.12)

3. A prototype: SO(4)/SO(3) ∼= S3 (∼= SU(2))

In this section, we exemplify the previous discussion of a G-invariant Yang–Mills theory with the example of the compact group 
G = SO(4) acting on M = R4. For every x ∈ R4\{0}, the stabilizer subgroups Gx are all identical, namely SO(3) =: H . Therefore, every 
SO(4)-orbit (under left SO(3)-multiplication) is a (left) coset and, geometrically speaking, SO(4)/SO(3) is the same as a round 3-sphere S3. 
This allows us to foliate R4\{0} by S3-slices labeled with radius r ≡ eu as the spatial foliation parameter. This becomes apparent with 
following maps (α, β = 1, 2, 3, 4):

ϕ : R× S3 → R4 , (u, yα) �→ xα := eu yα with y·y = 1 ,

ϕ−1 : R4 → R× S3 , xα �→ (u, yα) :=
(

ln
√

x·x, xα

√
x·x

)
,

(3.1)

where x·x := δαβ xαxβ and likewise for y. With this, the metric on R × S3—with induced S3-metric d�2
3—becomes conformal to not only 

R4, but also to its one-point compactification S4 (of radius �; see [6, Section 4] for details) as well:

ds2 = e2u(du2 + d�2
3

)= �2

(1+ cosω)2

(
dω2 + sin2ω

[
dχ2 + sin2χ (dθ2 + sin2θ dϕ2)

])
, (3.2)

where eu = � tan ω
2 so that ω, χ, θ ∈ [0, π ] and ϕ ∈ [0, 2π ] are canonical coordinates on S4 and (χ, θ, ϕ) parametrize the equatorial S3, 

whose line element d�2
3 sits in the square bracket. The canonical splitting (2.3) of the Lie algebra g = so(4) for this coset space is given 

by

Ii ∈ {M23,M31,M12} and Ia ∈ {M14,M24,M34} , for
(
Mαβ

)
γ δ

:= δαδ δβγ − δαγ δβδ , (3.3)

where α, β, γ , δ = 1, 2, 3, 4. The corresponding structure constants are

f k
i j = εi−3 j−3 k−3 , f b

ia = εi−3 a b and f i
ab = εa b i−3 , (3.4)

which produce the following Cartan–Killing metric (2.4):

gij = f l
ik f k

lj + f b
ia f a

bj = 4 δi j , gab = 2 f i
ac f c

ib = 4 δab and gia = 0 . (3.5)

We can identify the round sphere S3 with coset space SO(4)/SO(3) as follows:

α : SO(4)/SO(3) → S3 , [�] �→ yα := (�)α4 ,

α−1 : S3 → SO(4)/SO(3) , yα �→ [�] ,
(3.6)

where we define the equivalence class [�] := {�̃ ∈ SO(4) : �̃ ∼ �} arising from the equivalence relation under right SO(3)-multiplication. 
The explicit form of a representative element � of this class can be given by

� =
(
1+ (γ −1)

βββ⊗βββ

βββ2 γ βββ

−γ βββT γ

)
, with βa = ya

y4
and γ = 1√

1 +βββ2
= y4 , (3.7)

5 The second relation can be written more concisely as [Ii, Ãa] = f b
ia Ãb for Ãa := Aa

b Ia ∈m.
3
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Fig. 1. Plot of V (φ).

where βββ2 = δab βaβb ≥ 0. It is a straightforward exercise to verify that the map α is well-defined. The representative element � can simply 
be obtained by exponentiation with the coset generators Ia ∈m:

� = exp(ηa Ia) with βa = ηa√
ηηη2

tan
√

ηηη2 for ηηη2 = δab ηaηb . (3.8)

We obtain Maurer–Cartan one-forms on S3 with the representative element � as follows

�−1 d� = ea Ia + ei Ii , with ea = −
(
δab + ya yb

y4(1+y4)

)
dyb and ei = εa i−3 b

ya

1+y4
dyb , (3.9)

and find that ea provide a local orthonormal frame on S3, while ei are linearly dependent:

d�2
3 = δab ea ⊗ eb and ei = ei

a ea , with ei
a = εa i−3 b

yb

1+y4
. (3.10)

Using (2.10) for R ×SO(4)/SO(3), the Yang–Mills equation is reduced to that of a mechanical particle under the influence of an inverted 
double-well potential V (φ) (see Fig. 1)

φ̈ = 2φ (φ2−1) = −∂V

∂φ
; V (φ) = − 1

2 (φ2−1)2 , (3.11)

whose solutions are known in terms of Jacobi elliptic functions.
The equation of motion (3.11) also follows from the first-order differential equation arising from the self-duality condition in the 

Euclidean gauge theory, i.e. instanton solutions, as also discussed in [6–8] and references therein. Similar features will also show up in 
Sections 4 and 5 below. Solutions of the first-order differential equation are, consequently, special solutions of (3.11). The “kink” solution 
(4.15) is one such example.

Now, using analytic continuation of T in (3.2) and conformal invariance of Yang–Mills theory in 4 dimensions, we can pull these finite-
energy finite-action solutions back to any conformally related spacetime. A prominent example here is the 4-dimensional de Sitter space 
dS4 � (u, χ, θ, ϕ) of radius � [5,6,9], which is also conformally related to the Minkowski space R1,3 � (t, x, y, z) [10]:

ds2
dS4

= �2

cos2 u

(
−du2 + dχ2 + sin2χ (dθ2 + sin2θ dϕ2)

)
= �2

t2

(
−dt2 + dx2 + dy2 + dz2

)
. (3.12)

4. Interior of lightcone: SO(1, 3)/SO(3) ∼= H 3

From now onwards we work with the non-compact Lorentz group G = SO(1, 3). In the following, we need to consider three different 
non-trivial stabilizer subgroups depending on the choice of a base vector V ∈ R1,3. The first subgroup is SO(3), which will be used to 
foliate (each half of) the interior of the lightcone. The second one is SO(1, 2), which will be used to foliate the exterior of the lightcone. 
Lastly, the third one is the Euclidean group E(2) = ISO(2), which can be used to parameterize (each half of) the lightcone itself. The chosen 
base vectors in the three cases are (±eu, 0, 0, 0), (0, 0, 0, eu) and (±eu, 0, 0, eu) respectively, for any u ∈R.

The interior T of the lightcone may be foliated with two-sheeted hyperbolic space H3 ∼= SO(4)/SO(3) of constant curvature −1, as will 
be shown in what follows (see also [11]). It can be embedded in Minkowski space R1,3 � (yμ) as

y·y ≡ ημν yμ yν = −1 , with ημν = diag(−1,1,1,1)μν and μ,ν = 0,1,2,3 . (4.1)

The foliation of T with H3-sheets is then made explicit via the following maps:

ϕT : R× H3 → T , (u, yμ) �→ xμ := eu yμ ,

ϕ−1
T : T → R× H3 , xμ �→ (u, yμ) :=

(
ln
√|x·x|, xμ

√|x·x|
)

,
(4.2)

so that eu = √|x·x|. We will sometimes employ the conventional nomenclature: x0=t, x1=x, x2=y, x3=z together with �x := (x1, x2, x3). 
The metric on the interior of the lightcone becomes conformal to that of a Lorentzian cylinder R × H3:

ds2 = e2u
(
−du2 + ds2

3

)
, (4.3)
T H

4
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Fig. 2. Left: Every vector Vα on H3 can be brought to the temporal vector V 0 ∼ (1, 0, 0, 0)� with a unique boost �α , which determines its stabilizer as �α SO(3) �-1
α . Right: 

Each vector belongs to some coset �α SO(3), and the choice of a representative σ in each coset yields H3 as a 3-dimensional submanifold σ(y) inside SO(1,3).

where ds2
H3 is the metric on H3 induced from (4.1). The parameter u here is temporal.

The canonical rotation ( Ja) and boost (Ka) generators of the Lorentz group are given by

J1=
( 0 0 0 0

0 0 0 0
0 0 0 -1
0 0 1 0

)
, J2=

( 0 0 0 0
0 0 0 1
0 0 0 0
0 -1 0 0

)
, J3=

( 0 0 0 0
0 0 -1 0
0 1 0 0
0 0 0 0

)
, K1=

( 0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

)
, K2=

( 0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

)
, K3=

( 0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

)
, (4.4)

such that the splitting (2.2) for the coset space SO(1, 3)/SO(3) is realized as Ii= J i−3 and Ia=Ka . The corresponding Lie algebra (2.3) has 
the following structure coefficients:

f k
i j = εi−3 j−3 k−3 , f b

ia = εi−3 a b , and f i
ab = −εa b i−3 . (4.5)

They produce an indefinite Cartan–Killing metric (2.4), with

gij = f l
ik f k

lj + f b
ia f a

bj = 4 δi−3 j−3 , gab = 2 f i
ac f c

ib = −4 δab , and gia = 0 . (4.6)

The hyperbolic space H3 can be identified with the coset space SO(1, 3)/SO(3) (see Fig. 2 for an illustration). This is easily seen from the 
following maps,

αT : SO(1,3)/SO(3) → H3 , [�T ] �→ yμ = (�T )
μ
0 ,

α−1
T : H3 → SO(1,3)/SO(3) , yμ �→ [�T ] ,

(4.7)

where [�T ] = {� ∈ SO(1, 3) : � ∼ �T } is the equivalence class (under right SO(3)-multiplication) of the representative

�T =
(

γ γ βββ�
γ βββ 1+ (γ −1)

βββ⊗βββ

βββ2

)
, with βa = ya

y0
, γ = 1√

1 −βββ2
= y0 , (4.8)

and βββ2 = δab βaβb ≥ 0. It can be checked that the map αT is well-defined. The representative element �T is nothing but a generic boost 
that can be obtained by exponentiation with the coset generators Ia ∈ m:

�T = exp(ηa Ia) , with βa = ηa√
ηηη2

tanh
√

ηηη2 , for ηηη2 = δab ηaηb . (4.9)

The resulting Maurer–Cartan one-forms are

�−1
T d�T = ea Ia + ei Ii , with ea =

(
δab − ya yb

y0(1+y0)

)
dyb and ei = εi−3 a b

ya

1+y0
dyb . (4.10)

Here, the ea provide a local orthonormal frame on H3 while the ei are linearly dependent:

ds2
H3 = δab ea ⊗ eb and ei = ei

a ea , with ei
a = εa i−3 b

yb

1+y0
. (4.11)

The Yang–Mills action simplifies to

SYM = − 1

4g2

∫
trad(F ∧ ∗F) = 6

g2

∫
R×H3

dvol
( 1

2 φ̇2 − V (φ)
)
, (4.12)

where dvol = 1
3!εabc du ∧ ea ∧ eb ∧ ec is the volume form and the potential V (φ) = − 1

2 (φ2−1)2 is the same as in (3.11) and as depicted in 
Fig. 1. Therefore, this is the action of a mechanical particle in an inverted double-well potential V (φ), which yields the same equation of 
motion (3.11) as before, i.e.
5
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φ̈ = −∂V

∂φ
= 2φ (φ2−1) . (4.13)

For ε ∈ [− 1
2 , 0] this equation admits bounded solutions in terms of, e.g. the Jacobi sine function sn:

φε,u0(u) = f−(ε) sn
(

f+(ε)(u−u0),k
)

with f±(ε) =
√

1 ± √−2ε , k2 = f−(ε)

f+(ε)
, (4.14)

which are characterized by the total mechanical energy ε = 1
2 φ̇2 + V (φ) and by a ‘time’-shift parameter u0. Special cases, including the 

“kink”, of φε,u0(u) are as follows,

φ =

⎧⎪⎨⎪⎩
0 for ε = − 1

2 ,

tanh (u−u0) for ε = 0 ,

±1 for ε = 0 .

(4.15)

Moreover, we also have scattering solutions—parameterized again with ε and u0—given in terms of Jacobi functions cn and sn; for ε > 0
we have

φε,u0(u) = 1√
2k2−1

1 + cn

(
2√

2k2−1
(u−u0),k

)
sn

(
2√

2k2−1
(u−u0),k

) with ε = −2k2(k2−1)

(2k2−1)2
, (4.16)

while for ε < 0 we have

φε,u0(u) =
√

2k2

2k2−1
cn

(√
2

1−2k2 (u−u0),k
)

with ε = − 1

2(2k2−1)2
, (4.17)

where k2 > 1
2 for both the cases.

It is a straightforward exercise to pull the orthonormal frame on R × H3 back to T with the map ϕT (4.2) to obtain

eu := du = t dt − r dr

t2 − r2
and ea = 1

|x|
(

dxa − xa

|x| dt + xa

|x|(|x| + t)
r dr

)
, (4.18)

where we have introduced the abbreviations

|x| :=√|x·x| =
√

|t2−r2| and r :=
√�x·�x . (4.19)

Like this, we can use ϕT to cast the SO(1,3)-invariant gauge field A ≡ A (2.10) into a Minkowski one-form

A = 1

|x|

{
ε k−3

ab xa

|x| + t
dxb Ik + φ(x)

(
dxa − xa

|x| dt + xa

|x|(|x| + t)
r dr

)
Ia

}
, (4.20)

where φ(x):=φε,u0(u(x)). One can then obtain the field strength F = Fμν dxμ ∧ dxν on T by using the vierbein components eu = eu
μ dxμ

and ea = ea
μ dxμ (4.18) and the fields (2.11) on the cylinder. A straightforward computation then yields the color-electric Ei := F0i and 

-magnetic Bi := 1
2 εi jk F jk fields:

Ea = 1

|x|3
{(

φ2−1
)
ε i−3

ab xb Ii − φ̇
(

t δab − xa xb

|x| + t

)
Ib

}
,

Ba = − 1

|x|3
{(

φ2−1
)(

t δa i−3 − xa xi−3

|x| + t

)
Ii + φ̇ ε c

ab xb Ic

}
.

(4.21)

Interestingly, the structure of these fields demonstrates the presence of color-electromagnetic duality: Ea → Ba and Ba → −Ea leaves the 
expressions invariant, provided we interchange φ̇ ↔ (φ2−1) as well as the coset and Lie-subalgebra generators Ii → Ia and Ia → −Ii , 
followed by index adjustment. Furthermore, both the gauge field A (4.20) as well as the electric Ei and magnetic Bi fields (4.21) are 
singular at the lightcone t=±r. The expression for the stress-energy tensor

Tμν = − 1
2g2 trad

(
Fμα Fνβ ηαβ − 1

4ημν F 2
)

, with F 2 = Fμν F μν , (4.22)

of these Yang–Mills fields is straightforwardly computed to yield

T = ε

g2(r2−t2)3

⎛⎜⎜⎝
3t2+r2 −4tx −4ty −4tz
−4tx t2+4x2−r2 4xy 4xz
−4ty 4xy t2+4y2−r2 4yz
−4tz 4xz 4yz t2+4z2−r2

⎞⎟⎟⎠ . (4.23)

As expected, it has a vanishing trace, but the lightcone singularity present in the fields (4.21) shows up here as well.
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5. Exterior of lightcone: SO(1, 3)/SO(1, 2) ∼= dS3

Let us now study the foliation of the exterior of the lightcone, denoted here as S . By choosing the base vector V 0 ∼ (0, 0, 0, 1)� , 
we single out the 3-direction and reveal the stabilizer as SO(1, 2). The exterior of the lightcone can then be foliated by copies of 
SO(1, 3)/SO(1, 2) ∼= dS3, i.e. 3-dimensional de Sitter space. This can be embedded in Minkowski space R1,3 as

y · y ≡ ημν yμ yν = 1 . (5.1)

The foliation of S is then achieved, analogous to the T case, using the maps

ϕS : R× dS3 → S , (u, yμ) �→ xμ := eu yμ ,

ϕ−1
S : S → R× dS3 , xμ �→ (u, yμ) :=

(
ln
√|x·x|, xμ

√|x·x|
)

,
(5.2)

so that eu = √|x·x|. The metric on S becomes conformal to that on the cylinder R × dS3 using ϕS :

ds2
S = e2u

(
du2 + ds2

dS3

)
, (5.3)

where ds2
dS3

is the metric on dS3 induced from (5.1), and the parameter u is spatial.

For the coset SO(1, 3)/SO(1, 2) associated with the base vector (0, 0, 0, 1)� , the splitting (2.2) is realized by

Ii ∈ {K1, K2, J3} and Ia ∈ { J1, J2, K3} . (5.4)

The structure coefficients for this Lie algebra (2.3) are

f k
i j = εi−3 j−3 k−3 (1−2 δk6) , f b

ia = εi−3 a b (1−2 δa3) and f i
ab = εa b i−3 , (5.5)

where the indices for the terms inside the bracket are not summed over. These structure coefficients produce the following Cartan–Killing 
metric (2.4),

gij = 4

(−1 0 0
0 −1 0
0 0 1

)
i−3 j−3

, gab = 4

(
1 0 0
0 1 0
0 0 -1

)
ab

, and gia = 0 . (5.6)

The following maps illustrate the equivalence between dS3 and SO(1, 3)/SO(1, 2):

αS : SO(1,3)/SO(1,2) → dS3 , [�S ] �→ yμ := (�S)
μ
3 ,

α−1
S : dS3 → SO(1,3)/SO(1,2) , yμ �→ [�S ] ,

(5.7)

where the representative element �S of each SO(1,2) coset [�S ] is defined as follows:

�S =

⎛⎜⎜⎜⎜⎜⎝
1+(γ −1)

β2
1

βββ2 −(γ −1)
β1β2
βββ2 −(γ −1)

β1β3
βββ2 β1γ

(γ −1)
β1β2
βββ2 1−(γ −1)

β2
2

βββ2 −(γ −1)
β2β3
βββ2 β2γ

(γ −1)
β1β3
βββ2 −(γ −1)

β2β3
βββ2 1−(γ −1)

β2
3

βββ2 β3γ

β1γ −β2γ −β3γ γ

⎞⎟⎟⎟⎟⎟⎠ , with y3

⎛⎝β1
β2
β3

⎞⎠=
⎛⎝ y0

y1

y2

⎞⎠ , γ = 1√
1−βββ2

=y4 , (5.8)

but now βββ2 = −ηab βaβb ≥ 0, where the 3-dimensional Minkowski metric ηab = diag(−1, 1, 1)ab has its origin in the fact that the stabilizer 
SO(1, 2) is nothing but the isometry group of R1,2. As in the previous section, it can be checked that the map αS is well-defined. One 
can also obtain �S , in analogy to the previous case (4.9), by exponentiating the coset generators Ia ∈ m with parameters κa:

�S = exp(−κ3 J1+κ2 J2+κ1 K3) with βa = κa√
κκκ2

tanh
√

κκκ2 for κκκ2 = −ηabκaκb . (5.9)

The parameter κκκ2 can also be negative here and the expression above still holds, turning tanh into tan. We obtain the following Maurer–
Cartan one-forms:

�−1
S d�S = ea Ia + ei Ii with ea = dy3−a − y3−a

1+y3
dy3 and ei = −εi−3 a b

y3−a

1+y3
dy3−b . (5.10)

The one-forms ea provide a local orthonormal frame on dS3 while the ei are linearly dependent:

ds2
dS3

= ηab ea ⊗ eb and ei = ei
a ea , with ei

a = εi−3 a b
y3−b

1+y3
, (5.11)

such that the metric on the cylinder R × dS3 (5.3) becomes

ds2
S = eu ⊗ eu + ηab ea ⊗ eb . (5.12)

The Yang–Mills action on R × dS3 comes out to be
7
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SYM = 2

g2

∫
R×dS3

dvol
( 1

2 φ̇2 − V (φ)
)
, with V (φ) = − 1

2 (φ2−1)2, (5.13)

where the volume form dvol = 1
3!εabc du ∧ ea ∧ eb ∧ ec depends on (5.10). Hence, we encounter the same equation of motion (4.13) as 

before and, therefore, the generic solution (4.14) coupled with (2.11) applies here as well, albeit with a catch that electric Ea and magnetic 
Ba fields are valued in other spaces.

Pulling the local orthonormal frame on R × dS3 back to S with the map ϕS (5.2), we obtain

eu := du = r dr − t dt

r2 − t2
and ea = 1

|x|
(

dx3−a − x3−a

|x| dz − ηbc x3−a xb−1

|x|(|x| + z)
dxc−1

)
, (5.14)

which gives us the vierbein components eu=eu
μ dxμ and ea=ea

μ dxμ . As before, we obtain the gauge potential on the cylinder R × dS3,

A = 1

|x|
{

εi−3
c b x3−b

|x| + z
dx3−c Ii + φ(x)

(
dx3−a − x3−a

|x| dz − ηbc x3−a xb−1

|x|(|x| + z)
dxc−1

)
Ia

}
, (5.15)

which yields the following color-electric Ei and -magnetic Bi fields:

E1 = 1

|x|3
[
φ̇ (I2 t + I3 x) +

(
φ2−1

){
− y

|x| + z
(I6 t − I5 x − I4 y) + I4 z

}]
,

E2 = 1

|x|3
[
φ̇ (I1 t + I3 y) +

(
φ2−1

){ x

|x| + z
(I6 t − I5 x − I4 y) − I5 z

}]
,

E3 = 1

|x|3
[
φ̇
{
− t

|x| + z
(I3 t + I1 y + I2 x) + I3 z

}
−
(
φ2−1

)
(I4 x − I5 y)

]
,

B1 = 1

|x|3
[
−φ̇

{ y

|x| + z
(I3 t + I1 y + I2 x) + I1 z

}
+
(
φ2−1

)
(I5 t − I6 x)

]
,

B2 = 1

|x|3
[
φ̇
{ x

|x| + z
(I3 t + I1 y + I2 x) + I2 z

}
−
(
φ2−1

)
(I6 y − I4 t)

]
,

B3 = 1

|x|3
[
φ̇ (I1 x − I2 y) +

(
φ2−1

){ t

|x| + z
(I6 t − I5 x − I4 y) − I6 z

}]
.

(5.16)

The resulting stress-energy tensor (4.22) comes out to be the same as on T , i.e. (4.23), or

Tμν = ∂ρ Sρμν with Sρμν = ε

g2

xρημν − xμηρν

(x·x)2
, (5.17)

where the improvement term ( S̃ρ)μν := g2(x·x)2

ε Sρμν takes the following explicit form

S̃0 =
( 0 0 0 0

x −t 0 0
y 0 −t 0
z 0 0 −t

)
, S̃1 =

(−x t 0 0
0 0 0 0
0 −y x 0
0 −z 0 x

)
, S̃2 =

⎛⎝−y 0 t 0
0 y −x 0
0 0 0 0
0 0 −z y

⎞⎠ , S̃3 =
(−z 0 0 t

0 z 0 −x
0 0 z −y
0 0 0 0

)
. (5.18)

It is tempting to combine the two stress tensors inside and outside the lightcone to a single expression valid on all Minkowski spacetime. 
The price is the singularity on the lightcone, however. An attempt to regularize the latter is

Sreg
ρμν = ε

g2

xρημν − xμηρν

(x·x + δ)2
⇒ T reg

μν = ε

g2

4 xμxν − ημνx·x + 3 δ ημν

(x·x + δ)3
(5.19)

which, as a nonsingular improvement term, will give rise to vanishing energy and momenta for any finite value of the regularization 
parameter δ (the fall-off at spatial infinity is fast enough). Alternatively, shifting directly only the denominator of Tμν in (5.17) via 
x·x �→ x·x + δ will yield a proper regular energy-momentum tensor, so that, by equivalence under adding the improvement (5.19), we 
obtain that

T δ
μν = ε

g2

4 xμxν − ημνx·x
(x·x + δ)3

∼ ε

g2

−3 δ ημν

(x·x + δ)3
(5.20)

provides a candidate for a regular energy-momentum tensor in the entire Minkowski spacetime. Note that the latter expression vanishes 
for δ → 0.

6. Null hypersurface: SO(1, 3)/ISO(2) ∼=L+

The stabilizer subgroup H ⊂ G associated with a base vector in the lightcone is not so straightforward to see as in the previous cases, 
but it can be easily computed using the double cover of the Lorentz group, SL(2, C), and its action on the vector space of 2×2 Hermitian 
matrices, which is isomorphic to R1,3 (see for example [12]).

The stabilizer subgroup H in this case is the Euclidean group E(2) = ISO(2) generated by two translations and one rotation. The 
subalgebra h is spanned by {I4, I5, I6} = {P3, P4, J3}, with
8
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P3:=K1− J2 =
( 0 1 0 0

1 0 0 -1
0 0 0 0
0 1 0 0

)
, P4:=K2+ J1 =

( 0 0 1 0
0 0 0 0
1 0 0 -1
0 0 1 0

)
, and J3 =

( 0 0 0 0
0 0 -1 0
0 1 0 0
0 0 0 0

)
. (6.1)

Here again, the algebra g can be decomposed into h ⊕ m, with m generating the coset G/H , but this coset is not reductive as in the 
previous cases. Indeed, P3 and P4 are orthogonal to themselves with respect to the Cartan–Killing metric (2.4), so there is no orthogonal 
complement to h. Moreover, m also forms a subalgebra of g (see also [13]), spanned by {I1, I2, I3} = {P1, P2, K3}, with

P1:=K1+ J2 =
( 0 1 0 0

1 0 0 1
0 0 0 0
0 -1 0 0

)
, P2:=K2− J1 =

( 0 0 1 0
0 0 0 0
1 0 0 1
0 0 -1 0

)
, and K3 =

( 0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

)
. (6.2)

P1 and P2 act again as generators of translations, while K3 is a generator of dilations. The subalgebras h, spanned by {Ii}, and m, spanned 
by {Ia}, are given by

[I4, I6] = −I5 , [I5, I6] = I4 , [I4, I5] = 0 and [I1, I3] = I1 , [I2, I3] = I2 , [I1, I2] = 0 , (6.3)

respectively, while their non-orthogonality is demonstrated by the mixed commutators

[I1, I4] = −2 I3 , [I1, I5] = −2 I6 , [I2, I4] = 2 I6 , [I2, I5] = −2 I3 ,

[I3, I4] = I4 , [I3, I5] = I5 , [I1, I6] = I2 , [I2, I6] = I1 , [I3, I6] = 0 .
(6.4)

The algebra spanned by m is known as a type V algebra in Bianchi’s classification of 3-dimensional real Lie algebras, or as a g3.3 algebra 
in Mubarakzyanov’s classification.

If we had chosen any base vector proportional to (−1, 0, 0, 1)� , then the splitting would be realized by

Ii ∈ {P1, P2, J3} and Ia ∈ {P3, P4, K3} , (6.5)

and we would use the group generated by the new m to parametrize the past half of the lightcone L− in the same way as the one 
described below for parametrizing L+ .

Let us map the coset space into the future half of the lightcone using the base vector (1, 0, 0, 1)� and the map

αL+ : SO(1,3)/ISO(2) ⊃ exp(m) → L+, [�L+] �→ yμ = (�L+)
μ
0 + (�L+)

μ
3 ,

α−1
L+ : L+ → SO(1,3)/ISO(2) , yμ �→ [�L+] ,

(6.6)

where, again, [�L+] = {� ∈ SO(1, 3) : � ∼ �L+} is the equivalence class (under right ISO(2)-multiplication) of the representative �L+ . 
Here we cannot directly write an expression for �L+ similar to (4.8) and (5.8), but, for each equivalence class, we can still write a simple 
representative parametrized by the y-coordinates, namely

�L+ =

⎛⎜⎜⎜⎜⎜⎜⎝

y0

2 + 1
y0+y3

y1

y0+y3
y2

y0+y3
y0

2 − 1
y0+y3

y1

2 1 0 y1

2

y2

2 0 1 y2

2

y3

2 − 1
y0+y3 − y1

y0+y3 − y2

y0+y3
y3

2 + 1
y0+y3

⎞⎟⎟⎟⎟⎟⎟⎠ . (6.7)

The Maurer–Cartan one-forms can be obtained from �−1
L+ d�L+= ea Ia (no Ii terms, since m here is actually a subalgebra of g) and 

expressed in terms of the y-coordinates, but they read better in terms of spherical spatial coordinates, with

y1 = r sin θ cosϕ , y2 = r sin θ sinϕ , y3 = r cos θ , and y0 = r , (6.8)

then one obtains

e1 = r
2 (cosϕ dθ− sin θ sinϕ dϕ) , e2 = r

2 (sinϕ dθ+ sin θ cosϕ dϕ) , and e3 = 1
r dr− tan θ

2 dθ . (6.9)

They provide a local orthonormal frame on L+ , such that

ds2
R1,3

∣∣
L+ = 4 e1 ⊗ e1 + 4 e2 ⊗ e2 . (6.10)

The metric in this case is degenerate (the e3 ⊗ e3 term vanishes), as expected for the lightcone.
One can also explicitly write the action of the generator K3 on the base vector,

euK3 ·

⎛⎜⎜⎝
1
0
0
1

⎞⎟⎟⎠=

⎛⎜⎜⎝
eu

0
0
eu

⎞⎟⎟⎠ , (6.11)

to see that K3 generates dilatations on the lightcone. This means that the orbit of the coset on a base vector (eu , 0, 0, eu)� coincides with 
the orbit of (1, 0, 0, 1)� for any u ∈ R; this stands in contrast with the previous cases. Actually, the map αL+ in (6.6) is onto, so any base 
vector on the future lightcone generates the whole future lightcone. Moreover, there is no foliation of the lightcone here, which means 
that SO(1, 3)-invariant Yang–Mills fields in the lightcone have no dynamics. The gauge field in this case is necessarily pure gauge, with 
F = 0.
9



K. Kumar, O. Lechtenfeld, G. Picanço Costa et al. Physics Letters B 835 (2022) 137564
Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:
Kaushlendra Kumar reports financial support was provided by German Academic Exchange Service.

Data availability

No data was used for the research described in the article.

Acknowledgements

K.K. thanks Deutscher Akademischer Austauschdienst (DAAD) for the doctoral research grant 57381412.

References

[1] V. De Alfaro, S. Fubini, G. Furlan, Phys. Lett. B 65 (1976) 163.
[2] M. Lüscher, Phys. Lett. B 70 (1977) 321.
[3] B.M. Schechter, Phys. Rev. D 16 (1977) 3015.
[4] D. Kapetanakis, G. Zoupanos, Phys. Rep. 219 (1992) 4.
[5] T.A. Ivanova, O. Lechtenfeld, A.D. Popov, Phys. Rev. Lett. 119 (2017) 061601, arXiv:1704 .07456 [hep -th].
[6] T.A. Ivanova, O. Lechtenfeld, A.D. Popov, J. High Energy Phys. 11 (2017) 017, arXiv:1708 .06361 [hep -th].
[7] T.A. Ivanova, O. Lechtenfeld, Phys. Lett. B 670 (2008) 91, arXiv:0806 .0394 [hep -th].
[8] T.A. Ivanova, O. Lechtenfeld, A.D. Popov, T. Rahn, Lett. Math. Phys. 89 (2009) 231, arXiv:0904 .0654 [hep -th].
[9] O. Lechtenfeld, G. Ünal, Phys. Rev. D 98 (2018) 085008, arXiv:1807.03914 [hep -th].

[10] O. Lechtenfeld, G. Zhilin, Phys. Lett. A 382 (2018) 1528–1533, arXiv:1711.11144 [hep -th].
[11] O. Lechtenfeld, A.D. Popov, J. Phys. A, Math. Theor. 48 (2015) 425401, arXiv:1505 .05448 [hep -th].
[12] P. Woit, Quantum Theory, Groups and Representations: An Introduction, 1st ed., Springer, 2017.
[13] A. Ballesteros, I. Gutierrez-Sagredo, F.J. Herranz, Phys. Lett. B 829 (2022) 137120, arXiv:2202 .11767 [hep -th].
10

http://refhub.elsevier.com/S0370-2693(22)00698-0/bibC8984126713ED072B9CB0A44A162BE4Ds1
http://refhub.elsevier.com/S0370-2693(22)00698-0/bib99183A9A32166DE29939C5F2DF0B6247s1
http://refhub.elsevier.com/S0370-2693(22)00698-0/bib03C7554C3B5EDF51A7C39D35FE421F8Bs1
http://refhub.elsevier.com/S0370-2693(22)00698-0/bib4A0305390C43830850AE03AB5936F721s1
http://refhub.elsevier.com/S0370-2693(22)00698-0/bib98AA11AB9049932BACAB1D9A7A78167Bs1
http://refhub.elsevier.com/S0370-2693(22)00698-0/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0370-2693(22)00698-0/bib0BA204822D0E84AFD8C4FCAF01778BA1s1
http://refhub.elsevier.com/S0370-2693(22)00698-0/bib47E302B7284C16EEF4144C1B26BBC1A7s1
http://refhub.elsevier.com/S0370-2693(22)00698-0/bibC607F74778EA4B85E0A793D58B82AC1As1
http://refhub.elsevier.com/S0370-2693(22)00698-0/bibB00DD3F995FBB6747A8B01F0845A2B74s1
http://refhub.elsevier.com/S0370-2693(22)00698-0/bib948343E9B164FC15605C609AEA6ADD82s1
http://refhub.elsevier.com/S0370-2693(22)00698-0/bibCA757053C12E96A11E756434CF012721s1
http://refhub.elsevier.com/S0370-2693(22)00698-0/bib8EDF45FF70837878A8602486EFF74FE5s1

	Yang--Mills solutions on Minkowski space via non-compact coset spaces
	1 Introduction and summary
	2 G-invariant Yang--Mills fields on R×G/H
	3 A prototype: SO(4)/SO(3)∼=S3 (∼=SU(2))
	4 Interior of lightcone: SO(1,3)/SO(3)∼=H3
	5 Exterior of lightcone: SO(1,3)/SO(1,2)∼=dS3
	6 Null hypersurface: SO(1,3)/ISO(2)∼=L+
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


