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Abstract 17 

Microalgal cultivations present challenges for monitoring and process control posed by their 18 

large scale and the likelihood that they will be composed of multiple species. Cell 19 

concentration is a fundamental parameter in any cultivation but is typically performed using 20 

off-line methods that may be time-consuming, laborious, or subject to interferences. Here, an 21 

in-situ microscope has been adapted to monitoring microalgal cultivations by adding a flow-22 

through cell and adjusting image-processing algorithms. After installation in the bypass of a 23 

photobioreactor, the microscope enabled the continuous, automated acquisition of cell 24 

count, cell size, and cell morphology data on-line during cultivation processes over a period 25 

of 20 days, without sampling. The flow-through microscope was tested in cultivations of 26 

Chlamydomonas reinhardtii and Chlorella vulgaris. Cell concentration measurements were in 27 

agreement with off-line optical density measurements for both species. In addition, cell size 28 

and morphology distributions were obtained that revealed population shifts during the 29 

cultivation of C. vulgaris. This monitoring system thus provides a means to obtain detailed, 30 

non-invasive insights of microalgal cultivation processes.  31 
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1. Introduction 38 

The industrial cultivation of microalgae has been the focus of increased attention in recent 39 

years, although the first commercial operations date to the 1960s. Various microalgae are 40 

cultivated to produce food, food supplements, pigments, and lipids for conversion to biofuels. 41 

Microalgae are usually cultivated in batch or semi-batch processes with cultivation times of 42 

up to 20 days. The monitoring of microalgal cultivations is of importance for process control. 43 

Of particular interest are parameters related to the biological system, including cell 44 

concentration and composition, which provide information about the status of the cultivation. 45 

Data on cell morphology and size are useful for monitoring the presence of contaminating 46 

species and the health of the culture. Ideally, these measurements would be made 47 

continuously, with the sensor system interfaced with the photobioreactor or pond in either an 48 

in-situ or an on-line format [1]. 49 

 50 

One approach to this goal is the use of continuous, non-invasive microscopic monitoring. 51 

The first in-situ microscope (ISM) was developed in 1990 [2] and has since been improved 52 

by several researchers [3]. It has been employed for the in-situ monitoring of yeast, 53 

mammalian, and microcarrier cultivations as well as crystallization processes of amino acids, 54 

proteins, and pharmaceuticals [4]. Most ISM systems are based on a transmitted light 55 

microscope and can be mounted in a 25-mm side port of a bioreactor. The sampling zone is 56 

thus immersed in the cultivation medium. Images of microorganisms or crystals are acquired 57 

and processed using particle-specific algorithms, yielding estimates of several parameters, 58 

including particle count, size and morphology. 59 

 60 

The goal of this project was to develop and evaluate the ISM strategy for monitoring 61 

microalgal cultivations. Cultivations of two algal species were conducted and compared with 62 

standard off-line measurements of optical density.  63 

 64 

 65 
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2. Materials and Methods 66 

2.1. Flow-through microscope hardware 67 

The flow-through microscope (FTM) is a modified version of the in-situ microscope ISM III 68 

XTF (Sartorius Stedim Biotech GmbH, Göttingen, Germany) [5]. It has been used 69 

successfully for monitoring of various biotechnological processes such as cultivations of 70 

microorganisms and protein crystallization. The ISM III XTF is a transmitted light, bright-field 71 

microscope that can be mounted in a 25-mm side port of a bioreactor. 72 

 73 

For the monitoring of microalgal cultivations, several modifications of the ISM III XTF were 74 

necessary to allow removal of adhered cells within the measuring zone, provide a 75 

replaceable light source, and integrate the device into the glass tubular photobioreactor used 76 

in this study. To accomplish these goals, the outer tube of the ISM was redesigned by 77 

replacing the sampling zone with a flow cell and by adding inlet and outlet metal tubes that 78 

can be integrated into the bypass of a photobioreactor. The upper segment of the 79 

microscope containing camera, objective lens, and motors was mounted on the outer tube 80 

(Fig. 1). Since the whole system has a modular construction, individual parts could be 81 

replaced easily. A white LED was attached on the other side of the flow cell (Fig. 1). This 82 

construction allowed the flushing of the microscope windows by temporarily increasing the 83 

flow rate through the flow cell.  84 

 85 

2.2. Image analysis and hardware control software 86 

It was also necessary to alter the image-processing algorithms of the ISM III XTF to 87 

recognize microalgal cells. The original instrument software includes the control program 88 

InSitu Control for controlling the ISM hardware and camera parameters and for recording 89 

microscope images, as well as the image processing software InSitu Analysis for performing 90 

cell recognition and to allow parameter computation either on- or off-line. The algorithms for 91 

image processing for cell detection were originally designed for yeast cells and were based 92 

on border-tracking methods. Differences of grey values to the mode value (image 93 
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background) were used to define the border of possible cell objects. Since algae images 94 

tended to be noisier, and consequently produced blurry object borders, this led to processing 95 

artifacts in this application to algal cells. 96 

 97 

Modification of the software consisted of migration from Delphi to C#, and implementing the 98 

SUSAN procedure [6] for border tracking and cell detection to allow better object recognition 99 

from noisy and out-of-focus images. Furthermore, the "Cell Wiper" function was introduced 100 

to enable recognition of cells that have stuck to the sampling zone surface. These adhered 101 

cells could be then excluded from counting. For each microalgal strain, additional strain-102 

specific algorithm optimization was necessary to account for different cell shapes. 103 

 104 

The resulting software is capable of computing three process variables as primary 105 

information: cell count in an image, and cell size and cell eccentricity for each cell identified 106 

in the image.  Furthermore, the software produces other information from these primary 107 

data: cell volume of individual cells, total cell volume in a given liquid volume (biomass 108 

concentration), detection of double cells and cell clusters, and classification into large, 109 

medium, and small cells. Processing parameters and all results for each image are recorded 110 

in a separate file linked to the image. From these files, all data can be exported, for each cell 111 

and each image individually or as a summary, into a .csv file. Cell size distributions can also 112 

be exported as a histogram. All variables are visualized in the GUI in real time. 113 

 114 

2.3. Microscope calibration 115 

For absolute cell area determination, the microscope-camera system was calibrated. A film 116 

with a microscale was inserted into the measuring zone and pixels over a distance were 117 

counted manually in the image. The area of one pixel was computed from pixel count per 118 

micrometer. When the 10X microscope objective was used, a pixel had an area of 0.67 µm2, 119 

while the 20X objective yielded a conversion of 0.17 µm2 per pixel.  120 

 121 
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2.4. Photobioreactor system 122 

Two photobioreactor (PBR) cultivation systems were used for testing the FTM. Both are 123 

based on glass tubes of 45-cm length and outside diameter of 8 cm (volume 1.9 L) equipped 124 

with two tubing connections and an inner glass tube of 2.4-cm inside diameter placed along 125 

the centerline. The light source was an Osram 640 13W Universal White fluorescent lamp 126 

that was located in the inner glass tube and provided illumination with average intensity 127 

(PAR) of 58 µmol s-1 m-2 as measured 3 cm from the lamp surface. To accommodate the 128 

aeration, cooling, and sensors, two variants of a monitoring/addition vessel (MAV) were 129 

employed, both with a working volume of about 0.5 L. The first MAV was a glass vessel 130 

equipped with sensor ports in the lid for temperature, pH, and pO2, and with a gas inlet and 131 

outlet. The second MAV was a steel double-jacketed unit with an inoculation port, a mixer, 132 

ports for temperature and pH sensors, and connections for gas inlet and outlet. In each 133 

experiment, one of these MAVs was attached to the glass tube by flexible tubing, and a 134 

peristaltic pump was used to circulate the growth medium between the glass tube and the 135 

MAV. Gas sparging took place only in the MAV. The first system, PBR-1, consisted of two 136 

glass tubes with the glass MAV and had a total volume of 4.4 L, while PBR-2 consisted of a 137 

single glass tube and the stainless steel MAV; this system had a total volume of 2.4 L. In 138 

PBR-1, temperature and pH were measured but not controlled, whereas temperature and pH 139 

were controlled by a Sartorius control unit Biostat B in PBR-2. In all experiments, CO2 was 140 

supplied by sparging the liquid in the MAV with a mixture of 3% CO2 in air at 1 vvm. The 141 

FTM was placed in the PBR bypass and supplied with cell suspension using a second 142 

peristaltic pump (Fig. 2). 143 

 144 

2.5. Algal cultures, experimental conditions, and measurements 145 

For all cultivation experiments, axenic cultures under sterile conditions were employed. TAP 146 

medium [7] was used for all cultivations. On-line cell measurements using the flow-through 147 

microscope were evaluated with the modified InSitu Control and InSitu Analysis software. 148 

 149 
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A set of four cultivations of Chlamydomonas reinhardtii (strain SAG 33.89, SAG Culture 150 

Collection, Göttingen, Germany) was performed in the PBR-1 system at approximately 26 °C 151 

and pH 7. C. reinhardtii is a green microalga with approximately spherical shape and a 152 

diameter of 14 to 22 µm. Cultivations were inoculated with a 100-mL culture of C. reinhardtii 153 

cells grown for 10 days in an illuminated shake flask. The optical density (OD) during the 154 

cultivation experiments was measured off-line at 550 nm approximately every 24 h using a 155 

Uvikon spectrophotometer. A 10X objective was used in the flow-through microscope. The 156 

on-line cell count was computed as cell count/image. Image acquisition and evaluation was 157 

performed in cycles every hour, each cycle comprising 100 images in 1-s interval. 158 

 159 

A second set of two cultivations was carried out using Chlorella vulgaris, a green microalga 160 

with spherical shape and a diameter of 4 to 10 µm. The cultivation was performed in the 161 

PBR-2 system at 26 °C and pH 7, inoculated with a 100-mL culture of C. vulgaris cells grown 162 

for 10 days in an illuminated shake flask. The optical density was measured at 750 nm, 163 

outside the absorption range of both chlorophyll a and chlorophyll b, to avoid interference by 164 

variable chlorophyll content. As Chlorella cells are smaller, a 20X objective was used in the 165 

flow-through microscope. The on-line cell count was measured as in the C. reinhardtii 166 

cultivation and computed also as cell count/image. 167 

 168 

 169 

3. Results and Discussion 170 

3.1. C. reinhardtii cultivation monitoring 171 

For the initial evaluation of the FTM for algal cultivation monitoring, cell number 172 

concentrations were computed from the analysis of images acquired by the FTM during the 173 

C. reinhardtii cultivations. Figure 3 is a comparison of these FTM-derived data with the off-174 

line OD measurements at 550 nm. Although the data computed from the images of the flow-175 

through microscope became noisier after 300 h of cultivation, filtering using a 12-h 176 

asymmetric median was successful in providing a smoother output. Another comparison of 177 
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the on-line FTM data and the off-line OD measurements was the calculation of the ratio of 178 

the off-line optical density and the median of the cell count obtained from the flow-through 179 

microscope data. Ideally, this ratio should be constant during the cultivation no matter the 180 

dimensioning of both variables. In these measurements, the relative difference between the 181 

two methods decreased with increasing cell concentration (Supplemental Data Figure S-1).  182 

 183 

3.2. C. vulgaris cultivation monitoring 184 

Based on experiences gained during the analysis of the first set of experiments, the data 185 

collected by the FTM during the C. vulgaris cultivations were analyzed using several 186 

additional methods. To account for the presence of a small number of clusters of cells that 187 

might skew the data, information from the cell size and eccentricity data collected by the 188 

FTM were used to create a function for elimination of likely cell clusters. FTM images from 189 

the early growth phase were manually evaluated to determine the parameters of this 190 

function, which is shown in Supplemental Data Figure S-2. Cell clusters were screened as 191 

follows: (a) all objects larger than 1400 pixels were assumed to be clusters, (b) all objects 192 

smaller than 600 pixels were assumed to be single cells, and (c) for objects in the size range 193 

600 – 1400 pixels, objects below the corresponding critical eccentricity for a given pixel size 194 

(Supplemental Data Figure S-2) were assumed to be single cells. This screening process 195 

resulted in the elimination of 3.6% of the images in the early and late growth phases, and 4% 196 

of the images in the stationary phase. These procedures yielded a dataset containing all 197 

cells identified in the images acquired during the whole cultivation, with every cell linked to 198 

its size and eccentricity, with cell clusters eliminated. All subsequent analyses resulting in 199 

cell size and eccentricity distributions were carried out using individual cells and their 200 

individual parameters. 201 

 202 

These corrected, individual cell data were used to determine cell number concentrations in 203 

1-h cycles, and these 1-h data were smoothed using a 12-h asymmetric moving average 204 

filter to compare them to the off-line OD measurements (Fig. 4). As with the C. reinhardtii 205 
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cultivations, the on-line data were in good agreement with the off-line OD measurements, 206 

although the FTM values were somewhat lower near the start of the experiment (until about 207 

165 h). Three growth phases were delineated: early growth (94–179 h), late growth (180–208 

263 h), and stationary (264-335 h). 209 

 210 

Cell size distributions were computed from the corrected FTM data separately for each of the 211 

three growth phases (Figure 5). A substantial shift in the size distribution between the early 212 

growth and the later two stages can be observed by comparing average and median cell 213 

sizes for each stage, computed from the dataset containing all cells detected in FTM images. 214 

Average cell sizes in the early, late and stationary phases were 77, 65 and 65 µm2, 215 

respectively, and median cell sizes were 71, 61 and 62 µm2, respectively. Specifically, the 216 

cell population became smaller on average after the first 180 h because of the loss of larger 217 

(90-160 µm2) cells. Distributions of cell size in bar chart format are shown in Supplemental 218 

Data Figure S-3. Using off-line measurements in a Coulter Counter, Work et al. [8] 219 

determined that C. reinhardtii CC124 cells grown in nitrogen-replete medium (corresponding 220 

to the early growth phase) were 13% larger than cells grown in nitrogen-deficient medium 221 

(corresponding to late growth and stationary phases). This shift in size distribution could 222 

explain the differences between the OD and FTM measurements between 100 and 200 h.  223 

 224 

Similarly, distributions of the cell morphology, expressed as eccentricity, were obtained from 225 

the C. vulgaris dataset, resulting from the analysis of FTM images corrected for presence of 226 

clusters. Distributions of eccentricity data in each of the three cultivation phases are shown 227 

in Figure 6, and distributions of eccentricity in bar chart format are shown in Supplemental 228 

Data Figure S-4. During the early growth phase, the C. vulgaris cells were less elongated 229 

than those later in the cultivation.  230 

 231 

3.3. General aspects of in-situ, flow-through microscopy of microalgal cultivations 232 

Although microalgal cell concentration data can be obtained off-line using flow cytometry, 233 
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Coulter Counters, and optical absorbance, the results presented here are the first reports of 234 

on-line, automated, continuous measurement of microalgal cell concentration. While other 235 

methods such as optical absorbance can be modified for on-line application, the need to 236 

provide dilution at higher cell concentrations, to avoid wavelengths affected by pigments, 237 

and to correct for changes in cell size and composition (e.g., the presence of lipid bodies) 238 

has proven challenging. Using FTM, these issues can be avoided, and additional 239 

measurements such as the distributions of cell size and cell shape can be obtained. 240 

Although shear stress from pumping the cells through the bypass may be a concern for 241 

some microalgae, there was no discernible impact for the two species used in these 242 

experiments. 243 

 244 

Continuous measurements of cell concentration and cell size distribution have many 245 

potential uses in large-scale microalgal cultivations. Nutrient addition and harvesting 246 

strategies could be triggered when a particular cell concentration is reached, corrective 247 

actions could be taken if the growth rate is not as expected, or the impact of predators (e.g., 248 

rotifers) could be detected at an early and potentially correctable stage. The additional 249 

information content of continuous cell size distribution measurements could also provide 250 

evidence of lipid accumulation (if associated with cell size increase) and the presence of 251 

non-target microbial species. Those goals would be aided by modification of the image-252 

analysis software to provide data on the population morphology. 253 

 254 

The modifications to the commercial ISM described here allow the imaging zone to be 255 

cleaned automatically in the event of moderate cell adhesion. If more severe cell 256 

accumulation is encountered, the microscope can easily be disconnected, cleaned, and 257 

connected again under sterile conditions. Moreover, different light sources can be used with 258 

simple replacement. 259 

 260 
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The results reported here demonstrate the basic capabilities of this system for obtaining on-261 

line data during algal cultivations. Such a system can enable the collection of a high density 262 

of information about cultivations in laboratory and commercial systems, potentially leading to 263 

new insights into the basic and applied biology of algae. 264 

 265 

 266 

References 267 

[1]  T. Scheper, B. Hitzmann, E. Stark, R. Ulber, R. Faurie, P. Sosnitza, K.F. Reardon, 268 

Bioanalytics: detailed insight into bioprocesses, Analytica Chimica Acta 400 (1999) 121-269 

134. 270 

[2]  H. Suhr, P. Speil, G. Wehnert, W. Storhas, In situ-Mikroskopiesonde und Messverfahren, 271 

Germany, 1990. 272 

[3]  T. Hopfner, A. Bluma, G. Rudolph, P. Lindner, T. Scheper, A review of non-invasive 273 

optical-based image analysis systems for continuous bioprocess monitoring, Bioprocess 274 

and Biosystems Engineering 33 (2010) 247-256. 275 

[4]  A. Bluma, T. Hopfner, A. Prediger, A. Glindkamp, S. Beutel, T. Scheper, Process 276 

analytical sensors and image-based techniques for single-use bioreactors, Engineering 277 

in Life Sciences 11 (2011) 550-553. 278 

[5]  G. Rudolph, P. Lindner, A. Gierse, A. Bluma, G. Martinez, B. Hitzmann, T. Scheper, 279 

Online monitoring of microcarrier based fibroblast cultivations with in situ microscopy, 280 

Biotechnology and Bioengineering 99 (2008) 136-145. 281 

[6]  S.M. Smith, J.M. Brady, SUSAN - A new approach to low level image processing, 282 

International Journal of Computer Vision 23 (1997) 45-78. 283 

[7]  E.H. Harris, The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and Its 284 

Laboratory Use, 2nd Edition, Academic Press, 2008. 285 

[8]  V.H. Work, R. Radakovits, R.E. Jinkerson, J.E. Meuser, L.G. Elliott, D.J. Vinyard, L.M.L. 286 

Laurens, G.C. Dismukes, M.C. Posewitz, Increased Lipid Accumulation in the 287 



12 

Chlamydomonas reinhardtii sta7-10 Starchless Isoamylase Mutant and Increased 288 

Carbohydrate Synthesis in Complemented Strains, Eukaryotic Cell 9 (2010) 1251-1261. 289 

 290 

 291 

  292 



13 

Figure captions 293 

 294 

Figure 1. Schematic of the flow-through microscope.  Inset: detail of measuring zone.  295 

 296 

Figure 2. Schematic of the flow-through microscope placement in the photobioreactor 297 

bypass.   298 

 299 

Figure 3. Comparison of off-line cell density measurements (OD) with data computed from 300 

in-situ FTM analysis during a cultivation of Chlamydomonas reinhardtii. Raw data were 301 

smoothed with a 12-h asymmetric median filter. 302 

 303 

Figure 4.  Comparison of off-line cell density measurements (OD750) with data computed 304 

from in-situ FTM analysis during a cultivation of Chlorella vulgaris. Cell count data were 305 

acquired and computed every hour, and were smoothed by a 12 h asymmetric moving 306 

average filter. 307 

 308 

Figure 5.  Cell size distributions in different phases of a C. vulgaris cultivation in PBR-2 as 309 

measured by the FTM.  Phase 1 is the early growth phase (94-179 h), Phase 2 is the 310 

late growth phase (180-263 h), and Phase 3 is the stationary phase (264-335 h). Data 311 

resulting from cell clusters were removed using the experimentally derived function 312 

described in the text.   313 

 314 

Figure 6.  Distributions of C. vulgaris morphology in terms of eccentricity during different 315 

phases of a C. vulgaris cultivation in PBR-2 as measured by the FTM.  Eccentricity is 316 

defined such that a value of 1.0 corresponds to a circle and larger values are ellipses.  317 

Phase 1 is the early growth phase (94-179 h), Phase 2 is the late growth phase (180-318 

263 h), and Phase 3 is the stationary phase (264-335 h). Data resulting from cell 319 

clusters were removed using the experimentally derived function described in the text.  320 
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Figure S-1.  Relative deviations of the ratio of off-line OD to on-line FTM cell counts from the 
mean of 0.83 computed over an entire cultivation of Chlamydomonas reinhardtii.   
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Figure S-2.  Critical eccentricity function for analysis of Chlorella vulgaris image data.  Manually 
selected image data (only in the early growth phase) was used to develop a critical eccentricity 
function for the size range 600 – 1400 pixels that serves to distinguish clusters and large single 
cells. All objects larger than 1400 px are assumed to be clusters, all objects smaller than 600 px 
are assumed to be single cells, and for objects in the size range 600 – 1400 px, a critical 
eccentricity is computed. All objects below the critical excentricity (provided by the function) for 
a given pixel size are assumed to be single cells. Objects classified as clusters can be then 
removed from further analysis concerning cell size and eccentricity. 
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Figure S-3.  Distributions of cell size during different phases of a Chlorella vulgaris cultivation in 
PBR-2 as measured by the FTM. The early growth phase (94-179 h), the late growth phase 
(180-263 h), and the stationary phase (264-335 h) are shown. Data resulting from cell clusters 
were removed using the experimentally derived function described in the text.  Error bars were 
calculated for individual histogram bins by assuming Poisson distribution of count error; to 
normalize for relative frequency, the error in each bin with count N is equal to  +/- 
Sqrt(N)/Sum(N1..N20). 
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Figure S-4.  Distributions of morphology in terms of eccentricity during different phases of a 
Chlorella vulgaris cultivation in PBR-2 as measured by the FTM.  Eccentricity is defined such 
that a value of 1.0 corresponds to a circle and larger values are ellipses.  The early growth 
phase (94-179 h), the late growth phase (180-263 h), and the stationary phase (264-335 h) are 
shown. Data resulting from cell clusters were removed using the experimentally derived function 
described in the text.  Error bars were calculated for individual histogram bins by assuming 
Poisson distribution of count error; to normalize for relative frequency, the error in each bin with 
count N is equal to +/- Sqrt(N)/Sum(N1..N20). 
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