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Introduction

In this thesis we want to understand properties of families of stable sheaves. First we
give a quick introduction to the topic. Then we look at three specific topics regarding
families of stable sheaves, each in its own section. For each topic we collect known results
and describe the state-of-the-art methods to study these properties. We end each section
with open questions. Then we give a quick summary of our results answering some of the
open questions.

Vector bundles play an important role in many areas of mathematics and physics. It
is thus a natural question to understand the structure of vector bundles. For example,
Grothendieck proved that all vector bundles on the simplest smooth projective variety,
the projective line P1, are direct sums of line bundles. Every line bundle on P1, that is
a vector bundle of rank one, is of the form L = OP1(a) for some a ∈ Z. If E is a vector
bundle of rank n on P1, then there is a sequence a1 6 . . . 6 an of integers such that

E ∼=
n⊕

i=1

OP1(ai).

On a different smooth projective variety X, especially if the dimension of X is greater
than two, there is in general no such easy description.

A natural follow-up question is, if we can classify all vector bundles on such a variety X.
For this, we first classify vector bundles by numerical invariants, for example the Hilbert
polynomial P . One can quickly see that it is in general not possible, to classify these vector
bundles. The problem is that many vector bundles have nontrivial automorphisms. But
the answer is positive if we restrict to stable vector bundles with fixed Hilbert polynomial.
There are two stability conditions which are widely used: Mumford-Takemoto stability,
also called slope stability, and Gieseker stability. We will be working with slope stability,
which we quickly recall (here we directly give the general definition for torsion free coherent
sheaves): let (X,h) be a polarized smooth projective variety of dimension n and let E be
a torsion free coherent sheaf of rank rk(E) = r and with first Chern class c1(E) on X,
then we define the slope of E with respect of h by:

µ(E) =
c1(E)hn−1

r
.

Then we say that E is slope (semi)stable with respect to h or h-slope (semi)stable if for
any subsheaf F ⊂ E with rank 1 6 rk(F ) 6 r − 1 we have:

µ(F ) (≤) µ(E).

The modern way to construct a space that classifies stable vector bundles on a smooth
projective variety X, a moduli space of stable vector bundles on X, uses the functorial
point of view. To understand this point of view, we need to define families of stable vector
bundles. A family of vector bundles on X parametrized by a scheme S is a coherent sheaf
E on the product X × S, which is flat over S. We say that E is a family of stable vector
bundles with Hilbert polynomial P if for every s ∈ S the fiber Es is a stable vector bundle
on the fiber Xs, which has Hilbert polynomial P . Using this notion one can define a
functor:

MX;P : SchC → Sets

which sends a C-scheme S to the set of isomorphism classes of families of stable vector
bundles on X parametrized by S with fixed Hilbert polynomial P . A C-scheme MX;P is a
fine moduli space, if it represents this functor, that is, there is an isomorphism of functors:

MX;P (−) ∼= HomSchC(−,MX;P ).

The points of the moduli space MX;P describe the isomorphism classes of stable vector
bundles on X with Hilbert polynomial P . More exactly, if m ∈ MX;P is a point, then
there is a stable vector bundles E on X, with Hilbert polynomial P such that m = [E],
where [E] denotes the isomorphism class of E.

These moduli spaces are interesting from two points of view. First, since they classify
stable bundles on X, one can try to understand properties of the bundles by studying
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properties of the moduli space. Second, the moduli space MX;P itself is often an interesting
variety, which carries a lot of geometry and other structures.

If MX;P is a fine moduli space, then there is canonically defined family U of vector
bundles on X parametrized by MX;P corresponding to the identity map of MX;P . The
family U on X ×MX,P is called the universal family of the moduli space MX,P . It has
the following property: if m = [E] is a point in MX;P for a stable vector bundle E on X,
then there is an isomorphism

Um = U[E]
∼= E

where Um is the restriction of U to the fiber over m ∈ MX;P . These fibers will be called
the ”correct” fibers of the universal family U in this thesis.

The first two parts of the thesis are concerned with properties of the fibers of the
universal family over points x ∈ X. We call these the ”wrong-way” fibers in this thesis.
Thus the wrong-way fibers Ux are vector bundles on the moduli space MX;P .

In the first part of this section we study the following natural question: since all correct
fibers Um are stable vector bundles on X, are the wrong-way fibers Ux stable vector bundles
on MX;P ? We prove that this is indeed the case in some examples. Thus we can interpret
U as a family of stable bundles on MX;P parametrized by X in these examples. We show
that this identifies X with a smooth connected component of some moduli space of stable
bundles on MX;P . This iterated moduli space construction therefore produces a ”kind of”
duality between X and MX;P . We start with X, construct a moduli space of stable bundle
MX;P and get back X as (a component of) a moduli space of stable bundles on MX;P .

The second part of this thesis deals with the derived categories of coherent sheaves on
X and MX;P . More exactly the universal family U gives rise to an integral functor

ΦU : Db(X)→ Db(MX;P ).

In many cases this integral functor exhibits interesting relations between the derived cat-
egories. We show how to understand properties of ΦU , for example fully faithfulness, by
studying properties of the wrong-way fibers of U .

The functor MX;P is in general not representable, due to the existence of strictly
semistable vector bundles on X. But one can show that there is a moduli space that
corepresents the functor. We say that MX;P is a coarse moduli space for the moduli
functor. This moduli space does not classify isomorphism classes of semistable vector
bundles, but rather so-called S-equivalence classes of semistable vector bundles. This
moduli space contains an open subset classifying stable vector bundles. But unfortunately
there is no universal family in this case. There is an obstruction α in H2(MX;P ,O×MX;P

) to

the existence of a universal family. One can construct a universal family U as a so-called
family of α-twisted vector bundles. It turns out that these α-twisted vector bundles can
be identified with vector bundles, which admit an action of an Azumaya algebra A. This
leads us naturally to the third part of the thesis.

In the third and last part of this thesis, we study the deformation theory of certain
coherent sheaves in a noncommutative setting. Here noncommutative setting simply means
that we study sheaves on X which admit an action of an associative and noncommutative
algebra A. A deformation of a coherent sheaf E is a coherent sheaf E on X ×B, flat over
B, such that Eb0 ∼= E for some b0 ∈ B, in other words a deformation of E is a flat family
of coherent sheaves on X with base B, such that E is a member of this family.

One can ask what properties of a coherent sheaf E are preserved by deformations and
what properties can change. For example, the Hilbert polynomial is locally constant in
flat families, so if B is a connected base, then the Hilbert polynomial does not change in a
deformation. On the other hand, some properties of E can change, even over a connected
base. For instance, we prove that it is possible to deform a torsion free coherent sheaf,
which is not a vector bundle, into a vector bundle over a connected curve.

We work over the field of complex numbers C in this thesis. A variety is an integral
scheme separated and of finite type over C.
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1. Stability of wrong-way fibers.
The first non-trivial example of studying the wrong-way fibers of a family of sheaves

arises in the classical study of abelian varieties. Recall that given an abelian variety A
there is an associated dual abelian variety Â := Pic0(A), which classifies line bundles of

degree zero on A. There is the universal degree zero line bundle P on A× Â, also known
as the Poincaré bundle. It has the following properties:

i) P|A×{α} ∼= Lα for all α ∈ Â (here α = [Lα] ∈ Pic0(A× {α}) ∼= Pic0(A)).
ii) P|{0A}×Â is trivial.

Now fixing a ∈ A we get a line bundle L̂a = P{a}×Â on Â. In fact L̂a is a degree zero line

bundle on Â, that is L̂a ∈ Pic0(Pic0(A)) =
ˆ̂
A, which defines a classifying morphism

ϕ : A→ ˆ̂
A, a 7→ L̂a.

The classifying morphism ϕ for the wrong-way fibers of the Poincaré bundle P shows that
duality for abelian varieties is well behaved, in the sense that the bidual of an abelian
variety is canonically isomorphic to the abelian variety:

Theorem 1.1. [41, Corollary, p.132] For any abelian variety A, the canonical morphism

A → ˆ̂
A defined by the Poincaré bundle P on A× Â (regarded as a family of line bundles

on Â parameterized by A) is an isomorphism.

The stability of the wrong-way fibers of P follows immediately from the fact that the
wrong-way fibers are line bundles, which are stable by definition.

The next example is that of vector bundles of rank r > 2 on curves of genus g > 2.

Remark 1.2. Almost all papers on moduli spaces of stable vector bundles on curves need
to assume g > 2, since most of the techniques used need this assumption. The case g = 0
is settled by Grothendieck’s description of vector bundles on P1: the stable vector bundles
on P1 are exactly the line bundles. The strictly semistable bundles on P1 are of the form

E = OP1(a)⊕n with n ∈ N, n > 2 and a ∈ Z.
The case of elliptic curves, that is g = 1, was extensively studied in [52]. So from now on
we can restrict to g > 2.

Pick a smooth projective curve C of genus g > 2 and fix a line bundle L ∈ Pic(C)
of degree d. Denote by MC(r, L) the moduli space of S-equivalence classes of semistable
vector bundles of rank r and with determinant L. In the case gcd(r, d) = 1 it is known
that every semistable vector bundle is stable implying that MC(r, L) is a smooth projective
variety of dimension (r2− 1)(g− 1), so in particular MC(r, L) is irreducible. Furthermore
gcd(r, d) = 1 also implies that the moduli space MC(r, L) is fine, that is there is a universal
family U on C ×MC(r, L).

In the following the vector bundle of endomorphisms of U of trace zero is denoted by
ad(U) and adc(U) denotes the vector bundle on MC(r, L) obtained by restricting ad(U) to
{c} ×MC(r, L).

Before stating the next result, recall that given a smooth projective variety X, it is well
known that the deformation theory of X is encoded in the cohomology of the tangent bun-
dle TX . For example H0(X,TX) contains information about infinitesimal automorphisms
of X, whereas H1(X,TX) parametrizes first order deformations of X. Finally H2(X,TX)
contains the obstructions to extending first order deformations of X, see [49].

In [46] Narasimhan and Ramanan study the deformation theory of the smooth and
projective variety MC(r, L). This leads them naturally to look at the wrong-way fibers of
U . One of their main results is [46, Theorem 2] (which was later completed by Fonarev
and Kuznetsov in [18, Proposition 2.14] as well as Belmans and Mukhopadhyay in [8,
Proposition 7]):

Theorem 1.3. a) The infinitesimal deformation map TcC → H1(MC(r, L), adc(U)) of
the bundle U , considered as a family of bundles on MC(r, L) parametrized by C, is
injective.
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b) For any c ∈ C, H0(MC(r, L), adc(U)) = 0. Moreover

dim H1(MC(r, L), adc(U)) = 1

dim H2(MC(r, L), adc(U)) = 0

These results imply, for example, that there is an isomorphism

H1(MC(r, L), TMC(r,L))
∼= H1(C, TC),

which means that MC(r, L) has the same number of moduli as the curve C.
We want to restate the results of Narasimhan and Ramanan in a form, which will be

more useful for us in the following. For this we remark that the vector bundle adc(U) sits
in the exact sequence:

0 adc(U) EndMC(r,L)(Uc) OMC(r,L) 0.tr

The trace can be split by the identity morphism of Uc, so that the exact sequence gives
an isomorphism

EndMC(r,L)(Uc) ∼= adc(U)⊕OMC(r,L).

To compute the cohomology of OMC(r,L), we use the fact that MC(r, L) is unirational, see
[45, §2]. Hence we get

Hi(MC(r, L),OMC(r,L)) =

{
C i = 0

0 i > 1
.

Remark 1.4. The moduli space MC(r, L) is actually rational for gcd(r, d) = 1. This
long standing conjecture was proven by King and Schofield, see [27, Theorem 1.2]. If
gcd(r, d) > 2 the rationality of the moduli space MC(r, L) is only known for curves of
genus g = 2 with r = 2 and L = OC . In this case one has MC(2,OC) ∼= P3, see [44,
Theorem 7.2]

We are finally ready to reformulate Theorem 1.3:

Theorem 1.5. For every closed point c ∈ C the vector bundle Uc on MC(r, L) is simple
and the infinitesimal deformation map of the family U (seen as a family of vector bundles
on MC(r, L) classified by C)

TcC → Ext1MC(r,L)
(Uc,Uc)

is an isomorphism.

Since Uc is simple, one may ask if it is also slope stable. To study the question of slope
stability of Uc, we need a polarization on MC(r, L). It is well known that

Pic(MC(r, L)) = ZΘ,

where Θ is an ample line bundle onMC(r, L) such that ωMC(r,L) = Θ⊗−2, see [16, Théorème
B, Théorème F]. In particular slope stability on MC(r, L) is independent of the chosen
polarization.

Remark 1.6. This also shows that MC(r, L) is a (r2−1)(g−1)-dimensional Fano variety
of index two.

Using Θ as a polarization, Balaji, Brambila-Paz and Newstead proved:

Theorem 1.7. [5, Proposition 2.4] For any closed point c ∈ C the vector bundle Uc is
slope semistable with respect to Θ.

But even more is true as Lange and Newstead showed:

Theorem 1.8. [31, Proposition 2.1, Theorem] For any closed point c ∈ C the vector
bundle Uc is slope stable with respect to Θ. If c1, c2 ∈ C is a pair of closed points with
c1 6= c2, then Uc1 6∼= Uc2.

These results show that the universal family U on C×MC(r, L) can also be interpreted
as a family of stable vector bundles on MC(r, L) parametrized by C. Denote by M the
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moduli space of stable sheaves on MC(r, L) with the same numerical invariants as Uc, for
some c ∈ C and hence for all c ∈ C. The family U thus gives rise to a classifying morphism

C →M, c 7→ [Uc] .
The results of Lange and Newstead show that this morphism is injective on closed points.
It is also well known that there is an isomorphism

T[Uc]M∼= Ext1MC(r,L)
(Uc,Uc)

so that the computations of Narasimhan and Ramanan show that the tangent space ofM
has dimension one at every point of the image of the classifying morphism. It follows that
the classifying morphism identifies C with a smooth connected component of M.

So similar to the Poincaré bundle P on A × Â for an abelian variety A, the wrong-
way fibers of the universal family U on C ×MC(r, L) give new examples of stable vector
bundles on the moduli space of stable vector bundles on C. Furthermore their classifying
morphism gives an isomorphism between C and a smooth connected component of some
moduli space of stable sheaves on MC(r, L).

The same phenomenon can also be observed on surfaces:

• In [24, Example 5.3.7] Huybrechts and Lehn pick a very general quartic hypersur-
face X in P3, i.e. a K3 surface with NS(X) = Zh and h2 = 4. They study the
moduli space Mh(v) of h-slope stable sheaves with the Mukai vector v = (2,−h, 1).
This moduli space is a two dimensional fine moduli space which classifies only vec-
tor bundles. In fact there is an isomorphism

X
∼=−→Mh(v), x 7→ [Fx] ,

where Fx is the h-slope stable vector bundle which is given as the kernel of the
canonical, in this case surjective, evaluation morphism

eval : H0(X, Ix(1))⊗OX → Ix(1).

Huybrechts and Lehn construct a universal family U on X ×X, where the second
copy of X is just Mh(v) and prove that the correct fibers U|X×{x} ∼= Fx are defined
by

0 Fx H0(X, Ix(1))⊗OX Ix(1) 0.eval

while the wrong-way fibers also satisfy U|{x}×X ∼= Fx given by

0 Fx ΩP3(1)|X Ix 0.

Thus the universal family U on X ×X identifies each factor as the moduli space
of the other.
• A slightly more involved example (but still with two dimensional moduli space) can

be found in [40, Theorem 1.2]: Mukai starts with a general polarized K3 surface
(X,h) of degree h2 = 2rs with gcd(r, s) = 1 and the Mukai vector v = (r, h, s). By
general results the moduli space Y := Mh(v) of h-slope stable sheaves is fine and
again a K3 surface, as v2 = 0. All sheaves classified by Mh(v) are locally free, that
is the universal family U on X × Y is also locally free. Mukai then proves that
there is a canonically defined ample divisor ĥ on Y such that for every closed point
x ∈ X the wrong-way fiber Ux is a vector bundle on Y , slope stable with respect
to ĥ. The bundle Ux belongs to a moduli space Mĥ(w) for some Mukai vector w

with w2 = 0. Furthermore the classifying morphism of the wrong-way fibers

X →Mĥ(w), x 7→ [Ux]

is an isomorphism.

Motivated by the above examples, one can formulate the following question in a more
general setting:

Question 1.9. Let X be a smooth projective variety and M a projective fine moduli
space of stable sheaves on X with universal family U on X ×M . Then

i) Is U also a flat family sheaves on M parametrized by X?
7



ii) Given a closed point x ∈ X: is the wrong-way fiber Ux a stable sheaf on M?
iii) If so, does the classifying map identify X with a smooth connected component of

some moduli space of stable sheaves on M?
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2. Wrong-way fibers and integral functors.
To every smooth projective variety X one can associate its bounded derived category of

coherent sheaves Db(X). The derived category is a fundamental invariant and contains a
lot of geometric information about X. In some cases one can even recover X from Db(X)
but there are also examples of non-isomorphic varieties with equivalent derived categories.
We refer to [22] for a very good introduction into derived categories and more.

The wrong-way fibers of a universal family U on X ×M for a moduli space M of stable
sheaves on a smooth projective variety X also appear in the study of integral functors
between the derived categories Db(X) and Db(M). More generally the wrong-way fibers
of any family E on X×S, which is flat over X, may appear in the study of integral functors
between Db(X) and Db(S), as we will explain below. In this section, we will interpret a
coherent sheaf F on a smooth projective variety Y as an element in Db(Y ) by thinking of
F as a complex concentrated in degree zero.

In general one is interested in breaking the derived category Db(X) up into smaller, more
accessible, subcategories. We want to find a so-called semi-orthogonal decomposition of
Db(X). We quickly recall that a semi-orthogonal decomposition is given by a sequence
A1, . . . ,An of full admissible triangulated subcategories of Db(X) such that

i) If Ai ∈ Ai and Aj ∈ Aj then

HomDb(X)(Ai, Aj [l]) = 0 for i > j and all l,

ii) the Ai generate Db(X), that is, the smallest triangulated subcategory of Db(X) con-
taining all the Ai is already Db(X).

In this case we write
Db(X) = 〈A1, . . . ,An〉 .

Furthermore given any subcategory A of Db(X) we define

A⊥ :=
{
B ∈ Db(X) | HomDb(X)(A,B[l]) = 0 for all A ∈ A and l ∈ Z

}
.

Two typical ways of finding semi-orthogonal decompositions are exceptional objects and
fully faithful integral functors.

Recall that an object E ∈ Db(X) is called exceptional if

HomDb(X)(E,E[i]) =

{
C i = 0

0 i 6= 0

Given an exceptional object E ∈ Db(X), the smallest subcategory of Db(X) containing
E (which is isomorphic to Db(Spec(C))) is also denoted by by E and gives rise to the
semi-orthogonal decomposition

Db(X) =
〈
E⊥, E

〉
.

Iterating this process leads to the notion of an exceptional sequence. This is a sequence
E1, E2, . . . , En of exceptional objects in Db(X) such that

HomDb(X)(Ei, Ej [l]) =

{
C l = 0, i = j

0 i > j or l 6= 0, i = j

In this case, we have a semi-orthogonal decomposition

Db(X) =
〈

(E1, . . . , En)⊥ , E1, . . . , En

〉
.

The sequence is called full if (E1, . . . , En)⊥ = 0.

Remark 2.1. An exceptional collection is called strong if

HomDb(X)(Ei, Ej [l]) = 0 for all i, j and l 6= 0

For a strong full exceptional sequence E1, . . . , En define

E :=

n⊕

i=1

Ei and A := End(E).
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Bondal proved that in this situation there is an equivalence of derived categories

Db(X) ∼= Db(mod−A),

where Db(mod−A) is the bounded derived category of right finite-dimensional modules
over the algebra A, see [10, Theorem 6.2]. This result connects the geometry of X with
the representation theory of the algebra A.

As an explicit example we state Bĕılinson’s famous result:

Theorem 2.2. [9] The sequence OPn ,OPn(1), . . . ,OPn(n) is a strong full exceptional col-
lection in Db(Pn), that is we have

Db(Pn) = 〈OPn ,OPn(1), . . . ,OPn(n)〉
For n = 1 this result shows that the derived category of P1 admits a semi-orthogonal

decomposition by the full exceptional collection OP1 ,OP1(1). In the case of curves this
is a very special case. Okawa proves in [47, Theorem 1.1] that the derived category
Db(C) of a smooth projective curve C with genus g > 1 has no nontrivial semi-orthogonal
decompositions. We say that Db(C) is indecomposable.

A different class of smooth projective varieties with indecomposable derived category
are varieties X with ωX = OX . This applies, for instance, to K3 surfaces. This observation
is due to Bridgeland, see [12, Definition 3.1, Example 3.2].

Another method to find semi-orthogonal decompositions, besides exceptional objects,
uses fully faithful integral functors. First we recall the definition of integral functors:

every element K ∈ Db(X × Y ) gives rise to two integral functors ΦK and Φ̂K, in opposite
directions, defined as follows:

Definition 2.3. The integral functors with kernel K ∈ Db(X × Y ) are defined by

ΦK : Db(X)→ Db(Y ), E 7→ Rp∗(q∗E ⊗L K)

as well as
Φ̂K : Db(Y )→ Db(X), F 7→ Rq∗(p∗F ⊗L K)

where p : X × Y → Y and q : X × Y → X are the projections.

Integral functors give a way to compare the derived categories of X and Y . More exactly
we are interested in those integral functors, which are fully faithful.

Remark 2.4. Recall that a functor F : A → B between two categories A and B is fully
faithful if the induced map

FA,B : HomA(A,B)→ HomB(F (A), F (B)).

is bijective for every pair A,B ∈ A
If the integral functor ΦK : Db(X) → Db(Y ) is fully faithful then we get a semi-

orthogonal decomposition

Db(Y ) =
〈

(ΦK(Db(X))⊥,ΦK(Db(X))
〉

We can thus identify Db(X) with a component of Db(Y ).
So the question becomes: given a kernel K ∈ Db(X × Y ), how can we decide if ΦK is

fully faithful? Fortunately there is the following criterion due to Bondal and Orlov, see
[11, Theorem 1.1] or [22, Proposition 7.1]:

Theorem 2.5. The integral functor ΦK is fully faithful if and only if for any two closed
points x, y ∈ X one has

HomDb(Y )(ΦK(Ox),ΦK(Oy)[i]) =

{
C x = y and i = 0

0 x 6= y or i /∈ [0,dim(X)]

Here Ox denotes the skyscraper sheaf of x ∈ X.

If the kernel K is in fact a sheaf F , which is flat over X, then by [22, Example 5.4 vi)]
we have an isomorphism

ΦF (Ox) = Fx
10



for every closed point x ∈ X. In this case the criterion of Bondal and Orlov reads

Corollary 2.6. Assume F is a coherent sheaf on X × Y flat over X, then ΦF is fully
faithful if and only if

i) For any closed point x ∈ X one has ExtiY (Fx,Fx) =

{
C i = 0

0 i > dim(X)

ii) For any pair of closed points x, y ∈ X with x 6= y one has ExtiY (Fx,Fy) = 0 for all i

Thus if we have a smooth projective variety X with some fine moduli space of stable
sheaves M , which is also a smooth projective variety, and U denotes the universal family
then one can decide if the integral functor ΦU realizes Db(X) as a subcategory of Db(M),
given that one has a good understanding of the cohomology groups of the wrong-way fibers
Ux.

Besides giving the start of a semi-orthogonal decomposition, fully faithful integral func-
tors have another valuable property, which basically follows from the definition:

Corollary 2.7. Assume the integral functor ΦK is fully faithful, then there are isomor-
phisms:

ExtiY (ΦK(E),ΦK(F )) ∼= ExtiX(E,F ) for any pair E,F ∈ Db(X).

This property allows to reduce computations on Y to computations on X, if one knows
that the objects in question are images under the integral functor.

The first interesting example of a fully faithful integral functor, with kernel a universal
family, was found by Krug and Sosna:

Theorem 2.8. [28, Theorem 1.2] Let S be any smooth projective surface with pg = q = 0.

Denote the Hilbert scheme of length n subschemes of S by S[n] and the ideal sheaf of the
universal length n subscheme Z ↪→ S × S[n] by IZ . Then the integral functor ΦIZ is fully

faithful (hence Db(S) can be identified subcategory of Db(S[n])).

To prove this result, Krug and Sosna do not use the Bondal-Orlov criterion but rather
compute the right adjoint functor (ΦIZ )R of ΦIZ and show that in this case the composition

(ΦIZ )R ◦ ΦIZ
is isomorphic to the identity functor of Db(S), hence ΦIZ must be fully faithful.

Remark 2.9. In the case of surfaces the integral functor ΦIZ is fully faithful if and only if
pg = q = 0 by [7, Theorem A]. This excludes other interesting surfaces like K3 surfaces or

abelian surfaces. But in these cases the functor is a so-called Pn−1-functor, which implies,
similar to Corollary 2.7, that we have an isomorphism of graded vector spaces

Ext∗M (ΦIZ (E),ΦIZ (F )) ∼= Ext∗X(E,F )⊗H∗(Pn−1,C) for any E,F ∈ Db(X).

These functors were introduced by Addington in a very general setting, see [1, §4].
The integral functor ΦIZ is a Pn−1-functor in the following examples:

a) X is a K3 surface and M = X [n] is the Hilbert scheme of n points, see [1, Theorem
3.1].

b) X is an abelian surface and M = Kumn(X) is the generalized Kummer variety (for
n > 2), see [39, Theorem 4.1].

c) X is a K3 surface with Picard number ρ(X) = 1 and M a fine moduli space of stable
torsion sheaves of pure dimension one on X, see [2, Theorem A].

The next example treats the moduli space MC(2, L) of vector bundles of rank two on
a curve C of genus g > 2 with determinant L, where L ∈ Pic(C) is of degree one. The
following results relies on work of Fonarev and Kuznetsov, see [18, Theorem 1.1], as well
as Narasimhan, see [42, Theorem 1.1] and [43, Theorem 1]:

Theorem 2.10. For a smooth projective curve C of genus g > 2 and a line bundle L of
degree one on C the integral functor

ΦU : Db(C)→ Db(MC(2, L)),
11



with kernel the universal family U on C ×MC(2, L), is fully faithful, hence Db(C) is a
subcategory of Db(MC(2, L)).

Fonarev and Kuznetsov prove Theorem 2.10 explicitly for hyperelliptic curves of genus
g > 2, i.e. curves C which admit a double cover C → P1, by using the Bondal-Orlov
criterion. For a hyperelliptic curve, the moduli space MC(2, L) has an equivalent descrip-
tion as the variety Xg−1 of (g− 2)-dimensional linear subspaces of P2g+1 contained in two
quadrics Q1 and Q2 lying in this P2g+1. This result goes back to Desale and Ramanan in
[14, Theorem 1]. Fonarev and Kuznetsov show that this description is equivalent to the
intersection of two orthogonal isotropic Grassmannians. But the latter admit the so-called
Spinor bundle and so induce a universal Spinor bundle S on C ×Xg−1 which can be iden-
tified (up to a twist by a line bundle) with the universal family U on C ×MC(2, L), using
the above isomorphism. Fonarev and Kuznetsov compute all cohomology groups necessary
for the Bondal-Orlov criterion by reducing the computations to the Grassmannians.

Finally they prove that if one has a relative Fourier Mukai transform over a smooth
base B, then the locus of full faithfulness

FFL(E) := {b ∈ B |ΦEb is fully faithful}
is open in B. Using the case of hyperelliptic curves they can thus conclude that ΦU is
fully faithful for a general curve of genus g > 2.

On the other hand Narasimhan proves Theorem 2.10 in [42, Theorem 1.1] for all curves
of genus g > 4 by also applying the Bondal-Orlov criterion. He can explicitly compute all
necessary cohomology groups by using the so-called Hecke correspondence:

H(U , c)

MC(2, L−1 ⊗OC(c)) MC(2, L)

pq

with H(U , c) := P(Uc). So p : H(U , c) → MC(2, L) is just a P1-bundle and the morphism
q : H(U , c) → MC(2, L−1 ⊗ OC(c)) is the classifying morphism of a certain family F of
semistable vector bundles of rank two and determinant L−1 ⊗OC(c) on C ×H(U , c), see
[46, §4].

In [43, Theorem 1] Narasimhan proves Theorem 2.10 for all nonhyperelliptic curves of
genus g > 3, so especially for the missing case of nonhyperelliptic curves of genus g = 3.
Combining the results of Fonarev and Kuznetsov and Narasimhan shows that Theorem
2.10 is true for all curves of genus g > 2.

Remark 2.11. Theorem 2.10 has been generalized to rank r > 3 for curves of large genus,
see for example [8, Theorem A]. As a matter of fact, by the recent result [33, Theorem A]
of Lee and Moon, the theorem is true for all pairs (r, d) with gcd(r, d) = 1.

Remark 2.12. Theorem 2.10 gives evidence for the following conjectural semi-orthogonal
decomposition:

Db(MC(2, L)) =

〈{
Db(C(k)),Db(C(k))

}
06k6g−2

,Db(C(g−1))
〉
,

where C(k) = Ck/Sk is the k-th symmetric power of C. This conjecture is due to
Narasimhan and independently Belmans, Galkin and Mukhopadhyay, see [8, Remark 1].
More evidence for this conjecture can be found in [34] and [51]. We already saw that
Db(C) is indecomposable, by [35, Theorem 4.5] all other components are also indecom-
posable. So this conjecture gives a decomposition into indecomposable factors. There is
also a conjecture about the semi-orthogonal decomposition of MC(3, L) for a line bundle
L of degree one, see [19, Conjecture 1.9].

Remark 2.13. Theorem 2.10 answers the so-called Fano visitor problem positive for all
smooth projective curves of genus g > 2, as MC(2, L) is Fano by Remark 1.6. The Fano
visitor problem goes back to Bondal in 2011, who asked the following question:

Assume X is a smooth projective variety. Is there a smooth Fano variety Y and a fully
faithful functor F : Db(X)→ Db(Y )?
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Looking at the two examples Hilbert schemes of points on surfaces with pg = q = 0 and
moduli spaces of vector bundles of rank two on curves of genus g > 2 it is natural to ask
the following question, which is also implicit in [6, Remark 30]:

Question 2.14. Let (X,h) be a polarized smooth projective surface with pg = q = 0 and
denote the moduli space of S-equivalence classes of h-slope semistable torsion free sheaves
with rank r and Chern classes c1 and c2 on X by MX(r, c1, c2). If MX(r, c1, c2) is smooth,
projective and fine, does the universal family U on X×MX(r, c1, c2) induce a fully faithful
integral functor

ΦU : Db(X)→ Db(MX(r, c1, c2))?

13
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3. Noncommutative surfaces and deformations.
Let X be a smooth projective variety. A deformation of a coherent sheaf E of OX -

modules with base B is a family E on X × B, flat over B, such that Eb0 = E for some
distinguished b0 ∈ B. By abuse of notation we will also call the sheaf Eb for some b 6= b0
a deformation of E.

Remark 3.1. As being torsion free is an open condition for coherent sheaves in families,
see [37, Proposition 2.1], we may replace the base by an open subset. So we can always
assume that for a deformation E of a torsion free sheaf E all sheaves Eb are torsion free.

Remark 3.2. Similar to the deformation theory of a smooth projective variety X, the
deformation theory of the coherent sheaf E is encoded in certain cohomology groups. For
example, Ext1X(E,E) parametrizes first order deformations of E, i.e. deformations over
the base B = Spec(C[ε]) with ε2 = 0. The obstructions to extend first order deformations
lie in Ext2X(E,E). Furthermore there is the Kodaira-Spencer map

ρ : Tb0B → Ext1X(E,E)

of a deformation E of E, which maps a tangent vector v ∈ Tb0B to the class corresponding
to the first order deformation ρ(v) ∈ Ext1X(E,E) of the sheaf E along the direction of v.

We are mostly interested in studying locally free sheaves, meaning vector bundles, but
sometimes we are just able to construct torsion free sheaves. Then one can ask: can we
deform a torsion free sheaf E to a vector bundle E′? Artamkin studied the question of
deforming torsion free sheaves in [4] and gave some positive results for smooth projective
surfaces, which we recall:

Firstly, to measure how far away a torsion free sheaf E is from being a vector bundle,
we recall that there is naturally defined vector bundle associated to a torsion free sheaf E
on a smooth projective surface: the bidual E∗∗ = HomX(HomX(E,OX),OX).

As E is torsion free, it is naturally a subsheaf of the vector bundle E∗∗ and it differs from
E∗∗ only in finitely many points. These facts are captured by the bidual exact sequence

(1) 0 E E∗∗ TE 0,ι

where ι is the canonical inclusion and TE = E∗∗/E is Artinian, that is it has finite support
and finite length `OX (TE) <∞.

The number `OX (TE) is a good measure of non-locally freeness of E. In fact the bigger
this number is, the further away from being a vector bundle E is, as `OX (TE) = 0 if and
only if E ∼= E∗∗, that is E is locally free.

Remark 3.3. As TE has finite support, we have decompositions

TE =
n⊕

i=1

TE,pi and `OX (TE) =
n⊕

i=1

`OX (TE,pi) where supp(TE) = {p1, . . . , pn} .

Artamkin is therefore led to make the following:

Definition 3.4. A point p ∈ supp(TE) is said to be cancellable in the deformation E if
`OX (TE′,p) < `OX (TE,p) for a general fiber E′ of E . This means that for a general b ∈ B
the sheaf E′ := Eb on X is ”less” torsion free at p in deformation E than E and thus closer
to being locally free.

To solve the deformation problem Artamkin considers the map

(2) j = ι∗ ◦ δ : Ext1X(E,E)→ Ext2X(TE , E
∗∗).

Here δ is the connecting homomorphism in the long exact sequence associated to (1) after
applying HomX(−, E):

. . . Ext1X(E,E) Ext2X(TE , E) Ext2X(E∗∗, E) . . . .δ

Applying HomX(TE ,−) to (1) gives the map ι∗:

. . . Ext2X(TE , E) Ext2X(TE , E
∗∗) Ext2X(TE , TE) 0.

ι∗

One of the main results of Artamkin is
15



Theorem 3.5. [4, Corollary 1.3] If ξ ∈ Ext1X(E,E) is a Kodaira-Spencer class of a
deformation E of E over a one-dimensional base B with the property jp(ξ) 6= 0, then p is
cancellable in E, where

jp : Ext1X(E,E)→ Ext2X(TE,p, E
∗∗).

is the appropriate direct summand of the map j from (2).

Remark 3.6. Recall that a vector bundle E on a smooth projective variety X ⊂ PN is
called Ulrich bundle if

Hi(X,E(−r)) = 0 for all i > 0 and 1 6 r 6 dim(X).

The result of Artamkin has recently been used to construct Ulrich bundles on surfaces,
see [17] for the case of K3 surfaces and [36] for the case of surfaces of maximal Albanese
dimension or with irregularity one.

Next we want to give a quick introduction to the concept of noncommutative geometry
we are going to use.

There are many ways to define the notion of a ”noncommutative variety”, but the most
geometric one is possibly given by replacing the structure sheaf OX of a scheme (X,OX)
by a sheaf of associative OX -algebras A, such that A is coherent and torsion free as a sheaf
of OX -modules. Then the pair (X,A) can be thought of as a noncommutative version of
X, see [30, §2.1] for this idea and more information.

In [21] Hoffman and Stuhler consider noncommutative varieties (X,A) with X smooth
and projective and such that the stalk Aη at the generic point η ∈ X is a central simple
algebra over the function field C(X) = OX,η of X. They study the following sheaves:

Definition 3.7. A sheaf E on X is called generically simple A-module, if

i) E is coherent and torsion free as an OX -module
ii) E is a left A-module, such that the generic stalk Eη is a simple Aη-module.

Remark 3.8. In the case A = OX generically simple A-modules are just torsion free
sheaves of rank one and locally projective ones are exactly the line bundles. Hence in
general generically simple A-modules can be considered as line bundles on the noncom-
mutative variety (X,A) if they are also locally projective. If Aη is a central division
algebra then a generically simple A-module E is indeed generically of rank one, that is
rkAη(Eη) = 1. But rk(E) = rk(A) > 1 in case A 6= OX .

As generically simple A-modules are simple as A-modules, see the remark before [21,
Lemma 1.2], it makes sense to ask if such sheaves have a moduli space. Indeed Hoffman
and Stuhler construct a moduli scheme for these modules. To do this the authors have to
define families for these A-modules:

Definition 3.9. A family of generically simple torsion free A-modules over a C-scheme
S is a sheaf E of left modules under the pullback AS of A to X × S with the following
properties:

• E is coherent over OX×S and flat over S.
• For every point s ∈ S, the fiber Es is a generically simple torsion free AC(s)-module.

Here C(s) is the residue field of S at s, and the fiber Es is by definition the pullback of E
to X × C(s).

One of the main results of Hoffmann and Stuhler is:

Theorem 3.10. [21, Theorem 2.4] There is a projective moduli scheme MA /X;P classify-
ing generically simple A-modules with fixed Hilbert polynomial P .

Remark 3.11. Theorem 3.10 shows that the moduli functor MA /X of all generically
simple A-modules has a coarse moduli space

MA /X =
∐

P

MA /X;P .
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Another such decomposition is

MA /X =
∐

c1,...,cn

MA /X;c1,...,cn ,

given by fixing the Chern classes ci ∈ CHi(X), the Chow group of cycles modulo algebraic
equivalence.

Remark 3.12. By Remark 3.8 the moduli space MA /X can be considered as a compact-
ification of a noncommutative Picard scheme of (X,A).

Generically simple A-modules behave very much like (stable) sheaves in the classical
sense: for example besides being simple, they have a deformation theory governed by the
ExtiA-groups, see [21, §3].

For their next result Hoffmann and Stuhler restrict further to the so-called Azumaya
algebras. These are algebras locally isomorphic to a matrix algebra Mat(n×n,OX) in the
étale topology. In this case there is the following version of Serre duality (n = dim(X)):

ExtiA(E,F ) ∼=
(
Extn−iA (F,E ⊗ ωX)

)∗

Remark 3.13. Azumaya algebras on a smooth projective variety X are classified up to
similarity by the so-called Brauer group Br(X) of X. The multiplication in this abelian
group is given by the tensor product [A][B] := [A⊗B] and the inverse is given by the class
of the opposite algebra [A]−1 = [Aop].

Remark 3.14. If we denote the Brauer class of A by α, that is α = [A] ∈ Br(X), then
generically simple A-modules can also be seen as a special class of α-twisted sheaves.

The definition of an α-twisted coherent sheaf involves an appropriate analytic (or étale)
open cover of X, representing the class α as a Čech 2-cocycle on this cover and then
”twisting” the gluing functions of the sheaf by this 2-cocycle. This idea uses the fact that
for a smooth projective variety there is an isomorphism

Br(X) ∼= H2(X,O×X)tor.

For an exact definition see [13, Definition 1.2.1].
The pair (X,α) is sometimes called a twisted variety. Huybrechts and Stellari have

studied properties of twisted K3-surfaces in detail, see [25] and [26].
All results can be rephrased in terms of α-twisted sheaves. The approach of using

Azumaya algebras avoids working with open covers and gluing functions. On the other
hand, this approach forces the ranks of the sheaves involved to be considerably larger.

The second main result of Hoffmann and Stuhler is:

Theorem 3.15. [21, Theorem 3.6] Let X be an abelian or K3 surface, and let A be a sheaf
of Azumaya algebras over X. Suppose Aη ∼= Mat(n× n;D) for a central division algebra
D of dimension r2 over the function field C(X).

i) The moduli space MA /X of generically simple A-modules E is smooth.
ii) There is a nowhere degenerate alternating 2-form on the tangent bundle of MA /X .

iii) If r > 2, then the open locus M lp
A /X of locally projective A-modules E is dense in

MA /X .
iv) If we fix the Chern classes c1 ∈ NS(X) and c2 ∈ Z of E, then

dimMA /X;c1,c2 = ∆/(nr)2 − c2(A)/n2 − r2χ(OX) + 2

where ∆ = 2r2nc2 − (r2n− 1)c21 is the discriminant of E.

In iii) the authors prove that for every generically simple A-module E there is a de-
formation E over a one dimensional base B, such that for general b ∈ B the fiber Eb is a
locally projective generically simple A-module. To achieve this results, the authors show
that there is an element ξ ∈ Ext1A(E,E) such that jp(ξ) 6= 0 for all p ∈ supp(TE) for the
noncommutative version of Artamkin’s map

jp : Ext1A(E,E)→ Ext2A(TE,p, E
∗∗).
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The class ξ is given by a first order deformation of E. Using the smoothness of MA /X
this deformation can be extended to a deformation E of E over a smooth connected
curve B, whose Kodaira-Spencer class is exactly ξ. A study of the forgetful functor
Coh(X,A)→ Coh(X,OX) shows that the map

Ext2A(TE , E
∗∗)→ Ext2X(TE , E

∗∗)

is injective, which reduces the problem to the use of Artamkin’s result by considering the
class ξ as an element in Ext1X(E,E).

Remark 3.16. The fact that a torsion free generically simple A-module E can be de-
formed into a locally projective one (over a connected base B) is a new phenomenon. In
the classical case A = OX locally projective and just torsion free generically simple OX -
modules lie in different connected components of the moduli space. The reason for this
phenomenon is that the latter satisfy the valuative criterion for properness, while former
do not, see [21, Remark 1.6].

Looking at the results in this section, one can ask the following questions:

Question 3.17. i) Let (X,A) be a noncommutative K3 surface with an Azumaya al-
gebra A. By i) and ii) of Theorem 3.15 the moduli space MA /X;c1,c2 is smooth and
has a symplectic structure. Is it a hyperkähler variety, in other words an irreducible
holomorphic symplectic manifold? If yes, what is its deformation class?

ii) Are there other noncommutative surfaces (X,A), possibly with A not necessarily an
Azumaya algebra, such that MA /X;c1,c2 is smooth and such that every generically
simple A-module can be deformed into a locally projective one?
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This thesis consists of the following eight articles:
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[R7] Norbert Hoffmann and Fabian Reede. Torsion-free rank one sheaves over del Pezzo orders. J. Algebra,
493:251–266, 2018.

[R8] Fabian Reede. Rank one sheaves over quaternion algebras on Enriques surfaces. Adv. Geom., 2021,
online first.

These are eight out of my ten articles written between 2015 and 2021, after finishing
my PhD in 2013. Four of the articles are written with coauthors. All eight articles are
published in peer-reviewed journals.

We will now give a quick summary of the main results of each paper with some ideas
of the proofs.

1. Examples of smooth components of moduli spaces of stable sheaves.
In the article [R1] we study Question 1.9. A positive answer to all questions, especially

when X is of low dimension and M is of higher dimension, would be interesting from two
perspectives. First of all, examples of stable sheaves on higher dimensional varieties are in
general difficult to construct. For example on higher dimensional irreducible holomorphic
symplectic manifolds it is very hard to prove stability of a given vector bundle as these
varieties have Picard number ρ(X) > 2. So even finding appropriate polarizations, which
are needed to check stability, is hard to do. One important class of stable vector bundles
are the tautological bundles on Hilbert schemes of points S[n] for a surface S, whose
stability was studied by Schlickewei, Wandel and Stapleton, see [48, 54, 55, 50]. Here the

tautological bundle E[n] on the Hilbert scheme S[n] associated to a vector bundle E on
S is defined as follows: the Hilbert scheme comes with the universal length n subscheme
Z ⊂ S × S[n], then one defines

E[n] := p∗(q∗E ⊗OZ),

where p and q are the projections from S × S[n] to S[n] and S respectively. Question 1.9
provides another natural approach for finding new examples.

Secondly, moduli spaces of stable sheaves on higher dimensional varieties are in general
badly behaved, they satisfy Murphy’s law, see [53, Theorem 1.1 M6]. A positive answer to
Question 1.9 would allow us to identify some nicely behaved components of such moduli
spaces, and at the same time give an explicit description of a complete family of stable
sheaves over these components.

The main result of this article is:

Theorem. All subquestions in Question 1.9 have a positive answer in the following four
examples

a) X is a smooth projective variety, M = X [2] the Hilbert scheme of two points and U = IZ
the universal ideal sheaf

b) X is a K3 surface, M = X [n] is the Hilbert scheme of n points for any n > 1 and
U = IZ is the universal ideal sheaf

c) X is a abelian surface and M = Kumn(X) is the generalized Kummer variety for any
n > 2 and U = IZ is the universal ideal sheaf

d) X is a K3 surface with Picard number one, M is a fine moduli space of stable torsion
sheaves of pure dimension one on X and U is the universal family of this moduli space.
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In fact in all cases the main problem was to establish the flatness of U over X. In
example a), b) and c) it is enough to prove the flatness of the universal family Z over X.
In a) and c) we use the so-called miracle flatness theorem:

Theorem. [38, Theorem 23.1, Corollary] Let f : X → Y be a morphism between projective
varieties such that X is Cohen-Macaulay, Y is smooth and all fibers of f have the same
dimension, then f is flat.

In both examples we can check all assumptions of the theorem, especially we find that
all fibers of the projection Z → X have the same dimension. In case b) the flatness of
Z over X was proved in [29, Theorem 2.1] using different methods. In all three cases the
proofs use rather elemetary methods, as we have an explicit description of the universal
family. But in case d) we need to use some deep results about Cohen-Macaulay sheaves
due to Arinkin, see [3, §2], as well as a flatness result in the derived category, see for
example [22, Lemma 3.31].

The stability of the wrong-way fibers Ux follows immediately from the fact that in all
four cases these sheaves have rank one, so there can be no destabilizing subsheaves.

To realize X as a smooth connected component of some moduli spaceM on M we need
to be able to compute certain cohomology groups on M . In case a) we find these groups
by elementary calculations, again using the explicit description of Z in this case. In the
cases b), c) and d) we use the fact that the wrong-way fibers can be described as images
of skyscraper sheaves of the integral functor ΦU , that is

Ux = ΦU (Ox).

We can then use Addington’s and Meachan’s results about the Pn−1-functor ΦU , see
Remark 2.9, to reduce cohomology computations from M to X, which imply the desired
result.

2. Stability of some vector bundles on Hilbert schemes of points on K3 sur-
faces.

The article [R2] continues the construction of new stable sheaves on hyperkähler vari-
eties. The main result in this article is

Theorem. All subquestions in Question 1.9 have a positive answer in the following two
examples:

a) X is a K3 surface with NS(X) = Zh such that h2 = 4k for any k > 1, M is the fine
moduli space Mh(v) of h-slope stable sheaves on X with Mukai vector v = (k+1,−h, 1)
and U is the universal family of this moduli space.

b) X is a K3 surface with NS(X) = Ze⊕Zf such that e2 = −2k, f2 = 0 and ef = 2k+ 1
for any k > 2, M is the fine moduli space Mh(v) of h-slope stable sheaves with Mukai
vector v = (2k − 1, h, 2k) for h = e + (2k − 1)f and U is the universal family of this
moduli space.

In both cases, there is an isomorphism

X [k] ∼=−→Mh(v), [IZ ] 7→ [EZ ]

which is given in case a) by the spherical twist TOX around OX (up to a shift), while

in case b) it is given by the inverse spherical twist T−1OX (up to twists with line bundles).
Recall that the spherical twist

TOX : Db(X)→ Db(X)

is a nontrivial autoequivalence of the derived category, see [22, §8] for more information.
A first step is to check that the image EZ of an ideal sheaf IZ under this equivalence is

actually a sheaf on X and not just a complex in Db(X). This is indeed the case and even
more is true: every EZ is a vector bundle and slope stable with respect to h. Thus the
moduli spaces Mh(v) classify only vector bundles, which implies that the universal family
U is itself locally free over X ×Mh(v), hence flat over X.

To study the stability of the wrong-way fibers Ux we explicitly construct the universal
families in both examples. Using this construction, we get an explicit description of the
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wrong-way fibers. We can then use the method developed by Stapleton in [50]: the
idea is to do computations on the product Xk with Sk-equivariant sheaves instead of
computations on X [k]. This idea is a slightly modified version of the Bridgeland-King-
Reid equivalence:

Db(X [k])
∼=−→ Db

Sk
(Xk).

These computations show that the wrong-way fibers are slope stable with respect to a
natural nef divisor on X [k]. Using a perturbation argument one can then prove that for
each Ux there is an ample divisor H on X [k] such that Ux is H-slope stable.

Remark. Here we understand slope stability with respect to a nef divisor as slope stability
with respect to a movable curve class. This stability was studied in detail by Greb, Kebekus
and Peternell in [20]. They prove that this notion of stability has the same properties as
stability with respect to an ample class.

The results so far show that each wrong-way fiber is slope stable with respect to some
ample class. We generalize Stapleton’s perturbation argument to actually show that there
is one ample class H such that all wrong-way fibers Ux for x ∈ X are slope stable with
respect to H. Then we prove that the wrong-way fibers have a description as images under
the integral functor ΦIZ . For example, in case a) we have:

Ux ∼= ΦIZ (Ix(h)),

where Ix is the ideal sheaf of x ∈ X. In example b) this description is slightly more
involved. Anyway, in both cases this description allows to use Addington’s Pn-functor
results to reduce the necessary cohomology computation from X [k] to X. These compu-
tations then show that we can find X as a smooth connected component on some moduli
space of stable sheaves M on Mh(v).

3. Stable vector bundles on generalized Kummer varieties.
In [R3] we replace the Hilbert scheme of k-points X [k] on a K3 surface X by the

generalized Kummer variety Kumn(A) for an abelian surface A. The article consists of
two sections.

In the first section we generalize Stapleton’s ideas to the generalized Kummer variety
Kumn(A). Recall that the generalized Kummer variety is defined as the fiber of the

Albanese morphism of the Hilbert scheme A[n+1]:

alb : A[n+1] → A.

It can be factored to give a more geometric description:

alb : A[n+1] HC−−→ A(n+1)
∑
−→ A

where HC : A[n+1] → A(n+1) is the Hilbert-Chow morphism, which is a resolution of
singularities of the symmetric power A(n+1) and

∑
: A(n+1) → A is the summation

morphism coming from the group law on A. The generalized Kummer variety is defined
to be the fiber over 0A:

Kumn(A) := alb−1(0A).

Mimicking the construction in the case of the Hilbert scheme, instead of doing compu-
tations on the generalized Kummer variety we do computations with Sn+1-equivariant
sheaves on

Pn(A) =

{
(a0, . . . , an) ∈ An+1 |

n∑

i=0

ai = 0A

}

based on the equivalence

Db(Kumn(A))
∼=−→ Db

Sn+1
(Pn(A)).

Using this method the first theorem of this article is

Theorem. Assume (A,H) is a polarized abelian surface, then

i) for any vector bundle E 6= OA, slope stable with respect to H, the associated tauto-

logical vector bundle E[n] is slope stable with respect to an ample class on Kumn(A).
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ii) there is one ample class D on Kumn(A) such that all bundles F [n] for F in the same
moduli as E are slope stable with respect to D.

iii) if a moduli space MH(v) only classifies stable vector bundles on A, then it can be
found as a smooth connected component on a moduli spaceM of stable vector bundles
on Kumn(A).

Result iii) shows that smooth connected components on moduli spaces of stable vector
bundles on higher dimensional hyperkähler varieties need not be hyperkähler, contrary to
the case of K3 surfaces, see [23, Theorem 10.3.10]. In this case, MH(v) is holomorphic
symplectic, but not simply connected.

In the second section we study again wrong-way fibers of universal families. For this
we recall that the Albanese morphism of a moduli space MH(v) is given by

albv : MH(v)→ A× Â,
see [56, §4] for an explicit description of albv. By [56, Theorem 0.2] the fiber

KH(v) = alb−1v (0A, 0Â)

is a hyperkähler variety deformation equivalent to Kumn(A). We then follow the con-

struction in [R2]: Firstly, there is an isomorphism A[n+1] × A ∼= MH(v) for a certain
moduli space of torsion free rank one sheaves on A. We apply the classical Fourier-Mukai
transform:

ΦP : Db(A)→ Db(Â)

with kernel the Poincaré bundle P on A× Â (which is an equivalence) and get an induced
isomorphism:

MH(v) ∼= MĤ(w)

for a Mukai vector w on Â with rank r > 2 and the induced canonical polarization Ĥ on
Â. The moduli space MĤ(w) is fine and classifies only vector bundles slope stable with

respect to Ĥ. We thus have an isomorphism:

A[n+1] ×A ∼= MĤ(w).

Checking that the Albanese morphisms for both spaces are compatible we get an isomor-
phism of generalized Kummer varieties:

Kumn(A) ∼= KĤ(w).

Restricting the universal family on Â×MĤ(w) to Â×KĤ(w) gives a universal family U
for KĤ(w).

Using the ideas from the first section we prove that there is an ample class D on
KĤ(w) ∼= Kumn(A) such that all wrong-way fibers Uâ are slope stable with respect to D.
We prove that the wrong-way fibers are images of the integral functor

ΦIZ : Db(A)→ Db(Kumn(A))

with kernel the universal ideal sheaf IZ on A×Kumn(A). By the results of Meachan, see
Remark 2.9, this integral functor is a Pn−1-functor. Hence we can reduce cohomological
computations from Kumn(A) to A. These computations show that Â embeds as a smooth
connected component into some moduli space M of stable vector bundles on Kumn(A).
Providing another example of a connected component of a moduli spaces of stable vector
bundles on higher dimensional hyperkähler varieties, that is not hyperkähler.

The second main result can be summarized as

Theorem. All subquestions in Question 1.9 have a positive answer in the following ex-
ample:

(Â, Ĥ) is the dual of a given polarized abelian surface (A,H), M = Kumn(A) and U
is the universal family on Â × Kumn(A), where Kumn(A) is isomorphic to a generalized

Kummer variety KĤ(w) in some moduli space of stable vector bundle MĤ(w) on Â.
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4. Smooth components on special iterated Hilbert schemes.
The main result of [R4] also answers all subquestions in Question 1.9 positively, albeit

for a family of subschemes instead of sheaves. More exactly we have:

Theorem. Assume S is a smooth projective surface with pg = q = 0 and let S[n] be the

Hilbert scheme of length n subschemes of S. Then the universal family Z in S × S[n] can
be understood as a family of codimension two subschemes in S[n] with common Hilbert
polynomial p(t) classified by S such that the classifying morphism identifies S with a

smooth connected component of the Hilbert scheme Hilbp(t)(S[n]).

The proof is the same as in the case of the Hilbert scheme X [n] on a K3 surface X in
[R1]. The flatness of the universal family Z over S follows from [29, Theorem 2.1] and

to reduce the cohomological computatiosn from S[n] to S we use Krug and Sosna’s result
saying that the integral functor ΦIZ is fully faithful.

5. The Fourier-Mukai transform of a universal family of stable vector bundles.
We study Question 2.14 in article [R5] and answer it in the negative by giving a coun-

terexample on (P2, h).
First we show that the moduli space MP2(4, 1, 3) of h-slope stable torsion free sheaves

E with numerical invariants

rk(E) = 4, c1(E) = h and c2(E) = 3

is fine and an irreducible smooth projective variety of dimension six, which classifies only
vector bundles. The last fact implies that the universal family U on P2×MP2(4, 1, 3) is
locally free and hence flat over P2.

The main result of this article is:

Theorem. The integral functor

ΦU : Db(P2)→ Db(MP2(4, 1, 3))

with kernel the universal family U is not fully faithful.

There is a close connection between MP2(4, 1, 3) and the Hilbert scheme of three points

P2[3], as every vector bundle [E] ∈MP2(4, 1, 3) can be described by an exact sequence

(3) 0 O⊕3P2 E IZ(1) 0.

for some [Z] ∈ P2[3].

We construct an explicit family of stable vector bundles E on P2×P2[3] using the exact
sequence (3) and the theory of universal extensions. The correct fibers of this family

satisfy [EZ ] ∈ MP2(4, 1, 3) for every [Z] ∈ P2[3]. This implies again that E is flat over P2,
so it makes sense to also study the wrong-way fibers of this family.

We go on and prove that given [E] ∈ MP2(4, 1, 3) the corresponding subscheme [Z]
with E ∼= EZ is unique if H0(P2, E) ∼= C3, which occurs if and only if Z ⊂ P2 is not
collinear. Otherwise H0(P2, E) ∼= C4 and there is a line ` ⊂ P2 such that EZ ∼= EZ′ for

all [Z], [Z ′] ∈ P2[3] with [Z], [Z ′] ∈ `[3]. These facts show that the fiber of the classifying
morphism of this family

ϕ : P2[3] →MP2(4, 1, 3), [Z] 7→ [EZ ]

is either a point or `[3] for some line ` ⊂ P2 so ϕ is a birational morphism, contracting the
collinear locus in P2[3] to the Brill-Noether locus S in MP2(4, 1, 3). Recall that the collinear

locus in P2[3] is a P3-bundle over the dual projective plane (P2)∗ of lines ` ⊂ P2 and S ∼= P2.
Thus the classifying morphism of the family E realizes the classical isomorphism

P2[3] ∼= BlS(MP2(4, 1, 3)),

see [57, Example 5.3] or more classically in [15, Théorème 4].
Using these results one can see that there are isomorphisms of C-vector spaces:

ExtiMP2 (4,1,3)
(Up,Uq) ∼= ExtiP2[3](Ep, Eq) for i > 0.
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To understand the cohomology of the wrong-way fibers Up of the universal family U , it is
therefore enough to understand the cohomology of the wrong-way fibers of the family E .
Given the explicit description of E , we get an explicit description of the wrong-way fibers
Ep for p ∈ P2. Using the fully faithfulness result of Krug and Sosna, we are able to show

dim Ext1P2[3](Ep, Eq) > 1 for p, q ∈ P2 with p 6= q.

This shows that the Bondal-Orlov criterion is not met for ΦU , as

Ext1MP2 (4,1,3)
(ΦU (Op),ΦU (Oq)) ∼= Ext1MP2 (4,1,3)

(Up,Uq) 6= 0.

Hence this functor is not fully faithful.

Remark. After the publication of this paper I was informed by Dmitrii Pedchenko that
this result can be explained by the fact that Pic(MP2(4, 1, 3)) ∼= Z, that is MP2(4, 1, 3) is
a so-called moduli space of height zero. More generally ΦU is never fully faithful for a
fine moduli space MP2(r, c1, c2) of height zero. Indeed, by [32, Theorem 18.2.4] there is an
associated exceptional vector bundle E on P2, which is h-slope stable and satisfies

−3 < µ+ µ(E) 6 0 with µ =
c1h

r
and χ(V ⊗ E) = 0 for all [V ] ∈MP2(r, c1, c2).

These conditions imply Hi(P2, V ⊗ E) = 0 for i = 0, 1, 2 and thus we have

ΦU (E) = 0,

which would be impossible for a fully faithful integral functor.

6. The symplectic structure on a moduli space on a noncommutative surface.
In the article [R6], we study Question 3.17 i). We start with a K3 surface X together

with an Azumaya algebra A and consider the noncommutative surface (X,A). First, we
introduce the notion of an A-Mukai vector by

vA(E) := ch(E)ch(A)−
1
2

√
td(X)

and study the moduli space MA /X(vA) of generically simple torsion free A-modules with
fixed Mukai vector vA. The main result can be stated as

Theorem. Assume (X,A) is a noncommutative K3 surface with an Azumaya algebra A
on X. Then the moduli space MA /X(vA) is a hyperkähler variety, deformation equivalent

to X [n] with n = 1
2

(
v2A + 2

)

The main idea of the proof is to use the Brauer-Severi variety of A, which classifies
certain left ideals in A. More precisely the functor

BS(A) : SchopX →, Sets

which maps an X-scheme Y → X to the set of left ideals I ⊂ AY , such that AY /I
is a locally free OY -module of rank r(r − 1), where rk(A) = r2, is representable by an
X-scheme π : BS(A) → X. This X-scheme is an étale Pr−1-bundle and it is called the
Brauer-Severi variety of A. The pullback of A to BS(A) splits, which means that

π∗A ∼= EndBS(A)(G)op ∼= EndBS(A)(G
∗)

for some vector bundle G on BS(A). Here the last isomorphism is given by the transpose.
Using Morita equivalence and ideas of Yoshioka, see [58, Definition 1.3, Lemma 1.5], we
study the following category:

Coh(BS(A), X) :=
{
E ∈ Coh(BS(A)) |π∗π∗(E ⊗G∗)

∼=−→ E ⊗G∗
}
,

where the morphism is the canonical morphism coming from the adjunction (π∗, π∗). If we
denote the category of coherent left A-modules by Cohl(X,A) then we prove that there
is an equivalence of categories

Cohl(X,A)
∼=−→ Coh(BS(A), X)

which maps generically simple A-modules to so-called G-twisted stable torsion free sheaves
on BS(A). One checks that the equivalence extends to families of the respective moduli
problem, that is it maps a family of generically simple A-modules to a family of G-twisted
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stable torsion free sheaves. This gives rise to an isomorphism of moduli spaces:

MA,X(vA)
∼=−→M

BS(A),G
H (v)

where the latter space classifies G-twisted torsion free stable sheaves on BS(A) with Mukai
vector v.

By a result of Yoshioka, see [58, Theorem 3.16], the moduli space M
BS(A),G
H (v) is a hy-

perkähler variety, deformation equivalent to X [n] with n = 1
2(v2+2), thus so is MA /X(vA).

7. Torsion-free rank one sheaves over del Pezzo orders.
We study Question 3.17 ii) in [R7] for so-called terminal del Pezzo orders A on P2.

These give rise to noncommutative del Pezzo surfaces (P2,A).
We say A is an order on a smooth projective surface X if it is a sheaf of associative

OX -algebras such that the generic stalk Aη is a central division algebra over the function
field C(X) of X. A maximal order is a maximal element with respect to inclusion of orders
in Aη. It is a well known fact that a maximal order is a vector bundle and that there is a
largest open subset U ⊂ X such that A|U is an Azumaya algebra. The complement X \U
is called the ramification locus of A and it consists of finitely many curves {C1, . . . , Cn}.
Each curve comes with a natural number e > 2, the so-called ramification index of A at
C. We the restrict to the so-called terminal maximal orders. These orders have global
dimension 2, which is the same as for OX . For a maximal order A one can define the
canonical divisor by:

KA := KX +
n∑

i=1

(1− 1

ei
)Ci

Similar to the classical case, a terminal order A is called del Pezzo if −KA is ample.
The main results of this paper are:

Theorem. Let (P2,A) be a noncommutative surface given by a terminal del Pezzo order
A 6= OP2 on P2, then

i) The moduli space MA /P2 is smooth

ii) Every generically simple A-module can be deformed into a locally projective A-module,

in other words the locus M lp

A/P2 of locally projective A-modules is dense in MA/P2.

To prove both facts one needs to have good control over certain ExtiA-groups. For exam-
ple the obstruction to smoothness of MA /P2;c1,c2

at a point [E] is encoded in Ext2A(E,E)

and if this group vanishes then all obstructions vanish, so the moduli space is smooth. We
actually show that one has

Ext2A(E,F ) = 0

for two generically simple A-modules with c1(E) = c1(F ). Then we adapt the proof of
the deformation argument in [21]. For this we need to prove two facts:

a) the connecting homomorphism δ : Ext1A(E,E)→ Ext2A(T,E) is surjective,
b) the induced map ι∗ : Ext2A(TE,p, E)→ Ext2A(TE,p, E

∗∗) is non zero for all p ∈ supp(TE).

Part a) follows from Ext2A(E∗∗, E) = 0 which in turn follows from the more general fact
mentioned above. The proof of b) constitutes the biggest part of the article. We first study
the local deformation theory, meaning we study deformations of ideals of finite colength in

the completion Âp at a closed point p ∈ P2. Using these results, we can show that we can
always deform a sheaf E to E′ such that the induced map (ι′)∗ is not zero. Then using
the smoothness of MA /P2;c1,c2

and the two facts a) and b), the rest of the argument works

as in [21].

8. Rank one sheaves over quaternion algebras on Enriques surfaces.
In [R8] we study Question 3.17 ii) for noncommutative Enriques surfaces (X,A) with

an Azumaya algebra A on an Enriques surface X.
Cossec and Dolgachev showed that for an Enriques surface we have

Br(X) = Z/2Z.
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This implies that there is one nontrivial element in the Brauer group. As a first result we
prove that this class can in fact be realized by an Azumaya algebra of rank four, that is a
quaternion algebra.

As is well known the universal covering π : X → X is a double cover and X is a
K3 surface. Beauville proved that if X is very general in the moduli space of Enriques
surfaces, then the pullback π∗ : Br(X) → Br(X) is injective, hence A is a nontrivial
Azumaya algebra and we have an associated noncommutative K3 surface (X,A). More
general for every coherent sheaf E on X, we define E := π∗E on X.

The main result of this article is

Theorem. Let X be an Enriques surface and let A be the quaternion algebra on X rep-
resenting the nontrivial element in the Brauer group Br(X). If X is very general then

i) The moduli space MA/X of all generically simple A-modules is smooth.
ii) Every generically simple torsion free A-module can be deformed into a locally projec-

tive A-module, in other words the locus M lp
A/X of locally projective A-modules is dense

in MA/X .

Let X be the universal covering K3 surface of X and denote the pullback of the quaternion
algebra to X by A, then MA/X;c1,c2

has a symplectic structure by Theorem 3.15. We have

iii) MA/X;c1,c2 is an étale double cover of a Lagrangian subscheme L ⊂MA/X;c1,c2
.

Again to prove the smoothness, it is enough to prove the vanishing of Ext2A(E,E) for
every [E] ∈MA /X;c1,c2 . This time we prove this by first using Serre duality

Ext2A(E,E) ∼= HomA(E,E ⊗ ωX)∗

and then use the projection formula for the double cover π : X → X to see

HomA(E,F ) ∼= HomA(E,F )⊕HomA(E,F ⊗ ωX).

If E is a generically simple A-module, then E is a generically simple A-module, hence it
is simple, we conclude

C ∼= EndA(E) ∼= EndA(E)⊕HomA(E,E ⊗ ωX)

which implies HomA(E,E ⊗ ωX) = 0 as EndA(E) ∼= C.
The proof of the deformation arguments works similar to [21]. We only need to adapt

the proof of surjectivity of the connecting homomorphism

δ : Ext1A(E,E)→ Ext2A(TE , E)

This follows from the vanishing of Ext2A(E∗∗, E) with a similar argument as for the van-
ishing of Ext2A(E,E).

To prove iii) we recall that the relative automorphism group Aut(X/X) ∼= Z/2Z is
generated by an involution ι : X → X. This involution induces an involution

ι∗ : MA/X;c1,c2
→MA/X;c1,c2

We prove that ι∗ is antisymplectic, hence L := Fix(ι∗) is a smooth projective Lagrangian
subscheme. We then generalize a standard descent result to the noncommutative situation,
namely:

Theorem. Assume F is a simple A-module with an isomorphism F ∼= ι∗F of A-modules,
then there is an A-module E and an isomorphism of A-modules F ∼= E.

It follows that the image of π∗ : MA /X;c1,c2 → MA/X;c1,c2
is exactly L = Fix(ι∗) and

thus gives rise to a surjective morphism

ϕ : MA /X;c1,c2 → L
We show that each fiber of ϕ contains exactly two points, showing that ϕ is an étale double
cover.
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[58] Kōta Yoshioka. Moduli spaces of twisted sheaves on a projective variety. In Moduli spaces and arith-

metic geometry, volume 45 of Adv. Stud. Pure Math., pages 1–30. Math. Soc. Japan, Tokyo, 2006.

28



EXAMPLES OF SMOOTH COMPONENTS OF MODULI

SPACES OF STABLE SHEAVES

FABIAN REEDE AND ZIYU ZHANG

Abstract. Let M be a projective fine moduli space of stable sheaves on
a smooth projective variety X with a universal family E . We prove that
in four examples, E can be realized as a complete flat family of stable
sheaves on M parametrized by X, which identifies X with a smooth
connected component of some moduli space of stable sheaves on M .

Introduction

Background. The starting point of the article is a classical result on the
moduli space of stable vector bundles on curves. Let C be a smooth complex
projective curve of genus g > 2. We denote the moduli space of stable vector
bundles on C of rank n with a fixed determinant line bundle Ld of degree d
by M .

If n and d are coprime, then it is known by [MN68, Tju70] that M is a
fine moduli space, namely, there exist a universal vector bundle E on C×M
with the property that the fiber E|C×{m} over a closed point m = [E] ∈ M
is isomorphic to the bundle E itself. But one can also take a closed point
c ∈ C and consider the fiber

Ec := E|{c}×M ,
which is a vector bundle on M . In [NR75] the authors proved that Ec is
a simple bundle for every closed point c ∈ C and that the infinitesimal
deformation map

TcC −→ Ext1
M (Ec, Ec)

is bijective. In fact, for all closed points c ∈ C, the bundles Ec are stable
and pairwise non-isomorphic by [BBPN97, LN05].

Thus if we define M to be the moduli space of stable vector bundles on
M with the same Hilbert polynomial as Ec, then the classifying morphism

f : C −→M, c 7−→ [Ec]
identifies C with a smooth connected component of M, as explained in
[LN05].

Other examples in a similar spirit appear in the pioneering work of Mukai
[Muk81, Muk99] on abelian varieties and K3 surfaces. In the case of K3
surfaces, Mukai considered a general polarized K3 surface S of a certain
degree, along with a 2-dimensional fine moduli space M of stable vector
bundles of rank at least 2 on S, admitting a universal family E on S ×M .

2010 Mathematics Subject Classification. Primary: 14F05; Secondary: 14D20, 14J60,
53C26.

Key words and phrases. stable sheaves, moduli spaces, universal families, Pn-functors.
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It turns out that M is also a K3 surface, and E can also be realized as a
family of stable bundles on M parametrized by S.

As in the previous example, we can define M to be the moduli space of
stable sheaves on M with the same Hilbert polynomial as E|{s}×M for any
closed point s ∈ S. Mukai proved that the classifying morphism

f : S −→M, s 7−→ [E|{s}×M ]

is in fact an isomorphism. In other words, S can be identified with the entire
moduli space of stable sheaves on M with some fixed Chern classes.

Main result. Motivated by the above examples, one can formulate the
following question under a more general setting:

Question 0.1. Let X be a smooth projective variety and M a projective
fine moduli space of stable sheaves on X with universal family E on X×M .
Then

• Is E also a flat family of stable sheaves on M parametrized by X?
• If so, does the classifying map embed X as a smooth connected

component of some moduli space of stable sheaves on M?

A positive answer to the above question, especially when X is of low
dimension and M is of higher dimension, would be interesting from two
perspectives. First of all, examples of stable sheaves on higher dimensional
varieties (in particular on higher dimensional irreducible holomorphic sym-
plectic manifolds) are in general difficult to construct. One important class
of examples are the tautological bundles on Hilbert schemes, which were
studied in [Sch10, Wan14, Wan16, Sta16]. Question 0.1 provides another
natural approach for finding new examples. Secondly, moduli spaces of sta-
ble sheaves on higher dimensional varieties are in general badly behaved.
A positive answer to Question 0.1 would allow us to identify some nicely
behaved components of such moduli spaces, and at the same time give an
explicit description of a complete family of stable sheaves over these com-
ponents.

In this article, we consider Question 0.1 in some of the first cases:

Theorem 0.2 (Theorems 1.7, 2.4, 3.3, 4.3). Question 0.1 has a positive
answer in the following cases:

• X is a smooth projective variety of dimension d > 2 and we use
M = Hilb2(X), the Hilbert scheme of 2 points on X;
• X is K3 surface and M = Hilbn(X) is the Hilbert scheme of n points

on X;
• X is an abelian surface and M = Kumn(X) is the generalized Kum-

mer variety of dimension 2n associated to X for any n > 2;
• X is a K3 surface of Picard rank 1 and M is some fine moduli space

of stable torsion sheaves of pure dimension 1 on X.

Our proof in the first of the above cases will be completely elementary.
In all other cases, the moduli space M is in fact an irreducible holomorphic
symplectic manifold, and our proof will be divided into two steps: we first
establish the flatness of E over X and the stability of the fibers Ep over
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any closed point p ∈ X, then apply some very convenient results about Pn-
functors (see [Add16]) to conclude that X is in fact a component of some
moduli space of stable sheaves on M .

It would be much more interesting to study Question 0.1 in more general
settings, especially when X and M have trivial canonical classes and E is
torsion free (or even locally free) of higher rank. However, it could be then
much more difficult to prove the stability of Ep for any closed point p ∈ X.
Moreover, the corresponding results about Pn-functors are not yet known to
us (see [Add16, Conjecture, p.2] and [ADM16, Conjecture 2.1]).

This article consists of four sections, which are devoted to the four cases in
Theorem 0.2 respectively. The notion of Pn-functors will be briefly recalled
in the beginning of §2, followed immediately by a list of Pn-functors relevant
to our discussion. All schemes are defined over the field of complex numbers
C.

Acknowledgement. We are grateful to Nicolas Addington for expert ad-
vice on the application of Pn-functors, and to Andreas Krug for communi-
cating to us Lemma 3.1, as well as to Benjamin Schmidt for helpful con-
versations. We thank the referee for carefully reading the manuscript and
many helpful comments for improvements.

1. Hilbert squares of smooth projective varieties

Let X be a smooth projective variety of dimension d, and M = Hilb2(X).
We denote by Z ⊆ X × M the universal closed subscheme and IZ the
universal ideal sheaf on X ×M . Then we have a commutative diagram

(1)

Z

X ×M M

X

π

τ

where π is a flat morphism.
By [FGI+05, Remark 7.2.2.], we have Z = Bl∆(X ×X), the blow-up of

X × X along the diagonal ∆. The projection τ can be interpreted as a
composition

(2) τ : Z = Bl∆(X ×X)
b−→ X ×X q1−→ X

of the blow-up b and the projection q1 to the first factor. Moreover, the
group Σ2 = Z/2Z acts on Z by switching the two factors, with a fixed-locus
given by the exceptional divisor. By [FGI+05, Example 7.3.1(3)], π is the
quotient of Z by Σ2.

For any closed point p ∈ X, we write

Fp := τ−1(p) ⊆ Z and Sp := π(Fp) ⊆M.

Then we have the following results regarding the fibers of τ :

Lemma 1.1. We have Sp ∼= Fp ∼= Blp(X), and the morphism τ is flat.
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Proof. The morphism π|Fp can be factored into a composition

π|Fp : Fp ↪−→ {p} ×M
∼=−→M,

hence π induces an isomorphism from Fp to its image Sp. The canonical
isomorphism Fp ∼= Blp(X) is well known. Finally, since Z and X are both
smooth and the fibers Fp of τ are irreducible of dimension d for all closed
points p ∈ X, we deduce from [Mat86, Theorem 23.1, Corollary] that τ is
flat. �

By the description of Fp as a blow-up in Lemma 1.1, we denote the ex-

ceptional divisor by Ep
α
↪−→ Fp, then Ep ∼= Pd−1. This allows us to state the

following result:

Lemma 1.2. π−1(Sp) has simple normal crossing singularities with two
irreducible components

π−1(Sp) = Fp ∪ σ(Fp) such that Fp ∩ σ(Fp) = Ep

where σ is the non-trivial element of Σ2.

Proof. This property can be verified analytically locally. Without loss of
generality we assume that X = An, and p = (0, · · · , 0) ∈ X. Then we have
X ×X = An×An with coordinates (x1, · · · , xn, y1, · · · , yn). We perform an
affine change of coordinates: for each 1 6 i 6 n, we write si = xi + yi and
di = xi − yi. Then the diagonal ∆ is given by

∆ = {(s1, · · · , sn, d1, · · · , dn) | d1 = · · · = dn = 0}.
By (2) we have Z = Bl∆(X ×X), which is given by a mixture of affine and
projective coordinates

Bl∆(X×X) = {(s1, · · · , sn, d1, · · · , dn, [u1 : · · · : un]) | [d1 : · · · : dn] = [u1 : · · · : un]}.
It is covered by n affine pieces, among which the first affine piece Bl∆(X ×
X)1 is given by u1 = 1; in other words

Bl∆(X ×X)1 = {(s1, · · · , sn, d1, · · · , dn, u2, · · ·un) | di = uid1 for 2 6 i 6 n}
= {(s1, · · · , sn, d1, u2, · · · , un)}.

Then we have

q−1
1 (p) = {(x1, · · · , xn, y1, · · · , yn) | x1 = · · · = xn = 0}

= {(s1, · · · , sn, d1, · · · , dn) | si + di = 0 for 1 6 i 6 n}.
We write F 1

p = Fp ∩ Bl∆(X ×X)1, then

F 1
p =

{
(s1, · · · , sn, d1, u2, · · · , un)

∣∣∣∣
s1 + d1 = 0

si + uid1 = 0 for 2 6 i 6 n

}

=

{
(s1, · · · , sn, d1, u2, · · · , un)

∣∣∣∣
s1 + d1 = 0

si = uis1 for 2 6 i 6 n

}
.

Notice that Bl∆(X × X)1 is σ2-invariant. The action of the non-trivial
element σ ∈ Σ2 is given by

g : (s1, · · · , sn, d1, u2, · · · , un) 7−→ (s1, · · · , sn,−d1, u2, · · · , un).
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Therefore we have

g(F 1
p ) =

{
(s1, · · · , sn, d1, u2, · · · , un)

∣∣∣∣
s1 − d1 = 0

si = uis1 for 2 6 i 6 n

}

and the quotient Bl∆(X ×X)1/Σ2 is given by coordinates

Bl∆(X ×X)1/Σ2 = {(s1, · · · , sn, e1, u2, · · · , un)}
where e1 = d2

1. We write the image of F 1
p under the quotient map by

S1
p := Sp ∩ Bl∆(X ×X)1/Σ2,

then it follows that

S1
p =

{
(s1, · · · , sn, e1, u2, · · · , un)

∣∣∣∣
s2

1 = e1

si = uis1 for 2 6 i 6 n

}
.

It is now clear that

π−1(S1
p) =

{
(s1, · · · , sn, d1, u2, · · · , un)

∣∣∣∣
s1 + d1 = 0

si = uis1 for 2 6 i 6 n

}

∪
{

(s1, · · · , sn, d1, u2, · · · , un)

∣∣∣∣
s1 − d1 = 0

si = uis1 for 2 6 i 6 n

}

= F 1
p ∪ σ(F 1

p ).

Therefore the intersection of the two components is transverse, and given
by

F 1
p ∩ σ(F 1

p ) = {(s1, · · · , sn, d1, u2, · · · , un) | s1 = · · · = sn = d1 = 0}
which gives precisely the exceptional divisor Ep in the first affine chart,
namely, Ep ∩ Bl∆(X × X)1. The same argument also applies to all other
affine charts of Bl∆(X ×X), which finishes the proof. �

In the following discussion, for any closed embedding U ↪→ V , we denote
the corresponding ideal sheaf, conormal sheaf and normal sheaf by IU/V ,
CU/V and NU/V respectively. Now we consider two smooth closed subvari-
eties Y and Z of a smooth variety, which fit in the following commutative
diagram of closed embeddings:

(3)

Y ∩ Z Z

Y Y ∪ Z

α

i j

δ

where the intersection and the union are scheme theoretic. The following
lemma will be required in our next result:

Lemma 1.3. In the situation of (3), we have CZ/(Y ∪Z)
∼= α∗C(Y ∩Z)/Y .

Proof. We obtain by the second and the third isomorphism theorems that

IZ/Y ∪Z ∼= (IY/Y ∪Z + IZ/Y ∪Z)/(IY/Y ∪Z)

= (IY ∩Z/Y ∪Z)/(IY/Y ∪Z)
∼= δ∗IY ∩Z/Y .
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Therefore we obtain

CZ/(Y ∪Z) = j∗IZ/(Y ∪Z)

∼= j∗δ∗I(Y ∩Z)/Y

∼= α∗i∗I(Y ∩Z)/Y = α∗C(Y ∩Z)/Y

as required, where the second isomorphism uses [Sta18, Tag 02KG]. �
In our situation we pick subvarieties Y = σ(Fp) and Z = Fp of Z in (3),

then the morphism α becomes Ep
α
↪−→ Fp. Lemma 1.3 immediately yields

Corollary 1.4. We have CFp/π−1(Sp)
∼= α∗OEp(1). �

The following result is the key to the main theorem of this section:

Lemma 1.5. If d > 2, then we have dimH0(Sp,NSp/M ) = d.

Proof. We divide the proof in two steps.
Step 1. We claim that NSp/M fits into the exact sequence

(4) 0 −→ O⊕dFp
−→ (π|Fp)∗NSp/M −→ Ext1Fp

(α∗OEp(1),OFp) −→ 0.

We consider the chain of closed embeddings

Fp
ι

↪−→ π−1(Sp) ↪−→ Z.
By [Gro67, Proposition 16.2.7], we get the exact sequence of conormal
sheaves

(5) ι∗Cπ−1(Sp)/Z −→ CFp/Z −→ CFp/π−1(Sp) −→ 0.

By Lemma 1.1, τ : Z → X is flat, thus by [Gro67, Proposition 16.2.2 (iii)]
we get

(6) CFp/Z = (τ |Fp)∗C{p}/X = (τ |Fp)∗O⊕d{p} = O⊕dFp
.

Furthermore since Sp ↪→ M is a regular embedding of codimension d, the
sheaf CSp/M is locally free of rank d. It follows by the flatness of π : Z →M
that

(7) ι∗Cπ−1(Sp)/Z = ι∗(π|π−1(Sp))
∗CSp/M = (π|Fp)∗CSp/M

is also locally free of rank d. Therefore the first two terms in (5) are locally
free sheaves of rank d and the third one is by Corollary 1.4 torsion with
support Ep. It follows that the first arrow in (5) is injective. By dualizing
(5) we obtain

0 −→ NFp/Z −→ (π|Fp)∗NSp/M −→ Ext1Fp
(CFp/π−1(Sp),OFp) −→ 0.

Together with (6), (7) and Corollary 1.4 we obtain the claim (4).
Step 2. We claim that

(8) H0(Fp, Ext1Fp
(α∗OEp(1),OFp)) = 0.

Indeed, the sheaf α∗OEp(1) = α∗OEp(−Ep) admits the following resolution

0 OFp(−2Ep) OFp(−Ep) α∗OEp(−Ep) 0

Dualizing this exact sequence shows

Ext1Fp
(α∗OEp(−Ep),OFp) = α∗OEp(2Ep) = α∗OEp(−2).
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Using Ep ∼= Pd−1 and d > 2, we finally get:

H0(Fp, Ext1Fp
(α∗OEp(1),OFp)) = H0(Fp, α∗OEp(−2))

= H0(Ep,OEp(−2)) = 0.

We conclude the proof by combining the long exact sequence in cohomol-
ogy associated to (4) and the vanishing result (8). �

The following lemma is the main source for finding components of moduli
spaces. The proof follows literally from [BBPN97, Theorem 3.6].

Lemma 1.6. Let X be a smooth projective variety of dimension d and Y
a projective scheme. Assume that a morphism f : X → Y is injective on
closed points, and dimTyY = d for each closed point y ∈ f(X). Then f is
an isomorphism from X to a connected component of Y .

Proof. Since X is complete, f(X) is a closed subvariety of Y of dimension
d. Since dimTyY = d for each closed point y ∈ f(X), it follows that
Y is smooth of dimension d at each closed point y ∈ f(X) by [GW10,
Theorem 6.28], hence f(X) must be a smooth irreducible component of Y ,
which is also a connected component of Y . Finally, since f : X → f(X)
is a morphism between smooth projective varieties and bijective on closed
points, it is an isomorphism by Zariski’s Main Theorem. �

Combining the above results, we can now give our first main result:

Theorem 1.7. Any smooth projective variety X of dimension d > 2 is
isomorphic to a smooth connected component of a moduli space of stable
sheaves with trivial determinants on Hilb2(X), by viewing IZ as a family of
coherent sheaves on Hilb2(X) parametrized by X.

Proof. By Lemma 1.1, Z is flat over X hence IZ can be viewed as a flat
family of sheaves on Hilb2(X) parametrized by X. For each closed point
p ∈ X, let (IZ)p be the restriction of IZ on the fiber {p}×Hilb2(X). Then

(IZ)p is the ideal sheaf ISp of the closed embedding of Sp into Hilb2(X),
hence is a stable sheaf of rank 1. Therefore we obtain an induced classifying
morphism

(9) f : X −→M, p 7−→ [ISp ]

where M denotes the moduli space of stable sheaves on Hilb2(X) of the
class of ISp with trivial determinants. By [KPS18, Lemma B.5.6], M is

isomorphic to the Hilbert scheme of subschemes of Hilb2(X) which have the
same Hilbert polynomials as Sp since d > 2. It is easy to see that f is
injective on closed points. Indeed, for two different closed points p, q ∈ X,
Sp and Sq are different subschemes of Hilb2(X) of codimension d > 2, hence
ISp and ISq are non-isomorphic ideal sheaves. On the other hand, for any
closed point p ∈ X, we have

T[ISp ]M∼= HomHilb2(X)(ISp ,OSp) ∼= H0(Sp,NSp/Hilb2(X)).

Hence by Lemma 1.5, we have

dimT[ISp ]M = d.
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Therefore we conclude by Lemma 1.6 that the morphism (9) embeds X as
a smooth connected component of M. �

2. Hilbert schemes of points on K3 surfaces

What is particular interesting to us is the case of K3 surfaces. The tech-
nique of Pn-functors allows us to obtain similar results for their Hilbert
schemes of 0-dimension subschemes of arbitrary length. We first recall the
following notion of Pn-functors and its implications.

Definition 2.1. [Add16, Definition 4.1] A functor F : A → B between
triangulated categories with adjoints L and R is called a Pn-functor if:

(a) There is an autoequivalence H of A such that

RF ∼= id⊕H ⊕H2 ⊕ . . .⊕Hn

(b) The map

HRF ↪→ RFRF
RεF−−→ RF

written in components

H ⊕H2 ⊕ . . .⊕Hn+1 → id⊕H ⊕ . . .⊕Hn

is of the form 


∗ ∗ · · · ∗ ∗
1 ∗ · · · ∗ ∗
0 1 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · 1 ∗




(c) We have R ∼= HnL. (If A and B have Serre functors, this is equivalent
to SBFHn ∼= FSA.)

More about Pn-functors and examples can be found in [Add16, §4].
We will focus on the case where A = Db(X) and B = Db(Y ) for two

smooth projective varieties X and Y such that F = ΦF is an integral functor
with kernel F ∈ Db(X × Y ). In fact, we are mostly interested in the case
where F is actually a sheaf on X × Y and the autoequivalence H = [−2].
In this case condition (a) can be stated as

RF ∼= id⊗H∗(Pn,C).

We will use the following simple consequence under this setting

Proposition 2.2. [ADM16, §2.1] Assume X and Y are smooth projective
varieties and F is a coherent sheaf on X × Y , flat over X, such that the
integral functor F = ΦF with kernel F is a Pn-functor with associated au-
toequivalence H = [−2]. Then for any closed points x, y ∈ X there is an
isomorphism:

Ext∗Y (Fx,Fy) ∼= Ext∗X(Ox,Oy)⊗H∗(Pn,C),

where Fx and Fy are fibers of F over the closed points x and y respectively.
�

The following list of Pn-functors will be of interest to us:
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i) For a K3 surface S, Hilbn(S) is a fine moduli space with universal
ideal sheaf IZ . The integral functor ΦIZ : Db(S) → Db(Hilbn(S)) is
a Pn−1-functor with associated autoequivalence H = [−2]; see [Add16,
Theorem 3.1].

ii) Let Kumn(A) be the generalized Kummer variety of an abelian surface
A with universal ideal sheaf IZ . For any n > 2, the integral func-
tor ΦIZ : Db(A) → Db(Kumn(A)) is a Pn−1-functor with associated
autoequivalence H = [−2]; see [Mea15, Theorem 4.1].

iii) Let S be a K3 surface with Pic(S) = Z[H] where H is an ample genera-
tor of degree 2g−2. Assume M is the fine moduli space of stable sheaves
on S of Mukai vector (0, H, d+ 1− g) for some d and U is the universal
sheaf over S ×M . Then the integral functor ΦU : Db(S)→ Db(M) is a
Pg−1-functor with associated autoequivalence H = [−2]; see [ADM16,
Theorem A].

We give a first application of Pn-functors to our problem: let S be a K3
surface and M = Hilbn(S) for some positive integer n. Then M is a fine
moduli space and the ideal sheaf IZ of the universal family Z is the universal
sheaf on S × M . It is well-known that M is an irreducible holomorphic
symplectic manifold. The flatness of IZ over S follows immediately from
the following result:

Lemma 2.3. [KR18, Theorem 2.1] For every smooth variety X and every
positive integer n, the universal family Z ⊂ X ×M is flat over X. �

The above result allows us to obtain a smooth component of the moduli
space of stable sheaves on Hilbn(S) as follows:

Theorem 2.4. For any positive integer n, the K3 surface S is isomor-
phic to a smooth connected component of a moduli space of stable sheaves
on Hilbn(S), by viewing IZ as a family of coherent sheaves on Hilbn(S)
parametrized by S.

Proof. By Lemma 2.3, IZ can be viewed as a flat family of sheaves on
Hilbn(S) parametrized by S. For each closed point s ∈ S, let (IZ)s be the
restriction of IZ on the fiber {s} × Hilbn(S). Then (IZ)s is the ideal sheaf
of the closed embedding of Z ∩ ({s} × Hilbn(S)) into Hilbn(S), hence is a
stable sheaf of rank 1. Therefore we obtain an induced classifying morphism

(10) f : S −→M, s 7−→ [(IZ)s]

where M denotes the moduli space of all stable sheaves on Hilbn(S) of the
class of (IZ)s. For any pair of closed points s0, s1 ∈ S, we obtain by [Add16,
Theorem 3.1] and Proposition 2.2 that

(11) Ext∗Hilbn(S)

(
(IZ)s0 , (IZ)s1

) ∼= Ext∗S(Os0 ,Os1)⊗H∗(Pn−1,C).

In particular, when s0 6= s1, it follows from (11) that

HomHilbn(S)

(
(IZ)s0 , (IZ)s1

) ∼= HomS(Os0 ,Os1) = 0,

which implies that (10) is injective on closed points; when s0 = s1 = s, it
follows from (11) that

Ext1
Hilbn(S)

(
(IZ)s, (IZ)s

) ∼= Ext1
S(Os,Os),
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which implies that

dimT[(IZ)s]M = dimTsS = 2.

Therefore we conclude by Lemma 1.6 that the morphism (10) embeds S as
a smooth connected component of M, as desired. �

3. Generalized Kummer varieties

In this section we apply the technique of Pn-functors to study a component
of the moduli space of stable sheaves on generalized Kummer varieties.

LetA be an abelian surface and Hilbn+1(A) the Hilbert scheme parametriz-
ing closed subschemes of A of length n + 1. Let the morphism Σ be the
composition of the Hilbert-Chow morphism and the summation morphism
with respect to the group law on A, namely

Σ : Hilbn+1(A) −→ Symn+1(A) −→ A,

then the generalized Kummer variety is defined to be its zero fiber, namely

Kumn(A) := Σ−1(0),

which is an irreducible holomorphic symplectic manifold. If we denote the
restriction of the universal subscheme over Hilbn+1(A) to Kumn(A) by Z,
then we have a commutative diagram

Z

A×Kumn(A) Kumn(A)

A

ϕ

ψ

p2

p1

where ϕ and ψ are the compositions of the embedding and the projections.
We denote the ideal sheaf of Z in A×Kumn(A) by IZ . It is clear that IZ
is flat over Kumn(A) since ψ is flat. In fact, IZ is also flat over the other
factor A.

Lemma 3.1. The universal ideal sheaf IZ is flat over A for any n > 2.

Proof. It suffices to show that the morphism ϕ : Z → A is flat. First of all,
we claim that the dimension of the fiber ϕ−1(a0) is 2n − 2 for any closed
point a0 ∈ A.

On the one hand, since A is smooth, the closed point a0 ∈ A is locally
defined by two equations. Therefore locally near any point x ∈ ϕ−1(a0), the
fiber ϕ−1(a0) is also defined by two equations, hence is of codimension at
most 2 by Krull’s height theorem; see [Mat80, §12.I, Theorem 18]. In other
words, we have

(12) dimϕ−1(a0) > 2n− 2.

On the other hand, we have

ϕ−1(a0) = {(a0, ξ) ∈ A×Kumn(A) | a0 ∈ Supp(ξ)}
∼= {ξ ∈ Kumn(A) | a0 ∈ Supp(ξ)}.
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For any such ξ, we can write the associated 0-cycle [ξ] as

[ξ] =
k∑

i=0

niai,

where a0, a1, · · · , ak are pairwise distinct closed points, and n0, n1, · · · , nk
are the multiplicities. We further require n1 > · · · > nk > 0 if k > 0. It is
clear that

(13)
k∑

i=0

ni = n+ 1

which in particular implies k 6 n, and

(14)
k∑

i=0

niai = 0 ∈ A

which utilizes the group law on A. We call the partition of n

~n = (n0, n1, · · · , nk)
the type of ξ. Let ϕ−1(a0, ~n) be the set of all closed points ξ ∈ ϕ−1(a0) of
type ~n, then we have a decomposition

(15) ϕ−1(a0) =
⊔

~n

ϕ−1(a0, ~n).

We then compute the dimension of ϕ−1(a0, ~n) for each ~n.
When k = 0, we have ~n = (n + 1), and for any ξ ∈ ϕ−1(a0, ~n) we

have [ξ] = (n + 1)a0. It is clear that such ϕ−1(a0, ~n) is non-empty if and
only if a0 ∈ A is an (n + 1)-torsion point. When non-empty, ϕ−1(a0, ~n) is
the punctual Hilbert scheme Hilbn+1

a0 (A) which parametrizes length (n+ 1)
subschemes of A having support at only one point a0. By [Iar72, Corollary
1], we have

(16) dimϕ−1(a0, ~n) = n 6 2n− 2

for each (n+ 1)-torsion point a0 and integer n > 2.
When k > 1, every ξ ∈ ϕ−1(a0, ~n) corresponds to a configuration of

pairwise distinct points {a1, · · · , ak} satisfying (14). We can choose the first
(k−1) points freely, then ak is uniquely determined up to nk-torsion. Hence
there is a 2(k − 1)-dimensional family of configurations {a1, · · · , ak}. For
any fixed configuration, the possible scheme structures on ξ is classified by
the product of punctual Hilbert schemes Hilbn0

a0 (A) × · · · × Hilbnk
ak

(A). By
[Iar72, Corollary 1] and (13), we obtain

dimϕ−1(a0, ~n) = 2(k − 1) +

k∑

i=0

(ni − 1)

= 2(k − 1) + (n+ 1)− (k + 1)

= n+ k − 2 6 2n− 2.

Combining the two cases, we have by (15) that

(17) dimϕ−1(a0) 6 2n− 2.
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It then follows from (12) and (17) that all fibers ϕ−1(a0) are equidimensional
of dimension 2n− 2.

Moreover, since ψ is a surjective flat morphism and Kumn(A) is smooth
of dimension 2n, we know Z is Cohen-Macaulay of dimension 2n by [Eis95,
Corollary 18.17]. Since A is smooth, we conclude that ϕ : Z → A is flat by
[Mat86, Theorem 23.1, Corollary], which implies that its ideal sheaf IZ is
flat over A, as desired. �
Remark 3.2. It is easy to see that the statement of Lemma 3.1 fails for
n = 1, due to the failure of (16). In fact, in such a case, ϕ−1(a0) is either
a smooth rational curve or a single point, depending on whether a0 is a
2-torsion point of A.

The above result allows us to obtain a smooth component of the moduli
space of stable sheaves on Kumn(A) as follows:

Theorem 3.3. For any n > 2, the abelian surface A is isomorphic to a
smooth connected component of a moduli space of stable sheaves on Kumn(A),
by viewing IZ as a family of coherent sheaves on Kumn(A) parametrized by
A.

Proof. By Lemma 3.1, IZ can be viewed as a flat family of sheaves on
Kumn(A) parametrized by A. For each closed point a0 ∈ A, let (IZ)a0 be
the restriction of IZ on the fiber {a0}×Kumn(A). Then (IZ)a0 is the ideal
sheaf of the closed embedding of Z ∩ ({a0} × Kumn(A)) into Kumn(A),
hence is a stable sheaf of rank 1. Therefore we obtain an induced classifying
morphism

(18) f : A −→M, a0 7−→ [(IZ)a0 ]

where M denotes the moduli space of all stable sheaves on Kumn(A) of
the class of (IZ)a0 . For any pair of closed points a0, a1 ∈ A, we obtain by
[Mea15, Theorem 4.1] and Proposition 2.2 that

Ext∗Kumn(A)

(
(IZ)a0 , (IZ)a1

) ∼= Ext∗A(Oa0 ,Oa1)⊗H∗(Pn−1,C).

From here, a similar argument as in Theorem 2.4 shows that the morphism
(18) embeds A as a smooth connected component of M. �

4. Moduli spaces of pure sheaves on K3 surfaces

In this section we extend our discussion to the fine moduli spaces of stable
sheaves of pure dimension 1 on a K3 surface of Picard number 1.

Let S be a K3 surface with Pic(S) = ZH where H is an ample line
bundle of degree 2g − 2. Let P(V ) ∼= Pg be the complete linear system
of H where V = H0(S,H). Since S has Picard number 1, every curve
C in the linear system P(V ) is reduced and irreducible of genus g with

planar singularities, hence its compactified Jacobian Jac
d
(C) is reduced and

irreducible of dimension g by [AIK77, Theorem (9)]. We denote by C the
universal curve of the linear system P(V ). Therefore C is a closed subscheme
of S × P(V ) and admits projections to S and P(V ). All fibers of the first
projection τ : C → S are linear subsystems of P(V ) of codimension 1.

Let M be the moduli space of stable sheaves on S with Mukai vector

v = (0, H, d+ 1− g).
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We assume gcd(2g−2, d+1−g) = 1, then M is a smooth fine moduli space of
stable torsion sheaves of pure dimension 1, hence admits a universal family
U . In fact, M is an irreducible holomorphic symplectic manifold. The
corresponding support morphism

η : M −→ P(V )

sends a stable sheaf to its support curve.
Alternatively, M can also be interpreted as the relative compactified Ja-

cobian Jac
d
(C/P(V )) of the family C → P(V ). Hence the support of the

universal family U is given by

T := Supp(U) = C ×P(V ) M.

It is more convenient to consider the universal family as a sheaf on T , so we
define

E := ι∗U
where ι : T ↪→ S ×M is the closed embedding. Then we have U ∼= ι∗E by
[GW10, Remark 7.35].

The relation among the various spaces and morphisms introduced above
can be summarised in the following commutative diagram

(19)

T C S

S ×M S × P(V ) S

M P(V )

π

ϕ

ψ

ι

τ

η

where both squares on the left are cartesian.
Moreover, for any closed point s ∈ S, we denote the fiber ψ−1(s) by Ts,

with the corresponding closed embedding is : Ts ↪→ T . We also denote the
pullback of E to the fiber Ts by Es, and the pullback of U to the fiber {s}×M
by Us.

The following properties will be used later:

Lemma 4.1. Both T and Ts (for each closed point s ∈ S) are integral and
Gorenstein.

Proof. We first note that C, being a Pg−1-bundle bundle over S, is smooth
and irreducible of dimension g + 1. Consequently C is integral. Moreover,
since bothM and P(V ) are smooth, and all closed fibers of η are compactified
Jacobians, which are integral of dimension g, the morphism η is flat by
[Mat86, Theorem 23.1, Corollary]. It follows that ϕ is also flat, and every
closed fiber of ϕ is integral. Thus [GW10, Theorem 14.44] implies that the
generic fiber of ϕ is also integral. Therefore T is integral of dimension 2g+1
by [Sta18, Lemma 0BCM]. This means T is a hypersurface in the smooth
variety S ×M , hence T is Gorenstein by [Eis95, Corollary 21.19].

For any closed point s ∈ S, the restriction of ϕ to the fibers over s is
given by

ϕs : Ts −→ Pg−1.
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The above properties of ϕ imply that ϕs is also flat, and that every closed
fiber of ϕs is integral. It follows for the same reason as above that Ts is
integral of dimension 2g − 1, hence is a hypersurface in the smooth variety
M , which implies that Ts is also Gorenstein. �

Now we turn to properties of the universal sheaf:

Lemma 4.2. The sheaf E on T is flat over S, and the sheaf Es on Ts is
stable for each closed point s ∈ S.

Proof. We observe that the morphism C → P(V ) (the composition of the
morphisms in the middle column of (19)) is projective, flat and Gorenstein
of pure dimension 1. After the base change along η, the induced morphism
π : T → M (the composition of the morphisms in the left column of (19))
is also projective, flat and Gorenstein of pure dimension 1. Furthermore E
is flat over M , and for any point m ∈ M , the restriction of E to the fiber
π−1(m) is torsion free. It follows by [BK06, Corollary 2.2] that

ExtiT (E ,OT ) = 0

for every i > 0. Since T is irreducible and Gorenstein, this implies that E is
a maximal Cohen-Macaulay sheaf on T .

We have seen that ϕ and τ are both flat morphisms, hence ψ is also a
flat morphism. The closed embedding {s} ↪→ S is a morphism of finite Tor
dimension. After a flat base change along ψ, we see that is : Ts ↪→ T is also
of finite Tor dimension. Since T is irreducible and Gorenstein by Lemma
4.1, [Ari13, Lemma 2.3 (1)] implies

Li∗sE = i∗sE
for every closed point s ∈ S, where Li∗s is the derived pullback functor. It
follows by [Huy06, Lemma 3.31] that E is flat over S.

By Lemma 4.1 we also know Ts is Gorenstein, hence is in particular Cohen-
Macaulay. By [Ari13, Lemma 2.3 (2)], Es is also maximal Cohen-Macaulay,
which by [HK71, Satz 6.1, a)⇒ d)] implies that Es is reflexive, and hence in
particular torsion free on Ts. Therefore Es is stable since it is of rank 1. �

The above result allows us to obtain again a smooth component of the
moduli space of stable sheaves on M as follows:

Theorem 4.3. Under the assumptions in the present section, the K3 sur-
face S is isomorphic to a smooth connected component of a moduli space of
stable sheaves on M , by viewing U as a family of coherent sheaves on M
parametrized by S.

Proof. By Lemma 4.2, we know that the sheaf U = ι∗E is also flat over S,
and the fiber Us is a stable sheaf on M of pure dimension 2g − 1 for each
closed point s ∈ S. Therefore U is a flat family of stable sheaves on M
parametrized by S, with an induced classifying morphism given by

(20) f : S −→M, s 7−→ [Us]
where M is the moduli space of all stable sheaves on M of the class of Us.
For any pair of closed points s0, s1 ∈ S, we obtain by [ADM16, Theorem A]
and Proposition 2.2 that

Ext∗M (Us0 ,Us1) ∼= Ext∗S(Os0 ,Os1)⊗H∗(Pg−1,C).
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From here, a similar argument as in Theorem 2.4 shows that the morphism
(20) embeds S as a smooth component of M. �
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STABILITY OF SOME VECTOR BUNDLES ON HILBERT

SCHEMES OF POINTS ON K3 SURFACES

FABIAN REEDE AND ZIYU ZHANG

Abstract. Let X be a projective K3 surfaces. In two examples where
there exists a fine moduli space M of stable vector bundles on X, isomor-
phic to a Hilbert scheme of points, we prove that the universal family E
on X ×M can be understood as a complete flat family of stable vector
bundles on M parametrized by X, which identifies X with a smooth
connected component of some moduli space of stable sheaves on M .

Introduction

Let X be a projective K3 surface, and M a moduli space of semistable
sheaves on X. By Mukai’s seminal work [15], when M is smooth, it is an ex-
ample of the so-called irreducible holomorphic symplectic manifolds, which
are an important class of building blocks in the classification of compact
Kähler manifolds with trivial first Chern class. It is then an interesting
question to understand whether the moduli spacesM of semistable sheaves
on M inherit any good properties from M . This paper grew out of an at-
tempt to study this question. When dimM > 2, we cannot expect M to
carry a holomorphic symplectic structure in general, because the Serre dual-
ity does not induce a non-degenerate anti-symmetric pairing on the tangent
space ofM any more, as opposed to the case of K3 surfaces; however, some
components of M may nevertheless be holomorphic symplectic.

In order to study this question, we need to classify all semistable sheaves
on M with fixed Chern classes, which seems difficult in general when we have
dimM > 2; it is even a challenging question to construct any non-trivial
examples of semistable sheaves on M , due to the fact that stability is difficult
to check on higher dimensional varieties in general. When M is a Hilbert
scheme of points on the K3 surface X, a natural family of vector bundles on
M for considering stability are the so-called tautological bundles, which were
proven to be stable with respect to a suitable choice of an ample line bundle
on M by Schlickewei [18], Wandel [21] and Stapleton [20]. In fact, Wandel
proved that, under some mild assumptions, the connected component of
the moduli space containing the tautological bundles is isomorphic to some
moduli space of vector bundles on the underlying K3 surface X.

There is another way to construct examples of stable sheaves on M . As-
suming that M is a fine moduli space of stable sheaves on X with a universal

2010 Mathematics Subject Classification. Primary: 14F05; Secondary: 14D20, 14J60,
53C26.

Key words and phrases. stable sheaves, moduli spaces, universal families, Hilbert
schemes.
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family E on X ×M , and denoting the “wrong-way fiber” E|{x}×M by Ex for
each closed point x ∈ X, we can ask the following questions:

• Is E also a flat family of coherent sheaves on M parametrized by X?
• If so, are the “wrong-way” fibers Ex stable sheaves onM with respect

to some suitable choice of an ample line bundle for every closed point
x ∈ X?
• If so, can we identify X with a connected component of the corre-

sponding moduli space of stable sheaves on M?

This idea has also been explored in the literature. In [17], the authors
studied some families of ideal sheaves and torsion sheaves of pure dimension
1, and obtained an affirmative answer to the above questions in these cases.
A systematic study of the above questions in the case of locally free sheaves
was carried out in the very interesting and inspiring thesis of Wray [22]. In
order to get around the difficulty of proving stability directly, he invoked the
very deep and powerful technique of Hitchin-Kobayashi correspondence to
translate the stability problem to the existence of some Hermitian-Einstein
metrics, which was then solved by analytic methods to give affirmative an-
swers to the above questions.

The present paper is devoted to study the above questions, in particular
the stability of wrong-way fibers Ex with respect to a polarization near the
boundary of the ample cone of M , in the very classical way by showing that
every proper subsheaf of Ex of a smaller rank has a smaller slope. We will
focus on two special cases, namely a projective K3 surface X along with a
Mukai vector v such that either

• NS(X) = Zh with h2 = 4k and v = (k + 1,−h, 1) for any k > 1; or

• NS(X) = Ze ⊕ Zf with intersection matrix

(
−2k 2k + 1

2k + 1 0

)
for

any k > 2 as well as v = (2k − 1, e+ (2k − 1)f, 2k).

We summarize our main results in the following theorem:

Theorem 0.1. For any projective K3 surface X satisfying either of the
above conditions,

(1) we can explicitly construct a fine moduli space M of stable vector bundles
of Mukai vector v on X, isomorphic to the Hilbert scheme of k points
on X, along with a universal family E (see Theorem 2.3 and Theorem
3.7);

(2) there exists an ample divisor H on M such that E can be regarded as
a flat family of µH-stable vector bundles on M parametrized by X (see
Theorem 2.8 and Theorem 3.15);

(3) the classifying morphism induced by the family E identifies X with a
smooth connected component of a moduli space of µH-stable sheaves on
M (see Theorem 2.10 and Theorem 3.16).

Let us briefly explain how we achieved the above results. Our choices of
the K3 surfaces and the Mukai vectors, as well as the explicit constructions
of the moduli space M and the universal family E in the above two cases,
are motivated by [10, Example 5.3.7] and [16, Theorem 1.2] respectively.
In fact, in both cases, the stable sheaves on X are given by the spherical
twist (or its inverse) of the ideal sheaves of k points on X around OX , hence
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their corresponding moduli spaces M are isomorphic to the Hilbert scheme
X [k] of k points on X. To show the slope stability of the wrong-way fibers
Ex with respect to some ample divisor H on M , we apply the technique
developed by Stapleton [20]; namely, we first prove the slope stability of Ex
with respect to a natural nef divisor on M by passing to the k-fold product
of X, then use the openness of stability to perturb the nef divisor to a nearby
ample divisor. In fact, since the perturbation argument in [20] works only for
individual sheaves, we need to generalize it so as to find an ample divisor H
with respect to which all Ex’s are simultaneously stable. Finally, to identify
X as a smooth connected component of some moduli space of stable sheaves
on M , we interpret Ex’s as images of some sheaves or derived objects on X
under the integral functor Φ induced by the universal ideal sheaf for X [k].
By the fundamental result of Addington [1] that Φ is a Pk−1-functor, we can
obtain, by computing the relevant cohomology groups, that the Ex’s are
distinct and the tangent space of deformations of each Ex is of dimension 2,
which leads immediately to the conclusion.

The text is organized in three sections. The first section gives background
on integral functors, while the other two deal with the two cases mentioned
above respectively. All objects in this text are defined over the field of
complex numbers C.

Acknowledgement. We thank Nicolas Addington and Andrew Wray for
kindly sending us [22]. We also thank Norbert Hoffmann for communicating
to us Lemma 3.5. We are particularly grateful to the anonymous referee who
helped to improve the presentation of the manuscript greatly, and pointed
out a mistake in a previous version of Proposition 3.14. In particular, Lem-
mas 3.12 and 3.13 in the current version are due to the referee.

1. Background on spherical twists and Pn-functors

Let X denote a smooth projective variety with dim(X) = d. As we will
need them later, we quickly recall some facts about spherical twists and
Pn-functors in this section.

Definition 1.1. An object S ∈ Db(X) is called spherical if

i) S ⊗ ωX ∼= S

ii) Exti(S,S) =

{
C if i = 0, d

0 otherwise

Remark 1.2. We note the fact that if X is a K3 surface, then any line
bundle L ∈ Pic(X) is spherical.

Using spherical objects one can construct autoequivalences of Db(X) in
the following way: to any object F ∈ Db(X) one can associate the following
object in Db(X ×X):

PF := Cone(F∨ � F −→ O∆).

We refer to [8, §8] for an exact description of the map F∨ � F → O∆ and
more information.
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Definition 1.3. The spherical twist

TS := ΦPS : Db(X) −→ Db(X)

associated to a spherical object S ∈ Db(X) is the Fourier-Mukai transform
with kernel PS .

The most important fact about the spherical twist is

Proposition 1.4. Let S be a spherical object in Db(X). Then the induced
spherical twist

TS : Db(X) −→ Db(X)

is an autoequivalence.

The first proof of this proposition was given by Seidel and Thomas, see
[19, Theorem 1.2].

Remark 1.5. By [8, Exercise 8.5] the effect of the spherical twist TS on an
object G ∈ Db(X) can be described by the following distinguished triangle:

TS(G)[−1] −→ RHom(S,G)⊗ S −→ G −→ TS(G).

As the spherical twist TS is an autoequivalence one can also study the inverse
T−1
S . For any object G ∈ Db(X) there exists the following distinguished

triangle, see [8, Remark 8.11]:

T−1
S (G) −→ G −→ RHom(S,G)⊗ S[d] −→ T−1

S (G)[1].

We are also interested in another class of integral functors, the so-called
Pn-functors, which were introduced by Addington in a very general setting
in [1, §4]. We will only need the following special example:

Example 1.6. Let X be a K3 surface, then the integral functor

Φ: Db(X) −→ Db(X [k])

whose kernel is the universal ideal sheaf IZ on X ×X [k] is a Pk−1-functor
with corresponding autoequivalence H = [−2] by [1, Theorem 3.1, Example
4.2(2)].

Remark 1.7. The fact that the above integral functor Φ is a Pk−1-functor
with the corresponding autoequivalence H = [−2] has the following useful
consequence, see [2, §2.1]: for any E,F ∈ Db(X) we have an isomorphism
of graded vector spaces

Ext∗
X[k](Φ(E),Φ(F )) ∼= Ext∗X(E,F )⊗H∗(Pk−1,C).

2. K3 surfaces with Picard number one

Throughout this section we assume X is a polarized K3 surface such that
NS(X) = Zh, where h is an ample class with h2 = 4k. We denote the
line bundle associated to h by OX(1) and the Hilbert scheme of length k

subschemes of X by X [k].
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2.1. Explicit construction of a universal family. In this subsection we
generalize [10, Example 5.3.7] to give an explicit construction of a universal
family of stable vector bundles on X parametrized by the Hilbert scheme
X [k] for k > 1. Let h be the ample generator of NS(X) and pick the Mukai
vector v = (k + 1,−h, 1) ∈ H∗alg(X,Z). We have the following facts:

Lemma 2.1. The moduli space Mh(v) of µh-stable sheaves on X with Mukai
vector v is a smooth projective variety of dimension 2k and a fine moduli
space. Furthermore every point [E] ∈Mh(v) represents a locally free sheaf.

Proof. We note that every µh-semistable sheaf E with v(E) = v is µh-stable
as ρ(X) = 1. Thus Mh(v) is a smooth projective variety. We compute:

dim(Mh(v)) = v2 + 2 = 4k − 2(k + 1) + 2 = 2k.

Furthermore v′ = (k + 1,−h, a) with a > 2 satisfies

v′2 + 2 = 4k − 2a(k + 1) + 2 6 4k − 4(k + 1) + 2 = −2 < 0,

and thus the second Chern class is minimal (here c2(E) = 3k). This mini-
mality implies that every point [E] in Mh(v) is given by a locally free sheaf
E. The condition gcd(k+1, 1) = 1 implies that Mh(v) is a fine moduli space
by [10, Remark 4.6.8]. �

The following lemma produces examples of elements in this moduli space:

Lemma 2.2. For any [Z] ∈ X [k] the sheaf IZ(1) is globally generated, i.e.
the evaluation morphism

ev : H0(IZ(1))⊗OX → IZ(1)

is surjective. Furthermore EZ := ker(ev) is a µh-stable locally free sheaf
with Mukai vector given by v(EZ) = (k + 1,−h, 1).

Proof. The standard exact sequence

(1) 0 IZ(1) OX(1) OZ(1) 0

shows

χ(IZ(1)) = χ(OX(1))− χ(OZ(1)) = (2k + 2)− k = k + 2.

Since Z has codimension two in X, using Serre duality gives

H2(IZ(1)) ∼= Hom(IZ(1),OX)∨ ∼= H0(OX(−1))∨ = 0.

By [5, Proposition 3.7], the line bundle OX(1) is k-very ample which
implies that the exact sequence of global sections attached to (1)

0 H0(IZ(1)) H0(OX(1)) H0(OZ(1)) 0

is still exact. This implies H1(IZ(1)) ∼= H1(OX(1)) = 0 and thus

dim(H0(IZ(1))) = χ(IZ(1)) = k + 2.

Now if the evaluation map is not surjective, let Q := coker(ev) and pick
x ∈ supp(Q). Then we have an exact sequence

0 IZ′(1) IZ(1) Ox 0

for a length k + 1 subscheme Z ′ containing Z.



50 FABIAN REEDE AND ZIYU ZHANG

Since IZ(1) is not globally generated at x the last exact sequence gives
isomorphisms

H0(IZ′(1)) ∼= H0(IZ(1)) and H1(IZ′(1)) ∼= H0(Ox) 6= 0.

But OX(1) is k-very ample so by definition

0 H0(IZ′(1)) H0(OX(1)) H0(OZ′(1)) 0

is still exact, which implies H1(IZ′(1)) = 0, a contradiction. So ev is indeed
surjective and we have an exact sequence:

(2) 0 EZ H0(IZ(1))⊗OX IZ(1) 0.

Computing invariants shows rk(EZ) = k+1, c1(EZ) = −h and c2(EZ) = 3k,
hence indeed v(EZ) = (k + 1,−h, 1). The sheaf EZ is locally free as it is
the kernel of a morphism between a locally free and a torsion free sheaf on a
smooth surface. The stability of EZ follows from [23, Lemma 2.1 (2-2)]. �

We can globalize the construction in Lemma 2.2: let Z ⊂ X×X [k] denote
the universal length k subscheme, IZ its ideal sheaf. There are projections
p : X × X [k] → X [k] as well as q : X × X [k] → X. Define a sheaf E on
X ×X [k] by the exact sequence
(3)

0 E p∗(p∗(IZ ⊗ q∗OX(1))) IZ ⊗ q∗OX(1) 0.

Then E is p-flat and E|p−1(Z)
∼= EZ , which implies that E is locally free on

X ×X [k] by [10, Lemma 2.1.7]. Thus E defines a classifying morphism

ϕ : X [k] →Mh(v), [Z] 7→ [EZ ] .

In fact we have:

Theorem 2.3. The classifying morphism ϕ : X [k] → Mh(v) is an isomor-
phism.

Proof. Looking at Remark 1.5 we see that the sheaf EZ defined by the exact
seqeunce (2) is nothing but the shifted spherical twist of IZ(1) around OX ,
more exactly we have

EZ = TOX
(IZ(1))[1],

similar to [9, Example 10.3.6]. By Proposition 1.4 the spherical twist TOX
is

an autoequivalence of Db(X) likewise is the shift [1]. But then the classifying
morphism

ϕ : X [k] →Mh(v), [Z] 7→ [EZ ] = [TOX
(IZ(1))[1]]

is a composition of autoequivalences and thus maps non-isomorphic objects
to non-isomorphic objects, hence ϕ is injective on closed points. Since both
X [k] and Mh(v) are smooth of dimension 2k the morphism ϕ is an open
embedding and thus an isomorphism as both spaces are irreducible. �
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2.2. Stability of wrong-way fibers. In the above section, we explicitly
constructed a universal family E , which is a locally free sheaf on X ×X [k].
In this section we take the alternative point of view and consider E as a
family of vector bundles on X [k] parametrized by X. A “wrong-way fiber”
of E is just the restriction of E over a point x ∈ X which gives a locally free
sheaf on X [k].

More precisely, we first note that by standard cohomology and base change
arguments

p∗(IZ ⊗ q∗OX(1))⊗O[Z] → H0(IZ(1))

is an isomorphism. Hence

(4) K := p∗(IZ ⊗ q∗OX(1))

is a locally free sheaf of rank k + 2 on X [k]. This implies that E is not
only p-flat, but also q-flat since IZ ⊗ q∗OX(1) is both p- and q-flat by [14,
Theorem 2.1]. Thus we can restrict the exact sequence (3) to the fiber over
a point x ∈ X and get the following description of the fiber Ex := E|q−1(x):

(5) 0 Ex K ISx 0,

where Sx :=
{

[Z] ∈ X [k] |x ∈ supp(Z)
}

is a codimension 2 subscheme of

X [k]. Hence Ex is a locally free sheaf of rank k + 1 on X [k].
Before proving the stability of Ex, we recall that for any coherent sheaf F

on X there is the associated coherent tautological sheaf F [k] on X [k] defined
by

(6) F [k] := p∗ (q∗F ⊗OZ) .

If F is locally free of rank r then F [k] is locally free of rank kr.
Also recall the well-known fact that NS(X [k]) = NS(X)k ⊕ Zδ. Here dk

is the divisor class on X [k] induced by the divisor class d on X and δ is a
divisor class on X [k] such that 2δ = [E] where E is the exceptional divisor

of the Hilbert-Chow morphism X [k] → X(k). In our case this reads

NS(X [k]) = Zhk ⊕ Zδ.

Lemma 2.4. We have c1(Ex) = −hk + δ.

Proof. There is the exact sequence:

0 p∗(IZ ⊗ q∗OX(1)) p∗q∗OX(1) p∗(OZ ⊗q∗OX(1)) 0

as R1p∗(IZ ⊗ q∗OX(1)) = 0 since H1(IZ(1)) = 0 for all [Z] ∈ X [k].
We also have

p∗q∗OX(1) ∼= H0(OX(1))⊗OX[k]

and the sheaf p∗(OZ ⊗q∗OX(1)) is nothing but the tautological sheafOX(1)[k]

associated to OX(1) on X [k]. By [11, Remark 3.20.] we also have

H0(OX(1)[k]) = H0(OX(1)).

Thus, the above exact sequence can be rewritten as

(7) 0 K H0(OX(1)[k])⊗OX[k] OX(1)[k] 0.
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Using [21, Lemma 1.5] we get

c1(K) = −c1(OX(1)[k]) = −hk + δ.

Now exact sequence (5) gives c1(Ex) = c1(K) = −hk + δ. �
To compute slopes on X [k] we need the following intersection numbers,

which can, for example, be found in [21, Lemma 1.10]:

Lemma 2.5. For the classes hk and δ from NS(X [k]) we have:

• h2k
k = (2k−1)!

(k−1)!2k−1 (h2)k = (2k−1)!2k+1

(k−1)! kk > 0

• h2k−1
k δ = 0.

We also recall the notations introduced in [20, §1]. The ample divisor h
on X naturally induces an ample divisor

hXk =

k⊕

i=1

q∗i h

on Xk, where qi denotes the projection from Xk to the i-th factor, as well
as a semi-ample divisor hk on X [k].

Moreover, we write Xk
◦ , SkX◦ and X

[k]
◦ for the loci of the relevant spaces

parametrizing distinct points. Then the natural map

σ◦ : Xk
◦ → X

[k]
◦

is an étale cover and j : Xk
◦ → Xk is an open embedding. For any coherent

sheaf F on X [k], we denote by F◦ the restriction of F to X
[k]
◦ , and define

(F )Xk = j∗(σ∗◦(F◦))

which is a torsion free coherent sheaf if F is.

Proposition 2.6. The vector bundle K defined in (4) is slope stable with
respect to hk.

Proof. We follow the idea in the proof of [20, Theorem 1.4].
Since (−)◦ and σ∗◦(−) are exact, and j∗(−) is left exact, by applying these

functors to (7) we obtain an exact sequence of Sk-invariant reflexive sheaves
on Xk as follows

0 −→ (K)Xk −→ (H0(OX(1))⊗OX[k])Xk
ϕ−→ (OX(1)[k])Xk

where ϕ is not necessarily surjective. It is clear that

(H0(OX(1))⊗OX[k])Xk = H0(OX(1))⊗OXk ,

and we also have

(OX(1)[k])Xk =
k⊕

i=1

q∗i OX(1)

by [20, Lemma 1.1]. Hence the above sequence becomes

(8) 0 −→ (K)Xk −→ H0(OX(1))⊗OXk
ϕ−→

k⊕

i=1

q∗i OX(1)

where ϕ is the evaluation map on Xk
◦ .
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More precisely, for any set of closed points (x1, . . . , xn) ∈ Xk with xi 6= xj ,
the morphism of fibers can be identified as

ϕ(x1,...,xk) : H0(OX(1)) −→
k⊕

i=1

OX(1)xi

s 7−→ (s(x1), . . . , s(xk))

Since for any non-trivial s ∈ H0(OX(1)), there are always (many choices of)
distinct points (x1, . . . xk) ∈ Xk such that (s(x1), . . . , s(xk)) 6= (0, . . . , 0), we
conclude that the map of global sections

H0(ϕ) : H0(OX(1)) −→ H0(
k⊕

i=1

q∗i OX(1))

is injective. It follows by exact sequence (8) that (K)Xk has no global
sections, that is

(9) H0((K)Xk) = 0.

Note that ϕ is surjective on Xk
◦ , hence coker(ϕ) is supported on the big

diagonal of Xk which is of codimension 2. It follows that

c1((K)Xk) = −
k∑

i=1

q∗i h.

We claim that (K)Xk has no Sk-invariant subsheaf which is destabilizing
with respect to hXk . Indeed, assume F is an Sk-invariant subsheaf of (K)Xk ,
then for some a ∈ Z:

c1(F ) = a(

k∑

i=1

q∗i h).

If a 6 −1, then

c1(F )h2k−1
Xk 6 c1((K)Xk)h2k−1

Xk < 0

Since 1 6 rk(F ) < rk((K)Xk), it follows that µh
Xk

(F ) < µh
Xk

((K)Xk),
hence F is not destabilizing.

If a = 0, we choose a (not necessarily Sk-invariant) non-zero stable sub-
sheaf F ′ ⊆ F which has maximal slope with respect to hXk (e.g. one can
take a stable factor in the first Harder-Narasimhan factor of F ). Without
loss of generality, we can assume F and F ′ are both reflexive. Since F ′

is also a subsheaf of H0(OX(1)) ⊗ OXk , there must be a projection from
H0(OX(1)) ⊗ OXk to a certain direct summand of it, such that the com-
position of the embedding and projection F ′ → H0(OX(1))⊗OXk → OXk

is non-zero. Since µXk(F ′) > µXk(F ) = 0 = µXk(OXk), and OXk is also
stable with respect to hXk , the map F ′ → OXk must be injective, and its
cokernel is supported on a locus of codimension at least 2. Since both are
reflexive, we must have F ′ = OXk . Therefore F , and consequently (K)Xk ,
have non-trivial global sections. This contradicts (9).

If a > 1, F would be a subsheaf of the trivial bundle H0(OX(1))⊗OXk

of positive slope. Contradiction.
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Finally, assume G is a reflexive subsheaf of K. Then (G)Xk is an Sk-
invariant reflexive subsheaf of (K)Xk . By the above claim we have

µh
Xk

((G)Xk) < µh
Xk

((K)Xk)

It follows by [20, Lemma 1.2] that µhk(G) < µhk(K). Therefore K is slope
stable with respect to hk, as desired. �
Proposition 2.7. For any closed point x ∈ X, the bundle Ex is slope stable
with respect to hk.

Proof. By Lemma 2.4, we have c1(Ex) = c1(K) = −hk + δ. Therefore by
Lemma 2.5

c1(Ex)h2k−1
k = c1(K)h2k−1

k = (−hk + δ)h2k−1
k = −h2k

k < 0.

Assume F is a destabilizing subsheaf of Ex with 1 6 rk(F ) 6 k and such
that c1(F ) = ahk + bδ for some a, b ∈ Z. Then

c1(F )h2k−1
k = ah2k

k .

By the assumption and Proposition 2.6, we have the inequality

µhk(Ex) 6 µhk(F ) < µhk(K),

which can be written as

−h2k
k

k + 1
6 ah2k

k

rk(F )
<
−h2k

k

k + 2
⇐⇒ −rk(F )

k + 1
6 a < −rk(F )

k + 2
as h2k

k > 0.

Such an integer a cannot exist. Contradiction. Hence Ex is stable with
respect to hk. �

2.3. A smooth connected component. In this section, we will interpret
the universal sheaf E defined in (3) as a family of stable sheaves onX [k] whose
base is a smooth connected component of the corresponding moduli space.
We have shown above that each wrong-way fiber Ex of the family E is µhk -
stable; however, it would be more preferable to establish the stability with
respect to some ample class on X [k]. Although the perturbation technique
in [20, Proposition 4.8] can be used to achieve this for every single Ex, for
our purpose we will have to extend this technique to prove that all sheaves
Ex are slope stable with respect to the same ample class near hk.

Theorem 2.8. There exists some ample class H ∈ NS(X [k]) near hk, such
that Ex is µH-stable for all x ∈ X simultaneously.

Proof. Proposition 2.7 and [4, Theorem 2.3.1] guarantees that the assump-
tions in [20, Proposition 4.8] are satisfied for each Ex, hence every Ex is slope
stable with respect to some ample class near hk by [20, Proposition 4.8]. In
order to find a single ample class H that is independent of the choice of Ex,
we can literally use the entire proof of [20, Proposition 4.8] except that we

need to reconstruct the non-empty convex open set U so that α := h2k−1
k is

in the closure of U , and for every γ ∈ U , Ex is stable with respect to γ for
all x ∈ X.

We follow the notations in [7, Definition 3.1]. For each x ∈ X, SStab(Ex)
is a convex closed set containing α. Hence the intersection

U := ∩x∈X SStab(Ex)
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is also a convex closed set containing α. We first claim that [7, Theorem
3.4] holds for all Ex simultaneously; namely, we will show that for any

β ∈ Mov(X [k])◦ (see [7, Definition 2.1] for the notation), there exists a
number e ∈ Q+, such that (α+ εβ) ∈ ∩x∈X Stab(Ex) for any real ε ∈ [0, e].

To prove the claim, we first note that the slope c := µβ(Ex) is independent
of the choice of x ∈ X. We redefine the set S in the proof of [7, Theorem
3.4] to be

S := {c1(F ) | F ⊆ Ex for some x ∈ X such that µβ(F ) > c}.
Since Ex ⊆ K for all x ∈ X by (5), we obtain that S is a subset of

T := {c1(F ) | F ⊆ K such that µβ(F ) > c},
which is finite by [7, Theorem 2.29], hence S is also finite. We can then use
the rest of the proof of [7, Theorem 3.4] literally to conclude the claim.

We then claim that U is of full dimension r := rkN1(X [k]). If not, then

we have α ∈ U ⊆ L for some hyperplane L ⊂ N1(X [k])R. Since Mov(X [k])

is of full dimension, we can choose some β ∈ Mov(X [k])◦ \L. It follows that
(α+ εβ) ∈ U \L for some small ε > 0 by the previous claim and the choice
of β. Contradiction.

We define U to be the interior of U and claim that U is non-empty. Indeed,
since U is of full dimension r, we can choose r + 1 points of U in general
positions, which form an r-simplex. By the convexity of U , the entire simplex
is in U hence any interior point of the simplex is also an interior point of U .
The convexity of U follows from the convexity of U . And it is clear from the
construction that α = h2k−1

k is in the closure of U . We finally claim that
every γ ∈ U is in ∩x∈X Stab(Ex). If not, suppose that there exists some
γ0 ∈ U and some x0 ∈ X, such that γ0 ∈ SStab(Ex0) \ Stab(Ex0); namely,
µγ0(F ) = µγ0(Ex0) for some proper subsheaf F of Ex0 . Since the slope
function is linear with respect to the curve class, and µα(F ) < µα(Ex0)

by Proposition 2.7, one can find a hyperplane in N1(X [k])R through γ0,
such that µγ(Ex0)− µγ(F ) takes opposite signs for γ in the two open half-
spaces separated by the hyperplane. In particular, F destabilizes Ex0 in
one of the half-spaces. Since U has non-empty intersection with both half-
spaces, this contradicts the condition U ⊆ SStab(Ex). Therefore we have
U ⊆ ∩x∈X Stab(Ex), as desired. �

We give an alternative description of Ex using the integral functor Φ from
Example 1.6:

Lemma 2.9. For each x ∈ X, let Ix be the ideal sheaf of x ∈ X, then
Ex = Φ(Ix(1)).

Proof. We start with the exact sequence

(10) 0 Ex K ISx 0.

We note that ISx = Φ(Ox) as IZ is flat over X. Furthermore we have
K = Φ(OX(1)) since Rip∗(IZ ⊗q∗OX(1)) = 0 for i = 1, 2 as this is true for

H i(IZ(1)) for any [Z] ∈ X [k]. These two facts imply that

HomX[k](K, ISx) = HomX[k](Φ(OX(1)),Φ(Ox)) ∼= HomX(OX(1),Ox) ∼= C
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by Remark 1.7. Thus the exact sequence (10) is induced by the exact se-
quence

0 Ix(1) OX(1) Ox 0.

As K → ISx is surjective, applying Φ to the last exact sequence shows
Ex = Φ(Ix(1)). �

We return to the main result of the section. Let H be an ample class
that satisfies Theorem 2.8, andM the moduli space of µH -stable sheaves on
X [k] with the same numerical invariants as Ex. Then the universal family E
defines a classifying morphism

(11) f : X −→M, x 7−→ [Ex]

In fact the morphism f can be described as follows:

Theorem 2.10. The classifying morphism (11) defined by the family E
identifies X with a smooth connected component of M.

Proof. By [17, Lemma 1.6] we have to prove that f is injective on closed
points and that for all x ∈ X we have dim(T[Ex]M) = 2 .

Now by Lemma 2.9 we know Ex = Φ(Ix(1)), so for x 6= y we find

HomX[k](Ex, Ey) = HomX[k](Φ(Ix(1)),Φ(Iy(1)))

∼= HomX(Ix(1), Iy(1))

∼= HomX(Ox,Oy) = 0

by Remark 1.7 again. This implies f is injective on closed points.
A similar computation shows

Ext1
X[k](Ex, Ex) = Ext1

X[k](Φ(Ix(1)),Φ(Ix(1)))

∼= Ext1
X(Ix(1), Ix(1))

∼= Ext1
X(Ox,Ox) ∼= TxX.

Using T[Ex]M ∼= Ext1
X[k](Ex, Ex) we thus find dim(T[Ex]M) = 2 as desired.

�

3. K3 surfaces with Picard number two

In this section, we will consider a K3 surface X of Picard number 2, and
construct a complete family of stable vector bundles on the Hilbert scheme
X [k] for k > 2.

3.1. The K3 surface. In this section we assume X is a K3 surface with

NS(X) = Ze⊕ Zf
such that e2 = −2k, f2 = 0 and ef = 2k + 1 for some integer k > 2. The
existence of such K3 surfaces is guaranteed by [9, Corollary 14.3.1]. Since
f2 = 0, either f or −f is effective. Without loss of generality, we will assume
that the divisor class f is effective, after possibly replacing the pair (e, f)
by (−e,−f).

In this subsection we collect some helpful properties of X which will be
used in the construction of some moduli spaces of stable sheaves in the next
section.
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Lemma 3.1. We have D2 > 0 for all effective divisors on X. Especially
there are no smooth curves C on X with C ∼= P1.

Proof. Any irreducible curve C on S satisfies

C2 = C(C +KX) = 2pa(C)− 2 > −2.

So assume C2 = −2 and write C = me+ nf . Then we have

C2 = (me+ nf)2 = m2e2 + 2mnef

= −2km2 + 2(2k + 1)mn

= −2m(km− (2k + 1)n).

The equation C2 = −2 translates into m(km− (2k+ 1)n) = 1. This implies
m = ±1 but then one can see that there is no n ∈ Z satisfying this equation.

�

Lemma 3.2. The divisor classes h = e+(2k−1)f and ĥ = (2k)e+(2k−1)f
are ample.

Proof. We have

h2 = (e+ (2k − 1)f)2 = e2 + 2(2k − 1)ef

= −2k + 2(2k − 1)(2k + 1) = 8k2 − 2k − 2.

So h2 > 0 as k > 2. Since also hf = ef = 2k+ 1 > 0 we see that h is ample
by the remark after [9, Corollary 8.1.7].

A similar computation shows ĥ2 > 0 and ĥf > 0. �

Lemma 3.3. Let m and n be integers. If the class me + nf is effective,
then 0 6 m 6 2k+1

k n and h(me + nf) > ((2k − 1)(2k + 1) − k)m (thus in
particular n > 0).

Proof. Let D be an effective divisor with class me+ nf . Since the claim is
additive in m and n, we may assume w.l.o.g. that D is an irreducible curve
C.

By Lemma 3.1 we have C2 > 0. Therefore

C2 = 2m {−km+ (2k + 1)n} > 0

hC = (4k2 − k − 1)m+ {−km+ (2k + 1)n} > 0

which implies m > 0 and −km+ (2k+ 1)n > 0. The last inequality can also
be read as

(2k + 1)n > km⇔ m 6 2k + 1

k
n.

Putting everything together shows

0 6 m 6 2k + 1

k
n

as well as hC > ((2k − 1)(2k + 1)− k)m. �

Corollary 3.4. There is a surjective morphism π : X → P1 such that
all fibers are integral curves of arithmetic genus pa(C) = 1, that is X is
elliptically fibered.
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Proof. Since f2 = 0 it is known that the linear system |f | induces a surjective
map π : X → P1 with π∗OP1(1) = OX(f). By the previous lemma the class
f cannot be the sum of two effective divisors, hence all fibers C of π are
integral and have pa(C) = 1. �

Lemma 3.5. Let [Z] ∈ X [k]. Assume R is a torsion quotient of IZ(e) with
c1(R) = nf for some n > 0, then H1(R) = 0.

Proof. The quotient defines the following exact sequence:

0 K IZ(e) R 0.

Now K is torsion free of rank one, so its double dual K∗∗ is locally free of
rank one and the natural map K → K∗∗ is injective and the cokernel T has
finite support. Especially c1(T ) = 0 so

c1(K∗∗) = c1(K) = c1(IZ(e))− c1(R) = e− nf
and thus K∗∗ ∼= OX(e − nf). The embedding K ↪→ IZ(e) induces an
embedding

K∗∗ ∼= OX(e− nf) ↪→ OX(e).

This embedding is given by a global section ofOX(nf), that is by an effective
divisor D =

∑
i aiCi with class nf .

This global section is the pullback along the elliptic fibration π of a global
section of OP1(n), with corresponding effective divisor

∑
i aizi on P1, here

Ci = π−1(zi).
Denote by D ⊂ X also the corresponding closed subscheme (which maybe

non-reduced, if ai > 2 for some i). We get the commutative diagram

0 0

0 K OX(e− nf) T 0

0 IZ(e) OX(e) OZ 0

R OD(e)

0 0

α

β

The snake lemma gives an exact sequence

0 ker(α) R OD(e) coker(α) 0.
β

Let R′ ⊂ OD(e) be the image of β. Since the torsion sheaf O∑
i aizi

on P1

has a composition series by skyscraper sheaves Ozi as composition factors,
OD has a composition series with composition factors OCi , thus OD(e) has
a composition series with composition factors OCi(e). The latter is a line
bundle of degree

e · Ci = ef = 2k + 1
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on Ci. The quotientOD(e)/R′ is isomorphic to coker(α), that is to a quotient
Q of OZ . By intersecting with R′ we get a composition series for R′ with
composition factors which are kernels of a surjection OCi(e) � Q′ with Q′

of length 6 k. Thus we have exact sequences:

0 L OCi(e) Q′ 0,

with a torsion free sheaf L of rank one on the integral projective curve Ci
of arithmetic genus one. Using χ(OCi) = 0 and

χ(L) = χ(OCi(e))− χ(Q′) > k + 1,

gives
deg(OCi(e)) > deg(L) > k + 1.

By [6, Proposition 4.6.] all of these composition factors have trivial H1. By
constructing short exact sequences out of the composition series and using
the induced exact sequences for H1, it follows

H1(R′) = 0.

As ker(β) = ker(α) ⊆ T has finite support, we also have H1(ker(β)) = 0.
Hence

H1(R) = 0. �

3.2. The construction of a universal family. In this subsection we want
to generalize [16, Theorem 1.2]. Let h be the ample line bundle defined in
Lemma 3.2, and v = (2k − 1, h, 2k) ∈ H∗alg(X,Z) for any integer k > 2. We
immediately have the following result:

Lemma 3.6. The moduli space Mh(v) of µh-stable sheaves on X with Mukai
vector v is a smooth projective variety of dimension 2k and a fine moduli
space, and every point [E] ∈Mh(v) represents a locally free sheaf.

Proof. We first observe by [10, Lemma 1.2.7] that every µh-semistable sheaf
E with v(E) = v is µh-stable since gcd(2k − 1, h2) = 1. Thus Mh(v) is a
smooth projective variety. We compute:

dim(Mh(v)) = v2 + 2 = (8k2 − 2k − 2)− 2(2k − 1)(2k) + 2 = 2k.

Furthermore v′ = (2k − 1, h, a) with a > 2k + 1 satisfies

v′2+2 = h2−2a(2k−1)+2 6 (8k2−2k−2)−2(2k−1)(2k+1)+2 = 2−2k < 0,

so again every point [E] in Mh(v) is locally free. Mh(v) is a fine moduli
space as gcd(2k − 1, h2) = 1. �

In the following discussion, we will explicitly construct a universal family
for the moduli space Mh(v). We first define some integral functors. For any
line bundle L on X, we define

ML : Db(X) −→ Db(X); (−) 7−→ (−)⊗ L.
Then we consider the composition

(12) Θ := MOX(f) ◦ T−1
OX
◦MOX(e) : Db(X) −→ Db(X),

where T−1
OX

is the inverse of the spherical twist induced by OX . It is clear

that Θ is an autoequivalence of Db(X) hence a Fourier-Mukai transform.
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We denote the corresponding kernel by P ∈ Db(X × X). By Remark 1.5,
we have an explicit description of P by the exact triangle

(13) P −→ ∆∗OX(e+ f) −→ OX(e)�OX(f)[2] −→ P[1],

where ∆ : X ↪→ X×X is the diagonal embedding. The kernel P also defines
a Fourier-Mukai transform in the opposite direction, which we denote by

Θ̂ : Db(X) −→ Db(X).

Since the kernel of each composition factor in (12), viewed as an object in
Db(X ×X), remains the same under the permutation of the two copies of
X, it follows that

(14) Θ̂ = MOX(e) ◦ T−1
OX
◦MOX(f).

For any [Z] ∈ X [k], we apply Θ on the ideal sheaf IZ and define

EZ := Θ(IZ).

A priori EZ is a derived object on X, but we can show the following:

Theorem 3.7. EZ is µh-stable locally free sheaf with v(EZ) = (2k−1, h, 2k).

Proof. First of all, by (12) and [8, Lemma 8.12], a standard computation of
the cohomological Fourier-Mukai transform shows that

v(EZ) = (2k − 1, h, 2k).

Moreover, by (13) and the fact that T−1
OX

(OX) = OX [1], we obtain an exact
triangle

(15) EZ −→ IZ(e+ f) −→ H∗(IZ(e))⊗OX(f)[2] −→ EZ [1].

In order to compute H∗(IZ(e)), we observe by Lemma 3.3 that

(16) h0(OX(e)) = 0 and h2(OX(e)) = h0(OX(−e)) = 0.

It follows by a long exact sequence of cohomology groups that

h0(IZ(e)) = h2(IZ(e)) = 0.

Therefore the exact triangle (15) reduces to the short exact sequence

(17) 0 −→ H1(IZ(e))⊗OX(f) −→ EZ −→ IZ(e+ f) −→ 0,

where dimH1(IZ(e)) = rk(EZ) − 1 = 2k − 2. For the convenience of ana-
lyzing the stability of EZ , we rewrite the above exact triangle as

0 −→ O⊕(2k−2)
X −→ EZ(−f) −→ IZ(e) −→ 0.

Furthermore, we observe that OX(f) = Θ(OX(−e)[−1]). Since Θ is an
equivalence, we have

Hom(EZ(−f),OX) = Hom(EZ ,OX(f)) = Hom(IZ ,OX(−e)[−1]) = 0.

We are now ready to prove that EZ , or rather EZ(−f), is µh-stable. We
first have

µh(EZ(−f)) =
eh

2k − 1
=
−2k + (2k − 1)(2k + 1)

2k − 1
= 2k + 1− 2k

2k − 1
> 0.
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Pick a torsion free quotient F of EZ(−f) with 1 6 rk(F ) 6 2k − 2. We
have

EZ(−f) F 0

with Hom(F,OX) ↪→ Hom(EZ(−f),OX) = 0.
We want to show that we always have µh(F ) > µh(EZ(−f)). For this,

define the torsion free sheaf F0 as the image of the composition

O⊕(2k−2)
X EZ(−f) F.

We get a surjection

O⊕(2k−2)
X F0 0.

This implies that c1(F0) is effective and we have the following commutative
diagram:

(18)

0 0 0

0 K0 K1 K2 0

0 O⊕(2k−2)
X EZ(−f) IZ(e) 0

0 F0 F F1 0

0 0 0

Due to the diagram rk(F1) ∈ {0, 1}.
Case 1: rk(F1) = 1. Then rk(F0) = rk(F ) − 1 and F1

∼= IZ(e). We
conclude

c1(F ) = c1(F0) + c1(IZ(e))⇒ c1(F ) = c1(F0) + e.

Using this we find:

µh(F ) =
c1(F )h

rk(F )
=
c1(F0)h

rk(F )︸ ︷︷ ︸
>0

+
eh

rk(F )
>

eh

2k − 1
= µh(EZ(−f)).

So we indeed have µh(F ) > µh(Ex(−f)).

Case 2: rk(F1) = 0. Now rk(F0) = rk(F ). Write c1(F ) = me+ nf . Since
c1(F0) and c1(F1) are effective, so is their sum c1(F ), which by Lemma 3.3
implies, that m > 0 as well as

µh(F ) =
(me+ nf)h

rk(F )
> m((2k − 1)(2k + 1)− k)

rk(F )
> m(2k + 1− k

2k − 1
).
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For m > 1 we have

µh(F ) > m(2k + 1− k

2k − 1
)

> 2k + 1− k

2k − 1

> 2k + 1− 2k

2k − 1
= µh(EZ(−f))

So only the case m = 0 remains, i.e. c1(F ) = nf . We have

µh(F ) =
n(2k + 1)

rk(F )
.

If we can prove n > rk(F ) we are done since then

µh(F ) > 2k + 1 > 2k + 1− 2k

2k − 1
= µh(EZ(−f)).

As c1(F ) = nf is the sum of the two effective divisors c1(F0) and c1(F1), it
follows from Lemma 3.3 that c1(F0) = n0f and c1(F1) = n1f with n0, n1 > 0
and n0 + n1 = n.

By Lemma 3.5 we have H1(F1) = 0 which implies Ext1(F1,OX) = 0 using
Serre duality. So the restriction map

Hom(F,OX)→ Hom(F0,OX)

surjective. But we know Hom(F,OX) = 0. So

(19) Hom(F0,OX) = 0.

Using the elliptic fibration π : X → P1 we have:

(20) h0(det(F0)) = h0(OX(n0f)) = n0 + 1.

Now there is a trivial sub-bundle in O⊕(2k−2)
X of rank rk(F ) + 1 such that

O⊕(rk(F )+1)
X F0

ϕ

is surjective outside a finite subset of X by [3, Lemma 4.60].

Define R := coker(ϕ). Then there is the exact sequence:

0 F ′0 F0 R 0.

As R has finite support, we get:

det(F0) = det(F ′0) as well as H2(F ′0) ∼= H2(F0).

We also have the exact sequence

0 det(F0)−1 O⊕(rk(F )+1)
X F ′0 0.

The end of the induced long cohomology sequence gives:
(21)

H1(F ′0) H2(det(F0)−1) H2(O⊕(rk(F )+1)
X ) H2(F ′0) 0.
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It follows from (19) by Serre duality that

H2(F ′0) ∼= H2(F0) ∼= Hom(F0,OX)∨ = 0.

Since H2(F ′0) = 0, we apply Serre duality again and obtain from (21) that

0 H0(O⊕(rk(F )+1)
X ) H0(det(F0)).

We conclude

h0(det(F0)) > rk(F ) + 1.

Using this inequality together with (20) we get:

n0 + 1 = h0(det(F0)) > rk(F ) + 1⇒ n0 > rk(F )⇒ n > rk(F ).

We obtain the desired inequality between n and rk(F ), hence EZ(−f) is
stable, and so is EZ . It then follows by Lemma 3.6 that EZ is locally
free. �

We want to globalize the previous construction. For this we denote the
universal closed subscheme of length n by Z ⊂ X ×X [k], and the universal
ideal sheaf by IZ . As a kernel, IZ induces a pair of integral functors (in
opposite directions):

Φ : Db(X) −→ Db(X [k]) and Φ̂ : Db(X [k]) −→ Db(X).

Here Φ is a Pk−1-functor, see Example 1.6.
The composition of the integral functors

Θ ◦ Φ̂ : Db(X [k]) −→ Db(X)

is still an integral functor, whose kernel E ∈ Db(X [k]×X) can be computed
from P and IZ explicitly. More precisely, let π12, π23 and π13 be projections
from X [k] ×X ×X to each pair of factors, then

E = Rπ13∗(π
∗
12IZ ⊗ π∗23P);

see [8, Proposition 5.10]. We have the following property about E :

Proposition 3.8. E is a locally free sheaf on X [k] × X such that for any
[Z] ∈ X [k] we have E|{[Z]}×X ∼= EZ .

Proof. For any [Z] ∈ X [k], the derived pullback of E to the fiber {[Z]} ×X
can be computed by

(Θ ◦ Φ̂)(O[Z]) ∼= Θ(IZ) = EZ ,

which is a locally free sheaf by Theorem 3.7. It follows that E is a sheaf
which is flat over X [k] by [8, Lemma 3.31], and locally free by [10, Lemma
2.1.7]. �

In fact, E is a universal family for the fine moduli space Mh(v). More
precisely, we have

Corollary 3.9. The family E induces an isomorphism X [k] ∼= Mh(v).
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Proof. E induces a classifying morphism

ϕ : X [k] −→Mh(v); [Z] 7−→ [EZ ] .

Since Θ is an equivalence, we have EZ 6∼= EZ′ for [Z] 6= [Z ′], hence ϕ is

injective, hence it is an open embedding since X [k] and Mh(v) are both of

dimension 2k. But X [k] is projective, so ϕ is also closed. Since X [k] and
Mh(v) are both irreducible, ϕ must be an isomorphism. �

Remark 3.10. Although it is not strictly required in our following discus-
sion, the universal family E can in fact be given in a more explicit form
similar to (17). To globalize the construction in Theorem 3.7, we apply the
functor Rπ13∗(π∗12IZ ⊗ π∗23(−)) to (13) and obtain

E −→ Rπ13∗(π
∗
12IZ⊗π∗23∆∗OX(e+f)) −→ Rπ13∗(π

∗
12IZ⊗π∗2 OX(e)⊗π∗3 OX(f))[2] −→ E [1].

We denote the projections from X [k] × X to the two factors by p and q
respectively. Then a simple calculation reduces the above exact triangle to

E −→ IZ ⊗ q∗OX(e+ f) −→ Rp∗(IZ ⊗ q∗OX(e))�OX(f)[2] −→ E [1].

For the consistency with the following discussion, we denote

H := Rp∗(IZ ⊗ q∗OX(e))[1] = Φ(OX(e))[1].

We will prove in Lemma 3.11 that H is in fact a sheaf. Therefore the exact
triangle reduces to

0 −→ H�OX(f) −→ E −→ IZ ⊗ q∗OX(e+ f) −→ 0.

3.3. The wrong-way fibers. In this subsection we study the wrong-way
fibers of E . For any x ∈ X, we define the corresponding wrong-way fiber to
be

Ex := E|X[k]×{x},

which is locally free of rank 2k−1. As an alternative description, we consider
the composition

Φ ◦ Θ̂ : Db(X) −→ Db(X [k]),

which is also an integral functor with kernel E , in the direction opposite to

Θ ◦ Φ̂. Then we have

Ex = (Φ ◦ Θ̂)(Ox).

The following result gives a concrete description of Ex:

Lemma 3.11. The locally free sheaf Ex fits in an exact sequence of sheaves

(22) 0 H Ex ISx 0,

where

H := Φ(OX(e))[1]

is locally free, and ISx is the ideal sheaf of

Sx :=
{

[Z] ∈ X [k]
∣∣∣x ∈ supp(Z)

}
⊂ X [k].
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Proof. We write Fx := Θ̂(Ox), then Ex = Φ(Fx). By (14) we have the
equality Fx = T−1

OX
(Ox)⊗OX(e). By applying the inverse spherical functor

T−1
OX

to the exact sequence

0 −→ Ix −→ OX −→ Ox −→ 0

we obtain an exact triangle

T−1
OX

(Ix) −→ T−1
OX

(OX) −→ T−1
OX

(Ox) −→ T−1
OX

(Ix)[1].

Since TOX
(OX) = OX [−1] and TOX

(Ox) = Ix[1], the above triangle becomes

Ox[−1] −→ OX(e)[1] −→ Fx −→ Ox .
Since Φ(Ox) = ISx , we further apply the integral functor Φ to obtain the
exact triangle

(23) ISx [−1] −→ H −→ Ex −→ ISx ,

where H = Φ(OX(e))[1]. To compute H, we observe that the short exact
sequence of kernels

0 −→ IZ −→ OX[k]×X −→ OZ −→ 0

induces an exact triangle

(24) Φ(OX(e)) −→ H∗(OX(e))⊗OX[k] −→ OX(e)[k] −→ Φ(OX(e))[1].

Since H i(OX(e)) = 0 for i 6= 1 by (16), the exact triangle (24) reduces to
the short exact sequence

0 −→ OX(e)[k] −→ H −→ H1(OX(e))⊗OX[k] −→ 0,

which in particular implies that H is a locally free sheaf. It follows that the
exact triangle (23) reduces to the short exact sequence (22). �

We will require a technical result in the proof of the stability. For this
purpose, we define

IkX := (Xk ×SkX X [k])red

to be Haiman’s isospectral Hilbert scheme, and denote its projections to both
factors by p and q respectively. Then the derived McKay correspondence

Ψ := (−)Sk ◦ q∗ ◦ Lp∗ : Db(Xk)Sk −→ Db(X [k])

is an equivalence, and so is Ψ−1 : Db(X [k])→ Db(Xk)Sk . We have

Lemma 3.12. For any coherent sheaf F on X [k], if Ψ−1(F ) is a reflexive
sheaf, then

Ψ−1(F ) = (F )Xk .

Proof. We follow the above notation to denote

IkX◦ := Xk
◦ ×SkX◦ X

[k]
◦ ,

then we have the commutative diagram

X
[k]
◦ IkX◦ Xk

◦

X [k] IkX Xk,

α

p◦

β

q◦

j

q p
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where α, β, j and q◦ are étale morphisms, and p◦ is an isomorphism. We
also have

Ψ−1 ∼= Rp∗ ◦ q!,

(−)Xk = j∗ ◦ σ∗◦ ◦ α∗,

where the first equation is due to the fact that Ψ−1 is the right adjoint of
Ψ. It follows that

j∗ ◦Ψ−1 ∼= j∗ ◦Rp∗ ◦ q! ∼= p◦∗ ◦ β∗ ◦ q!

∼= p◦∗ ◦ β! ◦ q! ∼= p◦∗ ◦ q!
◦ ◦ α!

∼= p◦∗ ◦ q∗◦ ◦ α∗ ∼= σ∗◦ ◦ α∗.
Therefore we have

j∗ ◦ j∗ ◦Ψ−1 ∼= (−)Xk .

Since ∆ = Xk \Xk
◦ is of codimension 2, if Ψ−1(F ) is a reflexive sheaf, then

we have

Ψ−1(F ) ∼= j∗ ◦ j∗ ◦Ψ−1(F ) ∼= (F )Xk

as desired. �

Lemma 3.13. The sheaf (H)Xk fits in an exact sequence of Sk-invariant
locally free sheaves

(25) 0 −→
k⊕

i=1

q∗i OX(e) −→ (H)Xk −→ H1(OX(e))⊗OXk −→ 0.

Moreover, H0((H)Xk)Sk = 0, i.e. every Sk-invariant global section of
(H)Xk vanishes.

Proof. By [12, Theorem 3.6], the composition Ψ−1◦Φ : Db(X)→ Db(Xn)Sk

agrees with the truncated universal ideal functor defined in [13, Definition
5.1], therefore we have an exact triangle
(26)

(Ψ−1◦Φ)(OX(e)) −→ H∗(OX(e))⊗OXk
δ−→

k⊕

i=1

q∗i OX(e) −→ (Ψ−1◦Φ)(OX(e))[1],

where each component of δ is an evaluation map. Since H is a locally free
sheaf by Lemma 3.11, it follows by Lemma 3.12 that Ψ−1(H) = (H)Xk .
Hence

(Ψ−1 ◦ Φ)(OX(e)) = Ψ−1(H)[−1] = (H)Xk [−1].

Together with (16), the exact triangle (26) becomes the short exact sequence

(25), which is the universal equivariant extension of OXk by
⊕k

i=1 q
∗
i OX(e)

since δ is a collection of evaluation maps. Therefore its induced connecting
map in the long exact sequence of cohomology groups

H0
(
H1(OX(e))⊗OXk

)Sk −→ H1

(
k⊕

i=1

q∗i OX(e)

)Sk

is naturally an isomorphism, which implies H0((H)Xk)Sk = 0. �
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We will eventually prove the stability of Ex with respect to some ample
class H ∈ NS(X [k]). Similar to the previous section we have

NS(X [k]) = Zek ⊕ Zfk ⊕ Zδ.

For any l ∈ NS(X) and any ample class h ∈ NS(X) we have the intersection
numbers

lkh
2k−1
k =

(2k − 1)!

(k − 1)!2k−1
(lh)(h2)k−1,

δh2k−1
k = 0

by [21, Lemma 1.10]. Moreover, by Lemma 3.11 and [21, Lemma 1.5] we
also have

c1(Ex) = c1(H) = c1(OX(e)[k]) = ek − δ.
It follows by the above formulas that for any ample class h ∈ NS(X), we
have

c1(Ex)h2k−1
k =

(2k − 1)!

(k − 1)!2k−1
(eh)(h2)k−1.

However, OX(e)[k] is a subsheaf of Ex with the same c1. For Ex to be µhk -
stable, it is necessary to have eh < 0 since h2 > 0. An easy computation
shows that this condition cannot be fulfilled by the class h = e+ (2k − 1)f
from Lemma 3.2, so we cannot hope that Ex is µ-stable with respect to the

class hk induced by this h. However, for the class ĥ = (2k)e + (2k − 1)f
from Lemma 3.2, we do have

eĥ = (2k)e2 + (2k − 1)ef

= −(4k2) + (4k2 − 1) = −1.

Indeed, in the rest of this subsection we will prove that Ex is µ-stable with

respect to ĥk. We use the same notation as in Section 2.2 and also need the
following formula: assume F is a coherent sheaf on Xk with Sk-invariant
Chern class

c1(F ) =

k∑

i=1

q∗i c

where c ∈ NS(X), then the intersection number

c1(F )ĥ2k−1
Xk = ak(c · ĥ)(ĥ2)k−1

where ak = k(2k−1)!
2k−1 ; see [21, Lemma 1.10]. The main result of this subsection

is the following

Proposition 3.14. Ex is µ-stable with respect to ĥk.

Proof. Assume that F is a reflexive subsheaf of Ex of rank 1 6 r 6 2k − 2.
We need to show that µ

ĥk
(F ) < µ

ĥk
(Ex). By [20, Lemma 1.2], it suffices to

check that

µ
ĥ
Xk

((F )Xk) < µ
ĥ
Xk

((Ex)Xk),

where (F )Xk is an Sk-invariant subsheaf of (Ex)Xk .
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We apply the functor j∗(σ∗k,◦((−)◦)) to (22). Since the functor is left

exact, together with [20, Lemma 1.1] we obtain that

(27) 0 −→ (H)Xk −→ (Ex)Xk −→ (ISx)Xk −→ Q −→ 0,

such that supp(Q) ⊆ ∆, where ∆ = Xk \Xk
◦ is the big diagonal. It is also

clear that

σ∗k,◦((ISx)◦) =

(
k⊗

i=1

q∗i Ix

)∣∣∣∣∣
Xk\∆

.

Since ∆ is of codimension 2 in Xk, we have that c1((ISx)Xk) = 0. It follows
that

c1((Ex)Xk) = c1((H)Xk).

Moreover, we have by (25) that

c1((H)Xk) =

k∑

i=1

q∗i e.

Therefore

c1((Ex)Xk)ĥ2k−1
Xk = c1((H)Xk)ĥ2k−1

Xk

= ak(eĥ)(ĥ2)k−1

= ak(−1)(ĥ2)k−1.

Since (F )Xk is Sk-invariant, we have c1((F )Xk) =
k∑
i=1

q∗i c for some element

c ∈ NS(X), and

c1((F )Xk)ĥ2k−1
Xk = ak(c · ĥ)(ĥ2)k−1.

We have the following two cases:

If c · ĥ 6 −1, then we have

c1((F )Xk)ĥ2k−1
Xk 6 c1((Ex)Xk)ĥ2k−1

Xk < 0.

Since rk((F )Xk) < rk((Ex)Xk), it follows that

µ
ĥ
Xk

((F )Xk) < µ
ĥ
Xk

((Ex)Xk).

If c · ĥ > 0, then c1((F )Xk)ĥ2k−1
Xk > 0.

We choose a (not necessarily Sk-invariant) non-zero µ
ĥ
Xk

-stable reflex-

ive subsheaf of maximal slope F ′ ⊆ (F )Xk , then µ
ĥ
Xk

(F ′) > 0. However

q∗i OX(e) is µ
ĥ
Xk

-stable for i = 1, . . . , k, and

c1(q∗i OX(e))ĥ2k−1
Xk = ak(eĥ)(ĥ2)k−1 = ak(−1)(ĥ2)k−1 < 0.

Hence the only map from F ′ to q∗i OX(e) is zero.

By (27) we obtain a morphism F ′ α→ (ISx)Xk . It is clear that (ISx)Xk

is torsion free, so it is a subsheaf of its double dual (ISx)∨∨
Xk . We also note

that the restriction of (ISx)Xk on Xk \ (∆∪ q−1
1 ({x})∪ · · ·∪ q−1

k ({x})) is the
trivial line bundle, hence

(ISx)∨∨Xk = OXk .
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Therefore we have

F ′ α→ (ISx)Xk ↪→ OXk .

If α 6= 0, then the composition of both maps is non-zero, hence the stability
forces

µ
ĥ
Xk

(F ′) = 0 = µ
ĥ
Xk

(OXk).

Since F ′ is reflexive, the composition must be the identity map. Since
(ISx)Xk 6= OXk this is a contradiction. It follows that α = 0, which implies
by (27) that F ′ is a subsheaf of (H)Xk . By (25) and the above discussion, we
can furthermore conclude that F ′ is isomorphic to a subsheaf of the trivial
bundle H1(OX(e))⊗OXk . The stability forces again that

µ
ĥ
Xk

(F ′) = 0 = µ
ĥ
Xk

(OXk)

and F ′ ∼= OXk . Moreover, since all global sections of the trivial bundle
H1(OX(e)) ⊗ OXk in (25) are invariant under the permutation of Sk, we
conclude that F ′ itself is also Sk-invariant, which gives a non-trivial Sk-
invariant global section of HXk . This contradicts Lemma 3.13, therefore
(Ex)Xk cannot be destabilized by any Sk-invariant subsheaf, which con-
cludes that Ex is µ

ĥk
-stable. �

3.4. A smooth connected component. In this subsection, we will in-
terpret the universal sheaf E as a family of stable sheaves on X [n] whose
base is a smooth connected component of the corresponding moduli space.
We have shown above that all the wrong-way fibers Ex of the family E are

µ-stable with respect to ĥk. We follow the idea in Theorem 2.8 to show their

µ-stability with respect to a certain ample class near ĥk.

Theorem 3.15. There exists some ample class H ∈ NS(X [k]) near ĥk, such
that Ex is µH-stable for all x ∈ X simultaneously.

Proof. The same as in Theorem 2.8, the value of c = µβ(Ex) is independent
of the choice of x ∈ X. We still define

S := {c1(F ) | F ⊆ Ex for some x ∈ X such that µβ(F ) > c}.
The proof of the present result is literally the same as the proof of Theorem
2.8, except that the step which shows that S is a finite set has to be modified.

For this purpose we make a few auxiliary definitions. Let E′x = H ⊕ ISx

for each x ∈ X. We also define the set

S′ := {c1(F ′) | F ′ ⊆ E′x for some x ∈ X such that µβ(F ′) > c}.
We claim that S ⊆ S′.

Indeed, by (22), every subsheaf F ⊆ Ex is an extension of some subsheaf
F2 ⊆ ISx by another subsheaf F1 ⊆ H. It is then clear that F ′ = F1 ⊕ F2

is a subsheaf of E′x, and that c1(F ) = c1(F ′). If F destabilizes Ex, then F ′

also destabilizes E′x, which means that every element of S is also in S′, as
desired.

It remains to show that S′ is finite. In fact, since E′x ⊆ (H ⊕ OX[k]) for
all x ∈ X, we obtain that S′ is a subset of

T ′ := {c1(F ′) | F ′ ⊆ (H⊕OX[k]) such that µβ(F ′) > c},
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which is finite by [7, Theorem 2.29], hence S′ is also finite, which further
implies the finiteness of S. This concludes the proof. �

Let H be an ample class that satisfies Theorem 3.15, and M the moduli
space of µH -stable sheaves on X [k] with the same numerical invariants as
Ex. Then the universal family E defines a classifying morphism

(28) f : X −→M, x 7−→ [Ex].

Similar as Theorem 2.10, we obtain

Theorem 3.16. The classifying morphism (28) defined by the family E
identifies X with a smooth connected component of M.

Proof. For any pair of points x, y ∈ X, since Θ is an equivalence, we have

Ext∗(Fx, Fy) ∼= Ext∗(Ox,Oy);
moreover by Remark 1.7 we have

Ext∗(Ex, Ey) ∼= Ext∗(Fx, Fy)⊗H∗(Pk−1,C).

It is clear that

Ext∗X(Ox,Oy) ∼=
{

Λ∗(TX,x) if x = y

0 if x 6= y.

Combining the above computations we obtain

HomX[k](Ex, Ey) = 0 for any x, y ∈ X with x 6= y

and Ext1
X[k](Ex, Ex) ∼= TX,x for any x ∈ X.

These imply that f is injective on closed points and that dim(T[Ex]M) = 2
for all x ∈ X. The claim then follows from an argument similar to the proof
of Theorem 2.10. �
Remark 3.17. The stable vector bundles constructed in Theorem 2.8 as
well as Theorem 3.15 are not tautological bundles as the rank of a tautolog-
ical bundle is always divisible by k, but in our cases the ranks are k+ 1 and
2k − 1.
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STABLE VECTOR BUNDLES ON GENERALIZED

KUMMER VARIETIES

FABIAN REEDE AND ZIYU ZHANG

Abstract. In this article we explicitly construct two new families of
stable vector bundles on the generalized Kummer variety Kn(A) for
n > 2 associated to an abelian surface A. The first is the family of
tautological bundles associated to stable bundles on A, and the second
is the family of the “wrong-way” fibers of a universal family of stable

bundles on the dual abelian surface Â parametrized by Kn(A). Each
family exhibits a smooth connected component in the moduli space of
stable bundles on Kn(A), which is holomorphic symplectic but not sim-
ply connected, contrary to the case of K3 surfaces.

Introduction

Background. Irreducible holomorphic symplectic manifolds are a type of
building blocks in the classification of compact Kähler manifolds with trivial
first Chern class. In the very influential paper [3], Beauville constructed
two classes of irreducible holomorphic symplectic manifolds, which are the
Hilbert schemes X [n] of n-points on K3 surfaces X, and the generalized
Kummer varieties Kn(A) associated to abelian surfaces A, obtained as the

zero fibers of the summation map Σ : A[n+1] → A. The second construction
was later generalized by Yoshioka in [27], in which he proved that the fibers

KH(v) of the Albanese morphism av : MH(v) → A × Â for moduli spaces
MH(v) of µH -stable sheaves on A with Mukai vector v are deformation
equivalent to generalized Kummer varieties.

Main results. The present manuscript is a continuation of the authors’
work [22, 23] on the construction of new stable sheaves on irreducible holo-
morphic symplectic manifolds. The same problem was also studied by var-
ious authors, such as in [24, 25, 26]. Recently, Markman [17] and O’Grady

[21] also found examples of stable bundles among modular sheaves on K3[n]s.
The main purpose of this manuscript is to construct new stable vector bun-
dles on generalized Kummer varieties and study some of their properties.
We achieved two different constructions.

A natural family of vector bundles on Kn(A) for considering stability
are the so-called tautological bundles. In [25] Wandel constructed some
examples of tautological bundles on Kn(A) for n = 1, 2. Following an idea
of Stapleton [24], we generalize Wandel’s results by proving that in fact all
taulogical bundles on Kn(A) for n > 2 are stable with respect to suitable
amples classes. Moreover, under suitable numerical assumptions, we show

2020 Mathematics Subject Classification. Primary: 14J60; Secondary: 14F08, 14D20,
53C26.
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that the tautological bundles form a connected component of the moduli
space of stable bundles on Kn(A). This in particular indicates that smooth
components of moduli spaces of sheaves on generalized Kummer varieties
need not be irreducible holomorphic symplectic manifolds, contrary to the
result for K3 surfaces, see [14, Theorem 10.3.10].

For another family of vector bundles on Kn(A), we use the standard
Fourier-Mukai transform to construct a fine moduli space M

Ĥ
(w) of stable

vector bundles of rank r > n + 2 on the dual abelian variety Â for some

suitable choice of the Mukai vector w, such that M
Ĥ

(w) ∼= A[n+1]×Â. Then
Kn(A) is naturally isomorphic to the zero fiber of the Albanese morphism

aw : M
Ĥ

(w) → A × Â. Let U be the restriction of the universal family

on Â ×M
Ĥ

(w) to the closed subscheme Â ×Kn(A). For each closed point

â ∈ Â, the further restriction of U to the slice {â} ×Kn(A) gives a vector
bundle Uâ on Kn(A). Following our approach in [23], we show that each Uâ
is a stable bundle on Kn(A), hence we obtain a family of stable bundles on

Kn(A) parametrized by Â.
Our main results can be summarized as follows:

Theorem. Let (A,H) be a polarized abelian surface, and (Â, Ĥ) its dual.

(1) (Theorem 1.7) Let E be a µH-stable vector bundle of class v on

A with E 6= OA, then the tautological bundle E(n) is a µD-stable
vector bundle on Kn(A) with respect to some ample divisor D on
Kn(A). Moreover, under suitable numerical assumptions on v, the
moduli space MH(v) of µH-stable vector bundles of class v on A
can be embedded as a connected component of some moduli space of
µD-stable vector bundles on Kn(A).

(2) (Theorem 2.12) Let U be the restriction of the universal vector bundle

on Â×M
Ĥ

(w) to the closed subscheme Â×Kn(A) as described above.

Then for each closed point â ∈ Â, the fiber Uâ is a µD-stable bundle

on Kn(A) with respect to an ample divisor D. Moreover, Â can be
embedded as a connected component of a moduli space of µD-stable
vector bundles on Kn(A).

Sketch of proof. Let us give a quick overview on how we achieved the
above results. Although the setup in both cases looks very different, we will
follow a similar chain of ideas to prove the slope stability of the bundles
E(n) (resp. Uâ) with respect to some ample divisor D on Kn(A). The proof
consists of the following three major steps.

Step 1. To begin with, let Pn(A) be the codimension 2 subvariety of
An+1 parametrizing (n+ 1)-tuples whose components add up to zero under

the group law of A. Each bundle E(n) (resp. Uâ) defines uniquely a reflexive
sheaf on Pn(A). We adapt the technique developed by Stapleton in [24] to

prove the slope stability of E(n) (resp. Uâ) with respect to a natural nef divi-
sor HK on Kn(A) by showing that the corresponding reflexive sheaf cannot
be destabilized by any Sn+1-invariant subsheaf on Pn(A). (See Propositions
1.5 and 2.10.)

Step 2. In order to show the slope stability of E(n) (resp. Uâ) with
respect to an ample divisor on Kn(A), we use the openness of stability to
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perturb HK to a nearby ample divisor D. This perturbation argument was
developed in [9, 24], and generalized in [23]. The main difficulty for our
application is to show the existence of the ample divisor D independent of
the choice of E in its own moduli MH(v) (resp. the choice of the fiber Uâ in

the family U parametrized by Â). (See Propositions 1.6 and 2.11.)

Step 3. Finally, in order to identify MH(v) (resp. Â) as a smooth
connected component of the moduli space of µD-stable sheaves on Kn(A),

we interpret E(n) (resp. Uâ) as the image of E (resp. a line bundle on A)
under an integral functor Θ induced by the structure sheaf (resp. the ideal
sheaf) of the universal subscheme for Kn(A). By a result of Meachan [18],
we can apply the technique of P-functors invented in [1, 2] to compute the
relevant cohomology groups, which lead to our conclusion. (See Theorems
1.7 and 2.12.)

Structure of text. The text is organized in two sections, which deal with
the two cases mentioned above respectively. All objects are defined over the
field of complex numbers C.

1. Tautological Bundles

1.1. Notations. For any integer n > 2, let A be an abelian surface, Kn(A)
the generalized Kummer variety of dimension 2n, and Z ⊂ A ×Kn(A) the
corresponding universal family. The projections from Z to the two factors
A and Kn(A) are denoted by p and q respectively. The following diagram
exhibits the relations of some relevant schemes:

(1)

Pn(A)◦ Sn(A)◦ Kn(A)◦

Pn(A) Sn(A) Kn(A)

An+1 A(n+1) A[n+1]

σ◦

jP jS

h◦

jK

σ

τ

h

ι

σ h

Each vertical arrow in the lower half of the diagram is the embedding of
a zero fiber of the addition morphism to A; σ and σ are quotients by the
symmetric group Sn+1; h and h are Hilbert-Chow morphisms. Moreover, we
denote the projections from An+1 to each individual factor by q0, q1, · · · , qn.

Each vertical arrow in the upper half of the diagram is the embedding of an
open subscheme parametrizing n+ 1 distinct (ordered or unordered) points
in A. It is clear that the complement of each of these embeddings is a closed
subscheme of codimension 2. The morphisms σ◦ and h◦ are restrictions of
the morphisms in the second row. Clearly σ◦ is a free Sn+1-quotient and h◦
is an isomorphism.

Let H be an ample divisor on A. For each 0 6 i 6 n, we define the
class hi = τ∗q∗iH. Then HP =

∑n
i=0 hi on Pn(A) is an Sn+1-invariant

ample divisor on Pn(A), which descends to an ample divisor HS on Sn(A),
whose pullback HK = h∗(HS) is a big and nef divisor on Kn(A). For any

E ∈ Coh(A), the corresponding tautological sheaf E(n) on Kn(A) is defined

by E(n) = q∗p∗E. Moreover, we write Ei = τ∗q∗iE for each 0 6 i 6 n. The
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goal of this section is to show that if E is a non-trivial µH -stable vector
bundle on A, then E(n) is slope stable with respect to some ample divisor
sufficiently close to HK . Our approach will mainly follow the idea in [24].

1.2. Pullback of stable bundles. We aim to prove Proposition 1.4, which
is an analogue of [24, Proposition 4.7] in the Kummer case. We first collect
necessary notations and tools required in the course of the proof, following
[24, §4].

For any normal projective variety X, let γ ∈ N1(X)R be a curve class and
E ∈ Coh(X) a torsion-free sheaf. The slope of E with respect to γ is defined
as

µγ(E) =
c1(E) · γ

rk E .

It is clear that the slope is linear with respect to γ, and the usual notion

of slope µH(E) = µH
d−1

(E) for any ample class H ∈ N1(X)R, where we
have n = dimX. The new notion of slope defines a slope stability (resp.
semistability) of E with respect to a curve class γ, by requiring any torsion-
free quotient of E of a smaller rank to have a smaller (resp. smaller or equal)
slope with respect to γ.

The main advantage of studying slope stability with respect to curve
classes is the linearity of slopes with respect to the curve parameter. More
precisely, we have

Lemma 1.1 ([24, Lemma 4.4]). Let γ, δ ∈ N1(X)R such that E is semistable
with respect to γ and stable with respect to δ, then E is stable with respect
to aγ + bδ for any a, b > 0. �

Our main tool for determining the slope stability is the following obser-
vation

Lemma 1.2 ([24, Corollary 4.6]). Let π : CT → T be a family of smooth
irreducible closed curves in X with class γ. Suppose that E is a vector bundle
on X such that E|Ct is stable for all t ∈ T , and that the curves in CT are
dense in X, then E is stable with respect to the curve class γ. Moreover, the
statement also holds if stability is replaced by semistability. �

The following lemma will be required in the proof of our main result

Lemma 1.3. Let S : A3 → A be the addition with respect to the group law
on A, and qi : A3 → A the projection to the i-th factor for 1 6 i 6 3.
Assume H is a sufficiently ample divisor on A. Let Ci ∈ |H| for 1 6 i 6 3.
Then

(1) For any fixed point b ∈ A, the scheme theoretic intersection of
S−1(b), q−1

1 (C1), q−1
2 (C2), q−1

3 (C3) is a smooth curve C for a generic
choice of Ci for 1 6 i 6 3;

(2) Each projection qi : C → Ci is a finite morphism for 1 6 i 6 3.

Proof. For the first statement we use Bertini theorem; see e.g. [7, Proposi-
tion 0.5]. We first observe that the addition morphism S is smooth, hence
Y0 = S−1(b) is smooth and irreducible. By assumption the complete linear
system |H| has no base point, so does q−1

1 (H)|Y0 . Hence a generic choice

of C1 ∈ |H| and Y1 = Y0 ∩ q−1
1 (C1) are smooth and irreducible by Bertini
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theorem. For the same reason q−1
2 (H)|Y1 has no base point, hence a generic

choice of C2 ∈ |H| and Y2 = Y1 ∩ q−1
2 (C2) are smooth and irreducible. Sim-

ilarly, a generic choice of C3 ∈ |H| and C = Y2 ∩ q−1
3 (C3) are smooth and

irreducible. A dimension count shows that C is a curve.
For the second statement, since C is smooth irreducible, and the projec-

tion qi is surjective, it follows by [11, Proposition II.6.8] that qi is a finite
morphism. �

It was proven in [24, Proposition 4.7] that the pullback of a slope stable
bundle E from A to An+1 via the projection to any factor is stable with
respect to a natural Sn+1-invariant ample class. The following proposition
shows that a further restriction to Pn(A), the zero fiber of the addition
morphism, remains stable.

Proposition 1.4. Under the above notations, let E be a µH-stable bundle
on A. Then Ei is a µHP

-stable bundle on Pn(A) for each 0 6 i 6 n.

Proof. Without loss of generality, we prove the result for i = 0. Moreover,
by replacing H with a high tensor power of itself, we can assume that a
generic element C ∈ |H| in the linear system is a smooth curve such that
E|C is slope stable.

Using the notation of slope stability with respect to a real curve class
defined in the beginning of the subsection, we need to show that E0 is slope
stable with respect to the curve class H2n−1

P . We expand the product to
obtain

(2) H2n−1
P =

∑

k0+···+kn=2n−1
06k0,··· ,kn62

ck0···knh
k0
0 · · ·hknn

where each ck0···kn is some positive integer. We will analyze the slope stabil-
ity of E0 with respect to each term on the right-hand side of (2). Without
loss of generality, by permuting the indices 1 6 i 6 n, we need to consider
the following 5 cases:

Case 1. k0 = 2, k1 = 1, k2 = 0, and ki = 2 for each i > 3. We consider
the family of curves in Pn(A) given by intersecting

{a0} × C1 ×A× {a3} × · · · × {an}
with Pn(A) in An+1, where a0, a3, · · · , an ∈ A and C1 ∈ |H|. Each curve

C in this family lies in the class hk00 · · ·hknn /(H2)n−1, and is isomorphic
to C1 via the projection q1. Therefore a generic choice of C is smooth,
and it is clear that E0|C is a trivial bundle, hence is slope semistable. We
claim that all such curves C cover a dense subset of Pn(A). Indeed, the
projection q′ = (q0, q1, q3, · · · , qn) identifies Pn(A) with An, and C with
{a0}×C1×{a3}× · · · × {an}. Since we assume that H is very ample, there
is a subset F ⊂ |H| parametrizing smooth irreducible curves C1 ∈ |H|, such
that the union U =

⋃
C1∈F C1 is dense in A. By varying a0, a3, · · · , an,

we obtain a family of smooth and irreducible curves in An parametrized by
A×F×An−2, whose union A×U×An−2 is dense in An. Then the preimages
of these curves via q′ are smooth irreducible curves in Pn(A), whose union
is dense in Pn(A), as desired. Therefore E0 is slope semistable with respect

to the curve class hk00 · · ·hknn by Lemma 1.2.
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Case 2. k0 = 2, k1 = k2 = k3 = 1, and ki = 2 for each i > 4. We
consider the family of curves in Pn(A) given by intersecting

{a0} × C1 × C2 × C3 × {a4} × · · · {an}

with Pn(A) in An+1, where a0, a4, · · · , an ∈ A and C1, C2, C3 ∈ |H|. Each

curve C in this family lies in the class hk00 · · ·hknn /(H2)n−2. By Lemma 1.3,
a generic choice of C is smooth, and it is clear that E0|C is a trivial bundle,
hence is slope semistable. All such curves C cover a dense subset of Pn(A).

Therefore E0 is slope semistable with respect to the curve class hk00 · · ·hknn
by Lemma 1.2.

Case 3. k0 = 1, k1 = 0, and ki = 2 for each i > 2. We consider the
family of curves in Pn(A) given by intersecting C0 × A × {a2} × · · · {an}
with Pn(A) in An+1, where a2, · · · , an ∈ A and C0 ∈ |H|. Each curve C

in this family lies in the class hk00 · · ·hknn /(H2)n−1, and is isomorphic to C0

via the projection q0. Therefore a generic choice of C is smooth, and E0|C
is isomorphic to E|C0 , which by the assumption on H is slope stable for
a generic choice of C0. All such curves C cover a dense subset of Pn(A).

Therefore E0 is slope stable with respect to the curve class hk00 · · ·hknn by
Lemma 1.2.

Case 4. k0 = k1 = k2 = 1, and ki = 2 for each i > 3. We consider the
family of curves in Pn(A) given by intersecting C0×C1×C2×{a3}×· · ·×{an}
with Pn(A) in An+1, where a3, · · · , an ∈ A and C0, C1, C2 ∈ |H|. Each

curve C in this family lies in the class hk00 · · ·hknn /(H2)n−2. By Lemma 1.3,
a generic choice of C is smooth, and the projection gives a finite morphism
ϕ : C → C0 such that E0|C = ϕ∗(E|C0). We know E|C0 is slope stable by
the assumption on H for a generic choice of C0. It follows by [15, Lemma
3.2.3] that E0|C is slope semistable. All such curves C cover a dense subset
of Pn(A). Therefore E0 is slope semistable with respect to the curve class

hk00 · · ·hknn by Lemma 1.2.
Case 5. k0 = 0, k1 = 1, and ki = 2 for each i > 2. We consider the

family of curves in Pn(A) given by intersecting A × C1 × {a2} × · · · {an}
with Pn(A) in An+1, where a2, · · · , an ∈ A and C1 ∈ |H|. Each curve

C in this family lies in the class hk00 · · ·hknn /(H2)n−1, and is isomorphic to
C1 via the projection q1. Therefore a generic choice of C is smooth. For
any fixed choice of a2, · · · , an ∈ A, let ι be the inverse morphism on A,
b = −(a2 + · · ·+an) (with respect to the group law on A), and tb : A→ A is
the corresponding translation. Then E0|C is isomorphic to (t∗bι

∗E)|C1 . Since
E is µH -stable, t∗bι

∗E is also µH -stable. Hence (t∗bι
∗E)|C1 is slope stable for

a generic choice of C1, and the corresponding curves C cover a dense subset
of the intersection of A×A×{a2}× · · ·× {an} with Pn(A). When we allow
a2, · · · , an to move in A, it follows that E0|C is slope stable for a generic
choice of the curve C as described above, and such curves cover a dense
subset of Pn(A). Therefore E0 is slope stable with respect to the curve class

hk00 · · ·hknn by Lemma 1.2.
Applying Lemma 1.1, the above cases together implies that E0 is slope

stable with respect to the curve class H2n−1
P ; in other words, E0 is µHP

-
stable. �
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1.3. Tautological bundles. For any torsion free coherent sheaf F onKn(A),
we follow [24, §1] to define an Sn+1-invariant coherent sheaf on Pn(A) by

(F )P = (jP )∗σ∗◦(h
−1
◦ )∗j∗KF,

which is reflexive if F itself is reflexive. Moreover, we observe that an ana-
logue of [24, Lemma 1.2], namely

(3) (n+ 1)!

∫

Kn(A)
c1(F ) · (HK)2n−1 =

∫

Pn(A)
c1((F )P ) · (HP )2n−1

holds due to the relevant diagonals having codimension 2. The following
result is an analogue of [24, Theorem 1.4] in the Kummer case.

Proposition 1.5. Let E be a µH-stable bundle on A not isomorphic to OA,
then E(n) is a µHK

-stable bundle on Kn(A).

Proof. It suffices to show that every reflexive subsheaf of E(n) of smaller rank
has a smaller slope. Let F be such a subsheaf of E(n), then (F )P is an Sn+1-

invariant reflexive subsheaf of (E(n))P . Using equation (3), it is enough to

prove µHP
((F )P ) < µHP

((E(n))P ). Let G be a non-zero (not necessarily
Sn+1-invariant) µHP

-stable subsheaf of (F )P of maximal slope; e.g., we can
take G to be the first factor in a Jordan-Hölder filtration of (F )P . A similar

argument as in [24, Lemma 1.1] shows that (E(n))P = E0⊕ · · · ⊕En. (Both
sides are reflexive sheaves and isomorphic on Pn(A)◦ whose complement is
of codimension 2.) Therefore, there exists some i such that the composition
of the embedding and projection

(4) G ↪→ (F )P ↪→ (E(n))P � Ei

is non-zero. Since Ei is also µHP
-stable for each 0 6 i 6 n by Proposition

1.4, we must have µHP
(G) 6 µHP

(Ei).
Case 1. If µHP

(G) < µHP
(Ei), then

µHP
((F )P ) 6 µHP

(G) < µHP
(Ei) = µHP

((E(n))P ),

hence (F )P does not destabilize (E(n))P .
Case 2. If µHP

(G) = µHP
(Ei), then the composition map (4) must be

an isomorphism. Since E 6∼= OA, we have Ei 6∼= Ej for i 6= j. (Choose any k
different from i and j, then the projection q′′ = (q0, · · · , qk−1, qk+1, · · · , qn)
identifies Pn(A) with An. The pullback of a non-trivial sheaf via projections
to two distinct factors are not isomorphic.) It follows that the composition

G ↪→ (F )P ↪→ (E(n))P � Ej

must be zero for any j 6= i. It follows that G is the direct summand Ei
of (E(n))P . Since (F )P is an Sn+1-invariant subsheaf of (E(n))P containing

the direct summand Ei, we obtain (F )P = (E(n))P , which cannot happen
since the left-hand side has a smaller rank than the right-hand side. This
concludes the proof. �

In the following we will apply the perturbation argument in [24, §4] to

show the slope stability of E(n) with respect to an ample divisor on Kn(A),
which stays constant when we deform E in its moduli.
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1.4. The family of stable bundles. In this subsection we study families
of stable tautological bundles. We assume that

v = (v0, v1, v2) ∈ H0(A,Z)⊕NS(A)⊕H4(A,Z)

is a Mukai vector satisfying the condition

(†) the projective moduli space MH(v) of H-semistable sheaves of class
v is non-empty and contains only µH -stable locally free sheaves.

This condition is easy to achieve: first of all we require v0 > 0; in order for
every µH -semistable sheaf of class v to be stable, it suffices to require that
v0 and H · v1 are coprime; the nonemptiness can be achieved by requiring

(5) 〈v2〉 = v2
1 − 2v0v2 > 0;

finally the local freeness of all µH -stable sheaves holds when v2 takes the
largest possible value satisfying (5) for any fixed v0 and v1. For instance, if
A is an abelian surface with a primitive ample divisor H such that H2 = 16,
then the Mukai vector v = (5, H, 1) satisfies the condition (†).

Under the condition (†), we have seen by Proposition 1.5 that the tauto-

logical bundle E(n) is µHK
-stable for each E ∈MH(v). However, HK lies in

the boundary of the ample cone of Kn(A). In order to establish the stability
of the tautological bundle with respect to some ample class, we need the
following result

Proposition 1.6. Under condition (†), there exists an ample class H ′ ∈
NS(Kn(A)) near HK , such that E(n) is µH′-stable for all [E] ∈MH(v).

Proof. By replacing H with a high tensor power of itself if necessary, we
assume the complete linear system |HK | defines (the restriction of) the
Hilbert-Chow morphism h : Kn(A) → Sn(A) as shown in (1). We claim
that h is semismall. Indeed, for any partition ξ given by

n+ 1 = 1 · n1 + 2 · n2 + · · ·+ r · nr,
we consider the locally closed subscheme Yξ ⊂ Sn(A) parametrizing n1 +
n2 + · · ·+nr distinct points, among which are ni points of multiplicity i for
1 6 i 6 r. We have dimYξ = 2(n1 + n2 + · · · + nr) − 2 and dimh−1(y) =
0 · n1 + 1 · n2 + · · ·+ (p− 1) · np for any closed point y ∈ Y . It follows that
dimYξ + 2 dimh−1(y) = 2n = dimKn(A) which implies that h is semismall.
Therefore HK is lef by [6, Definition 2.1.3] and satisfies the hard Lefschetz
property by [6, Theorem 2.3.1]. It then follows from [24, Proposition 4.8]

that each E(n) is µH′-stable with respect to some ample class H ′ near HK .
However, in order to find a single H ′ that works simultaneously for all E(n),
we can apply the entire proof of [24, Proposition 4.8] except one step; namely,
we need to find a convex open set U such that α := H2n−1

K is in the closure

of U , and for each γ ∈ U , the tautological bundle E(n) is stable with respect
to γ for all [E] ∈MH(v).

We follow the notations in [9, Definition 3.1]. For each [E] ∈ MH(v),

SStab(E(n)) is a convex closed set containing α. Hence the intersection

U :=
⋂

[E]∈MH(v)

SStab(E(n))

is also a convex closed set containing α.
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We claim that [9, Theorem 3.4] holds for all E(n) simultaneously; namely,
we will show that for any β ∈ Mov(Kn(A))◦ (see [9, Definition 2.1] for the no-

tation), there exists some e ∈ Q+, such that (α+εβ) ∈ ⋂[E]∈MH(v) Stab(E(n))

for any real ε ∈ [0, e].
To prove the claim, we first note by [8, p.87, Lemma 5(v)] that E is

µH -stable of class v = (v0, v1, v2) if and only if E∨ is µH -stable of class
v∨ = (v0,−v1, v2). Since µH -stable sheaves of class v∨ are bounded, there
exists some positive integer m such that E∨(mH) is globally generated and
H i(A,E∨(mH)) = 0 for all i > 0, hence there exists a surjective map
OA(−mH)⊕N � E∨, where m and N are independent of E. Since E is
locally free, we can take the dual of the above surjective map to obtain an
injective map E ↪→ OA(mH)⊕N , and complete it to an exact sequence

0 −→ E −→ OA(mH)⊕N −→ QE −→ 0.

We apply the functor q∗ ◦ p∗ on the above sequence. It was proven in [22,
Lemma 3.1] that the morphism p is flat for n > 2, hence the functor p∗ is
exact. The morphism q is finite thus q∗ is also exact. Therefore we obtain
an exact sequence

(6) 0 −→ E(n) −→ q∗p∗OA(mH)⊕N −→ q∗p∗QE −→ 0.

We note that the slope c := µβ(E(n)) is independent of of [E] ∈MH(v), and
redefine the set S in the proof of [9, Theorem 3.4] to be

S := {c1(F ) | F ⊆ E(n) for some [E] ∈MH(v) such that µβ(F ) > c}.
By (6) we see that S is a subset of

T := {c1(F ) | F ⊆ q∗p∗OA(mH)⊕N such that µβ(F ) > c},
which is finite by [9, Theorem 2.29]. Thus S is a also a finite set. We can
then apply the rest of the proof of [9, Theorem 3.4] literally to conclude the
claim.

Now we can show that U is of full dimension r := rkN1(Kn(A)). If
not, then we have α ∈ U ⊆ L for some hyperplane L ⊂ N1(Kn(A))R. Since
Mov(Kn(A)) is of full dimension, we can choose some β ∈ Mov(Kn(A))◦ \L.
It follows that (α + εβ) ∈ U \ L for some small ε > 0 by the above claim
and the choice of β. Contradiction.

We define U to be the interior of U and claim that U is non-empty.
Indeed, since U is of full dimension r, we can choose r + 1 points of U in
general positions, which form an r-simplex. By the convexity of U , the entire
simplex is in U hence any interior point of the simplex is also an interior
point of U . The convexity of U follows from the convexity of U . And it is
clear from the construction that α = H2n−1

K is in the closure of U .

We finally prove that U ⊆ ⋂[E]∈MH(v) Stab(E(n)). If not, suppose that

there is some γ0 ∈ U and some [E] ∈ MH(v), such that we have in fact

γ0 ∈ SStab(E(n)) \ Stab(E(n)); namely, µγ0(F ) = µγ0(E(n)) for some proper

subsheaf F of E(n). Since the slope function is linear with respect to the
curve class, and µα(F ) < µα(E(n)) by Proposition 1.4, one can find a hy-

perplane in N1(Kn(A))R through γ0, such that µγ(E(n))− µγ(F ) takes op-
posite signs for γ in the two open half-spaces separated by the hyperplane.
In particular, F destabilizes Uâ0 in one of the half-spaces. Since U has
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non-empty intersection with both half-spaces, this contradicts the condi-
tion U ⊆ SStab(E(n)). Therefore we have U ⊆ ⋂[E]∈MH(v) Stab(E(n)), as

desired. �

1.5. A component of the moduli space. In this subsection, we show
that under some favorable numerical conditions, MH(v) is isomorphic to a
connected component of a moduli space of stable sheaves on Kn(A).

Indeed, we still assume that v satisfies condition (†); or more precisely,
the numerical conditions in the paragraph below (†) that ensure its validity.
We further assume that

(‡) for every [E] ∈MH(v), we have H i(A,E) = 0 for i > 0.

This condition is also easy to achieve. Since all stable sheaves are bounded,
there exists some positive integer m independent of the choice of E, such
that H i(A,E(mH)) = 0 for all i > 0. By replacing v with v · ch(mH), we
obtain a Mukai vector v satisfying both (†) and (‡).

Under the above assumptions, let H ′ be the ample line bundle constructed
in Proposition 1.6, andM the moduli space of µH′-stable sheaves on Kn(A)

with the same numerical invariants as E(n). By applying Proposition 1.6,
the integral functor q∗ ◦ p∗ induces a morphism

(7) f : MH(v) −→M, [E] 7−→ [E(n)].

In fact the morphism f can be described as follows:

Theorem 1.7. Under the assumptions (†) and (‡), the classifying morphism
(7) identifies MH(v) with a smooth connected component of M.

Proof. By [22, Lemma 1.6.] we have to prove that f is injective on closed
points and that dim(T[E(n)]M) = dim(T[E]MH(v)) for all [E] ∈MH(v).

The main tool for achieving this is [18, Theorem 6.9], which is a formula
for computing various extension groups between tautological sheaves. More
exactly [18, Theorem 6.9] implies for any [E1], [E2] ∈MH(v) that

HomKn(A)(E
(n)
1 , E

(n)
2 ) ∼= HomA(E1, E2) =

{
C, when E1

∼= E2;

0, when E1 6∼= E2.

In particular, the case of E1 6∼= E2 implies that f is injective on closed points.
Moreover, [18, Theorem 6.9] also implies

Ext1
Kn(A)(E

(n)
1 , E

(n)
2 )

∼= Ext1
A(E1, E2)⊕H1(A,E∨1 )⊗H0(A,E2)⊕H0(A,E∨1 )⊗H1(A,E2)

= Ext1
A(E1, E2),

where the last equality follows from (‡) and the Serre duality on A. In
particular, when [E1] and [E2] represent the same closed point [E] ∈MH(v),
we obtain that dimTE(n)(M) = dimTE(MH(v)) as desired. �

2. Universal Bundles

In this section we want to construct a second type of stable bundles on
Kn(A). The basic idea is to use the Fourier-Mukai transform to find a fine
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moduli space of stable sheaves M
Ĥ

(w) on Â such that the generalized Kum-
mer K

Ĥ
(w) in M

Ĥ
(w) is isomorphic to Kn(A). We restrict the universal

family of M
Ĥ

(w) to K
Ĥ

(w) and study its fibers over a point â ∈ Â, which
is a sheaf on K

Ĥ
(w) ∼= Kn(A).

2.1. Stable sheaves on abelian surfaces. Pick n, r ∈ N with n > 2 as
well as r > n+ 2 and let A be an abelian surface satisfying

NS(A) = ZH such that H2 = 2(n+ r + 1).

We denote the dual abelian surface by Â. We have the Poincare line bundle

P on A× Â which defines the classical Fourier-Mukai transform

Φ : Db(A)→ Db(Â), E 7→ Rp∗(P ⊗q∗(E))

where p : A× Â→ Â and q : A× Â→ A are the projections.

Using the canonical isomorphism A ∼= ̂̂
A (given by the Poincare bundle),

we can also understand P as the Poincare bundle on Â×A up to switching
the factors, see [13, p.198, Remark 9.12]. This gives rise to the Fourier-Mukai
transform

Φ̂ : Db(Â)→ Db(A), F 7→ Rq∗(P ⊗p∗(F ))

It is well known that det(Φ(OA(H)))−1 defines the canonical polarization

Ĥ on Â and NS(Â) = ZĤ, see for example [4].

Now we look at the Mukai vector

v = (1, H, r)

and denote the moduli space of µH -semistable sheaves on A with Mukai
vector v by MH(v). Then there is an isomorphism

ε : A[n+1] × Â ∼=−→MH(v), (Z, â) 7−→ IZ(H)⊗ P â .
We compute 〈v2〉 = H2 − 2r = 2(n+ r + 1)− 2r = 2n+ 2 and thus

(8) dim(MH(v)) = 2n+ 4.

Furthermore by the choice of r we have r > 〈v2〉
2 , which by [27, Corollary

3.3] implies that every E ∈ MH(v) satisfies IT0 with respect to Φ and that

Φ(E) is a µ
Ĥ

-stable locally free sheaf on Â with Mukai vector

w = (r,−Ĥ, 1).

By [27, Prop. 3.2, Cor. 3.3] we get that the Fourier-Mukai transform induces
an isomorphism

Φ : MH(v)
∼=−→M

Ĥ
(w).

Remark 2.1. The moduli space M
Ĥ

(w) is fine as gcd(r, Ĥ2, 1) = 1. Fur-
thermore [27, Corollary 3.3] also shows that all sheaves classified by M

Ĥ
(w)

are µ
Ĥ

-stable locally free sheaves.
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2.2. Generalized Kummer varieties. We recall the original construction
of the generalized Kummer due to Beauville, see [3, Sect. 7]: the group law
on A defines, via the symmetric power and the Hilbert-Chow morphism, a
summation morphism:

Σ : A[n+1] → A(n+1) → A.

The generalized Kummer variety is then defined by Kn(A) := Σ−1(0A).

This construction was generalized by Yoshioka to moduli spaces of stable
sheaves MH(v) on A, see [27, Theorem 4.1., Definition 4.1.]. We quickly
summarize his main results: let v be a primitive Mukai vector with the
property 〈v2〉+2 > 6 and H be a generic polarization, i.e. MH(v) = MH(v).
One finds that the Albanese morphism of MH(v) is given by

av : MH(v)→ A× Â
with

av(E) =
(
det(Φ(E))⊗ det(Φ(E0))−1,det(E)⊗ det(E0)−1

)

for some fixed E0 ∈MH(v). Then one can give the following:

Definition 2.2. The generalized Kummer variety KH(v) in MH(v) is de-
fined to be the fiber of av over the point (0A, 0Â), i.e. KH(v) = a−1

v ((0A, 0Â)).

Note that we have dim(KH(v)) = 2n by (8). Now assume that v also
satisfies all conditions from [27, Corollary 3.3], that is the Fourier-Mukai

transform induces an isomorphism Φ : MH(v)
∼=−→ M

Ĥ
(w). Under these

circumstances not only are the moduli spaces are isomorphic, but also the
induced generalized Kummer varieties:

Lemma 2.3. The isomorphism Φ : MH(v)
∼=−→ M

Ĥ
(w) restricts to an

isomorphism between generalized Kummer varieties KH(v)
∼=−→ K

Ĥ
(w).

Proof. We first note that the Albanese morphism aw : M
Ĥ

(w)→ Â× ̂̂A can

be understood as a morphism aw : M
Ĥ

(w)→ A× Â after identifying A ∼= ̂̂
A

and switching the factors. It is then given by

aw(F ) = (det(F )⊗ det(F0)−1, det(Φ̂(F ))⊗ det(Φ̂(F0))−1)

with F0 = Φ(E0) ∈M
Ĥ

(w).

Using the isomorphism ϕ : A× Â→ A× Â given by ϕ := 1A× (−1A)∗ we
claim that the following diagram commutes:

MH(v) M
Ĥ

(w)

A× Â A× Â.

Φ

av aw

ϕ

To see this we simply note that since every E ∈MH(v) is IT0 with respect
to Φ, we have the following isomorphism by [19, Corollary 2.4.]:

Φ̂(Φ(E)) ∼= (−1A)∗E.
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Using ϕ((0A, 0Â)) = (0A, 0Â) and the commutativity, we see that Φ restricts
to an isomorphism KH(v) ∼= K

Ĥ
(w). �

2.3. Construction of a universal family. In this section we want to
construct a universal family for the generalized Kummer variety K

Ĥ
(w).

For this we first note that MH(v) is a fine moduli space, that is there is a
universal family on the product A ×MH(v). Denote the restriction of the
universal family along the closed immersion A ×KH(v) ↪→ A ×MH(v) by
E .

Remark 2.4. For the Mukai vector v = (1, H, r) we have the following
isomorphism:

Kn(A)
∼=−→ KH(v), [Z] 7−→ IZ(H).

By making a careful choice of the line bundles on A and Â representing
det(E0) and det(Φ(E0)) as in [10, §3.1], an explicit computation similar to
[10, Lemma 3.2] shows that there is a commutative diagram

A[n+1] × Â MH(v)

A× Â A× Â

ε

Σ×1
Â av

ρ

with the isomorphism

ρ : A× Â ∼=−→ A× Â, (a, â) 7−→ (−a+ φ
Ĥ−1(â), â).

Again, as ρ(0A, 0Â) = (0A, 0Â), we find that the isomorphism ε restricts to
an isomorphism between the fibers of Σ×1

Â
and av over (0A, 0Â). It remains

to note that these fibers are Kn(A) and KH(v) by definition.

Using the last remark we will, from now on, understand the universal
family E on A ×KH(v) as a family on A ×Kn(A), which is easily seen to
be given by

E = IZ ⊗π∗1OA(H)

where π1 : A ×Kn(A) → A is the projection and IZ is the universal ideal
sheaf on A×Kn(A).

We now define a family U on Â×Kn(A) using the Fourier-Mukai trans-
form relative to Kn(A) following [20, Sect. 1]. For this we introduce some
notation:

A× Â×Kn(A)

A A×Kn(A) A× Â Â×Kn(A)

pA q
p
Â

π1

Then the relative Fourier-Mukai transform is defined by:

Ψ : Db(A×Kn(A))→ Db(Â×Kn(A)), F 7→ Rp
Â∗(q

∗ P ⊗p∗A(F))

Using this we define the following family on Â×Kn(A):

U := Ψ(E).
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The restriction of E to the fiber over [Z] ∈ Kn(A) is just IZ(H) which is
IT0 with respect to Φ, implying that U is WIT0 and that Ψ(E) commutes
with arbitrary base change T → Kn(A) by [19, Theorem 1.6.]. By choosing
T = {[Z]} for some [Z] ∈ Kn(A) we see that there is an isomorphism

U ⊗O[Z] = Ψ(E)⊗O[Z]
∼= Φ(E ⊗ O[Z]) ∼= Φ(IZ(H)).

As Φ(IZ(H)) is locally free the last equation shows that U is locally free by
[15, Lemma 2.1.7].

Furthermore, since H1(A, IZ(H)) = 0 for all [Z] ∈ Kn(A) we see, using
standard results from the theory of cohomology and base change, that for

every morphism α : S → Â×Kn(A) we get a diagram

(9)

A A× S A× Â×Kn(A) A×Kn(A)

S Â×Kn(A)

t1 β

t2 p
Â

pA

α

together with an isomorphism:

α∗U = α∗(Rp
Â∗(q

∗ P ⊗p∗AE))

∼= Rt2∗β
∗(q∗ P ⊗p∗AE).

We sum up the results from this subsection in the following:

Lemma 2.5. The family U = Ψ(E) on Â×Kn(A) is a locally free univer-
sal family for K

Ĥ
(w), namely, its classifying morphism Kn(A) → M

Ĥ
(w)

induces the isomorphism

Kn(A)
∼=−→ K

Ĥ
(w), [Z] 7−→ Φ(IZ(H)).

2.4. Stability of the wrong-way fibers. In this section we want to study

the stability of the wrong-way fibers of U , that is the fibers over points â ∈ Â.
For this we choose in the diagram (9) the base change along the inclusion

jâ of the fiber over â of the projection Â×Kn(A)→ Â, that is

(10)

A A×Kn(A) A× Â×Kn(A) A×Kn(A)

Kn(A) Â×Kn(A)

t1 iâ

t2
p
Â

pA

jâ

where the morphisms jâ and iâ are given on closed points by

jâ : Kn(A) ↪→ Â×Kn(A), [Z] 7→ (â, [Z])

iâ : A×Kn(A) ↪→ A× Â×Kn(A), (a, [Z]) 7→ (a, â, [Z]).

Going through the base change we see that we can describe the wrong-way
fibers in the following way:

Uâ = j∗âU = j∗â(Rp
Â∗(q

∗ P ⊗p∗AE)))

∼= Rt2∗i
∗
â(q
∗ P ⊗p∗A(IZ ⊗π∗1OA(H)))

∼= Rt2∗(IZ ⊗t∗1(P â(H))).
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We recall the integral functor

Θ : Db(A)→ Db(Kn(A)), E 7→ Rt2∗(IZ ⊗t∗1E),

which is a Pn−1-functor by [18, Theorem 4.1].

We see that the wrong-way fiber is given by

(11) Uâ = Θ(P â(H))

and sits in the exact sequence:
(12)

0 Uâ Rt2∗(t∗1(P â(H))) Rt2∗(OZ ⊗ t∗1(P â(H))) 0

We also have:

Rt2∗(t
∗
1(P â(H))) ∼= H0(P â(H))⊗OKn(A)

by cohomology and base change. Furthermore

Rt2∗(OZ ⊗ t∗1(P â(H))) = (P â(H))(n)

is the tautological bundle of rank n+ 1 on Kn(A) induced by P â(H).
A quick diagram chase shows that we have

(P â(H))(n) ∼= ι∗((P â(H))[n+1])

where ι : Kn(A) ↪→ A[n+1] is the inclusion and (P â(H))[n+1] is the tautolog-

ical bundle induced by P â(H) on A[n+1].
For the next results we recall that we have NS(Kn(A)) = NS(A)K ⊕ Zδ.

Here DK is the divisor class on Kn(A) induced by the divisor class D on
A and δ is a divisor class on Kn(A) such that 2δ = [E] where E is the
exceptional divisor of the Hilbert-Chow morphism Kn(A)→ Sn(A). In our
case this reads

NS(Kn(A)) = ZHK ⊕ Zδ.

Remark 2.6. Note that we can also write NS(Kn(A)) = ι∗NS(A[n+1]), with

NS(A[n+1]) = NS(A)n+1 ⊕ Z∆⊕ Σ∗NS(A).

where NS(A)n+1 are the divisor classes on A[n+1] induced from A and ∆ is
the class such that 2∆ is the class of the exceptional divisor of the morphism
A[n+1] → A(n+1). We have ι∗Hn+1 = HK and ι∗∆ = δ.

Lemma 2.7. We have c1(Uâ) = −HK + δ.

Proof. By the exact sequence (12) we get:

c1(Uâ) = −c1((P â)(n))

= −c1(ι∗((P â(H))[n+1]))

= −ι∗c1((P â(H))[n+1])

= −ι∗(Hn+1 −∆) = −HK + δ

where we use [25, Lemma 1.5] in the second to last step. �
To compute slopes on Kn(A) we need the following intersection numbers,

which can, for example, be found in [5, 1.2., 1.4.]:

Lemma 2.8. For the classes HK and δ from NS(Kn(A)) we have:
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• H2n
K = (n+1)(2n)!

(n)!2n (H2)n > 0

• H2n−1
K δ = 0.

Lemma 2.9. There is an isomorphism

NS(A)
∼=−→ NS(Pn(A))Sn+1 , H 7−→

n∑

i=0

τ∗q∗iH.

Proof. We note that Pn(A) is itself an abelian variety (isomorphic to An

via projection) hence its integral cohomology is torsion free. This implies
especially that its Neron-Severi group NS(Pn(A)) is torsion free and hence
so is NS(Pn(A))Sn+1 .

Furthermore by [12, Lemma 3] we have an isomorphism

NS(Pn(A))Sn+1 ⊗Q ∼= (NS(Pn(A))⊗Q)Sn+1 .

and so it is enough to prove the lemma over the field of rational numbers Q.
We start with the morphisms

Pn(A) An+1 Aτ S

where S =
n∑
i=0

qi is the summation morphism using the group law on A.

The natural inclusion τ has the following retract:

An+1 → Pn(A), (a0, . . . , an) 7→ (a0, . . . , an−1,−
n−1∑

i=0

ai),

which shows that we have a surjection

H2(An+1,Q) H2(Pn(A),Q) 0τ∗

As we work over Q and Sn+1 is finite we get an induced surjection:

H2(An+1,Q)Sn+1 H2(Pn(A),Q)Sn+1 0.τ∗

It is well known, see for example [16, Theorem 2.15], that:

H2(An+1,Q)Sn+1 ∼= H2(A,Q)⊕ Λ2
(
H1(A,Q)

)

where the maps are given by:

H2(A,Q) ↪→ H2(An+1,Q)Sn+1 , c 7→
n∑

i=0

q∗i c

as well as (using Λ2
(
H1(A,Q)

) ∼= H2(A,Q)):

Λ2
(
H1(A,Q)

)
↪→ H2(An+1,Q)Sn+1 , c ∧ d 7→

∑

i,j

(
q∗i c ∧ q∗jd

)

Now since S =
n∑
i=0

qi we get similar to Beauville in [3, Proposition 8.]:

∑

i,j

(
q∗i c ∧ q∗jd

)
=

(
n∑

i=0

q∗i c

)
∧




n∑

j=0

q∗jd


 = S∗(c ∧ d).
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This implies Λ2
(
H1(A,Q)

) ∼= Im(S∗). But then

τ∗(S∗(c ∧ d)) = (S ◦ τ)∗(c ∧ d) = 0

which shows that we have

(13) H2(Pn(A),Q)Sn+1 ∼= τ∗H2(A,Q).

Using the Lefschetz (1, 1)-theorem gives

(NS(Pn(A))⊗Q)Sn+1 ∼= τ∗ (NS(A)⊗Q) ,

which is what we wanted to prove. �

Proposition 2.10. The vector bundle Uâ defined in (11) is slope stable with
respect to HK .

Proof. We follow the idea in the proof of [24, Theorem 1.4].
Since j∗K(−), (h−1

◦ )∗(−) and σ∗◦(−) are exact, and (jP )∗ is left exact,
by applying these functors to (12) we obtain an exact sequence of Sn+1-
invariant reflexive sheaves on Pn(A) as follows:

0 −→ (Uâ)P −→ (H0(P â(H))⊗OKn(A))P
ϕ−→ (P â(H))(n))P

where ϕ is not necessarily surjective. It is clear that

(H0(P â(H))⊗OKn(A))P = H0(P â(H))⊗OPn(A),

and we also have

((P â(H))(n))P =
n⊕

i=0

τ∗q∗i (P â(H))

by a similar argument as in [24, Lemma 1.1] (see also Proposition 1.5).
Hence the above sequence becomes

(14) 0 −→ (Uâ)P −→ H0(P â(H))⊗OPn(A)
ϕ−→

n⊕

i=0

τ∗q∗i (P â(H))

where ϕ is the evaluation map on Pn(A)◦.
More precisely, for any set of closed points (a0, . . . , an) ∈ Pn(A) with

ai 6= aj , the morphism of fibers can be identified as

ϕ(a0,...,an) : H0(P â(H)) −→
n⊕

i=0

(P â(H))xi

s 7−→ (s(a0), . . . , s(an))

Since for any non-trivial s ∈ H0(P â(H)), there are always (many choices of)
distinct points (a0, . . . an) ∈ Pn(A) such that (s(a0), . . . , s(an)) 6= (0, . . . , 0),
we conclude that the map of global sections

H0(ϕ) : H0(P â(H)) −→ H0(

n⊕

i=0

τ∗q∗i P â(H))

is injective. It follows by (14) that H0((Uâ)P ) = 0.
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Note that ϕ is surjective on Pn(A)◦, hence coker(ϕ) is supported on the
big diagonal of Pn(A) which is of codimension 2. It follows that

c1((Uâ)P ) = −
n∑

i=0

τ∗q∗iH.

We claim that (Uâ)P has no Sn+1-invariant subsheaf which is destabilizing
with respect to HP . Indeed, assume F is an Sn+1-invariant subsheaf of
(Uâ)P , then c1(F ) ∈ NS(Pn(A))Sn+1 and thus by Lemma 2.9 we have:

c1(F ) = a(
n∑

i=0

τ∗q∗iH) for some a ∈ Z.

If a 6 −1, then

c1(F ) ·H2n−1
P 6 c1((Uâ)P ) ·H2n−1

P < 0

Since 1 6 rk(F ) < rk((Uâ)P ), it follows that µHP
(F ) < µHP

((Uâ)P ), hence
F is not destabilizing.

If a = 0, we choose a (not necessarily Sn+1-invariant) non-zero stable
subsheaf F ′ ⊆ F which has maximal slope with respect to HP (e.g. one can
take a stable factor in the first Harder-Narasimhan factor of F ). Without
loss of generality, we can assume F and F ′ are both reflexive. Since F ′ is
also a subsheaf of the trivial bundle H0(P â(H)) ⊗ OPn(A), there must be

a projection from H0(P â(H)) ⊗ OPn(A) to a certain direct summand of it,
such that the composition of the embedding and projection

F ′ → H0(P â(H))⊗OPn(A) → OPn(A)

is non-zero. Since µPn(A)(F
′) > µPn(A)(F ) = 0 = µPn(A)(OPn(A)), and

OPn(A) is also stable with respect to HP , the map F ′ → OPn(A) must be
injective, and its cokernel is supported on a locus of codimension at least
2. Since both are reflexive, we must have F ′ = OPn(A). Therefore F , and
consequently (Uâ)P , have non-trivial global sections. Contradiction.

If a > 1, F would be a subsheaf of the trivial bundle H0(P â(H))⊗OPn(A)

of positive slope. Contradiction.
Finally, assume G is a reflexive subsheaf of Uâ. Then (G)P is an Sn+1-

invariant reflexive subsheaf of (Uâ)P . By the above claim we have

µHP
((G)P ) < µHP

((Uâ)P ).

It follows from equation (3) that µHK
(G) < µHK

(Uâ). Therefore Uâ is slope
stable with respect to HK , as desired. �
Proposition 2.11. There exists some ample class H ′ ∈ NS(Kn(A)) near

HK , such that Uâ is µH′-stable for all â ∈ Â simultaneously.

Proof. By Proposition 1.6 the divisor HK is lef so that Proposition 2.10
and [6, Theorem 2.3.1] guarantee that the assumptions in [24, Proposition
4.8] are satisfied for each Uâ. Hence every Uâ is slope stable with respect
to some ample class near HK . In order to find a single ample class H ′

that is independent of the choice of Uâ, we can use the entire proof of [24,
Proposition 4.8] except that we need to reconstruct the non-empty convex
open set U so that α := H2n−1

K is in the closure of U , and for every γ ∈ U ,

Uâ is stable with respect to γ for all â ∈ Â.
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We follow the notations in [9, Definition 3.1]. For each â ∈ Â, SStab(Uâ)
is a convex closed set containing α. Hence the intersection

U :=
⋂

â∈Â

SStab(Uâ)

is also a convex closed set containing α. We first claim that [9, Theorem
3.4] holds for all Uâ simultaneously; namely, we will show that for any β ∈
Mov(Kn(A))◦ (see [9, Definition 2.1] for the notation), there exists a number
e ∈ Q+, such that (α+ εβ) ∈ ∩x∈X Stab(Uâ) for any real ε ∈ [0, e].

To prove the claim, we first note that the slope c := µβ(Uâ) is independent

of the choice of â ∈ Â. We redefine the set S in the proof of [9, Theorem
3.4] to be

S := {c1(F ) | F ⊆ Uâ for some â ∈ Â such that µβ(F ) > c}.

Since Uâ ⊆ H0(P â(H))⊗OKn(A) for all â ∈ Â, we obtain that S is a subset
of

T := {c1(F ) | F ⊆ H0(P â(H))⊗OKn(A) such that µβ(F ) > c},
which is finite by [9, Theorem 2.29], hence S is also finite. We can then use
the rest of the proof of [9, Theorem 3.4] literally to conclude the claim.

We then claim that U is of full dimension r := rkN1(Kn(A)). If not,
then we have α ∈ U ⊆ L for some hyperplane L ⊂ N1(Kn(A))R. Since
Mov(Kn(A)) is of full dimension, we can choose some β ∈ Mov(Kn(A))◦ \L.
It follows that (α+ εβ) ∈ U \ L for some small ε > 0 by the previous claim
and the choice of β. Contradiction.

We define U to be the interior of U and claim that U is non-empty. Indeed,
since U is of full dimension r, we can choose r + 1 points of U in general
positions, which form an r-simplex. By the convexity of U , the entire simplex
is in U hence any interior point of the simplex is also an interior point of U .
The convexity of U follows from the convexity of U . And it is clear from the
construction that α = H2n−1

K is in the closure of U . We finally claim that
every γ ∈ U is in

⋂
â∈Â Stab(Uâ). If not, suppose that there exists some class

γ0 ∈ U and some closed point â0 ∈ Â, such that γ0 ∈ SStab(Uâ0)\Stab(Uâ0);
namely, µγ0(F ) = µγ0(Uâ0) for some proper subsheaf F of Uâ0 . Since the
slope function is linear with respect to the curve class, and µα(F ) < µα(Uâ0)
by Proposition 2.10, one can find a hyperplane in N1(Kn(A))R through γ0,
such that µγ(Uâ0) − µγ(F ) takes opposite signs for γ in the two open half-
spaces separated by the hyperplane. In particular, F destabilizes Uâ0 in
one of the half-spaces. Since U has non-empty intersection with both half-
spaces, this contradicts the condition U ⊆ SStab(Uâ). Therefore we have
U ⊆ ⋂

â∈Â Stab(Uâ), as desired. �

2.5. A component of the moduli space. We start this subsection by
making a brief digression to consider again the integral functor

Θ: Db(A) −→ Db(Kn(A))

whose kernel is the universal ideal sheaf IZ on A ×Kn(A). Recall that Θ
is a Pn−1-functor, which implies by [2, §2.1] that for any E,F ∈ Db(A) we
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have an isomorphism of graded vector spaces

(15) Ext∗Kn(A)(Θ(E),Θ(F )) ∼= Ext∗A(E,F )⊗H∗(Pn−1,C).

We now turn to the main result of the section. Let H ′ be an ample
class that satisfies Proposition 2.11, and M the moduli space of µH′-stable
sheaves on Kn(A) with the same numerical invariants as Uâ. Then the
universal family U defines a classifying morphism

(16) f : Â −→M, â 7−→ [Uâ]
In fact the morphism f can be described as follows:

Theorem 2.12. The classifying morphism (16) defined by the family U
identifies Â with a smooth connected component of M.

Proof. By [22, Lemma 1.6.] we have to prove that f is injective on closed

points and that dim(T[Uâ]M) = 2 for all â ∈ Â.
Now we know Uâ = Θ(P â(H)), so for â1 6= â2 we find by (15) that

HomKn(A)(Uâ1 ,Uâ2) = HomKn(A)(Θ(P â1(H)),Θ(P â2(H)))

∼= HomA(P â1(H),P â2(H))

∼= H0(A,P∨â1 ⊗P â2) = 0,

where the last step follows from [13, Lemma 9.9]. This implies f is injective
on closed points.

A similar computation shows

Ext1
Kn(A)(Uâ,Uâ) = Ext1

Kn(A)(Θ(P â(H)),Θ(P â(H)))

∼= Ext1
A(P â(H),P â(H))

∼= Ext1
A(P â,P â)

∼= Ext1
Â

(Oâ,Oâ) ∼= TâÂ

where the second to last isomorphism uses P â ∼= Φ̂(Oâ) and the fact that Φ̂

is an equivalence from Db(Â) to Db(A).
Using T[Uâ]M ∼= Ext1

Kn(A)(Uâ,Uâ) we find dim(T[Uâ]M) = 2 as desired.

�
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SMOOTH COMPONENTS ON SPECIAL ITERATED

HILBERT SCHEMES

FABIAN REEDE

Abstract. Let S be a smooth projective surface with pg = q = 0. We
show how to use derived categorical methods to study the geometry of
certain special iterated Hilbert schemes associated to S by showing that
they contain a smooth connected component isomorphic to S.

1. Introduction

Hilbert schemes are ubiquitous in modern algebraic geometry. But even
in good situations these schemes can behave badly. This became clear with
Mumford’s famous example, which shows that there is an irreducible com-
ponent of the Hilbert scheme of smooth irreducible curves in P3 of degree 14
and genus 24 that is generically non-reduced, see [17]. More exactly Mum-
ford constructs a 56-dimensional irreducible family of such curves, such that
the tangent space at each point of this component has dimension 57 and
proves that this family is not contained in any other irreducible family of
dimension > 56.

In this note we prove that there are certain iterated Hilbert schemes which
contain at least one smooth connected component. More exactly the main
result of this note is:

Theorem 1. Assume S is a smooth projective surface with pg = q = 0

and let S[n] be the Hilbert scheme of length n subschemes of S. Then the
universal family Z in S×S[n] can be understood as a family of codimension
two subschemes in S[n] with common Hilbert polynomial p(t) classified by
S such that the classifying morphism identifies S with a smooth connected
component of the Hilbert scheme Hilbp(t)(S[n]).

This theorem has its origin in a result by Lange and Newstead, who
proved a similar result for curves and moduli spaces of stable vector bundles
on these curves in [15]. More exactly they show that if M is a fine moduli
space of stable vector bundles on a smooth projective curve C of genus g > 2
with universal family U on C ×M , then for any c ∈ C the vector bundle Uc
on M is stable. Furthermore they show that for c 6= c′ we have Uc 6∼= Uc′ .
Together with a previous result by Narasimhan and Ramanan these results
imply that C embeds as a smooth connected component in a moduli spaces
of stable vector bundles o M .

The main input into the proof of the main result of this note is a result by
Krug and Sosna which states that the integral functor Φ : Db(S)→ Db(S[n])

2010 Mathematics Subject Classification. Primary: 14F08,; Secondary: 14J28, 14J29.
Key words and phrases. Hilbert schemes, integral functor, connected components.
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with kernel the universal ideal sheaf IZ is fully faithful. This result allows
to reduce the computation of certain Ext-groups on S[n] to the computation
of easier Ext-groups on S.

All objects in this note are defined over the field of complex numbers C.

Acknowledgement. I thank Pieter Belmans for informing me about the
fully faithfulness results in [3] and [12] as well as Ziyu Zhang for many useful
conversations.

2. Proof of the Main Theorem

Let S be a smooth projective surface with pg = q = 0, that is we have

H1(S,OS) = H2(S,OS) = 0.

Remark 1. Around the year 1870 Max Noether posed the question if sur-
faces with pg = q = 0 are necessarily rational, see [2, §3, Question 1]. By
now it is known that the answer to this question is negative. In fact besides
rational surfaces there is a huge class of surfaces satisfying these condi-
tions which are not rational, most classically Enriques surfaces which have
Kodaira dimension zero. But there are also surfaces of general type satisfy-
ing these conditions for example Godeaux surfaces, Campedelli surfaces or
Beauville surfaces, see [1, 7] for more information and examples.

In the following we denote the Hilbert scheme of length n subschemes of
S by S[n], that is we have as sets:

S[n] =
{

[Z] | Z ⊂ S is a zero-dimensional subscheme with h0(Z,OZ) = n
}
.

It is well known that S[n] is smooth and that dim(S[n]) = 2n. Using this
notation we have the universal subscheme

(1) Z =
{

(s, [Z]) ∈ S × S[n] | s ∈ supp(Z)
}
⊂ S × S[n]

coming with the corresponding universal ideal sheaf IZ ↪→ OS×S[n] .

Remark 2. Recall that the universal family Z is flat over S[n]. Indeed,
using definition (1) one can see that the restriction of p : S × S[n] → S[n] to
Z is finite and flat of degree n. But as a matter of fact Z is also flat over S
due to [13, Theorem 2.1].

As we use integral functors in the following, we quickly recall their defini-
tion: let X and Y be smooth projective varieties and denote their bounded
derived categories of coherent sheaves by Db(X) and Db(Y ) respectively,
then the integral functor with kernel K ∈ Db(X × Y ) is defined by

ΦK : Db(X)→ Db(Y ), E 7→ Rp∗(q∗E ⊗L K)

where p and q are the projections X × Y → Y resp. X × Y → X, see [10,
§5].

The description of the image of an integral transform is rather easy for a
skyscraper sheaf Ox of a closed point x ∈ X, which we will collect as
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Example 1. [10, Examples 5.4 (vi)] Assume the kernel of the integral func-
tor ΦK is in fact a coherent sheaf on X × Y flat over X, then we have for
every closed point x ∈ X

ΦK(Ox) ∼= Kx,
where the fiber Kx := K|{x}×Y is considered as a sheaf on Y via the second
projection {x} × Y → Y .

Interpreting the universal ideal sheaf IZ as an element in Db(S×S[n]) (as
a complex concentrated in degree zero), we can look at the integral functor
with kernel given by IZ :

Φ : Db(S)→ Db(S[n]), E 7→ Rp∗(q∗E ⊗ IZ).

In our case this integral functor has some very good properties. The main
input into this note is the following very useful fact discovered by Krug and
Sosna:

Theorem 2. [12, Theorem 1.2] Let S be a smooth projective surface which
satisfies pg = q = 0, then the integral functor Φ is fully faithful.

As an application of Theorem 2 we have the following

Corollary 1. Assume S is a smooth projective surface with pg = q = 0 then

for all E,F ∈ Db(S) and i > 0 there is an isomorphism

Exti
S[n](Φ(E),Φ(F )) ∼= ExtiS(E,F ).

Remark 3. There are also fully faithfulness results for universal families
of moduli spaces of stable bundles of rank two and degree one on smooth
projective curves of genus g > 2 by Narasimhan as well as Fonarev and
Kuznetsov, see [18], [19] and [9]. Recently these results were generalized to
higher rank and degree by Belmans and Mukhopadhyay as well as Lee and
Moon, see [5] and [16]. These results can be used to give a proof of the
result of Lange and Newstead in the spirit of this note.

Proof of Theorem 1. Remark 2 shows that the family Z ⊂ S × S[n] is
flat over S. Denote the fiber over a closed point s ∈ S by Zs and its image in
S[n] (via the second projection {s} × S[n] ∼= S[n], which is an isomorphism)
by Fs. This identification together with Example 1 gives isomorphisms

(2) IFs
∼= (IZ)s

∼= Φ(Os).
Remark 4. By the definition of Z given in (1) we have

Fs =
{

[Z] ∈ S[n] | s ∈ supp(Z)
}
⊂ S[n].

That is, Fs is the subscheme of S[n] classifying all length n subschemes
containing the closed point s ∈ S in its support. Note that dim(Fs) = 2n−2,

that is Fs is a subscheme of codimension two in S[n].

Since S is integral the Hilbert polynomial of Fs does not depend on s ∈ S
by [11, Proposition 2.1.2], call it p(t). We thus have a well defined classifying
morphism

ϕ : S → Hilbp(t)(S[n]), s 7→ [Fs] .
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Remark 5. Here we can choose any ample line bundle L ∈ Pic(S[n]) to
define the Hilbert polynomial p(t) of Fs, as there is no distinguished ample

line bundle on S[n]. The choice of a different ample line bundle L would
give rise to a different Hilbert polynomial p(t), but it would not change the
proof of the main theorem.

A more conceptual way would be to choose a n-very ample line bundle
M on S, then by [6] there is a closed embedding

S[n] → Gr(n,H0(S,M)∗), [Z] 7→ H0(S,M ⊗OZ)∗.

Composing this morphism with the Plücker embedding of the Grassmannian,
we get a closed embedding S[n] → PN for some N and we can pullback
OPN (1) to get an ample line bundle L on S[n].

We claim that the morphism ϕ identifies S with a smooth connected
component of Hilbp(t)(S[n]). To see this we have to show that the morphism
is injective on closed points and that for every closed point s ∈ S we have

dim(T[Fs] Hilbp(t)(S[n])) = 2.

We start by picking two closed points s1 6= s2 ∈ S and note that using
equation (2) as well as Corollary 1, we get:
(3)

HomS[n](IFs1
, IFs2

) ∼= HomS[n](Φ(Os1),Φ(Os2) ∼= HomS(Os1 ,Os2) = 0.

If [Fs1 ] = [Fs2 ] ∈ Hilbp(t)(S[n]), then we would have an induced isomorphism
OFs1

∼= OFs2
and the exact sequences (for i = 1, 2)

0 IFsi
OS[n] OFsi

0

would give rise to a commutative diagram of short exact sequences (with
the identity between OS[n]) which shows that there is a nontrivial morphism
between IFs1

and IFs2
. But this is impossible by 3. So the classifying

morphism ϕ is indeed injective on closed points.
To find dim(T[Fs] Hilbp(t)(S[n])) we remark that

T[Fs] Hilbp(t)(S[n]) ∼= HomS[n](IFs ,OFs),

see for example [11, Proposition 2.2.7].
As q = 0 we have Pic0(S) = 0, but by [8, Theorem 5.4.] we also have an

isomorphism

Pic0(S)
∼=−→ Pic0(S[n])

and thus Pic0(S[n]) = 0. So we can use [14, Lemma B.5.6.] which gives an
isomorphism

HomS[n](IFs ,OFs)
∼= Ext1

S[n](IFs , IFs).

We find, using again equation (2) and Corollary 1:

Ext1
S[n](IFs , IFs)

∼= Ext1
S[n](Φ(Os),Φ(Os)) ∼= Ext1S(Os,Os) ∼= TsS.

Putting all results together shows dim(T[Fs] Hilbp(t)(S[n])) = 2 as desired.
�
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Remark 6. Theorem 2 can be generalized in the case n = 2 to all smooth
projective varieties X having the property Hi(X,OX) = 0 for i > 1 (that

is OX is exceptional). The integral functor Φ : Db(X) → Db(X [2]) with
kernel the universal ideal sheaf IZ is also fully faithful in these cases by [3,
Theorem A]. Thus our proof of the main result is also valid in these cases.

Remark 7. In the case of surfaces, the proof of the main result only works
for those surfaces with pg = q = 0, since for n > 2 the integral functor

Φ : Db(S) → Db(S[n]) is fully faithful if and only if pg = q = 0 by [4,
Theorem A.]. But there are similar results for K3 surfaces as well as abelian
surfaces, see [20]. In these cases the integral functor Φ is a so-called Pn-

functor, which again allows to reduce cohomological computations on S[n]

to computations on S.
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THE FOURIER-MUKAI TRANSFORM OF A UNIVERSAL

FAMILY OF STABLE VECTOR BUNDLES

FABIAN REEDE

Abstract. In this note we prove that the Fourier-Mukai transform ΦU
of the universal family of the moduli space MP2(4, 1, 3) is not fully
faithful.

Introduction

To every smooth projective variety X one can associate its bounded de-
rived category of coherent sheaves Db(X). The derived category contains a
lot of geometric information about X. In some cases one can even recover X
from Db(X) but there are also examples of different varieties with equivalent
derived categories, see [7] for an introduction.

To compare the derived categories of two smooth projective varieties X
and Y , one needs to study functors between them. As it turns out, most of
the interesting functors are Fourier-Mukai transforms ΦF : Db(X)→ Db(Y )
for some object F ∈ Db(X × Y ).

In this note we are interested in fully faithful Fourier-Mukai transforms
because they give a semi-orthogonal decomposition of the derived category
Db(Y ) into smaller admissible subcategories. For example Krug and Sosna

prove in [10] that the Fourier-Mukai transform ΦIZ : Db(S) → Db(S[n])

induced by the universal ideal sheaf IZ of the Hilbert scheme S[n] is fully
faithful for a surface S with pg = q = 0, hence Db(S) is an admissible

subcategory in Db(S[n]). This result was generalized for the Hilbert square

X [2] to smooth projective varieties X with exceptional structure sheaf and
arbitrary dimension dim(X) ≥ 2, see [1].

Another example of this behaviour is given by the moduli spaceMC(2, L)
of stable rank two vector bundles with fixed determinant L of degree one
on a smooth projective curve C of genus g ≥ 2. This moduli space is
fine and thus there is a universal family U on C ×MC(2, L). By work of
Narasimhan, see [18] and [19], as well as Fonarev and Kuznetsov, see [6], it
is known that the Fourier-Mukai transform ΦU : Db(C)→ Db(MC(2, L)) is
fully faithful. Thus Db(C) is an admissible subcategory of Db(MC(2, L)).
This also solves the so-called Fano visitor problem for smooth projective
curves of genus g ≥ 2. This result was generalized in [2] to the higher rank
case MC(r, L) for a line bundle L of degree d such that gcd(r, d) = 1 and
curves of genus g ≥ g0 for some g0 ∈ N.

In light of these examples one can ask if the Fourier-Mukai transform of
the universal family U on a fine moduli spaceMP2(r, c1, c2) of stable sheaves

2010 Mathematics Subject Classification. 14J60,14F05.
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on P2 is also fully faithful. Our main result is, that this is not always the
case. We prove:

Theorem. The Fourier-Mukai transform

ΦU : Db(P2)→ Db(MP2(4, 1, 3))

induced by the universal family U of the moduli space MP2(4, 1, 3) is not
fully faithful.

The structure of this note is as follows: in section 1 we recall some facts
about the moduli space we are interested in. We construct an explicit family
of stable sheaves for this moduli space in section 2. The computation of some
cohomology groups for the family of stable sheaves can be found in section
3. In the final section 4 we prove the main result.

Everything in this note is defined over the field of complex numbers C.
The projective plane P2 is polarized by H = OP2(1), thus µ-stability means
µH -stability. A cohomology group written in lowercase characters simply
denotes its dimension as a C-vector space.

Acknowledgement. I thank Pieter Belmans for asking me if it is possible
to compute the Ext-groups of the universal family and for pointing out some
inaccuracies in an earlier draft of this note. I also thank Andreas Krug for
explaining Lemma 3.1 to me.

1. The moduli space

We begin by studying the moduli space MP2(4, 1, 3) of S-equivalence
classes of µ-semistable torsion-free sheaves E on the projective plane P2

with the following numerical data:

rk(E) = 4, c1(E) = 1 c2(E) = 3.

(Since the first Chern class is just an integer multiple of the polarization H,
we simply identify it with this number.)

By this choice of rank r and Chern classes c1 resp. c2 we get:

Lemma 1.1. The moduli space MP2(4, 1, 3) is fine and there are no proper
semistable sheaves.

Proof. We have

gcd

(
r, c1.H,

1

2
c1.(c1 −KP2)− c2

)
= gcd(4, 1,−1) = 1.

The result now follows from [8, Corollary 4.6.7] and [8, Lemma 1.2.14]. �

Remark 1.2. This lemma shows that the moduli space MP2(4, 1, 3) has a
universal family, that is a sheaf U on P2×MP2(4, 1, 3) flat overMP2(4, 1, 3)
such that for every E with [E] ∈MP2(4, 1, 3) there is an isomorphism

U[E]
∼= E,

where U[E] denotes the restriction of U to the fiber over [E].

The following properties of the moduli space are probably well known:
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Lemma 1.3. The moduli space MP2(4, 1, 3) is a smooth projective variety
of dimension six. Furthermore all sheaves E classified by this moduli space
are locally free.

Proof. The space MP2(4, 1, 3) is projective by construction. Since every
sheaf E is stable, we get by Serre duality

Ext2(E,E) ∼= Hom(E,E(−3))∨ = 0

hence MP2(4, 1, 3) is smooth and by [5] it is also irreducible. We also recall

dim(MP2(r, c1, c2)) = ∆− (r2 − 1)χ(P2,OP2)

where ∆ = 2rc2 − (r − 1)c21 is the discriminant. So dim(MP2(4, 1, 3)) = 6.
The double dual of a µ-stable torsion-free sheaf E is still µ-stable and

defines a smooth point in MP2(4, 1, 3 − `) with ` = length(E∨∨/E). If E
were not locally free we would have ` ≥ 1 and MP2(4, 1, 3 − `) would have
negative dimension, which is not possible. �
Remark 1.4. Using Lemma 1.3 together with [8, Lemma 2.1.7.] shows that
the universal family U is itself locally free on P2×MP2(4, 1, 3). This implies
that the sheaves Up, the restriction to the fiber over p ∈ P2, are also locally
free on the moduli space.

The sheaves classified by MP2(4, 1, 3) can be described more explicitly:

Lemma 1.5. Let E be a locally free sheaf on P2 with [E] ∈ MP2(4, 1, 3),
then there is a length three subscheme Z ⊂ P2 and an exact sequence

0 O⊕3P2 E IZ(1) 0.

Proof. Hirzebruch-Riemann-Roch shows χ(P2, E) = 3. The stability of E
implies that we have h2(P2, E) = 0 and thus h0(P2, E) ≥ 3.

Choose a 3-dimensional subspace U ⊂ H0(P2, E), then by [17, Lemma 1.5]
the natural evaluation map ϕ : U ⊗ OP2 → E is injective with torsion-free
quotient Q = Coker(ϕ). We get the exact sequence

0 U ⊗OP2 E Q 0.
ϕ

By comparing Chern classes we see that we must have Q ∼= IZ(1) for a

length three subscheme Z ⊂ P2, that is [Z] ∈ P2[3]. This gives the desired
exact sequence. �

Lemma 1.5 shows that there is a close connection between MP2(4, 1, 3)

and P2[3]. This connection will become clearer in the next sections.

2. Construction of a family

In this section we want to construct a P2[3]-family of µ-stable locally free
sheaves such that every member of this family is classified by MP2(4, 1, 3).
The construction is based on a construction of Mukai, see [15, Section 3]

The starting point of our construction is the observation that

(1) ext1(IZ(1),OP2) = h1(P2, IZ(−2)) = 3

for every [Z] ∈ P2[3].
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We define V := Ext1(IZ(1),OP2) and observe the isomorphism

Ext1(IZ(1), V ∨ ⊗OP2) ∼= Ext1(IZ(1),OP2)⊗ V ∨ ∼= Hom(V, V ).

Hence there is a distinguished extension class e ∈ Ext1(IZ(1), V ∨ ⊗ OP2)
corresponding to idV ∈ Hom(V, V ), giving rise to:

(2) 0 V ∨ ⊗OP2 EZ IZ(1) 0.

Remark 2.1. The sheaf EZ is called the universal extension of IZ(1) by
OP2 . By construction we have Hom(EZ ,OP2) = 0.

We want to study some of the properties of the sheaf EZ . For example
we have:

Lemma 2.2. The sheaf EZ is a locally free sheaf on P2.

Proof. Tensor the exact sequence (2) with ωP2 :

0 V ∨ ⊗ ωP2 EZ ⊗ ωP2 IZ(−2) 0 .

Now for every subscheme Z ′ ( Z of length 0 ≤ d < 3 we have

h1(P2, IZ′(−2)) < h1(P2, IZ(−2)),

which by [20, Lemma 1.2.] implies that EZ ⊗ ωP2 is locally free, hence so is
EZ . �

We also have the following result concerning the stability of EZ :

Lemma 2.3. The locally free sheaf EZ is µ-stable.

Proof. This follows from a more general result, see [17, Lemma 1.4.]. But
in this situation we can also give a direct proof:

Let F be a torsion free quotient of EZ with 1 ≤ rk(F ) ≤ 3, then there is
the following commutative diagram:

0 O⊕3P2 EZ IZ(1) 0

0 F0 F F1 0

with F0 = Im(O⊕3P2 ↪→ EZ → F ). Thus all vertical arrows are surjective.
Since F0 is a quotient of a free sheaf we have c1(F0).H ≥ 0. Furthermore
rk(F1) ∈ {0, 1} as F1 is a quotient of a torsion free sheaf of rank 1. We
distinguish two cases.

Case rk(F1) = 1:

In this case F1
∼= IZ(1) and hence c1(F ).H = (c1(F0) + c1(F1)).H ≥ 1.

This implies

µ(F ) =
c1(F ).H

rk(F )
≥ 1

3
>

1

4
= µ(EZ).

Case rk(F1) = 0:

In this case we have c1(F1).H ≥ 0 as F1 is a torsion sheaf. The only
critical case is c1(F0) = c1(F1) = 0, since otherwise c1(F ) = d ≥ 1 and thus
µ(F ) ≥ 1

3 >
1
4 = µ(EZ).
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So assume c1(F0) = c1(F1) = 0. Then F0 is free itself, see for example
[14, p. 302], and F1 is supported in finitely many points. This implies

Hom(F,OP2) ∼= Crk(F0).

On the other hand Hom(F,OP2) ↪→ Hom(EZ ,OP2) = 0 by Remark 2.1.
This shows rk(F0) = 0 and hence rk(F ) = 0. So for rk(F ) ≥ 1 the case
c1(F0) = c1(F1) = 0 cannot occur and EZ is stable. �

The last two lemmas show:

Corollary 2.4. The sheaf EZ defines a point [EZ ] ∈MP2(4, 1, 3) for every

[Z] ∈ P2[3].

We want to put the µ-stable locally free sheaves EZ in a family classified
by P2[3]. To do this we need the following maps:

Z P2×P2[3]

P2 P2[3]

p q

where Z is the universal family of length 3 subschemes.

Remark 2.5. Recall that for any coherent sheaf F on P2 there is the asso-
ciated coherent tautological sheaf F [3] on P2[3] defined by

F [3] := q∗ (p∗F ⊗OZ) .

If F is locally free of rank r then F [3] is locally free of rank 3r.

To construct the family of stable sheaves, we first put the Ext1(IZ(1),OP2)

for [Z] ∈ P2[3] in a family:

Lemma 2.6. The first relative Ext-sheaf V := Ext1q(IZ⊗p∗OP2(1),OP2×P2[3])

is a locally free sheaf of rank three on P2[3]. It commutes with base change
and there is an isomorphism

(3) Ext1q(IZ ⊗ p∗OP2(1),OP2×P2[3])∨ ∼= OP2(−2)[3].

Proof. The morphism q is proper and flat and the map

φ : P2[3] → N, [Z] 7→ ext1(IZ(1),OP2)

is constant due to (1). So by [3, Satz 3.] the first relative Ext-sheaf is locally

free of rank three on P2[3] and commutes with base change, that is for every
[Z] ∈ P2[3] we have

Ext1q(IZ ⊗ p∗OP2(1),OP2×P2[3])⊗ k(Z) ∼= Ext1(IZ(1),OP2).

Using relative Serre duality, see [9, Corollary(24)], gives an isomorphism

Ext1q(IZ ⊗ p∗OP2(1),OP2×P2[3]) ∼= Ext1q(IZ ⊗ p∗OP2(−2), ωq)

∼= Hom(R1q∗(IZ ⊗ p∗OP2(−2)),OP2[3]).

The exact sequence

0 IZ ⊗ p∗OP2(−2) p∗OP2(−2) OZ ⊗p∗OP2(−2) 0
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and standard cohomology and base change results, see [16, II.5.], show that
there is an isomorphism

q∗(OZ ⊗p∗OP2(−2)) ∼= R1q∗(IZ ⊗ p∗OP2(−2)).

We see that R1q∗(IZ⊗p∗OP2(−2)) ∼= OP2(−2)[3] is locally free of rank three
and thus we get the desired isomorphism (3). �

As the main result of this section we can now construct the desired family:

Theorem 2.7. There is a locally free P2[3]-family E of µ-stable locally free
sheaves, given by the exact sequence

0 q∗V∨ E IZ ⊗ p∗OP2(1) 0,

i.e. for every [Z] ∈ P2[3] the restriction to the fiber over Z defines a point
[EZ ] ∈MP2(4, 1, 3).

Proof. For every [Z] ∈ P2[3] we have Hom(IZ(1),OP2) = 0, so

Ext0q(IZ ⊗ p∗OP2(1),OP2×P2[3]) = q∗Hom(IZ ⊗ p∗OP2(1),OP2×P2[3]) = 0.

Using this fact and the projection formula for relative Ext-sheaves [13,
Lemma 4.1.], the five term exact sequence of the spectral sequence

H i(P2[3], Extjq(IZ ⊗ p∗OP2(1), q∗V∨))⇒ Exti+j(IZ ⊗ p∗OP2(1), q∗V∨)

reduces to an isomorphism

Ext1(IZ ⊗ p∗OP2(1), q∗V∨) ∼= H0(P2[3], Ext1q(IZ ⊗ p∗OP2(1), q∗V∨))

∼= H0(P2[3], Ext1q(IZ ⊗ p∗OP2(1),OP2×P2[3])⊗ V∨)

∼= Hom(V,V).

The identity idV gives rise to an extension on P2×P2[3]:

(4) 0 q∗V∨ E IZ ⊗ p∗OP2(1) 0

with E flat over P2[3], since both other terms are. Restricting to the fiber
over a point [Z] ∈ P2[3] defines by flatness of IZ ⊗ p∗OP2(1) a map

Ext1(IZ ⊗ p∗OP2(1), q∗V∨)→ Ext1(IZ(1), V ∨ ⊗OP2).

By [13, Lemma 2.1.] the extension defined by idV restricts to the extension

given by idV on the fiber over [Z] ∈ P2[3]. Thus the pullback of (4) to the

fiber over [Z] ∈ P2[3] is exactly the exact sequence (2), hence it defines a
locally free sheaf classified by MP2(4, 1, 3). Using [8, Lemma 2.1.7.] again,
we see that E is itself locally free. �

By the universal property ofMP2(4, 1, 3) the family E comes with a clas-
sifying morphism

fE : P2[3] →MP2(4, 1, 3), [Z] 7→ [EZ ] .

Furthermore there is L ∈ Pic(P2[3]) and an isomorphism

(5) (idP2 ×fE)∗U ⊗ q∗L ∼= E .
We need to study some properties of the morphism fE . For this we need:
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Lemma 2.8. Assume [Z] ∈ P2[3] is not collinear. If there is an isomorphism

α : EZ′ ∼= EZ for some [Z ′] ∈ P2[3], then [Z] = [Z ′].

Proof. We look at the following diagram:

0 O⊕3P2 EZ′ IZ′(1) 0

0 O⊕3P2 EZ IZ(1) 0.

ι

α∼=
q

Since Z is not collinear the composition q ◦ α ◦ ι is zero. Consequently the
free submodule of EZ′ maps injectively to the free submodule of EZ , which
must be an isomorphism then, so we get in fact the following diagram:

0 O⊕3P2 EZ′ IZ′(1) 0

0 O⊕3P2 EZ IZ(1) 0.

∼= α∼= ∼=

Therefore there is an induced isomorphism IZ′(1) ∼= IZ(1) and so [Z] =
[Z ′]. �

Thus the non-collinear subschemes in P2[3] define sheaves EZ with exactly
three global sections. It makes sense to study the Brill-Noether-locus S in
MP2(4, 1, 3):

S :=
{

[E] ∈MP2(4, 1, 3) |h0(P2, E) = 4
}
.

Remark 2.9. We can write down the inverse g to fE on the complement of
S:

g :MP2(4, 1, 3) \ S → P2[3], E 7→ supp(Q∨∨/Q)

where Q is the cokernel of the (in this case) canonical evaluation map from
Lemma 1.5.

By [20, Corollary, p.14, lines 3-5] we get for the EZ with collinear sub-
schemes Z:

Lemma 2.10. Assume [Z], [Z ′] ∈ P2[3] are collinear with [Z] 6= [Z ′] such
that there is a line ` ⊂ P2 containing both Z and Z ′, then EZ = EZ′.

Remark 2.11. This shows that for a sheaf EZ with a collinear subscheme
Z ⊂ P2 we have

f−1E ([EZ ]) = `[3] ∼= P3,

where ` ⊂ P2 is the line containing Z.

The last two lemmas suggest that fE is the blow up of S in MP2(4, 1, 3).
This is indeed the case since by [21, 5.29, Example 5.3.] we have:

Lemma 2.12. The Brill-Noether-locus S in MP2(4, 1, 3) is isomorphic to

P2 and there is an isomorphism P2[3] ∼= BlSMP2(4, 1, 3) such that fE can be
identified with the blow up of S in MP2(4, 1, 3).

Remark 2.13. This description goes back to Drezet who proved this in
terms of Kronecker modules in [4, Théorème 4.].
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Corollary 2.14. For every locally free sheaf F on MP2(4, 1, 3) we have
isomorphisms

H i(MP2(4, 1, 3), F ) ∼= H i(P2[3], f∗EF ).

Proof. Since fE is birational by Lemma 2.12, the result follows from the well
known formula Ri (fE)∗OP2[3] = 0 for i ≥ 1, the projection formula and the
Leray spectral sequence. �

3. Computations

We want to understand the family E as a P2-family, that is we want to
understand the sheaves Ep on P2[3] for p ∈ P2. For this we first note that Z is

not just flat over P2[3] but also over P2, see [12, Theorem 2.1.], so restricting
the exact sequence

0 IZ OP2×P2[3] OZ 0

to the fiber over point p ∈ P2 gives the exact sequence

(6) 0 ISp OP2[3] OSp 0,

where Sp :=
{

[Z] ∈ P2[3] | p ∈ supp(Z)
}

is a codimension two subscheme in

P2[3].
Since Z is flat over P2 we see, using [7, Examples 5.4 vi)], that we have

OSp = k(p)[3] is the tautological sheaf on P2[3] associated to the skyscraper

sheaf k(p) of the point p ∈ P2. This implies we can use [10, Theorem
3.17.,Remark 3.20.] to find the following cohomology groups:
(7)

exti(OP2[3] ,OP2(−2)[3]) = 0 for all i and exti(OSp ,OP2(−2)[3]) =

{
1 i = 2

0 i 6= 2

as well as
(8)

exti(OP2(−2)[3],OP2[3]) =

{
6 i = 0

0 i ≥ 1
and exti(OP2(−2)[3],OSp) =

{
7 i = 0

0 i ≥ 1.

Using these results we can prove:

Lemma 3.1. For p ∈ P2 we have

exti(ISp ,OP2(−2)[3]) =

{
1 i = 1

0 i 6= 1
and exti(OP2(−2)[3], ISp) =

{
≥ 1 i = 1

0 i ≥ 2.

Proof. Applying Hom(−,OP2(−2)[3]) to exact sequence (6) shows that we

have Ext6(ISp ,OP2(−2)[3]) = 0. Also there are isomorphisms:

Exti(ISp ,OP2(−2)[3]) ∼= Exti+1(OSp ,OP2(−2)[3]) for 1 ≤ i ≤ 5,

since Exti(OP2[3] ,OP2(−2)[3]) = 0 for all i by (7). We furthermore find

Hom(ISp ,OP2(−2)[3]) = 0 by further using Exti(OSp ,OP2(−2)[3]) = 0 for
i = 0, 1. This proves the first claim.
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For the second claim we apply Hom(OP2(−2)[3],−) to exact sequence

(6). As Ext1(OP2(−2)[3],OP2[3]) = 0 by (8) the first part of the long exact
sequence gives

0 Hom(OP2(−2)[3], ISp) C6 C7 Ext1(OP2(−2)[3], ISp) 0

which shows that ext1(OP2(−2)[3], ISp) ≥ 1. We also get isomorphisms

Exti(OP2(−2)[3], ISp) ∼= Exti−1(OP2(−2)[3],OSp) for 2 ≤ i ≤ 6.

Again using (8) proves the second claim. �

To study the locally free sheaves Ep on P2[3] we note that the exact se-
quence

0 q∗V∨ E IZ ⊗ p∗OP2(1) 0

restricts to the fiber over p ∈ P2 as

(9) 0 OP2(−2)[3] Ep ISp 0

by using flatness of IZ over P2 and Lemma 2.6. We can now prove:

Theorem 3.2. Let E be the P2[3]-family of µ-stable locally free sheaves, then
for any pair of closed points p, q ∈ P2 with p 6= q we have

ext1(Ep, Eq) ≥ 1.

Proof. By [11, Theorem 1.2] the Fourier-Mukai transform

ΦIZ : Db(P2)→ Db(P2[3])

is fully faithful, that is for p, q ∈ P2 with p 6= q we have by flatness of IZ
over P2:

Exti(ISp , ISq) ∼= Exti(k(p), k(q)) = 0 for 0 ≤ i ≤ 6.

So applying Hom(ISq ,−) with q 6= p to (9) gives isomorphisms

Exti(ISq , Ep) ∼= Exti(ISq ,OP2(−2)[3]) for 0 ≤ i ≤ 6.

If we apply Hom(OP2(−2)[3],−) and use [10, Theorem 3.17.] again to see

exti(OP2(−2)[3],OP2(−2)[3]) =

{
1 i = 0

0 i ≥ 1

we get an exact sequence

0 C Hom(OP2(−2)[3], Ep) Hom(OP2(−2)[3], ISp) 0

and isomorphisms

Exti(OP2(−2)[3], Ep) ∼= Exti(OP2(−2)[3], ISp) for 1 ≤ i ≤ 6.

Finally applying Hom(−, Eq) with q 6= p to (9) we get the following rele-
vant part of the induced long exact sequence:

Ext1(Ep, Eq) Ext1(OP2(−2)[3], Eq) Ext2(ISp , Eq)
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With the previous results this sequence gets:

Ext1(Ep, Eq) Ext1(OP2(−2)[3], ISq) Ext2(ISp ,OP2(−2)[3])

Using Lemma 3.1 we have Ext2(ISp ,OP2(−2)[3]) = 0 and thus

ext1(Ep, Eq) ≥ ext1(OP2(−2)[3], ISq) ≥ 1. �

4. Non-full faithfulness of the universal family

We want to study the full faithfulness of the Fourier-Mukai transform

ΦU : Db(P2)→ Db(MP2(4, 1, 3))

induced by the universal family U of the moduli space MP2(4, 1, 3).
We will use the following corollary of the Bondal-Orlov criterion for full

faithfulness:

Lemma 4.1. [7, Corollary 7.5] Let X and Y be two smooth projective vari-
eties and P a coherent sheaf on X×Y , flat over X. Then the Fourier-Mukai
transform

ΦP : Db(X)→ Db(Y )

is fully faithful if and only if the following two conditions are satisfied

i) For any closed point x ∈ X one has Exti(Px,Px) =

{
C i = 0

0 i > dim(X)

ii) For any pair of closed points x, y ∈ X with x 6= y and for all i one has
Exti(Px,Py) = 0.

To apply this lemma to P = U , the universal family of MP2(4, 1, 3), we

need to be able to compute Exti(Up,Uq). The following lemma reduces this

problem to computing Exti(Ep, Eq):
Lemma 4.2. Let U be the universal family ofMP2(4, 1, 3) and E be the P2[3]-
family, then for any two points p, q ∈ P2 there are the following isomorphisms
for all i:

Exti(Up,Uq) ∼= Exti(Ep, Eq).
Proof. We have the following chain of isomorphisms:

Exti(Up,Uq) ∼= H i(MP2(4, 1, 3),Hom(Up,Uq))
∼= H i(P2[3], f∗EHom(Up,Uq))
∼= H i(P2[3],Hom(f∗EUp, f∗EUq))
∼= Exti(f∗EUp, f∗EUq)
∼= Exti(f∗EUp ⊗ L, f∗EUq ⊗ L)

∼= Exti(Ep, Eq)
Here the first and third isomorphism use the locally freeness of Up, see
Remark 1.4. The second isomorphism is Corollary 2.14 since Uq is also
locally free. The fourth isomorphism uses locally freeness of f∗EUp, while the

sixth isomorphism follows from restricting (5) to the fiber over p ∈ P2. �
We can now prove the main theorem of this note:
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Theorem 4.3. The Fourier-Mukai transform

ΦU : Db(P2)→ Db(MP2(4, 1, 3))

induced by the universal family U of the moduli space MP2(4, 1, 3) is not
fully faithful.

Proof. For the Fourier-Mukai transform ΦU to be fully faithful one needs

(10) Exti(Up,Uq) = 0

for any pair of points p 6= q ∈ P2 and any i according to Lemma 4.1.
Lemma 4.2 shows that (10) is equivalent to

Exti(Ep, Eq) = 0.

But we have Ext1(Ep, Eq) 6= 0 by Theorem 3.2, so ΦU cannot be fully faithful.
�
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THE SYMPLECTIC STRUCTURE ON THE MODULI

SPACE OF LINE BUNDLES ON A NONCOMMUTATIVE

AZUMAYA SURFACE

FABIAN REEDE

Abstract. In this note we prove that the moduli space of torsion-
free modules of rank one over an Azumaya algebra on a K3 surface
is an irreducible symplectic variety deformation equivalent to a Hilbert
scheme of points on the K3 surface.

Introduction

Assume X is a smooth projective K3 surface over C and let A be an
Azumaya algebra on X, that is, A is a twisted form of a matrix algebra on
X. The pair (X,A) can be thought of as a noncommutative surface and it
is also an example of what is called a Calabi-Yau order.

Locally projective A-modules of rank one can be considered as line bun-
dles on this noncommutative surface. In [HS05a] the authors construct mod-
uli schemes for such line bundles. These schemes can be seen as noncom-
mutative versions of the classical Picard schemes. By allowing torsion-free
A-modules and by fixing invariants, for example the Mukai vector, the-
ses moduli schemes MA/X(v) are shown to be projective schemes over C.
Furthermore the authors show that these schemes are smooth and possess a
symplectic structure. So one can ask the question: are these moduli schemes
irreducible symplectic varieties (hyperkähler manifolds)?

There are 4 known classes of hyperkähler manifolds: the Hilbert schemes
of points on a smooth projective K3 surface and the generalized Kummer
varieties associated to an abelian surface, both of these classes are due to
Beauville. Furthermore there is a class of 6-dimensional examples and one
class of 10-dimensional examples. Both classes are due to O’Grady, us-
ing symplectic desingularization. All other known examples of hyperkähler
manifolds are deformation equivalent to one of the four examples mentioned
above. The main result of this note is the following

Theorem. Assume v = vA(E) is a primitive Mukai vector for some torsion-
free A-module E of rank one, then MA/X(v) is an irreducible symplectic

variety deformation equivalent to Hilb
v2

2
+1(X).

The structure of this note is as follows. In section 1 we review basic facts
about Azumaya algebras and associated Brauer-Severi varieties. We study
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the relationship between modules on which an Azumaya algebra acts and
modules on the associated Brauer-Severi variety. In section 2 we review facts
about the moduli schemes in question and relate them to moduli schemes
known to be deformation equivalent to Hilbert schemes. These schemes were
constructed by Yoshioka in [Yos06].

1. Modules over Azumaya algebras and Brauer-Severi varieties

In this section we assume X is any fixed scheme of finite type over C, that
is X ∈ SchC. Following [HL10], we denote by SchC the category of schemes
of finite type over C. For X ∈ SchC, we denote the category of schemes of
finite type over X by SchX .

Definition 1.1. A sheaf of OX -algebras A is called Azumaya algebra if
A is locally free of finite rank and for every closed point x ∈ X the fiber
A(x) = A⊗ k(x) is a central simple algebra over the residue field k(x).

Remark 1.2. The rank of an Azumaya algebra A is always a square, that
is, rk(A) = r2 for some r ∈ N. In this note we will always assume that A is
nontrivial, so that r > 1.

We also note that for f : T → X the OT -algebra AT := f∗A is an
Azumaya algebra on T .

Definition 1.3. Let A be an Azumaya algebra on X. The functor

BS(A) : (SchX)op → Sets

which sends an X-scheme f : T → X to the set of left ideals I ⊆ AT ,
such that AT /I is a locally free OT -module of rank r(r − 1), is called the
Brauer-Severi functor associated to the Azumaya algebra A on X.

We recall some facts about this functor which follow directly from [GW10,
8.13, Exercise 8.14.] and [Gro68, Théorème 8.2, Corollaire 8.3]:

Lemma 1.4. The functor BS(A) is representable by an X-scheme

π : BS(A)→ X.

The morphism π is faithfully flat and proper and exhibits BS(A) as an étale
Pr−1-bundle over X.

Remark 1.5. For every X-scheme f : T → X, there is a functorial isomor-
phism

BS(AT ) ∼= BS(A)×X T.

The scheme BS(A) is called the Brauer-Severi variety associated to A.
In the following we will just write π : Y → X for this X-scheme.

Lemma 1.6. Assume A is an Azumaya algebra on X and let π : Y → X be
the associated Brauer-Severi variety, then one has for every E ∈ Coh(X):

Riπ∗(π∗E) ∼=
{
E if i = 0

0 if i ≥ 1.

Proof. The problem is étale local, so one may assume A = EndOX
(E). Using

Morita equivalence shows BS(EndOX
(E)) ∼= P(E∨). Now the result follows

from [TT90, 4.5.(f)]. �
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Definition 1.7. Assume A is an Azumaya algebra on X and let π : Y → X
be the associated Brauer-Severi variety. Define a locally free sheaf G of rank
r on Y by choosing some extension

0 −−−−→ OY −−−−→ G −−−−→ TY/X −−−−→ 0.

This extension is unique up to scalars, see [Yos06, Lemma 1.1.].

Remark 1.8. The Brauer-Severi variety π : Y → X associated to an Azu-
maya algebraA has the following splitting property: there is an isomorphism
of OY -algebras

π∗A ∼= EndOY
(G)op,

see for example [Qui73, 8.4.]. This shows that we have π∗(Aop) ∼= EndOY
(G)

and hence
Aop ∼= π∗π∗(Aop) ∼= π∗(EndOY

(G)).

Using ideas of Yoshioka, see [Yos06, Lemma 1.5.], we define the following
subcategory of Coh(Y ):

Definition 1.9. Assume A is an Azumaya algebra on X and let π : Y → X
be the associated Brauer-Severi variety, then one defines:

Coh(Y,X) := {E ∈ Coh(Y )|π∗π∗(E ⊗G∨)
∼−−−→ E ⊗G∨}.

Here the morphism is the canonical morphism coming from the adjunction
between π∗ and π∗.

Furthermore we denote the category of coherent sheaves on X having the
structure of a left respectively right A-module by Cohl(X,A) respectively
Cohr(X,A).

Lemma 1.10. Assume A is an Azumaya algebra on X and denote the
associated Brauer-Severi variety by π : Y → X, then there is an equivalence
of categories:

Cohl(X,A) ∼= Coh(Y,X).

Proof. The category Cohl(X,A) is isomorphic to Cohr(X,Aop), hence it is
enough to show that Cohr(X,Aop) and Coh(Y,X) are equivalent.

For this, we define the following functor:

F : Cohr(X,Aop)→ Coh(Y,X), E 7→ π∗E ⊗π∗(Aop) G.

We need to verify that F is well-defined, that is we have to show that
π∗E ⊗π∗(Aop) G belongs to Coh(Y,X). For this we look at the canonical
morphism

π∗π∗((π∗E ⊗π∗(Aop) G)⊗G∨)→ (π∗E ⊗π∗(Aop) G)⊗G∨.
By definition we have G ⊗ G∨ ∼= EndOY

(G) ∼= π∗(Aop). So we have to see
that

π∗π∗π∗E → π∗E
is an isomorphism. But this follows since E → π∗π∗E is an isomorphism by
1.6 and (π∗, π∗) is a pair of adjoint functors.

We note that G∨ is a right EndOY
(G)-module, hence so is E ⊗G∨. Then

π∗(E ⊗ G∨) is a right π∗(EndOY
(G)) ∼= Aop-module by 1.8. So it makes

sense to define the following functor:

H : Coh(Y,X)→ Cohr(X,Aop), E 7→ π∗(E ⊗G∨).
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It remains to study the compositions of F and H. For E ∈ Cohr(X,Aop)
we have:

H(F (E)) = π∗((π∗E ⊗π∗(Aop) G)⊗G∨) ∼= π∗π∗E ∼= E

again by 1.6. For E ∈ Coh(Y,X) we get

F (H(E)) = π∗(π∗(E ⊗G∨))⊗π∗(Aop) G ∼= (E ⊗G∨)⊗π∗(Aop) G ∼= E.

The first isomorphism follows from E ∈ Coh(Y,X) and the second isomor-
phism follows from G∨ ⊗π∗(Aop) G ∼= OY , see [GW10, Proposition 8.26.].

This shows that these categories are equivalent, therefore Cohl(X,A) and
Coh(Y,X) are also equivalent. �
Remark 1.11. If we denote the Brauer class of A by α, that is we have
α = [A] ∈ Br(X), then it can be shown, that the categories Coh(Y,X)
and Cohl(X,A) are also equivalent to the category of so called α-twisted
coherent sheaves, denoted by Coh(X,α), see [HS06].

The definition of an α-twisted coherent sheaf involves an appropriate an-
alytic (or étale) cover of X, representing the class α as a Čech 2-cocycle
on this cover and then ”twisting” the gluing functions of the sheaf by this
2-cocycle. For an exact definition see [Cal00, Definition 1.2.1].

The pair (X,α) is sometimes called a twisted variety. Huybrechts and
Stellari have studied properties of twisted K3-surfaces in detail, see [HS05b]
and [HS06].

All results in this note can be rephrased in terms of α-twisted sheaves.
Our approach of using Azumaya algebras has the advantage of avoiding
working with open covers and gluing functions. On the other hand, our
approach forces the ranks of the sheaves involved to be considerably larger.

2. Moduli spaces of line bundles on a noncommutative Azumaya
surface

In this section we work again with a fixed scheme X, which in this case
should be a smooth projective K3 surface over C. Thus, we have the Mukai
pairing 〈−,−〉 on H2∗(X,Q) given by

〈x, y〉 = −
∫

X
x∨y x, y ∈ H2∗(X,Q),

see for example [HL10, 2.6.1.5]. To shorten notation we write x2 for the
term < x, x >.

Pick an Azumaya algebra A of rank r2 on X and let π : Y → X be the
associated Brauer-Severi variety. Given S ∈ SchC, we have the following
commutative diagram for every s ∈ S:

Ys
js−−−−→ Y × S q−−−−→ Y

πs

y πS

y
yπ

Xs
is−−−−→ X × S p−−−−→ X

where Xs is the fiber of X × S → S over s ∈ S.
The following objects live on the various schemes in this diagram:

• A on X, AS := p∗A on X × S and As := i∗sp
∗A on Xs.
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• π∗(Aop) ∼= EndOY
(G) on Y , π∗S(AopS ) ∼= EndOY ×S

(GS) on Y ×S with
GS = q∗G and π∗s(Aops ) ∼= EndOYs

(Gs) on Ys with Gs = j∗sq
∗G.

Using 1.5, we have Y ×S ∼= BS(AS) and Ys ∼= BS(As), so that both schemes
are also Brauer-Severi varieties.

Remark 2.1. At the generic point η ∈ X the Azumaya algebra A is given
by the central simple algebra Aη = Mn(D) for some division ring D over
the function field C(X). Without loss of generality, we may assume n = 1.

This is because we are only interested in the Brauer class [A] ∈ Br(X).
(Brauer equivalent algebras have equivalent module categories and hence
isomorphic moduli schemes.) But we have [Mn(D)] = [D] ∈ Br(C(X)), so
by injectivity of Br(X) → Br(C(X)), [A] 7→ [Aη] all we need to do is find
an Azumaya algebra D on X with Dη = D. The existence of such an algebra
is due the following theorem, see [CT04, Théorème 2.5.]:

Theorem 2.2. Assume X is a regular integral scheme of dimension at most
two with function field K. If A is a central simple K-algebra of dimension n2

whose image in Br(K) is unramified at every point of codimension one in X,
then there is an Azumaya algebra A of rank n2 on X such that A⊗K = A.

Using this theorem, we see that a generically simple A-module E, that
is, Eη is a simple Aη-module, must be generically of rank one over A, hence
has rank r2 over X. We call such modules A-modules of rank one.

We recall the definition of the Mukai vector vA for a coherent left A-
module from [Ree13, Definition 2.7]. For E ∈ Cohl(X,A) we have:

vA(E) =
ch(E)√
ch(A)

√
td(X).

Furthermore Yoshioka defines in [Yos06, Definition 3.1.] for E ∈ Coh(Y,X):

vG(E) =
ch(π∗(E ⊗G∨))√
ch(π∗(G⊗G∨))

√
td(X).

(Actually he defines this vector using the derived direct image, but the sheaf
E ⊗G∨ does not have higher direct images for E ∈ Coh(Y,X) by 1.6.)

Using the equivalence 1.10, we have vG(F (E)) = vA(E) as well as the
equality vA(H(E)) = vG(E). This is because we have Aop ∼= π∗(G⊗G∨) by
1.8 and ch(Aop) = ch(A). So these Mukai vectors are the same and in the
following we will omit the subscript and just write v for a fixed Mukai vector.

Now we can study the moduli functors of interest. First we define

MA/X(v) : (SchC)op → Sets

which sends a C-scheme S to the set of isomorphism classes of families of
torsion-free A-modules of rank one with Mukai vector v over S.

There is the following theorem describing the corresponding moduli space,
see [HS05a, Theorem 2.4., Theorem 3.6.]:

Theorem 2.3. The moduli functor MA/X(vA) has a coarse moduli scheme
MA/X(vA). Furthermore MA/X(vA) is a smooth projective scheme with a
symplectic form on its tangent bundle.
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Remark 2.4. There is a more general and abstract construction of theses
spaces as algebraic stacks, see for example [Lie04] and [Lie07]. Lieblich
studies theses spaces also in terms of twisted sheaves.

The other moduli functor of interest is the following:

MY,G
H (v) : (SchC)op → Sets

which sends a C-scheme S to the set of isomorphism classes of families of
torsion-free G-twisted semistable OY -modules of rank r with Mukai vector
v over S.

Here H is an ample divisor on X such that G-twisted stability is viewed
with respect to H. For the definition of G-twisted stability, see [Yos06,
Definition 2.2.].

The following theorem states some facts about the corresponding moduli
space, which follow from [Yos06, Theorem 2.1.,Proposition 3.6., Theorem
3.11.].

Theorem 2.5. The moduli functor MY,G
H (v) has a coarse moduli scheme

MY,G
H (v). If v is primitive and H is general with respect to v, then all G-

twisted semistable sheaves are G-twisted stable. In particular, MY,G
H (v) is a

smooth projective scheme with a symplectic form on its tangent bundle.

The following lemma gives a connection between theses moduli spaces:

Lemma 2.6. Assume v is a Mukai vector with v = vA(E) for some torsion-
free A-module E of rank one, then, using the equivalence Cohl(X,A) ∼=
Coh(Y,X), torsion-free A-modules of rank one with Mukai vector v corre-
spond to torsion-free G-twisted semistable OY -modules of rank r with Mukai
vector v. In fact, every torsion-free G-twisted semistable OY -module of rank
r with Mukai vector vG = v is G-twisted stable.

Proof. If E ∈ Cohl(X,A) is given such that E is a torsion-free A-module
of rank one with Mukai vector v = vA(E), then we have rk(E) = r2. Now
E has no A-submodules E′ ( E with 0 < rk(E′) < r2 because any such
module must satisfy r2|rk(E′) which is impossible. So F (E) is a torsion-
free OY -module of rank r, has Mukai vector vG = v and has no nontrivial
submodules in Coh(Y,X), since F preserves submodules. F (E) is therefore
G-twisted stable.

On the other hand if E ∈ Coh(Y,X) is given and E is a torsion-free
G-twisted semistable OY -module of rank r with vG(E) = v, then we have
H(E) ∈ Cohl(X,A) and H(E) is torsion-free and of rank one, as we have
rk(H(E)) = r2. We can conclude that E must be G-twisted stable, be-
cause any nontrivial submodule E′ ( E in Coh(Y,X) with 0 < rk(E′) < r
would give rise to an A-submodule H(E′) ( H(E) in Cohl(X,A) with
0 < rk(H(E′)) < r2 as H also preserves submodules. But this is impossible
since H(E) is a torsion-free A-module of rank one. �

Remark 2.7. The previous lemma 2.6 shows that given a Mukai vector
v = vA(E) for some torsion-free A-module E of rank one, we do not need
to worry if the polarization H is general with respect to v, see 2.5. All
torsion-free G-twisted semistable OY -modules of rank r and with Mukai
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vector vG = v are automatically G-twisted stable. So MY,G
H (v) is a smooth

projective scheme without choosing a special polarization H.

Looking at the definition of the moduli functors, we see that we are work-
ing with two kinds of families of sheaves:

i) a family of torsion-free A-modules of rank one with Mukai vector v over
a C-scheme S is a sheaf E ∈ Cohl(X ×S,AS) such that E is flat over S
and Es = i∗sE is a torsion-free As-module of rank one on Xs with Mukai
vector v for every closed point s ∈ S, especially Es ∈ Cohl(Xs,As).

ii) a family of torsion-free G-twisted semistable OY -modules of rank r with
Mukai vector v over a C-scheme S is a sheaf F ∈ Coh(Y × S,X × S)
such that F is flat over S and Fs = j∗sF is a torsion-free G-twisted
semistable OY -module of rank r on Ys with Mukai vector v for every
closed point s ∈ S, especially Fs ∈ Coh(Ys, Xs).

For every S ∈ SchC we have X × S ∈ SchC. Furthermore AS is an
Azumaya algebra on X×S with a functorial isomorphism BS(AS) ∼= Y ×S,
so lemma 1.10 shows that there is an equivalence

Cohl(X × S,AS) ∼= Coh(Y × S,X × S)

which has the following property:

Lemma 2.8. The equivalence Cohl(X×S,AS) ∼= Coh(Y ×S,X×S) maps
families of type i) to families of type ii) with semistable replaced by stable
and vice versa.

Proof. Let E be a family of type i). Define F := π∗SE ⊗π∗
S(A

op
S ) GS , then F

is a family of type ii).
We have F ∈ Coh(Y × S,X × S) and F is flat over S. To see this,

note that πS is faithfully flat, so π∗SE is flat over S, see [GD65, 2.2.11 (iii)].
Furthermore GS is a flat π∗S(AopS )-module, so F is flat over S. We also see
that

Fs = j∗s (π∗SE ⊗π∗
S(A

op
S ) GS) = π∗sEs ⊗π∗

s (Aop
s ) Gs.

So Fs ∈ Coh(Ys, Xs) and Fs is a torsion-free G-twisted stable OY -module
of rank r on Ys with Mukai vector v by 2.6.

Let F be a family of type ii). Define E := πS∗(F⊗G∨S), then E is a family
of type i).

We have E ∈ Cohl(X × S,AS) and E is flat over S. To see this, we
note that this can be tested after pullback with a faithfully flat morphism
f : Z → X × S by [GD65, 2.2.11 (iii)]. So we use f = πS . But then
π∗SE = π∗SπS∗(F ⊗G∨S) ∼= F ⊗G∨S and the latter is flat over S since F and
G∨S are. Finally

Es = i∗sπS∗(F ⊗G∨S) ∼= πs∗π
∗
s i
∗
sπS∗(F ⊗G∨S)

= πs∗j
∗
sπ
∗
SπS∗(F ⊗G∨S) ∼= πs∗j

∗
s (F ⊗G∨S) = πs∗(Fs ⊗G∨s ).

So Es ∈ Cohl(Xs,As) and Es is a torsion-free As-module of rank one on Xs

with Mukai vector v by 2.6. �
Lemma 2.9. Assume v = vA(E) is a Mukai vector for some torsion-free

A-module E of rank one, then the functors MA/X(v) and MY,G
H (v) are

isomorphic.
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Proof. Let S, T ∈ SchC with f : T → S, then we have the following com-
mutative diagram:

Y × T fY−−−−→ Y × S q−−−−→ Y

πT

y πS

y
yπ

X × T fX−−−−→ X × S p−−−−→ X

with fX = idX × f and fY = idY × f . This gives

MA/X(v)(f) :MA/X(v)(S)→MA/X(v)(T ), [E ] 7→ [f∗X(E)]

MY,G
H (v)(f) :MY,G

H (v)(S)→MY,G
H (v)(T ), [F ] 7→ [f∗Y (F)].

Define a natural transformation Ψ :MY,G
H (v)→MA/X(v) by

ΨS :MY,G
H (v)(S)→MA/X(v)(S), [F ] 7→ [πS∗(F ⊗G∨S)].

This map is well-defined by 2.8. One computes

ΨT (MY,G
H (v)(f)[F ]) = [πT ∗(f

∗
Y F ⊗G∨T )] = [πT ∗(f

∗
Y (F ⊗G∨S))]

= [πT ∗(f
∗
Y (π∗SπS∗(F ⊗G∨S)))]

= [πT ∗π
∗
T (f∗X(πS∗(F ⊗G∨S)))]

= [f∗X(πS∗(F ⊗G∨S))] =MA/X(v)(f)(ΨS([F ]))

and hence ΨT ◦MY,G
H (v)(f) =MA/X(v)(f) ◦ΨS .

We define a another natural transformation η :MA/X(v)→MY,G
H (v) by

ηS :MA/X(v)(S)→MY,G
H (v)(S), [E ] 7→ [π∗SE ⊗π∗

S(A
op
S ) GS ].

This map is also well-defined by 2.8. η is a natural transformation due to
the fact that pullbacks commute with tensor products.

Finally by what we have already seen ΨS are ηS are inverse bijections for
every S, so Ψ is a natural isomorphism between these moduli functors. �
Corollary 2.10. Assume v = vA(E) is a Mukai vector for some torsion-free

A-module E of rank one, then the moduli schemes MA/X(v) and MY,G
H (v)

are isomorphic.

Proof. Since these schemes are coarse moduli spaces they corepresent their
corresponding moduli functors, see [HL10, Definition 2.2.1]. Thus the nat-
ural isomorphisms η and Ψ from 2.9 induce natural isomorphisms

HomSchC(−,MA/X(v)) ∼= HomSchC(−,MY,G
H (v))

by the universal property. But then Yoneda implies MA/X(v) ∼= MY,G
H (v).

�
Using this corollary and [Yos06, Theorem 3.16.], we finally get our main

result:

Theorem 2.11. Assume v = vA(E) is a primitive Mukai vector for some
torsion-free A-module E of rank one, then MA/X(v) is an irreducible sym-

plectic variety deformation equivalent to Hilb
v2

2
+1(X). Moreover one has:

• MA/X(v) 6= ∅ if and only if v2 ≥ −2



121

• if v2 = 0, then MA/X(v) is a K3 surface.

Corollary 2.12. Assume v = vA(E) is a primitive Mukai vector for some
torsion-free A-module E of rank one, then one has:

• hp,q(MA/X(v)) = hp,q(Hilb
v2

2
+1(X))

• bi(MA/X(v)) = bi(Hilb
v2

2
+1(X))

Here hp,q are the Hodge numbers and bi are the Betti numbers.

Proof. This follows from 2.11, using the fact that the Betti numbers and the
Hodge numbers are invariant with respect to deformation equivalence. �
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[CT04] J.-L. Colliot-Thélène. Algèbres simples centrales sur les corps de fonctions de
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TORSION-FREE RANK ONE SHEAVES OVER DEL PEZZO

ORDERS

NORBERT HOFFMANN AND FABIAN REEDE

Abstract. Let A be a del Pezzo order on the projective plane over the
field of complex numbers. We prove that every torsion-free A-module
of rank one can be deformed into a locally free A-module of rank one.

Introduction

An order on an algebraic variety X is a torsion-free coherent sheaf of OX -
algebras whose generic stalk is a central division algebra over the function
field of X. A surface together with an order on it can be thought of as
a noncommutative surface. In this article we are interested in terminal del
Pezzo orders on the projective plane P2 over the field of complex numbers C.
These orders are noncommutative analogues of classical del Pezzo surfaces
and have been completely classified by D. Chan and C. Ingalls in the course
of their proof of the minimal model program for orders over surfaces, see
[CI05].

Let A be a terminal del Pezzo order on P2. Left A-modules which are
locally free and generically of rank one can be thought of as line bundles
on this noncommutative surface. There is a quasi-projective coarse moduli
scheme for these line bundles [HS05], a noncommutative analogue of the
classical Picard scheme. To compactify this moduli scheme, that is to get
a projective moduli scheme, one has to allow torsion-free left A-modules
which are generically of rank one.

We study the boundary of this compactification by studying the defor-
mation theory of torsion-free A-modules. The main result of this article is
the following

Theorem. Let A 6= OP2 be a terminal del Pezzo order on P2 over C. Then
every torsion-free A-module E of rank one can be deformed to a locally free
A-module E′.

As a corollary, we obtain that every irreducible component of the com-
pactification of the noncommutative Picard scheme contains a point defined
by an A-line bundle.

The structure of this paper is as follows. We review the definition and
some basic facts about terminal del Pezzo orders in section 1. In section 2
we study in detail the local deformation theory of A-modules in this setting.
We look at the homological algebra of torsion-free A-modules and study

2010 Mathematics Subject Classification. 14J60 (14D15, 16H10).
The second author was supported by a research fellowship of the Deutsche Forschungs-

gemeinschaft (DFG).
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the compactification of the noncommutative Picard scheme and some of its
properties in section 3. In the final section 4 we study the global deformation
theory and prove the main result.

1. Noncommutative del Pezzo surfaces

Let X be a smooth projective surface over C.

Definition 1.1. An order A on X is sheaf of associative OX -algebras such
that

• A is coherent and torsion-free as an OX -module, and
• the stalk Aη at the generic point η ∈ X is a central division algebra

over the function field C(X) = OX,η of X.

We can now look at all orders in Aη and order them by inclusion. A
maximal element will be called a maximal order. These are the algebras we
are interested in. Maximal orders have some nice properties, for example
they are locally free OX -modules.

Furthermore, it is well known that there is a largest open subset U ⊂ X
on which A is even an Azumaya algebra, see for example [Tan81, Proposition
6.2]. The complement D := X \U is called the ramification locus of A. It is
the union of finitely many curves C ⊂ X, and contains valuable informations
about the order A.

The ramification of a maximal order A can be seen in the Artin-Mumford
sequence:

Theorem 1.2 ([Tan81, Lemma 4.1]). Let X be a smooth projective surface
over C. Then there is a canonical exact sequence

0 −−−−→ Br(X) −−−−→ Br(C(X)) −−−−→ ⊕
C⊂X

irreducible curve

H1(C(C),Q/Z).

Here the Galois cohomology group H1(C(C),Q/Z) classifies isomorphism
classes of cyclic extensions of C(C). The ramification curves are exactly the
curves where the Brauer class of Aη has nontrivial image in H1(C(C),Q/Z).
Thus every ramification curve C comes with a finite cyclic field extension
L/C(C). The degree eC := [L : C(C)] is called the ramification index of A
at C.

We are interested in a special class of maximal orders on X, the so called
terminal orders. To give a definition of terminal orders, let e, e′ and f be
positive integers such that e′ divides e. We look at the complete local ring
R = C[[u, v]] and define

S := R〈x, y〉 with the relations xe
′

= u, ye
′

= v and yx = ζxy

where ζ is a primitive e′-th root of unity. Then S is of finite rank over R, the
center of S is R, and the tensor product S ⊗R K with the field of fractions
K := Quot(R) is a division ring. Define the following R-subalgebra:

(1) B :=




S · · · · · · S

xS S
. . .

...
...

. . .
. . .

...
xS · · · xS S


 ⊂Me/e′(S)
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Then we define the R-algebra A as a full matrix algebra over B:

(2) A := Mf (B).

Note that the algebra A = Ae,e′,f depends on the integers e, e′ and f . The
following theorem describes some of its properties:

Theorem 1.3 ([CI05, Proposition 2.8]). Let A = Ae,e′,f be the R-algebra
defined by (2).

i) A has global dimension two.
ii) If e = e′ = 1, then A is unramified.
iii) If e > e′ = 1, then A is ramified on u = 0, with ramification index

e.
iv) If e′ > 1, then A is ramified on uv = 0, with ramification index e on

u = 0, and with ramification index e′ on v = 0.

Definition 1.4 ([CI05, Corollary 4.3]). A maximal order A on a smooth
projective surface X over C is called terminal if and only if for every closed
point p ∈ X there is

• an isomorphism of complete local rings ÔX,p ∼= C[[u, v]], and

• a C[[u, v]]-algebra isomorphism Ap⊗ÔX,p ∼= Ae,e′,f for some integers
e, e′ and f .

Definition 1.5 ([CK03, Lemma 8]). Assume A is a terminal order on a
smooth projective surface X over C, with ramification curves {Ci} and ram-
ification indices {ei}. Then we define the canonical divisor class KA of A
by:

KA = KX +
∑

(1− 1

ei
)Ci.

Lemma 1.6. If A is a terminal order on a smooth projective surface X
over C, then

KA = KX −
2c1(A)

rk(A)
.

Proof. Theorem 1.83 in [Ree13] states that c1(A) = −rk(A)

2

∑
(1− 1

ei
)Ci.

�
Definition 1.7 ([CK03, Definition 7, Lemma 8]). A terminal order A on
a smooth projective surface X over C is called a del Pezzo order if −KA is
ample.

If A is a terminal del Pezzo order on P2, then its ramification is rather
limited:

Proposition 1.8 ([CI05, Proposition 3.21]). Assume A is a terminal del
Pezzo order on P2 with ramification locus D =

⋃
Ci and ramification indices

{ei}. Then all ramification indices ei are equal, and we have the inequalities
3 ≤ deg(D) ≤ 5.

Furthermore there are more constraints for the common ramification in-
dex e ∈ N depending on the degree of D, see for example [CI05, Proposition
3.21].
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2. Punctual deformations of rank one modules

In this section we study the local situation. That is we replace the surface
X over C by the complete local ring R = C[[u, v]], and the terminal order
A on X by the R-algebra

A = Ae,e′,f

defined in (2). The role of the dualizing sheaf will be played by the A-
bimodule

A∗ := Hom(A,R).

Left ideals I ⊂ A of R-colength l < ∞ are parameterized by the punctual
Hilbert scheme

HilbA(l),

which is a closed subscheme of the punctual Quot-scheme QuotR(A, l) and
hence projective over C. We say that I can be deformed to another left ideal
I ′ ⊂ A if I ′ has the same colength l < ∞, and lies in the same connected
component of HilbA(l).

Equivalently, I ⊂ A can be deformed to I ′ ⊂ A if and only if there is a
sheaf of left ideals I ⊂ AT := A ⊗C OT for some connected scheme T over
C such that AT /I is flat over OT , and I has fibers It = I and It′ = I ′ for
some points t, t′ ∈ T (C).

We consider three different cases, depending on the ramification of A.

2.1. No ramification: e = e′ = 1. In this case, A = Mf (R) is a full matrix
algebra over R = C[[u, v]]. We assume f > 1.

Lemma 2.1. Every proper left ideal I ⊂ A of finite colength can be deformed
to a proper left ideal I ′ ⊂ A of finite colength such that I ′A∗ 6⊆ A∗I ′.

Proof. The left ideal I ⊂ A is Morita equivalent to an R-submodule M ⊂ Rf
of some colength l < ∞. Choose an ideal J ⊂ R of colength l. Then the
R-submodule

(3) M ′ := J ⊕Rf−1 ⊂ Rf

is Morita equivalent to some left ideal I ′ ⊂ A. Since the punctual Quot-
scheme

QuotR(Rf , l)

is irreducible according to [EL99, Proposition 6], M ⊂ Rf can be deformed
to M ′ ⊂ Rf . Therefore I ⊂ A can be deformed to I ′ ⊂ A. It remains to
prove I ′A∗ 6⊆ A∗I ′.

Assume for contradiction that I ′A∗ ⊆ A∗I ′. Then I ′A ⊆ AI ′, because
A∗ ∼= A as A-bimodules by means of the trace form A ⊗R A → R. Hence
I ′ is a two-sided ideal. Consequently, I ′ = Mf (J ′) for some ideal J ′ ⊂ R.
Therefore,

M ′ = (J ′)f ⊂ Rf .
Since f > 1, this contradicts (3). Hence indeed I ′A∗ 6⊆ A∗I ′. �
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2.2. Smooth ramification: e > e′ = 1. In this case, our algebra is given
by A = Ae,1,f over R = C[[u, v]] is ramified over u = 0, with ramification
index e. Explicitly, we have A = Mf (B) for

(4) B =




R · · · · · · R

uR R
. . .

...
...

. . .
. . .

...
uR · · · uR R


 ⊂Me(R).

The aim of this subsection is to prove an analogue of Lemma 2.1 in this
situation.

We have A∗ = Mf (B∗) for the B-bimodule B∗ := HomR(B,R). The
trace map

tr : BK := B ⊗R K = Me(K)→ K

allows us to identify B∗ with the set of all b ∈ BK for which tr(bB) ⊆ R;
explicitly,

B∗ =




R u−1R · · · u−1R

R R
. . .

...
...

...
. . . u−1R

R R · · · R



⊂ BK = Me(K).

In particular, B∗ = b∗B = Bb∗ and A∗ = b∗A = Ab∗ for the matrix

(5) b∗ :=




0 u−1 0 · · · 0
... 0 u−1

. . .
...

...
. . .

. . .
. . . 0

0
. . .

. . . 0 u−1

1 0 · · · · · · 0



∈ B∗,

where elements of A = Mf (B) are multiplied componentwise by b∗ ∈ B∗.
We see from (4) that B has exactly e two-sided maximal ideals mi, given

by replacing R by its maximal ideal m in the diagonal entry (i, i) respectively.
So there are also exactly e non-isomorphic simple B-modules Si := B/mi.
We have

B∗ ⊗B S1 ∼= Se and B∗ ⊗B Si ∼= Si−1 for i ≥ 2,

because b∗m1 = meb
∗ and b∗mi = mi−1b∗ for i ≥ 2, as is easily checked.

Using Morita equivalence, we see that there are e simple left A-modules, all
of R-length f .

Corollary 2.2. HilbA(l) is nonempty if and only if f divides l.

Lemma 2.3. Let I ⊂ A be a left ideal such that IA∗ ⊆ A∗I. Then I is a
two-sided ideal. In particular, I = Mf (J) for some two-sided ideal J ⊂ B
such that JB∗ ⊆ B∗J .

Proof. Let b∗ ∈ B∗ still be the matrix given by (5). The finitely generated
R-modules A/I and A∗/A∗I = b∗A/b∗I are isomorphic, as b∗ is invertible in
Me(K). The R-linear map

φ : A/I → A∗/A∗I, a+ I 7→ ab∗ +A∗I
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is well-defined since Ib∗ ⊆ A∗I by assumption, and surjective since we have
Ab∗ = A∗. Therefore, φ is also injective, according to [Mat89, Theorem
2.4]. Since φ is by definition A-linear from the left, and IA∗ ⊆ A∗I by
assumption, we conclude that IA ⊆ I. �

Lemma 2.4. Let J ⊂ B be a left ideal such that JB∗ ⊆ B∗J . Then

(6) J =




Je Je−1 · · · J1

uJ1 Je
. . .

...
...

. . .
. . . Je−1

uJe−1 · · · uJ1 Je


 ⊂Me(R)

for some chain of ideals R ⊇ J1 ⊇ J2 ⊇ · · · ⊇ Je with Je ⊇ uJ1.

Proof. Since Lemma 2.3 applies to J ⊂ B, it shows that J is a two-sided
ideal in B. We denote the standard basis elements of the free R-module B
by

(7) bi,j ∈Me(R), 1 ≤ i, j ≤ e.

In other words, the matrix bi,j has a single nonzero entry in row i and
column j, which is 1 for i ≤ j and u for i > j. Since J is two-sided, we have
bi,iJbj,j ⊆ J , and therefore

bi,iJbj,j = Ji,jbi,j

for some ideals Ji,j ⊆ R. As b1,1 + b2,2 + · · · + be,e = 1 in B, we conclude
that

J =




J1,1 J1,2 · · · J1,e

uJ2,1 J2,2
. . .

...
...

. . .
. . . Je−1,e

uJe,1 · · · uJe,e−1 Je,e


 ⊂Me(R).

Using this description, the other assumption Jb∗ ⊆ b∗J directly implies

Ji,e ⊆ Ji+1,1 ⊆ Ji+2,2 ⊆ · · · ⊆ Je,e−i ⊆ J1,e−i+1 ⊆ J2,e−i+2 ⊆ · · · ⊆ Ji,e
for i = 1, . . . , e. Hence these inclusions are all equalities, and (6) holds with
Ji := Ji,e. Using (6), the assumption J ⊇ b1,2J directly implies that we
must have J1 ⊇ J2 ⊇ · · · ⊇ Je ⊇ uJ1. �

Proposition 2.5. Every proper left ideal I ⊂ A of finite colength can be
deformed to a proper left ideal I ′ ⊂ A of finite colength such that I ′A∗ 6⊆
A∗I ′.

Proof. We may assume IA∗ ⊆ A∗I, since otherwise there is nothing to prove.
Using Lemma 2.3 and Lemma 2.4, we get I = Mf (J) with J ⊂ B given by
(6) for some ideals

R ⊇ J1 ⊇ J2 ⊇ · · · ⊇ Je
of finite colength, not all equal to R, such that Je ⊇ uJ1. It suffices to
deform J to a left ideal J ′ ⊂ B such that J ′B∗ 6⊆ B∗J ′. Changing J only in
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the first row, we will take

(8) J ′ =




J ′e J ′e−1 · · · J ′1
uJ1 Je · · · J2

...
. . .

. . .
...

uJe−1 · · · uJ1 Je


 ⊂Me(R)

for some ideals J ′1, . . . , J
′
e ⊆ R, chosen as follows.

Suppose that J1 = · · · = Je. Since mJe 6= Je by Nakayama’s lemma, the
vector space Je/mJe over R/m = C has a one-dimensional quotient. Hence
we can find an ideal

J ′e ⊆ Je with Je/J
′
e
∼= C as R-modules.

Since J1 6= R by assumption, the R-module R/J1 of finite length has a
simple submodule, which is necessarily isomorphic to R/m = C. Hence we
can find an ideal

J ′1 ⊇ J1 with J ′1/J1 ∼= C as R-modules.

Finally, we take J ′i = Ji for i 6= e, 1 in this case.
Now suppose that J1 = · · · = Je is not true. Choose an index m with

Jm 6= Jm+1. Then the R-module Jm/Jm+1 of finite length has a simple
submodule and a simple quotient, which are both necessarily isomorphic to
R/m = C. Hence we can find two ideals

Jm ⊇ J ′m, J ′m+1 ⊇ Jm+1 with Jm/J
′
m
∼= C ∼= J ′m+1/Jm+1 as R-modules.

Finally, we take J ′i = Ji for i 6= m,m+ 1 in this case.
To show that the R-submodule J ′ ⊆ B defined by (8) is a left ideal, we

check that the basis elements bi,j ∈ B in (7) satisfy bi,jJ
′ ⊆ J ′. This clearly

holds for i = j = 1, and also for i, j ≥ 2 because J is a left ideal. In
each of the two cases considered above, the ideals J ′1, . . . , J

′
e ⊆ R satisfy by

construction

Ji ⊆ J ′i−1 for i ≥ 2, and uJ1 ⊆ J ′e.
This directly implies b1,2J

′ ⊆ J ′. Similarly, J ′1, . . . , J
′
e also satisfy by con-

struction

J ′i ⊆ Ji−1 for i ≥ 2, and uJ ′1 ⊆ Je.
This directly implies be,1J

′ ⊆ J ′. Using b1,i = b1,2b2,i and bi,1 = bi,ebe,1 for
i ≥ 2, we conclude that that J ′ ⊆ B is indeed a left ideal.

Since J ′ is by construction not of the form (6), Lemma 2.4 shows that
J ′B∗ 6⊆ B∗J ′. It remains to prove that J can be deformed to J ′.

The left B-modules J/(J ∩ J ′) and J ′/(J ∩ J ′) are, by construction of J ′,
both isomorphic to the simple module S1 = B/m1. Consequently, the sum
J + J ′ ⊆ B satisfies

J + J ′

J ∩ J ′
∼= J

J ∩ J ′ ⊕
J ′

J ∩ J ′
∼= S1 ⊕ S1 ∼= C2

where all these B-modules are C-vector spaces because B acts on them via
B � B/m1

∼= C. We consider the P1 of lines in this C2. The universal
quotient

C2 ⊗C OP1 � OP1(1)
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over this P1 gives rise to a family of B-module quotients

(J + J ′)⊗C OP1 � OP1(1).

Its kernel J ⊂ B ⊗C OP1 restricts to J over [1 : 0] ∈ P1, and to J ′ over
[0 : 1] ∈ P1. Therefore, J is the required deformation of J to J ′. �

2.3. Singular ramification: e = e′ > 1. In this case, our algebra is given
by A = Ae,e,f over R = C[[u, v]] is ramified over u = 0 and over v = 0, with
common ramification index e. Explicitly, we have A = Mf (S) for

S = R〈x, y〉 with the relations xe = u, ye = v and yx = ζxy

where ζ is a primitive e-th root of unity. The ring S is local in the sense
that it has a unique two-sided maximal ideal n ⊂ S, which is generated by
x and y.

In this situation, the analogue of Lemma 2.1 is no longer true; a coun-
terexample is given by f = 1 and I = n. However, the following fact will
suffice for our purposes.

Lemma 2.6. HilbA(l) is connected if f divides l, and it is empty otherwise.

Proof. The unique simple S-module S/n ∼= C has R-length one. Therefore,
S/n is Morita equivalent to a unique simple left A-module, whose R-length
is f .

Now one can just copy the corresponding part in the proof of [HS05, The-
orem 3.6. iii)] and replace the Quot- and the Flag-scheme by the punctual
versions. The main point is that induction also works in this case, because
A has just one simple left module. �

3. Moduli spaces of rank one sheaves

Let A be a terminal order on a smooth projective surface X over C.

Definition 3.1 ([CK03, Definition 4]). The canonical bimodule of A is

ωA := HomOX
(A, ωX).

Lemma 3.2 ([Ree13, Theorem 1.58]). Let E and F be two OX-coherent left
A-modules. Then there is the following form of Serre duality:

ExtiA(E,F ) ∼= Ext2−iA (F, ωA ⊗A E)∨

for i ∈ {0, 1, 2}. Here ( )∨ denotes the C-dual.

Lemma 3.3 ([Ree13, Lemma 1.62]). Let E and T be OX-coherent left A-
modules such that E is locally projective and T is an Artinian module of
finite length. Then the map

Ext2A(T,E)→ Ext2OX
(T,E)

induced by the forgetful functor A-mod→ OX-mod is injective.

Definition 3.4. A left A-module E is called a torsion-free A-module of
rank one if

• E is coherent and torsion-free as an OX -module, and
• the stalk Eη at the generic point η ∈ X has dimension 1 over the

division ring Aη.
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Lemma 3.5 ([CC15, Proposition 4.2.]). Let E be a torsion-free A-module
of rank one which is a locally free OX-module, then for every closed point
p ∈ X there is an isomorphism of completions

Êp ∼= Âp.

Thus E is locally free over A if and only if E is locally free over OX .

Lemma 3.6 ([Ree13, Theorem 1.84]). If E is a torsion-free A-module of
rank one, then

c1(A∗ ⊗A E) = c1(E)− 2c1(A)

where A∗ := HomOX
(A,OX) denotes the dual sheaf of A.

Definition 3.7. A family of torsion-free A-modules of rank one over a C-
scheme T is a left module E under the pullback AT of A to X × T with the
following properties:

• E is coherent over OX×T and flat over T ;
• for every t ∈ T , the fiber Et is a torsion-free AC(t)-module of rank

one.

Here C(t) is the residue field of T at t, and the fiber is the pullback of E to
X × SpecC(t).

Now one can define the moduli functor

MA/X;P : SchemesC → Sets

which sends a C-scheme T to the set of isomorphism classes of families E of
torsion-free A-modules of rank one over T with Hilbert polynomial P .

Theorem 3.8 ([HS05, Theorem 2.4]). There is a coarse moduli scheme
MA/X;P for the functor MA/X;P . The scheme MA/X;P is of finite type and
projective over C.

Instead of fixing the Hilbert polynomial, one can also fix the Chern classes
of these modules. We will work with the moduli space MA/X;c1,c2 of torsion-
free A-modules of rank one over X with Chern classes c1 ∈ NS(X) and
c2 ∈ Z.

Lemma 3.9. Let A be a terminal del Pezzo order on P2 over C. If E
and F are torsion-free A-modules of rank one with c1(E) = c1(F ), then
Ext2A(E,F ) = 0.

Proof. Assume for contradiction that Ext2A(E,F ) 6= 0. Then Serre duality
for A-modules states that there is a nonzero map

φ : F → ωA ⊗A E.

Since E and F are generically simple and torsion-free, φ is generically bijec-
tive and therefore injective, and its cokernel is a torsion sheaf. This means
that the divisor class

(9) c1(ωA ⊗A E)− c1(F )
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is effective. On the other hand, Definition 3.1, Lemma 3.6 and Lemma 1.6
imply that

c1(ωA ⊗A E) = c1(A∗ ⊗A E) + rk(A)c1(ωP2)

= c1(E)− 2c1(A) + rk(A)KP2

= c1(E) + rk(A)KA.

Hence the class in (9) equals rk(A)KA. But A is a del Pezzo order, so −KA
is ample. Since Pic(P2) = Z · [O(1)], we conclude that KA and the class
in (9) are negative multiples of [O(1)], and therefore not effective. This
contradiction proves Ext2A(E,F ) = 0. �
Theorem 3.10. If A is a terminal del Pezzo order on P2 over C, then the
moduli space MA/P2;c1,c2 of torsion-free A-modules of rank one with Chern
classes c1 and c2 is smooth.

Proof. Let E be a torsion-free A-module of rank one with Chern classes c1
and c2. Then Ext2A(E,E) = 0 according to Lemma 3.9. In particular, all
obstruction classes in Ext2A(E,E) vanish. This implies that MA/P2;c1,c2 is
smooth at the point [E]. �

4. Deformations of torsion-free rank one sheaves

Let A be a terminal del Pezzo order of rank n2 > 1 on the projective
plane P2 over C. Let D ⊂ P2 denote the ramification divisor. Proposition
1.8 states that A has the same ramification index e at every component of
D. We put f := n/e.

Proposition 4.1. Let E be a locally free left A-module of rank one. Let

(10) π : E � T

be a nonzero quotient of finite length. Then π can be deformed to a nonzero
quotient

(11) π′ : E � T ′

of finite length such that the following induced map is not injective:

(12) π′∗ : Ext2A(T ′, E)→ Ext2A(T ′, T ′)

Proof. Choose p ∈ P2 in the support of T . As T has finite length, its support
is finite, and

T = Tp ⊕ T6=p
where Tp is supported at p, and T6=p is supported outside p. We distinguish
three cases, depending on the ramification of A at p.

The first case is that p is a smooth point of the ramification divisor D.

Let A := Âp denote the completion of A at p, that is we have A ∼= Ae,1,f .
Choosing an isomorphism of completions given by Lemma 3.5

(13) Êp ∼= A,

we can identify the quotient Tp of Êp with A/I for some left ideal I ⊂ A of
finite colength. Proposition 2.5 allows us to deform I to a left ideal I ′ ⊂ A
of finite colength such that

I ′A∗ 6⊆ A∗I ′.
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Therefore, Tp can be deformed to T ′p := A/I ′ as a quotient of A, and the
given quotient π in (10) can be deformed to the quotient

π′ : E � T ′ := T ′p ⊕ T6=p.
To prove that π′∗ in (12) is not injective, we choose an element a∗ ∈ A∗ with
I ′a∗ 6⊆ A∗I ′. Then the left A-module homomorphism

φ : A→ A∗/A∗I ′ = A∗ ⊗A T ′p, a 7→ aa∗ +A∗I ′,

does not vanish on I ′, and hence does not factor through A/I ′ = T ′p. There-
fore, the map

HomA(T ′p, A
∗ ⊗A T ′p)→ HomA(A,A∗ ⊗A T ′p)

induced by the projection A � T ′p is not surjective, as its image does not
contain φ. Using the identification (13) and the decomposition T ′ = T ′p⊕T6=p,
we conclude that

(π′)∗ : HomA(T ′, ωA ⊗A T ′)→ HomA(E,ωA ⊗A T ′)
is not surjective. Hence the map π′∗ in (12) is not injective, by Serre duality
for A-modules.

The second case is that A is unramified at p. This case is simpler than
the first case. However, the same argument works, using Lemma 2.1 instead
of Proposition 2.5.

The third case is that p lies in the singular locus Dsing of the ramification
divisor D. Let l be the OP2-length of Tp. Then πp : E � Tp defines a point
in the scheme

QuotA(E, l)

that classifies left A-module quotients of E with OP2-length l. This is a
closed subscheme of QuotOP2

(E, l), and hence projective over C. It comes

with a Hilbert-Chow morphism

(14) supp : QuotA(E, l)→ Syml(P2),

whose fiber over l · q for q ∈ P2 is the punctual Hilbert scheme for the

completion Âq:
(15) supp−1(l · q) = HilbÂq

(l).

For q = p, this fiber contains the point Tp, and is therefore non-empty. Using
Lemma 2.6, we conclude that f divides l. Hence (15) is non-empty for each
ramified point q ∈ D by Corollary 2.2. In other words, the image of the
morphism supp in (14) contains the diagonally embedded

D ⊂ P2 ↪→ Syml(P2).

Let ∆ ⊂ D be the finite set of all points q 6= p in Dsing or in the support of
T . Choose an irreducible component C ⊆ D \∆ with p ∈ C. Let Qi be the
connected components of

supp−1(C) ⊆ QuotA(E, l).

Since the morphism supp in (14) is projective, the image supp(Qi) is closed
in C. But the union of these images is all of C, which is irreducible. Hence

supp(Qi) = C
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for some such connected component Qi. Since supp−1(l · p) is connected
by Lemma 2.6, and intersects Qi by construction, it is contained in Qi. In
particular, the point given by

(16) πp : E � Tp

lies in Qi. Now choose a point q 6= p in C, and a quotient

(17) π′q : E � T ′q

corresponding to a point in Qi over q. The restriction of the universal
quotient to

Qi ⊂ QuotA(E, l)

provides a deformation of the quotient (16) to the quotient (17). Since
supp(Qi) = C ⊂ P2 does not intersect the support of T6=p, we can take the
direct sum with the component

π6=p : E � T6=p

of π to obtain a deformation of the given quotient (10) to the quotient

π′q ⊕ π 6=p : E � T ′q ⊕ T6=p.
As the support of this quotient contains the point q ∈ D \ Dsing, we can
apply the first case treated above to deform it further to a quotient (11)
with the required property. �

Theorem 4.2. Let A 6= OP2 be a terminal del Pezzo order on P2 over C.
Then every torsion-free A-module E of rank one can be deformed to a locally
free A-module E′.

Proof. We adapt the proof of [HS05, Theorem 3.6.(iii)] and start with the
exact sequence

(18) 0 −−−−→ E
ι−−−−→ E∗∗ π−−−−→ T −−−−→ 0

induced by E. The functor HomA(T, ) turns (18) into the long exact se-
quence

. . . −−−−→ Ext2A(T,E)
ι∗−−−−→ Ext2A(T,E∗∗)

π∗−−−−→ Ext2A(T, T ) −−−−→ 0.

Applying Proposition 4.1 to the quotient π : E∗∗ � T , and replacing E by
the kernel of the resulting deformed quotient π′ : E∗∗ � T ′, we may assume
that π∗ is not injective. Then ι∗ 6= 0. The functor HomA( , E) turns (18)
into the long exact sequence

. . . −−−−→ Ext1A(E,E)
∂−−−−→ Ext2A(T,E) −−−−→ Ext2A(E∗∗, E) −−−−→ . . .

whose connecting homomorphism ∂ is surjective by Lemma 3.9. Hence the
composition

Ext1A(E,E)
∂−−−−→ Ext2A(T,E)

ι∗−−−−→ Ext2A(T,E∗∗)

is nonzero. We choose a class γ ∈ Ext1A(E,E) whose image in Ext2A(T,E∗∗)
is nonzero. The infinitesimal deformation of E given by γ can be extended
to a deformation E of E over a smooth connected curve C, since we have
Ext2A(E,E) = 0 by Lemma 3.9.
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Let E′ be the fiber of E over a general point of C. Lemma 3.3 states that
the forgetful functor induces an injective map

Ext2A(T,E∗∗) ↪→ Ext2OP2
(T,E∗∗).

So the class γ, seen as an element in Ext1OP2
(E,E), has nonzero image in

Ext2OP2
(T,E∗∗).

We can thus use a result of Artamkin, which says that the length of
(E′)∗∗/E′ is strictly smaller than the length of E∗∗/E, see [Art91, Corollary
1.3]. Using induction over this length, we may assume that E′ can already
be deformed to a locally free A-module. �
Corollary 4.3. Every irreducible component of the moduli space MA/P2;c1,c2
contains a point defined by a locally free A-module.

Proof. Every connected component of MA/P2;c1,c2 contains such a point by
Theorem 4.2. But these connected components are smooth by Theorem
3.10, and hence irreducible. �
Corollary 4.4. The open locus M lf

A/P2;c1,c2
of locally free A-modules is dense

in MA/X;c1,c2.
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RANK ONE SHEAVES OVER QUATERNION ALGEBRAS

ON ENRIQUES SURFACES

FABIAN REEDE

Abstract. Let X be an Enriques surface over the field of complex
numbers. We prove that there exists a nontrivial quaternion algebra A
on X. Then we study the moduli scheme of torsion free A-modules of
rank one. Finally we prove that this moduli scheme is an étale double
cover of a Lagrangian subscheme in the corresponding moduli scheme
on the associated covering K3 surface.

Introduction

A noncommutative variety is a pair (X,A) consisting of a classical com-
plex algebraic variety X and a sheaf of noncommutative OX -algebras A of
finite rank as an OX -module.

The algebras of interest in this article are Azumaya algebras. These are
algebras locally isomorphic to a matrix algebra Mr(OX) with respect to the
étale topology. Especially interesting are the first nontrivial examples for
r = 2, the so called quaternion algebras, Azumaya algebras of rank four.
These are generalizations of the classical quaternions H.

Since the generic stalk of a nontrivial quaternion algebra A is a central di-
vision algebra over the function field of X, locally projective left A-modules
which are generically of rank one can be understood as line bundles on
(X,A). There is a quasi-projective moduli scheme for these line bundles, a
noncommutative Picard scheme, which can be compactified to a projective
moduli scheme MA/X by adding torsion free A-modules generically of rank
one.

We study in detail the situation of Enriques surfaces. We prove that every
Enriques surface X gives rise to a noncommutative Enriques surface (X,A)
with a quaternion algebra A on X. The main results of this article can be
summarized as follows

Theorem. Let X be an Enriques surface, then there is a quaternion algebra
A on X representing the nontrivial element in the Brauer group Br(X). If
X is very general then

i) The moduli scheme MA/X of torsion free A-modules of rank one is
smooth.

ii) Every torsion free A-module of rank one can be deformed into a locally

projective A-module, i.e. the locus Mlp
A/X of locally projective A-modules

is dense in MA/X .

2010 Mathematics Subject Classification. Primary: 14J60, Secondary: 14J28, 16H05.
Key words and phrases. Enriques surfaces, quaternion algebras, moduli schemes of

sheaves.
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Let X be the universal covering K3 surface of X and denote the pullback of
the quaternion algebra to X by A, then MA/X has a symplectic structure.

For fixed Chern classes c1 and c2 we have

iii) MA/X,c1,c2 is an étale double cover of a Lagrangian subscheme L in
MA/X,c1,c2.

The structure of this paper is as follows. We compare properties of mod-
ules over an Azumaya algebra on a smooth projective variety W to those
of the pullbacks to an étale double cover W in section 1. In section 2 we
prove that a classical descent result for modules on the double cover is also
true in the noncommutative setting. We look at the existence of Azumaya
algebras on Enriques surfaces in section 3. In the final section 4 we study
moduli schemes of sheaves generically of rank one on a noncommutative
Enriques surface, these were constructed in [10]. Many of the results in the
last section are noncommutative analogues of results found by Kim in [11].
We work over the field of complex numbers C.

1. Modules over an Azumaya algebra and double coverings

In this section W denotes a smooth projective complex variety of dimen-
sion d together with a nontrivial 2-torsion line bundle L. By [3, I.17] there
is an étale Galois double cover

q : W →W

with covering involution ι : W →W such that

q∗OW ∼= OW ⊕ L.
Remark 1.1. We make the following convention: for every coherent sheaf E
on W we write E for the pullback to W along q, that is E := q∗E.

Definition 1.2. A sheaf of OW -algebras A is called an Azumaya algebra if
it is locally free of finite rank and for every point w ∈ W the fiber A(w) is
a central simple algebra over the residue field C(w). Such a sheaf is called a
quaternion algebra if rk(A) = 4. Furthermore a coherent OW -module E is
said to be an Azumaya module or an A-module if E is also a left A-module.

Azumaya algebras onW are classified up to similarity by the Brauer group
Br(W ) of W . We say A is trivial if there is a locally free OW -module P
with A ∼= EndW (P ) or equivalently [A] = 0 ∈ Br(W ). From now on, if not
otherwise stated, by an Azumaya algebra A we mean a nontrivial Azumaya
algebra. Furthermore we assume that there is a nontrivial Azumaya algebra
A on W such that A is nontrivial on W .

Lemma 1.3. Assume E and F are A-modules and f : Z → W is a flat
morphism, then

Homf∗A(f∗E, f∗F ) ∼= f∗HomA(E,F ).

Proof. First we note that by [9, 0.4.4.6] there is a natural morphism

f∗HomA(E,F )→ Homf∗A(f∗E, f∗F ).

So after a faithfully flat étale base change we may assume that A is trivial.
Then Morita equivalence for A = EndW (P ) reduces this problem to the
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case A = OW . Now the lemma follows from [9, 0.6.7.6] since f is flat by
assumption. �
Lemma 1.4. Assume E and F are A-modules, then

HomA(E,F ) ∼= HomA(E,F )⊕HomA(E,F ⊗ L).

Proof. By the previous Lemma 1.3 we have an isomorphism

HomA(E,F ) ∼= HomA(E,F ).

This lemma is then a consequence of the following chain of isomorphisms,
where the third line uses the projection formula for finite morphisms, [1,
Lemma 5.7]:

q∗HomA(E,F ) ∼= q∗HomA(E,F )

= q∗q∗HomA(E,F )

∼= HomA(E,F )⊗ q∗OW
∼= HomA(E,F )⊕HomA(E,F ⊗ L).

�
Corollary 1.5. Assume E is an A-module. If E is a simple A-module,
then E is a simple A-module and HomA(E,E ⊗ L) = 0.

Proof. As E is a simple A-module, we have EndA(E) ∼= C. Lemma 1.4 gives

EndA(E) ∼= EndA(E)⊕HomA(E,E ⊗ L)

and as idE ∈ EndA(E) we find EndA(E) ∼= C and HomA(E,E⊗L) = 0. �
Proposition 1.6. [10, Proposition 3.5.] Assume E and F are A-modules,
then there is the following variant of Serre duality:

ExtiA(E,F ) ∼=
(

Extd−iA (F,E ⊗ ωW )
)∨

.

We assume now furthermore that dimW = 2. Denote the OW -double
dual of E by E∗∗.

Lemma 1.7. Assume E is an A-module which is torsion free as an OW -
module. If E∗∗ is a simple A-module, then

HomA(E,E∗∗ ⊗ L) = 0.

Proof. We first observe that there is an isomorphism

(1) EndA(E∗∗) ∼= HomA(E,E∗∗).

To see this, we note that there is an exact sequence of A-modules

(2) 0 E E∗∗ T 0

with dim supp(T ) = 0 as E is torsion free and dimW = 2. It is known that
E∗∗ is a locally free OW -module, hence a locally projective A-module. This
immediately implies HomA(T,E∗∗) = 0 since T is torsion. Furthermore
this also shows Ext1A(T,E∗∗) = 0 by using Proposition 1.6, the local-to-
global spectral sequence and the fact that T is supported in dimension zero.
Applying HomA(−, E∗∗) to (2) and using the vanishing results gives the
desired isomorphism.
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Using the same argument for E shows that we also have an isomorphism

(3) EndA(E∗∗) ∼= HomA(E,E∗∗)

since E∗∗ ∼= E
∗∗

by [9, 0.6.7.6.].
We can now conclude as follows: as E∗∗ is simple, the isomorphism (3)

gives HomA(E,E∗∗) ∼= C. By Corollary 1.5 and isomorphism (1) we also
have HomA(E,E∗∗) ∼= C. Finally Lemma 1.4 gives an isomorphism

HomA(E,E∗∗) ∼= HomA(E,E∗∗)⊕HomA(E,E∗∗ ⊗ L).

The last three isomorphisms show that we have HomA(E,E∗∗⊗L) = 0. �

2. Noncommutative descent

We use the same notation as in the previous section. We have the étale
Galois double cover q : W →W with Aut(W/W ) generated by the covering
involution ι:

W W

W

ι

q q

Definition 2.1. We say a coherent sheaf F of OW -modules on W descends
to W , if there is a coherent sheaf E of OW -modules on W together with an
isomorphism F ∼= E.

Since q : W → W is an étale Galois double cover with automorphism
group Aut(W/W ) = 〈ι〉 ∼= Z/2Z, the descent condition for a coherent sheaf
F on W , see [17, Lemma 0D1V], reduces to the existence of an isomorphism
ϕι : F → ι∗F such that (using ϕι2 = id):

(4) ι∗ϕι ◦ ϕι = id .

But we have ι∗ϕι ◦ϕι : F → ι∗ι∗F ∼= F . So, for example, if F is simple, then
any isomorphism ϕι satisfies ι∗ϕι ◦ ϕι ∈ EndW (F ) = C · idF . Hence after
multiplication with an appropriate scalar, ϕι satisfies (4) and F descends.
Summarizing:

Proposition 2.2. Assume F is a simple coherent OW -module on W to-
gether with an isomorphism F ∼= ι∗F , then F descends to W .

In the rest of this section we want to prove a similar result for A-modules
on W . For this we need some notation: let p : Y → W be the Brauer-
Severi variety of A, see [13] for more information. By functoriality the
Brauer-Severi variety p : Y → W of A is given by Y = Y ×W W and thus
q : Y → Y is also an étale Galois double cover with covering involution ι.
All this fits into the following diagram with both squares cartesian:

(5)

Y Y Y

W W W

ι

p

q

p p

ι q
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The Brauer-Severi variety of A has the property that AY := p∗A is split,
more exactly we have

AopY ∼= EndY (G)

for a locally free sheaf G on Y . Note that G is only unique up to scalars, see
[13, Remark 1.8], but there is a canonical choice using R1p∗ΩY/W

∼= OW .
In the following we will frequently use, without further mention, the fact

that a coherent left A-module is the same as a coherent right Aop-module.
Denote these isomorphic categories by Cohl(W,A) and Cohr(W,Aop) re-
spectively.

We also define

Coh(Y,W ) =
{
E ∈ Coh(Y ) | p∗p∗(E ⊗G∗)

∼=−→ E ⊗G∗
}
.

Then by [13, Lemma 1.10] we have the following equivalences

φ : Cohr(W,Aop)→ Coh(Y,W ), E 7→ p∗E ⊗Aop
Y
G

ψ : Coh(Y,W )→ Cohr(W,Aop), E 7→ p∗(E ⊗G∗)

We have similar equivalences φ and ψ involving Aop
Y
∼= EndY (q∗G), Y and

W .

Lemma 2.3. Assume F is an A-module, then

EndA(F ) ∼= EndY (φ(F )).

Proof. Using EndA(F ) = EndAop(F ), the following chain of isomorphisms
gives the result:

EndAop(F ) ∼= p∗p
∗EndAop(F ) by [13, Lemma 1.6]

∼= p∗EndAop

Y
(p∗F ) by Lemma 1.3

∼= p∗EndOY
(p∗F ⊗Aop

Y
q∗G) by Morita equivalence

= p∗EndOY
(φ(F )).

�

Lemma 2.4. Assume F is an A-module such that there is an isomorphism
F ∼= ι∗F of A-modules, then φ(F ) ∼= ι∗(φ(F )) as OY -modules.

Proof. There are the following isomorphisms:

ι∗(φ(F )) = ι∗(p∗F ⊗Aop

Y
q∗G)

∼= ι∗p∗F ⊗ι∗Aop

Y
ι∗q∗G by [9, 0.4.3.3]

∼= p∗ι∗F ⊗Aop

Y
q∗G by (5)

∼= p∗F ⊗Aop

Y
q∗G

= φ(F ).

�

Lemma 2.5. Assume F is an A-module such that there is M ∈ Coh(Y )
with φ(F ) ∼= q∗M , then M ∈ Coh(Y,W ).
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Proof. We have to prove that the canonical morphism

(6) p∗p∗(M ⊗G∗)→M ⊗G∗

is an isomorphism. It is enough to prove this after the faithfully flat base
change q : Y → Y :

q∗(p∗p∗(M ⊗G∗)) → q∗(M ⊗G∗)
∼= p∗q∗p∗(M ⊗G∗) → q∗M ⊗ (q∗G)∗ by (5) and [9, 0.6.7.6]

∼= p∗p∗(q
∗M ⊗ q∗G∗)) → q∗M ⊗ (q∗G)∗ by (5) and [17, Lemma 02KH]

∼= p∗p∗(φ(F )⊗ q∗G∗))→ φ(F )⊗ (q∗G)∗

But φ(F ) ∈ Coh(Y ,W ), so the last morphism is an isomorphism, hence so
is (6). �

We can now prove the main result of this section:

Theorem 2.6. Assume F is a simple A-module together with an isomor-
phism F ∼= ι∗F of A-modules, then there is an A-module E and an isomor-
phism of A-modules F ∼= E.

Proof. Since F satisfies F ∼= ι∗F , by Lemma 2.4 we get an isomorphism
φ(F ) ∼= ι∗(φ(F )). Since furthermore the OY -module φ(F ) is simple using

Lemma 2.3, it descends to Y , so φ(F ) ∼= q∗M for some coherent OY -module
M . But then M ∈ Coh(Y,W ) due to Lemma 2.5. Define E := ψ(M) then
E ∈ Cohl(W,A) and E ∼= F since:

E = q∗ψ(M) = q∗p∗(M ⊗G∗) ∼= p∗(q
∗M ⊗ (q∗G)∗) ∼= p∗(φ(F )⊗ (q∗G)∗) ∼= F.

�

3. Quaternion algebras on Enriques surfaces

Definition 3.1. A smooth projective surfaceX is called an Enriques surface
if:

• H1(X,OX) = 0
• ωX is 2-torsion, i.e. ωX 6= OX but ωX ⊗ ωX ∼= OX .

The 2-torsion element ωX ∈ Pic(X) induces an étale Galois double cover

π : X → X.

It is well known that X is a K3 surface hence π is a universal cover of X.
Denote the associated involution by ι : X → X.

By results of Cossec and Dolgachev, see [7, Theorem 1.1.3., Corollary
5.7.1.], we have:

Theorem 3.2. Assume X is an Enriques surface over C, then

Br(X) ∼= Z/2Z.

This result shows that there is one nontrivial element bX in the Brauer
group of an Enriques surface X. The first question is if we can find a
representative of this element in terms of Azumaya algebras.

Proposition 3.3. The nontrivial element in the Brauer group of an En-
riques surface X can be represented by a quaternion algebra A on X.
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Proof. The result of Cossec and Dolgachev shows that the nontrivial element
bX ∈ Br(X) has order two. As X is smooth by [6, Théorème 2.4.] the
restriction to the generic point η gives an injection

rη : Br(X) ↪→ Br(C(X)).

So the image rη(bX) has order two in Br(C(X)).
The field C(X) has property C2, see [16, II.4.5.(b)]. By a result of

Platonov (simultaneously found by Artin and Harris) the element rη(bX)
can be represented by a quaternion algebra A over C(X), see [14, Theorem
5.7] ([2, Theorem 6.2.]).

Since the element [A] = rη(bX) comes from Br(X) it is unramified at
every point of codimension one in X, and thus by [6, Théorème 2.5.] there
is a quaternion algebra A on X with A⊗C(X) = A such that [A] = bX . �

One natural question to ask then: Is the pullback of the nontrivial element
still nontrivial in Br(X), i.e. is π∗ : Br(X) → Br(X) injective? Beauville
gives a complete answer to this question, see [4, Corollary 4.3., Corollary
5.7., Corollary 6.5.]:

Theorem 3.4. The morphism π∗ : Br(X) → Br(X) is trivial if and only
if there is L ∈ Pic(X) with ι∗L = L−1 and c1(L)2 ≡ 2 (mod 4). The sur-
faces X with π∗bX = 0 form an infinite, countable union of (non-empty)
hypersurfaces in the moduli space M of Enriques surfaces.

Thus if X is a very general Enriques surface (in the sense of the previ-
ous theorem) then the pullback of the quaternion algebra A constructed in
Proposition 3.3 to X represents the nontrivial element π∗bX ∈ Br(X).

Remark 3.5. For a description of the (non)triviality of π∗ : Br(X)→ Br(X)
using lattice theory, group cohomology and the Hochschild-Serre spectral
sequence, see [12].

4. Moduli schemes of sheaves over quaternion algebras

Assume W is a smooth projective d-dimensional variety and A is an Azu-
maya algebra on W , then we can think of the pair (W,A) as a noncommu-
tative version of W . In this section, we want to study moduli schemes of
sheaves on such noncommutative pairs.

Definition 4.1. A sheaf E on W is called a generically simple torsion free
A-module, if E is a left A-module such that E is coherent and torsion free
as a OW -module and the stalk Eη over the generic point η ∈W is a simple
module over Aη. If furthermore Aη is a division ring over C(W ) then such
a module is also called a torsion free A-module of rank one.

Remark 4.2. A generically simple torsion free A-module E is simple, see
[10].

Apart from being simple, these modules share many properties with clas-
sical stable sheaves, for example we have

Lemma 4.3. Assume E and F are generically simple torsion free A-modules
with the same Chern classes, then HomA(E,F ) 6= 0 implies E ∼= F .
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Proof. A nontrivial A-morphism φ must be generically bijective as E and
F are generically simple. As E and F are torsion free this implies that φ is
injective, so we get an exact sequence with Q = Coker(φ):

0 E F Q 0
φ

But E and F have the same Chern classes, so Q = 0 and hence E ∼= F . �
By fixing the Hilbert polynomial P of such sheaves, Hoffmann and Stuh-

ler showed that these modules are classified by a moduli scheme, see [10,
Theorem 2.4. iii), iv)]:

Theorem 4.4. There is a projective moduli scheme MA/W,P classifying
generically simple torsion free A-modules with Hilbert polynomial P on W .

We want to study these moduli schemes for a noncommutative Enriques
surfaces (X,A), where X is a very general Enriques surface and A is a
quaternion algebra representing the nontrivial element in Br(X). Note that
the OX -rank of a torsion free A-module of rank one is four in this case.

We also have an associated noncommutative K3 surface (X,A). Now
we first recall some facts about the moduli schemes for such pairs, see [10,
Theorem 3.6.]:

Theorem 4.5. Let X be a K3 surface which is a double cover of a very gen-
eral Enriques surface X and let A be the quaternion algebra coming from the
quaternion algebra on X which represents the nontrivial element in Br(X).

i) The moduli scheme MA/X of torsion free A-modules of rank one is

smooth.
ii) There is a nowhere degenerate alternating 2-form on the tangent bundle

of MA/X
iii) Every torsion free A-module of rank one can be deformed into a locally

projective A-module, i.e. the locus Mlp

A/X of locally projective A-modules

is dense in MA/X .

iv) For fixed Chern classes c1 and c2 we have

dim MA/X,c1,c2 =
∆

4
− c2(A)− 6

where ∆ = 8c2 − 3c1
2 is the discriminant and ci = π∗ci.

One can also define the A-Mukai vector for an A-module E by

vA(E) = ch(E)

√
td(X)

√
ch(A)−1.

As in the case of OX -modules, it has the property that
(
vA(E)

)2
+ 2 = dim MA/X,c1,c2 .

Then by [13, Theorem 2.11] we also have:

Theorem 4.6. Let the pair (X,A) be as in Theorem 4.5. Assume v is a
fixed primitive A-Mukai vector, then MA/X,v is an irreducible holomorphic

symplectic manifold deformation equivalent to Hilb
v2

2
+1(X). Furthermore

MA/X,v 6= ∅ if and only if v2 ≥ −2.
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The covering involution ι : X → X induces an involution

ι∗ : MA/X,c1,c2 → MA/X,c1,c2 , [F ] 7→ [ι∗F ]

Lemma 4.7. The involution ι∗ is antisymplectic, that is if we denote the
symplectic form on the tangent bundle of MA/X by ω, then we have the

equality ω(ι∗f1, ι∗f2) = −ω(f1, f2).

Proof. By [10, Theorem 3.6. ii)], and similar to Mukai’s construction, after
the identification T[F ] MA/X

∼= Ext1A(F, F ) the symplectic form is defined

by the Yoneda product

Ext1A(F, F )× Ext1A(F, F )→ Ext2A(F, F ).

composed with the trace map trA : Ext2A(F, F )→ H2(X,OX).

Using the functoriality of the Yoneda pairing (the cup product) we get
the following commutative diagram

Ext1A(F, F )× Ext1A(F, F ) Ext2A(F, F )

Ext1A(ι∗F, ι∗F )× Ext1A(ι∗F, ι∗F ) Ext2A(ι∗F, ι∗F )

ι∗ ι∗ ι∗

According to the definition in [10] the trace map trA is the composition of

the forgetful functor from A-modules to OX -modules and the usual trace
map trOX

, so trA is also functorial and we get the following commutative
diagram

Ext2A(F, F ) H2(X,OX)

Ext2A(ι∗F, ι∗F ) H2(X,OX)

ι∗

trA

ι∗

trA

But ι∗ : H2(X,OX) → H2(X,OX) is multiplication by −1. This follows

from the identification H2(X,OX) ∼= C by using H0(X,ωX) = Cσ with the

symplectic form σ on X and the fact that ι∗ is antisymplectic with respect
to σ as H0(X,ωX) = 0.

Putting both diagrams together, we see that ι∗ is in fact antisymplectic.
�

Corollary 4.8. The locus of fixed points of the involution

Fix(ι∗) ⊂ MA/X,c1,c2
is a smooth projective Lagrangian subscheme.

Proof. Fix(ι∗) is smooth and projective by [8, 3.1., 3.4.]. Since ι∗ is antisym-
plectic, it follows from [5, Lemma 1.] that Fix(ι∗) is also Lagrangian. �

For the rest of this section we need the following

Remark 4.9. For a torsion freeA-module E of rank one on X, theA-modules
E∗∗ and E ⊗L for L ∈ Pic(X) are also torsion free of rank one. In addition
E is a torsion free A-module of rank one on X since π is flat.
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Theorem 4.10. Let X be a very general Enriques surface and let A be a
quaternion algebra on X representing the nontrivial element in Br(X).

i) The moduli scheme MA/X of torsion free A-modules of rank one is
smooth.

ii) Every torsion free A-module of rank one can be deformed into a locally

projective A-module, i.e. the locus Mlp
A/X of locally projective A-modules

is dense in MA/X .
iii) For fixed Chern classes c1 and c2 we have

dim MA/X,c1,c2 =
∆

4
− c2(A)− 3

where ∆ = 8c2 − 3c21 is the discriminant.

Proof. i) We note that, as in the classical case of OX -modules, there is
a deformation theory for A-modules, see [10, Sect. 3]. Thus for a
given point [E] ∈MA/X we have to show that all obstruction classes in

Ext2A(E,E) vanish. But by Proposition 1.6 we have:

Ext2A(E,E) ∼= (HomA(E,E ⊗ ωX))∨ .

As E is a simple A-module, we get HomA(E,E⊗ωX) = 0 by Corollary
1.5. Thus all obstructions vanish and MA/X is smooth at [E].

ii) The proof of [10, Theorem 3.6.iii)] carries over to our situation with one
small change: the surjectivity of the connecting homomorphisms δ in
the diagram:

Ext1A(E,E) Ext2A(T,E) Ext2A(E∗∗, E)

Ext2A(T,E∗∗)
l⊕

i=1
Ext2A(Txi , E

∗∗)

δ π∗

ι∗

follows from the fact that

Ext2A(E∗∗, E) = 0.

This vanishing can be seen as follows: using Proposition 1.6 we have

Ext2A(E∗∗, E) ∼= (HomA(E,E∗∗ ⊗ ωX))∨ .

But the last space is zero by Lemma 1.7. The rest of the proof works
unaltered.

iii) Using ii) it suffices to compute the dimension of

T[E]MA/X ∼= Ext1A(E,E) ∼= H1(X, EndA(E))

for a locally projective A-module E of rank one.
Again as in [10, Theorem 3.6.iv)] we have:

c1(EndA(E)) = 0 and c2(EndA(E))) =
∆

4
− c2(A)

where ∆ is the discriminant of E. So by Hirzebruch-Riemann-Roch:

χ(X, EndA(E)) = −∆

4
+ c2(A) + 4χ(X,OX)
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Using EndA(E) ∼= C, Ext2A(E,E) = 0 and χ(X,OX) = 1 we get our
result.

�
Remark 4.11. The proof of i) also implies E � E ⊗ ωX for all torsion free
A-modules of rank one.

Similar to the involution ι, using Remark 4.9, the projection π : X → X
induces a morphism

π∗ : MA/X,c1,c2 → MA/X,c1,c2 , [E] 7→
[
E
]
.

Our goal is to understand this morphism:

Theorem 4.12. Let the pair (X,A) be as in Theorem 4.10. The pullback
map

π∗ : MA/X,c1,c2 → MA/X,c1,c2
realizes MA/X,c1,c2 as an étale double cover of the Lagrangian subscheme
Fix(ι∗) ⊂ MA/X,c1,c2.

Proof. We have

ι∗E = ι∗π∗E ∼= (π ◦ ι)∗E = π∗E = E.

So Im(π∗) ⊂ Fix(ι∗) and hence π∗ factors through Fix(ι∗) giving rise to

ϕ : MA/X,c1,c2 → Fix(ι∗).

By Theorem 2.6 we also have Fix(ι∗) ⊂ Im(π∗). So Im(π∗) = Fix(ι∗) and
the morphism ϕ is surjective.

Assume ϕ([E]) = ϕ([F ]) that is E ∼= F and HomA(E,F ) 6= 0. Then
Lemma 1.4 says

HomA(E,F ) ∼= HomA(E,F )⊕HomA(E,F ⊗ ωX)

and so by Lemma 4.3 and Remark 4.9 we have

E ∼= F or E ∼= F ⊗ ωX
but not both by Remark 4.11. So ϕ is an unramified 2 : 1-morphism.
Moreover the computations also show that ϕ is a flat morphism by [15,
Lemma, p.675], hence ϕ is étale. �
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2006. Séminaire Bourbaki. Vol. 2004/2005.



148 FABIAN REEDE

[7] François R. Cossec and Igor V. Dolgachev. Enriques surfaces. I, volume 76 of Progress
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