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Abstract

Several studies reported that adaptation to a visuomotor transformation correlates with the

performance in cognitive performance tests. However, it is unclear whether there is a causal

relationship between sensorimotor adaptation and cognitive performance. The present

study examined whether repeated adaptations to double steps and rotated feedback

increase cognitive performance assessed by neuropsychological tests in a pre-post design.

The participants of the intervention group adapted in 24 sessions their hand movements to

visuomotor transformations with increasing size. Pre-post changes were significantly larger

in the intervention group than in a control group without training. This result suggests a

causal relationship between sensorimotor adaptation training and cognitive performance.

Introduction

A fundamental human ability is the ability to adapt to changing environments. Sensorimotor

adaptation seems to involve motor processes and higher-level cognitive processes, and thus it

seems to be based on the interaction of several hierarchies within the central nervous system.

Sensorimotor adaptation is typically investigated in experiments on hand or arm movements

[1] as these movement types “represent an intermediate level of behavior that embodies both

low-level motor execution and higher-level cognition” [2, p. 1]. Accordingly, it was reported

that participants adapt faster when they are aware of the mismatch between the perceived and

the expected outcome of their action (prediction or performance error), if they have a good

declarative and spatial working memory, or have well-developed abilities related to divergent

thinking, figural fluency, sustained attention and divided attention [3–12]. Other results have

shown that participants who outperform others in tests measuring selective or divided atten-

tion, decision making, visuomotor skills, or have a lower tendency for perseverative behavior

achieve better and more persistent results in motor adaptation tasks [8, 13–16]. Switching to

another adaptation context, either by performing another movement task, using another effec-

tor, or adapting to a different sensorimotor transformation, is related to awareness and explicit

knowledge about the transformation, cognitive inhibition, and mental flexibility [8, 14, 15, 17,

18]. These findings imply a functional relationship between cognitive control and sensorimo-

tor adaptation abilities.
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However, the question of a causal relationship between sensorimotor adaptation and cogni-

tive performance remains unanswered. Most of the studies investigating this topic were cross-

sectional. Only a few studies have investigated longitudinally whether cognitive training

improves sensorimotor adaptation or vice versa. Anguera et al. [19] scrutinized whether a five-

week working memory training improves sensorimotor adaptation abilities. Although the

training improved working memory capacity, it did not improve sensorimotor adaptation

performance. Nevertheless, adaptation was significantly degraded by short-term depletion of

working memory resources, indicating that a certain level of working memory resources is

required. Longitudinal studies investigating whether sensorimotor adaptation training

improves cognitive abilities are lacking. However, reports on savings point in this direction

[20, 21]. The term savings describes a phenomenon that occurs when participants perform an

adaptation task for the second time: The adaptation rate increases from the first to the second

adaptation session even if one year has passed [20]. Ruitenberg et al. [21] analyzed the brain

activity during four adaptation sessions in three months. They found that the increased adap-

tation rates from the second to the fourth session coincide with increased activity in brain

areas associated with cognitive processing. The results indicate that consecutive adaptation

sessions engage and challenge cognitive processes, which were, in this case, related to action

selection. Results from related research fields demonstrate an increase in spatial cognitive

performance in blind individuals through memory-guided freehand drawing [22]. However,

behavioral results referring to enhanced cognitive performance after adaptation are still lack-

ing. The present study tested the hypothesis that consecutive adaptations to sensorimotor

transformations significantly enhance cognitive performance. Post-pre-changes in cognitive

performance tests were compared between an intervention and a passive control group to

scrutinize cognitive performance enhancements. To specify possible causes for the cognitive

improvements demonstrated in the group comparison, the adaptation data of the intervention

group were additionally analyzed with significant post-pre changes of the cognitive tests as

covariates.

The study design considers adaptation factors that have been associated with different cog-

nitive abilities in cross-sectional studies: Adaptation at different time scales [14], adaptation to

increasing angular transformations [8], and interference between successive adaptation tasks

[15]. At the same time, a multifactorial design was expected to promote compliance to partici-

pate in the longitudinal experiment because it creates a relatively high degree of variety con-

cerning the execution of the tasks.

The participants of the intervention group practiced four adaptation tasks, which

required the learning of new visuomotor transformations. A visuomotor transformation

represents a mismatch between how an action is performed and how action effects are visu-

ally perceived. A basic visuomotor transformation is already learned by operating a com-

puter: a computer mouse moves in the horizontal plane, but the visual cursor moves in the

vertical plane. The concurrent learning of multiple new angular visuomotor transformations

is challenging because their learning interferes. However, extensive training reduces inter-

ference over time and concurrent learning becomes possible [17, 23]. In order to keep the

task challenging, the discordance size of the angular transformation increased incrementally.

It was hypothesized that the extensive training in four adaptation tasks with increasing dis-

cordance size improves cognitive performance. To test this hypothesis, 24 participants

trained 24 times for about 30 minutes each in a home-based setting with an interactive com-

puter program. Post-pre changes in cognitive performance were measured with neuropsy-

chological tests.
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Materials and methods

19 women and 17 men participated in the study. An overall sample size of N = 24 for between-

group comparisons (i.e., n = 12 per group) was calculated from a power analysis according to

Faul et al. [24], considering the largest effect reported in the study from Schmitz et al. [8] (effect

size: f = 0.62, level of significance: α = 0.05, power: 1-ß = 0.80). The sample size for the interven-

tion group was doubled due to the additionally planned within-group analyses resulting in an

overall sample size of N = 36; i.e., n = 24 for the intervention and n = 12 for the control group.

The decision to double the sample size of the intervention group was made a priori. It was not

based on a power analysis because the number of the potential covariates could not be deter-

mined a priori: Only variables that differ significantly between the intervention and the control

group should be considered for the within-group comparisons in the intervention group. Thus,

15 females and 9 males performed visuomotor training (intervention group). Four females and

8 males belonged to a passive control group without intervention. The participants were on

average 25.5 years old (standard deviation, SD: 5.9). Age did not differ significantly between

the groups (t(34) = 1.42, p = 0.164, d = 0.50). The participants were free from overt neurologic

or psychological impairments, and all gave their written informed consent to the study. All pro-

cedures were applied in accordance with the 1964 Helsinki declaration and its later amend-

ments. The study protocol had been preapproved by the local ethics committee of the Leibniz

University Hannover. Participation in the study was remunerated with 8 euros per hour.

Cognitive performance tests

Before and after the sensorimotor adaptation training, all participants performed seven neuro-

psychological tests (paper-pencil-tests). The tests were administered and scored by an experi-

menter. Previous studies have shown that the outcomes of these tests correlate with the

performance during adaptation to visuomotor transformations as described below:

1. Frankfurter Attentional Inventory 2 (FAIR 2). Four marginally differing symbols are pre-

sented in random order 640 times on two DIN A4 pages. Two of the four symbols represented

target symbols. The participants draw a line under the symbols. As soon as they identify a tar-

get item, they draw the line into the corresponding symbol. The participants have to mark as

many target symbols as possible within 6 minutes. The dependent variable K is interpreted as

a measure of sustained attention [25]. A larger K reflects better performance. This parameter

was a significant covariate for adaptation to increasing discordance sizes in one study [8]. Fur-

ther studies reported the significance of attentional resources for adaptation (e.g. [13]).

2. Number Connection Test. The participants have to connect the numbers 1–90 on a DIN A

4 page in ascending order as quickly as possible. Each higher number is located in spatial

proximity to the former number (directly or in the diagonal to the left or right, above or

below). The performance depends on cognitive processing speed and decision-making abil-

ities [26]. Furthermore, processing speed and decision time correlate with the performance

during adaptation [14].

3. Trail Making Test (TMT): The participants have to connect numbers (task A) or alternat-

ingly numbers and letters (task B) as quickly as possible. The symbols are randomly distrib-

uted on a DIN A4 page. The task is supposed to measure cognitive processing speed (task

A, task B), visuospatial orientation as well as fluid cognitive abilities (task A, task B) and

cognitive flexibility (task B) [27–30]. The performance in this test was a significant predic-

tor of the interference between consecutive adaptations in [15]. Processing speed and flexi-

bility were also significant predictors for adaptation [14].
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4. Five-Point Test: The participants have to produce as many unique figures as possible within

3 minutes by connecting two to five points pre-printed in rectangles (40 rectangles per DIN

A4 page). They are instructed to avoid repetitions. The number of unique designs is inter-

preted as a measure of figural fluency and divergent thinking, and the number of repetitions

divided by the number of all designs as a measure for perseveration [28, 31, 32]. Both

parameters are significant covariates for the adaptation to increasing sensorimotor discor-

dances [8]. Perseveration is also a predictor of the generalization of adaptation and the

interference between consecutive adaptations [15]. Moreover, divergent thinking abilities

predict how fast participants adapt [12].

5. Stroop Test. The participants have to read aloud the words ‘blue’, ‘yellow’, ‘green’ and ‘red’

printed in black (task 1), to name the color of blue, yellow, green and red bars (task 2) and

to name the print-color of words, whose word-meaning deviates from their print-color; for

example, if the word ‘green’ is printed in yellow, the correct answer is ‘yellow’. Each task

requires 72 responses. The dependent variable is performance time. Factor analyses indicate

that the test performance primarily depends on action initiation (tasks 1 to 3), reading

speed (task 1), nomination speed (task 2) and cognitive control of attention during interfer-

ence (task 3) [33, 34]. The performance in this test is a significant predictor of the interfer-

ence between consecutive adaptations [15].

6. Maze Test. The task is to move a pen from the center of a maze (Porteus-maze) to a target

position at the outer edge of the maze as quickly as possible. Measured are performance

time for a pseudo-maze without bifurcations and performance time for a maze with bifur-

cations. The maze-test requires visuomotor abilities (pseudo-maze, maze) as well as visuo-

spatial planning and decision-making abilities (maze) [35]. The performance in this test is a

significant predictor of the interference between consecutive adaptations [15].

7. Digit Span Forward. The participants have to repeat verbally a sequence of single digit

numbers read out by the experimenter. The digits of a number are read out at one-second

intervals. The participants have to hold the digits in consciousness until a number has been

read out completely. After two trials with the same number of digits, the following trial con-

tains a sequence including an additional digit. The test stops when both trials with the same

number of digits are wrong. The number of correct answers is taken as a measure of verbal

working memory [34]. The performance in this test is a significant predictor for the gener-

alization of adaptation and the interference between consecutive adaptations [15]. Verbal

working memory seems particularly important for fast adaptation processes [5].

The test order was randomized across participants, but the pre-test order was similar to the

order of the post-tests within each participant. Pre- and post-tests were on average 79 days

apart. This period did not differ significantly between the 24 participants who performed

adaptation training and the 12 participants who served as controls (t(34) = 1.46, p = 0.153,

d = 0.52).

Visuomotor adaptation training

The participants of the intervention group conducted the visuomotor training at home on

their own Notebook-PC. For this purpose, a user-friendly interactive computer program was

developed. The experimenter installed the software on the participants’ Windows devices.

Once started, the software automatically guided the participant through the training program.

The participants only had to press the space bar to start a new episode. The author introduced

the task and supervised each participant during the first adaptation session.
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The participants of the intervention group performed 24 training sessions of about 30 min-

utes each at home. The software stored automatically all data (starting and ending time of the

session, movement and target data, experimental conditions) in hidden files in anonymized

form. Each participant manually documented the start and end of each training session. Ran-

dom samples of the manual documentations were compared with the hidden electronic docu-

mentations of the training software for control purposes. In all cases, the manual

documentations corresponded to the hidden log files.

The participants used a digitizer tablet (Trust1 Flex Design Tablet, 16.3 � 19.3 cm, resolu-

tion 2000 LPI, 120 Hz) as input device (Fig 1). They were instructed to locate it in front of the

shoulder of their dominant hand in parallel with the notebook keyboard. The pen position on

the tablet determined the cursor’s position on the screen. When the stylus moved 1 cm forward

on the tablet, the cursor moved 1 cm upwards on the vertical screen. This basic visuomotor

transformation is comparable to the input procedure with a computer mouse, and the partici-

pants reported being familiar with it.

The task required discrete reaching movements between a starting point at the center of the

screen and six peripheral targets. The participants were instructed to move the cursor (0.5 cm

radius) quickly and accurately in a straight line from the starting point to the current periph-

eral target. When the cursor reached the target position for a cumulative time of 750 ms, or in

the trials without a cursor after 3000 ms, the target disappeared, and the participants moved

the pen back to the center of the tablet. Reaching the center was indicated by a change in the

color of the starting point on the screen. All targets had a radius of 0.5 cm and were placed on

a single non-visible circle (radius of 5 cm). Three targets were positioned above (distal work-

space) and three below the starting point (proximal workspace). In the distal workspace, the

targets were presented at the directions 45˚, 90˚ and 135˚. In the proximal workspace, the tar-

gets were presented at the directions 225˚, 270˚ and 315˚ (Fig 1). (0˚ is to the right of the cen-

ter, and directions increase in a mathematically positive sense.) Thomas and Bock [36] have

shown that the differentiation of a distal and proximal workspace allows the concurrent learn-

ing of otherwise interfering visuomotor transformations. In contrast, clockwise and counter-

clockwise adaptations of movement directions interfere when performed in the same

workspace [15, 36, 37].

Fig 1. Adaptation tasks. Each participant adapted in the distal and the proximal workspace to double steps as well as to rotated

feedback. Double steps represent target displacements at movement onset–here illustrated by a change from a former to the actual

target. Clockwise double steps (here shown for the distal workspace) and counterclockwise feedback rotations (here shown for the

proximal workspace) require clockwise movement trajectory modifications to reach the target. Counterclockwise double steps (here

shown for the proximal workspace) and clockwise feedback rotations (here shown for the distal workspace) require

counterclockwise trajectory modifications.

https://doi.org/10.1371/journal.pone.0274759.g001
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Each participant trained four adaptation tasks in a sequence. All participants started with

the distal workspace and then switched to the proximal workspace. Fig 1 illustrates 30˚ clock-

wise double steps for the distal workspace requiring 30˚ clockwise rotations of movement tra-

jectories. Double steps are characterized by target displacements at movement onset; i.e., when

the movement exceeds a velocity threshold of 40 mm/s, the target steps from its original posi-

tion to another position with the same distance but a different angle compared to the former

position. Counterclockwise double steps requiring counterclockwise trajectory modifications

are shown for the proximal workspace. 30˚ clockwise rotated feedback, which requires 30˚

counterclockwise rotations of movement trajectories, is shown for the distal workspace. Coun-

terclockwise rotated feedback, requiring clockwise trajectory modifications, is shown for the

proximal workspace. The present study applied both the rotated feedback method and the

double step method to make the task varied for the participants. Former studies have shown

that both methods achieve similar effects when adaptation is long enough and interfere when

applied in the same workspace [8, 15, 38].

The order of the adaptation methods (double steps versus rotated feedback) and the direc-

tions of the trajectory modifications (clockwise versus counterclockwise) were balanced across

participants. This procedure resulted in four subgroups with six participants each. That means

that half of the participants adapted to double steps in the first two tasks, the other half to feed-

back rotations. Half of the participants adapted their trajectories in the first task clockwise and

the second task counterclockwise. The other half adapted their trajectories in the first task

counterclockwise and in the second task clockwise. In the third and fourth adaptation tasks,

the other adaptation method was applied and the participants adapted in each workspace to

the opposite direction compared to the first two adaptation tasks.

In summary, each participant performed four adaptation tasks. Since the order of the tasks

varied between the participants, the first, second, third, and fourth adaptation tasks will be

referred to in the following.

Procedure of the visuomotor adaptation training

Each session started with the basic visuomotor transformation with feedback (baseline phase).

Next came the visuomotor pre-test without feedback, in which the participants of the interven-

tion group performed reaching movements without cursor feedback. The session was con-

cluded with a visuomotor post-test without feedback, which was compared to the pre-test

without feedback to detect possible aftereffects. The adaptation training was performed

between both tests without feedback and is described in the following.

Compared to the baseline phase, the adaptation tasks shown in Fig 1 represent new rela-

tionships between hand movement direction in the horizontal plane and the direction of the

visual feedback on the screen (i.e., new angular transformations). As first shown by Smith et al.

[39] for force-field adaptation, adaptation seems to proceed in multiple timescales. This find-

ing has been confirmed for other types of adaptation, such as the learning of a new angular

transformation or saccadic adaptation [40, 41]. The procedure for the adaptation training is

shown in Fig 2: Each adaptation task was practiced for three episodes of five movements each.

The sequence of four adaptation tasks constituted one block. One session consisted of the base-

line phase, the visuomotor pre-test, six blocks and the visuomotor post-test. In the first session,

the angular transformations had a size of 30˚. It is well known that adaptation saturates after a

few hundred trials. To provide significant adaptation stimuli throughout the intervention, the

angular transformation increased after three sessions in 10˚-steps from 30˚ to 100˚. Two ses-

sions were one to three days apart. The final assessment of cognitive performance (cognitive

post-test) was performed two days after the last intervention.
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Data analysis

The learning of an angular visuomotor transformation occurs by adaptation of trajectory plan-

ning processes that remaps the movement vector, i.e., movement direction, but not the final

positions of limb movements [42]. In the present study, the movement direction was mea-

sured as the angle between the target vector and the movement vector 100 ms after movement

onset (initial movement direction). This assures that movements are not visually corrected

because visual feedback needs longer latencies to become effective [43]. The decision to focus

in the analysis on the initial movement direction and not on the end position is supported by

findings from Schmitz [15], who showed that executive functions rather correlate with the

adaptation of initial movement directions than with the adaptation of movement endpoints.

Movement onset was defined as the point in time when the movement velocity exceeds 25

mm/s. The velocity threshold is an experience value, which has shown to be insensitive against

small corrective movements of the pen around the starting point.

The median direction of five movements (one episode) was calculated and submitted to the

statistical analyses. Normality distributions were tested with the Kolmogorov-Smirnov test.

Pre-test values and post-pre-differences from the cognitive performance tests (cognitive post-

pre-changes) were z-transformed and compared across groups by a two-way ANOVA with the

Fig 2. Experimental design. The participants of the intervention group trained for three episodes of five movements a first

adaptation task, then trained for three episodes a second adaptation task and so on. The four adaptation tasks were practiced in

six blocks, which constituted one session. One to three days later, they performed the next training session. Three sessions were

trained with a given angular transformation before it increased by 10˚.

https://doi.org/10.1371/journal.pone.0274759.g002
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between-subject factor ‘group’ (intervention / control) and the within-subject factor ‘test’ (cog-

nitive performance test measures). In this ANOVA, only the main effect ‘group’ and the

‘test�group’ interaction but not the main effect ‘test’ were analyzed because the latter has no

variance due to the z-transformations of the variables.

Furthermore, for the statistical analyses, the algebraic signs of the cognitive post-pre

changes were inverted for correct patterns in the Five-Point Test, the variable K from the

FAIR-2-Test and the number of correct answers from the Digit Span Test because positive

signs reflect a performance increase, whereas in the other tests, negative signs reflect perfor-

mance increases. For one participant, the post-pre-data of the Trail Making Test were missing.

Therefore, two analyses were performed: One analysis with all tests but without this participant

and a second analysis with all participants but without the TMT.

The performance during the baseline phase was compared across all sessions by a three-

way ANOVA with the within-subject factors angular transformation (30˚, 40˚, 50˚, 60˚, 70˚,

80˚, 90˚, 100˚), session (1–3) and workspace (distal versus proximal). Visuomotor pre-post

changes were analyzed by a four-way ANOVA with the within-subject factors phase (pre- ver-

sus post-test), angular transformation (30˚-100˚), session (1–3) and workspace (distal versus

proximal).

The performance during the training of the angular transformations was analyzed by a six-

way ANOVA with the within-subject factors angular transformation (30˚-100˚), session (1–3),

block (1–6), workspace (distal versus proximal), order (first & second versus third & fourth

adaptation task) and episode (1–3). To analyze covariations between sensorimotor learning

and cognitive performance, each participant’s mean z-value of the pre-test as well as of the

post-pre-changes in the cognitive performance tests were submitted as covariates to the

ANOVA of the sensorimotor training. Partial eta-squared (ŋ2
p) is reported as the effect size

measure. Sphericity was tested with the Mauchly test. Huynh-Feldt adjustments were applied

in case of its significance. The homogeneity of variances was analyzed with the Levene test.

Post hoc comparisons were performed with the Newman-Keuls procedure.

Finally, a factor analysis based on the principal component method was calculated for the

cognitive post-pre-changes. The varimax rotation was selected as rotation method. It creates a

simple structure of the factors by maximizing the squared loadings per factor [44]. The selec-

tion criteria for variables were anti-image correlations larger than 0.5 and communalities

larger than 0.7. Factors with eigenvalues larger than 1 were regarded as meaningful (Kaiser-

Guttman-criterion). If the eigenvalue of a factor is smaller than 1, it is smaller than the variance

of a single standardized variable. This factor is generally considered insignificant as it can no

longer contribute to the data reduction [44]. The number of factors was chosen based on a

visual inspection of Cattell’s scree plot. The minimal acceptable Kaiser-Meyer-Olkin-criterion

was defined as 0.6. The stability of the factor structure was estimated according to the proce-

dure suggested by Bortz and Schuster [44]. This procedure considers sample size and minimal

factor loading taken into account when interpreting the factors. It yields a descriptive measure

of stability, which should be� 0.8.

Results

Baseline phase and visuomotor pre-post changes

Each session started with the baseline phase, in which the participants of the intervention

group moved the stylus with a mean deviation of -0.46˚ (SD: 1.76˚) to the targets. This value

represents the initial movement direction, i.e., the angle between the target vector and the

movement vector 100 ms after movement onset. Data from an exemplary participant are

shown in Fig 3. Depicted are the mean initial movement directions of all episodes of this
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participant. The baseline performance did not change during the study. An ANOVA on the

data of the baseline phase of all participants resulted in only one significant effect, a significant

interaction between angular transformation and workspace (F(7,161) = 2.63, p = 0.013, ŋ2
p =

0.10): At the beginning of the sessions with the 80˚ angular transformations, the initial move-

ment directions in the distal (-1.30˚) and the proximal workspace (0.99˚) differed significantly

from each other (post-hoc test: p = 0.031). Other effects were not significant. The movement

directions in the visuomotor pre- and post-test without feedback deviated from the target

directions on average by 0.08˚ (SD: 1.27˚). Neither the pre-post changes nor any other factors

were significant. Thus, aftereffects could not be detected.

Performance in the adaptation tasks

Fig 3 also shows the adaptation performance of the exemplary participant. Clockwise adapta-

tion, reflected by negative movement directions, was required in response to clockwise double

steps and counterclockwise feedback rotations. Counterclockwise adaptation, reflected by pos-

itive movement directions, was required in response to counterclockwise double steps and

clockwise feedback rotations. The increasing values at each of the four adaptation tasks indi-

cate that the participant adapted to all of them. Furthermore, the data series do not overlap but

diverge instead, indicating that this participant was able to switch from clockwise to counter-

clockwise adaptation and vice versa. In the subsequent analyses, the algebraic signs of the

movement directions during clockwise adaptation were inverted to allow comparability

between subsequent adaptation tasks.

Fig 4A illustrates the mean adaptation of all participants of the intervention group to the

increasing angular transformations. On average, the participants adapted to each angular

transformation by 9.05˚ (SD: 0.94˚). The successive change of movement directions is con-

firmed by the significance of the main effect angular transformation in the ANOVA (F(7,161)

= 563.85, p<0.001, ŋ2
p = 0.96). Moreover, the main factors Episode, Block and Session were

Fig 3. Performance of one participant. The participant adapted to clockwise (cw) double steps in the distal workspace, counterclockwise (ccw) double

steps in the proximal workspace, counterclockwise rotated feedback in the distal workspace, and clockwise rotated feedback in the proximal workspace.

Illustrated are the movement directions measured 100 ms after movement onset. Each dot represents the mean of one episode, i.e., of 5 movements. All

episode means of the intervention are shown. The solid blue and orange lines represent the expected values for complete adaptation of movement

directions to the angular transformations 30˚-100˚. The solid black line near the Abscissa represents the performance during the baseline phase.

https://doi.org/10.1371/journal.pone.0274759.g003
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significant, confirming that adaptation occurred in different timescales (Fig 4). Significant

changes between episodes (Fig 4B) confirm relatively quick adaptive changes (F(2,46) =

151.76, p<0.001, ŋ2
p = 0.87) compared to slower but significant adaptation across blocks (Fig

4C, F(5,115) = 3.64, p = 0.008, ŋ2
p = 0.14) and sessions (Fig 4D, F(2,46) = 67.59, p<0.001, ŋ2

p

= 0.75). The rate of adaptation changed over time which is confirmed by the significant inter-

actions between episode and block (F(10,230) = 5.04, p<0.001, ŋ2
p = 0.18) and block and ses-

sion (F(10,230) = 2.21, p = 0.018, ŋ2
p = 0.09).

The significance of the main effects angular transformation, episode, block and session con-

firms that adaptation progressed significantly over time; despite the switching between the

adaptation tasks. Further analyses confirm that the participants learned to switch predictively:

When exposed to the 100˚ angular transformation, the participants directed their first move-

ment in each of the four adaptation tasks on average at 60˚ (SD: 30˚). This value differed signif-

icantly from the mean direction of the baseline phase (each p<0.001), i.e., the participants

aimed their very first movements adequately in the clockwise or counterclockwise direction.

Sequential adaptation effects

The participants adapted their movements in response to the increasing transformations; how-

ever, adaptation was incomplete. A significant interaction of the factor order with the factor

angular transformation shows that the performance in the first two adaptation tasks developed

better than the performance in the third and fourth adaptation tasks (F(7,161) = 4.66,

p = 0.007, ŋ2
p = 0.17).

Moreover, the interaction order�block was significant (F(5,115) = 6.07, p<0.001, ŋ2
p =

0.21). During the third and fourth tasks, the participants significantly improved their perfor-

mance from block 1 to the other blocks (post-hoc tests: block 1 versus blocks 2 to 6 at least

p<0.05). During the first two adaptation tasks, they showed lower performance in the second

than in the first block during (post-hoc test: p = 0.003, Fig 5). Concerning the course of adapta-

tion within blocks, the latter differences were larger at the beginning of a block than at the end

of a block, i.e., the differences between blocks 1 and 2 were larger in episode 1 than in episodes

2 and 3. This is confirmed by the interaction block�order�episode (F(10,230) = 2.56, p = 0.006,

ŋ2
p = 0.10). The main effect order was not significant.

Fig 4. Mean performance averaged across the four adaptation tasks. 0˚ represents the unadapted expectation. A: The size of the angular

transformation corresponds to the expected value for complete adaptation. B-D: 65˚ represents the expected value for complete adaptation. B-D

show the mean adaptation progress in different timescales (B: episodes, C: blocks, D: sessions) averaged across all angular transformations.

Illustrated are between-subject means and standard errors.

https://doi.org/10.1371/journal.pone.0274759.g004
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Fig 6 illustrates that the performance improved within each block and then decreased at the

beginning of the next block (post-hoc comparisons: each p<0.001). This effect differed

between workspaces (block�workspace�episode, F(10,230) = 2.61, p = 0.005, ŋ2
p = 0.10). A

post-hoc test revealed significant differences between the workspaces in the first episode of the

first block (p<0.001), which confirms that the participants adapted faster in the proximal

workspace than in the distal workspace. Furthermore, the interaction of workspace and session

was significant (F(2,46) = 6.94, p = 0.002, ŋ2
p = 0.23). Adaptation progressed quite similar in

both workspaces in sessions 1 and 2 (post-hoc tests: all p>0.05). It was significantly better in

the proximal than the distal workspace in session 3 (post-hoc tests: p<0.001).

Cognitive performance changes

All results of the cognitive performance tests are shown in Table 1. An ANOVA of the z-trans-

formed pre-test values neither revealed significant differences between groups nor a test�group

Fig 5. Progress of adaptation across blocks in the first and second compared to the third and fourth adaptation

task. 65˚ represents the expected value for complete adaptation. 0˚ represents the unadapted expectation. Illustrated

are between-subject means and standard errors.

https://doi.org/10.1371/journal.pone.0274759.g005

Fig 6. Progress of adaptation across episodes and blocks in the distal and proximal workspace. 65˚ represents the

expected value for complete adaptation. 0˚ represents the unadapted expectation. Each dot represents the mean and

the bars the standard error of all participants of the intervention group in one episode.

https://doi.org/10.1371/journal.pone.0274759.g006
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interaction (group: F(1,34) = 2.15, p = 0.152, ŋ2
p = 0.06; test�group: F(11,374) = 1.27,

p = 0.245, ŋ2
p = 0.04). In contrast, ANOVAs on the z-transformed post-pre-changes revealed a

significant main effect of group: mean post-pre changes, i.e. the mean cognitive performance

changes, were significantly larger in the intervention group than in the passive control group

(without the participant with missing data: F(1,33) = 4.32, p = 0.045, ŋ2
p = 0.12; with all partic-

ipants but without TMT: (F(1,34) = 4.93, p = 0.033, ŋ2
p = 0.13). The test�group interaction was

not significant (without one participant: F(11,363) = 0.97, p = 0.476, ŋ2
p = 0.03; without TMT:

F(9,306) = 1.10, p = 0.362, ŋ2
p = 0.03).

Relation between the cognitive performance changes and the visuomotor

adaptation

The aim of the next analysis was to find out whether the results from the cognitive perfor-

mance tests are related to the performance during the visuomotor adaptation intervention. To

this end, the mean pre-test-values and the mean cognitive performance changes of each partic-

ipant of the intervention group were submitted as covariates to the generalized linear model of

the adaptation intervention. One significant covariation was found between the mean cogni-

tive performance changes and the interaction angular transformation�order (F(7,154) = 3.22,

p = 0.028, ŋ2
p = 0.13). This covariation can be illustrated based on the prediction values from

the generalized linear model. Fig 7 illustrates each participant’s prediction values and standard

errors considering their cognitive performance change. The more divergent the performances

are in the first and second compared to the third and fourth adaptation tasks, the larger is the

cognitive improvement. Mean cognitive performance change was also significant covariate for

the interactions block�workspace�episode (F(10,210) = 2.25, p = 0.016, ŋ2
p = 0.10) and

Table 1. Cognitive performance.

Intervention group z Control group z

Pre Post Post-Pre Pre Post Post-Pre

5 Point Test correct patterns 41.54 (8.32) 52.08 (9.28) -10.54� (6.14) -0.15�

(0.90)

47.42 (11.21) 54.83 (7.49) -7.42� (7.84) 0.31�

(1.15)

repeated patterns

[%]

5.13 (6.05) 3.64 (5.82) -1.48 (6.10) -0.09 (1.01) 5.36 (4.03) 5.52 (4.52) 0.16 (6.06) 0.18 (1.00)

Stroop Test reading words [s] 29.05 (5.31) 26.07 (3.24) -2.99 (5.05) -0.20 (1.11) 27.25 (4.04) 27.05 (4.70) -0.19 (2.71) 0.41 (0.59)

naming colors [s] 40.59 (6.69) 37.68 (5.68) -2.91 (3.30) -0.30 (0.83) 42.67 (7.80) 43.30 (9.14) 0.63 (4.26) 0.60 (1.07)

naming word color

[s]

62.75 (11.69) 58.62 (13.04) -4.13 (8.35) 0.01 (1.06) 66.61 (12.38) 62.34 (7.51) -4.28 (7.19) -0.01

(0.91)

Trail Making Test task A [s] 25.34 (8.85) 20.40 (5.05) -4.94 (8.13) -0.04 (1.01) 22.72 (6.30) 18.82 (3.51) -3.90 (8.14) 0.08 (1.01)

task B [s] 40.30 (11.54) 33.05 (9.81) -7.61 (11.14) -0.13 (0.88) 35.81 (10.11) 33.03 (13.44) -2.78 (15.28) 0.25 (1.20)

Fair 2 Test K 413.22

(93.00)

513.69

(94.79)

-100.46�

(88.71)

-0.06�

(1.16)

452.61

(57.51)

539.52

(71.11)

-86.91�

(45.62)

0.12�

(0.60)

Maze Test maze [s] 32.24 (15.52) 23.50 (7.72) -8.73 (16.76) -0.14 (1.10) 26.39 (6.33) 24.24 (9.66) -2.15 (10.96) 0.29 (0.72)

pseudo-maze [s] 13.76 (3.88) 11.62 (3.16) -2.14 (2.97) -0.11 (1.10) 10.83 (1.48) 9.54 (1.67) -1.28 (2.06) 0.21 (0.76)

Digit Span Test correct answers 8.75 (2.01) 9.25 (1.62) -0.50� (1.29) -0.09�

(1.03)

9.50 (1.68) 9.67 (1.50) -0.17� (1.19) 0.18�

(0.96)

Number Connection

Test

[s] 60.03 (11.60) 58.26 (11.56) -1.77 (7.41) 0.15 (0.99) 57.89 (6.24) 52.88 (6.37) -5.01 (7.35) -0.29

(0.99)

Shown are between-subject means (and standard deviations).

z: z-transformed post-pre-changes.

� For these tests, negative post-pre changes reflect performance deteriorations, whereas for all other tests, negative post-pre changes reflect improvements. Therefore,

post-pre changes were inverted for better comparability.

https://doi.org/10.1371/journal.pone.0274759.t001

PLOS ONE Enhanced cognitive performance after multiple adaptations to visuomotor transformations

PLOS ONE | https://doi.org/10.1371/journal.pone.0274759 September 21, 2022 12 / 19

https://doi.org/10.1371/journal.pone.0274759.t001
https://doi.org/10.1371/journal.pone.0274759


block�order�workspace�episode (F(10,210) = 1.98, p = 0.040, ŋ2
p = 0.09). Notably, pre-test

performance was not a significant covariate for these interactions. Pre-test performance was

significant covariate for block (F(5,105) = 3.44, p = 0.022, ŋ2
p = 0.12), session�block�workspace

(F(10,210) = 3.19, p = 0.001, ŋ2
p = 0.13), block�order�workspace (F(5,105) = 2.31, p = 0.049,

ŋ2
p = 0.10), transformation�order�episode (F(14,294) = 2.23, p = 0.045, ŋ2

p = 0.10) and trans-

formation�session�workspace�episode (F(28,588) = 1.62, p = 0.033, ŋ2
p = 0.07).

Fig 7. Predictions of the generalized linear model with mean cognitive performance change as a covariate.

Predictions of the generalized linear model regarding the performance in the first and second adaptation task (black

lines) compared to the third and fourth adaptation task (grey lines) with mean cognitive performance change as a

covariate. Each graph shows the values of one participant. Bars represent standard errors of predictions. The size of an

angular transformation corresponds to the expected value for complete adaptation. 0˚ represents the unadapted

expectation. "cog" denotes the z-transformed mean cognitive performance change of one participant. As a reference,

the mean cognitive performance change of the passive control group might be considered, which was 0.19 (SD: 0.20).

https://doi.org/10.1371/journal.pone.0274759.g007
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The mean cognitive performance change was taken as a covariate because it differed signifi-

cantly between the intervention and the control group and the test�group interaction was not

significant. However, it remains unclear whether the mean cognitive performance enhance-

ment was based on an improvement of a single cognitive component inherent to all cognitive

tests or an improvement of several cognitive components in parallel. Therefore, a second

covariation analysis was performed with a different set of covariates. As this was planned a

posteriori, the result was Bonferroni-corrected. The new set of covariates was derived from a

factor analysis of the post-pre-changes. The five variables shown in Table 2 met the a priori

defined inclusion criteria for the factor analysis. The minimal anti-image correlation was 0.65

(Digit Span Test), and the minimal commonality was 0.75 (pseudo-maze). The Kaiser-Meyer-

Olkin-criterion was 0.74, and the Bartlett-Test for sphericity was significant (X2 = 41.60,

p<0.001). The inspection of the scree plot revealed an inflection point below the second factor.

Both factors had Eigenvalues larger than 1 and therefore were extracted.

The result of the factor analysis is shown in Table 2. Each of the five variables can be

assigned more clearly to the one factor than to the other. The Stroop Test measures and the

Trail Making Test predominantly load on factor 1, and the measures from the Maze and the

Digit Span Test predominantly load on factor 2. The estimation of the stability of the factor

structure resulted in 0.80 when the factor loading of 0.76 from the Trail Making Test is consid-

ered as the lowest threshold and thus matches the minimal value proposed by Bortz and Schus-

ter [44].

With the individual factor scores, the significant covariation with the interaction angular

transformation�order was replicated. Notably, significant covariations with this interaction

were achieved for both extracted factors (factor 1: F(7,133) = 4.55, p = 0.008, ŋ2
p = 0.19; fac-

tor 2: F(7,133) = 3.33, p = 0.04, ŋ2
p = 0.15). As these factors are orthogonal, these results

point to covariations of two independent variance components with the visuomotor adapta-

tion intervention. Factor 1 was also covariate for block (F(5,95) = 3.13, p = 0.024, ŋ2
p = 0.14),

transformation�block�episode (F(70,1330) = 1.69, p = 0.008, ŋ2
p = 0.08), transforma-

tion�session�order�episode (F(28,532) = 1.75, p = 0.022, ŋ2
p = 0.08). Factor 2 was also signifi-

cant covariate for transformation�session (F(14,266) = 1.92, p = 0.048, ŋ2
p = 0.09).

Discussion

The present study investigated whether multiple adaptations to visuomotor transformations

significantly affect cognitive performance. The results indicate that the participants of the

intervention group adapted to all transformations and significantly increased their cognitive

performance compared to a passive control group.

Table 2. Factor analysis of post-pre changes in the cognitive performance tests.

Variable Factor 1 Factor 2

Stroop Test: reading words [s] 0.90 0.05

Stroop Test: naming the color of bars [s] 0.86 0.22

Trail Making Test: task A [s] 0.76 0.42

Maze Test: pseudo-maze [s] 0.06 0.92

Digit Span Test: correct answers 0.39 0.79

Eigenvalue 2.93 1.03

% explained variance 58.56 20.67

Applied was the principal component method with standardized varimax rotation. Illustrated are factors with

eigenvalues larger than 1. Factor loadings larger than 0.7 are highlighted for clarity.

https://doi.org/10.1371/journal.pone.0274759.t002
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Adaptation

The participants of the intervention group adapted to each angular transformation by about

9˚. The adaptation to the 30˚ transformation developed on a lower level than previously

reported by two studies that had used the same experimental apparatus [8, 15]. This finding

might be explained by the fact that the participants performed four adaptation tasks alternat-

ingly. Albert et al. [45] have shown that changes of the size or the sign of angular transforma-

tions enhance residual adaptation errors. The different demands of the four adaptation tasks

and the increasing angular transformations might have had a similar effect in the present

study.

The overall adaptation illustrated by Fig 4A is the averaged performance at the four differ-

ent adaptation tasks; the participants adapted in all four tasks concurrently. Concurrent adap-

tation to four visuomotor transformations was also reported by Thomas and Bock [36], whose

participants performed bilateral hand training; i.e., each hand adapted concurrently to two

visuomotor transformations. The participants of the present study adapted in all tasks with

one hand only. The switching between adaptation tasks performed with one hand typically

leads to interference when the tasks require the adaptation of movement directions to opposite

directions in the same workspace [17, 37, 46]. This might be another explanation for the

observed incomplete adaptation.

Bastian [47] and Wolpert et al. [48] argued that the learning of switching between opposite

directed transformations is driven by a different mechanism than the adaptation to a single

transformation. The switching needs much more trials to be learned [23, 49]. In the present

study, clockwise and counterclockwise transformations switched 288 times, which seemed suf-

ficient for the participants to learn the switching partially. This is shown by the analysis of the

very first movements at the 100˚ transformations, which differed from the mean error of the

baseline phase by about 60˚.

Cognitive performance changes

The main goal of the present study was to investigate whether visuomotor adaptations improve

cognitive performance. Mean post-pre changes in the cognitive performance tests differed sig-

nificantly between the intervention and the control group, indicating a causal relationship

between sensorimotor adaptation training and cognitive performance.

Ten from twelve test measures showed larger improvements for the intervention than for

the control group on a descriptive level. The test�group interaction was not significant; thus, it

could not be shown that the post-pre changes differed significantly between the neuropsycho-

logical tests. This either suggests an effect of the intervention on a very basal cognitive compe-

tence, which affects the performance in nearly all tests, or a similar effect on several cognitive

functions in parallel. The factor analysis, which yielded two orthogonal, i.e., independent, fac-

tors, indicates that at least two cognitive components had developed in parallel (Table 2).

Factor 1 represents the shared variance of two performance measures from the Stroop Test,

one of the Trail Making Test and the Digit Span Test. An interpretation for this factor might

be derived from Baeumler [33], who had developed the version of the Stroop Test used in the

present study. He described a global cognitive factor relevant for all subtests of the Stroop Test.

Baeumler [33] interpreted this factor as self-paced action speed, mental agility and vigilance.

Since this factor correlates with various other abilities, like attentional control and vigilance,

comprehension speed, fluency, and memory tests, but not with reaction time tests and cogni-

tive decision-making [33], the shared variance of the Stroop Test, the Trail Making Test and

the Digit Span Test seem to be plausible, because these tests also measure some of the afore

mentioned abilities [28, 30, 33]. Correlations between the Trail Making Test A, the Stroop Test
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as well as the Digit Span Test have been reported by other authors [29, 30, 50]. Following the

interpretation from Salthouse [29] and Sanchez et al. [30], the factor could reflect perceptual

speed or processing speed and fluid cognitive abilities as part of the executive functions. Note-

worthy, fluency is also assessed by the Five Point Test in the present study, in which the partic-

ipants of the intervention group scored higher than the participants of the passive control

group.

Factor 2 was predominantly loaded by the Maze Test and by the Digit Span Test. Schmitz

[15] also reported a covariation between a factor loaded by the Maze Test (factor loading 0.88)

and the Digit Span Test (factor loading of 0.58) with the performance in two successive adapta-

tion tasks. Therefore, this result is plausible. Maze-traversing requires spatial-cognitive opera-

tions [35, 51] and the Digit Span Test measures explicit working memory resources [34]. Thus,

factor 2 might reflect an improvement of such working memory components, which are

involved in the memory of visuospatial traces. Spatial memory capacities seem to play an

important role during sensorimotor learning, as highlighted by studies from Seidler et al. [6]

and Sidarta et al. [52]. Unfortunately, neither visuospatial nor somatosensory working mem-

ory has been assessed directly by the present tests. Therefore, this is recommended for future

studies.

Anderson [53] presented a conceptual framework for executive control based on four inter-

related domains: cognitive flexibility, goal setting, attentional control and information process-

ing. The two factors found in this study can be assigned to two domains of this concept. Factor

1 would be assigned to information processing, which according to Anderson [53] includes

speed of processing and fluency. Factor 2 would be assigned to the domain of cognitive flexi-

bility, which according to the authors also includes working memory. The cognitive abilities

inhibition, selective attention, perseveration, divided attention, and flexibility, considered rele-

vant in other adaptation studies, can also be attributed to Anderson’s framework, namely to

the domains attentional control and cognitive flexibility [3–4, 10, 13–15]. According to this

interpretation, adaptation would be related to executive control.

An ANCOVA was conducted to detect possible relationships between cognitive perfor-

mance changes and factors of the adaptation tasks. It should be noted that a significant covari-

ation between variables provides information about shared variance but does not allow causal

attribution. The mean cognitive performance change was a significant covariate for adaptation

effects of the intervention group confirming that the mean cognitive performance change

shared variance with specific effects of the adaptation tasks. According to the taxonomy of

Cohen [54], the effect sizes reflect medium to large effects. The largest effects were observed

for the covariations of factor 1 and factor 2 with the interaction angular transformation�order.

As illustrated by Fig 7, the cognitive performance changes seem to be related to the perfor-

mance differences between successive adaptation tasks. That means that it is not the partici-

pants who adapt best who have the largest cognitive improvements, but those who show the

largest performance differences between tasks. The performance difference might be inter-

preted as interference between successive adaptations tasks. A larger degree of interference

might have represented a stronger stimulus for cognitive functions, which in turn developed

more strongly. Notably, also for the participants with the larger cognitive performance

enhancements, the interference persisted until the end of the intervention.

With the exception of the covariations with the factor block, all covariations involved at

least one of the factors angular transformation, order or workspace. This might indicate that

the increasing task demands as well as the switching or the interference between tasks were rel-

evant for the increase in cognitive performance.

In summary, the present study observed cognitive performance improvements in the inter-

vention compared to the control group. Covariation analyses indicate a possible relationship
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between the mean cognitive performance change and specific components of the adaptation

intervention. Whether these covariations reflect causal effects needs to be investigated in future

studies.
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