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Abstract
The virtual element method allows to revisit the construction of Kirchhoff-Love elements because theC1-continuity condition
is much easier to handle in the VEM framework than in the traditional Finite Elements methodology. Here we study the two
most simple VEM elements suitable for Kirchhoff-Love plates as stated in Brezzi and Marini (Comput Methods Appl Mech
Eng 253:455–462, 2013). The formulation contains new ideas and different approaches for the stabilisation needed in a virtual
element, including classic and energy stabilisations. An efficient stabilisation is crucial in the case of C1-continuous elements
because the rank deficiency of the stiffness matrix associated to the projected part of the ansatz function is larger than for
C0-continuous elements. This paper aims at providing engineering inside in how to construct simple and efficient virtual
plate elements for isotropic and anisotropic materials and at comparing different possibilities for the stabilisation. Different
examples and convergence studies discuss and demonstrate the accuracy of the resulting VEM elements. Finally, reduction of
virtual plate elements to triangular and quadrilateral elements with 3 and 4 nodes, respectively, yields finite element like plate
elements. It will be shown that these C1-continuous elements can be easily incorporated in legacy codes and demonstrate an
efficiency and accuracy that is much higher than provided by traditional finite elements for thin plates.

Keywords Virtual elementmethod (VEM) ·Kirchhoff-Love theory ·Virtual plate element ·Stabilisation · Isotropic/anisotropic
material · Finite plate element

1 Introduction

The necessity to accurately and efficiently model plates has a
long history based on the fact that plates are installed as struc-
tural members in almost every building, in many machines
and in airplanes. This has led early on to the development of
plate elements in most discretisation schemes. In the finite
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element method associated development started more than
50 years ago with the work of [8,17,24]. It was obvious
that general forms of finite elements were not able to ful-
fill C1-continuity when using Kirchhoff-Love plate theory
as starting point. First elements that met C1-continuity were
developed within the TUBA series of elements in [4]. Com-
posite elements, consisting of four triangleswere provided by
[12,18] which then allowed to use such composite element as
general quadrilateral other formulations for strictly rectangu-
lar elements can be found e.g. in [14]. All these formulations
have the disadvantage that besides deflectionw and rotations
w,x , w,y additional higher order kinematical quantities, e.g.
the curvatures w,xx , w,yy , appear as nodal unknowns which
impedes the use of such element in an engineering environ-
ment.

The latter complicationwas circumvented by the introduc-
tion of Reissner-Mindlin elements, starting with the work
of [20,39]. Due to some disadvantages in the thin plate
limit, many different variants were considered in the fol-
lowing years, see the textbooks e.g. [19,30,31]. One of these
variants is based on the discrete, point-wise formulation of
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C1-continuity, which leads to the discrete Kirchhoff triangles
(DKT), see [6], and quadrilaterals (DKQ), see [7].

As shown in the work of [13], the virtual element method
(VEM) can be applied to develop C1-continuous Kirchhoff-
Love plate elements. VEM actually has the advantage that
no higher order kinematical quantities have to be introduced
and thus these elements can be easily integrated in engineer-
ing codes which is due to the simplicity of the definition of
the ansatz functions, which are defined only at the element
boundary. Hence the virtual element method allows to revisit
the construction of Kirchhoff-Love elements. This was illus-
trated for two simple plate elements in [16] which includes
error estimates. [26] employed the virtual element method-
ology to dynamic plate problems and also showed that these
elements can be used for the buckling analysis of plates,
see [25,27]. At the same time other virtual plate elements
using Reissner-Mindlin kinematics were developed, see [11]
and non-conforming discretisations were considered in [3]
to model plate problems with VEM.

Here we present two simple VEM elements suitable
for conforming Kirchhoff-Love plates which were already
discussed for isotropic materials in [16]. We extend this
formulation to isotropic and anisotropic material responses,
provide a detailed description of the matrix forms and new
stabilisations. The reason for restricting ourselves to low
order ansatz functions was motivated by the fact that vir-
tual elements of low order are the most suitable choice for
non-linear extensions, see e.g. [1,10,15,38].

The main difficulty in VEM concerns the stabilisation
parts of the stiffness matrix. This question is even more cru-
cial in the case ofC1-continuous elements than in the case of
C0-continuous elements, because the rank deficiency of the
stiffness matrix associated to the projected part of the ansatz
function is larger. Therefore this paper aims—besides pro-
viding a formulation in engineering terms—at introducing
different possibilities for the stabilisation of virtual plate ele-
ments. Compared to the approach in [26], this work aims to
improve stabilisation and additionally introduces an energy
based stabilisation which is based on a sub-triangulation of
the VEM elements, as was proposed in [38] for hyperelastic
solids. In the latter stabilisation, different simple conforming
and non-conforming plate elements, see [6,29], are compared
regarding their contribution to the stiffness matrix, their pre-
cision and efficiency of the resulting VEM element.

Numerical examples will be considered to study the
convergence behaviour of both developed elements and to
illustrate their applicability to engineering problems.We first
deal with problems with analytical solution and then exam-
ine the case of rhombic plates where its is known that higher
degree elements are preferable, see [5]. Examples including
anisotropic material behaviour show the applicability of the
method to composite plates.

Fig. 1 Plate geometry

Since the developed virtual plate elements only introduce
deflections and rotations as nodal unknowns, despite being
C1-continuous, they can be easily incorporated in finite ele-
ment software when they are reduced to triangular elements
with three/six nodes or quadrilateral elements with four/eight
nodes. Based on classical benchmark examples it can be
concluded that these reduced virtual element have a much
higher efficiency and accuracy than comparable traditional
finite plate elements.

2 Governing equation of Kirchhoff plates

2.1 Description of the plate and of the constitutive
relation

The geometry of the plate is described through its mid sur-
face �m with thickness, 2h, which will be assumed to be
constant. A point X within the plate is given by the orthogo-
nal projection Xm onto the mid surface and its coordinate Z
along the normal EZ of �m (see Fig. 1).:

X = Xm + ZEZ = XEX + Y EY + ZEZ (1)

where (EX , EY , EZ ) is a orthonormal direct cartesian basis.
In the Kirchhoff-Love theory the displacement u(Xm, Z)

of point X can be described by the deflection w of the plate

u(Xm, Z) = w(Xm)EZ − Z ∇Xm (w(Xm)) (2)

where∇m , simply denoted by∇, is the gradient operator with
respect to Xm and w belongs to H2(�m).

Therefore the rotation θ of the normal segment is equal to

θ = θX EX + θY EY = −EZ ∧ ∇w = w,Y EX − w,X EY

(3)

The in-plane strain ε associated with the displacement
u(Xm, Z) is given by

ε(u) = Zχ (4)
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where the curvature operator χ is equal to

χ = −∇(∇w) . (5)

In what follows we will assume that the plate is symmetri-
cal with respect to its mid-surface. Introducing the classical
Hooke’s law under plane stress condition yields the constitu-
tive tensor Kcp. With that one obtains a constitutive relation
linking the moment of the in-plane stress to the curvature

M =< Z2
Kcp > χ (6)

where 〈a〉 defines an integral of quantity a over the thickness
t = 2h of the plate

〈a〉 =
∫ h

−h
a dZ . (7)

For a plate that is homogeneous through the thickness the
integral (6) yields

M = 2h3

3
Kcp χ . (8)

The local bilinear form associated with the Kirchhoff-Love
model can be written as

a(w, v) = tr[M(w)χ(v)] = 2h3

3
tr[Kcp χ(w)χ(v)] (9)

where the moment follows from (8) for an isotropic homo-
geneous plate with Young’s modulus E and Poisson ratio ν

M = 2h3

3

E

1 + ν

(
χ + ν

1 − ν
tr(χ) I2

)
. (10)

With the definition of the bending stiffness

D = 2
h3

3

E

1 − ν2
(11)

the bilinear form a(w, v) of the Kirchhoff-Love theory over
H2(�m) follows

a(w, v) = D[ (1 − ν)(w,XX v,XX +w,YY v,YY

+2w,XY v,XY ) + ν � w � v ] (12)

which leads to the bilinear form

A(v,w) =
∫

�m

a(v,w) d�m (13)

characterising the internal virtualwork of theKirchhoff-Love
problem.

Alternatively the strain energy density can be introduced

ψ(w) = 1

2
a(w,w) = 1

2
tr[M(w)χ(w)] = 1

2
χ(w)·Dχ(w) .

(14)

In what follows the symbol ˆ is associated to the Voigt
notation. For example, for the moment and the curvature one
introduces

M̂ =
⎡
⎣MXX

MYY

MXY

⎤
⎦ , χ̂ =

⎡
⎣w,XX

w,YY

2w,XY

⎤
⎦ . (15)

The constitutive relationmaybe expressed through thematrix
D̂ that is defined with (11) by

M̂ = D̂ χ̂ = D

⎡
⎣1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦ χ̂ . (16)

Thus the strain energy in (14) can be rewritten in Voigt nota-
tion as

ψ(w) = 1

2
χ̂T M̂ = 1

2
χ̂T

D̂ χ̂ . (17)

For a laminated plate it is necessary to model the
anisotropic behaviour, see e.g. [32]. A laminate consists of
a stack of composite plies that have a fiber direction which
points in the direction of the angle φ to the X -axis. Let us
note that we consider in this paper only stacking sequences
that are symmetric with respect to their mid-plane in order
to avoid coupling between tension and bending. For each
ply k the orthotropic constitutive matrix may be defined with
respect to the orthotropic basis (the notation ¯ refers to the
orthotropic basis, while not using a bar refers to the global
basis):

¯̂
Dk = 1

1 − ν12ν21

⎡
⎣ E1 ν12E2 0

ν12E2 E2 0
0 0 G12

⎤
⎦ (18)

where E1 relates to the stiffness in fiber direction and the
value E2 is the stiffness perpendicular to the fiber direction.
The Poisson ration of the ply is given by ν12 and the shear
modulus is G12. The Poisson ratio ν21 = E2

E1
ν12 is a depen-

dent variable. This matrix has to be transformed to the X −Y
coordinate system by the transformation

D̂k = T−1 ¯̂
DkT−T (19)
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with

T−1 =
⎡
⎣ cosφ2 sin φ2 −2 sin φ cosφ

sin φ2 cosφ2 2 sin φ cosφ

sin φ cosφ − sin φ cosφ cosφ2 − sin φ2

⎤
⎦ . (20)

Now an integration over the thickness has to be performed
considering all n pl plies. This leads, analogous to (7), by
employing a sum over all plies to the global material stiffness
matrix D̂G

D̂G = 1

3

n pl∑
k=1

D̂k(Z
3
k − Z3

k−1) (21)

where the integration is executed for each ply over the ply
thickness hk = Zk − Zk−1. Now the strain energy for the
laminated plate is given by

ψ(w) = 1

2
χ̂T

D̂G χ̂ (22)

and the moments follow from M̂ = D̂G χ̂ .

3 Basis of the virtual element method for
Kirchhoff plates

Most of the mathematical theory of the virtual element
method (VEM) for Kirchhoff plates was established in [13].
The theory has been extended to vibrations in [26] and to
buckling analysis notably in [25,27].

We briefly recall some aspects of the theory useful for this
paper. The domain �m is partitioned into non-overlapping
polygonal elements which need not be convex but basically
star-shaped. Following the framework of the VEM, the space
of a virtual Kirchhoff-Love element has to be C1 continuous
at the inter-element level. A zoo of elements may be defined
by four integers, see [13]:

• The first one, r , defines the regularity of the polynomial
chosen for the deflectionw on the contour of each element
(and thus of its tangentiel derivative w,t ),

• the second one, s, defines the regularity of the polynomial
chosen for its normal derivative w,n ,

• the third one, m, defines the polynomial order of the bi-
laplacian inside the element and

• the fourth one, k, possibly the most important, corre-
sponds to the order of the method.

Not all possible choices of the quadruplet r , s,m, k are
acceptable.

In what follows E denotes an element of a given mesh and
e any of the corresponding edges of the element. The space

of the polynomial Pm is given by the degree, less or equal to
m for the corresponding geometrical entity

Vh = {w ∈ H2(�m),�2w ∈ Pm(E), w,t ∈ Pr (e), w,n ∈ Ps(e)}
(23)

Among all relevant choices of r , s,m, k some appear more
natural than others. Since the local equation of equilib-
rium involves the fourth order derivative of w, the choice
of m = k − 4 is the one minimising the number of inter-
nal d.o.f.s for a given order. We adopt this condition which
avoids the introduction of internal nodes for the chosen ele-
ments studied in this paper. We make use of the convention
that Pm(E) = {0} form < 0.The condition�2w ∈ Pm(E) is
fundamental for the element to be uni-solvent that is ensuring
the uniqueness ofw inside the element knowing its degrees of
freedom. The order of themethod is ensured by the following
consistency conditions where Ah is the approximation of the
bilinear form associated with the strain energy of the model:

Ah(p, q) = A(p, q), ∀p ∈ Vh, ∀q ∈ Pk(E) (24)

A method used in many papers on VEM to the recover sta-
bility along with consistency, see [9] for solids and [13] for
plates, is the following: Let �k be the energy projector onto
the set of polynomials of degree k where k corresponds to
the degree of projection of �k(w) which can uniquely be
prescribed knowing the degree of freedom of the element.
�k is defined as follows:

Ah(�k(p), q) = Ah(p, q), ∀p ∈ Vh, ∀q ∈ Pk(E)∫
�E

(∇�k p − ∇ p) d� = 0∫
�E

(�k p − p) d� = 0
(25)

Here Ah(p, q) follows from (12) and (13). Generally the
projection in (25) is not sufficient for defining a proper stiff-
ness matrix because it leads to a rank deficient matrix. Using
the following property of �k :

Ah(vh, wh) = Ah(�k(vh),�k(wh))

+Ah(vh − �k(vh), wh − �k(wh)),

∀vh ∈ Vh, ∀wh ∈ Vh, (26)

we note that the first term is computable as a function of the
degrees of freedom of the virtual elements but the second
one is not because (vh, wh) are not defined by the ansatz
(23) within the element. The stability of the method may
nevertheless be ensured by replacing

Ah(vh − �k(vh), wh − �k(wh)) (27)

by an equivalent partial bilinear formwhich scales as the orig-
inal one and is defined by the value of the element unknowns.
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Let us note that, for a given element, there exist several ways
to complement the stiffness matrix following from (25) in a
stable manner. All possible stable methods behave asymp-
totically in the same manner but may lead to rather different
results for coarse meshes. This is precisely one of the issues
addressed in this paper.

4 Formulation of the chosen virtual element
method for Kirchhoff-Love plates

By using the specific strain energy (9) the virtual element for
the Kirchhoff-Love theory can be derived based on

A(v, w) =
∫
�E

a(w, v) d�E =
∫
�E

tr[M(v)χ(w)] d�E

=
∫
�E

div(divM(v))w d�E

+
∫
	e

Mnn(v)∇w. N d	 −
∫
	e

[divM(v). N

+ Mnt ,s (v)]w d	 +
∑
i

[|Mnt (v)(X i )|
]
w(X i )

(28)

where X i are the coordinates of possible loaded points in the
domain and [|Mnt (X i )|] corresponds to the jumpofMnt at X i

computed following the curvilinear abscissa of the frontier
of the domain.

Let us denote by V 1
h the space corresponding to element

1 with k = 2

V 1
h ={w ∈ H2(E),�2w ∈ P−2(E), w,t ∈ P2(e), w,n ∈ P1(e)}

= {w ∈ H2(E),�(�w) = 0, w,t ∈ P2(e), w,n ∈ P1(e)}
(29)

One obtains from (28) the consistency condition (24) for
element 1

Ah(p, w) =
∫

	e

Mnn(p)∇w. N d	

+�i [|Mnt (p)(X i )|]w(X i ),

∀w ∈ V 1
h , ∀p ∈ P2{E} . (30)

Since w,n and w are defined on the boundary the left hand
side of the equation is known and the consistency condition
is easily enforced. It leads to three conditions.

Let us now denote the space V 2
h corresponding to element

2. For element 2, k = 3 and thus

V 2
h = {w ∈ H2(E),�2w ∈ P−1(E), w,t ∈ P2(e), w,n ∈ P2(e)}

= {w ∈ H2(E),�2w = 0, w,t ∈ P2(e), w,n ∈ P2(e)} .

(31)

Table 1 Data for element 1 and 2

Element nN nD n� nR

1 nE 3 nE 6 3 nE -3

2 2nE 4 nE 10 4 nE -7

Again relation (28) yields the consistency condition ∀p ∈
P3{E}

Ah(p, q) = A(p, w) = −
∫

	e

[div M(p). N + Mnt ,s (p)]w d	

+
∫

	e

Mnn(p)∇w. N d	

+ �i [|Mnt (p)(X i )|]w(X i ), ∀w ∈ V 2
h , ∀p ∈ P3{E} .

(32)

where w and w,n are known at the boundary. Hence the
left hand side of the equation is known and the consistency
condition is easily enforced.

Let us now consider the projector �k . For element 1, �2

is defined as

Ah(�2(p), q) = Ah(p, q), ∀p ∈ V 1
h , ∀q ∈ P2(E) ,∫

�E

∇�2 p d� =
∫

�E

∇ p d� , ∀p ∈ V 1
h , (33)

∫
�E

�2 p d� =
∫

�E

p d� , ∀p ∈ V 1
h

Thanks to the consistency conditions the right hand side of
the first relation defining �2 is known. The second and third
condition give rise to three additional conditions which com-
pletely define �2(p). It depends on 6 scalars as function of
the degrees of freedom of the element. For the same rea-
son, when deriving element 2, the projector �3, involving
10 constants defining �3(p), is also perfectly defined.

In what follows we denote the number of elements by nT .
For each element nV denotes the number of vertices which
is equal to the number nE of edges, nN is the number of
nodes and nD describes the number of degrees of freedom.
The number of unknowns associated with the projection �

is given by n�. Table 1 summarizes the data for element 1
and element 2 and provides the rank deficiency nR associated
with the use of the sole projection � for the definition of the
stiffness matrix of the element. Let us note that the normal
rank deficiency of the stiffness matrix in bending should be
3, due to rigid body modes.

4.1 Basic aspects of the chosen elements

As previously explained, we have selected the two most sim-
ple elements with k = 2 ((r , s,m, k) = (2, 1,−2, 2)) and
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k = 3 ((r , s,m, k) = (2, 2,−1, 3)), which correspond to
elements suggested in [13].

In both cases no internal degrees of freedom are needed
which simplifies possible extensions of the method to non-
linear cases. Nevertheless this choice implies some approx-
imation when computing the virtual power of external body
load for the element of Vh .

The ansatz for both elements is based on Hermite cubic
functions for w, ensuring the continuity of the normal com-
ponent of the gradient along the edges. In each case, the cubic
ansatz for the deflection w along the element edge is given
for a boundary segment k of the virtual element, defined by
the local nodes (1)–(2) (respectively (1)–(2)–(3)) with three
unknowns for w and θ per vertex, see Fig. 2.

For element 1 the gradient ofw along the edge is quadratic
while its normal derivative is only linear. Element 1 is of order
2.

To construct a quadratic ansatz for the gradient along the
edge one has to introduce an additional unknown per edge,
for example the value of θt at the mid node of the edge. This
element is denoted element 2 (Fig. 3).

It is interesting to compare the second element with the
first one since it is of order 3, at the price of only one addi-
tional degree of freedom per edge. A second issue studied in
the paper is related to the relative effective performance of
elements 1 and 2 with respect to the type of stabilisation.

The segments of the elements are indexed by k =
1, . . . , nE . In order to use the same notation for the two ele-
ment formulations we adopt the following local convention
for an edge k of the element. The origin of the local coordi-
nate system is situated in the node 1 (Xk = 0) and node 2
is located in Xk = Lk (see Fig. 2). In element 2 a node 3 is
added at the middle of the edge (Xk = Lk

2 ) with the unknown

θt . Moreover a non-dimensional local coordinate ξk = Xk
Lk

is
introduced to defined the ansatz function of both elements.

Hence all element nodes are placed at the vertices for w

and its gradient in case of element one. The discrete space of
test functions on �m is denoted by Vh , and for a conforming
approach we require that Vh ⊂ V . This requirement is met
by the definition of the shape or basis functions in Vh . The
C1 continuous functions of an element �E include (but the
space is larger than that) quadratic functions.

The tangential and normal vectors (T , N) change from
segment to segment. In the 2D case, normal N and tangent
T are given for a segment k as

Nk =
{
nX

nY

}
k

= 1

Lk

{−(Y2 − Y1)
X2 − X1

}
k

and T k =
{
tX
tY

}
k

= 1

Lk

{
X2 − X1

Y2 − Y1

}
k

(34)

where Lk is the length of the segment k and (Xi ,Yi ) with
i = {1, 2} are the nodes of the vertices defining the segment.

4.2 VEM ansatz functions

The virtual element ansatz functions are defined within the
local orthonormal basis associated with an edge is denoted
by N, T , Ez where N points outward. To ensure theC1 con-
tinuity requirement of the ansatz functions the values of w

its normal derivative ∇w,n have to match along the edge
between two adjacent elements. The following relations hold
for the derivatives in normal and tangential direction

∇w · T = w,s = θ · N = θn , (35)

∇w · N = w,n = −θ · T = −θt . (36)

With the introduced notation the cubic ansatz for the deflec-
tion along the element edge is given for both elements on a
segment k by

(wh)k = w1H1(ξk) + Lkθ1n H
′
1(ξk) + w2H2(ξk) + Lkθ2n H

′
2(ξk)

(37)

where the basis functions are defined in terms of Hermite
cubic splines

H1(ξk) = 2ξ3k − 3ξ2k + 1

H ′
1(ξk) = ξ3k − 2ξ2k + ξk

H2(ξk) = −2ξ3k + 3ξ2k

H ′
2(ξk) = ξ3k − ξ2k

(38)

The derivative θn in (36) is then provided by

(θhn)k = d(wh)k

Lkdξk
= d

Lkdξk(
w1H1(ξk) + Lkθ1n H

′
1(ξk) + w2H

′
2(ξk) + Lkθ2n H

′
2(ξk)

)
(39)

which yields the explicit form

(θhn)k = 6

Lk
(ξ2k − ξk)w1 + (3ξ2k − 4ξk + 1)θ1n

+ 6

Lk
(−ξ2k + ξk)w2 + (3ξ2k − 2ξk)θ2n (40)

for element 1 and 2.
The tangential rotation (θht )k is defined by the ansatz

(θht )k = (1 − ξk) θ1t + ξk θ2t for element 1, (41)

(θht )k = 2

(
ξk − 1

2

)
(ξk − 1) θ1t + 2ξk

(
ξk − 1

2

)
θ2t

+ 4ξk(1 − ξk) θ3t for element 2. (42)
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Fig. 2 Element 1: lowest order
VEM element for
Kirchhoff-Love plate

Fig. 3 Element 2: lowest order
VEM element for
Kirchhoff-Love plate with a
quadratic gradient on the edge

4.3 Derivation of the L2 projector

Following the virtual element method, we split the ansatz
space into a projected part �(wh) and a remainder.

wh = �(wh) + [wh − �(wh)] (43)

As previously discussed, a main aspect of the virtual element
method (VEM) is the choice of the projector of the deforma-
tion onto a specific ansatz space. This has now to be specified
for the ansatz related to the two elements discussed above.

4.3.1 Some useful properties

One of the advantages of the virtual element method is, as we
will see in the subsequent sections, that integrals have only
to be computed at the boundary. But often polynomials are
given as functions over the surface �E of an element. Those
polynomials can always be integrated as line integral over

the element boundary. By using the divergence theorem, for
example for a 2D domain one can write in general

∫
�E

f (X ,Y ) d� = 1

2

∫
	e

[ ∫
f (X ,Y )d X ,

∫
f (X ,Y )d Y

]

·N d	 . (44)

This theorem can now be used for polynomial functions
which yields a simplified treatement

∫
�E

X pY q d� = 1

2

∫
	e

(
X p+1Yq

p + 1
nX + X pY q+1

q + 1
nY

)
d	 .

(45)

Hence any polynomial can be computed exactly over a poly-
gon with arbitrary shape, this even holds for a non-convex
virtual element.
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4.3.2 Derivation of element 1

Since element 1 is of order 2 due to the choice of a specific
ansatz for θt , in (41) the projection � has to be quadratic. It
is defined at element level by

�(wh) = Ha = [
1 X Y 1

2 X
2 1

2Y
2 XY

]
⎧⎪⎪⎨
⎪⎪⎩

a1
a2
. . .

a6

⎫⎪⎪⎬
⎪⎪⎭

(46)

where ai are unknown parameters that have to be linked to
the element unknowns by the projection procedure.

The curvature of the projection follows from (46) as

− ∇(∇�(w))h |e = −
[
a4 a6
a6 a5

]
(47)

which is constant at element level. Let us recall that the L2

projection is defined as follows, ∀w ∈ V 1
h , ∀p ∈ P2{E}

∫
�E

tr[χ(p)χ(�(w))] d�E =
∫

�E

tr[χ(p)χ(w)] d�E

(48)

Since χ(p) spans with (47) the space of constant curvature
this condition is equivalent to

�E ∇(∇�(w))h |e !=
∫

�E

∇(∇w)h d�E

= 1

2

∫
	e

(∇wh ⊗ N + N ⊗ ∇wh) d	 . (49)

The right hand side of (49) can be exactly integratedwhich
yields
nE∑
k=1

∫ 1

0

[(
1

2L
wh(ξ),ξ (T ⊗ N + N ⊗ T ) − θt (ξ) N ⊗ N

)
L dξ

]
k

=
nE∑
k=1

[
1

2
(w2 − w1)(T ⊗ N + N ⊗ T ) − L

θt1 + θt2

2
N ⊗ N

]
k

.

(50)

the dyadic products T ⊗N and N⊗N change from segment
to segment. Hence by comparing (47) and (50) the unknowns
a4 to a6 are obtained by inspection where all contributions
related to the segments have to be added. We observe that a4
to a6 are defined as a linear combination of the nodal values
w and θt .

The constants a1 to a3 still have to be determined. These
follow from the two last conditions in (25) which lead to

∫
�E

(∇�(w))h d�E
!=
∫

�E

(∇w)h d�E =
∫

	e

whN d	

(51)

and

∫
	e

�(wh) d	
!=
∫

	e

wh d	 . (52)

The term on the left hand side in (51) yields with (46)

∫
�E

(∇�(w))h d�E =
∫

�E

{
a2 + a4X + a6Y
a3 + a5Y + a6X

}
d�E

(53)

and involves only polynomials. The right hand side of (51)
can be explicitly determined as

∫
	e

whN d	 =
nE∑
k=1

∫ 1

0
[(w1H1(ξ) + Lkθ1nH

′
1(ξ)

+ w2H2(ξ) + Lkθ2nH
′
2(ξ)) dξ ]k Lk Nk

=
nE∑
k=1

[
1

2
(w1 + w2) + Lk

12
(θ1n − θ2n)

]
k
Lk Nk

(54)

From Eqs. (53) and (51) one derives with (54)

{
a2
a3

}
= 1

�E

⎡
⎣ nE∑
k=1

[
1

2
(w1 + w2) + Lk

12
(θ1n − θ2n)

]
k
Lk Nk

−
∫

�E

{
a4X + a6Y
a5Y + a6X

}
d�E

⎤
⎥⎦ (55)

Here the last term can be simply integrated over the boundary
using relations (45). Thus (55) leads to a linear mapping of
a2 and a3 in terms of the element unknowns.

The last term that has to be connected to the nodal values of
the ansatz is the coefficient a1. Using Eq. (52) the coefficient
a1 follows directly. With (46) and (52) one writes

∫

	e

(a1 + a2X + a3Y + a4
2
X2 + a5

2
Y 2 + a6XY ) d	

=
nE∑
k=1

[
1

2
(w1 + w2) + Lk

12
(θ1n − θ2n)

]
k
Lk (56)

which yields a1 immediately since a2 to a6 are known by the
relations (50) and (55).

With this result the L2 projection �(wh) of the virtual
element is completely defined in termsof the nodal unknowns
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of the virtual element. We can combine (50), (55) and (56)
in the mapping

�(wh) = M1(X ,Y )u1 (57)

where u1 = {w1, θX1, θY1 , w2, θX2, θY2 . . . , wnN , θXnN ,

θYnN }T is the vector of all nodal unknowns of element 1.
Note that the global rotations (θX , θY ) are related to the local
rotations (θn, θt ) by the transformation

[
θX
θY

]
=
[
nX tX
nY tY

]T [
θn
θt

]
(58)

using (34). The mapping in (57) will not be formed explicitly
since it is not necessary when using the softwareAceGen, see
e.g. [22], to automatically derive and code the stiffnessmatrix
associated with element 1.

4.3.3 Derivation of the L2 projector for element 2

Due to the choice of the ansatz for w and θt in (38) and (42)
element 2 is of order 3. Thus the projection � is cubic and
defined at element level by

�3wh = Ha = [
1 X Y 1

2 X
2 1

2Y
2 XY 1

6 X
3 1

2 X
2Y 1

2 XY
2 1

6Y
3
]
⎧⎪⎪⎨
⎪⎪⎩

a1
a2
. . .

a10

⎫⎪⎪⎬
⎪⎪⎭
(59)

The curvature of the projection follows with (59) as a linear
function in X and Y

− ∇(∇�3(w))h |e = −
[
(a4 + a7X + a8Y ) (a6 + a8X + a9Y )

(a6 + a8X + a9Y ) (a5 + a9X + a10Y )

]
.

(60)

Let us consider again the L2 projection which is, for ele-
ment 2, defined as follows, ∀w ∈ V 2

h , ∀p ∈ P3{E} :
∫

�E

tr[χ(p)χ(�3(w))] d�E =
∫

�E

tr[χ(p)χ(w)] d�E .

(61)

The integral on the right hand side yields with the diver-
gence theorem

∫
�E

tr[χ(p)χ(w)] d�E =
∫

	e

χ(p) · (∇wh ⊗ N)d	

−
∫

�E

divχ(p) · ∇wh d�E .(62)

Note that χ(p) is symmetric. Hence the integrand of the
first term of the right hand side can also be expressed as
χ(p) · (∇wh ⊗ N) = χ(p) · 1

2 (∇wh ⊗ N + N ⊗ ∇wh).

Again the integrand of the last term can be transformed
using

div[divχ(p) wh] = divχ(p) · ∇wh + wh div[divχ(p)]
(63)

which yields for (62)

∫

�E

tr[χ(p)χ(w)] d�E =
∫

	e

χ(p) · (∇wh ⊗ N)d	

−
∫

	e

divχ(p) · N wh dγ

+
∫

�E

div[divχ(p)] wh d�E (64)

For the cubic ansatz in (59) the last term is zero. All integrals
on the right hand side can be evaluated using the ansatz func-
tions (38) and (42). Due to the fact that divχ(p) is constant
and the normal vector Nk is constant at each edge k of the
element we can rewrite (64) as

∫

�E

tr[χ(p)χ(w)] d�E =
∫

	e

χ(p) · (∇wh ⊗ N)d	

−
nE∑
k=1

divχ(p) · Nk

∫

	k

wh dγ . (65)

The first integral of the right hand side can be evaluated
analogously to (55). The only difference is that now some
integral terms occur where the coordinates X and Y appear.
The second integral is exactly the same as the right hand side
in (56).

The additional conditions (51) and (52) have to be evalu-
ated as well. The first one yields for the integral on the left
side∫

�E

(∇�(w))h d�E

=
∫
�E

{
a2 + a4X + a6Y + 1

2 a7X
2 + a8XY + 1

2 a9Y
2

a3 + a5Y + a6X + 1
2 a8X

2 + a9XY + 1
2 a10Y

2

}
d�E(66)

which can be simply integrated over the boundary using rela-
tions (45). The right hand side of (51) has the same form as
(54)

∫
	e

whN d	 =
nE∑
k=1

[
1

2
(w1 + w2) + Lk

12
(θ1n − θ2n)

]
k
Lk Nk

(67)

and equalising (66) and (67) determines a2 and a3 of (59)
as a linear combination of the the element unknowns. The
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explicit form for the coefficients a2 and a3 is equivalent to
(55).

Finally the coefficient a1 can be computed as in (56) the
only difference is that now on the left side the ansatz function
(59) has to be inserted.

Also for element 2 a mapping can be introduced

�(wh) = M2(X ,Y )u2 (68)

where u2 = {w1, θX1, θY1, θt1 , w2, θX2, θY2, θt2 . . . , wnN ,

θXnN , θYnN , θtnN }T is the vector of all nodal unknowns of
element 2. Again the local rotations associated with specific
edges can be transformed to global rotations using (58).

The generation of the vectors and matrices that appear in
the description of both elements can be unified, see Sect. A.
This is especially useful when employing the software tool
AceGen, see [21,22] to generate the software code.

5 Construction of the virtual stiffness matrix:
different strategies

The basis for the element development is the total energy
which can be obtained by assembling all element contribu-
tions for the nT virtual elements,

U (wh) =
nT

A
e=1

[
Ue
c ((�(wh)) +Ue

stab(wh − �(wh))
]

. (69)

In the following we will first discuss the formulation of the
element part that stems from the projection, see last Section.
Furthermore, different possibilities for stabilising the virtual
plate elements 1 and 2 will be considered.

5.1 Part of the virtual element due to projection

With the strain χ of the plate and the loading q we obtain the
potential energy of an element

Ue
c [�(wh)] =

∫

�E

[
1

2
χ[�(wh)] · Dχ[�(wh ] − q �(wh)

]
d� (70)

with the constitutive tensor D.
Note that the strainχ is constant for element 1which leads

to a trivial evaluation of the first term. For element 2 the strain
χ is linear in X and Y , hence the integration involves terms
up to second order in the coordinates which again can be
performed over the boundary using (45).

The projection�(wh) is known in terms of the unknowns
(w , θX , θY )k at the vertices for element 1 and 2 and at the
unknown rotation θt at the mid node of element 2, see (57)

and (68). These mappings can be inserted into (70) which
yields for element e = 1, 2

Ue
c [Me(X , Y )ue]
=
∫

�E

[
1

2
χ [Me(X , Y )ue] · Dχ [Me(X , Y )ue] − qMe(X , Y )ue

]
d� .

(71)

Once the integration over the element area is carried out the
potential is just a function of the unknowns of the element.
Then residual vector Re and stiffness matrixKe follow from

Re = ∂Ue
c [ue]
∂ue

and Ke = ∂Re

∂ue
. (72)

for element e.

5.2 Classical stabilisation

Within the virtual element method the curvature of the pro-
jected part of the deflection w is approximated by a constant
and linear part, depending on the element type, as discussed
in the last Section. A construction of a virtual element which
is based purely on this projection leads to a rank deficient ele-
ment, see Table 1. Thus the formulation has to be stabilised,
see [13,26]. In what follows we use first the stabilisation sug-
gested in these papers. This leads to a stabilisation operator
which addresses the error at all element nodes (vertices and
midpoints):

Û e
stab(wh − �(wh)) = D

2 h2e

nV∑
i=1[

ŵ(Xi )
2 +

∥∥∥∥ Li−1 + Li

2
∇ŵ(Xi )

∥∥∥∥
2

+ ∥∥Li θ̂t (Xi )
∥∥2
]

(73)

with ŵ(Xi ) = wh(Xi ) − �(wh)(Xi ) ,

∇ŵ(Xi ) = ∇wh(Xi ) − ∇�(wh)(Xi ) and

θ̂t (Xi ) =
{

θt h(Xi ) − �(θt h)(Xi ) for el 2
0 for el 1.

Herehe is themaximumdiameter of the virtual element e thus
h2e can be interpreted as the element area�e. The functionwh

and the projection�(wh) have to be evaluated at the vertices
Xi .

The formulation (73) is now extended to an integral
describing the total error on the edge instead of discrete val-
ues. This new stabilisation takes into account the distribution
of each degree of freedom along the edge

Stab 2: Û e
stab(wh − �(wh))
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= D

2�e

nE∑
k=1

1

Lk

∫

	k

[
ŵ(Xk)

2 + ‖Lk∇ŵ(Xk)‖2d	
]

.

(74)

Again h2e can be used in this equation instead of �e. The
edge integral in (74) is evaluated numerically using Gauss
quadrature

∫

	k

f (xk)d	 = Lk

ng∑
g=1

wg f (xg) (75)

where the Jacobian Jξ in the transformation d	 = Jξdξ is

the length of the kth edge Jξ = ‖ ∂X
∂ξ

	‖ = Lk and ξ ∈ [0, 1]
is the local coordinate.

When employing stabilisation (74) the resulting tangent
matrix has full rank. Note, that stabilisation (73) is easier to
implement than the second one.

5.3 Energy stabilisation

A stabilisation technique based on energy differences was
first introduced for virtual solid elements in [38] for virtual
elements. It is based on the idea of introducing the following
stabilisation energy, see e.g. [23]

Ustab(wh − �(wh)) = Û (wh) − Û (�(wh)) . (76)

The second term on the right hand side ensures consistency
of the total potential energy

U (wh) = Uc(�(wh)) + Û (wh) − Û (�(wh)) (77)

since Ustab(wh − �(wh)) → 0 for h → 0 where h relates
to the element size.

Often it is convenient to use the same strain energy ψ ,
see (17), for the consistency part Uc(�(wh)) and the stabil-
isation part Ustab(wh − �(wh)). In that case a stabilisation
parameter β is introduced to control the amount of stabilisa-
tion. By multiplying Ustab(wh − �(wh)) by β one obtains
withUc(�(wh)) = U [ψ(�(wh))] and Û (wh) = U [ψ(wh)]

U (wh) = U [ψ(�(wh))] + β [U [ψ(wh)] −U [ψ(�(wh))]]
(78)

which can be reformulated as

U (wh) = (1 − β)U [ψ(�(wh))] + β U [ψ(wh)] (79)

In this formulation it remains to compute U [ψ(wh)] which
on a first glance seems to be impossible sincewh is not known
in the interior of a virtual plate element. The solution is to

Fig. 4 Internal triangular mesh: aMorley element and b DKT element

subdivide the virtual element into triangles as shown in Fig.
4 and to use specific triangular plate elements to evaluate
U [ψ(wh)].

The chosen elements should possibly not introduce extra
degrees of freedom. Thus two simple choices are consid-
ered. These are the Morley element, see [29] and the discrete
Kirchhoff plate element (DKT), see [6]. In the following we
will describe the main features of these elements.

Morley element It is based on six degrees of freedom and
has six nodes with one degree of freedom at each node. The
nodal values are related to the deflection wi at the vertices
and the rotations θk around the tangent of the element at the
mid nodes. Thus the Morley element will match only part of
the unknowns of the consistency part of element 1 and 2 and
introduces extra degrees of freedom at the mid nodes in the
interior of the virtual elements due to the submesh, see Fig.
4a.

The unknown nodal values can be combined in the vector
pM
T = {w1 , w2 , w3 , θ4 , θ5 , θ6}T which yields

wh = NpT = N1w1+N2w2+N3w3+N4θ4+N5θ5+N6θ4

(80)

where NI are quadratic shape functions that can be found
explicitly in [37]. This ansatz leads to a non-conforming plate
bending element with constant curvature and moments. With
the ansatz (80) the plate curvatures can be computed from
(15) leading to

χ̂ = BM pM
T (81)

where BM includes the derivatives of the ansatz functions
NI . The strain energy of one element �i

k can then be defined
following (17) with (16) as:

U [ψ(wh)] = 1

2

∫

�i
k

χ̂T
D̂ χ̂ dA = 1

2
[pM

T ]T
∫

�i
k

BT
M D̂BM dA pM

T (82)
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Note that the integrand is constant. Hence the strain energy
can simply be written as

U [ψ(wh)]M = �i
k

2
[pM

T ]T BT
BD̂BB pM

T (83)

where �i
k is the area of one of the internal triangles. Since

no integration is needed this yields a very efficient code for
the stabilisation part Û (wh).

DKT element This element uses a shear deformable the-
ory, but enforces the Kirchhoff constraint pointwise. It has
three nodes with 3 degrees of freedom per node which
are the deflection w and two rotations γx and γy around
the X and Y axis, respectively. Hence the element has
the same degrees of freedom as the virtual element 1 but
misses the rotation at the mid side used in the virtual ele-
ment 2. The unknowns are at the vertices, see the submesh
in Fig. 4b. The DKT stabilisation does not introduce new
unknowns compared to the consistency part. The interpola-
tion leads to the vector of unknowns in the element pD

T =
{w1 , γx1 , γy1 , w2 , γx2 , γy2 , w3 , γx3 , γy3 }T . Based on the
introduced constraints special quadratic shape functionswere
derived in [6] which yield compatible rotations βx and βy

β =
(

βX

βY

)
=
(
HT

X
HT

Y

)
pD
T (84)

in terms of the nodal unknowns pD
T . The derivative of these

rotations with respect to X and Y leads to the curvatures
within the element

χ̂ =
⎛
⎝ βX ,X

βY ,Y

βX ,Y + βY ,X

⎞
⎠ = BD pD

T (85)

which can be used to formulate the strain energy of one ele-
ment following (17) and (16)

U [ψ(wh)]D = 1

2
[pD

T ]T
∫

�i
k

BT
DD̂BD dA pD

T . (86)

Note that the integrand is of quadratic order and thus has to be
numerically integrated using an adequate Gauss quadrature.

Both elements used within the energy stabilisation need a
local assembly of all triangular elements in the submesh of
the virtual element.

6 Comparison of the different stabilisations
and numerical examples

In this section we first study and compare the two classical
stabilisations and then the energetic ones. This allow us to

select one which be used subsequently all along the paper.
The performance of the proposed virtual plate elements will
be illustrated bymeans of numerical examples that are related
to applications in engineering. Isotropic material behaviour
as well as anisotropicmaterials and composites will be inves-
tigated. All numerical solutions are comparedwith analytical
solutions where available.

6.1 Notation used in the examples

In general the following element formulations for plates will
be analysed:

• VE-1: first order VEM formulation. Degrees of freedom
per element edge are: {(wk, θk), (wk+1, θk+1)}, see Sect.
4.3.2,

• VE-2: secondorderVEMformulation.DOFs per element
edge are: {(wk, θk), (θt k), (wk+1, θk+1)}, see Sect. 4.3.3,

• FE-M: first order FEM Morley formulation. DOFs per
element edge are: {(wk), (θt k), (wk+1)}, see Sect. 5.3

• FE-DKT: DKT plate element. DOFs per element edge
are: {(wk, θk), (wk+1, θk+1)}, see Sect. 5.3

The following types of stabilisation will be employed for the
virtual plate elements:

• st-1a/b: classical, nodal error stabilisation (73),where ”a”
refers to using the element size h2e and ”b” to employing
the element area �e, both are used in the denominator.

• st-2a/b: classical, edge-integrated error stabilisation (74)
where ”a” and ”b” have the same meaning as above,

• st-M: Morley stabilisation, see Sect. 5.3 and
• st-K: Stabilisation with DKT element, see Sect. 5.3.

In general the following types of elements and meshes will
be considered

• Q1: quadrilateral mesh with 4 edges per element,
• T1: triangle mesh with 3 edges per element,
• VO-U: Voronoi-type mesh, with uniformly distributed
cell seeds,

• VO-R: Voronoi-type mesh, with randomly distributed
cell seeds.

This means that Q1 meshes consist of quadrilateral elements
which are virtual elements with four edges and 12 unknowns
(element 1) or 16 unknowns (elements 2). In the same way
a T1 mesh consists of virtual elements with triangular shape
having 9 unknowns (element 1) or 12 unknowns (element 2).
The actual number of nodes in a Voronoi type mesh depends
on the shape of theVoronoi cells. In our examples the number
of edges in a Voronoi-type mesh varies from three to ten.
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Table 2 Material parameters

Description Symbol Value Unit

Elastic modulus E 2 × 108 kN
m2

Poisson ratio ν 0.3

Thickness t 0.01 m

Surface load q̄ −1.0 kN
m2

Bending stiffness D = t3
12

E
1−ν2

18.315 Nm

6.2 Study and comparison of the different
stabilisations

The first example is used to compare results related to the
different stabilisation techniques. Additionally the general
convergence characteristics of element 1 and 2 are reported.
A fully clamped square plate of size B × H = 8m × 8m is
used for this purpose since an analytical solution is available.
The plate is subjected to a uniform load q̄ see Fig. 5a. The
material parameters are given in Table 2.

The analytical results of the clamped plate problem can
be found in [34]. Table 3 provides the reference solutions for
various quantities for the given data.

The study is based on the meshes depicted in Fig. 5b–d
for a discretisation with square, elongated rectangular and
Voronoi elements, respectively.

6.2.1 Study and comparison of classical stabilisation
variants

The convergence study for virtual element 1 (VE-1) and
virtual element 2 (VE-2) using the two types of classical
stabilisation, is shown for square elements in Fig. 6, for rect-
angular elongated elements in Fig. 7 and for regular and
unstructured Voronoi meshes in Fig. 8. The convergence
study is made regarding the deflection at the center of the
plate and the energy.

One can observe that the choice of stabilisation does not
have a big influence for the quadrilateral element VE-1. We
will discuss the influence of the stabilisation when using
triangular shape elements in Sect. 7. The effect between sta-
bilisation type ”a” and ”b” related to the normalisation with
element size h2e (st-�a) or the area �e (st-�b) is negligible.
But generally, using the area yields slightly better results in all
cases. There is a slight difference in stabilisations 1 and 2. For
Q1meshes stabilisation 1 is the best, but for Voronoi meshes,
stabilisation 2 is better by a small amount. It seems that the
best stabilisation depends on the mesh type. As expected the
structured meshes perform better than unstructured Voronoi
type meshes. It is interesting to note that in this example
the Q1 meshes yield the best results which will be explored
further in Sect. 7.

Figure 9 depicts contour plots of the deflection w and
the bending moment MXX , for the virtual element VE-2:st-
1b. but graphically all mesh types produce similar results
and demonstrate that the developed virtual plate elements
are capable of computing meaningful engineering solutions.
The contour plots of the structured meshes as well as the
unstructuredVoronoimeshes reportminimumandmaximum
bending moments (maxMXX = 3.285 and minMXX =
−1.466) that match exactly the analytical results in Table
3.

6.2.2 Study of energetic stabilisation

While studying the energy stabilisation using Morley and
DKT element different issues where encountered. We will
therefore first discuss the stabilisation ofVE-1 using theMor-
ley element before studying the stabilisation of VE-2 using
the DKT element.

Energetic stabilisation of VE-1 using the Morley element
Elements VE-1 and Morley are based on ansatz functions

that lead to constant curvature within the element. Thus the
Morley element was selected for stabilisation. One aspect of
the energetic stabilisation is the parameter β which controls
the influence of the stabilisation part of the energy. Figure
10 shows convergence curves obtained for the clamped plate
under uniform load depending on β.

It appears that values of β ranging from 0.4 to 0.8 yield
similar results. For smaller values of β the convergence
behaviour deteriorates. In total it can be concluded that a sta-
bilisation with the Morley element is not satisfactory since
the best results is achieved with the classical stabilisation.

Energetic stabilisation of VE-2 using the DKT element
Figure 11 depicts the convergence of theDKTelement and

the VE-2 element for a Q1 mesh. We first note that the con-
vergence of DKT is lower than two. The convergence curves
for a stabilisation with β = 0.2 and β = 0.05 increase the
coarse mesh accuracy when compared to the DKT solution.
A smaller value for β yields a better convergence. Up to a
certain level of mesh refinement both stabilisations even lead
to the second order rate of convergence, as is achieved with
the classical stabilisation (st-1b). This in fact is not surprising
since using a non vanishing value ofβ for small element sizes
will prevent the second order convergence rate expected for
VE-2 in the limit he → 0. This observation led to a recipe in
which β is scaled by the size of the element �e in the refined
mesh with respect to the element size �0 in the initial coarse
mesh with 1 element leading to the formula βe = 1

2
�e
�0

. This
scaling allows to recover the expected rate of convergence
for VE-2 which is parallel to the curve using the classical
stabilisation.

In conclusion the use of the proposed classical stabilisa-
tion is more simple and more efficient than the energetic one
and thereforewill be used in the rest of the paper. This conclu-
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Table 3 Analytical solutions for
the clamped plate

Description Symbol Formula Value Unit

Energy Wref 3.891200775 × 10−4 q2B3H3/D 5.569 kJ

Displacement wref 1.265319087 × 10−3 q B2H2/D −0.283 m

Min. Moment Mmin
ref 2.290509078 × 10−2 q B H −1.466 kNm

Max. Moment Mmax
ref −5.13337648 × 10−2 q B H 3.285 kNm

(a) (b) (c) (d)

Fig. 5 Boundary value problem (a), and 3 types of meshes used, square quadrilateral Q1 (b), elongated quadrilateral Q1 (c) and random-seed
voronoi type VO-R mesh (d)

(a) (b)

Fig. 6 Convergence study of deflection w for elements 1 and 2 for square (nX : nY = 1 : 1) Q1 meshes

(a) (b)

Fig. 7 Convergence study of deflection w for elements 1 and 2 for elongated (nX : nY = 1 : 8) Q1 meshes
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(a) (b)

(c) (d)

Fig. 8 Convergence study of energy W and deflection w for elements 1 and 2 for different forms of the elements (structured and unstructured
meshes)

(a)

(d) (e) (f)

(b) (c)

Fig. 9 Deflection w (a–c) and Moments MXX (d–f) for structured and unstructured meshes, note that MYY is same but flipped over the domain
diagonal
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Fig. 10 Convergence study related to the parameter β on a Q1 mesh
for VE-1

sion could be different in the case of material non-linearities,
a case for which it is not obvious to propose an efficient clas-
sical stabilisation. The results for stabilisation 1b and 2b are
quite similar but stabilisation 1b seems generally to give the
best results. In what follows we make use of stabilisation 1b
systematically without referring to it anymore.

6.3 Dealing with singularities, the rhombic plate

Another example is the simply supported rhombic plate, see
Fig. 12a, which is more complex due to a singularity. The
plate is simply supported and loaded by a uniform load with
H = B = 8 m. The angle α in Fig. 12a is chosen as α = 30o

which yields an internal, obtuse angle of 150o. The material
parameters were taken from Table 2.

Near the obtuse angles the solution is singular which leads
to a solution belonging to Hγ−ε, ∀ε > 0 with γ = 2− α

π−α
.

Therefore the convergence is governed by the singularity
for uniform meshes.

One of the advantages of the VEM is that it is easily possi-
ble to adaptively refine amesh, see Fig. 12b, in a non uniform
manner, see Fig. 12c allowing to recover a better convergence
rate. The refinement is based on bisecting he as shown in
Fig. 12c. This can be simply done by adding a new nodes
at the middle of the edge of the element since the number
of nodes can be arbitrary in the virtual element scheme and
avoids the burden of hanging nodes. Five refinement steps
were executed towards the obtuse corner. Due to the local

refinement one can observe the drastic increase of conver-
gence rate compared to uniformly refining of the mesh by a
factor of 2 as shown in Fig. 13. The used refinement however
is not sufficient to recover the optimal convergence rate, see
[5], but it shows the sensitivity of the solution with respect
to the mesh refinement at the singularity. Here the adaptive
refinement is performed in a way, that the difference of the
energy between element nodes is a criteria for refinement.
Thus to keep the difference small, the elements at the obtuse
corners are refined, as depicted in Fig. 12c. In total 5 refine-
ment steps were used to obtain the solution in Fig. 13. In this
convergence study, additionally, the energy of the previous
refinement step is used as an indicator for the refinement in
the next step.

An analytical solution can be found in [28] for different
plate angles, however it is only provided up to three dig-
its. Using finite element convergence studies convergence
results for the rhombic plate were reported in [5,36] with 3
digit accuracy, thus the obtained results related to the adap-
tive refined mesh do not converge linearly. We note, that the
asymptotic convergence rate of 0.2 (related to the singular-
ity) is recovered for all element formulationswith a uniformly
refined mesh which is clearly depicted in Fig. 13.

Finally, Fig. 14 shows the distribution of the bending
moments MXX and MYY for the rhombic plate using a uni-
form mesh with 32 × 32 Q1 virtual elements.

6.4 Rectangular orthotropic plate

To investigate the convergencebehaviour of the newplate ele-
ments for orthotropic material behaviour a rectangular plate
is considered for which the analytical solution is provided in
[35]. The orthotropic directions coincides with the main axis
of the plate.

Using the same notation as in [35] the problem is char-
acterised by a simplified material stiffness matrix, see (21),

Fig. 11 Convergence study related to the parameter β at DKT-stabilisation on a Q1 and Voronoi mesh for VE-2
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(a) (b) (c)

(d) (e)

Fig. 12 Rhombic plate geometry and meshes

(a) (b)

Fig. 13 Rhombic plate with α = 30o: Convergence study of the deflection w for Elements 1 and 2 st-2b for regular, Fig. 12b, and Voronoi, see Fig.
12d and e, meshes and adaptively refined meshes, Fig. 12c

D̂G =
⎡
⎣Dx D1 0
D1 Dy 0
0 0 Dxy

⎤
⎦ = t3

12

⎡
⎣Ex Ê 0

Ê Ey 0
0 0 G

⎤
⎦ (87)

where t is the thickness of the plate whose length is denoted
by a = 2mm and its width by b = 1mm. The plate is simply
supported and subjected to a uniform load q. In the example
the following geometric data are chosen as shown in Table
4.

By noting that H = D1+2Dxy , the deflection, see Fig. 15,
can be expressed by the sum of the series

w(X , Y ) = 16 q

π6

∑
m=1,3,5..

∑
n=1,3,5...

1

mn(m
4

a4
Dx + 2m2n2

a2b2
H + n4

b4
Dy)

sin
[mπ

a
X
]
sin

[ nπ

b
Y
]

. (88)

Table 4 Material parameters of Timoshenko plate example

Description Symbol Value Unit

Modulus in the fiber direction Ex 10, 000 MPa

Transverse modulus Ey 1000 MPa

Shear modulus G 500 MPa

Modulus Ê 500 MPa

Total thickness of the specimen t 0.01 mm

Surface load q −0.1 MPa

We consider for the convergence analysis the deflection at
the center (X ,Y ) = ( a2 , b

2 ) of the plate, denoted by wc. The
value ofwc is computed for the given data withMathematica
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Fig. 14 Moment plot for VE-2:Q1 with 32 × 32 elements, St-1b

Fig. 15 Simply supported plate, deflection and moment plot on deformed configuration

Fig. 16 Convergence study of the deflection w for Timoshenko type
VEM element 2: st-2b for regular (Fig. 12b) and Voronoi (Fig. 5c)
meshes

by employing (88) with m = n = 1, 3, . . . , 31 which yields
the result wre f = −1.5835858431216134 mm.

Figure 16 depicts the error in the maximum deflection in
the middle of the plate. We observe a quadratic convergence
rate for element 2 for Q1 and Voronoi meshes VO-R andVO-
U. As in the previous example, Q1 element performs best,
however the convergence rate is more erratic. This example
underlines that theKirchhoff-Love virtual elements converge
for these more intricate materials with the same order as for
isotropic materials.

6.5 Plate with anisotropic material as cantilever
beam

Next we deal with double cantilever plate specimensmade of
composite material. This setup was used in [2] to investigate
the value of the critical energy release rate depending of the
relative angle of a stack of plies adjacent to the considered
interlaminar interface.

Fig. 17 Composite DCB plate geometry (mm)

Table 5 Material parameters and geometry data for the orthotropic
cantilever beam

Description Symbol Value Unit

Modulus in the fiber direction E1 311, 000 MPa

Transverse modulus E2 6350 MPa

Shear modulus G12 4870 MPa

Poisson ratio ν12 0.35

Thickness of each ply e 0.125 mm

Total thickness of the specimen t 2 mm

For the test setup shown in Fig. 17 bending solution for
three stacking sequences are computed. The plate has dimen-
sions B = 50 mm and width H = 20 mm. This plate is
assumed to be clamped at the left side while a line load q̄
is applied on the right part. The material under considera-
tion is a made of M18/M55J unidirectional plies. In what
follows 1, refers to the direction of the fiber and 2 refers to
the orthogonal direction inside the ply within the beam, see
Table 5.
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Fig. 18 The cantilever beam, moment plot on deformed configuration for one 22.5o ply and for a [22.5o,−22.5o,−22.5o, 22.5o,−22.5o,
22.5o, 22.5o,−22.5o]s composite plate, scaled displacements

We first compute the response for a solution with one ply
whose orientation is at 22.5o. In Fig. 18a the distribution
of MXX is plotted with respect to an amplified deformed
configuration. Since the orthotropic axis of the plate do not
coincide with the global axis of the cantilever plate a coupled
bending-torsion type of response is produced, as expected.
This is the reason why those test are usually not performed.
One prefers testing stacking sequences which avoid this kind
of coupling as it is the case for stacking sequences of the
type [φ,−φ,−φ, φ,−φ, φ, φ,−φ]s . Due to the symmetry
of the stacking sequences decoupling between tension occurs
with respect to the mid-plane but yields an orthotropic bend-
ing response. The total material matrix is computed from
(21). For such stacking sequence and for φ = 22.5o the
distribution ofMXX is plotted on an amplified deformed con-
figuration, see Fig. 18b.

7 Use of the C1-continuous virtual element
in a finite element environment

Since the developed virtual plate element can have arbitrary
number of nodes it is possible to construct a triangular or
quadrilateralC1-continuous plate element using element 1 or
2. Those elements can be implemented easily in conventional
finite element codes. The advantage is that the construction
of C1-continuous finite plate elements need a high ansatz
order, like in the TUBA family of triangular elements in [4]
or are—as quadrilaterals—a composition of four triangular
elements, see [18]. The developed formulation provides the
necessaryC1-continuity for Kirchhoff plates withmuch sim-
pler elements.

It is interesting to investigate how the above derived virtual
plate elements compare as triangular (3-noded) and quadri-
lateral (4-noded) elements with classical finite elements for
Kirchhoff plates. Within two standard benchmark examples,
see e.g. [30], we illustrate the performance of the derived
virtual plate elements. The results are compared with finite

elements that approximate that curvature in the same way
as the derived virtual elements 1 and 2. For the virtual ele-
ment 1 (VE-1) an equivalent Kirchhoff plate element with
constant curvature is the nonconforming Morley element,
already described in Sect. 5.3. For element 2 (VE-2) we
select a non-conforming triangular plate element, developed
by [33], and the DKT element, see Sect. 5.3, which rely on
a linear curvature approximation.

Clamped plate under uniform load
As first example we use a clamped plate under uniform

load q̄ , already discussed in Sect. 6.2. The geometry and
material data are the same as in in Sect. 6.2 and the analytical
solution is given inTable 3.Results related to the convergence
behaviour of a number of conforming and non-conforming
plate elements are provided in [30] for the case of a uniform
load.

We compared with the solutions obtained with finite ele-
ments from Morley and Specht and the DKT formulation
which are plotted next to the results of the VE- 1 and VE-2
elements used as standard triangles and quadrilaterals, see
19. For the pointwise stabilisation’ ’st-1”, see (73), Fig. 19a
demonstrates that VE-1 has a better coarse mesh accuracy
than the Morley element despite the fact that both ele-
ments have a constant approximation of the curvature. In the
same way, VE-2 outperforms the DKT and Specht elements,
although both elements approximate the curvature with a lin-
ear polynomial. It is interesting that the triangular element
VE-1 has an extremely good coarse mesh accuracy when
using the continuous stabilisation ”st-2” in (74) as shown in
Fig. 19b. The triangular element VE-1:T1 with stabilisation
2b is simple, efficient and has only three nodes. Thus it qual-
ifies as a C1-continuous Kirchhoff plate element for legacy
codes.

The rate of convergence is depicted in Fig. 20a for the con-
stant curvature elements and demonstrates for all element
formulations the same order of asymptotic convergence.
Contrary to that, VE-2 has a higher convergence order when
compared to the DKT and Specht elements as demonstrated
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(a) (b)

Fig. 19 Convergence study of the deflection w under uniform load for VE-1 and -2, compared with finite elements

(a) (b)

Fig. 20 Convergence of the deflection w for Elements 1 and 2, compared to Morley, Specht and DKT finite elements for plate under uniform load

in Fig. 20b. Thus the conforming virtual element 2 as a
triangular well as as a quadrilateral element is performing
extremely well.

A distorted mesh, as depicted in Fig. 21 for quadrilateral
and triangular element meshes with different densities, is
used to investigate the behaviour of the quadrilateral and
triangular virtual plate elements.

The convergence results are depicted inFig. 22 for the con-
tinuous stabilisation ”st-2”. They show the same behaviour
as the uniform mesh. Again the triangular element has bet-
ter coarse grid characteristics than the quadrilateral element
when using the continuous stabilisation, see Fig. 22a. Also
the asymptotic convergence rate is maintained for the dis-
torted mesh which is demonstrated in Fig. 22b.

Clamped plate under point load
As a second example we apply the triangular and quadri-

lateral virtual element to the clamped plate under point load
F = 64 kN. The geometrical and the material data are
described in Sect. 6.2. The analytical solution is reported
in [35] as w = −0.0896 F

D . The plot in Fig. 23 depicts the
convergence behaviour of the different element formulations.

As shown in Fig. 23a the pointwise stabilisation”st-1”
yield the best results for VE-2 while Fig. 23b depicts the
superior coarse mesh accuracy of element VE-1:T1 for the
continuous stabilisation ”st-2”, as in the previous example.
The asymptotic convergence behaviour can be observed in

Fig. 24. Here again the coarse mesh accuracy of the VE-1:T1
element is demonstrated in Fig. 24a. Expectantly the same
asymptotic convergence rate is achieved for VE-1: T1 and
VE-1:Q1. Due to the point load the rate of convergence is
lower for the higher order ansatz which can be seen in Fig.
24b. HereVE-2: Q1 depicts the best performancewhen using
the pointwise stabilisation.

It is impressive to see in both examples, that the proposed
virtual elements (VE-1:T1 st-2b and VE-2:Q2 st-1b) outper-
form theDKT element which, in the engineering literature, is
known to be an excellent element. This qualifies both virtual
plate elements as candidates for engineering software related
to the analysis of thin plates. Especially the very simple tri-
angular element VE-1:T1 st-2b is a good candidate since it
fits easily in existing software packages, having only three
nodes and the same number of unknowns at each node which
is actually equivalent to using the Specht or DKT element.

8 Conclusion

The virtual element method is a simple and powerful tool to
constructC1-continuous discretisations as needed in the case
of Kirchhoff-Love theory for plates. This even works for ele-
mentswith arbitrary shape and number of nodes. In this paper
we have developed in a more engineering way of writing
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(a) (b) (c)

Fig. 21 Distorted meshes for a 2 × 2, 4 × 4 and 32 × 32 density

(a) (b)

Fig. 22 Convergence study of the deflectionw under uniform load for VE-1 and -2 with “st-2b”, compared with finite elements on distorted meshes
in Fig. 21

(a) (b)

Fig. 23 Convergence study of the deflection w under point load for VE-1 and -2, compared with finite elements

(a) (b)

Fig. 24 Convergence of the deflection w for Elements 1 and 2, compared to Morley and DKT finite elements for plate under point load
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the theory presented in [13], extended its range of applica-
tions compared to [16] and also introduced and discussed
several possible stabilisation techniques. Various examples
and convergence studies were provided to demonstrate the
ability of the virtual plate elements to solve engineering prob-
lems based on two simple element formulations. The second
element is very appealing because despite its simple formu-
lation it leads to second order accuracy and has, compared
to existing plate elements, a very high coarse mesh accuracy.
Moreover, both developed elements behave similarlywell for
isotropic and anisotropic cases. With its flexibility VEM is
also well suited for non uniform mesh refinement which is
required to recover the optimal rate of convergence in case
of singularities encountered for example in rhombic plates.
Finally, it appears that restricting the element shapes to those
of classical finite plate elements allows to enrich the set of
elements available in legacy codes with simple and accu-
rate C1-continuous plate elements that are simpler than the
known C1-continuous finite plate elements and also much
faster. This work could be extended to plate structures in the
nonlinear regime, undergoing large deflections and rotations.
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A Calculating the projection with AceGen

For the actual generation and implementation of the two ele-
ments and the associated stabilisations the software package
AceGen, see [21,22] was employed. In the following the
essential steps and matrices are summarized that were basis
of the code derivation.

The general way how to derivate the elements with the
help of the automatic software generation tool AceGen is

described in this appendix. Some steps of derivation of
residual and tangent can be greatly simplified by using this
software.

To obtain the unknown parameters a in (46) and (59), the
following relations are considered where w� = �(wh) and
∇w� = ∇�(wh) is used to simplify notation.

1. Equality of mean displacements:

∫
	e

w� d	
!=
∫

	e

wh d	 (89)

2. Equality of gradients:

∫
�E

∇w� d�E =
∫

�E

(∇w)h d�E (90)

3. Equality of energetic projections in terms of the ansatz
(46) and (59). Additionally p = HaP is introduced which
has the role of a test function
∫

�E

tr[χ(p)χ(w�)] d�E =
∫

�E

tr[χ(p)χ(w)] d�E , (91)

where ap are the 10/6 parameters of a test the function p for
element 1 and 2, respectively.

First, the left hand of equations side of equations (89) to
(91) is defined, by is applying the divergence theorem (45)
and integration per part (see chapter 4.3.3) to transform area
to edge integrals

G =
nV∑
k=1

ng∑
g=1

Lkwg

(
w�(xg)a

p
1

+
( ([

a p2 a
p
3

]+ ∇ · χ p
)
w�(xg) − ∇w�(xg)χ(p)

)
· Nk

)
, (92)

and similarly, the right hand side is formulated

b =
nV∑
k=1

ng∑
g=1

Lkwg

(
wh(xg)a

p
1

+
( ([

a p2 a p3
]+ ∇ · χ p

)
wh(xg) − ∇wh(xg)χ(p)

)
· Nk

)
(93)

Then a matrix G and a vector b can be obtained by differen-
tiation of expressions G and b with respect to the unknowns
of the test function ap and the unknown parameters a

G = d2G

dap da
and b = db

dap
(94)

This yields a system of equations G a = b(ue) where the
parameter a will depend on the unknowns of the element ue.
Note that ue = we

⋃
θe is vector of all element unknowns,

i.e displacements and rotations. By solving the linear system
a = G−1b(ue) one obtains a as a function of ue. By inserting
ue into the ansatz functions in (46) and (59) for element 1
and 2 the mapping in (57) and (68) can be computed.
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