
https://doi.org/10.1007/s10472-021-09730-w

Parameterised complexity of model checking
and satisfiability in propositional dependence logic

Yasir Mahmood1 ·Arne Meier1

Accepted: 1 February 2021
© The Author(s) 2021

Abstract
Dependence Logic was introduced by Jouko Väänänen in 2007. We study a propositional
variant of this logic (PDL) and investigate a variety of parameterisations with respect to
central decision problems. The model checking problem (MC) of PDL is NP-complete
(Ebbing and Lohmann, SOFSEM 2012). The subject of this research is to identify a list of
parameterisations (formula-size, formula-depth, treewidth, team-size, number of variables)
under which MC becomes fixed-parameter tractable. Furthermore, we show that the num-
ber of disjunctions or the arity of dependence atoms (dep-arity) as a parameter both yield a
paraNP-completeness result. Then, we consider the satisfiability problem (SAT) which clas-
sically is known to be NP-complete as well (Lohmann and Vollmer, Studia Logica 2013).
There we are presenting a different picture: under team-size, or dep-arity SAT is paraNP-
complete whereas under all other mentioned parameters the problem is FPT. Finally, we
introduce a variant of the satisfiability problem, asking for a team of a given size, and show
for this problem an almost complete picture.

Keywords Propositional dependence logic · Parameterised complexity · Model checking ·
Satisfiability

Mathematics Subject Classification (2010) 68Q25 · 03B70

1 Introduction

The logics of dependence and independence are a recent innovation studying the notion
of dependencies occurring in several areas of research: computer science, logic, statistics,
game theory, linguistics, philosophy, biology, physics, and social choice theory [27]. Jouko
Väänänen [47] initiated this subfield of research in 2007, and nowadays, it is a vibrant area

� Yasir Mahmood
mahmood@thi.uni-hannover.de

Arne Meier
meier@thi.uni-hannover.de

1 Institut für Theoretische Informatik, Leibniz Universität Hannover, Hannover, Germany

Published online: 27 February 2021

Annals of Mathematics and Artificial Intelligence (2022) 90:271–296

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-021-09730-w&domain=pdf
http://orcid.org/0000-0002-5651-5391
mailto: mahmood@thi.uni-hannover.de
mailto: meier@thi.uni-hannover.de

of study [1]. Its focus widened from initially first-order dependence logic further to modal
logic [48], temporal logics [33, 34], probabilistic logics [15], logics for independence [32],
inclusion logics [24, 31], multi-team semantics [14], and poly-team semantics [29].

In this paper, we study a sub-logic of the modal variant which is called propositional
dependence logic (PDL) [30, 51]. The main concept also in this logic, the dependence atom
dep(P ; Q), intuitively states that values of variables p ∈ P functionally determine values of
variables q ∈ Q. As functional dependence only makes sense on sets of assignments, which
Väänänen called teams, team semantics are the heart of the satisfaction relation |= in this
logic. Formally, a team T is a set of classical propositional assignments t : VAR → { 0, 1 },
and T |= dep(P ; Q) if and only if for all t, t ′ ∈ T , we have that t and t ′ agree on variables
in P implies t and t ′ agree on variables in Q.

The model checking question (MC), given a team T and a PDL-formula ϕ, asks if
T |= ϕ is true. The satisfiability problem (SAT), given a PDL-formula ϕ, asks for the
existence of a team T such that T |= ϕ. It is known that MC as well as SAT are NP-
complete by Ebbing and Lohmann [18], respectively, by Lohmann and Vollmer [37]. These
authors classify the complexity landscape of even operator-fragments of PDL yielding a
deep understanding of these problems from a classical complexity point of view. For an
overview of how other atoms (e.g., inclusion, or independence) influence the complexity of
these problems consider the tables in the work Hella et al. [31].

Example 1 We illustrate an example from relational databases providing understanding of
team logics.

Table 1 depicts a database which can be expressed in PDL via binary encoding of
the possible entries for the attributes. The set of rows then corresponds to a team T . The
database satisfies two functional dependencies:

dep({Room,Time}; {Course}) and dep({Instructor,Time}; {Room,Course}).

Table 1 (Up) An example database with 4 attributes and universe size 15

Instructor Room Time Course

Antti A.10 09.00 Logic

Antti A.10 11.00 Statistics

Antti B.20 15.00 Algebra

Jonni C.30 10.00 LAB

Juha C.30 10.00 LAB

Juha A.10 13.00 Statistics

i1i2 r1r2 t1t2t3 c1c2

00 11 110 11

00 11 111 00

00 00 000 01

01 01 001 10

10 01 001 10

10 11 010 00

(Bottom) An encoding with �log2(3)� + �log2(3)� + �log2(5)� + �log2(4)� many propositional variables

272 Y. Mahmood, A. Meier

Whereas, it does not satisfy dep({Room,Time}; {Instructor}) as witnessed by the
tuples (Juha, C.30, 10, LAB) and (Jonni, C.30, 10, LAB). Formally, we have that

T |= dep({Room,Time}; {Course}) ∧ dep({Instructor,Time}; {Room,Course}),
but

T �|= dep({Room,Time}; {Instructor}).
Notice that in propositional logic, we cannot express a table of so many values. As a
result, we need to encode in binary the values of each column separately. This might
cause a logarithmic blow-up (by binary encoding the universe values for each column)
in the parameter values, for example, it influences the number of variables. Furthermore,
one also has to rewrite variables in the occurring formulas accordingly. For instance,
as in Table 1, for dep({Room,Time}; {Instructor}) this would yield the formula
dep({r1, r2, t1, t2, t3}; {i1, i2}). The parameters discussed in this paper correspond to the
already encoded values. This means that there is no need to consider the blow-up observed
in the previous example.

Often, when a problem is shown to be intrinsically hard, the framework of parame-
terised complexity theory [13] provides a way to further unravel the true reasons for the
intractability. Here, one aims for a more fine-grained complexity analysis involving the
study of parameterisations and how they pin causes for intractability substantially. One dis-
tinguishes two runtimes of a different quality: f (k) · p(|x|) versus p(|x|)f (k), where f is
an arbitrary computable function, p is a polynomial, |x| the input length and k the value of
the parameter. Clearly, both runtimes are polynomial in x for each fixed k but the first one
is much better as the polynomial degree is independent of the parameter’s value. Problems
that can be solved with algorithms running in a time of the first kind are said to be fixed-
parameter tractable (or FPT). Whereas, problems of category two are in the complexity
class XP. It is known that FPT � XP [23]. Whenever runtimes of the form f (k) · p(|x|)
are considered with respect to nondeterministic machines, one studies the complexity class
paraNP ⊇ FPT. In between these two classes a presumably infinite W-hierarchy is con-
tained: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ paraNP. It is unknown whether any of these
inclusions is strict. Showing W[1]-hardness of a problem intuitively corresponds to being
intractable in the parameterised world.

The area of research of parameterised problems is tremendously growing and often pro-
vides new insights into the inherent difficulty of the studied problems [12]. However, the
area of dependence logic is rather blank with respect to this direction of research, only Meier
and Reinbold [41] investigated the (parameterised) enumeration complexity of a fragment
of PDL recently. As a subject of this research, we want to initiate and to further push a
study of the parameterised complexity of problems in these logics.

Applications The concept of a team in team semantics bears a close resemblance with the
relations studied in relational database theory. Moreover, dependence atoms are analogous
to functional dependencies in the context of database systems. The MC problem for depen-
dence logic, for example, is analogous to determining whether a relation in the database
satisfies a functional dependency.

The teams of PDL also relate to the information states of inquisitive logic [10]; a seman-
tic framework for the study of the notion of meaning and information exchange among
agents.

273Parametrized MC and SAT in PDL

Contributions We study a wealth of parameters, also relevant from the perspective of
database theory. Here, the database corresponds to a team and the query that one wishes
to evaluate is a PDL-formula. The parameter team-size corresponds to the number of
entries in the database and #variables corresponds to the number of attributes. The parameter
formula-tw denotes how much interleaving is present among the attributes in the query and
dep-arity bounds the size of functional dependencies in the query. Furthermore, the parame-
ter formula-team-tw bounds the interleaving between a query and the database, formula-size
limits the size of the query, formula-depth restricts the nesting depth of the query, and
#splits bounds the number of join-operations in the query. With respect to all parameters,
we study MC and SAT. Furthermore, we introduce a satisfiability variant m-SAT, which has
an additional unary input m ∈ N, and asks for a satisfying team of size at least m.

In Table 2, we give an overview of our results. In this article, we prove dichotomies for
MC and SAT: depending on the parameter the problem is either fixed-parameter tractable
or paraNP-complete. Only the satisfiability variant under the parameters formula-tw and
#splits resist a complete classification and are left for further research.

Related work The notion of treewidth is due to Robertson and Seymour [44]. The study
of the complexity of bounded treewidth query evaluation is a vibrant area of research [6–
9, 16, 28]. As stated earlier, the formulas of dependence logic correspond to the functional
dependencies in the database context. Bläsius et al. [4] study the parameterised complexity
of dependency detection. The problem is defined as, given a database T and a positive inte-
ger k whether there is a non-trivial functional dependency of size (dep-arity in our notion)
at most k that is satisfied by T . These authors prove that this problem is W[2]-complete.

Prior work A preliminary version of this article appeared in the proceedings of the 11th
International Symposium on Foundations of Information and Knowledge Systems [39]. The
present paper provides a higher level of detail, in particular it includes full proofs for several
theorems (Theorem 18, 19, 24, 25, 27) and more examples. The new material includes a
new result on the problem m-SAT (Theorem 26), and also a more extended outlook in the
conclusion.

Table 2 Complexity classification overview showing the results of the paper with pointers to theorems. All
paraNP-results are completeness results. The question mark symbol means that the precise complexity is
unknown

Parameter MC SAT m-SAT

formula-tw paraNP15 FPT23 ?

formula-team-tw FPT20 see above see above

team-size FPT17 paraNP22 paraNP28

formula-size FPT19 FPT25 FPT27

formula-depth FPT19 FPT25 FPT27

#variables FPT19 FPT25 FPT27

#splits paraNP18 FPT24 ?

dep-arity paraNP18 paraNP22 paraNP28

274 Y. Mahmood, A. Meier

Organisation of the article At first, we introduce some required notions and definitions
in (parameterised) complexity theory, dependence logic, and propositional logic. Then we
study the parameterised complexity of the model checking problem. We proceed with the
satisfiability problem and study a variant of it. Finally, we conclude and discuss open
questions.

2 Preliminaries

In this paper, we assume familiarity with standard notions in complexity theory [43] such
as the classes NP and P.

2.1 Parameterised complexity

We will recapitulate some relevant notions of parameterised complexity theory, now. For a
broader introduction consider the textbook of Downey and Fellows [13], or that of Flum and
Grohe [23]. A parameterised problem (PP) Π ⊆ Σ∗ × N consists of tuples (x, k), where x

is called the instance and k the (value of the) parameter.

Definition 2 (Fixed-parameter tractable and paraNP) Let Π be a PP over Σ∗ ×N. We say
that Π is fixed-parameter tractable (or is in the class FPT) if there exists a deterministic
algorithm A deciding Π in time f (k) · |x|O(1) for every input (x, k) ∈ Σ∗, where f is a
computable function. If A is a nondeterministic algorithm instead, then Π belongs to the
class paraNP.

Let P be a PP over Σ∗×N. Then the �-slice of P , for � ≥ 0, is the set P� := { x | (x, �) ∈
P }. It is customary to use the notation O�(f (k)) to denote the runtime dependence only on
the parameter and to ignore the polynomial factor in the input. We will use the following
result from parameterised complexity theory to prove paraNP-hardness results.

Proposition 3 [23, Theorem 2.14] Let P be a PP. If there exists an � ≥ 0 such that P� is
NP-complete, then P is paraNP-complete.

Moreover, we will use the following folklore result to get several upper bounds.

Proposition 4 Let Q be a problem such that (Q, k) is in FPT and let � be another
parameter such that k ≤ f (�) for some computable function f , then (Q, �) is also in FPT.

2.2 Propositional dependence logic

Let VAR be a countably infinite set of variables. The syntax of propositional dependence
logic (PDL) is defined via the following EBNF:

ϕ ::= � | ⊥ | x | ¬x | ϕ ∨ ϕ | ϕ ∧ ϕ | dep(X;Y) | ¬dep(X;Y),

where � is verum, ⊥ is falsum, x ∈ VAR is a variable, X, Y ⊂ VAR are finite sets of
variables, dep(·; ·) is called the dependence atom, and the disjunction ∨ is also called split-
junction. Observe that we only consider atomic negation. We let PL be defined as the PDL-
formulas without dep(·; ·). Finally, the set X in dep(X;Y) can be empty, giving rise to

275Parametrized MC and SAT in PDL

formulas of the form dep(; Y). To simplify the notation, when either set in the arguments of
dep(X;Y) is singleton then we write, for example, dep(x; y) instead of dep({x}; {y}).

Definition 5 (Team semantics) Let ϕ, ψ be PDL-formulas and P,Q ⊂ VAR be two finite
sets of variables. A team T is a set of assignments t : VAR → { 0, 1 }. Furthermore, we
define the satisfaction relation |= as follows, where T |= � is always true, T |= ⊥ is never
true, and T |= ¬dep(P ;Q) iff T = ∅:

T |= x iff ∀t ∈ T : t (x) = 1
T |= ¬x iff ∀t ∈ T : t (x) = 0
T |= ϕ ∧ ψ iff T |= ϕ and T |= ψ

T |= ϕ ∨ ψ iff ∃T1∃T2(T1 ∪ T2 = T) : T1 |= ϕ and T2 |= ψ

T |= dep(P ;Q) iff ∀t, t ′ ∈ T : ∧

p∈P

t (p) = t ′(p) implies
∧

q∈Q

t(q) = t ′(q)

Observe that for the satisfaction of formulas of the form dep(; Q) the team has to be
constant with respect to Q. That is why such atoms are called constancy atoms. Note that in
literature there exist two semantics for the split-junction operator: lax and strict semantics
(e.g., Hella et al. [31]). Strict semantics requires the “splitting of the team” to be a parti-
tion whereas lax semantics allow an “overlapping” of the team. We use lax semantics here.
Notice that the computational complexity for SAT and MC in PDL are the same irrespec-
tive of the considered semantics. Furthermore, our proofs work for both semantics. Also
note that allowing an unrestricted negation operator dramatically increases the complexity
of SAT in this logic to ATIME-ALT(exp, poly) (alternating exponential time with polyno-
mially many alternations) as shown by Hannula et al. [30]. That is one reason why we stick
to atomic negation.

In the following, we define three well-known formula properties which are relevant to
results in the paper. A formula φ is flat if, given any team T , we have that T |= φ ⇐⇒
{ s } |= φ for every s ∈ T . A logic L is downwards closed if for every L-formula φ and
team T , if T |= φ then for every P ⊆ T we have that P |= φ. A formula φ is 2-coherent
if for every team T , we have that T |= φ ⇐⇒ { si , sj } |= φ for every si , sj ∈ T .
The classical PL-formulas are flat. This also implies that for PL-formulas, the truth value
is evaluated under each assignment individually, consequently, the semantics is the usual
Tarski semantic. Moreover, PDL is downwards closed and every dependence atom is 2-
coherent.

2.3 Representation of inputs as graphs

As we will consider specific structural parameters, we need to agree on a representation
of formulas, respectively, teams. Classically, propositional formulas were represented via
different kinds of graphs (e.g., Gaifman graph, primal graph) [45]. However, in this setting
usually CNF-formulas are considered. Coping with this restriction, Lück et al. [38] defined
syntax circuits for temporal logic formulas that also allow arbitrary formulas. In our setting,
we continue in this direction and define the syntax (or formula) structure with respect to a
PDL-formula.

An important observation regarding the graph representation for the PDL-formulas is
due to Grädel [26]. In the usual setting for logics with team semantics, we take the syntax
tree and not the associated syntax structure, that is, we distinguish between different occur-
rences of the same subformula. The reason for this choice is that a formula φ ∨ φ is not
equivalent to φ, and in its evaluation, different teams are entitled to the two occurrences of

276 Y. Mahmood, A. Meier

φ in the formula. Consequently, the well-formed formulas of PDL can be seen as binary
trees with leaves as atomic subformulas (variables and dependence atoms).

Example 6 The team {00, 01, 10, 11} satisfies dep(x; y) ∨ dep(x; y), even though it does
not satisfy dep(x; y).

Notice that when a PDL-formula is considered a tree, as discussed above, the parameter
treewidth (Def. 9) is not meaningful anymore.

For this reason we consider the syntax structure rather than the syntax tree as a graph
structure to consider treewidth as a parameter. Moreover, in the case of MC, one might
include assignments in a graph representation. In the latter case, one considers the Gaifman
graph of the structure that models both, the team and the input formula.

Definition 7 (Syntax structure) Let 〈T , Φ〉 be an instance of the model checking problem,
where Φ is a PDL-formula with propositional variables { x1, . . . , xn } ⊆ VAR and T =
{ s1, . . . sm } is a team of assignments si : VAR → { 0, 1 }. The syntax structure AT ,Φ over
the vocabulary

τT ,Φ := { VAR1, SF1,�2, DEP2, inTeam1, isTrue2, isFalse2, r, c1, . . . , cm },
where superscripts denote the arity of each relation, then is defined as follows.

The universe of AT ,Φ is A := SF(Φ) ∪ VAR(Φ) ∪ { cA1 , . . . , cAm }, where SF(Φ) and
VAR(Φ) denote the set of subformulas and variables appearing in Φ, respectively.

– SF and VAR are unary relations representing ‘is a subformula of Φ’ and ‘is a variable
in Φ’ respectively.

– � is a binary relation such that φ �A ψ iff ψ is an immediate subformula of φ and r

is a constant symbol representing Φ.
– DEP is a binary relation which connects each dependence atom with the used variables.
– The set { c1, . . . , cm } encodes the team T , where each ci is interpreted as cAi ∈ A and

each ci corresponds to an assignment si ∈ T for i ≤ m.
– inTeam(c) is true if and only if c ∈ { c1, . . . , cm }.
– isTrue and isFalse relate variables with the team elements. isTrue(c, x) (resp.,

isFalse(c, x)) is true if and only if x is mapped 1 (resp., 0) by the assignment interpreted
by c.

Analogously, the syntax structure AΦ over a respective vocabulary τΦ is defined. In this
case, the team related relations are not present and the universe does not contain the m-many
constants cAi for 1 ≤ i ≤ m.

In the following we write A instead of AT ,Φ when it is clear that our input instance is
〈T , Φ〉.

Definition 8 (Gaifman graph) Given a team T and a PDL-formula Φ, the Gaifman graph
GT,Φ = (A,E) of the τT ,Φ -structure AT ,Φ is defined as

E := { {u, v} ∣
∣ u, v ∈ A, such that there is an R ∈ τT ,Φ with (u, v) ∈ R

}
.

Analogously, we let GΦ to be the Gaifman graph for the τΦ -structure AΦ .

Note that for GΦ we have E = DEP ∪ � and for GT,Φ we have that E = DEP ∪ �
∪ isTrue ∪ isfalse.

277Parametrized MC and SAT in PDL

Fig. 1 An example syntax tree (left) with the corresponding Gaifman graph (middle) and a tree decomposi-
tion (right) for (x3 ∨ ¬x1) ∧ (

dep(x3; x4) ∨ (x1 ∧ x2)
)
. Note that we abbreviated subformulas in the inner

vertices of the Gaifman graph for presentation reasons

Definition 9 (Treewidth) The tree decomposition of a given graph G = (V ,E) is a tree
T = (B,ET), where the vertex set B ⊆ P(V) is called bags and ET is the edge relation
such that the following is true.

–
⋃

b∈B = V ,
– for every { u, v } ∈ E there is a bag b ∈ B with u, v ∈ b, and
– for all v ∈ V the restriction of T to v (the subset with all bags containing v) is

connected.

The width of a given tree decomposition T = (B,ET) is the size of the largest bag minus
one: maxb∈B |b| − 1. The treewidth of a given graph G is the minimum over all widths of
tree decompositions of G.

Observe that if G is a tree then the treewidth of G is one. Intuitively, one can say that
treewidth accordingly is a measure of tree-likeness of a given graph. The decision prob-
lem to determine whether the treewidth of a given graph G = (V ,E) is at most k, is
NP-complete [2]. See Bodlaender’s Guide [5] for an overview of algorithms that compute
tree decompositions. Further note that, opposed to our parameterised setting here, where
instances of PPs are pairs of strings and numbers (the latter being the value of the parame-
ter), there exists an approach, in which one works with parameterisation functions that map
the input string to the value of the parameter (e.g., Flum and Grohe [23]). Clearly, in such a
setting it could be tempting to think that treewidth is not a reasonable parameter because of
the mentioned hardness of computing it. However, one can circumvent this pitfall by letting
the input string contain the treewidth. The parameterisation function then essentially maps
to a substring of the input avoiding the need to compute it from scratch.

Example 10 Figure 1 represents the Gaifman graph of the syntax structure AΦ (in middle)
with a tree decomposition (on the right). Since the largest bag is of size 3, the treewidth of
the given decomposition is 2. Figure 2 presents the Gaifman graph of the syntax structure
AT ,Φ , that is, when the team T = {s1, s2} = {0011, 1110} is also part of the input.

In Lemma 12, we will prove that the treewidth increases when the team is also part of
the input.

278 Y. Mahmood, A. Meier

Fig. 2 The Gaifman graph for 〈T ,Φ〉 (as given in Example 10) with a possible tree decomposition. Note that
we abbreviated the subformulas in the inner vertices of the Gaifman graph for presentation reasons

2.4 Considered parameterisations

We consider eight different parameters for all three problems of interest (MC,
SAT and m-SAT). These include formula-tw, formula-team-tw, team-size, formula-size,
#variables, formula-depth, #splits and dep-arity. All these parameters arise naturally in prob-
lems we study. Let T be a team and Φ a PDL-formula then the parameters are defined as
follows:

– #splits denotes the number of times a split-junction (∨) appears in Φ and #variables
denotes the total number of propositional variables.

– formula-depth is the depth of the syntax tree of Φ, that is, the length of the longest path
from root to any leaf in the tree.

– team-size is the size of the team T .
– The arity of a dependence atom dep(P ; Q) is the size of P and dep-arity is the

maximum arity of a dependence atom in Φ.

Regarding treewidth, recall that for the MC problem, we can also include the assignment-
variable relation in the graph representation. This yields two treewidth notions formula-tw
and formula-team-tw, the name emphasises whether the team is also part of the graph.

– formula-tw is the treewidth of GΦ .
– formula-team-tw is the treewidth of GT,Φ .

Clearly, formula-team-tw is only relevant for the MC problem.
The following lemma proves relationships between several of the aforementioned param-

eters. The notation κ(T , Φ) stands for the parameter value of the input instance (T ,Φ). This
is also visualised in Fig. 3.

279Parametrized MC and SAT in PDL

Fig. 3 The relationship among different parameters. The direction of arrow in p ← q implies that bounding
q results in bounding p. The dashed line indicates that the parameter bounds either (minimum) of the given
two. Li means Lemma i

Lemma 11 Given a team T and a formula Φ then

1. team-size(T ,Φ) ≤ 2#variables(T ,Φ)

2. team-size(T ,Φ) ≤ 2formula-size(T ,Φ)

3. formula-size(T ,Φ) ≤ 22·formula-depth(T ,Φ)

Proof If a PDL-formula Φ has m variables then there are 2m many assignments and the
maximum size for a team is 2m. As a result, we have team-size ≤ 2#variables. Furthermore,
the number of variables in a PDL-formula Φ is bounded by the formula-size and as a
consequence, we have 2#variables ≤ 2formula-size. This proves the second claim.

If a formula Φ has formula-depth = d then there are ≤ 2d leaves in the (binary) syntax
tree of Φ and ≤ 2d internal nodes. Then formula-size ≤ 22d is true.

Now we prove the following non-trivial lemma stating that treewidth of the structure
AT ,Φ bounds either the team size or the number of variables. This implies that bound-
ing the treewidth of the structure also bounds either of the two parameters. Recall that for
formula-team-tw, we talk about the treewidth of the Gaifman graph underlying the structure
AT ,Φ that encodes the MC question.

Lemma 12 Let 〈T , Φ〉 be a given MC instance. Then the following relationship between
parameters is true,

formula-team-tw(T ,Φ) ≥ min{ team-size(T ,Φ), #variables(T ,Φ) }
Proof We prove that if formula-team-tw is smaller than the two then such a decomposition
must have cycles and hence cannot be a tree decomposition. The proof uses the fact that in
the Gaifman graph GT,Φ , every team element is related to each variable. As a consequence,
in any tree decomposition, the assignment-variable relations ‘isTrue’ and ‘isFalse’ cause
some bag to have their size larger than either the team size or the number of variables (based
on which of the two values is smaller). We consider individual bags corresponding to an
edge in the Gaifman graph due to the relations from τT ,Φ . Let { x1, . . . , xn } denote variables
that also appear as leaves in the formula tree 〈SF(Φ),�, Φ〉.

Consider a minimal tree decomposition 〈BT ,≺〉 for the Gaifman graph of A. Denote
by B(xi, cj) the bag that covers the edge between a variable xi and an assignment-element
cj , that is, either isTrue(xi, cj) or isFalse(xi, cj) is true. Moreover, denote by B(xi, α) the
bag covering the edge between a variable xi and its immediate �-predecessor α. Recall
that in the formula part of the Gaifman graph, there is a path from each variable xi to the

280 Y. Mahmood, A. Meier

formula Φ due to �. This implies that there exists a minimal path between any pair of
variables in the Gaifman graph, and this path passes through some subformula Ψ of Φ.
Let B(x, α1), B(α1, α2), . . ., B(αq, Ψ), B(Ψ, βr), . . . , B(β2, β1), B(β1, y) be the sequence
of bags that covers �A-edges between x and y (where q, r ≤ |SF(Φ)|). Without loss of
generality, we assume that all these bags are distinct. Now, for any pair x, y of variables, the
bags B(x, ci) and B(y, ci) contain ci for each i ≤ m and as a consequence, we have either
of the following two cases.

Case 1. The two bags are equal, that is B(x, ci) = B(y, ci) and as a consequence, we
have |B(x, ci)| ≥ 3 because B(x, ci) contains at least x, y and ci . Moreover, if this is
true (otherwise case two applies) for each pair of variables, then there is a single bag, say
B(ci), that contains all variables and the element ci . This means the maximum bag size
must be larger than the total number of variables, a contradiction.

Case 2. Every bag in the path between B(x, ci) and B(y, ci) contains ci .
We know that if a B(x, α1)-B(β1, y)-path between x and y due to � exist, then

the bags B(x, ci) and B(y, ci) cannot be adjacent because this will produce a cycle, a
contradiction again.

Moreover, for two different assignment-elements ci, cj , consider the bags B(y, ci)

and B(y, cj). If these two bags are adjacent then B(x, cj) and B(y, cj) cannot be adja-
cent and the path between B(x, cj) and B(y, cj) must contain cj . Notice that both
B(y, ci), B(y, cj) and B(x, cj), B(y, cj) cannot be adjacent since this would, again, cre-
ate a cycle. Consequently, the two possible cases are (see Fig. 4 explaining this situation
as well): first, B(y, ci) and B(y, cj) are not adjacent and every path between these bags
contains y. Second, B(x, cj) and B(y, cj) are not adjacent and every path between these
bags contains cj . Finally, since this is true for all variables and all elements ci with i ≤ m

this proves that either there is a bag that contains all variables, or there is one that con-
tains all ci’s. The remaining case that there are cycles in the tree decomposition is not
applicable.

This proves the claim and completes the proof to the lemma.

The following corollary is immediate due to previous lemma.

Corollary 13 Let Φ ∈ PDL and T be a team. Then formula-team-tw(T ,Φ) bounds
team-size(T , Φ).

Proof If formula-team-tw ≥ #variables then bounding formula-team-tw bounds #variables
which in turn bounds team-size because team-size ≤ 2#variables. Otherwise we already have
formula-team-tw ≥ team-size according to Lemma 12.

Fig. 4 The rectangles represent
bags corresponding to a
variable-assignment relation. If
the ci -bags do not contain
cj -nodes, then there can be only
either dotted or dashed edges
between the bags to avoid cycles

281Parametrized MC and SAT in PDL

3 Parameterised complexity of model checking in PDL

In this section, we study the model checking question under various parameterisations.
Classically, the problem is NP-complete (Prop. 14). Table 2 contains a complete list of our
results.

Proposition 14 [18, Thm. 3.2] MC is NP-complete.

Theorem 15 MC parameterised by formula-tw is paraNP-complete.

Proof The upper bounds follows from Proposition 14. For the lower bound, we prove
that the 1-slice of the problem is NP-hard by reducing from 3SAT. The reduction pro-
vided by Ebbing and Lohmann (Prop. 14) uses Kripke semantics (as they aim for a modal
logic related results). We slightly modify it to fit our presentation (the correctness proof
is the same). Let Φ := C1 ∧ . . . ∧ Cm be an instance of 3SAT over {x1, . . . , xn} and
each Ci be a clause, that is, a set of literals (variables or negation of variables). We define
an instance 〈T , Ψ 〉 of PDL-MC such that VAR(Ψ) = {p1, . . . , pn, r1 . . . , rn}. The team
T = {s1, . . . , sm} contains m assignments, where each assignment si : VAR(Ψ) → {0, 1}
is defined as follows,

si(pj) = si(rj) = 1, if xj ∈ Ci,

si(pj) = 0, si(rj) = 1, if ¬xj ∈ Ci,

si(pj) = si(rj) = 0, if xj ,¬xj �∈ Ci .

That is, there is an assignment si per each clause. The variable rj encodes whether or not xj

appears in the clause Ci , whereas, pj encodes whether xj appears positively or negatively

in Ci . Finally, let Ψ :=
n∨

j=1

(
rj ∧ dep(; {pj })

)
. The proof of Φ ∈ SAT ⇐⇒ T |= Ψ is

similar to the one of Ebbing and Lohmann [18, Thm. 3.2].
“⇒”. Let θ be a satisfying assignment for Φ. We construct Tj for each j ≤ n such that,

Tj :=
{

{si | si(pj) = 1 = si(rj)} if θ(xj) = 1,

{si | si(pj) = 0, si(rj) = 1} if θ(xj) = 0.

That is, Tj contains an assignment si if and only if the clauses Ci is satisfied by θ(xj) where
i ≤ m. Clearly, Tj |= rj ∧ dep(; pj). Moreover, since every clause is satisfied, this implies
that

⋃

j≤n

Tj = T and consequently T |= Ψ .

“⇐”. Suppose that T |= Ψ , then there are T1, . . . , Tn such that T = ⋃

j≤n

Tj and Tj |=
rj ∧dep(; pj). Clearly pj is fixed by each Tj . We construct a satisfying assignment for Φ by
considering each variable in turn. For j ≤ n, let Vj = {i | si ∈ Tj }. Now, si(pj) = 1 implies
xj ∈ Ci , and we set θ(xj) = 1, otherwise set si(pj) = 0. This implies that ¬xj ∈ Ci

and we set θ(xj) = 0. Since for every si ∈ T there is a j ≤ n with si ∈ Tj , we have an
evaluation that satisfies every clause Ci ∈ Φ and, as a consequence, θ |= Φ.

Notice that the parameter formula-twis fixed in advance. This is because GΨ is a tree; as
a consequence, formula-tw = 1. This completes the proof.

Notice that the formula in the reduction from 3SAT has fixed arity for any dependence
atom (that is, dep-arity = 0). As a consequence, we obtain the following corollary.

Corollary 16 MC parameterised by dep-arity is paraNP-complete.

282 Y. Mahmood, A. Meier

Algorithm 1 Recursive bottom-up algorithm solving MC parameterised by team-size.

Input : A PDL-formula Φ and a team T

Output: true if T |= Φ, otherwise false
1 foreach non-root node v in the syntax tree do Lv = { ∅ }
2 foreach atomic/negated atomic � ∈ SF(Φ) do // find all sub-teams for �

3 L� = { ∅ }
4 foreach P ⊆ T do
5 if � = x and ∀s ∈ P : s(x) = 1 then L� ← L� ∪ { P }
6 else if � = ¬x and ∀s ∈ P : s(x) = 0 then L� ← L� ∪ { P }
7 else if � = ¬dep(P ; Q) then L� ← L� // because ∅ |= ¬dep(P ; Q)

8 else if � = dep(P ; Q) and ∀si∀sj
∧

p∈P

si(p) = sj (p) ⇒ ∧

q∈Q

si(q) = sj (q) then
9 L� ← L� ∪ { P }

10 foreach α1, α2 with α = α1 ◦ α2 and Lαi
�= { ∅ } for i = 1, 2 do

11 foreach P ∈ Lα1 , Q ∈ Lα2 do
12 if ◦ = ∧ and P = Q then Lα ← Lα ∪ { P }
13 else if ◦ = ∨ then Lα ← Lα ∪ { P ∪ Q }
14 if T ∈ LΦ then return true else return false

The main source of difficulty in the model checking problem seems to be the split-
junction operator.

For a team of size k and a formula with only one split-junction there are 2k many can-
didates for the correct split and each can be verified in polynomial time. As a result, an
exponential runtime in the input length seems necessary. However, if the team size (k)
is considered as a parameter then the problem can be solved in polynomial time with
respect to the input size and exponentially in the parameter. We consider both parameters
(team-sizeand #splits) in turn.

Theorem 17 MC parameterised by team-size is FPT.

Proof We claim that Algorithm 1 solves the task in fpt-time. The correctness follows from
the fact that the procedure is simply a recursive definition of truth evaluation of PDL-
formulas in bottom-up fashion.

Recall that the input formula Φ is a binary tree. The procedure starts by checking whether
for each atomic (or negated atomic) subformula α and each subteam P ⊆ T , P |= α. Notice
that this step also takes care of negated atomic suformulas because we only allow atomic
negations. Then recursively, if P |= αi for i = 1, 2 and there is a subformula α such that
α = α1 ∧ α2 then it answers that P |= α. Moreover, if Pi |= αi for i = 1, 2 and there is a
subformula α such that α = α1 ∨ α2 then it answers that P |= α where P = P1 ∪ P2.

The first loop runs in O�(2k) steps for each leaf node and there are |Φ| many iterations,
which gives a running time of |Φ| ·O�(2k), where team-size = k. At each inner node, there
are at most 2k candidates for P and Q and as a consequence, at most 22k pairs that need to
be checked. This implies that the loop for each inner node can be implemented in O�(22k)

steps. Furthermore, the loop runs once for each pair of subformulas α1, α2 such that α1 ◦α2
is also a subformula of Φ. This gives a running time of |Φ| · O�(22k) for this step. Finally,
in the last step a set of size k needs to be checked against a collection containing 2k such
sets, this can be done in k · O(2k) steps.

283Parametrized MC and SAT in PDL

We conclude that the above procedure solves the MC problem in p(|Φ|) · O(22k) steps
for some polynomial p. The fact that we do not get a blow-up in the number of subformulas
is due to the reason that the formula tree is binary. The procedure operates on a pair of
subformulas in each step and the label size (|Lα|) at the end of this step is again bounded
by 2k .

Regarding the parameter #splits, we show paraNP-completeness by reducing from the
3-colouring problem (3COL) and applying Proposition 3.

Theorem 18 MC parameterised by #splits is paraNP-complete.

Proof Given an instance 〈G〉 where G = (V ,E) is a graph. We map this input to an instance
〈(T , Φ), 2〉 where T is a team, and Φ is a PDL-formula with 2 split-junctions. The idea
of the reduction from 3COL is to construct a team as shown in Fig. 5 in combination with
the formula containing two disjunctions, where each disjunct is

∧
ek={ vi ,vj } dep({yk}; {xi}).

Intuitively, vertices of the graph correspond to assignments in the team and the three splits
then map to three colours.

Let V = { v1, . . . , vn } be the vertex set and E = { e1, . . . em } the given set of edges.
Then we define

VAR(Φ) = { x1, . . . , xn } ∪ { y1,1, . . . , y1,n, . . . , ym,1, . . . , ym,n }.
That is, we have (1) a variable xi corresponding to each node vi and (2) a variable yj,k

corresponding to each edge ej and each node vk . For convenience, we will sometimes write
yj instead of (yj,1 . . . yj,n) when it is clear that we are talking about the tuple of variables
corresponding to the edge ej . Consequently, we have an n-tuple of variables yj for each
edge ej , where 1 ≤ j ≤ m. The idea of the team that we construct is that there is an
assignment si corresponding to each node vi that encodes the neighbourhood of vi in the
graph. The assignment si also encodes all the edges that vi participates in. This is achieved
by mapping each variable y�,j in tuple y� to 1 under the assignment sj if vj ∈ e� whereas
sj (y�,j) = 0 if vj �∈ e� and for every j �= i, sj (y�,j) = 1. Figure 5 illustrates an example to
get an intuition on this construction.

Formally, we define the team as follows.

1. If G has an edge e� = { vi, vj } then we set si(xj) = 1 and sj (xi) = 1, and let si(y�,1) =
. . . = si(y�,n) = 1 as well as sj (y�,1) = . . . = sj (y�,n) = 1

2. For the case vj �∈ e�, we set sj (y�,j) = 0 and for the remaining indices sj (y�,i) = 1.
3. Since, we can assume w.l.o.g. the graph has no loops (self-edges) we always have

si(xi) = 0 for all 1 ≤ i ≤ n.

Consequently, two assignments si , sj agree on yk if the corresponding edge ek is the edge
between vi and vj , and we have si(yk) = 1 = sj (yk).

Fig. 5 A graph G : 〈{ vi , vj , vk }, { el , em }〉 and a corresponding team

284 Y. Mahmood, A. Meier

Now let Φ be the following formula

Φ := φ ∨ φ ∨ φ

where

φ =
∧

ek={ vi ,vj }
dep({yk}; {xi})

The choice of xi or xj to appear in the formula is irrelevant. The idea is that if there is
an edge ek between two nodes vi, vj and accordingly si(yk) = 1 = sj (yk) then the two
assignments cannot be in the same split of the team. This is always true because in that case
the assignments si , sj cannot agree on any of xi or xj . Since, by (3.), we have si(xi) = 0
but there is an edge to vj and we have sj (xi) = 1. The desired result is achieved by the
following claim.

Claim G is 3-colourable iff {s1, . . . , sn} |= Φ

Proof of Claim “⇒”: Let V1, V2, V3 be the distribution of V into three colours. Conse-
quently, for every v ∈ V we have an r ≤ 3 such that v ∈ Vr . Moreover, for every vi, vj ∈ Vr

there is no � s.t. e� = { vi, vj }. Let Tr = { si | vi ∈ Vr } for each r ≤ 3, then we show
that

⋃

r<3
Tr = T and Tr |= φ. This will prove that T |= Φ because we can split T into three

sub-teams such that each satisfies the disjunct.
Since for each si , sj ∈ Tr , there is no edge e� = { vi, vj } this implies that for the tuple y�,

we have si(y�) �= sj (y�) and thereby making the dependence atom trivially true. Moreover,
by 2-coherency it is enough to check only for pairs si , sj and since the condition holds for
every edge, we have Tr |= φ. Since our assumption is that V can be split into three such
sets, we have the split of T into three sub-teams. This gives T |= Φ.

“⇐”: Conversely, assume that T can be split into three sub-teams each satisfying φ. Then
we show that V1, V2, V3 is the partition of V into three colours. Let Vr = { vi | si ∈ Tr }
then

⋃

r≤3
Vr = V and for any vi, vj ∈ Vr there is no edge between vi, vj . Suppose to the

contrary that there is an edge e� = { vi, vj }. Then we must have si , sj ∈ Tr such that
si(y�) = 1 = sj (y�). That is, si(y�,1) = 1 = sj (y�,1), . . . , si(y�,n) = 1 = sj (y�,n).
Since we have that si(xi) = 0 whereas sj (xi) = 1, this implies { si , sj } �|= φ which is a
contradiction.

This concludes the full proof.

Theorem 19 MC parameterised by formula-size, formula-depth or #variables is FPT.

Proof Recall the relationships between various parameters (Lemma 11). The FPT-
membership for formula-size and #variables holds due to Proposition 4 and the fact the
MC when parameterised by team-size is FPT. Furthermore, the FPT-membership for
formula-depth follows due to the relationship between formula-size and formula-depth.

Finally, the case for formula-team-tw follows due to Corollary 13 in conjunction with the
FPT result for team-size (Lemma 17).

Corollary 20 MC parameterised by formula-team-tw is FPT.

285Parametrized MC and SAT in PDL

4 Satisfiability

In this section, we study SAT under various parameterisations, so the question of whether
there exists a team T for a given formula Φ such that T |= Φ. Notice first, that the question
is equivalent to finding a singleton team. This is since PDL is downwards closed. Conse-
quently, if there is a satisfying team, then a singleton team satisfies the formula. As a result,
team semantics coincides with the usual Tarskian semantics. This facilitates, for example,
determining the truth value of disjunctions in the classical way. Accordingly, simplifying
the notation a bit, for SAT we now look for an assignment rather than a singleton team that
satisfies the formula.

Corollary 21 The problem SAT under both parameterisations of formula-team-tw and
formula-tw is the same.

The following result is obtained by classical SAT being NP-complete [11, 36].

Corollary 22 SAT parameterised by team-size, or dep-arity is paraNP-complete.

Proof The 1-slice regarding team-size (a singleton team is the same as an assignment), and
the 0-slice regarding dep-arity (no dependence atoms at all) is NP-hard.

Turning towards treewidth, notice that classical propositional SAT is fixed-parameter
tractable when parameterised by treewidth due to Samer and Szeider [46, Thm. 1]. How-
ever, we are unable to immediately utilise their result because Samer and Szeider study
CNF-formulas and we have arbitrary formulas instead. Yet, Lück et al. [38, Cor. 4.7]
studying temporal logics under the parameterised approach, classified, as a byproduct, the
propositional satisfiability problem with respect to arbitrary formulas to be fixed-parameter
tractable.

Corollary 23 SAT parameterised by formula-tw is FPT.

Proof As before, we need to find a singleton team. This implies that split-junctions have
the same semantics as classical disjunctions and dependence atoms are always satisfied.
Consequently, replacing every occurrence of a dependence atom dep(P ; Q) by � yields
a propositional logic formula. This substitution does not increase the treewidth. Then the
result follows by Lück et al. [38, Cor. 4.7].

Now, we turn towards the parameter #splits. We present a procedure that constructs a sat-
isfying assignment s such that s |= Φ if there is one and otherwise it answers no. The idea is
that this procedure needs to remember the positions where a modification in the assignment
is possible. We show that the number of these positions is bounded by the parameter #splits.

Consider the syntax tree of Φ where, as before, multiple occurrences of subformulas are
allowed. The procedure starts at the leaf level with satisfying assignment candidates (partial
assignments, to be precise). Reaching the root it confirms whether it is possible to have a
combined assignment or not. We assume that the leaves of the tree consist of literals, depen-
dence atoms or negated dependence atoms. Accordingly, the internal nodes of the tree are
only conjunction and disjunction nodes. The procedure sets all the dependence atoms to be
trivially true (as we satisfy them via every singleton team). Moreover, it sets all the negated
dependence atoms to be false because there can be no satisfying assignment for a negated

286 Y. Mahmood, A. Meier

dependence atom. Additionally, it sets each literal to its respective satisfying assignment.
Ascending the tree, it checks the relative conditions for conjunction and disjunction by join-
ing the assignments and thereby giving rise to conflicts. A conflict arises (at a conjunction
node) when two assignments are joined with contradicting values for some variable. At this
point, it sets this variable x to a conflict state c. At disjunction nodes the assignment stores
that it has two options and keeps the assignments separately.

Joining a true-value from a dependence atom affects the assignment only at disjunction
nodes. This corresponds to the intuition that a formula of the form dep(P ; Q) ∨ ψ is true
under any assignment.

At a conjunction node, when an assignment s joins with a true, the procedure returns the
assignment s.

Since at a split the procedure returns both assignments, for k splits there could be ≤ 2k-
many assignment choices. At the root node if at least one assignment is consistent then
we have a satisfying assignment. Otherwise, if all the choices contain conflicts over some
variables then there is no such satisfying singleton team.

Theorem 24 SAT parameterised by #splits is FPT. Moreover, there is an algorithm that
solves the problem in O(2#splits(Φ) · |Φ|O(1)) for any Φ ∈ PDL.

Proof We consider partial mappings of the kind t : VAR → { 0, 1, c }. Intuitively, these
mappings are used to find a satisfying assignment in the process of the presented algorithm.

If t, t ′ are two (partial) mappings then t © t ′ is the assignment such that

(t © t ′)(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

undefined , if both t (x) and t ′(x) are undefined,

c , if both are defined and t (x) �= t ′(x),

t (x) , if only t (x) is defined,

t ′(x) , if only t ′(x) is defined.

We prove the following claim.

Claim The formula Φ is satisfiable if and only if Algorithm 2 returns a consistent (partial)
assignment s that can be extended to a satisfying assignment for Φ over VAR(Φ).

Proof of Claim We prove using induction on the structure of Φ.

Base case Start with a variable, Φ = x. Then Φ is satisfiable and s |= Φ such that s(x) =
1. Moreover, such an assignment is returned by the procedure as depicted by line 3 of
the algorithm. Similarly, the case Φ = ¬x follows by line 4. The case Φ = dep(P ; Q)

or Φ = � is a special case of a PDL-formula since this is true under any assignment.
Line 6 in our procedure returns such an assignment that can be extended to any consistent
assignment. Finally, for Φ = ⊥ or Φ = ¬dep(P ; Q), the assignment contains a conflict
and can not be extended to a consistent assignment as the algorithm returns “Φ is not
satisfiable”.

Induction Step. Notice first that if either of the two operands is � then this is a special
case and triggers lines 9–11 of the algorithm thereby giving the satisfying assignment.

Suppose now that Φ = ψ0 ∧ ψ1 and that the claim is true for ψ0 and ψ1. As a result,
both ψ0 and ψ1 are satisfiable if and only if the algorithm returns a satisfying assignment
for each. Let Si for i = 0, 1 be such that some consistent t ′i ∈ Si can be extended
to a satisfying assignment ti for ψi . Our claim is that SΦ returned by the procedure

287Parametrized MC and SAT in PDL

(line 13) is non-empty and contains a consistent assignment for Φ if and only if Φ is
satisfiable. First note that, by induction hypothesis, Si contains all the possible partial
assignments that satisfy ψi for i = 0, 1. Consequently, SΦ contains all the possible ©-
joins of such assignments that can satisfy Φ. Let ψ0 be satisfied by t ′0 and ψ1 be satisfied
by t ′1. Moreover, let s′ ∈ SΦ be an assignment such that s′ = t ′0© t ′1. If s′ is consistent
then s′ can be extended to a satisfying assignment s for Φ since s′ |= ψi for i = 0, 1. On
the other hand if every s′

0© s′
1 is conflicting (for s′

i ∈ Si) then there is no assignment over
VAR(Φ) = VAR(ψ1) ∪ VAR(ψ2) that satisfies Φ. Accordingly, Φ is not satisfiable.

The case for split-junction is simpler. Suppose that Φ = ψ0 ∨ ψ1 and that the claim
is true for ψ1 and ψ2. Then Φ is satisfiable if and only if either ψ0 or ψ1 is satisfiable.
Since the label SΦ for Φ is the union of all the labels from ψ0 and ψ1, it is enough to
check that either the label of ψ0 (that is, S0) or the label of ψ1 (S1) contains a consistent
partial assignment. By induction hypothesis, this is equivalent to checking whether ψ0
or ψ1 is satisfiable. This completes the case for split-junction and the proof to our claim.

Finally, notice that the label size adds at the occurrence of a split-junction. That is, we
keep all the assignment candidates separate and each such candidate is present in the label
for split-junction node. In contrast, at conjunction nodes, we ‘join’ the assignments and for
this reason, the label size is the product of the two labels. Notice that we do not get a blow-
up in the number of conjunction. This is because, initially the label size for each node is 1
and only at a split-junction, the size increases. This implies that the maximum size for any
label is bounded by 2#splits. As a consequence, the above algorithm runs in polynomial time
in the input and exponential in the parameter.

Figure 6 presents an example of using the above algorithm. To simplify the notation, we
consider the assignment labels of the form {xi, ¬xj } rather than {xi �→ 1, xj �→ 0}.

The remaining cases for the parameters #variables, formula-size, or formula-depth follow
easily from the previously shown results.

Theorem 25 SAT parameterised by #variables, formula-size, or formula-depthis FPT.

Proof Recall that the question PDL-SAT boils down to PL-SAT of finding an assignment
for a given propositional logic formula. The latter problem, when parameterised by the

Fig. 6 (left) syntax tree of example formula, and (right) computation of Algorithm 2. Notation: x/¬x/xc

means a variable is set to true/false/conflict. Clearly, { x4, x1,¬x2, x3 } satisfies the formula

288 Y. Mahmood, A. Meier

Algorithm 2 SAT-algorithm for #splits which tries to find a satisfying singleton team.

Input : PDL-formula Φ represented by a syntax tree with atomic/negated atomic
subformulas as leaves

Output: An assignment s such that s |= Φ or “Φ is not satisfiable”
1 begin
2 foreach Leaf � of the syntax tree do //atomic or negated-atomic

subformula
3 if � = x is a variable then S� ← { { x �→ 1 } };
4 else if � = ¬x is a negated variable then S� ← { { x �→ 0 } };
5 else if � = ⊥ or � = ¬dep(·; ·) then pick x ∈ VAR and

S� ← { { x �→ c } };
6 else S� ← { 1 }; // case � or dep(·; ·)
7 foreach Inner node � of the syntax tree in bottom-up order do
8 Let �0, �1 be the children of � with S0, S1 the resp. sets

partial assignments;
9 if 1 ∈ Si then
10 if � is a conjunction then S� ← S1−i;
11 else S� ← { 1 }; // empty split for a split-junction

12 else if � is a conjunction then
13 foreach s0 ∈ S0 and s1 ∈ S1 do S� ← S� ∪ { s0© s1 } ;
14 else // � is a split-junction
15 foreach s0 ∈ S0 and s1 ∈ S1 do S� ← S� ∪ { s0, s1 } ;

16 if there exists a non-conflicting assignment s ∈ SΦ then return s;
17 else return ‘‘Φ is not satisfiable’’;

number of variables in the input formula, is FPT which implies that the former problem is
also FPT.

Note that formula-size = |Φ| and any parameterised problem Π is FPT for the
parametrisation input-length. Consequently, SAT parameterised by formula-size is FPT.

If a formula Φ has formula-depth = d then there are ≤ 2d leaves and ≤ 2d inter-
nal nodes accordingly we have formula-size ≤ 22d which shows FPT membership, when
parameterised by formula-depth.

4.1 A satisfiability variant

The shown results suggest that it might be interesting to study the following variant of SAT,
in which we impose an additional input 1m (unary encoding) with m ≥ 2 and ask for a
satisfying team of size at least m. Let us call the problem m-SAT. Notice that since PDL-
formulas are downwards closed, m-SAT is equivalent to finding a team of size exactly m.
We wish to emphasise that m-SAT is not the same as SAT parameterised by team-size. This
is because, SAT does not ask for a team of a particular size. We also wish to mention here
that the problem of finding a team of a given size (m-SAT) has not been studied before in the
classical setting. A related yet different problem in the context of database is the existence
of an Armstrong relation [3, 19]. Given a set Γ of functional dependencies, the question
is whether there exists a database D that satisfies a functional dependency dep(P ; Q) if

289Parametrized MC and SAT in PDL

and only if dep(P ; Q) is implied by Γ . In our setting, the problem m-SAT considers gen-
eral PDL formulas (so not only functional dependencies). Moreover, m-SAT questions
whether it is possible to generate a database of a particular size (m in our case), whereas the
restriction that it should not satisfy any other functional dependency, is dropped. We begin
by classifying the problem unparameterised, followed by proving results in parameterised
setting.

The motivation for this computational task stems from the fact that, often one has a set of
constraints and wishes to populate the database with a certain number of entries (m in our
case). Consider a person R making a teaching-schedule at a university department. There
are quite many lectures to arrange weekly and R has to follow certain constraints such as
‘the teacher and the room determine the course’, ‘the teacher and the time determine room
and the course’ and many more. Obviously, R would like to have an algorithm such that
the input to this algorithm is this collection of constraints as well as the solution size (the
number of weekly lectures) and the algorithm makes a consistent teaching schedule for
him/her.

Notice also that we require m to be given in unary. This is because, R might be looking
for an arbitrary large solution. Consequently, it makes sense to ask whether we can fill the
database (even with arbitrary large size) in polynomial time with respect to the input. This
corresponds to the intuition that we are given an empty database with allocated memory
of size m (that is, with empty rows) and we wish to populate it with the data such that it
satisfies the constraints.

If we lift the restriction of m not being given in unary then the problem immediately
becomes NEXP-complete. The hardness follows due to a reduction from the validity prob-
lem for PDL [49]. In polynomial time, one can count the number of proposition symbols
n in a formula Φ and ask whether there is a satisfying team for Φ of size m where m = 2n.
It is easy to observe that Φ is valid if and only if Φ has a satisfying team of size m.

We prove in Theorem 26 that restricting m to be unary drops the complexity to NP-
completeness.

Theorem 26 The problem m-SAT is NP-complete when m is given in unary.

Proof Notice first that finding a team of size m is computationally harder than finding a
team of size 1. Consequently, the hardness follows because SAT for PDL is NP-hard.

We prove NP-membership by presenting a non-trivial nondeterministic algorithm run-
ning in polynomial time that constructs a team of size m if it exists. Intuitively, the algorithm
tries to construct a satisfying team of size m for a given formula Φ in bottom-up fashion.
Starting at the level of atomic or negated atomic subformulas of Φ, the algorithm iteratively
builds a team Ti for i ∈ SF(Φ).

Given the input Φ, the algorithm labels each node of the tree with a satisfying team of
size at most m. For each atomic/negated atomic subformula, this team is guessed nondeter-
ministically, whereas, for each conjunction (resp., split-junction), the team is the intersection
(union) of the two subteams from the successor nodes. Specifically, for each literal �, the
label T� is a team of size at most m and T� = { si | si(�) = 1 }. The question of how are the
other variables mapped by each si is answered nondeterministically. For each dependence
atom α = dep(X;Y), the label Tα is a team such that |Tα| = min{m, 2|X|}. If |Tα| = m,
the assignments over VAR(Φ) are selected nondeterministically in such a way that Tα |= α.
However, if |Tα| = 2|X|, then each assignment over X is selected and these assignment are
extended to variables in VAR(φ)\X nondeterministically. At conjunctions, the label is the
intersection of the two labels from the successor nodes and at split-junctions, the label is

290 Y. Mahmood, A. Meier

Algorithm 3 Algorithm for finding a satisfying team of size m.

Input : PDL-formula Φ represented by a syntax tree with atomic/negated atomic
subformulas as leaves

Output: A team T of size m such that T |= Φ or “Φ does not have a satisfying team
of size m”

1 begin
2 foreach Leaf � of the syntax tree do
3 nondeterministically guess a team T� such that |T�| ≤ m and T� |= �

4 foreach Inner node � of the syntax tree in bottom-up order do
5 Let �0, �1 be the children of � with T0, T1 the resp. team labels;
6 if � is a conjunction then T� = T0 ∩ T1 ;
7 else T� = T0 ∪ T1;

8 if |TΦ | ≥ m then return TΦ ;
9 else return “Φ does not have a satisfying team of size m”;

the union. At the root level, if TΦ has size at least m then Algorithm 3 accepts, otherwise
it rejects. The result follows from the downward closure property of PDL-formulas (see
page 6). Moreover, the maximum label size for any node can be at most |Φ| · m because the
size only increases (potentially doubles) at a split-junction. This is unproblematic since m

is given in unary.

Claim Φ has a satisfying team of size m if and only if Algorithm 3 outputs such a team
when given the input Φ. Moreover, Algorithm 3 runs in nondeterministic polynomial time.

Proof of Claim The result is justified by Algorithm 3 constructing the truth function for Φ

in a bottom-up fashion. The idea of a truth function was introduced by Yang [51].
“⇒”: Let T be a satisfying team for Φ of size m. Consider the syntax tree of Φ. Each

node in the tree can be labelled with a satisfying team for this node. Moreover, the label for
each node is a subteam of T , consequently, the size is bounded by m. Algorithm 3 simply
selects those teams in the guessing phase that are labelled at the leaf nodes of Φ by the
truth function. These teams correctly ‘add-up’ to T at the root node and T |= Φ due to our
assumption.

“⇐”: Suppose that Algorithm 3 outputs a team of size at least m. Let T1, . . . Tn be the
teams labelled by the algorithm at the leaves of Φ, where n is the number of atomic or
negated atomic subformulas (leaves in the syntax tree) of Φ. First note that Ti |= �i where
�i a leaf of Φ and i ≤ n . Moreover, for each split-junction, β = αi ∨ αj the team label
Tβ for the node β is the union Tαi

∪ Tαj
, where Tαs is the team label for αs and s ∈ {i, j}.

Similarly at the conjunction nodes, the team label for the parent node is the intersection of
the teams from each conjunct. Finally, at the root level, the label has size m. Now, working
in the backward direction, one can obtain the truth function for 〈T , Φ〉 proving that T |= Φ

where T is a team of size at least m.

This completes the proof to the theorem. Now, we move on to the parameterised
complexity of m-SAT.

291Parametrized MC and SAT in PDL

Theorem 27 m-SAT parameterised by #variables, formula-size, or formula-depth is FPT,
with time even linear in the input length.

Proof In the case of #variables, the maximal satisfying team has size 2#variables. Moreover,
there are a total of 22#variables

many teams. Consequently, we can find all satisfying teams of
size m (if any) in FPT-time with respect to the parameter #variables.

For formula-size, notice first that #variables ≤ formula-size, that is, bounding
formula-size also bounds #variables (Lem. 11). As a result, we have that m-SAT parame-
terised by formula-size is FPT.

For formula-depth notice that formula-size ≤ 22·formula-depth and thereby the problem is
FPT under this parametrisation.

Finally, consider the brute-force (bottom-up) algorithm in each case. This algorithm
evaluates each suformula against the candidate subteam for this subformula. As a conse-
quence, this implies that the running time with respect to the input is linear in the number of
subformulas. That is, the algorithm runs in time f (k) · |Φ| for a computable function f .

Neither the arity of the dependence atoms nor the team-size alone are fruitful parameters
which follows from Corollary 22.

Corollary 28 m-SAT parameterised by team-size or dep-arity is paraNP-complete.

5 Conclusion

In this paper, we started a systematic study of the parameterised complexity of model check-
ing and satisfiability in propositional dependence logic. For both problems, we exhibited a
complexity dichotomy (see Table 2): depending on the parameter, the problem is either FPT
or paraNP-complete. Interestingly, there exist parameters for which MC is easy, but SAT is
hard (team-size) and vice versa (#splits).

Towards the end, we introduced a satisfiability question which also asks for a team of
a given size (m-SAT). To the best of the authors’ knowledge, this problem has not been
studied at all in the setting of team logics. We show that in the classical setting the problem
is NP-complete. The parameterised complexity of this problem currently behaves similarly
to SAT though the parameters #splits and formula-tw are open for further research. Another
related question would be to study the relation between the natural number m ∈ N and the
properties expressible in the downwards closed team based logic. In other words, what type
of PDL-formulas have a satisfying team of size m?

As future work, we want to study combinations of the studied parameters, e.g., #splits +
dep-arity. This parameter is quite interesting, as dep-arity alone is always hard for all three
problems, whereas #splits allows for SAT to reach FPT. It is also interesting to observe that
in both of our reductions for proving hardness of MC under the parametrisation #splits and
dep-arity, if dep-arity is fixed then #splits is unbounded and vice versa. The authors believe
that the combination (#splits+dep-arity) may not yield FPT-membership although it might
lower the complexity from paraNP-hardness.

The concept of backdoor sets [50] has turned out to be a significant parameter to study.
Intuitively, it utilises the distance of a given problem instance to an efficient sub-case. When
it was firstly introduced, the concept was defined with respect to CNF formulas of proposi-
tional logic. Yet, it has been transferred to different kind of logics and other areas as well:
abduction [42], answer set programming [21, 22], argumentation [17], default logic [20],

292 Y. Mahmood, A. Meier

temporal logic [40], planning [35], and constraint satisfaction [25]. For dependence logic,
such a formalism does not exist so far. We discussed in Section 4, that an instance Φ of
PDL-SAT can be reduced to Ψ of PL-SAT such that Φ and Ψ are equi-satisfiable. This
is achieved by simply replacing every dependence atom dep(P ; Q) by �. This implies that
the backdoor approach of classical propositional logic for SAT also applies to propositional
dependence logic. It would be interesting to study backdoors in the context of MC as well,
that is, given a team T and a PDL-formula Φ, whether T |= Φ? Some approaches into the
direction of a good notion of backdoor sets are promising others not. Taking the backdoor
set to be a collection of variables (as in the propositional setting) is problematic, because we
wish to talk about total assignments which implies that this set should contain all variables.
If the backdoor set is a collection of sub-teams, then an approach via sub-solvers makes
sense, but which sub-team corresponds to which sub-formula should also be specified by
the backdoor set (otherwise the sub-solver has to guess it nondeterministically). Mimicking
the idea of resolvents (as in the CNF-setting) is not immediate, as removing dependence
atoms does not allow for removing the assignments appearing in the backdoor: e.g., for
x ∧ dep(P ; Q) the literal x can be problematic.

Also, further operators such as independence and inclusion atoms will be interesting
to consider. Closing, another important question for future research is to consider the
parameterised version of validity and implication problem for PDL.

Acknowledgements The authors thank the anonymous referees for their comments in improving the paper.
We thank Phokion Kolaitis, Juha Kontinen, and Sebastian Link for discussions on m-SAT. We are grateful
to Jonni Virtema for his thoughts on the #splits parameter in the database setting. This work was supported
by the German Research Foundation (DFG), project ME 4279/1-2. The authors would like to thank the
participants and organisers of the Dagstuhl Seminar 19031 “Logics for Dependence and Independence” [27]
for valuable comments and suggestions after the presentation of partial results of this article.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

1. Abramsky, S., Kontinen, J., Väänänen, J., Vollmer, H.: Dependence Logic, Theory and Applications.
Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-31803-5

2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J.
Algebraic Discrete Methods 8(2), 277–284 (1987). https://doi.org/10.1137/0608024

3. Beeri, C., Dowd, M., Fagin, R., Statman, R.: On the structure of armstrong relations for functional
dependencies. J. ACM 31(1), 30–46 (1984). https://doi.org/10.1145/2422.322414

4. Bläsius, T., Friedrich, T., Schirneck, M.: The Parameterized Complexity of Dependency Detec-
tion in Relational Databases. In: Guo, J., Hermelin, D. (eds.) 11th International Symposium on
Parameterized and Exact Computation (IPEC 2016), Leibniz International Proceedings in Informatics
(LIPIcs), vol. 63, pp. 6:1–6:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2017).
https://doi.org/10.4230/LIPIcs.IPEC.2016.6. http://drops.dagstuhl.de/opus/volltexte/2017/6920

293Parametrized MC and SAT in PDL

http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-31803-5
https://doi.org/10.1137/0608024
https://doi.org/10.1145/2422.322414
https://doi.org/10.4230/LIPIcs.IPEC.2016.6
http://drops.dagstuhl.de/opus/volltexte/2017/6920

5. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1-2), 1–21 (1993). https://cyber.
bibl.u-szeged.hu/index.php/actcybern/article/view/3417

6. Chen, H., Mengel, S.: A trichotomy in the complexity of counting answers to conjunctive queries. In:
Arenas, M., Ugarte, M. (eds.) 18th International Conference on Database Theory, ICDT 2015, March
23-27, 2015, Brussels, Belgium, LIPIcs, vol. 31, pp. 110–126. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2015). https://doi.org/10.4230/LIPIcs.ICDT.2015.110

7. Chen, H., Mengel, S.: Counting answers to existential positive queries: A complexity classifica-
tion. In: Milo, T., Tan, W. (eds.) Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, PODS 2016, pp. 315–326. ACM, San Francisco (2016).
https://doi.org/10.1145/2902251.2902279

8. Chen, H., Mengel, S.: The logic of counting query answers. In: 32nd Annual ACM/IEEE Sympo-
sium on Logic in Computer Science, LICS 2017, pp. 1–12. IEEE Computer Society, Reykjavik (2017).
https://doi.org/10.1109/LICS.2017.8005085

9. Chen, H., Müller, M.: The fine classification of conjunctive queries and parameterized logarithmic space.
TOCT 7(2), 7:1–7:27 (2015). https://doi.org/10.1145/2751316

10. Ciardelli, I., Groenendijk, J., Roelofsen, F.: Towards a logic of information exchange - an inquisitive
witness semantics. In: Logic, Language, and Computation - 9th International Tbilisi Symposium on
Logic, Language, and Computation, TbiLLC 2011, Kutaisi, Revised Selected Papers, pp. 51–72 (2011).
https://doi.org/10.1007/978-3-642-36976-6 6

11. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A., Banerji, R.B., Ullman,
J.D. (eds.) Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, pp. 151–158.
ACM, Shaker Heights (1971). https://doi.org/10.1145/800157.805047

12. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., varPilipczuk, M., varPilipczuk, M.,
Saurabh, S.: Parameterized Algorithms. Springer (2015). https://doi.org/10.1007/978-3-319-21275-3

13. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science.
Springer (2013). https://doi.org/10.1007/978-1-4471-5559-1

14. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation and dependence via multi-
team semantics. Ann. Math. Artif. Intell. 83(3-4), 297–320 (2018). https://doi.org/10.1007/s10472-017-
9568-4

15. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team semantics. In: Fer-
rarotti, F., Woltran, S. (eds.) Foundations of Information and Knowledge Systems - 10th International
Symposium, FoIKS 2018, Proceedings, Lecture Notes in Computer Science, vol. 10833, pp. 186–206.
Springer, Budapest (2018). https://doi.org/10.1007/978-3-319-90050-6 11

16. Durand, A., Mengel, S.: Structural tractability of counting of solutions to conjunctive queries. Theory
Comput. Syst. 57(4), 1202–1249 (2015). https://doi.org/10.1007/s00224-014-9543-y

17. Dvořák, W., Ordyniak, S., Szeider, S.: Augmenting tractable fragments of abstract argumentation. 186,
157–173 (2012). https://doi.org/10.1016/j.artint.2012.03.002

18. Ebbing, J., Lohmann, P.: Complexity of model checking for modal dependence logic. In: Bieliková, M.,
Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012: Theory and Practice of
Computer Science - 38th Conference on Current Trends in Theory and Practice of Computer Science,
Proceedings, Lecture Notes in Computer Science, vol. 7147, pp. 226–237. Springer, Špindlerův Mlýn
(2012). https://doi.org/10.1007/978-3-642-27660-6 19

19. Fagin, R., Vardi, M.Y.: Armstrong databases for functional and inclusion dependencies. Inf. Process.
Lett. 16(1), 13–19 (1983). https://doi.org/10.1016/0020-0190(83)90005-4

20. Fichte, J.K., Meier, A., Schindler, I.: Strong backdoors for default logic. In: Theory and Applications
of Satisfiability Testing - SAT 2016 - 19th International Conference, Proceedings, pp. 45–59, Bordeaux
(2016). https://doi.org/10.1007/978-3-319-40970-2 4

21. Fichte, J.K., Szeider, S.: Backdoors to normality for disjunctive logic programs. ACM Trans. Comput.
Log. 17(1), 7:1–7:23 (2015). https://doi.org/10.1145/2818646

22. Fichte, J.K., Szeider, S.: Backdoors to tractable answer set programming. Artif. Intell. 220, 64–103
(2015). https://doi.org/10.1016/j.artint.2014.12.001

23. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer (2006). https://doi.org/10.1007/3-540-29953-X

24. Galliani, P.: Inclusion and exclusion dependencies in team semantics - on some logics of imperfect
information. Ann. Pure Appl. Logic 163(1), 68–84 (2012). https://doi.org/10.1016/j.apal.2011.08.005

25. Gaspers, S., Misra, N., Ordyniak, S., Szeider, S., Zivny, S.: Backdoors into heterogeneous classes of
SAT and CSP. J. Comput. Syst. Sci. 85, 38–56 (2017). https://doi.org/10.1016/j.jcss.2016.10.007

26. Grädel, E.: Model-checking games for logics of imperfect information. Theor. Comput. Sci. 493, 2–14
(2013). https://doi.org/10.1016/j.tcs.2012.10.033

294 Y. Mahmood, A. Meier

https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/vi ew/3417
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/vi ew/3417
https://doi.org/10.4230/LIPIcs.ICDT.2015.110
https://doi.org/10.1145/2902251.2902279
https://doi.org/10.1109/LICS.2017.8005085
https://doi.org/10.1145/2751316
https://doi.org/10.1007/978-3-642-36976-6_6
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s10472-017-9568-4
https://doi.org/10.1007/s10472-017-9568-4
https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1007/s00224-014-9543-y
https://doi.org/10.1016/j.artint.2012.03.002
https://doi.org/10.1007/978-3-642-27660-6_19
https://doi.org/10.1016/0020-0190(83)90005-4
https://doi.org/10.1007/978-3-319-40970-2_4
https://doi.org/10.1145/2818646
https://doi.org/10.1016/j.artint.2014.12.001
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/j.apal.2011.08.005
https://doi.org/10.1016/j.jcss.2016.10.007
https://doi.org/10.1016/j.tcs.2012.10.033

27. Grädel, E., Kontinen, J., Väänänen, J., Vollmer, H.: Logics for Dependence and Independence (Dagstuhl
Seminar 15261). Dagstuhl Reports 5(6), 70–85 (2016). https://doi.org/10.4230/DagRep.5.6.70. http://
drops.dagstuhl.de/opus/volltexte/2016/5508

28. Grohe, M., Schwentick, T., Segoufin, L.: When is the evaluation of conjunctive queries tractable?. In:
Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) Proceedings on 33rd Annual ACM Symposium on
Theory of Computing, pp. 657–666. ACM, Heraklion (2001). https://doi.org/10.1145/380752.380867

29. Hannula, M., Kontinen, J., Virtema, J.: Polyteam semantics. In: Artëmov, S.N., Nerode, A. (eds.)
Logical Foundations of Computer Science - International Symposium, LFCS 2018, Proceedings,
Lecture Notes in Computer Science, vol. 10703, pp. 190–210. Springer, Deerfield Beach (2018).
https://doi.org/10.1007/978-3-319-72056-2 12

30. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional logics in team semantic.
ACM Trans. Comput. Log. 19(1), 2:1–2:14 (2018). https://doi.org/10.1145/3157054

31. Hella, L., Kuusisto, A., Meier, A., Virtema, J.: Model checking and validity in propositional and modal
inclusion logics. J. Log. Comput (2019). https://doi.org/10.1093/logcom/exz008

32. Kontinen, J., Müller, J., Schnoor, H., Vollmer, H.: Modal independence logic. J. Log. Comput. 27(5),
1333–1352 (2017). https://doi.org/10.1093/logcom/exw019

33. Krebs, A., Meier, A., Virtema, J.: A team based variant of CTL. In: Grandi, F., Lange, M., Lomus-
cio, A. (eds.) 22nd International Symposium on Temporal Representation and Reasoning, TIME 2015,
pp. 140–149. IEEE Computer Society, Kassel (2015). https://doi.org/10.1109/TIME.2015.11

34. Krebs, A., Meier, A., Virtema, J., Zimmermann, M.: Team semantics for the specification and
verification of hyperproperties. In: Potapov, I., Spirakis, P.G., Worrell, J. (eds.) 43rd Inter-
national Symposium on Mathematical Foundations of Computer Science, MFCS 2018, LIPIcs,
vol. 117, pp. 10:1–10:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Liverpool (2018).
https://doi.org/10.4230/LIPIcs.MFCS.2018.10

35. Kronegger, M., Ordyniak, S., Pfandler, A.: Variable-deletion backdoors to planning. In: Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 3305–3312, Austin (2015). http://
www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9885

36. Levin, L.: Universal search problems. Problems of Information Transmission 9(3), 115–116 (1973)
37. Lohmann, P., Vollmer, H.: Complexity results for modal dependence logic. Studia Logica 101(2), 343–

366 (2013). https://doi.org/10.1007/s11225-013-9483-6
38. Lück, M., Meier, A., Schindler, I.: Parameterised complexity of satisfiability in temporal logic. ACM

Trans. Comput. Log. 18(1), 1:1–1:32 (2017). https://doi.org/10.1145/3001835
39. Mahmood, Y., Meier, A.: Parameterised complexity of model checking and satisfiability in propositional

dependence logic. In: Herzig, A., Kontinen, J. (eds.) Foundations of Information and Knowledge Sys-
tems - 11th International Symposium, FoIKS 2020, Proceedings, Lecture Notes in Computer Science,
vol. 12012, pp. 157–174. Springer, Dortmund (2020). https://doi.org/10.1007/978-3-030-39951-1 10

40. Meier, A., Ordyniak, S., Sridharan, R., Schindler, I.: Backdoors for linear temporal logic. In: 11th Inter-
national Symposium on Parameterized and Exact Computation, IPEC 2016, pp. 23:1–23:17, Aarhus
(2016). https://doi.org/10.4230/LIPIcs.IPEC.2016.23

41. Meier, A., Reinbold, C.: Enumeration complexity of poor man’s propositional dependence logic. In:
Ferrarotti, F., Woltran, S. (eds.) Foundations of Information and Knowledge Systems - 10th International
Symposium, FoIKS 2018, Proceedings, Lecture Notes in Computer Science, vol. 10833, pp. 303–321.
Springer, Budapest (2018). https://doi.org/10.1007/978-3-319-90050-6 17

42. Pfandler, A., Rümmele, S., Szeider, S.: Backdoors to abduction. In: Rossi, F. (ed.) Proceedings of the
23rd International Joint Conference on Artificial Intelligence (IJCAI’13), pp. 1046–1052, Beijing (2013)

43. varPippenger, N.: Theories of computability. Cambridge University Press (1997)
44. Robertson, N., Seymour, P.D.: Graph minors. v. excluding a planar graph. J. Comb. Theory, Ser. B 41(1),

92–114 (1986). https://doi.org/10.1016/0095-8956(86)90030-4
45. Samer, M., Szeider, S.: Fixed-parameter tractability. In: Biere, A., Heule, M., van Maaren, H., Walsh,

T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185,
pp. 425–454. IOS Press (2009). https://doi.org/10.3233/978-1-58603-929-5-425

46. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algorithm. 8(1), 50–64
(2010)

47. Väänänen, J.A.: Dependence Logic - A New Approach to Independence Friendly Logic, London Math-
ematical Society student texts, vol. 70. Cambridge University Press (2007). http://www.cambridge.org/
de/knowledge/isbn/item1164246/?site% locale=de DE

48. Väänänen, J.A.: Modal dependence logic. In: Apt, K., van Rooij, R. (eds.) New Perspectives on Games
and Interaction. Amsterdam University Press (2008)

49. Virtema, J.: Complexity of validity for propositional dependence logics. Inf. Comput. 253, 224–236
(2017). https://doi.org/10.1016/j.ic.2016.07.008

295Parametrized MC and SAT in PDL

https://doi.org/10.4230/DagRep.5.6.70
http://drops.dagstuhl.de/opus/volltexte/2016/5508
http://drops.dagstuhl.de/opus/volltexte/2016/5508
https://doi.org/10.1145/380752.380867
https://doi.org/10.1007/978-3-319-72056-2_12
https://doi.org/10.1145/3157054
https://doi.org/10.1093/logcom/exz008
https://doi.org/10.1093/logcom/exw019
https://doi.org/10.1109/TIME.2015.11
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9885
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9885
https://doi.org/10.1007/s11225-013-9483-6
https://doi.org/10.1145/3001835
https://doi.org/10.1007/978-3-030-39951-1_10
https://doi.org/10.4230/LIPIcs.IPEC.2016.23
https://doi.org/10.1007/978-3-319-90050-6_17
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.3233/978-1-58603-929-5-425
http://www.cambridge.org/de/knowledge/isbn/item1164246/?site% _locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item1164246/?site% _locale=de_DE
https://doi.org/10.1016/j.ic.2016.07.008

50. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: IJCAI-03, Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, pp. 1173–1178
(2003)

51. Yang, F., Väänänen, J.: Propositional logics of dependence. Ann. Pure Appl. Logic 167(7), 557–589
(2016). https://doi.org/10.1016/j.apal.2016.03.003

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

296 Y. Mahmood, A. Meier

https://doi.org/10.1016/j.apal.2016.03.003

	Parametrized MC and SAT in PDL
	Abstract
	Introduction
	Applications
	Contributions
	Prior work

	Preliminaries
	Parameterised complexity
	Propositional dependence logic
	Representation of inputs as graphs
	Considered parameterisations

	Parameterised complexity of model checking in PDL
	Satisfiability
	A satisfiability variant

	Conclusion
	References

