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Abstract: A sharp-interface model employing the extended finite element method is presented. It is
designed to capture the prominent γ-γ′ phase transformation in nickel-based superalloys. The novel
combination of crystal plasticity and sharp-interface theory outlines a good modeling alternative to
approaches based on the Cahn–Hilliard equation. The transformation is driven by diffusion of solute
γ′-forming elements in the γ-phase. Boundary conditions for the diffusion problem are computed
by the stress-modified Gibbs–Thomson equation. The normal mass balance of solute atoms at the
interface yields the normal interface velocity, which is integrated in time by a level set procedure. In
order to capture the influence of dislocation glide and climb on interface motion, a crystal plasticity
model is assumed to describe the constitutive behaviour of the γ-phase. Cuboidal equilibrium shapes
and Ostwald ripening can be reproduced. According to the model, in low γ′ volume-fraction alloys
with separated γ′-precipitates, interface movement does not have a significant effect on tensile creep
behaviour at various lattice orientations.

Keywords: sharp-interface theory; crystal plasticity; phase transformation; diffusion; XFEM

1. Introduction

Nickel-based superalloys are state-of-the-art materials for high-temperature and high-
stress applications. Nevertheless, even these optimized alloys degrade during use. A promi-
nent damage mechanism is the change of shape and topology of the γ’-precipitates inside
the γ-matrix. It is well established that the movement of dislocations is a key driver
of these phase transformations; see [1]. In order to improve the understanding of the
relevant degradation mechanisms in superalloys, models that explicitly resolve the mi-
crostructure and its local properties are an indispensable tool in the development of new
high-temperature materials.

Mechanical modeling of superalloys has a long tradition. Most models rely on a mean
field description of the interaction of dislocations with the two-phase microstructure. These
range from early phenomenological approaches such as the Norton creep-law—see [2]—
to physics-based models that capture specific dislocation mechanisms; see [3,4]. Full-field
models typically resolve the two-phase microstructure explicitly while assigning mean-field
models to each of the two phases. Numerous models assume static phase interfaces, and
thus neglect the phase transformation; see [5,6]. Dislocation mechanisms in the two-phase
microstructure have also been modeled by means of molecular dynamics [7].

Models with mobile interfaces designed to capture the phase transformation can be
classified into diffuse- and sharp-interface (SI) models. The interface itself was studied in [8]
with recourse to the microscopic phase-field method.

Diffuse models employing the phase-field method typically rely on the Cahn–Hilliard
(CH) equation; see [9] or [10]. Phase-field finite element or finite difference models capture
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the shape evolution of single or multiple particles, taking advantage of symmetry boundary
conditions. Spectral solvers have led to a qualitative speed up, which allows for simulations
with strain-gradient-based crystal plasticity with up to 1000 particles [11].

SI models for phase transformations have received less scientific attention compared
to CH-type models; their advantages are, however, that SI models

1. Do not artificially thicken the interface in order to reduce mesh resolution to a tractable
level (unlike CH-type models)

2. Offer a good pathway for further verification of phase transformation models
3. Offer low computational cost in the framework of finite elements compared to CH-type

models.

SI models can be classified into static and dynamic variants. The static variant,
see [12,13], is commonly equipped with an artificially introduced conservation constraint
for the precipitate volume. These models are well suited to identifying equilibrium shapes
of precipitates, but do not yield physical velocities of the γ/γ′ phase interface. Dynamic
models explicitly model the underlying diffusion process and are thus able to recover
physical velocities.

As stated above, this study aims at developing a 3D SI model in conjunction with
ductile material behaviour. An approach based on a static model, entailing possibly non-
physical interface velocities, is not suitable, as the required material model of the γ-matrix
is rate and path dependent. This is a consequence of the material’s path dependent state
or history being influenced by the location and dynamic movement of the interface. For
that reason, the physical interface velocity has to be computed. In [14], the authors of
the current study presented an approximation for the interface velocities by means of the
Gibbs–Thomson equation. In contrast, in the current study, this approximation is replaced
by the solution of the full diffusion problem, and thus, the model is dynamic and inherently
captures physical interface velocities.

The model’s purpose is to assess the role of lattice orientation on the phase transfor-
mation behaviour in superalloys and, consequentially, their mechanical properties. This
is of technical interest for polycrystalline superalloys in particular, in which the γ/γ′ mi-
crostructure is aligned with each grain’s orientation. The lattice alignment leads to highly
anisotropic creep strength. Many polycrystalline superalloys exhibit almost macroscopic
grain sizes. This circumstance promotes the creep anisotropy, e.g., in tensile creep tests
with few grains throughout the cross section. This, however, leads to high scatter in creep
data from experiments. The objective of the model presented in this study is to lay the
groundwork for a model that allows for estimation of creep curves in arbitrary orientations
and stress states.

2. Free Boundary Problem

These requirements led to a SI model for the γ/γ′ phase transformation which is
driven by gradients in the chemical potential of γ′-forming elements. For the sake of
simplicity, the γ′ phase is considered pure Ni3Al in the long-range ordered L12 structure.
The γ phase is an unordered solid solution with a face centered cubic (fcc) lattice, which
allows for diffusion of substitutional Al-atoms via an inverse flux of vacancies.

The constitutive description employed in this study is based on the SI framework
of Gurtin et al.; see [15,16]. A free energy is postulated that is a function of the elastic
deformation gradient Fe and the atomic solute concentration of aluminium c

Ψ = Ψ(c, Fe) = f (c) + Ψ̂(Fe) = µ0(c− cS ) +
1
2

κ(c− cS )2 + Ψ̂(Fe). (1)

The chemical contribution f (c) is quadratic in c close to the base concentration cS and,
for the sake of simplicity, does not include any deformation dependence. The chemical
curvature is defined by κ = ∂2Ψ

∂c2 and without loss of generality µ0 = 0. Applying the
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Coleman–Noll procedure to the bulk leads to the following dependencies for the first
Piola–Kirchhoff stress P and the chemical potential µ:

µ =
∂Ψ
∂c

, P =
∂Ψ
∂Fe

F-T
p , (2)

where Fp is the plastic deformation gradient defined in the following section. The balance
of mass 0 = −∇ · h is complemented by Fick’s law h = −JMC−1∇µ with C = F T F,
J = Det(F) and the mobility M. A constant diffusion coefficient D = Mκ yields the partial
differential equation for the concentration field:

∇ · (JDC−1∇c) = 0. (3)

The balance of linear and angular momentum

∇ · P = 0,

PF T = FP T (4)

in conjunction with the boundary conditions

u = û on Γu, and PN = t on Γt with Γt ∩ Γu = ∅ (5)

determine the displacement field u. The displacement field u also has to fulfill the interface
condition [P]m = 0, where [x] = x+ − x− is the jump of x over the interface and m is the
normal to the interface. The fields u and c are coupled by virtue of the stress-modified
Gibbs–Thomson equation; see [17]. The equation states a Dirichlet boundary condition for
the solute concentration c along the interface

cγ = cSγ +
1

κ[cS ]

(
ψK + [Ψ̂]− 〈P〉m · [F]m

)
, (6)

with surface tension ψ, twice the local mean curvature K of the interface, the interfacial
jump in strain energy [Ψ̂] = Ψ̂γ − Ψ̂γ′ , the concentrations quantities at a flat interface cSγ ,
cSγ′ , the jump [cS ] = cSγ − cSγ′ , the normal to the interface m and the interfacial average

stress 〈P〉 = 1
2 (Pγ + Pγ′). The equation is central to the numerical method, as it explicitly

describes the energetic contributions to the phase transformation process.
In sequence to the solution of the concentration field, the normal interfacial balance of

mass gives rise to the normal velocity of the interface segment:

V I = − 1
[c]

hγm, (7)

where hγ is the mass flow density in the γ-phase. The interfacial velocity V I is integrated
in time; hence, the precipitate shape can be tracked.

3. Constitutive Assumptions in the Bulk

The rafting process is highly influenced by the ductile behaviour of the matrix. The in-
terested reader is referred to [18] for an extensive overview of the crystal plasticity method.
Therefore, a local crystal plasticity model is assumed that is based on the multiplicative split

F = FeFpFm, (8)

with the deformation gradient F = 1+∇u and the misfit deformation gradient Fm = 1+ δ1
(misfit δ). Hereby the misfit is assumed to be isotropic, as all three dimensions are equally
stretched in the γ’-phase. Plasticity may also occur within the precipitates as a result of
dislocation ribbons; see [19–21]. However, such phenomena are neglected in this study.
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A St.Venant-type strain energy

Ψ̂ =
1
2

Ee ·C[Ee] (9)

is assumed, where Ee = 1
2 (Ce − 1) with Ce = Fe

T Fe. The stiffness tensor is given by

C = CijBi ⊗ Bj =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C44 0
0 0 0 0 0 2C44


Bi ⊗ Bj, (10)

with the basis provided in Table 1.

Table 1. Orthonormal base vectors of stiffness tensor; see [22].

B1 = e1 ⊗ e1 B4 =
√

2
2 (e2 ⊗ e3 + e3 ⊗ e2)

B2 = e2 ⊗ e2 B5 =
√

2
2 (e1 ⊗ e3 + e3 ⊗ e1)

B3 = e3 ⊗ e3 B6 =
√

2
2 (e1 ⊗ e2 + e2 ⊗ e1)

The strain energy captures the cubic symmetry of the underlying fcc unit cell of both
phases. The shear stress in the glide system (bi, ni) in the current configuration is given by

τi = bi ·Mni (11)

where the double index does not incur summation and M = F−T
p CSFp. The 12 fcc

glide systems consist of a normal vector ni = nijej and a slip direction bi = bijej; see
Appendix A. The corresponding constant glide system in the intermediate configuration is
(b0i = F−1

e bi, n0i = Fe
T ni). Plastic deformation is integrated in time according to

Fp(
˙F−1

p ) = −
12

∑
i=1

Λ̇ib0i ⊗ n0i. (12)

Furthermore, shear stress and strain rate on each glide system are linked by the flow
rule, which is assumed to be a power law

Λ̇i = Λ̇0sign(τi)(
|τi|
τcrit

)m, (13)

where τcrit is the critical shear stress—see [23]—and Λ̇0 is the reference shear rate. It is
computed by the Taylor equation

τcrit = τ0 + αbµ
√

ρF, (14)

where ρF is a forest dislocation density, τ0 is the shearing resistance of a dislocation-free
crystal, and α is a material parameter in the range of 0.2–0.5 in many metals. The forest
dislocation density ρF evolves according to

ρ̇F = (Z0 + k1
√

ρF − k2ρF)
12

∑
i=1
|Λ̇i|. (15)

The three terms in parentheses are correlations to the rate of production of geomet-
rically necessary and statistically stored dislocations and the annihilation of dislocations.
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The terms are scaled by the parameters Z0, k1, and k2, respectively. The thermodynamic
consistency of the bulk material model was verified in [18].

4. Numerical Method

The extended finite element method (XFEM), introduced by [24], is well suited to
incorporate the above SI theory. In the following sections, all development steps of a
staggered solution scheme are described in sequence.

4.1. Balance of Linear Momentum and Approximation of the Displacement Field

The displacement field will exhibit a kink at the interface as the stiffness and eigen-
strain of the phases is different in both phases. Therefore, the displacement field is enriched
by an absolute value ansatz

uh = ∑
i∈I

Ni(ξ)ui + ∑
j∈J

Nj(ξ) f̂ (ξ)ũj, (16)

with the enrichment function f̂ . I is the set of all nodes and J is the set of enriched nodes.
The enrichment function

f̂ (ξ) =

∣∣∣∣∣∣∑k∈J
Nk(ξ)φk

∣∣∣∣∣∣−∑
k∈J

Nk(ξ)|φk| (17)

was first introduced by [25] and is employed in conjunction with the level set field
φ(ξ) = ∑j∈I Nj(ξ)φj with the nodal values φj. The standard ansatz functions in the bulk
are

uh
b = ∑

i∈I
Ni(ξ)ui. (18)

This enrichment scheme offers two advantages:

1. It is only active within the enriched elements; thus, no blending is required.
2. The condition number of the system matrix does not significantly increase compared

to the condition number of a similar FE problem without any enrichments. This also
holds if elements are barely intersected by the interface.

The weak form of the balance of linear momentum (4) is given by

G(u, η) =
∫

B
P(u) · ∇ηdV −

∫
∂Bσ

t̄ · ηdA = 0 ∀η, (19)

where η is the test function. The displacement field and the curvature information are
inputs to the stress-modified Gibbs–Thomson Equation (6).

4.2. Computing Input Quantities for the Gibbs–Thomson Equation

The generalized stress-modified Gibbs–Thomson equation requires a reliable evalua-
tion of stress P, deformation gradient F, strain energy Ψ̂, and curvature K at the interface.
As stress, deformation gradient, and strain energy are only given at the integration points
away from the interface, these quantities are recovered by an enriched least square scheme:

W =
∫

V

(
Θ̂−Θ(ξ)

)2
dV. (20)

Θ̂ are the integration point values, whereas Θ(ξ) is the recovered field. As a kink in the
displacement field will lead to a jump in P, F, and Ψ̂ across the interface, a shifted Heaviside
enrichment is employed:

Θ(ξ) = ∑
i∈I

(Ni(ξ)Θi) + ∑
i∈K

(
Ni(ξ)Θ̂i

[
H(φ(ξ))− H(φ(ξ i))

])
. (21)
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Herein, Θi and Θ̃i are the standard and the nodal enriched degrees of freedom, re-
spectively. The shifted variant offers higher accuracy than a stabilized form [26] in coarse
meshes, as it does not lead to spurious deformations close to the interface. Using a direct
solver compensates for the increased condition number as a result of barely cut elements.
After the least-squares smoothing, the jumps of P, F and Ψ̂ on the interface can be conve-
niently computed by overriding the level set φ(ξ) to either 1 or −1 at the corresponding
evaluation point on the interface.

Two schemes are employed to sample curvature K. The sub-tetrahedralization for
numerical integration (see [14]) within the enriched elements yields an explicit triangulated
interface. For each of the triangles, the curvature K has to be evaluated. The first scheme
minimizes the global least square error

W =
∫

V

( ∇φ∥∥∇φ
∥∥
)

ip

−∑
i∈I

Nimi

2

dV (22)

with respect to the nodal normals mi. The surface divergence of the normal field
m = ∑i∈I Nimi yields the curvature

K = ∇S ·m = (1−m⊗m)∇ ·m. (23)

The first scheme offers the best accuracy, but fails if multiple interfaces approach each
other—the interpolated normal m traverses zero instead of flipping signs in between to
proximate interfaces. As a remedy, the second scheme replaces the least-square smoothing
with a tricubic smoothing operation of the level set field, while the curvature evaluation
remains the same. However, this procedure is limited to equidistant hexahedral meshes;
see [27]. Both schemes are applied in this study; the first yields a more accurate solution in
single precipitate simulations, while the second is required in problems in which particles
may approach each other.

At this point, all inputs to the stress-modified Gibbs–Thomson equation are available,
and thus, the concentration on the matrix side of the interface can be computed. The result-
ing interface concentration is normalized and applied as an immersed Dirichlet condition
to the diffusion problem by means of a penalty term.

4.3. Approximation of the Concentration Field

The concentration field c is enriched by

c(ξ) = ∑
i∈I

Ni(ξ)ci + ∑
j∈J+

(
Nj(ξ)c̃j f̃ (ξ)

)
, (24)

where J+ is the union of all nodes inside elements that are at least enriched on one node.
The stabilized Heaviside enrichment

f̃ (ξ) = H(φ(ξ))− ∑
k∈J+

Nk(ξ)H(φ(ξk)) (25)

is also only active within elements that are crossed by the interface. In the bulk, the concen-
tration field is given by

c(ξ) = ∑
i∈I

Ni(ξ)ci. (26)

The weak form of the diffusion Equation (3) leads to

G(c, η) =
∫

V
JD∇η ·

(
C−1∇c

)
dV −

∫
∂VQ

ηQ · NdA = 0 ∀{η|η = 0 on Γc}, (27)

where η is the test function and Q is the flux of concentration over the boundary.



Metals 2022, 12, 1261 7 of 16

4.4. Computing the Normal Interface Velocity

The gradient of the concentration field ∇c is smoothed by a least squares scheme;
see Equation (20). As the concentration will also develop a jump across the interface,
the stabilized ansatz for the concentration gradient

d(ξ) = ∑
i∈I

(Ni(ξ)di) + ∑
i∈J

Ni(ξ)d̂i

H(φ(ξ))− ∑
k∈J+

Nk(ξ)H(φ(ξk))


 (28)

is chosen, where di and d̂i are the standard and enriched nodal unknowns of the gradient
field. These unknowns are determined by means of the least squares fitting procedure.

The smoothed concentration gradient (see Figure 1) in conjunction with the normal
balance of mass (7) yields the normal interface velocity

V I = − 1
[c]

hγm = − 1
[c]

JC−1dγm. (29)

Figure 1. Spherical inclusion commencing transformation into cuboid. Concentration gradient
which is proportional to the material flux. Normalized interfacial concentration as a result of the
stress-modified Gibbs–Thomson equation.

The interface velocity is the input to the extension velocity equation, which is discussed
in the following section.

4.5. Surface Tracking

The interface is implicitly described by level sets. As a result of the movement of
the interface, an update of the level set field is computed by a streamline upwind Petrov
Galerkin stabilized level set method; see [28,29]. The level set equation

∂φ

∂t
+ vext

∇φ∥∥∇φ
∥∥ · ∇φ = 0 (30)

tracks the movement of the interface. It, however, requires the extension velocity field,
which is defined by the steady state of

∂vext

∂t
+
∇φ∥∥∇φ
∥∥ · ∇vext = 0. (31)
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The corresponding weak forms are∫
V

η̃(
∂vext

∂t
+
∇φ∥∥∇φ
∥∥ · ∇vext)dV +

∫
V

ω(vext(ξ)−V I(ξ))2dA = 0 ∀η̃ and∫
V

η̃(
∂φ

∂t
+ vext

∇φ∥∥∇φ
∥∥ · ∇φ)dV = 0 ∀η̃,

(32)

where η̃ = η + k v
‖v‖ · ∇η in which the last term is the increased weighting in streamline

upwind direction with k = h√
15

and the element size h, see [29].
The physical interface velocity is transferred into the extension velocity field by the

quadratic penalty term in the extension equation. The penalty is enforced at the centroids
of the triangles of the explicit interface Γ, with the penalty factor ω = 10. The value of
the penalty factor is determined by visual comparison between the velocity on the explicit
surface to the subsequently extended velocity in the bulk close to the surface. A larger
penalty factor deteriorates the smoothness of the transfer and the condition number of the
underlying linear system of equations.

4.6. Staggered Solution Scheme

All partial differential equations are solved within the finite element method. Classi-
cally, XFEM-models for crack propagation employ a semi-explicit time integration scheme.
In the first step, the mechanical fields are computed, which is followed by propagating
the crack in a level set update that completes the timestep. In the current context, this is
not suitable, since the explicit surface develops spatial and temporal surface instabilities.
This can be attributed to the circumstance that, after such an explicit timestep, the updated
geometry of the discontinuity does not exactly fulfill equilibrium. The interface may have
traveled too far, which would lead to the reverse effect in the following timestep. This
phenomenon can be mitigated by a fully implicit staggered approach, which has been
adopted from [30].

The equations are iterated until the increment in φ from one staggered iteration to the
following decreases below a threshold. In order to speed up convergence, an Aitken ∆2

method is employed to dampen the level set increment.
As the location of integration points is modified in each staggered iteration, material

history needs to be transferred from the old to the new locations. This is accomplished
using an inverse distance mapping procedure

f (X) =
1

∑n
i wi(X)

n

∑
i

wi(X) fi, (33)

where f is the smoothed quantity and the weights are defined by

wi(X) =
1

‖X − Xi‖2 . (34)

Plastic deformation must not diffuse through the interface from the ductile matrix
into the precipitate, as otherwise the stress- and deformation-state at the interface would
be unphysical. Nevertheless, if the interface sweeps a volume, the volume should inherit
the plastic deformation which was present at that location previously. Therefore, the old
integration point may only contribute to the value of a new integration point scheme if:

1. The old point is on the same side of the interface as the new point.
2. The side is determined by the sign of the updated new level set.

A flow chart of the numerical procedure is depicted in Figure 2. More detailed
information, e.g., sub-integration, is provided in [14].
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Figure 2. Flow chart of the numerical scheme. hk
n,m are history data, where n is the time step; m = 1

are the history data from the previous time step, but in the current mesh, m = 2 are the history data
in the current time step and k is the global staggered iteration counter.

5. Numerical Results

In this section, a number of simulations demonstrate the versatility of the method.
An equilibrium shape is reproduced for model verification, the linear growth relation
during Ostwald ripening is confirmed, and it is shown that plasticity qualitatively alters
precipitate shapes.

5.1. Elastic Matrix

As a benchmark example, an equilibrium shape is recovered from an initially spherical
precipitate with radius r = 500 nm at the center of a cube with an edge length of 2000 nm.
The three symmetry boundary conditions for the balance of linear momentum are
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• X = 0 with u = 0,
• Y = 0 with v = 0,
• Z = 0 with w = 0

with the components u, v, w of the displacement field u. In order to obtain equilibrium
shapes, no further mechanical boundary conditions are applied. The diffusion problem is
only constrained by the immersed Dirichlet boundary within the domain. The zero-flux
Neumann conditions on the surface of the computational domain preserve the volume
of the inclusion, since no material is transported into the domain. All necessary material
parameters are provided in Table 2.

Table 2. Material parameters.

Elastic γ and γ′ Transformation γ and γ′

C11 215 GPa D 1.125 · 10−17 m2/s
C12 162 GPa κ 1.0417 · 109 J/m3

C44 77.6 GPa cSγ 0.13
δ 0.1% cSγ′

1
1+3 = 0.25

L 500 nm
σ 0.025 Jm2

The equilibrium state (see Figure 3) is accepted if the conversion rate

kabs =
∫

I

∣∣∣V I
i

∣∣∣dA (35)

is reduced to 10% of its initial value. The expected cuboidal shape is recovered.

Figure 3. Cuboidal equilibrium shape.

5.2. Ostwald Ripening

The main advantage of the diffusive model, however, does not lie in the possibility
to recover equilibrium shapes. The diffusive model captures the flow of atoms in multi-
particle systems. Large particles will grow in size at the expense of small particles, which
is referred to as Ostwald ripening. This phenomenon is attributed to the elevated solute
concentration on the surface of the small particles. A multi-particle problem was set up
with particles of different radii. The boundary conditions are the same as for the previous
example. It is observed that each particle on its own tends to its cuboidal equilibrium
shape. Hence, initially most transport occurs close to the surface of the particle. However,
diffusion also transports the solute atoms from the small towards the bigger particles. This
is illustrated by streamlines of the concentration gradient field; see Figure 4. The particle
growth and shrinkage are shown in Figure 5.
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Figure 4. Flow of solute atoms during Ostwald ripening. The streamlines reveal which location
on a surface element of a small particle deposits solute atoms to another surface element of a
bigger particle.

Initial Final

Figure 5. Ostwald ripening of initially spherical particles of different radii.

The theory by Lifshitz et al. [31] predicts a linear relationship of time to precipitate
volume. The relationship is confirmed by tracking the volumes of a larger and a smaller
particle in a two-precipitate simulation. The volumes of both precipitates are normalized
with respect to their initial volumes. Linear growth and shrinkage can be observed, while
the total volume remains approximately constant. The slight deviation in total volume
underlines that the numerical procedure required to compute the normal fluxes of solute
atoms is not mass preserving. The geometry and time evolution are provided in Figure 6.
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small

big

total

0 20000 40000 60000 80000 100000

0.94

0.96

0.98

1.00

1.02

1.04

time/s

V
/V

0

Precipitate volumes relative to initial volume, Boundary value problem
total volume is approximately preserved normalized interface concentration

Figure 6. Precipitate volumes during Ostwald ripening.

5.3. Ductile Matrix

Plasticity has been identified as a key driver of the phase transformation. This can
be attributed to the qualitatively changed stress and deformation state which enters the
Gibbs–Thomson Equation (6).

The following simulation is based on the initial geometry of the Ostwald ripening
case; see Figure 5. A displacement boundary condition is added at Z = 2000 nm with
w = 0.015 nm over a timespan of 55.5 h. The resulting tensile stress state activates plasticity,
which modifies the precipitate shape. The interfacial velocity V I and the forest dislocation
density ρF in the bulk are depicted in Figure 7.

Figure 7. Plastic deformation visible by increased dislocation density ρF modifies precipitate shape.
Evaluated with Diffusion coefficient D = 7.5 · 10−17 m2/s.

In polycrystalline superalloys, each grain is oriented differently with respect to the load
axis. However, it is well established that single crystals exhibit strong ductile anisotropy;
see [32] or [33]. Hence, each grain will, by itself, show anisotropic creep rates.

In order to study the anisotropy, seven simulations were performed on a mesh of
30 finite elements in each direction. Each of the simulations was assigned a different but
uniform lattice orientation. In conjunction with zero flux of solute atoms over the domain
boundary, two sets of boundary conditions for the mechanical problem were applied.
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The first set contains the same boundary conditions as the previous example. The second
set reads:

• Z = 0 with w = 0 (base symmetry plane).
• Z = 0 and Y = 0 with v = 0 (x-axis fixed in y-direction).
• Z = 0 and X = 0 with u = 0 (y-axis fixed in x-direction).

The specified orientations and resulting precipitate shapes for the second set of bound-
ary conditions are provided in Figure 8. The load displacement curves of the fully diffusive
model show only minor deviations from a simulation with a fixed interface; see Figure 9. It
is, therefore, concluded that Schmid factors and boundary conditions play a more impor-
tant role than an evolving precipitate geometry that remains a single particle. Nevertheless,
the authors hypothesize that the mechanical response of the simulations with shape evolu-
tion will show larger deviations from the simulations with fixed interfaces if

• The precipitate volume fraction is increased.
• The phase transformation leads to changes in topology.

a b c d

e f g

lattice orientations initial/fixed shape

Figure 8. Final shapes of precipitates at tensile strain of 1% after 17 h at different lattice orientations
identified by letters (a–g). Surface colour illustrates normal velocity (blue—negative, red—positive).
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Figure 9. Load displacement curves of fully diffusive (black) vs. fixed (thick, coloured) precipitate
model for orientations depicted in Figure 8 for two boundary condition setups.

However, simulations meeting these points require handling of boundary conditions
for the explicit surface, which will have to be addressed in future studies.

6. Conclusions and Outlook

A 3D SI model was presented and verified in a range of different initial and boundary
conditions. The following results were reported:

1. A SI model for phase transformations was extended by a path-dependent non-linear
crystal plasticity model.

2. The model captures cuboidal equilibrium shapes and Ostwald ripening.
3. By solving the diffusion equation explicitly, the transport of solute atoms within the

γ-matrix can be visualized.
4. By introducing a crystal plasticity model the precipitate’s shape is qualitatively altered

due to the anisotropy of the material’s mechanical response.
5. For isolated precipitates, the shape changes do not influence the global mechanical

behaviour, as was confirmed by simulations with a fixed interface.

Future research should aim at improving the maximum resolution with more efficient
search algorithms and parallelism. This will allow an increase in the number of precipitates.
Furthermore, the method should be extended by boundary conditions such that precipitates
may intersect the domain boundary. Both enhancements will significantly enhance the
applicability of the model to more realistic precipitate geometries.
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Appendix A

Slip systems employed in the crystal plasticity module.
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Table A1. 12 Slip systems of an fcc lattice , with j ∈ 1, 2, 3.

Slip System i nij bij

1 (111) (101̄)
2 (111) (1̄10)
3 (111) (01̄1)
4 (1̄11) (101)
5 (1̄11) (110)
6 (1̄11) (01̄1)
7 (11̄1) (110)
8 (11̄1) (011)
9 (11̄1) (101̄)

10 (111̄) (101)
11 (111̄) (1̄10)
12 (111̄) (011)
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