
Original Publication: Comput. Mech., DOI 10.1007/s00466-017-1388-1

A spatially stabilized TDG based finite element framework
for modeling biofilm growth with a multi-dimensional
multi-species continuum biofilm model

D. Feng1 · I. Neuweiler1 · U. Nackenhorst2

Received: 5 September 2016 / Accepted: 8 February 2017 

Abstract We consider a model for biofilm growth in the
continuummechanics framework,where the growthof differ-
ent components of biomass is governed by a time dependent
advection–reaction equation. The recently developed time-
discontinuous Galerkin (TDG) method combined with two
different stabilization techniques, namely the Streamline
Upwind Petrov Galerkin (SUPG) method and the finite
increment calculus (FIC) method, are discussed as solu-
tion strategies for a multi-dimensional multi-species biofilm
growthmodel. The biofilm interface in themodel is described
by a convectivemovement following a potential flow coupled
to the reaction inside of the biofilm. Growth limiting sub-
strates diffuse through a boundary layer on top of the biofilm
interface. A rolling ball method is applied to obtain a bound-
ary layer of constant height. We compare different measures
of the numerical dissipation and dispersion of the simula-
tion results in particular for those with non-trivial patterns.
By using these measures, a comparative study of the TDG–
SUPG and TDG–FIC schemes as well as sensitivity studies
on the time step size, the spatial element size and temporal
accuracy are presented.
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1 Introduction

Biofilms play an important role in many medical and indus-
trial applications [8,17]. Even though the definition of
biofilm is very diverse, some common components of bacte-
rial biofilms are widely observed from experimental studies,
such as the active bacteria, inert or deadbacteria and the extra-
cellular polymeric substance (EPS) produced by the active
bacteria [31]. The combination of those components may
influence the profile of biofilms as well as the patterns of
biofilms generated.

The fast development of the computational techniques
opens a door to predict the biofilm growth process with
numerical solutions of themodels. Various numericalmodels
andmodeling strategies are discussed in literature.Generally,
there are two main categories of biofilm models, namely the
continuous models [1,2,5,7,9,13–15,27,47,48,52] and the
discrete element based (DEB)models [30,33,49]. In theDEB
models, a single bacteriumor amass of bacteria ismodeled as
an individual particle or a cell. In recent years, single species
biofilm models based on particle methods are also presented
in literature [45,51].

In contrast to the DEB models, continuous models are
suitable to handle the problems of large scales. Contin-
uous models differ depending on the assumptions made.
Zhang et al. [52,53] developed several phase field based
biofilm models by assuming the systerm is a mixture of
polymer biofilm networks and the solvent. They are suitable
to study the mechanical behavior of the biofilm especially
when the fluid structure interaction (FSI) is considered and
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large deformation of biofilm happens. However, the sharp
interface is difficult to be represented for phase field mod-
els even though one can always argue there is anyway no
existence of real sharp interface in nature. Meanwhile, a
phase field model usually ends up with solving a fouth
order Cahn–Hilliard equation, which is quite computational
challenging.

Another way is to assume that the biofilm grows diffu-
sively [13–15] or advectively. We focus on a model that
describes the growth of a biofilm as an advection process
in this paper. Wanner and Gujer [47] developed a one-
dimensional biofilm model (the W–G model) based on this
assumption, and the biofilm growth rate which is limited by
the concentration of the substrate is pre-defined as a Monod
form of growth function. Dockery and Klapper [27] fur-
ther extended the W–G model to multi-dimensional cases
(the D–K model), in which the biofilm movement was mod-
eled as a potential flow. With this model, the well-known
“finger” pattern of the biofilm was reproduced. In order to
describe the interactions between different components of
the biofilm, Alpkvist and Klapper [2] further developed the
D–K model to a multi-species form (the A–K model). In the
A–K model, the biofilm movement was modeled as a poten-
tial flow driven by the reaction in the biofilm. A diffusive
boundary layer of substrates with a constant thickness was
assumed to be above the biofilm–fluid interface. The flow
in the boundary layer was not captured by the model, but
the diffusion of substrates through the boundary layer was
taken into account. The growth limiting substrates diffused
into the biofilm from the top of the boundary layer. Recen-
cent reviews on different biofilm models can be found in
[16,22,28,46].

In this paper, we present a solution strategy for the A–K
model in the Finite Element framework. The mass balance
in the A–K model is governed by an advection–reaction par-
tial differential equation and the reaction term is generally
non-linear. To predict reliable spatial distribution of biomass
requires schemes that generate stable solutions without spu-
rious oscillations and have little numerical dissipation. Such
requirements hold for many other problems as well, such
as modeling wound healing [44], tumor growth [50] and the
generation ofmany other biological patterns [35]. In addition
to the mass balance, as the biofilm–fluid interface changes
over time, one has to deal with themoving boundary problem
for solving the potential equation. Moreover, the location of
the boundary layer also changes following the biofilm–fluid
interface over time. This requires a special numerical treat-
ment as well.

Alpkvist andKlapper presented a finite difference strategy
to solve themodel by using a third order weighted essentially
nonoscillatory (WENO) scheme [26] in space together with a
third order explicit TVD-Runge–Kutta scheme [19] in time to
solve the hyperbolic system. The biofilm–fluid interface was

set by a level-set function as the signed distance function [38].
Due to the weakness of the finite difference method on deal-
ing with the irregular geometry of the computation domain
and interface, the biofilm growth velocity on the interface
was specially treated by a technique presented in [4]. Mean-
while, the symmetric ghost-node method [18] was applied to
assure a second order accuracy of the potential solution on the
biofilm–fluid interface. Finite element methods are applied
to overcome these drawbacks. Duddu et al. [11,12] used the
extended finite element (XFEM) method to obtain accurate
numerical solutions of the potential as well as the substrate
concentration on the irregular computation domain. The first
order upwind finite difference scheme for both spatial and
temporal discretization was used for solving the hyperbolic
equations. The numerical scheme is stable. However, the
first order finite difference scheme, especially for temporal
discretization [10], for the nonlinear hyperbolic equations
reduces the numerical accuracy of the whole model. There-
fore, it is useful to develop a fully finite element method
based numerical strategy to solve the model. As the finite
element has drawbacks concerning the stability of the solu-
tion, it needs to be tested if and how reasonable solutions can
be obtained in the finite element framework. This question is
addressed in this paper.

In this paper, the A–Kmodel is used for modeling two dif-
ferent components of biomass, namely the active biomass and
the inert biomass within a biofilm. We present a new numer-
ical strategy to simulate the biofilm growth process using
the A–K model. The time discontinuous Galerkin (TDG)
method [43] is applied to solve the transport equations of
biomass with higher order (compared to the first order) time
discretization. The instability property that comes from the
hyperbolic PDEs is sufficiently controlled by Streamline
Upwind Petrov Galerkin (SUPG) method [3,6] and finite
incremental calculus (FIC) method [37]. The biofilm–fluid
interface is captured by the level-set of a threshold value of
the total biomass. The boundary layer is modeled explic-
itly by using a rolling ball algorithm. As analytical solutions
for the non-linear coupled equations are not available, ad hoc
measures for numerical dissipation and numerical dispersion
are introduced and are used to compare the numerical simu-
lation results obtained from the TDG method, TDG–SUPG
and TDG–FIC methods. The influence of the time step as
well as the mesh size is studied with these measures. Cauchy
convergence studies of the simulation results of different time
accuracy schemes are also presented.

This paper focus on the numerical study of theA–Kmodel
but not on the biofilm system behavior. A brief review of the
A–Kmodel is presented in the second section, and the numer-
ical strategies for solving the model are presented in the third
section. In Sect. 4,more detailed studies on the numerical sta-
bility of the solution strategies as well as numerical examples
are presented.
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Fig. 1 Two-dimensional illustration of the computational domain Ω

[2]

2 Mathematical model

The following section outlines the A–K model introduced in
Section 3.1 in [2]. It is outlined at this place for completeness.
For the two-dimensional A–K model, the biofilm is consid-
ered within a computational domain of Ω :→ {x = (x, z) :
0 ≤ x ≤ W, 0 ≤ z ≤ H} as illustrated in Fig. 1.

The system contains a fluid region Ft and a biofilm region
Bt that are time dependent, and the biofilm–fluid interface is
denoted as�int = Ft∩Bt. The growth of biofilm is limited by
the concentration of specific substrates that are known as the
growth-limiting substrates. A boundary layer with a constant
thickness Hb is assumed above �int. The growth limiting
substrates are assumed to be fully mixed above the boundary
layer (in the bulk fluid domain) and diffuse from the top of
the boundary layer�h into the biofilm. The domain below�h

denotes the time dependent substrates transport domain St.

2.1 Substrate transport

The active bacterial biomass grows by consuming the growth
limiting substrate(s) that could be more than one substance
interacting with each other. We assume there is only one
growth limiting substrate, which is oxygen in this paper.
Therefore, the concentration of the oxygen s [ML−3] is one
of the most vital variables in the model. The concentration
of oxygen is governed by the mass balance equation

− D∇2s = −υ1ρ̄
1

Y

μs

kO2 + s
x ∈ St,

s = s̄ x ∈ �h,

∂s

∂ns
= 0 x ∈ �s .

(1)

where D [L2T−1] is the diffusion coefficient of oxygen, Y
[−], kO2 [ML−3], μ [T−1] and ρ̄ [ML−3] are yield, Monod

half-saturation coefficient, maximum growth rate and the
density of biofilm. The consumption of oxygen is propor-
tional to the volume fraction of active biomassυ1 [−] that can
access the oxygen. A Dirichlet boundary of a constant oxy-
gen concentration s̄ is applied at the top of the boundary layer
�h , and no-flux boundary is applied on �s :→ ∂St ∩ ∂Ω . ns
here refers to the normal vector on �s .

It is noted that the transport of the oxygen is only consid-
ered as a stationary diffusion–reaction process in the model.
Based on the research of Picioreanu et al. [40], the time
scale of the substrate transport is much smaller than the time
scale of the biofilm growth. Changing of the substrate over
time happens only via the change of other variables or the
boundary location, but s is assumed to be immediately at
equilibrium.

2.2 Biofilm growth

In this paper, two components of biomass, namely the active
biomass and the inert biomass, are considered within the
biofilm. Therefore, the summation of the volume fractions
of two biomass components in Btreads

υ1 + υ2 = 1, x ∈ Bt. (2)

Active biomass can be generated by consuming oxygen.
Meanwhile, the active biomass will also decay with a first
order rate of κd [T−1] and transform to the inactive biomass
with a first order rate of inactivation κi [T−1]. The only source
of the inert biomass in the system is from the transformation
of the active biomass. The mass balance of these two com-
ponents read

∂υ1

∂t
+ ∇ · (uυ1) = υ1

(
μs

kO2 + s
− κd − κi

)
,

x ∈ �, (3a)

∂υ2

∂t
+ ∇ · (uυ2) = υ1κi , x ∈ �, (3b)

∂υ1

∂nb
= 0,

∂υ2

∂nb
= 0, x ∈ ∂�, (3c)

wherenb is the normal vector of ∂Ω and theNeumannbound-
ary is applied on the edges of the computational domain. υ1
[−] and υ2 [−] denote the volume fractions of the active
biomass and the inert biomass respectively.

The biofilm is modeled as a fluid moving according to
consumption (sink) and production (source). The growth
velocity field of the biofilm u [LT−1] is assumed to be irro-
tational. Therefore, there exists a potential Φ [L2T−1] that
satisfies

u = ∇Φ. (4)
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The growth of the biofilm is driven by a balance of the pro-
duction and decay of the active biomass. Summing Eq. (3) by
considering Eq. (2) yields the biofilm growth velocity field

∇ · u = ∇2Φ = υ1

(
μs

kO2 + s
− κd

)
, x ∈ Bt. (5)

Substituting equation (5) into (3) yields

∂υ1

∂t
+ u · ∇υ1 = υ1

(
μs

kO2 + s
− κd − κi

)

− υ2
1

(
μs

kO2 + s
− κd

)
, x ∈ �, (6a)

∂υ2

∂t
+ u · ∇υ2 = υ1κi − υ1υ2

(
μs

kO2 + s
− κd

)
,

x ∈ �, (6b)

∂υ1

∂nb
= 0,

∂υ2

∂nb
= 0, x ∈ ∂�. (6c)

Equations (1–5) compose thewholeA–Kbiofilmmodel used
in this paper.

2.3 Dimensionless form of the governing equations

For computational convenience, the dimensionless form of
the governing Eqs. (1), (5) and (6) are derived by introducing
the following dimensionless variables [2]

X = x
H , T = t

td
, χ = tdΦ

H2
,

S = s
s̄ , Θ2 = (H2μρ̄)

Y Ds̄
, ξ1 = tdκd ,

ξ2 = tdκi , Ψ = μtd, K = kO2
s̄

,

(7)

where td is a typical time scale for the growth process and is
here set to 24h (86,400s). Note that the dimensionless num-
bers could also be combined to yield Damköhler numbers
(see Sect. 4.2). Putting all these dimensionless variables into
the governing equations leads to the dimensionless form of
the governing equations

− ∇2S = −υ1
Θ2S

K + S
, X ∈ S∗

t ,

S = 1, X ∈ �∗
h ,

∂S

∂n∗
s

= 0, X ∈ Γ ∗
s ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8a)

∇2χ = υ1
Ψ S

K + S
− υ1ξ1, X ∈ B∗

t ,

χ = 0, X ∈ �∗
int,

∂χ

∂n∗
χ

= 0, X ∈ Γ ∗
χ ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8b)

∂υ1

∂T
+ ∇χ · ∇υ1 = υ1

[
Ψ S

K + S
−

(ξ1 + ξ2) − υ1

(
Ψ S

K + S
− ξ1

) ]
,

∂υ2

∂T
+ ∇χ · ∇υ2 = υ1ξ2−

υ1υ2

(
Ψ S

K + S
− ξ1

)
,

∂υi

∂n∗
b

= 0, X ∈ ∂�∗,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8c)

where S and χ refer to the dimensionless concentration of
oxygen and dimensionless potential. S∗

t , B
∗
t and Ω∗ are the

corresponding dimensionless domains of St, Bt and Ω , Γ ∗
h ,

Γ ∗
s , Γ

∗
int and Γ ∗

χ are the corresponding dimensionless bound-
aries of Γh , Γs , Γint and Γχ respectively. n∗

s , n
∗
χ and n∗

b refer
to the normal vectors of Γ ∗

s , Γ
∗
χ and ∂�∗ respectively.

3 Numerical solution strategy

We present a new numerical strategy to solve the model
described in the previous section. All PDEs in Eq. (8)
are solved with Galerkin methods. Standard finite element
method (FEM) [54] is applied to solve the Eqs. (8a) and (8b)
and the spatially stabilized TDGmethod is applied addition-
ally to solve Eq. (8c). As the numerical scheme for solving
Eqs. (8a) and (8b) is the standard FEM scheme for solving
the Poisson equation, we do not present it in detail in this
paper. The first order bilinear (or trilinear) element is used
for the spatial discretization of Eq. (8a) and the second order
quadratic element is applied for the discretization of Eq. (8b).
Solutions of second order accuracy in space and arbitrary odd
order (maximum to 5th order in this paper) accuracy in time
are achieved for the biofilm modeling with this fully finite
element method based numerical strategy. The TDG scheme
for the advection–reaction equation with vector variables is
presented in Sect. 3.1 and two different stabilizationmethods
for multidimensional problems, namely the SUPG [6] and
the FIC [37] methods, are discussed in Sect. 3.2. The rolling
ball algorithm is presented in Sect. 3.3 and the numerical
implementation framework is summarized in Sect. 3.4.

3.1 Time-discontinuous Galerkin (TDG) method for
time dependent advection–reaction equation

Time-discontinuous Galerkin (TDG) method is applied to
solve the vectorized time dependent advection–reaction PDE

∂υ

∂t
+ u · ∇υ − f (υ) = 0, (9)
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Fig. 2 TDG time–space slice and elements [23]

where υ = (υ1, υ2)
T is the volume fractions vector of

components of biomass and the biofilm growth velocity
u = −∇χ . The temporal weak form within the nth time
interval Tn =]tn−1, tn[ (as illustrated in Fig. 2) reads
∫
Tn

ν

(
∂υ̂

∂t
+ u · ∇υ̂ − f

(
υ̂
))

dt = 0, (10)

where ν is the temporal weight function and υ̂ refers to the
temporal approximation of the principle variables. f (υ) =
( f1 (υ1, υ2) , f2 (υ1, υ2))

T with

f1 (υ1, υ2) =υ1

(
Ψ S

K + S
− (ξ1 + ξ2)

)

− υ2
1

(
Ψ S

K + S
− ξ1

)
, (11a)

f2 (υ1, υ2) =υ1ξ2 − υ1υ2

(
Ψ S

K + S
− ξ1

)
. (11b)

as shown in Eq. (8c).
Both the weight function and the numerical approxima-

tion of the variables’ values could be discontinuous at the
temporal nodes in the TDG method. By using Green–Gauss
divergence theorem, integration of Eq. (10) once yields

−
∫
Tn

∂ν

∂t
υ̂dt + ν (tn) υ̂ (tn) − ν (tn−1) υ̂ (tn−1)︸ ︷︷ ︸

on ∂Tn

+
∫
Tn

ν
(
u · ∇υ̂ − f

(
υ̂
))
dt = 0.

(12)

Noting that Tn is an open time interval from tn−1 to tn , the
test function as well as the nodal values at tn−1 should use the
right hand side value (+) of the interval and the left hand side
values (−) for tn . However, information can not pass from
element to element and a unique solution cannot be obtained
as a result of doing so. A frequently applied technique in the

Fig. 3 Temporal approximation with linear shape function in TDG
scheme [36]

DG method is to introduce a numerical flux at the node as

ν (tn) υ̂ (tn) − ν (tn−1) υ̂ (tn−1)

= ν−
n υ̂

−
n − ν+

n−1

(
αυ̂

−
n−1 + (1 − α)υ̂

+
n−1

)
,

(13)

where the parameter α ∈ (0, 1] is a constant that controls
the numerical flux at the nodal point. As information always
passes from the past to the future,α = 1when theDGmethod
is used for time discretization (Fig. 3). Then Eq. (12) can be
rewritten as

−
∫
Tn

∂ν

∂t
υ̂dt + ν−

n υ̂
−
n − ν+

n−1υ̂
−
n−1

+
∫
Tn

ν
(
u · ∇υ̂ − f

(
υ̂
))
dt = 0.

(14)

Integration of Eq. (14) by using the Green–Gauss divergence
theorem once again yields

∫
Tn

ν

(
∂υ̂

∂t
+ u · ∇υ̂ − f

(
υ̂
))

dt

+ ν+
n−1�υ̂n−1� = 0,

(15)

in which �υ̂n−1� refers to the jump value of υ̂n−1

�υ̂n−1� = υ̂
+
n−1 − υ̂

−
n−1, (16)

and the discontinuous nodal values of υ̂ are defined as

υ̂
+
n−1 = lim

ε>0;ε→0
υ̂ (tn−1 + ε) ,

υ̂
−
n−1 = lim

ε>0;ε→0
υ̂ (tn−1 − ε) .

(17)
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Discretization of Eq. (15) in space and time as outlined
above with the standard finite element method yields

Tn
a ⊗

(
NT , Nυ̂

e
)e + Tn

b ⊗
[ (

−∇NTu, Nυ̂
e
)e

−
(
NT , f (Nυ̂

e
)
)e ]

= Tn
c ⊗

(
NT , Nυ̂

−e
n−1

)e
,

(18)

in which

(m, n)e =
∫

�e
mnd�, (19)

υ̂e here refers to the unknown variable vector in a single
element, and N denotes the spatial shape function of the
element.Tn

a ,T
n
b andT

n
c are time matrices within the nth time

interval Tn with only temporal shape functions N̂ involved

Tn
a =

∫
Tn

N̂
T dN̂
dt

dt +
(
N̂

+
n−1

)T
N̂

+
n−1, (20a)

Tn
b =

∫
Tn

N̂
T
N̂dt, (20b)

Tn
c =

(
N̂

+
n−1

)T
N̂

−
n−1. (20c)

Due to the nonlinear feature of the reaction term in (10),
the equation is linearized by introducing an iteration process
according to the Newton–Raphson method as

υ̂k+1 = υ̂k + Δυ̂k, (21a)

f (υ̂k+1) ≈ f (υ̂k) + ∂ f (υ̂k)

∂υ
Δυ̂k, (21b)

where k is the iteration index. The linearized equation is
solved iteratively and the fully discretized equation reads

[
Tn
a ⊗ (NT , N)e + Tn

b⊗(
(−∇NTu, N)e − (NT ∂ f

(
υh
k

)
∂υ

, N)e

)]
Δυh

k

= Tn
c ⊗ (υh−

n−1, N
T )e

− Tn
a ⊗ (NT , N)eυh

k − Tn
b⊗[

−(−∇NTu, N)eυh
k − ( f

(
υh
k

)
, NT )e

]
,

(22)

where υh
k denotes the time–space approximation of the prin-

ciple variable of the kth iteration. As a remark, the global
weak form is built at the level of single time–space slices (as
shown in Fig. 2). The discretized Eq. (22) is always solved
within a single temporal interval and marches to the next
temporal interval by using the previous interval’s solution of
the last time point.

3.2 Spatial stabilization strategies: Streamline Upwind
Petrov Galerkin (SUPG) method and finite
increment calculus (FIC) method

One advantage of using the TDGmethod to solve the coupled
advection–reaction equations is that large time steps can be
applied [43]. Therefore, the time step is not limited to the
most critical PDE of the coupled system. Another advantage
is that higher order time schemes can be easily achieved.
This is done by increasing the order of the polynomial in
the temporal shape function N̂ . It has been shown that with
a pth order polynomial temporal shape function, a 2p + 1
order of temporal accuracy is achieved [24]. For instance,
a linear approximation of the temporal discretization results
in a 3rd order accuracy in time, and a quadratic temporal
approximation leads to 5th order accuracy in time. By using
higher order temporal discretization schemes, the numerical
dissipation is well controlled and even the stability of the
numerical scheme is improved. However, the numerical dis-
persion, which leads to the non-monotonic behavior of the
solution, still causes problems (see later in Sect. 4.3). There-
fore, using the spatially stabilized form of the TDG scheme
is necessary. The stabilized form of Eq. (18) obtained by
applying either the SUPG method or the FIC method can be
generallywritten as the following equation,which introduces
an additional stabilization term r ST B

Tn
a ⊗

(
NT , Nυ̂

e
)e

+ Tn
b ⊗

[ (
−∇NTu, Nυ̂

e
)e −

(
NT , f (Nυ̂

e
)
)e

+ r ST B︸ ︷︷ ︸
stabilization term

]
= Tn

c ⊗
(
NT , Nυ̂

−e
n−1

)e
.

(23)

The stabilization term introduced by the SUPG method
can be written as

r ST B = r SU PG =(
∇NTu, τ SU PGuT∇Nυ̂

e − f
(
Nυ̂

e))e
,

(24)

with the stabilization parameter τ SU PG = h
2‖u‖ , and h refers

to the length of the longest element edge. What should be
noted is that, unlike the original SUPG method, the time
derivative term in r ST B is omitted here. Hidden behind this
simplification is that the scheme is stabilized as a stationary
problem in each time step. Of course, if the time deriva-
tive term is large, the simplification will lead to a different
stabilized result compared to the original SUPG method.
Meanwhile, the DG method ensures A-stable property for
timediscretization,whichmeans the unstable problemcomes
from the first derivative term in space. Therefore, we have
good reason to assume that the time derivative term does
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Fig. 4 The local coordinates system (ξ, η) and the global coordinates
system (x, y) in two-dimensional FIC formula

not cause instability problems in the TDG scheme. Another
advantage of making such a simplification is that the spa-
tial discretization can be fully decoupled from the temporal
discretization in the stabilized TDG scheme and thus saves
computational efforts.

For the FICmethod, the additional stabilization term reads

r ST B = rF IC = −
(
∇NT DF IC ,∇Nυ̂

e
)e

, (25)

and the additional balancing isotropic diffusion matrix is
defined as

DF IC = RT
(

βξ 0
0 βη

)
R (26)

where R is a transformation matrix from the local coordinate
system to the global coordinate system, and βξ and βη are
the stabilization parameters along the principle directions of
the solution υ. The directions of the principle curvature are
approximated by the gradient direction of υ at the geometri-
cal center of the element, the corresponding axes are marked
as ξ in Fig. 4 and its counter orthometric direction η.

Each stabilization parameter is obtained by analyzing a
one-dimensional problem, and the stabilization parameters
[37] are chosen as

β j = γ j

(
sign(S j1)

sign(S j2)

)
+ ν j

6

(
sign(S0)

sign(S j2)

)
, ( j = ξ, η),

(27a)

γ j = u j l j
2

, ν j = al2j , (27b)

sign(S0) = sign(ῡ) (27c)

sign(S j1) = sign

(
∂ῡ

∂ j

)
(27d)

sign(S j2) = sign

(
∂2ῡ

∂ j2

)
, (27e)

Fig. 5 The local coordinates system (ξ, η, ζ ) and the global coordi-
nates system (x, y, z) in two-dimensional FIC formula

where ῡ denotes the value of υ at the element center, and l j
refers to the maximum length of the projection of u j on the
element edge. In this paper, the critical stabilization param-
eters of sign(S0) = 1, sign(S j1) = 1 and sign(S j2) = 1 are
used. For more details we refer to [43].

The balancing diffusion matrix for three-dimensional
problems in the FIC method reads

DF IC = RT

⎛
⎝βξ 0 0

0 βη 0
0 0 βζ

⎞
⎠ R, (28)

and the local coordinates system is shown as in Fig. 5.
In the figure the convex surface represents the contour

surface of the local solution and the flat surface on the top
of the convex surface is the tangent plane at one point. The
direction of axis ξ is also approximated by the gradient of
the solution υ at the element center. However the direction
of η and ζ axes are arbitrary as long as they lie on the tangent
plane. For convenience, the direction of axis η is taken the
same as the projection of the velocity vector on the tangent
plane uη and the base vector along the axis is

nη = uη

‖uη‖ , (29)

the base vector in ζ direction is simply derived by

nζ = nξ × nη. (30)

If the velocity vector is parallel to the gradient vector, the
direction of the velocity vector rotates a constant angle along
the global coordinates. What should be noted is that the arti-
ficial rotation of the velocity vector is only to determine the
local coordinates, but should not change the real solution of
the velocity field.
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Fig. 6 Rolling ball method to determine the boundary layer in two-
dimensional problems

3.3 Interface and boundary layer

The biofilm–fluid interface is determined by the contour line
(or contour surface in three-dimensional problem) of the total
biomass volume fraction of a constant value υ∗

�∗
int :→ contour

{∑
i

υi = υ∗
}

,
(
0 < υ∗ < 1

)
. (31)

The parameter 0 < υ∗ < 1 is chosen to describe the location
of the biofilm–fluid interface. However, different choices of
υ∗ do not lead to very different results. Meanwhile, the error
due to the artificial choice of this parameter will decrease
with finer mesh applied.

A rolling ball algorithm is developed to determine the
location of the boundary layer (as illustrated in Fig. 6). The
boundary layer is determined by rolling a rigid ball with a
radius of Hb on �∗

int, and the trace of the center of the ball
gives the curve of�∗

h . A detailed description of the algorithm
is listed as

– Compute the tangent vector t i and the normal vector ni
at the point i on �∗

int.
– Compute the corresponding coordinates X

′
i on �∗

h by

X
′
i = X i + Hbni , (32)

where X = (X, Z) refers to the coordinates of the
biofilm–fluid interface.

– Check if the ball and the biofilm–fluid interface�∗
int over-

laps. A distance function is defined as

Fi (X) :=
(
X − X

′
i

)2 +
(
Z − Z

′
i

)2 − H2
b. (33)

Fig. 7 Illustration of the rolling ball procedures for three-dimensional
problem

For an arbitrary point i on �int, if Fi (X) ≥ 0 is always
satisfied, point X

′
i is marked as a point on �∗

h , otherwise,
it is not taken as a point on �∗

h . An alternative form of
Fi (X) that can tolerate a certain amount of discrete error
is used in this paper

Fi (X) :=
(
X − X

′
i

)2 +
(
Z − Z

′
i

)2
− (Hb − δi )

2 ,

(34)

where δi is a parameter related to the grid size. Here we
take

δi = 1

4
min{d j }, for ( j = 1, 2, 3, 4) (35)

where d j refers to the length of the edges of the element
which contains point i (on �∗

int).

For three-dimensional problemswe use a flat plane to scan
the three-dimensional structure in y direction as shown inFig.
7 and repeat the procedure in x direction. On each scanning
plane a two-dimensional rolling ball procedure is carried out
to obtain the line of the top of the diffusive boundary layer.
With all these lines a three-dimensional surface which repre-
sents the top of the diffusive boundary layer is reconstructed.

3.4 Summary of the numerical techniques

As is shown in Sect. 2, the whole model is described by
Eq. (8). Taking the two-dimensional problem as an exam-
ple, for each time step, Eq. (8a) is linearized and solved with
Newton–Raphson method iteratively. Four nodes bi-linear
elements are used for spatial discretization. A total num-
ber of 4 integration points are used for the Gauss-Legendre
integrationwithin each element.With the solution of the oxy-
gen concentration, Eq. (8b) is solved with the standard finite
element method using 8-node quadratic elements. The rea-
son of applying higher order elements to solve Eq.(8b) is
to ensure the approximation of the gradient of the potential
used in Eq. (8c) has the same numerical accuracy as the vol-
ume fractions of the biomass. The biofilm growth velocity
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Fig. 8 Flow chart of the numerical scheme for modeling the growth of biofilm

u is evaluated on the Gauss points of the 4-node bi-linear
element. With the known biofilm growth velocity u and the
concentration of the substrate S, the new volume fractions of
the active biomass and inert biomass are obtained by solving
Eq. (8c). The equations are solved with the spatially stabi-
lized methods by using 4-node bi-linear elements for spatial
discretization and different order of the elements for temporal
discretization. The elements we used here lead to numerical
schemes of 1st, 3rd and 5th orders accuracy on the discontin-
uous temporal points and 2nd order accuracy in space in ideal
situations. However, the introduction of the diffusion for sta-
bilization reduces the spatial accuracy locally at the interface.
Both the SUPG and the FIC methods stabilize the problem
by introducing stabilization terms into the discretized equa-
tion. The SUPG method introduces the term proportional to
the residuum of the discretized equation (spatial part) along
the streamline. The FIC method used in this paper avoids
diffusing the problem more than necessary by introducing a
higher order diffusion term. In this sense, the FIC scheme
performs as a higher order up-wind scheme. By the end, the
new biofilm–fluid interface is captured by Eq. (31) and the
rolling ball method is applied to determine the location of the
diffusive boundary layer. A flowchart of the computational
framework is illustrated in Fig. 8.

For three-dimensional problems, the numerical strategy
is similar to the two-dimensional case discussed previously.
The only difference is the choice of the spatial discretization
elements. For Eqs. (8a) and (8c), 8-node bi-linear three-
dimensional elements are applied for spatial discretization,

while 20-node quadratic three-dimensional element are used
for the discretization of Eq. (8b).

4 Numerical analysis and examples

4.1 Numerical verification: with a one-dimensional
single component biofilm growth problem

In this part, a one-dimensional biofilm growth problem is
considered. We verified the numerical strategy presented in
this paper as well as the code by comparing the simula-
tion results from an open source software “AQUASIM”. The
governing equations are solved in a dimensionless domain
�d :→ {X = (X,Z) : 0 ≤ X ≤ 1, 0 ≤ Z ≤ 1} with a
mesh of 200 × 200 elements for spatial discretization. 3rd
order TDG–FIC scheme and a time step of ΔT = 0.1 is
applied. The initial biofilm–fluid interface is defined as

�∗0
int :→ Z = 0.2. (36)

Because the initial biofilm–fluid interface is flat, this case
essentially is a one-dimensional problem.Only active biomass
is considered here and the decay effect is omitted. Therefore,
both the inactivation rate κi and the decay rate κd are set to be
zero. The modeling parameters are listed in Table 1 [2] and
the dimensionless parameters used in the simulation can be
calculated from Eq. (7). The same problem is simulated with
“AQUASIM” [47,48] with different number of nodes to dis-
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Table 1 Parameters used for
two-dimensional simulation

Quantity name Symbol Value Unit

Length of the computational domain W 300 µm

Height of the computational domain H 300 µm

Thickness of the boundary layer Hb 45 µm

Oxygen concentration in bulk fluid s̄ 4 × 10−3 kg/m3

Diffusion coefficient of oxygen D 2 × 10−9 m2/s

Biofilm density ρ 60 kg/m3

Biofilm yield Y 10−1 [−]
Maximum growth rate of biofilm μ 10−5 s−1

Monod half-rate constant kO2 10−5 kg/m3

Fig. 9 One-dimensional biofilm growth simulation results with
“AQUASIM” and the numerical strategy (with TDG–FIC method) pre-
sented in this paper

cretize the intial biofilm layer. The numerical setup follows
the “AQUASIM” user manual [42]. As shown in Fig. 9, the
“AQUASIM” results converge to the TDG–FIC result with
the increase of the number of the discretization nodes.

4.2 Two-dimensional biofilm growth simulation

The governing equations are solved in a dimensionless
domain �d :→ {X = (X,Z) : 0 ≤ X ≤ 1, 0 ≤ Z ≤ 1}
with a mesh of 100× 100 elements for spatial discretization.
The initial biofilm–fluid interface is defined as

�∗0
int :→ Z = 0.2 + 0.05 sin

(
4πX + π

2

)
, (37)

and the initial volume fraction for each component of the
biomass is given as υ0

1 = 1 and υ0
2 = 0 respectively, which

means that only active biomass exists initially. Other param-
eters used in the simulation are listed in Table 1 [2] and the
dimensionless parameters used in the simulation can be cal-

culated from Eq. (7). υ∗ = 0.9 is applied for capturing the
biofilm–fluid interface.

Different simulation results are shown in Figs. 10 and 11.
We use the 3rd order temporal accuracy TDG–FIC scheme
together with a 100 × 100 spatial mesh for the simulations
and the dimensionless time step is taken as ΔT = 0.1. The
dimensionless decay parameter is taken as ξ1 = 0.1728
(corresponding to κd = 2.0 × 10−6 s−1) for both results.
However, different dimensionless inactivation parameters of
the active biomass are chosen as ξ2 = 0.0864 (corresponding
to κi = 1.0 × 10−6 s−1) and ξ2 = 0.5184 (corresponding to
κi = 6.0 × 10−6 s−1) respectively.

As shown in Fig. 10, the well known finger pattern [2]
is reproduced. The white curve in the figure represents the
biofilm–fluid interface. Clearly, a rather sharp interface is
captured with the numerical scheme presented in this paper.
In column (b) of Fig. 10, the curve above the biofilm–fluid
interface is the top of the diffusive boundary layer obtained
with the rolling ball algorithm. The concentration of oxygen
decreases continuously from the top of the boundary layer
due to diffusion. But as soon as the oxygen accesses the
biofilm, it is consumed by the active biomass. The results
in columns (c) and (d) show that the active biomass mainly
accumulates at the top of the biofilm due to a higher concen-
tration of oxygen distribution compared to the bottom.

In Fig. 11, a flat pattern is generated when a larger
dimensionless inactivation parameter ξ2 = 0.5184 is taken
compared with the case shown in Fig. 10.With a higher inac-
tivation rate, less active biomass is accumulated. This leads
to a thicker oxygen penetration depth (the thickness of the
active layer) in the biofilm. Based on the perturbation analyt-
ical study by [27], the oxygen penetration depth plays a vital
role on generating different patterns of biofilm. The results
demonstrate that the active layer can distinguish the pertur-
bation from the flat biofilm–fluid interface when the oxygen
penetration depth is small (corresponding to a thin active
layer). The finger pattern is generated in such situations as
the thin active layer helps to magnify the perturbed inter-
face. The thickness of the active layer is influenced by the
Damköhler numbers in the model. There are two Damköh-
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Fig. 10 Biofilm growth simulation results at T = 5 , T = 15 and T = 20.(ξ1 = 0.1728, ξ2 = 0.0864). a Total biomass distribution at different
times. b Concentration of oxygen distribution at different times. c Active biomass distribution at different times. d Inert biomass distribution at
different times

ler numbers in the A–K model corresponding to two mass
transport processes, namely the mass balance of oxygen (Eq.
(1)) and active biomass (Eq. (6a)). The Damköhler number
of the Eq. (1) can be written as

Da1 = oxygen diffusion time

oxygen consumption time
=

H2

D
1
μ

∼ Θ2, (38)

and the Damköhler number of the Eq. (6a) can be written as

Da2 = biofilm growth time (advection)

biomass production time (reaction)

= td
1
μ

− 1
κd

− 1
κi

= 1
1
Ψ

− 1
ξ1

− 1
ξ2

.

(39)

In the simulations, only the variable ξ2 is different, and a
smaller ξ2 leads to a larger Da2. This means the time scale
of the production of active biomass is smaller with a smaller
ξ2. Therefore, more active biomass is produced in the case

with a smaller ξ2 for the same time of biofilm growth. Recall
the right hand side of Eq. (1), clearly a thinner active layer is
produced with smaller ξ2. Therefore, the finger pattern of the
biofilm is represented in the simulation results. As a remark,
the magnitude of Da1 also influences the thickness of the
active layer. Similarly, a larger Da1 leads to a thinner active
layer too, and the finger pattern is more likely to be produced.

As the growth velocity of biofilm in the A–K model is
described as the gradient of the potential field Φ. Different
potential profiles which result in different growth velocity
fields would naturally lead to different biofilm patterns. The
growth velocity and the potential fields corresponding to the
flat and finger patterns discussed above are shown in Fig.
12. The arrows refer to the growth velocity vectors at dif-
ferent points of the biofilm and the black lines denote the
contours of the potential Φ. The results demonstrate that the
largest magnitude of the growth velocity is at the top of the
biofilm surface . This is obvious, as the oxygen concentration
is larger there. Especially, in the case of the finger pattern,
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Fig. 11 Biofilm growth simulation results at T = 5 , T = 15 and T = 20.(ξ1 = 0.1728, ξ2 = 0.5184). a Total biomass distribution at different
times. b Concentration of oxygen distribution at different times. c Active biomass distribution at different times. d Inert biomass distribution at
different times

both positive and negative potential regions are observed and
the patterns are the same as presented in [27].

4.3 Numerical dissipation and dispersion

Whenever a numerical scheme is applied to solve a PDE,
numerical truncation errors by the scheme are introduced.
Generally, the numerical truncation errors can be categorized
as numerical dissipation,which introduces an amplitude error
to the solution and numerical dispersion, which generates a
phase error [20]. Numerical dissipation smears the solution
and the numerical dispersion leads to a non-monotonic solu-
tion of the PDE. In this section, the behavior of the numerical
dissipation as well as the numerical dispersion in the biofilm
modeling strategy are studied. Themodeling parameters used
are the same as the ones used in the case shown in Fig. 10,
as numerical dissipation and in particular dispersion have a
larger impact on these types of solutions than on the flat pat-
terns. The measures of numerical dissipation as well as the
numerical dispersion are introduced in Sect. 4.3.1 and a com-
parative study of different stabilization strategies, namely the

SUPG and the FIC methods, is presented in Sect. 4.3.2. In
Sect. 4.3.3, more results on the influence of the time–space
element size on the properties of numerical dissipation and
numerical dispersion are presented.

4.3.1 Measures for numerical dissipation and dispersion

Due to the lack of an analytical solution of the non-linear
hyperbolic PDEwith free surface involved, it is very difficult
(even impossible) to carry out stability analysis in general
for such PDEs system. Even though some heuristic stabil-
ity analyses for some particular one-dimensional nonlinear
problems are reported, it is still not solved in general for
multi-dimensional non-linear PDEs [25]. A rigorous error
analysis is thus not possible. For this reason, we use heuristic
(ad hoc) measures for the numerical errors. The true solu-
tion of the biomass volume fractions outside of the biofilm
is obviously zero. Numerical dissipation leads to a smearing
out of sharp fronts.We use the value of the numerical solution
outside of the biofilm as a measure for the global numerical
dissipation, as these values are due to the smearing of the



13

Fig. 12 Biofilm growth simulation results at T = 5 , T = 15 and T = 20 [ξ1 = 0.1728, ξ2 = 0.5184 (a), ξ2 = 0.0864 (b)]. a Potential fields and
the growth velocities of the flat pattern case. b Potential fields and the growth velocities of the finger pattern case

sharp interface. We can calculate the global volume fraction
of total biomass outside the biofilm by

Mdissipation =
Nn∑
i=1

ῡi Aiw
A
i × 100%, (40)

where Nn is the total number of nodes and Ai refers to the
area surrounding node i . In this paper Ai = A which is
the area of a single element. wA

i is an area weight of each

node, which is wA
i = 1 inside of the computational domain,

wA
i = 0.5 on the edges of the domain and wA

i = 0.25 on
the four corner nodes. ῡi refers to the total biomass volume
fraction outside the biofilm of node i and ῡ is defined as

ῡ :→ {(ῡ = υ1 + υ2) | 0 < ῡ < υ∗, ῡ ∈ R}. (41)

In order to assess the global numerical dispersion, the con-
cept of total variation (TV) [21] which is widely used for
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(a) TDG (b) TDG-SUPG (c) TDG-FIC

Fig. 13 Active biomass simulation results at T = 5 with different stabilization strategies. a TDG. b TDG–SUPG. c TDG–FIC

designing high resolution non-oscillatory Finite Difference
schemes is adapted as measure of numerical dispersion. The
volume fraction of the active biomass is chosen to study the
behavior of the numerical dispersion. The TV value of the
global active biomass volume fraction reads

T Vactive =
Nn∑
i=1

| (υ1)i − (υ1)i∗ |, (42)

where i∗ refers to the neighbor nodes of the node i with a
coordination number of 4. The global dispersion is measured
as

Mdispersion = T Vactive
ABt

, (43)

where ABt denotes the area of the biofilm in the dimension-
less domain. It should be noted that TV is mostly used in
order to construct numerical solutions that do not increase
TV for problems where TV of the real solution is known to
not increase. For general nonlinear systems, the behavior of
TV of the true solution is not necessarily known, so that TV
of the numerical solution does not quantify an error (as out-
lined in [32], pp 344–345). Because both of Mdissipation and
Mdispersion depend on the biofilm patterns and the real solu-
tion is actually TV non-diminishing (due to the growth of
finger patterns), the values Mdissipation and Mdispersion are
only useful as qualitative measures for comparative studies
(see discussion in Sect. 4.3.2). Also, both Mdissipation and
Mdispersion presented above only dependent on spatial distri-
butions, which means that these measures are time-varying.

4.3.2 SUPG versus FIC

The simulation results at T = 5 by using only the TDG
method, the combined TDG–SUPG method and the TDG–
FIC method are shown in Figs. 13 and 14. A quadratic
temporal approximation which leads to a 5th order accuracy
in time is applied together with a 100 × 100 spatial mesh.
Non-monotonic behavior of the solution due to numerical

dispersion is observed as shown inFig. 13a. It is also observed
that the wrinkles propagate from the biofilm–fluid interface
to the whole biofilm over time if only the TDG method is
used. As shown in Fig. 14a, b, numerical dispersion is well
controlled by using both the SUPG and FIC methods and the
wrinkles are suppressed. However, the SUPG method fails
to control the numerical dispersion well around the biofilm–
fluid interfacewhere essentially is a sharp interface (as shown
in Fig. 14a). On the other hand, numerical dispersion is well
controlled both around the biofilm–fluid interface and the
domain inside of the biofilm by using the FIC method at a
cost of introducing more numerical dissipation compared to
the SUPG method. As the biofilm–fluid interface is defined
by the total biomass volume fraction in the numerical strat-
egy presented, numerical dispersion around the biofilm–fluid
interface can lead to an over-estimation of the biofilm height
in each time step. For this reason, the TDG–FIC method is
more suitable for simulating the biofilm problem within our
numerical framework.

The measures for numerical dissipation Mdissipation and
dispersion Mdispersion over time are shown in Fig. 15. The
TDG–FIC method introduces much more numerical dissipa-
tion than the TDG–SUPGmethod (as shown in Fig. 15a). The
amount of dissipation for FIC is higher, but of the same order
as the dissipation for the SUPG stabilization (less than 2.5%
of the total biomass). It also shows that for both TDG–SUPG
and TDG–FIC, Mdissipation increases over time. This is due
to the change of the biofilm pattern. An increasing length
of the biofilm–fluid interface leads to an increasing value of
Mdissipation . In other words, themeasure for numerical dissi-
pation presented in this paper works under the pre-condition
that the biofilm patterns are comparable at the same time
with different stabilization strategies. As shown in Fig. 15a,
the Mdissipation value of the TDG case is even larger than
the value of the TDG–SUPG case at around T = 18. This is
because the systemof TDGbecomes unstable and the biofilm
pattern is not comparable with the ones of the TDG–SUPG
and the TDG–FIC solutions.

We can evaluate the stability of the system from the
Mdispersion plot. It is observed that there is a big jump of
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Fig. 14 Total biomass
simulation results at T = 5 with
different stabilization strategies.
a TDG–SUPG. b TDG–FIC

(a) TDG-SUPG (b) TDG-FIC

Fig. 15 Measurement of the numerical dissipation and dispersion of different stabilization strategies. aMeasurement of the numerical dissipation.
b Measurement of the numerical dispersion

the value of the TDG curve in Fig. 15b. This is a sign of
an instability of the system and the simulation result is not
reliable anymore when this happens. On the contrary, the
TDG–SUPG and the TDG–FIC curves are smooth which
indicate that the systems are stable all the time. Moreover,
it demonstrates that the numerical dispersion measured for
TDG–SUPG is larger than for TDG–FIC. We can simply use
themaximumvalue ofMdispersion in time as a roughmeasure
of the dispersion property of the solution

M̄dispersion = T end

max
T=0

{Mdispersion}. (44)

The values of M̄dispersion calculated by using different sta-
bilization strategies and temporal accuracy schemes are

listed in Table 2. The bold cells in the table denote the
cases in which unstable solutions were obtained. Even the
1st order temporal accuracy TDG–FIC method is stable
while with the TDG–SUPG scheme only higher time order
schemes are stable (here it refers to the fifth order time
scheme).

Table 2 M̄dispersion values of the cases with different stabilization
strategies and temporal accuracy TDG–FIC schemes

TDG TDG–SUPG TDG–FIC

O(Δt) 2754.0 2208.0 864.1

O
(
(Δt)3

)
3322.0 1645.0 863.7

O
(
(Δt)5

)
4303.0 947.5 864.1
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Table 3 Convergence properties of TDG–SUPG method and TDG–FIC method with different orders of temporal accuracy

Iteration Index Error ‖Δυ‖
TDG–SUPG TDG–FIC

O (Δt) O
(
(Δt)3

)
O

(
(Δt)5

)
O (Δt) O

(
(Δt)3

)
O

(
(Δt)5

)

1 2.6695 3.8281 4.7879 1.2063 1.7646 2.1527

2 0.1470 0.1711 0.0487 0.0212 0.0219 0.0246

3 0.0120 0.0151 7.4154E−4 2.2624E−4 1.7690E−4 1.9302E−4

4 0.0013 0.0016 1.2062E−5 3.7996E−6 2.0447E−6 2.2049E−6

5 1.6165E−4 2.0025E−4 1.9821E−7 6.7568E−8 2.5968E−8 2.8037E−8

6 2.1815E−5 2.5681E−5 3.5861E−9 1.2210E−9 3.3926E−10 3.6796E−10

7 3.0509E−6 3.3691E−6 7.4782E−11 2.2241E−11 4.4912E−12 4.8948E−12

8 4.3381E−7 4.4647E−7

9 6.2238E−8 5.9471E−8

10 8.9808E−9 7.9470E−9

11 1.3014E−9 1.0644E−9

12 1.8922E−10 1.4282E−10

13 2.7586E−11 1.9191E−11

Furthermore, the TDG–FIC scheme shows better conver-
gence properties than the TDG–SUPG scheme. As shown in
Table 3, the Newton–Raphson iteration of Eq. (8c) converges
within 7 steps by even using the 1st order temporal acu-
racy TDG–FIC scheme. For the TDG–SUPG scheme, only
the 5th order temporal accuracy scheme converges after the
7th iteration and the lower order schemes converge after the
13th iteration. All these aspects shown above indicate that
the TDG–FIC scheme is more suitable than the TDG–SUPG
scheme for the hyperbolic equations in the A–K model. As
a remark, it seems that the TDG–FIC does not benefit from
the higher order time scheme as shown in Table 2. However,
by increasing the temporal accuracy, the solution obtained
from theTDG–FICscheme is also improved, especiallywhen
large time steps or coarse meshes are used (as shown in
Table 6). Of course, as a cost of increasing the temporal
accuracy more computational effort is required.

4.3.3 Influence of the spatial and temporal mesh size

Another important factor that influences the properties of
numerical dissipation and dispersion is the size of the time-
space elements used in the simulation. As shown in the
previous section, the TDG–FIC method is better suited than
the TDG–SUPG method for this application. Here we use
the TDG–FIC method to study the influence of the time step
size and spatial element size for the biofilm simulation. The
simulation results by using different spatial mesh sizes are
shown in Fig. 16. The 5th order temporal accuracy TDG–FIC
schemewith a dimensionless time step ofΔT = 0.1 has been
applied for these cases. Clearly, with finer mesh less numeri-

cal dissipation is observed. Similarly to Eq. (44) we can also
measure the dissipation profile by taking the maximum value
of Mdissipation in time, i.e.

M̄dissipation = T end

max
T=0

{Mdissipation}. (45)

The values of M̄dissipation shown in Table 4 are in agree-
ment with the results shown in Fig. 16. Obviously, more
numerical dissipation will be introduced if a coarser mesh
is used. Too much numerical dissipation may even ruin the
simulation results (as shown in the case of 25 × 25 mesh in
Fig. 16). It should be noted that the size of the element in
space and time also influences the property of the numerical
dispersion.

We compare the numerical results of different time steps
used in Fig. 17. The 100 × 100 spatial mesh is used here
in order to reduce the influence of the numerical dissipation
introduced by using coarse meshes.

As shown in Fig. 17, all the results by using time steps
of ΔT = 0.05 and ΔT = 0.1 show smooth and sharp
biofilm–fluid interfaces and the solutions converge when
ΔT ≤ 0.1. By using a larger time step of ΔT = 0.2, only
the higher order time schemes (O

(
(Δt)3

)
and O

(
(Δt)5

)
)

provide good patterns. However, local “over-shoot” features
due to the numerical dispersion are observed in those cases.
The values M̄dispersion and M̄dissipation observed by using
different time steps and temporal accuracy schemes are pre-
sented in Table 5 and Table 6. There is no extreme large
value of M̄dispersion in Table 5, which again demonstrates
that the TDG–FIC method can control the numerical dis-
persion well. For the cases of ΔT = 0.05 and ΔT = 0.1
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25× 25 50× 50 75× 75 100× 100

T = 5

T = 15

T = 20

Fig. 16 Biofilm growth simulation results at T = 5 , T = 15 and T = 20 by using different spatial mesh size and TDG–FIC schemes (with
different time accuracy)

Table 4 M̄dissipation values of
the cases with different
stabilization stretagies and
temporal accuracy TDG–FIC
schemes

25 × 25 (% ) 50 × 50 (% ) 75 × 75 (% ) 100 × 100 (% )

O(Δt) 32.81 10.21 3.98 2.51

O
(
(Δt)3

)
29.79 10.21 4.00 2.52

O
(
(Δt)5

)
29.79 10.21 3.99 2.51

(converged results), more numerical dispersion results when
a smaller time step is applied. This is because the numerical
dissipation is smaller with smaller time steps and the inter-
face is sharper as a result. This leads to a larger value of TV
of the solution itself and hence to a larger measure of the
dispersion is obtained. Meanwhile, slightly more numerical
dissipation is measured in the case ΔT = 0.05 than in the
case ΔT = 0.1 as shown in Table 6. With a closer look at
the simulation results shown in Fig. 17 one can find the gaps
between twofingers of each case is different, the gap is bigger
in the case of ΔT = 0.05 than in the case ΔT = 0.1 while
the fingers are even connected in some other larger time step
cases. A slightly larger gap could lead to a slightly larger
measure of dissipation naturally, but as the patterns are still
comparable, the difference is not too big.

However, for the cases with large time steps i.e.ΔT = 0.2
and ΔT = 0.5, more numerical dissipation (as shown in the
bold cells in Table 6) is observed. The biofilm–fluid interface
can hardly be captured accurately while too much numerical
dissipation is introduced to the system and this error could

accumulate over time which results in an unstable solution.
As a remark, it is always subjective to pick critical values
of M̄dispersion and M̄dissipation to judge if the simulation
result is acceptable or not. To the authors’ opinion, good
predictions of the biofilm patterns as well as the amount of
each component of biomass are the most important issues.

4.4 Convergence analysis

A Cauchy Convergence analysis of the simulation results
with the TDG–FICmethod of different time order schemes is
carried out in this section. For the convergence analysis over
different time step sizes, the grid size is taken as ΔX = 0.01
and the error norms of the solution are calculate by using the
solution of the total biomass vectors as [34]

ε
(l)
total = ‖υ(l) − υ(l−1)

nυ

‖, (l = 1, 2, 3) . (46)
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ΔT = 0.05 ΔT = 0.1 ΔT = 0.2 ΔT = 0.5

O(Δt)

O (Δt)3

O (Δt)5

Fig. 17 Biofilm growth simulation results at T = 20 by using different time steps and TDG–FIC schemes (with different time accuracy)

Table 5 M̄dispersion values of the cases with different time steps and
temporal accuracy TDG–FIC schemes

ΔT = 0.05 ΔT = 0.1 ΔT = 0.2 ΔT = 0.5

O(Δt) 879.6 864,1 862.7 893.2

O
(
(Δt)3

)
880.7 863.7 873.8 907.2

O
(
(Δt)5

)
880.7 864.1 874.6 930.2

where υ(l) is the lth total biomass solution of the data set
and nυ = 10201 is the length of the solution vector. υ(0)

refers to the total biomass solution computed by using a time
step of ΔT (0) = 0.025 and ΔT (l) = 2ΔT (l−1). A loglog
plot of ε

(l)
total over ΔT (l−1) is shown as in Fig. 18 and the

slope of the plot indicates the order of convergence over time
discretization.

Due to the sizes of the solution vectors change over differ-
ent spatial mesh sizes and the problem is non-linear, it is not
straightforward to use Eq. (46) to calculate the errors [29].
We use the total biomass in the system ῡΩ , which is a scalar,

for the convergence analysis with different spatial mesh sizes
ΔX . The errors, similar to Eq. (46), are calculated as

ε̄
(l)
total = |ῡ(l)

Ω − ῡ
(l−1)
Ω |, (l = 1, 2, 3) . (47)

where ῡ
(l)
Ω is the lth total biomass volume fraction in the

domain of the data set. ῡ(0)
Ω refers to the total biomass com-

puted by using a 200 × 200 mesh (ΔX (0) = 0.005)and
ΔX (l) = 2ΔX (l−1). The time step is chosen as ΔT = 0.05
and the grid convergence profile is shown in Fig. 19.

The results demonstrate that all the tests converge by
decreasing the time step size and mesh size, which indicates
that the numerical strategy presented in the paper provides
converging results. The results also demonstrate that the con-
vergence property is not improved by using more than 3rd
order time scheme. As a remark, the measures for numerical
dissipation as well as for numerical dispersion presented in
previous sections also indicate similar converging properties
(see Tables 4, 5, 6).

Table 6 M̄dissipation values of
the cases with different time
steps and temporal accuracy
TDG–FIC schemes

ΔT = 0.05 (%) ΔT = 0.1 (%) ΔT = 0.2 (%) ΔT = 0.5 (%)

O(Δt) 2.73 2.51 4.35 6.44

O
(
(Δt)3

)
2.71 2.52 2.38 4.03

O
(
(Δt)5

)
2.71 2.51 2.37 4.17
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Fig. 18 Convergence of total biomass over different time steps at T =
5 and T = 20

Fig. 19 Convergence of total biomass over different mesh sizes at T =
5 and T = 20

4.5 Three-dimensional biofilm growth simulation

The numerical strategy presented in this paper can be
extended to model three-dimensional biofilm growth. The
governing equations are also solved in the dimensionless
form within a dimensionless computation domain �d :→
{X = (X,Y,Z) : 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, 0 ≤ Z ≤ 1}.
A mesh with 70×70×70 cube elements is used for the spa-
tial discretization. The third order time accuracy TDG–FIC
scheme is applied here. The parameters used for the three-
dimensional simulation are listed in Table 7. As an example,
we take the initial biofilm–fluid interface (Fig. 20 ) as

�0
int :→ Z = 0.2+ | 4X − 2 || 4Y

−2 | e−(4X−2)2−(4Y−2)2 . (48)

Table 7 Parameters used for three-dimensional simulation

Quantity name Symbol Value Unit

Lengths of the computational
domain

W1,W2 300 µm

Height of the computational
domain

H 300 µm

Thickness of the boundary
layer

Hb 45 µm

Oxygen concentration in bulk
fluid

s̄ 4 × 10−3 kg/m3

Diffusion coefficient of oxygen D 2 × 10−9 m2/s

Biofilm density ρ 60 kg/m3

Biofilm yield Y 10−1 [−]
Maximum growth rate of
biofilm

μ 10−5 s−1

Monod half-rate constant kO2 10−5 kg/m3

Biomass inactivation rate κi 10−1 s−1

Biomass decay rate κd 2 × 10−1 s−1

Fig. 20 Initial three-dimensional biofilm–fluid interface

The simulation result of a three-dimensional biofilm after
growing for 1.9 days is shown in Fig. 21. The blue sur-
face above the biofilm is the top surface of the diffusive
boundary layer which is captured and reconstructed by the
rolling ball algorithm presented in Sect. 3.3, and the red sur-
face represents the biofilm–fluid interface. Figure 22 shows
the simulation results of the three-dimensional biofilm–fluid
interface at different times. The color maps in the figures rep-
resent the concentration of the oxygen. It is shown that the
peak of the biofilm accesses the most oxygen.
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Fig. 21 Three-dimensional simulation result of the biofilm growth at
T = 1.9

5 Summary and conclusion

A new numerical strategy for the simulation of multi-
dimensional (in 2D and 3D) multi-species biofilm growth

using the A–K model [2] is presented. The numerical frame-
work is fully finite elementmethod based. The standard finite
element method is applied for solving the substrate mass
balance equation as well as the potential equation by using
1st and 2nd order elements respectively. A rolling ball algo-
rithm is applied to determine the substrate diffusive boundary
layer. StabilizedTDGmethods (TDG–SUPGandTDG–FIC)
are applied to solve the hyperbolic transport PDE of each
component of biomass in order to obtain accurate and stable
numerical solutions. Measures for global numerical disper-
sion as well as numerical dissipation are applied to compare
the performance of these two stabilized TDG methods. It
demonstrates that both the TDG–SUPGandTDG–FICmeth-
ods lead to stable results. However, the TDG–FIC method is
more suitable for solving the A–K model with the numerical
strategy presented in this paper as the numerical dispersion
is better controlled.

With the numerical technique presented in this paper,
further studies on the influence of the reaction parameters,
different biofilm patterns as well as the biomass distribu-

(a)

(c)

(b)

(d)

Fig. 22 Three-dimensional biofilm growth simulation of different time. a T = 0.9. b T = 1.9 (c) T = 2.9
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tion and evolution over time can be studied. Naturally, the
numerical strategy could be further improved. For instance
using the XFEM [11] or finite cell method [39] could be
promoting approaches to solve the Poisson equations with
irregular boundary in the model. The h-p adaptive finite
element framework [41] could also improve the numerical
accuracy, especially for better resolution of the biofilm–fluid
interface. It might also be beneficial to use DG in space to
control the fluxes in order to improve the stability of the
solution.
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