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Abstract. In a recent experiment, Barreiro et al (2011 Nature 470 486)
demonstrated the fundamental building blocks of an open-system quantum
simulator with trapped ions. Using up to five ions, dynamics were realized by
sequences that combined single- and multi-qubit entangling gate operations with
optical pumping. This enabled the implementation of both coherent many-body
dynamics and dissipative processes by controlling the coupling of the system to
an artificial, suitably tailored environment. This engineering was illustrated by
the dissipative preparation of entangled two- and four-qubit states, the simulation
of coherent four-body spin interactions and the quantum non-demolition
measurement of a multi-qubit stabilizer operator. In this paper, we present the
theoretical framework of this gate-based (‘digital’) simulation approach for
open-system dynamics with trapped ions. In addition, we discuss how within this
simulation approach, minimal instances of spin models of interest in the context
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of topological quantum computing and condensed matter physics can be realized
in state-of-the-art linear ion-trap quantum computing architectures. We outline
concrete simulation schemes for Kitaev’s toric code Hamiltonian and a recently
suggested color code model. The presented simulation protocols can be adapted
to scalable and two-dimensional ion-trap architectures, which are currently under
development.
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1. Introduction

In view of the inherent difficulties in efficiently simulating the quantum physics of an interacting
many-body quantum system on a classical computer due to Hilbert space growing exponentially
with system size, Feynman proposed the idea of a quantum simulator. He suggested a
controllable quantum device for efficiently studying the dynamics of another quantum system
of interest [1]. This idea was later refined and formally developed by Lloyd [2] and others,
who showed that many-body quantum systems can indeed be simulated efficiently as long
as they evolve according to local interactions. Since then, quantum simulation has become a
very active and rapidly evolving research field on its own (see [3, 4] for a recent overview).
Driven by remarkable experimental progress and novel theoretical ideas for various physical
platforms in recent years, atomic, molecular and optical (AMO) systems ranging from cold
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atoms [5–8] and polar molecules [9, 10] over trapped ions [11] to photonic setups [12–14]
and nuclear magnetic resonance [15] have been under investigation for quantum simulation.
Similar promising developments have been reported for solid-state systems [16] such as arrays
of coupled superconductors [17, 18], quantum dots [19] and nitrogen-vacancy centers in
diamond [20].

For closed many-body quantum systems, which are well isolated from their environment,
powerful techniques have been developed to control the internal, coherent dynamics. The
ability to engineer and tune the underlying single-particle and interaction Hamiltonian terms
has enabled the simulation of different classes of quantum many-body models over wide
ranges of parameters. Ultimately, though, every quantum system is inevitably also coupled to
its surrounding environment. Recently, quantum control of open many-body systems, which
amounts to engineering both the Hamiltonian time evolution of the many-body system itself and
its coupling to the environment [2, 21], has become a major focus of research. Whereas typically
the system–environment coupling leads to detrimental effects on many-body or multi-qubit open
systems [22–25], the ability to control and tailor the associated dissipative processes has been
identified as a useful resource: it allows one to dissipatively prepare entangled quantum states
and correlated quantum phases from arbitrary initial states [26–31], and can also be exploited
for dissipative quantum computing [32] and quantum memories [33].

Recently, the elementary building blocks of such an open-system quantum simulator
have been shown in an experiment with up to five ions [34]. In their work, Barreiro et al
demonstrated the ability to engineer coherent and dissipative multi-qubit quantum operations
by the dissipative preparation of Bell states and multi-qubit stabilizer states, the simulation of
coherent four-body spin interactions and a quantum non-demolition measurement of four-qubit
stabilizer operators. Since the theoretical concepts and details of this work are of general interest
to the ion-trap community in the context of quantum simulation of spin systems, we provide the
theoretical framework of the simulation scheme in this paper. This work is motivated by the
development of ideas of topological spin models in the context of quantum computing and
condensed matter and the question of the extent to which these ideas can be realized in existing
experimental setups, in particular with linear ion-trap architectures. We focus on the following
questions: what are the interesting simulation possibilities in state-of-the-art ion-trap quantum
computing setups with moderately large chains of a few, possibly up to a few tens of, ions? How
can the currently available experimental resources be exploited in an optimal and experimentally
efficient way that allows one to access the physics of minimal instances of complex spin models
(as schematically shown in figure 1) with today’s technology?

Below, we present a toolbox for the simulation of general Markovian open-system
dynamics of mesoscopic spin systems. Our set of tools includes the fundamental building
blocks for the simulation of coherent n-body spin interactions, dissipative n-qubit reservoir
engineering, and the ability for quantum-non-demolition (QND) measurements of n-particle
observables. The simulation scheme makes use of a well-developed set of tools for the
purpose of quantum state preparation, manipulation and readout of trapped ions [11, 37, 38].
In particular, we show how high-fidelity multi-ion MS entangling gate operations [39], as
first suggested by Mølmer and Sørensen, and recently shown for up to 14 ions in the
laboratory [40], conveniently bundle the effect of sequences of two-qubit operations. This allows
one to reduce the experimental simulation complexity significantly and to realize coherent
n-body interactions in a minimal number of steps. In our simulation architecture, we use optical
pumping on individual ions—in combination with coherent gate operations—to tailor the

New Journal of Physics 13 (2011) 085007 (http://www.njp.org/)

http://www.njp.org/


4

σx1σ
x
2σ
x
3σ
x
4 σz2σ

z
3σ
z
5σ
z
6 σx1σ

x
2σ
x
3σ
x
4

σz1σ
z
2σ
z
3σ
z
4

Figure 1. Lattice spin models of interest for the gate-based (‘digital’) quantum
simulation with trapped ions. (a) In Kitaev’s toric code [35], spins located
around vertices of a 2D square lattice interact via four-body interactions
∼ σ x

1 σ
x
2 σ

x
3 σ

x
4 , whereas spins around plaquettes experience z-type interactions,

as e.g. ∼ σ z
2σ

z
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z
5σ

z
6 . (b) Small instance of a color code spin system, as proposed

in [36]. Here, spins located on the sites of a three-colorable lattice interact
via four-body plaquette interactions such as ∼ σ x

1 σ
x
2 σ

x
3 σ

x
4 and ∼ σ z

1σ
z
2σ

z
3σ

z
4 .

(c) Mesoscopic instances of spin models can be mapped onto linear chains
of trapped ions, where the spin degree of freedom is encoded in (meta)stable
electronic states. Coherent and dissipative time evolution can be simulated by
sequences of highly parallel multi-ion Mølmer–Sørensen (MS) gates applied to
all (or subsets of) ions, in combination with single-qubit rotations on individual
ions and optical pumping of an ancilla ion.

coupling of the spin system to its environment and thereby engineer dissipative n-body quantum
processes.

Our ‘digital’ simulation scheme is based on the application of sequences of coherent
gate operations in combination with dissipative time steps to realize open-system dynamics. It
complements existing proposals of quantum simulation with ground state ions [41–43] or ions
excited to Rydberg states [44]. In these ‘analog’ quantum simulators, the common principle
is to use externally controllable fields to engineer effective ‘always-on’ Hamiltonians, which
microscopically realize the model of interest directly. Recently, remarkable first experiments
have demonstrated the simulation of (relativistic) single-particle dynamics in an external
potential [45–47] and experimental studies of the physics of a few interacting Ising spins [48]
under frustration [49].

We point out that the presented ‘digital’ simulation scheme is suited for the simulation of
mesoscopic spin systems corresponding to chains of up to a few tens of ions, which with state-
of-the-art ion-trap technology can be controlled accurately. However, similar protocols can be
realized in scalable and two-dimensional (2D) ion-trap architectures, to whose development
currently a great deal of effort is devoted [38], [50–53], and also on other physical simulation
platforms. In fact, in previous work a ‘digital’ quantum simulation architecture for the open-
system dynamics of many-body spin models has been developed for neutral Rydberg atoms in
optical lattices [54].
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In section 2, we introduce the general idea of our simulation architecture and give a
concise summary of the main results. Details of the simulation of coherent and dissipative
many-body interactions are provided in sections 3 and 4. In section 6, we briefly discuss the
effect of imperfections in the simulation scheme. We illustrate our simulation scheme for two
examples of interest in the context of topological quantum computing, namely small-scale
implementations of Kitaev’s toric code [35] and a minimal instance of a color code model [36].
We conclude with an outlook.

2. Simulation of open many-body quantum systems

2.1. Open-system dynamics

In the following, we are interested in the open-system dynamics of many-body quantum
systems. The dynamics of an open quantum system that is coupled to an environment can be
described by a completely positive Kraus map [55]

ρ 7→

∑
k

EkρE†
k , (1)

where ρ denotes the reduced density operator of the system, {Ek} is a set of operation elements
satisfying

∑
k E†

k Ek = 1, and we assume an initially uncorrelated system and environment. For
the case of a closed system, decoupled from the environment, map (1) reduces to ρ 7→→ UρU †,
with U the unitary time-evolution operator of the system.

In the literature on quantum control of open quantum systems, the required set of operations
to realize different classes of quantum operations (1) as well as efficiency and universality
aspects have been discussed [21, 56]. In [34], several specific examples of Kraus maps, whose
dissipative dynamics can be used for dissipative quantum state preparation, e.g. for pumping
into entangled states, have been discussed and implemented experimentally.

The Markovian limit of the general quantum operation (1) for the coherent and dissipative
dynamics of a many-particle spin system is given by a many-body master equation

d

dt
ρ = (Lcoh +Ldiss)ρ = Lρ (2)

for the density operator ρ(t) of the many-body system. The coherent part of the dynamics is
described by

Lcohρ =

∑
α

Lcoh
α ρ = −i

∑
α

[Hα, ρ]. (3)

It is generated from a Hamiltonian H =
∑

α Hα that is a sum of terms Hα, which can in
general involve higher-order n-body interactions, which act on a quasi-local subset of particles8.
Dissipative time evolution is described by a Liouvillian part of the master equation

Ldissρ =

∑
α

Ldiss
α ρ =

∑
α

γα

2
(2cαρc†

α − c†
αcαρ− ρc†

αcα). (4)

The individual terms Ldiss
α ρ are of Lindblad form [57] and are determined by quantum jump

operators cα, which act on either single particles or subsets of particles, and by respective rates
γα at which these jump processes occur. Engineering open-system dynamics thus amounts to

8 Throughout this paper we set h̄ = 1.
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designing and engineering couplings of the quantum system to its environment, such that the
resulting many-particle dynamics is then governed by discrete Kraus maps or master equations
with quasi-local Hamiltonian and dissipative terms.

2.2. Many-body quantum systems: Kitaev’s toric code as a representative example

In the following, we will consider the simulation of many-body lattice spin models, which are
of interest in the context of topological quantum computing and memories. The idea of storing
and processing quantum information in naturally protected quantum systems has attracted a
great deal of interest in recent years [35, 58]. Here, protection from local errors is achieved
by encoding quantum information not in individual physical qubits, but instead in ground
states of topologically ordered quantum systems, which provide an energy gap to excited
states and exhibit a ground state degeneracy, which cannot be lifted by local perturbations.
The paradigmatic example of this class of spin models is Kitaev’s toric code Hamiltonian [35],
which is sketched in figure 1(a). This model exemplifies in a transparent way the challenges that
one encounters in the quantum simulation of related models, such as e.g. in a recently suggested
color code model (see figure 1(b)), which we discuss in more detail in section 5.

In Kitaev’s toric code model, spins are located on the edges of a 2D square lattice. The
Hamiltonian is given by H = −Es

∑
s As − Ep

∑
p Bp, which is a sum of stabilizer operators

As =

∏
i∈s

σ x
i and Bp =

∏
i∈p

σ z
i , (5)

which describe four-body interactions of spins that are located around the vertices (stars) s
and plaquettes p of the lattice, respectively. All four-body stabilizers have eigenvalues ±1 and
mutually commute. The ground state(s) is/are thus given by the simultaneous eigenstate(s) of
all stabilizers with eigenvalues +1 (assuming Es, Ep > 0). The degeneracy of the ground state
depends on the boundary conditions and topology of the setup. Excited states in this model
correspond to violations of these stabilizer constraints, i.e. −1 eigenstates with respect to either
the As or Bp stabilizers. They can be associated with localized quasi-particles residing on the
corresponding vertices and plaquettes of the lattice (as illustrated in figure 2(b)). They exhibit
anyonic statistics under braiding, i.e. when trajectories of different types of quasi-particles are
wound around one another.

Preparation of the system in the ground state manifold, starting from an arbitrary initial
(excited) state, can be achieved by a dissipative dynamics that is governed by a many-body
master equation (2) with quantum jump operators

cα =
1
2σ

z
i (1 − σ x

1 σ
x
2 σ

x
3 σ

x
4 ) and cβ =

1
2σ

x
i (1 − σ z

1σ
z
2σ

z
3σ

z
4 ). (6)

These collective operators act on four spins located around a vertex (site) of the lattice, as
depicted in figure 1(a). Index i denotes one arbitrary spin of the four involved spins. A four-body
jump operator cα induces dissipative dynamics, which pumps the four spins from the −1 into the
+1 eigenspace of Aα = σ x

1 σ
x
2 σ

x
3 σ

x
4 (see figure 2). The projector part 1

2(1 − σ x
1 σ

x
2 σ

x
3 σ

x
4 ) applied

to any +1 eigenstate of Aα vanishes; as a consequence, all +1 eigenstates are ‘dark states’ and
remain unaffected. In contrast, the spin flip σ z

i applied to one of the four spins (e.g. i = 1) can
incoherently convert −1 into +1 eigenstates, e.g. cα| + + + −〉 = σ z

1 | + + + −〉 = | − + + −〉. Here,
|±〉 are the eigenstates of σ x : σ x

|±〉 = ±|±〉.
The above example illustrates that the difficulty to be overcome in simulating the coherent

Hamiltonian dynamics lies in finding a way to realize the four-body Hamiltonian interaction
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Figure 2. Illustration of the dissipative dynamics of stabilizer pumping of four
spins: Lindblad dynamics according to a four-body quantum jump operator
cα =

1
2σ

z
1 (1 − σ x

1 σ
x
2 σ

x
3 σ

x
4 ) induces pumping into the eigenspace of eigenvalue

+1 of the four-body stabilizer operator Aα = σ x
1 σ

x
2 σ

x
3 σ

x
4 . All +1 eigenstates are

left invariant, whereas eigenstates corresponding to an eigenvalue −1 of Aαare
incoherently converted into +1 eigenstates, e.g. cα| + + + −〉 = | − + + −〉, by a
flip of one of the four spins.

terms. The realization of the dissipative ‘cooling’ dynamics into the ground state(s) by means
of the described collective dissipative processes requires the engineering of a coupling of the
spin system to an artificial, tailored environment. An analog simulation of these coherent
and dissipative higher-order n-body interactions, i.e. by a direct engineering using ‘always-
on’ external fields, is demanding because these higher-order effective interactions must be
constructed from underlying one- and two-body interactions. In this scenario, typically, the
interaction strengths and dissipative rates of the n-body processes, which typically arise in a
perturbative limit, are much smaller than dominant one- and two-body interactions.

Therefore, we aim to realize the coherent and dissipative dynamics according to (1) or (2) in
a digital simulation, i.e. by sequences of coherent gates and dissipative operations. Here, higher-
order n-body interactions can be obtained non-perturbatively as leading-order terms from the
application of one-, two- or n-body quantum gates. The corresponding interaction strengths are
virtually independent of the order n of the interaction terms and ultimately only limited by the
gate durations in the underlying quantum circuits.

In the case of continuous time dynamics, we apply these operations over small time steps τ ,
such that the master equation (2) emerges as an effective, coarse-grained description of the
time evolution. For small time steps, the time evolution can be implemented through a Trotter
expansion of the propagator corresponding to equation (2):

eLτρ '

∏
α

eL
coh
α τ

∏
β

eL
diss
β τρ. (7)

Errors from possible non-commutativity of the quasi-local terms in L are bounded [55] and can
be reduced by resorting to shorter time steps τ or higher-order Trotter expansions [59]. On the
other hand, as we will discuss below, it is also possible to engineer sequences of discrete Kraus
maps (1), which can for instance be employed for dissipative quantum state preparation in a
minimal number of steps.

2.3. Experimental tools for digital quantum simulation with trapped ions

Motivated by the present availability of a well-developed set of coherent and dissipative
tools [34] in state-of-the-art linear ion-trap architectures [37], we consider a setup in which the
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Figure 3. (a) Graph representation of the two-body spin interaction Hamiltonian,
which underlies the multi-ion MS gate (8). All pairs {i, j} of ions involved in
the gate interact with equal strength (represented as links). (b) A (4 + 1) ion
entangling MS gate applied to four system ions and an ancilla ion (index zero)
can be used to coherently map the information about whether the four system
ions are in a +1 (−1) eigenstate of the four-body interaction term ∼ σ x

1 σ
x
2 σ

x
3 σ

x
4 ,

onto the logical states |0〉 and |1〉 of the ancilla ion. In the Bloch sphere
representation, this mapping can be understood as a rotation of the ancilla qubit
initially prepared in |0〉 around the x-axis. The rotation angle depends on the state
of the system ions, and is chosen such that for any +1 eigenstate, as e.g. | + + + +〉,
the ancilla qubit ends in |0〉 after the MS gate, whereas for −1 eigenstates such
as e.g. | + + + −〉 it is transferred to |1〉. This mapping mechanism not only works
for four-body interactions, but also can be used for general n. For n odd, the
ancilla qubit is transferred to σ y eigenstates.

spins of a (possibly 2D or 3D) lattice model with a mesoscopic number of particles are mapped
onto a linear chain of ions, where the spin degrees of freedom are encoded in two (meta-)stable
internal states of the ions. Although our approach can be realized with any universal set of gate
operations, we focus on a realization which benefits from highly parallel multi-ion MS gates as
the principal building block for the implementation of unitary and dissipative simulation time
steps in equation (7). The MS gate operation [39] is based on pairwise two-ion interaction terms
(as illustrated in figure 3) and can be parametrized by two angles θ and φ,

UMS(θ, φ)= exp

(
−i
θ

4
(cosφSx + sinφSy)

2

)
. (8)

The sum in the collective spin operators Sx,y =
∑n

i=0 σ
x,y
i , with σ x,y

i the usual Pauli matrices,
is understood to be performed over all ions involved in the gate. This multi-ion entangling
gate operation is complemented by (non-entangling) single- and multi-qubit rotations, whose
physical implementation is discussed e.g. in [34]. In addition to this universal set of coherent
gate operations, the use of optical pumping on individual ions (as demonstrated e.g. in [60])
constitutes the dissipative ingredient for the engineering of dissipative many-body spin
dynamics.
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Figure 4. Generic gate decompositions for the simulation of coherent and
dissipative dynamics via Trotter expansion (7). (a) Coherent evolution according
to a four-body interaction Hamiltonian Hα = −Eασ

x
1 σ

x
2 σ

x
3 σ

x
4 for a time step

τ is efficiently achieved in three steps: (i) Firstly, an entangling MS gate
UMS(π/2, 0) applied to the four system ions and the ancilla ion coherently
maps the information on whether the system ions are in a +1 or −1
eigenstate of Hα onto the logical states |0〉 and |1〉 of the ancilla qubit (cf
figure 3). (ii) Secondly, a single-qubit gate exp(iφσ z

0 ) applied to the ancilla
ion effectively imprints a phase −φ (φ) on all +1 (−1) eigenstates of Hα.
(iii) Finally, the initial mapping is reversed by an inverse MS gate, which
disentangles the ancilla from the system ions, which have evolved according
to exp(iφσ x

1 σ
x
2 σ

x
3 σ

x
4 ). (b) Dissipative evolution, i.e. ‘cooling’ of the system

ions into the +1 eigenspace of Hα mediated by Lindblad dynamics with four-
body quantum jump operators cα =

1
2σ

z
1 (1 − σ x

1 σ
x
2 σ

x
3 σ

x
4 ): here, a two-qubit

gate C(θ)= |0〉〈0|0 ⊗ 1 + |1〉〈1|0 ⊗ exp[iθσ y
i ] is applied between mappings (i)

and (iii). In step (ii), all +1 eigenstates of Hα are left invariant, whereas
a spin flip σ

y
i with a θ -dependent amplitude applied to one of the four

system ions can convert −1 into +1 eigenstates. The angle θ controls the
conversion probability and allows one to tune from small probabilities (θ � 1,
master equation limit) to unit pumping probability (θ = π/2). After the three
steps, generally, the ancilla qubit is entangled with the system ions. (iv) Finally,
the ancilla qubit is incoherently reset to its initial state |0〉 by optical pumping.
This dissipative step carries away entropy and ‘cools’ the system qubits.

We have summarized the basic idea of the simulation of coherent and dissipative dynamics
corresponding to Kitaev’s code model in figure 4, to be explained in more detail in the following
sections.

We will show in more detail in section 3 that the unitary propagators eL
coh
α τρ corresponding

to n-body interaction Hamiltonians Hα (such as e.g. the four-body term in equation (5)) can be
implemented efficiently in an experiment (i.e. by a minimal number of gates) by combining
standard single-qubit gates with (n + 1)-ion MS gates, which are applied to the n system
ions and an additional ion, which encodes an ancilla qubit. Dissipative dynamics according
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to propagators eL
diss
α τρ with many-body jump-operators cα can be achieved by combining

the coherent gate operations with a dissipative step in the form of optical pumping of the
ancilla ion.

3. Simulation of coherent n-body interactions

In this section, we describe in more detail the digital simulation of coherent dynamics eL
coh
α τ

according to n-body spin interaction Hamiltonians.

3.1. The Mølmer–Sørensen (MS) multi-ion entangling gate

The main resource in our simulation scheme is multi-ion MS gate operations (8), which rely
on the application of a bichromatic laser field to the ions [39]. The two frequency components
are chosen close to the qubit transition, fine-tuned such that an effective second-order coupling
between pairs of ions is generated by off-resonantly coupling to the blue and red motional side-
bands of the common vibrational center-of-mass mode of the ion string. Within the Lamb–Dicke
regime, where the ions are spatially confined to a region much smaller than the wavelength of
the qubit transition, the MS gate operation is particularly robust and works in principle without
the necessity of cooling to the motional ground state [61]. The gate has been successfully
demonstrated [62] with remarkably high fidelities (99.3% for a pair of ions [63]) and recently
for strings of up to 14 ions [40]. A detailed discussion of the MS gate, in particular regarding
experimental implementation and optimization, can be found in [61]. The properties of the MS
gate (8) applied to n + 1 ions, which we will repeatedly use in the following, are:

• The phase θ is the main control parameter of the gate; for θ = π/2, the gate is maximally
entangling, i.e. the computational basis states are mapped to states, which are up to local
rotations equivalent to GHZ states [39]. Shifting the optical phase of the bichromatic
driving field allows one to switch between a σ x -type (φ = 0) and a σ y-type (φ = π/2)
MS gate.

• Periodicity: UMS(θ + 2πm, φ)= UMS(θ, φ) for m ∈ Z.

• ‘Backward’ MS gates (i.e. for negative values of θ ) can be realized by ‘forward’ gates,
since

UMS(−θ, φ)≡

{
UMS(π − θ, φ), for n even,

UMS(π − θ, φ)
(∏n

j=0 σ̃ j

)
, for n odd.

(9)

with σ̃ j = cosφσ x
j + sinφσ y

j . In particular, fully entangling MS gates are (up to local
rotations for an odd number of ions) equivalent to their inverse operations. Using only
‘forward’ MS gates can be experimentally convenient as a sign change of θ generally
requires frequency changes of the driving field.

3.2. Circuit decomposition for four-body spin interactions

Let us now outline the procedure for simulating a coherent time step eL
coh
α τ for a four-spin

interaction term Hα = −EαAα with Aα = σ x
1 σ

x
2 σ

x
3 σ

x
4 (see figure 1). Although the unitary

propagator can in principle be implemented with a standard universal set of single- and two-
qubit gates available for ions [37], here we use an alternative technique, which harvests the
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multi-ion MS gates and makes use of an ancilla qubit [64] encoded in an additional ion
(see figure 4). This technique has been used in [34] to experimentally realize four-body spin
interactions.

The approach consists of a sequence of three gate operations: (i) first, a fully entangling
MS gate UMS(π/2, 0), applied to the four system ions and the ancilla ion, coherently maps
the information, whether the system ions are in a +1 or −1 eigenstate of Ax , onto the ancilla
qubit (see figure 4(a)). (ii) Second, a single-qubit gate Uanc(φ)= exp(iφσ z

0 ) is carried out on
the ancilla ion. Due to the previous mapping, this operation on the ancilla qubit is equivalent
to manipulations on the +1 and −1 subspaces of Aα. (iii) Finally, the mapping is reversed by
an inverse MS gate UMS(−π/2, 0) on all ions. The evolution according to the three unitaries is
given by

U = UMS(−π/2, 0)Uanc(φ)UMS(π/2, 0)

= exp
[
i
π

4
Ŝxσ

x
0

]
exp[iφσ z

0 ] exp
[
−i
π

4
Ŝxσ

x
0

]
= exp

[
iφ

(
cos

(π
2

Ŝx

)
σ z

0 + sin
(π

2
Ŝx

)
σ

y
0

)]
, (10)

with the operator Ŝx =
∑n

i=1 σ
x
i acting on the n system ions. Using the identities

cos
(π

2
Ŝx

)
=

 Aα, for n = 4k, k ∈ N,
−Aα, for n = 4k − 2, k ∈ N,

0, for n odd
(11)

and

sin
(π

2
Ŝx

)
=

 Aα, for n = 4k − 3, k ∈ N,
−Aα, for n = 4k − 1, k ∈ N,

0, for n even,
(12)

one finds that for n = 4 equation (10) indeed reduces to

U = exp(iφσ z
0 ⊗ Aα). (13)

As a consequence, the ancilla—initially prepared in |0〉—factorizes out from the dynamics
of the system ions, which in turn evolve according to the unitary time-evolution operator
exp(iφAα). Here, from exp(iφAα)= exp(−i(−EαAα)τ ) one identifies the energy scale of the
four-body interaction as Eα = φ/τ , where τ is the physical time, which is needed to perform all
gates required for one full simulation time step (7). Note that pairwise interactions among the
system ions, present in the two-body Hamiltonian underlying the MS gate (8), cancel out in the
inverse mapping step (second MS gate).

3.3. Toolbox for simulation of n-body spin interactions

The simulation scheme outlined above for four-body interactions is readily generalized to
arbitrary n-body interactions of the form A =

∏n
i=1 σ

α
i with σ αi ∈ {1, σ x

i , σ
y

i , σ
z
i }. This is

possible by applying local rotations to (a subset of) system ions before and after the gate
sequence and thereby effectively transforming σ x

i into σ y
i or σ z

i , and by varying the phase φ
of the MS gates. This enables the simulation of z-type four-body plaquette interaction terms
as required for the toric code Hamiltonian (see figure 1 and section 2.2). The required gate
sequences are summarized in table 1. If certain ions are supposed not to participate in the
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Table 1. Circuit decompositions for the simulation of one time step of coherent
dynamics according to the time-evolution operator U = exp(iφA). The unitary
block is implemented by two MS gates applied to the n system ions and an ancilla
qubit (no. 0) initially prepared in |0〉, and a single-qubit rotation on the ancilla
qubit.

A =
∏n

i=1 σ
x
i UMS(−π/2, 0)Uanc(φ)UMS(π/2, 0)

n = 1, 5, . . . Uanc(φ)= exp(−iφσ y
0 )

n = 2, 6, . . . Uanc(φ)= exp(−iφσ z
0 )

n = 3, 7, . . . Uanc(φ)= exp(+iφσ y
0 )

n = 4, 8, . . . Uanc(φ)= exp(+iφσ z
0 )

A =
∏n

i=1 σ
y

i UMS(−π/2, π/2)Uanc(φ)UMS(π/2, π/2)
n = 1, 5, . . . Uanc(φ)= exp(+iφσ x

0 )

n = 2, 6, . . . Uanc(φ)= exp(−iφσ z
0 )

n = 3, 7, . . . Uanc(φ)= exp(−iφσ x
0 )

n = 4, 8, . . . Uanc(φ)= exp(+iφσ z
0 )

interactions (i.e. σ αi = 1), this can be achieved in different ways: (i) by focusing the driving
laser of the MS gate operation only onto the relevant subset of ions, (ii) by hiding the electronic
population of these ions in uncoupled electronic states for the duration of the gate sequence [65],
or (iii) by means of refocusing techniques [66]. As shown in reference [67] interspersing MS
gates applied to all ions with single-qubit gates on individual ions allows one to decouple
effectively certain ions from the dynamics. A set of convenient gate sequences for this purpose
is discussed in appendix B. Circuit decompositions for the simulation of more complex many-
spin interactions going beyond n-qubit Pauli operators, such as e.g. ring-exchange interactions,
can be worked out and implemented in an analogous way (e.g. in [54] such cases are discussed).

We note that in the gate-based ‘digital’ simulation scheme the energy scale E0 of the
n-body interactions is essentially independent of the order n, and mainly limited by the inverse
time required for performing the (n + 1)-ion MS gates. This is in contrast to analog simulation
approaches, where higher-order interactions typically arise in a perturbative limit from a two-
body Hamiltonian, and thus with correspondingly smaller energy scales.

Finally, we remark that the coherent n-body interactions Aα = σ x
1 . . . σ

x
n can also be

achieved without an ancilla qubit by a slight modification of the employed quantum circuit
(see appendix A for details).

4. Engineering dissipative many-body dynamics

In this section, we show how one can engineer dissipative dynamics according to n-qubit
stabilizer pumping. To be specific, we first discuss the implementation of master equation
dynamics governed by four-body plaquette quantum jump operators, cα =

1
2σ

z
i (1 − σ x

1 σ
x
2 σ

x
3 σ

x
4 ),

as required e.g. for the ground state cooling of Kitaev’s toric code (as discussed above in
section 2). Stabilizer pumping, as described in this section, has been demonstrated in an
experiment with five ions [34], four of them representing four system spins, which can be
regarded as one plaquette, and one additional ion encoding an ancilla qubit, which has been
optically pumped to engineer the dissipative four-spin dynamics.
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4.1. Engineering four-body quantum jump operators for stabilizer pumping

The dissipative pumping dynamics to ‘cool’ into the ground state manifold of Kitaev’s toric code
Hamiltonian, as sketched in figure 2, is implemented by three unitary gate operations applied to
the four system ions and the ancilla qubit initially prepared in |0〉, followed by optical pumping
of the ancilla qubit. The sequence of unitaries is

Ud = UMS(−π/2, 0)C(θ)UMS(π/2, 0) (14)

with the two-qubit gate

Ci(θ)= |0〉〈0|0 ⊗ 1 + |1〉〈1|0 ⊗ exp(iθσ y
i ). (15)

(i) As for the coherent simulation, an entangling MS gate UMS(π/2, 0) first maps the information
on whether the four system ions are in the +1 or −1 eigenspace of Aα onto the logical states
of the ancilla qubit. (ii) Next, the gate C(θ) realizes a spin flip with a θ -dependent amplitude,
provided the ancilla is in |1〉, i.e. only if the system spins are in a −1 eigenstate of Aα. In
appendix C we give a possible decomposition of Ci(θ) into global MS gates and single-ion
rotations. (iii) After reversing the initial mapping (i) by another (inverse) MS gate, the ancilla
qubit is in general entangled with the four system spins. (iv) Finally, optical pumping of the
ancilla ion back to its initial state |0〉 constitutes the dissipative element in the sequence, which
renders the dynamics of the four system spins irreversible and carries away entropy and thereby
‘cools’ the system qubits.

The unitary sequence (14) can be expressed as Ud(θ)≡ U †
1 U †

0 Ci(θ)U0U1 with U0 =

exp(−i(π/4)σ x
0 Ŝx), Ŝx =

∑n=4
k=1 σ

x
k and U1 = exp

(
−i(π/4)σ x

i

∑n=4
k( 6=i) σ

x
k

)
. Here we have made

use of the fact that all pairwise interaction terms not involving either the ancilla ion or the i th
system ion cancel out due to the inverse MS gate. The resulting operation Ud(θ)= U †

1 [(1 + U3)+
U2(1 − U3)]U 1/2, where U2 = cos((π/2)Ŝx)σ

z
0 + sin((π/2)Ŝx)σ

y
0 and U3 = U †

0 exp(iθσ y
i )U0,

can be further simplified using the operator identities (11) and (12) for n = 4, as well as
U †

1σ
z
i U1 = iσ z

i Aα and A2
α = 1, yielding

Ud(θ)=
1
2(1 + cos θ)+ 1

2 sin θσ z
i Aασ x

0 + i
2 sin θσ z

i σ
y

0 + 1
2(1 − cos θ)Aασ

z
0 . (16)

In combination with the subsequent optical pumping of the ancilla ion, the resulting dynamics
is given by the quantum operation

|0〉〈0|0 ⊗ ρs 7→ |0〉〈0|0 ⊗ tr0{Ud(θ)(|0〉〈0|0 ⊗ ρs)Ud(θ)
†
}

= |0〉〈0|0 ⊗

∑
k=1,2

Ek(θ)ρs Ek(θ)
† (17)

with the operation elements

E1(θ)=
1
2(1 + Aα)+ cos θ 1

2(1 − Aα), (18)

E2(θ)= sin θ σ z
i

1
2(1 − Aα)= sin θ cα. (19)

With a probability p = sin2 θ , states in the −1 eigenspace of Aα are dissipatively converted into
+1 eigenstates, while the +1 eigenspace is left invariant by the operation. For θ = π/2, cooling
occurs with unit probability.

For small values θ � π/2, equation (17) can be expanded up to second order in θ , yielding
the standard form of a Lindblad master equation (4) with a four-body jump operator cα and the
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Table 2. Required gate operations for the simulation of dissipative dynamics
according to n-body quantum jump operators c, which generate pumping into
the +1 eigenspace of the many-body stabilizer operator A = σ x

1 . . . σ
x
n (and

σ
y

1 . . . σ
y

n , respectively). The forms of the two-qubit gates C(θ) are listed for
different values of n; see appendix C for convenient decompositions into single-
qubit and collective MS gate operations. Here |y±〉 denote the eigenstates of σ y ,
σ y

|y±〉 = ±|y±〉.

c =
1
2σ

z
i (1 − σ x

1 . . . σ
x
n ) UMS(−π/2, 0)Ci (θ)UMS(π/2, 0)

n = 1, 5, . . . Ci (θ)= |y−〉〈y−|0 ⊗ 1 + |y+〉〈y+|0 ⊗ exp(−iθσ z
i )

n = 2, 6, . . . Ci (θ)= |1〉〈1|0 ⊗ 1 + |0〉〈0|0 ⊗ exp(−iθσ y
i )

n = 3, 7, . . . Ci (θ)= |y+〉〈y+|0 ⊗ 1 + |y−〉〈y−|0 ⊗ exp(−iθσ z
i )

n = 4, 8, . . . Ci (θ)= |0〉〈0|0 ⊗ 1 + |1〉〈1|0 ⊗ exp(iθσ y
i )

corresponding dissipative rate γα = θ 2/τ . Here, as above, τ is the physical time needed for the
implementation of one simulation time step (7).

4.2. Toolbox for dissipative quantum simulation

The described four-step scheme is readily generalized to n-body stabilizer cooling with
n-qubit quantum jump operators of the form c =

1
2σ

z
i (1 − Aα), where Aα =

∏n
j=1 σ

α
i with

σ αi ∈ {1, σ x
i , σ

y
i , σ

z
i }. In table 2, the required gate operations and the resulting n-body quantum

jump operators are listed. By combining the outlined scheme with local rotations on (subsets
of) the system ions, this allows one to engineer cooling dynamics according to z-type four-
body quantum jump operators cβ =

1
2σ

x
i (1 − σ z

1σ
z
2σ

z
3σ

z
4 ), which are required for ground state

preparation in Kitaev’s toric code model, as explained in section 2.2.

5. Digital simulation of a color code model

In this section we discuss the simulation of a minimal instance of a recently suggested color
code model [36]. Like Kitaev’s toric Hamiltonian discussed above, the color code we discuss
here belongs to the class of four-body stabilizer codes. It exhibits remarkable computational and
error correcting capabilities. In particular, the code allows one to implement the Clifford group
in a fully topological way within the ground state manifold, without the need of individual
addressing of physical qubits or braiding of quasiparticles. Here, we outline how a minimal
instance of such a color code can be realized with the developed simulation techniques, and
discuss the state preparation and implementation of logical gate operations, as well as readout.
For a detailed introduction to color code models, we refer the reader to [68].

The minimal, nontrivial setup consists of seven physical qubits located at the corners of
three plaquettes, as shown in figure 1(b). Including one ancilla qubit for the implementation
of coherent and dissipative dynamics, this system can be simulated with a string of eight
ions. Qubits located around plaquettes interact via four-body x- and z-interaction terms:

the Hamiltonian Hcc = −E
(∑3

i=1 Ai +
∑3

i=1 Bi

)
, with A1 = σ x

1 σ
x
2 σ

x
3 σ

x
4 , B1 = σ z

1σ
z
2σ

z
3σ

z
4 and
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similar interaction terms for the other two plaquettes, consists of six mutually commuting
stabilizer operators.

Coherent dynamics according to this Hamiltonian can be realized by implementing unitary
time steps as outlined in section 3 with the help of an ancilla qubit. Cooling into the ground state
manifold can be achieved in a similar way as for the toric code: Liouvillian dynamics associated
with a set of six four-body jump operators, such as c =

1
2σ

z
1 (1 − σ x

1 σ
x
2 σ

x
3 σ

x
4 ), drives the system

spins from an arbitrary initial state dissipatively into the ground state manifold, which is given
by the simultaneous +1 eigenspace of the six stabilizer operators. As in Kitaev’s toric code,
excited states |ψ〉 correspond to states where the system spins are in −1 eigenstates with respect
to certain stabilizers. The quasiparticles of x (or z) type associated with these violations of the
stabilizer constraints are located on the corresponding plaquettes, for instance on the uppermost
plaquette, if A1|ψ〉 = −|ψ〉 (or B1|ψ〉 = −|ψ〉).

Since there are only six stabilizer constraints for seven system spins, the ground state is
degenerate and thus offers the possibility of encoding one logical qubit. An operator basis for
this logical qubit can be constructed by the global operators X̂ =

∏7
i=1 σ

x
i and Ẑ =

∏7
i=1 σ

z
i .

These two logical operators commute with all six stabilizers of the code; thus they leave the
system within the ground state manifold.

The logical qubit can be initialized in the logical state |0̄〉 by (dissipatively) preparing
the system—in analogy with the four-body stabilizer cooling—in a +1 eigenstate of the global
operator Ẑ , such that Ẑ |0̄〉 = |0̄〉. The logical |1̄〉-state is then obtained by the application of the
logical X̂ -operator, |1̄〉 = X̂ |0̄〉, which corresponds to a single-qubit rotation applied to all seven
system ions. This minimal color code setup also allows one to implement single-qubit gates
belonging to the Clifford group in a topological way: the Hadamard H and phase-shift gate K ,

H =
1

√
2

(
1 1
1 −1

)
, K =

(
1 0
0 i

)
(20)

can be implemented by applying the corresponding operations globally to all seven system
ions, i.e. Ĥ =

∏7
i=1 Hi and K̂ =

∏7
i=1 Ki . The logical operators then directly fulfill the required

transformation properties, as for example Ĥ † X̂ Ĥ = Ẑ .
Remarkably, once the system is prepared in the code space, this set of logical single-qubit

gates can be performed by simple global single-qubit rotations without the need of addressing
individual ions. These operators take ground states to ground states, the system stays in the code
space, and thus the quantum gates are achieved without braiding of quasiparticles. Similarly,
readout measurements can be performed globally, i.e. by standard fluorescence imaging of all
ions measured either in the x- or in the z-basis.

For the realization of a topological controlled-NOT (C-NOT) gate operation, the minimal
system consists of two seven-qubit layers encoding two logical qubits. Its implementation
requires an experimental setup of 15 ions, which might become experimentally feasible in the
near future.

6. Noise and imperfections

In a digital simulation of a many-body master equation (2), several sources of imperfections
occur. First of all, Trotter errors from the non-commutativity of coherent (and also dissipative)
terms arise for each time step of the simulation. These are bounded and can be reduced by
resorting to smaller time steps and higher-order Trotter decompositions. In addition, imperfect
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gate operations in the quantum circuits lead to errors. Their effects on gate-based quantum
simulations have been discussed in detail in [64].

6.1. Generic effect of gate imperfections on quantum simulation

Here, we first briefly discuss the generic effect by considering a particularly transparent example
of a pulse length error in the simulation of coherent dynamics U = exp(iφA) according to a
four-body spin interaction A = σ x

1 σ
x
2 σ

x
3 σ

x
4 , as explained in section 3. We assume that the only

error is a pulse length error in the single-qubit gate Uanc(φ)= exp(iφσ z
0 ) applied to the ancilla

qubit in the three-step sequence equation (10). In one small time step (φ � π/2), the system
spins evolve according to

ρ(t + τ)' Uρ(t)U †
' ρ(t)− i[−φA, ρ(t)] +φ2(Aρ(t)A − ρ(t)). (21)

Assuming that the actual value φ fluctuates (e.g. due to laser intensity fluctuations) in
the experiment from time step to time step according to a Gaussian distribution p(φ)=

1/
√

2πσ 2 exp[−(φ−φ0)
2/(2σ 2)] around the mean value φ0 with a variance σ � φ0, we obtain,

after averaging over φ, the modified equation of motion

d

dt
ρ ' −i[(−φ0/τ)A, ρ] +

φ2
0

τ
(AρA − ρ)+

σ 2

τ
(AρA − ρ). (22)

Thus, one finds dynamics according to a four-body Hamiltonian Heff = −(φ0/τ)A, where a
systematic shift in φ results in a systematically larger or smaller energy scale. In addition,
the stochastic Gaussian fluctuations in φ cause a collective dephasing dynamics (in the
σ x -basis), described by a Liouvillian with a dephasing rate γ = σ 2/τ and a Hermitian four-
body quantum jump operator A (see the last term in (22)). The effect of other gate errors in the
circuit decompositions for coherent and dissipative dynamics can be analyzed in an analogous
way.

6.2. Comparison with experimental stabilizer pumping

In [34] four-qubit stabilizer pumping and the effect of errors have been studied experimentally.
For the benefit of the reader and to make the present discussion self-contained, it is worthwhile
to review briefly the main findings, as explained in detail in the supplementary information
of the Nature article [34], to relate this to the present discussion. In the experiment with five
ions (which encoded four system qubits and one additional ancilla qubit), stabilizer pumping
with 100% pumping probability per step from the −1 into the +1 eigenspace of the four-qubit
stabilizer operator A = σ x

1 σ
x
2 σ

x
3 σ

x
4 has been applied repetitively. The corresponding discrete

Kraus map reads ρ 7→ E1ρE†
1 + E2ρE†

2 with operation elements

E1 =
1
2(1 + σ x

1 σ
x
2 σ

x
3 σ

x
4 ) and E2 =

1
2σ

z
4 (1 − σ x

1 σ
x
2 σ

x
3 σ

x
4 ). (23)

Starting with the four system qubits in the initial state |1111〉, ideally these reach the four-qubit
GHZ state (|0000〉 + |1111〉)/

√
2 after a single application of the above Kraus map. This is

reflected by the fact that the expectation value of the four-qubit stabilizer A assumes a value
of +1 after the application of this dissipative step. At the same time, the expectation values of
the two-qubit stabilizer operators σ z

i σ
z
j , as depicted–schematically in figure 5, should ideally

remain unaffected by the four-qubit stabilizer pumping dynamics and stay at a value +1.
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Figure 5. (a) Results from a numerical simulation, which accounts for the
effect of single-qubit gate errors in repeated stabilizer pumping according to
the dissipative map (23). The stabilizer expectation values are obtained by
averaging over 100 00 realizations, assuming uncorrelated errors from gate
to gate, in the phases of the single-qubit rotations exp(−i(θ + δθ)/2σ z

0,4)

with δθ obeying a Gaussian distribution with zero mean and a variance of
δθ of 0.3 ×π/2. (b) Experimental repeated stabilizer pumping. The plot is
reproduced from data given in the supplementary information of the Nature
publication [34]. Quantitative differences from the numerical simulation are
mainly due to additional errors in the global gate operations, whose precise form
is unknown and which have not been taken into account in the theoretical error
model.

In the experiment, the Kraus map (23) has been realized by a quantum circuit consisting
of global rotations and MS gate operations applied to all five ions and addressed z-type single-
qubit rotations, which only involve the ancilla qubit (index no. 0) and the system qubit with
index no. 4 (see the supplementary information of [34] for the exact form of the experimental
circuit decomposition). In the experiment, low-frequency laser frequency noise and ambient
magnetic field fluctuations are currently not the leading error sources. Loss of population out
of the electronic subspace defining the qubit/effective spin and thereby the simulation subspace
is also negligible. Instead, the dominant imperfections are thought to result from laser intensity
fluctuations, which result in a decrease of gate fidelities. This concerns in particular the many-
ion MS gate operation, which is also affected by high-frequency laser noise giving rise to
single-qubit spin flips. The performance of the multi-ion MS gate has been studied recently
in an experiment with up to 14 ions [40]. However, the exact form of the realized quantum
operations, in particular of the MS gate operation, is unknown. The difficulty is rooted in the
fact that direct quantification of the performance via quantum process tomography is impractical
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for more than two ions [55]. The development of techniques for reduced process tomography to
bound the errors is ongoing research [69], and first experimental steps towards such quantitative
study have been taken only very recently [70].

Thus, this lack of precise knowledge of the form of imperfections in the employed gates
inhibits a quantitative comparison of the experimentally realized four-qubit stabilizer pumping
and a precise theoretical error model. However, to illustrate the qualitative effect of errors, it
is reasonable to assume that errors in the global gate operations (i.e. rotations and MS gates)
affect all ions to a similar degree, whereas gate errors in the addressed single-qubit gates lead
to additional errors, which dominantly act on the system qubit no. 4. As a consequence, one
expects that under a repeated application of dissipative map (23), the expectation values of the
two-qubit stabilizer operators that involve σ z

4 decay faster than those not involving ion no. 4.
This decay behavior, as found from a numerical simulation taking into account these single-
qubit gate imperfections (see figure 5(a) and figure caption for details), has indeed qualitatively
been observed in the experiment [34]. In the language of stabilizer models, these errors in the
simulation correspond to unwanted heating processes with respect to z-type stabilizers during
four-body stabilizer pumping according to map (23). In the experimental study it has been
observed that these ‘heating’ effects can be reduced by varying the role of the ion (here no. 4)
to which the imperfect single-qubit gates are applied [34].

Quantitative characterization of the elementary building blocks to understand, control and
reduce the effect of errors poses one of the future challenges in the development of large-scale
quantum simulators. Ultimately, incorporation of quantum error correction techniques might
prove essential to realize fault-tolerant gate-based quantum simulation.

7. Conclusions and outlook

In this paper, we have discussed a toolbox for ‘digital’ quantum simulation with linear chains
of trapped ions. We have outlined the theoretical concepts and details of the experiment, which
recently demonstrated the building blocks of an open-system quantum simulator with up to five
ions. Furthermore, we have discussed how our scheme allows one to explore the physics and
simulate the coherent and dissipative dynamics of minimal instances of spin models involving
n-body interactions and constraints, such as e.g. Kitaev’s toric code and a minimal version of a
topological color code model. Similarly, circuit implementations for more complex coherent and
dissipative n-body interaction terms as e.g. plaquette exchange interactions can be developed;
see for instance [54].

Here, we have focused on open-loop dynamics, where coherent and dissipative time
evolution in stabilizer models is implemented with the aid of an ancilla qubit, which is not
observed. It is known that such open-loop dynamics involving a single, non-observed ancilla
qubit is not sufficient to realize the most general Markovian multi-qubit open-system dynamics.
As shown in [21], this can be achieved by a closed-loop simulation scenario. Here, general
open-system quantum operations are realized by consecutive sequences of coherent operations
applied to the system qubits and the ancilla, interspersed with measurements of the ancilla qubit
in an appropriate basis. The gathered information from the outcomes of the sequential ancilla
measurements can be classically processed and used for feedback operations on the system. We
note that the described scheme also allows one to extract such information about the system
qubits via a measurement of the ancilla qubit, as schematically shown in figure 6.

New Journal of Physics 13 (2011) 085007 (http://www.njp.org/)

http://www.njp.org/


19

U
M
S
(π
/
2,
0)

U
M
S
(−
π
/2
,0
)

e−iπ/4σ
z
0|+

Uρ

Figure 6. Circuit for readout of the four-body stabilizer operator A = σ x
1 σ

x
2 σ

x
3 σ

x
4

via a measurement of the ancilla qubit. The circuit for coherent simulation of
four-body spin interactions as discussed in section 3 (cf equation (13)) realizes
the unitary operation U = exp(iπ/4σ z

0 ⊗ A). Thereby, the ancilla qubit initially
prepared in |+〉 is coherently mapped onto the two σ y-eigenstates, depending
on whether the four system qubits are in a +1 or −1 eigenstate of A. This
information obtained from a subsequent measurement of the ancilla qubit in the
appropriate basis can be classically processed and used for feedback operations
on the system.

In addition, the measurement of n-body observables such as multi-qubit stabilizer operators
is an essential ingredient for error syndrome measurements in quantum error correction and
quantum computing protocols [71–73].

The engineering of reservoir couplings and dissipative many-body processes enables
novel directions for quantum state preparation [29], as recently also shown in an experiment
with atomic ensembles [26]. Combining dissipative time evolution with coherent Hamiltonian
dynamics might allow one to explore novel physics such as non-equilibrium phase transitions
in driven dissipative systems [74]. In particular, the ability to implement master equations with
multi-qubit quantum jump operators opens up interesting perspectives for building quantum
memories based on dissipation [33] or the demonstration of a novel form of quantum computing
solely based on dissipation [32].
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Appendix A. Coherent dynamics without an ancilla qubit

Coherent dynamics according to n-body spin interactions of the form Aα = σ x
1 . . . σ

x
n can also

be achieved without an ancilla qubit as follows: by inspection of equation (13) one sees that the
quantum circuit involving the n system qubits (e.g. n = 4) and the single ancilla qubit actually
realizes coherent time evolution exp(iφσ z

0 ⊗ Aα), according to an (n + 1)-body spin interaction
term σ z

0σ
x
1 . . . σ

x
n . This evolution is—up to a single-qubit rotation of the ancilla qubit around the
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Hamiltonian term Aα = σ x

1 . . . σ
x
n , without using an extra ancilla qubit.

y-axis—equivalent to evolution according to the (n + 1)-body interaction term σ x
0 σ

x
1 . . . σ

x
n . In

other words, for coherent n-body interactions it suffices that one of the n-system qubits takes
the role played by the ancilla. The resulting quantum circuit is shown in figure A.1.

Appendix B. Refocusing techniques

As outlined in section 3, MS gates on subsets of ions can be achieved (i) either by transferring
ions, which are not supposed to participate in the gate, into decoupled electronic levels, by the
application of hiding pulses, or (ii) alternatively by employing refocusing techniques. In this
appendix, we review how MS gates on subsets of ions can be achieved by decomposing the
desired unitary operations into sequences of MS gates, which are applied to all ions, combined
with single-ion refocusing pulses on individiual ions (see also [67]).

B.1. Sequence for an MS gate on n − 1 out of n ions

An MS gate UMS(θ, φ) on all but, say, the nth ion can be implemented by a combination of two
MS gates of half of the angle θ , and two single-ion z-gates U (n)

σ z = exp(−iπ/2σ z
n ) applied to the

nth ion, i.e.

U (0,1,..., n−1)
MS (θ, 0)= U (n)

σ z (π)UMS(θ/2, φ)U (n)
σ z (π)UMS(θ/2, φ) (B.1)

up to an irrelevant global phase. The sequence of four gates can be understood as follows: with
the first MS gate, ‘half’ of the final entanglement is created between all pairs {i, j} of the n ions,
due to the pairwise interaction terms underlying MS gate (8). Now, the spin of the nth ion is
flipped by U (n)

σ z (π), such that in what follows σ x
n and σ y

n act effectively as −σ x
n and −σ y

n . In the
third step, the second ‘half’ MS gate then entangles all pairs of ions, which do not include the
nth ion, further; only for the pairs of ions that involve the nth ion, the entanglement creation of
the first step is reversed. In this way, the nth ion is effectively decoupled from all other n − 1
ions. Finally the nth ion is flipped back into its initial orientation by another single-qubit gate
U (n)
σ z (π). The four steps are graphically illustrated in figure B.1(a).

B.2. Star-type MS gate of the auxiliary ion with all system ions

It is also straightforward to realize an entangling gate between the ancilla ion and each system
ion without creating pairwise entanglement between the system ions. This can be done by the
sequence

n∏
i=1

U (0,i)
MS (θ, φ)= U (0)

σ z (π)UMS(−θ/2, φ)U (0)
σ z (π)UMS(θ/2, φ), (B.2)
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Figure B.1. Gate sequences for the realization of entangling gates on a subset of
ions, by a combination of MS gates applied to all ions and refocusing pulses
on individual ions. The nodes represent the n + 1 ions; lines between nodes
i and j denote entanglement created between a pair {i, j} of ions during the
application of MS gates. The shorthand notations ±MS/2 and ±MS/4 stand for
UMS(±θ/2, φ) and UMS(±θ/4, φ), respectively. An operation j denotes a single
ion pulse U ( j)

σ z (π)applied to the i th ion; ions that have been exposed to such flip
operations are labelled by a small circle, until they are flipped back into their
original orientation. (a) Gate decomposition for an MS gate on all ions except
the nth ion (cf equation (B.1)). (b) Gate sequence for the creation of star-type
entanglement between the auxiliary ion (no. 0) and each of the n system ions.
(c) Gate sequence for an MS gate on two ions out of n + 1. Dashed lines
correspond to entanglement, which is created in intermediate steps between an
initially disentangled pair of ions {i, j}, if one (and only one) of the two ions
(marked with a circle) has been previously flipped.

which is sketched in figure B.1(b). Here, the second inverse MS gate, which is applied after the
single qubit flip of the auxiliary ion, cancels the initially generated entanglement between all
pairs of ions, which do not include the ancilla ion.

B.3. Sequence for an MS gate on 2 of n ions

The sequence for the implementation of the star-type entangling operation discussed in the
previous paragraph can be used to realize an MS gate on two of n ions (see figure B.1(c)). Such
a two-ion MS gate is an essential building block for the implementation of the two-qubit gate
C(θ), which is needed for the dissipative simulation discussed in section 4. For instance, the
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sequence for an MS gate on only the auxiliary ion and the system ion no. 1 is given by

U (0,1)
MS (θ, φ)= U (1)

σ z (π)UMS(−θ/4, φ)U (0)
σ z (π)UMS(θ/4, φ)U

(1)
σ z (π)

×UMS(−θ/4, φ)U (0)
σ z (π)UMS(θ/4, φ). (B.3)

More involved decompositions for MS gates, where more than one or two ions are supposed
to participate in or be excluded from the gate operation, can be constructed accordingly. In
general, they will involve more ‘partial’ MS gates and refocusing pulses, which might at some
point render the alternative approach of hiding pulses on individual ions more suitable.

Appendix C. Gate decompositions

Here, we provide decompositions of the two-qubit gates Ci(θ), which are needed for the
dissipative n-body dynamics as discussed in section 4, into MS gates and single-ion rotations.

For the simulation of n-body interactions with n = 4, 8, . . ., the gate Ci(θ) of equation (15)
can be decomposed as

Ci(θ)= |0〉〈0|0 ⊗ 1 + |1〉〈1|0 ⊗ exp[iθσ y
i ]

= e
1
2 (1−σ z

0 )iθσ
y
i

= e
iθ
2 σ

y
i e−

iθ
2 σ

z
0σ

y
i

= e
iθ
2 σ

y
i e−

iπ
4 σ

x
0 U (0,i)

MS (θ/2, π/2) e
iπ
4 σ

x
0 . (C.1)

The two-qubit MS gate on the auxiliary ion and the i th system ion U (0,i)
MS (θ/2, π/2) can be

realized via refocusing techniques—see equation (B.3) in appendix B.
It is straightforward to decompose the two-qubit gates Ci(θ) for other values of n (as listed

in table 2) accordingly.
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