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Abstract: The Discrete Element Method has been widely used to simulate geo-materials due to time
and scale limitations met in the field and laboratories. While cohesionless geo-materials were the
focus of many previous studies, the deformation of cohesive geo-materials in 3D remained poorly
characterized. Here, we aimed to generate a range of numerical ‘sediments’, assess their mechanical
response to stress and compare their response with laboratory tests, focusing on differences between
the micro- and macro-material properties. We simulated two endmembers—clay (cohesive) and
sand (cohesionless). The materials were tested in a 3D triaxial numerical setup, under different
simulated burial stresses and consolidation states. Variations in particle contact or individual bond
strengths generate first order influence on the stress—strain response, i.e., a different deformation style
of the numerical sand or clay. Increased burial depth generates a second order influence, elevating
peak shear strength. Loose and dense consolidation states generate a third order influence of the
endmember level. The results replicate a range of sediment compositions, empirical behaviors and
conditions. We propose a procedure to characterize sediments numerically. The numerical ‘sediments’
can be applied to simulate processes in sediments exhibiting variations in strength due to post-seismic
consolidation, bioturbation or variations in sedimentation rates.

Keywords: DEM; cohesion; sediments; peak shear strength; consolidation state

1. Introduction

Many new and comprehensive datasets characterize the sediment-physical behavior of subaerial
and submarine sediments based on laboratory experiments (e.g., [1-4]) and in-situ measurements
monitoring stress conditions and deformation processes (e.g., [5]). However, despite new
technological developments, our knowledge of sediment behavior cannot always sufficiently explain
the deformational processes. This gap in the knowledge arises from the fact that many deformational
processes cannot be directly observed, being too fast or too slow to be directly monitored (e.g.,
gravitational mass movements) or because they occur below the Earth’s surface (e.g., failure plane and
fault mechanics at different depth levels). Under these circumstances, numerical process simulations
have been applied to develop conceptual models for such processes (e.g., [6,7]).
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In addition to classical continuum models, numerical granular techniques, such as the Discrete
Element Method (DEM [8]), have been used to investigate the full range of deformational processes—for
example, simulating the large-scale long-term evolution of fold-and-thrust belts [9], short-term
mass-movements kinematics [10] or small-scale geo-processes on various time scales [7,11].

The DEM is based on a granular approach where the model domain contains an assembly of
individual, discrete particles. Interactions between these particles are subjected to contact models and
individual particle properties (micro-properties; see Section 2) [12]. Depending on the applied particle
contact model and the particle properties, different material behaviors can be simulated. This includes
elastoplastic deformation following the Mohr—Coulomb brittle criteria [6] to a viscous deformation [13].

A particularity of numerical granular media is that the macro-properties of a particle assembly
differ from the defined micro-properties of individual particles [14]. For example, the particle’s friction
coefficient micro-property influences the particle rolling behavior and therefore the shear strength of
the bulk material [15]. Another important property is the influence of particle shape and roughness
(e.g., [7,16-20]). Using elliptical and ellipsoidal shaped particles, Thornton [18] proposed that particle
shape effects the deformation behavior of the material, whereas Guo and Morgan [19] showed that
an angular particle shape results in a higher frictional strength. Focusing on the micro-fabric break
down, Kock and Huhn [7] demonstrated subsequent shear zone localization. Though elliptically
shaped particles capture the deformation behavior of granular materials such as sands very well,
most researchers use disc and spherical particles since the calculation algorithms of elliptical particles
significantly increase computation time [10,11,14,19,21-25].

The current study aims to test specific DEM micro-particle properties to generate a set of different
sediment types and their deformation behavior in 3D. Our simulations focused on mimicking sand
and clay mechanical behavior with a wide range of cohesion and strength values. Sand and clay
were chosen as the two compositions are endmembers of siliciclastic sediments. The shear strength of
these endmembers was chosen as the main focus, because it strongly influences the rate and style of
deformation [1,13,26-28].

We applied the bonded numerical approach to simulate clay cohesive strength between particles
(i.e., bonded materials), which is not present in cohesionless material (i.e., granular materials) [14].
Several studies used this approach in 2D but mainly focused on simulating brittle deformation in rocks
(e.g., [6,29]). To the best of our knowledge, granular (cohesionless) vs. bonded materials (cohesive)
have not yet been comprehensively tested in 3D and their applicability for the simulation of sand
and clay sediments has not been investigated. Additionally, we tested the role of the consolidation
state, which can be indicated by loose and dense particle packing for both granular and bonded
materials. These endmember properties simulate a range of ‘sands’ and ‘clays’. Finally, we tested
three different stress states to simulate different burial depths of the ‘sediments’ to achieve different
responses to loading.

We adopted the approach and procedures used in geotechnical and numerical tests to build
numerical 3D triaxial tests (e.g., [3,30]). Analyses of these numerical triaxial tests enabled the collection
of detailed information regarding different particle packing states: (i) their stress—strain curve or
deformation behaviors, and (ii) the resulting macro-properties, e.g., cohesion.

2. The Discrete Element Method—Granular and Bonded Approach

The Discrete Element Method is a numerical technique to simulate the interactions between solid
granular particles via discrete contact points. Within a model domain, each particle is defined by a set
of micro-properties such as density (py); in the following index, ‘p” indicates micro-properties defined
for individual particles) and coefficient of friction (u,). These micro-properties are included in the force
calculation at each contact point using pre-defined contact models [8]. Contact models (also termed
contact laws) control the overall physical behavior of particle assemblages and define the interaction
between particles. The force—displacement calculations are described in detail in Appendix A.
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We used the commercial software Particle Flow Code 3D (PFC3D) by ITASCA™ to investigate the
mechanical behavior of numerical ‘sediments’. The software implements the DEM technique following
principles defined by Cundall and Strack [12] and offers several contact models to generate different
mechanical behaviors [31]. We selected the Hertz—Mindlin contact model to generate a cohesionless
granular material (sand-like; see Section 2.1) and the linear parallel-bond contact model to generate
a cohesive, elastoplastic behavior (clay-like, see Section 2.2). Both contact models were previously
applied using PFC and other discrete element software to generate a range of geo-materials such as
soils and rocks [17,29,32,33].

It is important to note that, although in each model parameters are assigned per particle
as micro-properties, we do not assume that a single particle represents a single sediment grain.
The overall assembly of particles represents an averaged macro-mechanical behavior of a bulk sediment
sample. To make DEM applicable and achieve insights into the mechanical deformation behavior of a
natural material, some micro-properties need to be adjusted so that the particle assemblage behaves
macroscopically as an elastoplastic material. Therefore, it does not reproduce the whole range of
sediment behavior (e.g., neglecting clay electro-chemical forces) but rather a first-order approximation
of stress—strain behavior (e.g., [34,35]).

2.1. Granular Approach: The Hertz—Mindlin Contact Model (Cohesionless, Elastoplastic)

The contact between two spherical elements is a spherical 3D contact that becomes a circular
area once load is applied [36]. The Hertz theory accounts for such a non-linear interaction contact
behavior between smooth and elastic spheres. To account for the frictional behavior, the Mindlin
model describes the tangential forces that develop at the contact between two spherical elements [37].
The combined Hertz-Mindlin contact model applies the Hertz approach as an elastic response in the
normal direction, and the Mindlin approach in the tangential direction along with Coulomb’s friction
model [37]. The Hertz-Mindlin contact model has been previously used to simulate sands, soils and
fault gouge material [14,38,39] and is applied here as well to simulate sand mechanical behavior.

In PFC3D, the input parameters for the Hertz-Mindlin contact model are the elastic constants of
the particles, namely the micro-shear modulus (G,) and the micro-Poisson’s ratio (). These two are
the required elastic constants to calculate the forces in the normal and tangential directions (F, and Fs,
accordingly). The shear modulus is the elastic stiffness of a material and defines the material resistance
to shearing deformation. Under small strains, the shear modulus of a bulk material depends on the
confining pressure stress and the packing condition (i.e., porosity) of the particles and therefore it is an
indicator of the material’s structure and strength [40]. A fixed micro- coefficient of friction (u,) and
density (pp) values are also assigned to each particle. The micro-shear modulus and micro-Poisson’s
ratio are implemented in the normal and tangential stiffness (k, and ks, accordingly) calculations
(Figure 1a) according to the following Equations:

[ch- \/i]
kn =| — | )
3(1 - vp)
2363(1-vR) ")
ks = 5 _ vy ‘Fn s (2)

where R is the average radius of the two particles that are in contact [31].
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Figure 1. (a) An illustration of particles interaction according to the Hertz-Mindlin contact model.
(Left) The contact point is illustrated as a red sphere and the contact stiffness as a spring. R; and R,
represent the radii of particles P; and P;, accordingly. (Right) A 2D cross section of the acting normal
(Fn) and shear (F;) forces and the particle’s overlapping 6. (b) An illustration of particles interaction
according to the linear parallel-bond contact model. (Left) In addition to a contact at the interacting
point of two particles (contact stiffness presented as a spring), a bond is implemented as a cylindrical
disk (in red), and its interaction is illustrated by two parallel springs. R; and R, represent the radius
of particles Py and P;, accordingly. (Right) A 3D illustration of the bond’s normal (B;;) and shear (Bs)
forces and the moments (M, and M;) that result from the applied force. The size of the applied bond is
according to the average radius of the two interacting particles and represented as an average 2R.

2.2. Granular Cohesive Approach: The Linear Parallel-Bond Contact Model (Cohesive, Elastoplastic)

Cobhesive strength in clay-like sediments originates from the electrostatic attraction between clay
particles and is a stress-independent component of the shear strength [41]. In DEM, however, the bonds
implemented between the particles are used to simulate the interaction, the resulting forces and the
strength that the bond can sustain. The linear parallel-bond contact model was created to simulate a
cemented granular material [42]. The model introduces a rigid inter-particle bonding, thus generating
cementation or cohesive strength [33,42]. Such an approach provides the mechanical behavior of a
glue-like piece, which connects two particles in contact and adjusts the sliding interaction between
them. In PFC3D, the linear parallel-bond is applied as a flat cylinder (Figure 1b). The bonds are able to
transmit both forces and moments between the particles. The bond is modeled by a set of two springs
with constant normal and shear stiffnesses (red rectangle, Figure 1b). The bond breaks once the shear or
axial stress applied at the contact area exceeds the bond’s strength [31]. Once a bond is broken, it does
not regenerate. We therefore refer to the cohesive strength as an initial cohesive strength. After a bond
is removed, the interaction between particles is influenced only by the particle’s stiffness (normal and
shear) and friction (elastic—frictional) according to the linear contact model [31].

In PFC3D, the linear parallel-bond model requires at least ten micro-parameters to define both
the contact and the bond behavior [31] (Table 1). In addition to the density and friction coefficient
assigned to each particle, the contact behavior requires two micro-parameters (similar to the linear
contact model), the normal and tangential stiffness of the contact, as follows:

Fy = k-0, (3)

AFs = —ks+0, 4)
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where AF; is the incremental tangential force and is similar to the Hertz-Mindlin model, ¢ is the overlap

between particles.

Table 1. Fixed and tested micro-parameters applied in each of the triaxial tests according to the contact

model applied during the test.

Parameters Unit of Measure Symbol Value

Fixed Properties

Sample dimensions: width; height; length (m) 220; 220; 220
Total number of particles in a sample 21,172

Radius (particles) (m) Ry 3.7;3.9;4.6;,55
Particle density (kg/m3) Py 2650

Damping coefficient damp 0.7

Particle friction coefficient (during triaxial test) Utest 0.5

Particle friction coefficient (initial) Usetup 83_) gioe(f:))
Wall properties

Wall friction coefficient Hwall) 0.0

Wall normal stiffness (Pa) Kyu(wall) 1el2
Hertz-Mindlin micro-properties (‘sand’)

Poisson’s ratio dimensionless v 0.25

Shear modulus (small; medium; large) (Pa) Gp 1e!1; 1€10; 1€8
Parallel-bond micro-properties (‘clay’)

Parallel-bond contact normal and shear stiffness (Pa) kns 1el0

Bond radius multiplier A 1

Bond friction coefficient Hbond 0.54

Bond stiffness (Pa) B 1e5

Bond cohesive strength (small; medium; large) (Pa) PBon 210e3; 110€3; 55¢3
Bond tensile strength (small; medium; large) (Pa) PBien 110e3; 55¢€3; 2563

The bond requires six micro-parameters: the normal and shear stiffnesses of the bond (B, Bs),
the tensile strength of the bond (PBy.;), the cohesive strength of the bond (PB,,), the bond friction
coefficient (tp,,4) and a bond radius multiplier (1). The bond radius multiplier is a parameter that

determines the size of the bond by considering the radii of the particles in contact:

R = Amin(R?, RY),

©)

where R?, RY are the radii of two particles in contact (Figure 1b). For the bond behavior, the forces
(FEB, FEB) and the moments (M,;, M;) are calculated as follows:

FB = B,-6-A, ©6)
F’B = _B,-6-A, (7)
Mn - _Bn‘Aen'I/ (8)
Ms = _Bn'Aes'I, (9)

where A, ] and I are the area, moment of inertia and polar moment of inertia of the bond cross section,
respectively. A0, and A0; are the normal and shear increments of the rotation between two bonded
particles, respectively. On the periphery of the bond, tensile (Gyux) and shear (Tjqy) stresses are
calculated according to:

_ _FPB M.|—
Omax = An + | IS|R/ (10)
N

Tmax = " + ]R. (11)
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Once the stress in the shear or tensile directions exceeds the assigned tensile and cohesive strengths
(Omax = PBten ; Tmax = PBy), the bond breaks and the inter-particle interaction follows the linear
contact model [31,42].

3. Experimental Setup

To generate a spectrum of different numerical materials mimicking a ‘sand’-like and ‘clay’-like
sediment-physical behavior, we created a 3D numerical triaxial test (Figure 2). Confined triaxial
testing is a method used in soil mechanics to empirically characterize the mechanical behavior of
sediments [28,32,43]. In addition to the mechanical and deformation behavior of the numerical
‘sediments’, we quantified the numerical material’s physical bulk properties.

L J
c,> o,=0,
X y

Figure 2. The 3D Discrete Element Method (DEM) cubic isotropic sample. The initial particle setup for
the triaxial test are under strain (¢;) = 0%. The blue sphere in the center of the pre-tested cubic sample
presents the location of the measurement sphere. The main stress (07) is acting parallel to the z-axis;
02 and o3 are equal and act parallel to axes x and y, respectively.

3.1. Model Geometry

The model setup uses the software’s internal model meter scale units (i.e., m). To ensure that the
model results are reproducible on other scales, a self-similarity test was conducted (see supplementary
explanation in Appendix A and Figure S1).

We designed the numerical triaxial cubic shear box with uniform dimensions of 220 m (Figure 2),
following a simplified laboratory approach. Inside this volume, an isotropic cubic sample with equal
dimensions of 220 m was generated in order to avoid sample size effects and to achieve a ratio that
is at least 20x the particle size. This makes sure that the measured material macro-properties such
as peak shear strength and coefficient of friction are not sensitive to particle size [42]. Each sample
contained 21,172 ideal spherical particles with four different radii (R) ranging from 3.7 to 5.5 m (Table 1;
Figure 2). The particles were randomly distributed within the cubic volume to produce arbitrary
isotropic packing [42]. The chosen random distribution and the radius uniform spectrum prevent
unrealistic deformation, such as that caused by a symmetrical particle packing [44], thus minimizing
the influence of particle size and distribution on the results.
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During the entire model run, solid and frictionless boundary walls confine the particles. Similar
to Mair and Abe [45] and Potyondy and Cundall [42], this is done to reduce frictional boundary effects
due to the interactions of particles with the walls. The walls were assigned a normal stiffness to prevent
particles escaping (see ky,(,q) and other wall properties in Table 1). Confinement effects by rigid or
flexible walls were studied in 2D and 3D by Cheung and O’Sullivan [46], showing that wall rigidity is
important to the post-peak behavior and particle-scale response rather than on the macro-scale. Based
on these results, the current work focuses on the pre-peak and peak shear strength behavior of the
material, and the effect of wall rigidity is neglected.

3.2. Particle and Bond Micro-Properties

A specific contact model was defined first to simulate either a sand-like mechanical behavior via
the Hertz—Mindlin contact model or a clay-like behavior via the linear parallel-bond contact model.
Independent of the specific contact model, density and coefficient of friction were defined for each
particle during all triaxial tests. All particles were assigned a similar density of 2650 (kg/m?) and a
constant micro- coefficient of friction of y, = 0.5; the latter lies in the range observed for values of
siliciclastic sediments [41]. Both parameters were kept constant throughout the model set-up and the
entire simulation run (Table 1). The contribution of the coefficient of friction to the sediment shear
strength has been extensively studied, both in laboratory tests [47,48] and DEM experiments [7,24,49].
Here, we focus on the influence of other micro-parameters—the micro shear modulus and the micro
cohesive bond strength—on the cohesive and overall shear strength. In both contact models, the sliding
of particles is governed by Coulomb’s friction law and is always controlled by the assigned identical
constant micro coefficient of friction (y,). For the Hertz-Mindlin contact model, the Poisson’s ratio was
also kept constant, as it does not show a significant effect on the sediments” mechanical behavior in the
laboratory [50] or DEM tests [39]. In the linear parallel-bond contact model, we assigned the contact
parameters (k; s), the bond stiffness (Bn ), the bond friction coefficient (1i,,47) and radius multiplier (1)
as constant values (Table 1) to minimize the amount of free micro-parameters in the model. In addition,
the values of the normal and shear stiffnesses for both the contact (k; ;) and bond (Bn s) were fixed with
a ratio of 1 (Table 1).

3.2.1. Hertz-Mindlin Contact Model—Granular ‘Sand-Like’ Materials

In the Hertz-Mindlin contact model, the micro-shear modulus (Gp) was tested to investigate its
influence on the numerical material’s shear strength. The values for the shear modulus (low, medium
and high, Table 1) were modified from previous numerical tests to apply them to 3D simulations [7,49]
and were chosen to support an elastic—plastic deformation behavior, reproducing the behavior of
natural sand [51].

3.2.2. Linear Contact Bond Model—Cohesive ‘Clay-Like” Materials

In the linear parallel-bond contact model, the two bond strength micro-parameters, the bond
cohesive strength (PB;,) and the bond tensile strength (PB.;) were tested to investigate their influence
on the numerical material’s cohesive and shear strength. Here, the three values tested for the bond’s
strength were assigned as the ratio between the micro-cohesive bond strength (PB,,;) and the bond
micro-tensile strength (PBy.;) was maintained around 0.5 (=PB.; / PB.y;). Cheung et al. [52] studied
the effect of micro-parameters on the macro-behavior of this contact model when simulating cemented
sands. Their results indicated that the overall material stiffness and peak strength are influenced
by the bond-to-contact stiffnesses ratio and the size of the assigned tensile and cohesive strengths,
respectively. Simulating a numerical cohesive material, Abe et al. [29] showed shallow deformational
processes using a close value of tensile to cohesive strength ratio (c. 0.4). The assigned fixed values to
the contact and the bond, and the tested values of the bond strength, were adjusted from previous
numerical studies using the linear and parallel-bond contact models to simulate natural sedimentary
rocks [7,29,53] (see Table 1).
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3.3. Model Run Stages of the Numerical Triaxial Tests

The numerical confined triaxial tests were carried out in three stages: (a) sample generation,
(b) isotropic compression, and (c) triaxial shear. In stage (a), particles were randomly distributed within
the cubic box (an initial particle arrangement identical in all tests; Figure 2) and assigned an initial
consolidation state. To simulate loose or dense initial particle consolidation states, we applied a micro-
coefficient of friction (ujy;, ) to generate either a loose (ujy;, p = 0.5) or a dense (ujy;, , = 0.1) sample
configuration. Previous studies used this approach to control the sample’s initial density [14,18,42,54].
Subsequently, the final material consolidation states were designated as L or D for loose and dense
packed samples, respectively, and the material itself S or C for ‘sand’ or “clay’, respectively (e.g.,in Table 2,
densely packed ‘sand’ is DS).

In stage (b), the sample was brought to equilibrium conditions under a controlled confining
stress and a controlled axial load applied by the rigid box walls. As the sample reached the assigned
confining stress, the tested micro-parameters were assigned to contacts and bonds. At this point, the
constant micro-friction coefficient (1, = 0.5) was assigned to all particles (Table 1). Each sample was
tested under three magnitudes of confined stress of 03 = 03 = 100, 250 and 500 kPa. These stresses
are in agreement with a wide range of laboratory tests on sandy and clayey sediments [2,28,55,56].
Triaxial tests using confining stresses higher than 1000 kPa were reported to initiate grain fracturing
(e.g., [57]), which we do not attempt to simulate here.

Following the isotropic compression, the triaxial loading stage (c) was initiated. During the test, a
sample was axially loaded with an increasing stress, which was symmetrically applied via the top and
bottom walls (01; parallel to the z-axis; Figure 2). A constant velocity of 0.4 m/s was applied on the
upper and lower walls and an axial strain rate of 0.00002 m/s, maintaining the quasi-static loading
of the walls. This velocity is in the range of the loading velocities used in various DEM studies [58]
and the relatively low axial strain rate does not influence the resulting bulk sample macro-properties
e.g., [6,42,58]. The velocity of the confining walls was kept constant during the test to maintain a
constant confining stress [31]. The tests were carried out until the prescribed axial strain was achieved
(e2 = 20%), similar to laboratory triaxial tests, e.g., [56].
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Table 2. Calculated macro-properties of different material samples: LS: loose ‘sand’, DS: dense ‘sand’, LC-loose ‘clay’, DC-dense ‘clay’. Numbers in brackets are
cohesion values, as measured from the linear regression of the failure envelope.

Peak Shear . . Bulk Mean Normal Peak Shear Macro-Friction Bulk
. Mean Normal Macro-Friction . . . . .
Experiment Stress (kPa) Strength Coefficient (11y) Cohesion C Experiment Stress 03 Strength Coefficient Cohesion
(Tmax) (kPa) M (kPa) (kPa) (tmax) (kPa)  (1pp) (kPa)
‘Sand’
153 53.3 241 141.9
LS-3 (G = 1e® Pa) 382 132.4 0.35 (3.1) DS-3 (G =1ePa) 624 374.0 0.64 (33.3)
754 254.5 1280 780.0
191 91.2 224 124.1
LS-2 (Gp = 1e! Pa) 425 175.2 0.37 (26.1) DS-2 (G, =1e!®Pa) 504 254.1 0.52 (21.2)
808 308.7 976 475.9
190 90.6 166 66.6
LS-1(Gp = le!! Pa) 513 263.4 0.47 (23.3) DS-1(Gp =1e!l Pa) 407 157.2 0.40 4.1)
903 403.7 808 308.2
‘Clay’
287 187.6 531 4317
! — 3
LC-3 (PB,y, = 55¢> Pa) 528 278.4 0.38 92.6 I?C 3 (PBeon =55¢% g 551.8 0.53 199
911 4114 a) 1291 7915
226 126.2 390 290.4
_ — 3
LC-2 (PB.y = 110¢3 Pa) 537 287.2 0.44 528 I?C 2 (PBeop = 110e” 79 4299 0.55 112
906 406.4 2) 1174 674.4
223 123.0 315 2155
_ — 3
LC-1 (PBoy, = 210¢3 Pa) 452 202.8 0.43 32 I?C 1(PBeoy =210e” 597 3475 0.50 81
884 384.8 2) 1050 550.7
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3.4. Model Interpretation and Calculations

During the triaxial tests, stresses and strains were monitored continuously in the x, y, and z
directions. The stress measurements were used to calculate the differential stress (i.e., the stress deviator
(q)), which represents the stress under which the bulk material failed:

q=o01-03, (12)

where 01 and o3 are the maximum vertical stress and the confining stress measured and applied for
each test, respectively. Combined with the associated axial strain ¢, these stress—strain curves give an
insight into the deformation behavior, including determination of the peak strength, strain hardening
and softening effects, etc. (Figures 3a and 4a).
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Figure 3. Triaxial tests results for ‘sand” samples presented as (a) the deviator stress, (b) the volumetric
strain, (c) the porosity and (d) the coordination number over the axial strain; the micro-shear modulus
(Gp) is increasing from left to right. Black lines represent loose packed samples and red lines represent
dense packed samples. Each confining stress is represented by a different symbol for 100, 250 and

500 kPa.
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Figure 4. Triaxial tests results for ‘clay’ samples presented as (a) the deviator stress, (b) the volumetric
strain, (c) the porosity and (d) the coordination number over the axial strain; the micro-cohesive bond
strength (PB,,) is increasing from left to right. Black lines represent loose packed samples and red
lines represent dense packed samples. Each confining stress is represented by a different symbol for
100, 250 and 500 kPa.

The volumetric strain, the coordination number and the porosity (Figures 3b—d and 4b-d) were
monitored using a measurement sphere placed in the middle of the sample to avoid boundary effects
on the measured parameters (Figure 2). The measurement sphere allowed us to measure and calculate
quantities within the defined volume using the particles’ contacts and volumes [31,42]. We defined the
radius of the measurement sphere as R = 90 m, which enabled us to record more than one quarter of
the model volume. Such a quantity is considered representative of the entire model [59]. The quantities
were then taken as averages over the volume.

To observe significant intervals of deformation, the normalized gradient of displacement was
calculated and plotted for a predefined deformation interval along a vertical cutting surface (Figure 5).
This plot enables us to identify zones of high relative displacement between individual particles during
a certain time interval. These zones could be interpreted as failure planes (Figure 5a—e).
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Figure 5. Strain localization visualized for deformation stages. Deformation stages are defined between
points (1) and (3) along a typical stress-strain curve, where (1) is the yield stress, (2) the peak stress and
(3) the post-peak situation. Deformation is imaged along a vertical cross section of the 3D test (location
indicated by the grey cross section). (a) Initiation of strain localization highlighted by oval circles
(between stages 1 and 2, Experiment DC-2). Localization is presented for four samples tested under
confining stress 0 3 = 250 kPa. (b) Experiment LS-2, loose ‘sand’ (G, = 1€l Pa) taken after 17% of strain
(c) Experiment DS-2, dense sand’ (Gp = 1e10 Pa) taken after 17% of strain. (d) Experiment LC-2, loose
‘clay’ (PB,y, = 110e3 Pa) taken after 12% of strain. (e) Experiment DC-2, dense “clay’ (PB,y, = 110e® Pa)
taken after 12% of strain. Black lines indicate selected areas of strain localization further explained in
the text.

The modified failure envelope was illustrated using o1 and 03. According to Craig [60], any state
of stress can be presented by a point of stress by plotting the mean %(01 + 03) against the maximum
%(01 — 03) stress. The maximum shear stress and the mean normal stress were plotted in the modified
failure envelope Tjax — Omean Space (Figure 6 and Table 2) as:

(Gl - 03)1 (13)

Tmax =

—_ NI

Omean = 5(01 + a3)r (14)

Note that since we performed consolidated drained tests, pore pressure was not considered and
therefore the effective stress can be considered as the total stress. The peak shear strength (Tjuax),
macro-friction coefficient (ups) and bulk cohesion (C) for all tests are presented in Table 2 and were
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determined from the linear extrapolation of the modified failure envelopes. Bulk cohesion is used
here in the same context as cohesion measured in laboratory experiments (over bulk material) and in
Equation A4 in Appendix A.

(a) ‘sand'-loose (c) ‘clay’-loose
54 O sL1(G=1e""Pa) - O CL1 (PB,p=210ed Pa)
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3 4 O sL-3(G=1etPa) - O CL-3(PBcoy=55¢€° Pa)
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Figure 6. Modified Mohr-Coulomb failure envelopes for (a) loose 'sand’ (b) dense sand” (c) loose "clay’
and (d) dense ‘clay’ samples. Circles denote the differential peak shear strength measured in each test
under the appropriate normal stress.

4. Results

The 3D triaxial test results present the effect of granular contact and granular bonding ability to
simulate cohesionless, sand-like and cohesive, clay-like mechanical behavior. The sensitivity of the
two material endmembers was carried under different consolidation states (loose vs. dense packing)
for which three different material strengths were then tested (‘sand”: G, = 1ell, 110, 1e® Pa; ‘clay”:
PBp, = 55€3, 110e3, 210e® Pa). These 12 materials were deformed under different loading conditions of
100, 250 and 500 (kPa), simulating different burial depths. In total, 36 experimental material settings
were tested, 18 for each material type (Table 1).

From here onwards, the results of the Hertz-Mindlin contact model and the linear parallel-bond
contact model will be referred as ‘sand’ and ‘clay’, respectively.

4.1. Stress—Strain Behavior

Under triaxial loading, loose “sand’ samples showed a gradual increase in deviator stress up to
10% of axial strain (Figure 3a). The peak deviator stress, defined as the highest differential stress q (see
Equation (12)), is reached between 15 to 20% of axial strain. Stress values fluctuated around this peak
value. Increasing the value of the micro-shear modulus (Gp) in the samples resulted in reaching the
peak shear strength under a lower strain (in Figure 3a, G, = 1le!! Pa samples reached a peak at around
15% strain, whereas samples with G, = 1e® Pa reached a peak only at around 17-18% strain).

The stress—strain curves of densely packed ‘sand’ samples showed a rapid increase and reached
the peak deviator stress at axial strains of 0.5 to 5% (Figure 3a). Following the peak, there is a rapid
decrease in stress until 20% strain. These results showed that an increased micro-shear modulus (Gp),
resulted in lower peak deviator stress under lower axial strain (Figure 3a and Table 2). The opposite
trend was observed in loose ‘sand’ samples (an increased micro-shear modulus G, leads to an increased
peak deviator stress, Table 2). A slightly different stress—strain curve of densely packed ‘sand” was
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observed for samples with a low micro-shear modulus (G, = 1e® Pa). Samples with a high micro-shear
modulus show a high rate of increasing stress (Figure S2 in the Supplementary Materials), whereas
samples of G, = 1e® Pa micro-shear modulus presented a moderate rate of change in stress and reached
peak deviator stress at around 2-7.5% strain.

The stress—strain curves of ‘clay” samples primarily differed from ‘sand” due to the additional
bond (Figure 4a). The results of the loose ‘clay’ samples showed a general rapid increase in the deviator
stress until a peak deviator stress was reached between 0.1 and 2% of strain (Figure 4a). As the
peak stress was reached, all samples presented a local variability in the rate at which the stress was
changing (Figure S2 in the Supplementary Materials). Samples with low micro-cohesive bond strength
(PB,), = 55¢3 Pa) showed a decrease in the residual strength (for confining stresses of 100 and 250 kPa)
or a decrease followed by a slight increase up to the previous peak value (confining stress of 500 kPa).
In loose ‘clay’ samples, by increasing the micro-cohesive bond strength (PB_,,), a lower peak strength
was achieved under lower axial strain (rapid failure under lower stresses).

The stress—strain curves of densely packed 'clay” samples (Figure 4a) showed a rapid increase up
to peak deviator stress. The stress rate changed in a similar manner to loose ‘clay’ samples. The peak
stress was reached at 0.5-2% strain, followed by a rapid decrease in stress until 20% strain was reached.
Similar to loose ‘clay’ samples, a prominent peak deviator stress was observed. The stress at 20% strain
is equal or slightly higher compared to the value observed for loose ‘clay’ samples at 20% strain.

4.2. Volumetric Strain, Porosity and Coordination Number

Volumetric strain results for all tests are presented in Figures 3b and 4b. The general trend
observed for both ‘sand” and ‘clay’ loose samples showed a nonlinear negative volumetric change—a
volumetric contraction. Regardless of the value of the assigned micro-parameters in all samples,
the values decreased to 2.5% of volumetric strain. An exception were the loose ‘clay’ samples with low
micro-cohesive bond strength (PB,,, = 55¢> Pa). The loose ‘clay’ showed a slight initial increase in
volumetric strain, yet after 10% of strain the trend changed and showed a decrease in volumetric strain
to 1-2% (Figure 4b).

The trend of volumetric strain observed for densely packed samples was generally similar for both
‘sand” and “clay’ and showed a nonlinear positive volumetric change—a volumetric dilatation. For
‘sand’ samples, the values increased up to 5% or 8% of volumetric strain (Figure 3b). For ‘clay’ samples,
regardless of the value of the assigned micro-cohesive bond strength (PB,,;), all samples showed a
similar trend of volumetric increases up to 8% of volumetric strain (Figure 4b). In general, under
different confining stresses, the trend observed is similar for most samples. A slightly different trend
was observed for ‘sand” samples with a low micro-shear modulus (G, = 1e® Pa), where a volumetric
decrease was seen up to 2% of strain, followed by a volumetric strain increase.

The results observed for average porosity changes for loose 'sand” samples showed a decrease
in porosity of about 1-3% (Figure 3c) for low and high G, values, whereas, for medium G, values,
little change in porosity was observed. Densely packed 'sand’ samples showed porosity changes in
most samples, demonstrating an increase of 2-4%. Porosity results for samples with a low micro-shear
modulus (G, = 1% Pa), showed a different trend where a porosity decrease of 2% of strain was followed
by a porosity increase of up to 4%. ‘Clay’ samples showed a general trend of increasing porosity.
Loose ‘clay’ samples showed a slight change in porosity, increasing by about 1% from the initial value.
Densely packed “clay’ samples showed a larger increase in porosity of 4% from the initial value.

Coordination numbers are presented for ‘sand” and ‘clay’ in Figures 3d and 4d, respectively,
and represent the average number of contacts per particle. In general, as high strain is reached in the
triaxial test (¢, = 20%), most samples, regardless of their initial average coordination number, reached
an average value of four contacts per particle. Loose ‘sand” samples showed a slight averaged increase
in the mean coordination number of 0.2 contacts per particle. Densely packed 'sand’” samples showed
a decrease in the mean coordination number of one to two contacts per particle. Exceptional behavior
was observed for both loose and densely packed ‘sand” samples with a low micro-shear modulus
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(Gp = 1e® Pa), where the initial and the final mean coordination number were higher than in other
samples. ‘Clay’ samples showed a similar trend for both loose and densely packed samples, which
varied only in their rate of change at similar strain values. An increase in the mean coordination number
(from 0.2 to 0.8 average contacts per particle) was observed under low strain (<5%). The average
increase in the number of contacts per particle is inverse to the samples” micro-cohesive bond strength
(PBop)- The stronger the micro-cohesive bond strength (PB,;,), the smaller the change in the mean
number of contacts per particle. As strain increases (>5%), the mean coordination number decreases
down to an average of four contacts per particle. The range of the decrease in the mean number of
contacts per particle is of two contacts per particle for dense samples and 0.2 to 0.8 contacts per particle
for loose samples. The decrease in the coordination number of both loose and densely packed ‘clays’
to a similar averaged coordination number value, is a result of bond breakage, leading to local dilation
even in the loose samples, along a with similar coefficient of friction.

4.3. Strain Localization

Strain localization is observed in all samples, as indicated by the maximum positive or negative
gradient of relative displacement values (Figure 5). Between the yield (1) to peak (2) stages, a low
magnitude of deformation appears along the sample (Figure 5a). Elongated narrow zones of high
relative displacements indicate the position of localized slip zones (Figure 5b—e; black lines).

The gradient of relative displacement in loose 'sand” samples appears as a low magnitude of
deformation of very discrete and short localized slip planes (Figure 5b). Localized deformation seems
to occur at the perimeters of the sample.

In densely packed "sand’ (Figure 5c¢), a higher magnitude of deformations occurs along several
elongated zones. These appear as developed slip planes, with higher gradient values, which occur at
the center of the sample as well.

In loose “clay’ samples, well-defined zones of strain localization occur under smaller strain values
(e2 = 12%) and are limited to the perimeter of the sample (Figure 5d). As bonds break, the mode of
failure alternates between slip along shear planes and focused areas of compression (Supplementary
Video S3). In densely packed ‘clay” samples, strain was widely distributed within the sample with both
maximum positive and negative gradient values (Figure 5e). The number of shear planes is highest in
this material.

The post-peak behavior presented in all samples shows two emerging patterns that follow
the pre-conditioned dense/loose packing. For loose samples, strain is localized to distinct areas in
Figure 5b,d, whereas a wider area of strain localization is observed in the densely packed samples in
Figure 5c,e.

5. Discussion

5.1. Parametrization of Numerical ‘Sediments’

Each tested parametrization level influenced the numerical ‘sediments’ to a different extent.
The three parametrization levels—(I) endmember material strength (namely, micro-parameter G,
PB..,), (II) burial depth and (III) initial consolidation state (loose vs. densely packed)—have first,
second and third orders of influence on the material’s mechanical behavior, accordingly.

Changing an intrinsic micro-parameter affects the ability of each material to carry stress under
increasing strain conditions. Forloose ‘sand’ samples, higher G, contributed to an increased macroscopic
coefficient of friction and a higher peak shear strength due to strain hardening (Figure 3a, Table 2).
An opposite trend was observed for densely packed ‘sand” samples. A lower peak shear strength
was observed with a decrease in the macroscopic coefficient of friction due to a higher G, value.
This inverse relationship could be due to a change in the micro-fabric (structure of the particles) during
the confining pressure stage. Higher G, values created stiffer particles, which reduced the average
contacts between particles; thus, a lower average coordination number generated fewer contact forces.
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This relationship between the micro-shear modulus (stiffness) and the contact forces was indicated
by Lommen [61]. However, here, we additionally observed the effect of the sample packing density,
which showed that, due to the initial dense consolidation state and the increase in the stiffness, the
stiffer material fails under smaller strains.

Both loose and dense ‘clay” samples presented an inverse trend to the expected impact: under
higher applied micro-cohesive bond strength (PB,,,), the resulting material failed under smaller strain
levels (Figure 4a) and the shear strength and bulk cohesion decreased (Table 2). Cheung et al. [52]
showed that a high bond multiplier (1 = 1, Section 3.2) resulted in an increased material stiffness and
peak strength. In our experiments, we assigned a very low bond-to-contact stiffness ratio to maintain
low stiffness (see Section 3.2.2); however, the results presented the opposite. We suggest that the
imposed bond multiplier is the micro-parameter most likely affecting the samples’ stiffness. Overall,
the ‘clay” behavior results present an inverse relationship between the bond micro-strength and the
final material strength, which results from the bond multiplier (A). The higher assigned micro-cohesive
bond strength generates a weaker material—as the bond micro-strength increases, the bulk material
shows a decrease in the cohesion and peak shear stress.

The three tested confining stresses (proportional to shallow burial depth of sediments) produced,
within each material setup (e.g., DS-1), an increased peak shear strength, accordingly (Table 2).
Moreover, in agreement with the inverse relationship seen above for densely packed ‘sands’ and ‘clays’,
higher peak shear strength values were observed in samples with lower applied micro-properties
(Gp or PByp).

Differences between loose and dense packing are apparent from the porosity, volumetric strain
and coordination number results (Figures 3b—d and 4b—d). These results exhibit differences between
loose and dense packing; however, no influence was observed due to changes in the confining pressure.
In particular, the initial mean coordination number displays a clear difference between loose and
dense ‘sediments’. In densely packed sediments, more particles are in contact than in loosely packed
samples. The similar final mean coordination number (approx. 4), observed in most tests (including
both dense and loose ‘sediments’), is related to (A) the uniform particle size distribution and (B) the
micro coefficient of friction. The coordination number is a function of the range of particle sizes, and the
ratio between the mean particle size and the smallest and biggest particle sizes. Here, this ratio was set
to 30% following Saltzer and Pollard [44], i.e., the particle size distribution was uniform throughout
the tests. The applied coefficient of friction was also similar in all tests, resulting in similar final mean
coordination numbers and post-peak mechanical behavior (i.e., residual strength). The endmembers’
response to loose and dense packing is visible in the post-peak strain localization gradient (Figure 5)
and the peak shear strength (Table 2). Loose ‘sand’ samples show deformation modes of strain
hardening that are controlled mainly by compaction. The deformation appears in restricted areas of
the sample, closer to the boundaries. The high stiffness and consolidation of densely packed ‘sand’,
on the other hand, shows deformation controlled by dilatation. In ‘clay’ samples, both loosely and
densely packed samples exhibit dilation due to bond breakage and particle movement, which are
initiated under increasing stress. As stress increases, strain localization is increasingly concentrated
where bonds break, and the resulting shear and deformation occurs along specific diagonal lines.

5.2. Classification of the Granular Assemblage

The ability to simulate the two endmembers’ mechanical behavior—cohesionless and cohesive—is
important due to their different deformation behaviors in laboratory experiments [62]. For samples
with a Hertz-Mindlin contact model, a ‘sand’-like frictional-dependent deformational behavior is
observed, as the diverging failure envelopes indicate weakening due to a reduction in the friction
coefficient (Table 2). For samples with a linear parallel-bond contact model, a ‘clay’-like cohesive
deformational behavior is seen, as the sub-parallel failure envelopes indicate a weakening due to a
reduction in cohesion (Table 2).
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It should be noted that, for loose and densely packed ‘sand’ samples, bulk cohesion values
were linearly extrapolated from the failure envelopes presenting low (3 kPa) to medium (33 kPa)
cohesion values (see Table 2), though cohesive forces or bonds are not assigned in the Hertz-Mindlin
contact model. Schellart [63] suggested that these are the result of a linear extrapolation of the
Mohr-Coulomb failure envelope and that the envelope has a concave upwards shape rather than
a straight line. Therefore, the extrapolated cohesion value should be neglected from the ‘sand’
samples” macro-properties.

In some experiments, the applied micro-property is inversely proportional to the resulting
macro-properties (see Table 2) and the resulting shear strength is proportional to the applied confining
stress and consolidation state. Therefore, once the relationship between micro- and macro-properties is
established, it is possible to use the new numerical material.

The modeled mechanical behavior is compatible with a range of results from analogue experiments,
as seen in Figure 7. ‘Sand’ experiments are compared with laboratory tests (Figure 7a,b) of uniformly
distributed sand (loose and densely packed) [64], rounded sand [3] and varying amounts of fines
within sand [65]. This suggests that a high micro-shear modulus (Gp) can simulate a loose, rounded
and uniformly distributed sand sample under low stresses, or loose sand with up to 20% fines content
under high stresses. In a densely packed state (over-consolidation), medium values of the micro-shear
modulus can also be used.
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Figure 7. A comparison between the mechanical behavior (stress—strain) of the numerical results and
laboratory experiments of sediments. Laboratory experiments of loose and dense sands and normally
consolidated and overconsolidated clays are respectively compared to the numerical results. (a) loose
‘sand’ (b) dense ‘sand’ (c) loose ‘clay” (d) dense ‘clay’. Solid black lines are results from the DEM
simulations, found to resemble empirical lab results. Above each line, the micro-parameter size and
confining stress are detailed. Dashed and dotted red lines are results of empirical triaxial tests on
natural sediments. Data from Guo and Su [3] were recalculated to fit the deviatoric stress axis. For other
data ([65,66]), the original y-axis is present on the right-hand side (red labels).
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The modeled loose ‘clay’ is compared with analogue tests of different normally consolidated
clays [66] or normally consolidated clay particle anisotropy [30] (Figure 7c). The densely packed ‘clay”
results are compared with over-consolidated kaolinite tests exhibiting different overconsolidation
ratios [67] (Over Consolidation Ratio-OCR in Figure 7d). In the ‘clay’, the applied micro-cohesive
bond strength (PB,,;,) influences the timing (amount of strain) at which peak shear stress is reached.
Strengthening, which appears in some of the normally consolidated ‘clay” experiments, is analogous to
the breakage of aggregates (peak) and then the reorientation of platy particles. Anantanasakul et al. [30]
demonstrated that peak stress could form due to the anisotropy of kaolinite particles during deposition.
As the platy clay particles are parallel or semi-parallel to the main stress (01), strain hardening occurs
as the platy particles reorient, thus increasing shear resistance until peak shear strength is reached.
The anisotropy of clayey sediments was also noted by Hicher et al. [68] as a source of increased stiffness
and strength in clays.

The applied medium and low micro-cohesive bond strengths (PB,,;,) of densely packed ‘clay’ are
best comparable to analogue experiments of overconsolidated clay. Empirical tests of overconsolidated
(i.e., dense) clay indicate that a higher overconsolidation ratio of clay requires a lower loading stress to
reach peak shear strength [67]. This is most likely due to the reorientation of the platy particles that
already occurred under previous sediment loading [69], leading to a rapid and smooth transition from
contractive to dilative behavior. The modeled densely packed ‘clay’ presents a comparable mechanical
behavior; however, peak shear strength occurs under lower strains.

The abovementioned laboratory experiments have demonstrated the varied response of clay
minerals as well as the response of intact and remolded clay to load. The primary mechanism
suggested to generate failure in clay sediments is particle reorientation, forming a shear zone as the load
increases [70]. However, Hattab et al. [71] proposed that the mechanism of particle reorientation also
depends on the content of specific clay minerals, showing that a shear plane is more likely to develop
in montmorillonite as opposed to kaolinite. The stiffer and more brittle behavior of clay also results
from remolding and mottling processes [41]. Although clay particle reorientation was not simulated
in our experiments, the shear strength of the modeled overconsolidated clay (i.e., dense clay) can be
related to this process. Such mechanical behavior can also be used for various process simulations.

5.3. Application

The range of current simulated materials provide an opportunity to examine sediments with
varying shear strengths and particle arrangements. Most commonly, in nature, post depositional
processes lead to a change in shear strength. Sediments acquire their shear strength primarily from the
particles’ composition (e.g., mineralogy, shape, size distribution, roughness) and the initial depositional
micro-fabric [41]. Post-depositional processes affect the sediments’ shear strength due to both spatial
and temporal changes in the sediments” micro-fabric, mostly through consolidation [72]. These effects,
generated in nature (due to variations in porosity, grain size distribution and friction coefficient), can be
used to simulate the resulting sediments of post depositional processes and the deformation, such as
discrete or distributed shear zones, as seen in Figure 5. These are applied in the form of an increased
shear strength, different mechanical behavior and consolidation states.

Simulating changes in shear strength in sediments (without changes in depth or consolidation
state) can be done by changing the micro-parameter G, in sand or PB,, in clay. The resulting new
material can be used to simulate and compare the mechanical behaviors of sediments that experienced
a change in their initial shear strength (e.g., following different levels of bioturbation in shallow
sediments). A process such as bioturbation, which remolds the sediment, can modify the sediments’
shear strength [73]. During bioturbation, water is removed, and the sediment shear strength is
increased [73]. Alternatively, bioturbation can break the cohesive bonds in clay sediments and lead to
the decreased shear strength of the sediment [74]. Utilizing the PB,,, micro-parameter also allows for
the simulation of the influence of shear strength due to microbial organic [75] or calcite cement [54]
following early diagenetic processes.
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The numerical sediments can simulate sediments in which both shear strength and consolidation
states changed post deposition (without a change in depth) by utilizing the micro-property (G, or PB,,)
and an initial consolidation state via the initial micro- coefficient of friction (u,). The new material can
simulate the numerical behavior of sediments that have undergone strengthening through various
actions such as waves or seismic activity, and their consolidation changes as a result of the process.

Finally, the numerical materials can simulate sediments in which shear strength is being temporally
or spatially changed by utilizing all three parameters tested here, namely introducing a micro-property
value (G, or PB,,,) for a specific mechanical behavior, applying an initial consolidation state via the initial
micro- coefficient of friction (y), and applying a burial depth through the initial confining pressure.
Continuous or episodic depositional processes, such as changes in sedimentation rate, the loading and
unloading of ice sheets due to glaciation cycles, and mass movements contribute to the increase in shear
strength with time and depth. As the vertical stress grows due to increased load, sediments undergo
consolidation and, consequently, the shear strength of normally consolidated sediments increases with
depth almost linearly [75,76]. However, in places where a mass movement occurs, overconsolidated
sediments may occur in shallow depths due to unroofing [76]. The above-presented numerical range
will enable a quick setup of specific sediment behaviors for the simulation of various deformational
processes in 3D.

6. Conclusions

A series of 3D triaxial numerical experiments simulated the mechanical behavior of two sediment
endmembers—cohesionless and cohesive. Each endmember also presented an increased shear
strength under increasing burial stress and a dense consolidation state. These results showed good
agreement with laboratory tests of natural sediments under varying consolidation states and a range
of compositions. It is thus suggested that the resulting shear strength in natural sediments, due to
depositional and post depositional processes, can be simulated by varying the size of a micro-property
(i.e., the micro-shear modulus for cohesionless sediments and micro-cohesive bond strength for
cohesive sediments) without a complex particle shape or complex contact law for cohesive strength.
This approach can reduce the extent of material calibration and enable studies to generate numerical
sediments according to a desired process and geological history (i.e., to generate sediments that have
undergone increasing or decreasing shear strength processes).

In order to apply our results in future simulations of sediments, one to three levels of
parametrization should be used. The level of parametrization sets the order of influence of the
sediments’ mechanical behavior under an applied stress. Prior to the parametrization, the appropriate
contact model should be considered and set to produce cohesionless or cohesive numerical sediments.

In order to simulate sediments with the first order of influence (i.e., material shear strength), it is
recommended to apply a high or a low micro-parameter (G, for sands and PB,,, for clays). This will
enable the simulation of shallow sediments, for which only shear strength has changed—such as
inherited shear strength due to original deposited sediment micro-fabric, or shear strength altered by
bioturbation or early digenesis cementation.

In order to simulate sediments with a second order of influence (i.e., consolidation), it is
recommended to use both the initial micro coefficient of friction to generate loose or dense sediment
packing and, additionally, to apply a high or low micro-parameter. This parametrization simulates
sediments for which a change in consolidation state has also occurred—volumetric change as well as a
change in shear strength, such as after a strengthening event.

In order to simulate sediments with a third order of influence—burial depth—it is recommended
to use all three parameters, i.e., the abovementioned parameters and a confining stress appropriate to
the burial depth. This parametrization simulates sediments for which a change in the burial depth or a
cycle of burial and exposure has occurred, such as after deglaciation or a mass movement event.
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Appendix A. DEM Force-Displacement Calculation

Particles that interact are allowed to overlap according to the soft particle approach, in which,
geometrically, particles remain rigid and only small deformations occur at contact points [7,30].
The particle properties as well as the applied boundary conditions, e.g., gravity, determine the
magnitude of the particles” overlap (6, Figure 1), which, in turn, is used to calculate the forces that act
on individual particle contacts. Each contact relates to both the normal F,, and tangential F; forces.

The forces are calculated for 3D spheres in the case of an elastoplastic contact model or material
behavior, respectively [8,30], via:

Fu =k, (n)0%, (A1)

Fo =k, 5032 (A2)

where F;, and F; are the normal and tangential forces acting at each particle contact point; ky, , and ks
are the normal and tangential stiffnesses, respectively, and 62/ % and 6;’/ 2 are the particle overlap in the
normal and tangential directions as well (Figure 1).

To evaluate the subsequent motion of a particle, Newton’s second law is used. Therefore, all normal
F, and shear F; forces are summed up for each individual particle to calculate a so-called net force F,
which than reveals the acceleration and potential subsequent displacement of each individual particle.
As the calculation is repeated, in order to dissipate the energy in the system, at each time step, a local
damping component (Table 1, damp) is applied.

To allow particle contacts to break and subsequently let particles slip one past the other, a slip
condition is introduced. The slip condition is defined as a critical shear force value F; (,,y), which,
once exceeded, means that slip will occur:

Fs (max) = IJP'F"/ (AB)

where F, is the normal force at a contact point and pp, is the minimum friction coefficient of the two
particles in contact. It should be noted that the shear forces at each contact point add up at each
calculation step. When the added shear force is Fsp > F (y4y), sliding occurs between two particles
and the contact breaks. Following this, it is possible to evaluate the maximum shear stress of the bulk
numerical material (the overall particles assemblage) via the Mohr—Coulomb criterion:

T (max) = C+ (xu'a?l)r (A4)

where 7T (5 is the maximum shear strength the bulk material can sustain, C is the cohesion, y is the
bulk material friction coefficient and ¢, is the normal stress.

To summarize, in each calculation step, the simulation starts by detecting particles that are in
contact. The forces exerted by particles are then calculated according to selected contact models based
on the particles” overlap and micro-properties via Equations (Al) and (A2). The newly calculated
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contact forces are combined for each particle and used to calculate subsequent particle movements
based on Newton’s second law of motion:

4
Fy = pp(g)m{;a, (A5)

where p, is a particle’s density, R, is a particle’s radius and 4 is the acceleration. Particles’ velocity and
displacement, as well as the resultant new particle contacts, are updated at the end of each iteration [30].
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