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Abstract: Deep Learning (DL) has become popular due to its ease of use and accuracy, with Transfer
Learning (TL) effectively reducing the number of images needed to solve environmental problems.
However, this approach has some limitations which we set out to explore: Our goal is to detect the
presence of an invasive blueberry species in aerial images of wetlands. This is a key problem in
ecosystem protection which is also challenging in terms of DL due to the severe imbalance present in
the data. Results for the ResNet50 network show a high classification accuracy while largely ignoring
the blueberry class, rendering these results of limited practical interest to detect that specific class.
Moreover, by using loss function weighting and data augmentation results more akin to our practical
application, our goals can be obtained. Our experiments regarding TL show that ImageNet weights
do not produce satisfactory results when only the final layer of the network is trained. Furthermore,
only minor gains are obtained compared with random weights when the whole network is retrained.
Finally, in a study of state-of-the-art DL architectures best results were obtained by the ResNeXt
architecture with 93.75 True Positive Rate and 98.11 accuracy for the Blueberry class with ResNet50,
Densenet, and wideResNet obtaining close results.

Keywords: unmanned aerial vehicles (UAV)-acquired images; unbalanced data; transfer learning;
deep learning; data analysis

1. Introduction

Recent changes in global climate conditions influence species composition and increase the impact
of invasive plant species in natural environments. Invasive species (those that spread outside their
native range [1]) are known for their rapid and effective adaptation to new environments and are,
thus, able to benefit from ecosystem changes and habitat disturbances. Therefore, invasive species are
suspected to decrease biodiversity and ecosystem degradation [2]. Their dominance over native species
might result in a displacement of native species, multiple stress factors on ecosystems, and economic
costs due to losses in agriculture and forestry [3]. In recent years, the need to precisely understand
the ecological impacts of invasive species in ecosystems has become a key issue when designing and
prioritizing natural resource management approaches [2]. Such land use and nature conservation
management approaches should deal with the prevention, early detection and reduction of invasive
species with minimum cost. However, existing studies are limited in time and area studied due to the
use of costly and labor-intensive field surveys [2].
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Unmanned aerial vehicles (UAV) have been used to acquire images in a variety of studies
in agriculture [4,5] and forestry [6–9]. The use of computer vision and DL techniques offers the
possibility to deploy research at a larger scale and with reduced costs. These tools allow the analysis
of larger amounts of data, which can be complemented by field work if necessary. Specifically,
a small amount of work exists in the use of DL techniques for the analysis of weed infestations.
For example, the authors of [10] used an encoder–decoder network to process aerial multispectral
images with qualitative results showing the potential of DL techniques for solving practical problems
in weed detection. The authors of [11] analyzed insect pests in agricultural crops with a DL workflow
to count and localize pests. In a comparison of three different DL networks they achieved a precision
of 0.93 and a miss rate of 0.10. The authors of [12] identified invasive hydrangea with an accuracy of
99.71% in images of the Brazilian national forest. In both studies TL and data augmentation were used
to increase the accuracy in datasets where the weed to be detected occurred frequently (in over 2/3 of
the images in [11], for example).

These studies show how DL approaches have proved effective in the field of agriculture and
invasive species. However, the problem studied in this work presents important particularities:
The invasive blueberry species (Vaccinium cosymbosum x angustifolium native from North America) is a
small bush, presenting problems specially in wetland terrains, that spreads over large areas with a
varying density. Most wetlands are sensitive environments and protected areas, primarily due to their
natural habitat functions for endangered species. Blueberries in those areas alter the composition of
protected biotopes, threatening endemic plant communities and species. Although a small amount
of research exists concerning this topic, it is made up of mainly field-work-based approaches [13,14].
To the best of our knowledge, our study is the first work where UAVs are applied to acquire images
and DL techniques are used to identify blueberries in a wetland. From the point of view of computer
vision, this problem presents some specific challenges. First of all, acquiring and annotating data sets
like ImageNet [15] made up of millions of images is not feasible. Consequently, the interest was in the
ability of pretrained deep neural networks to take advantage of previously solved problems in order to
produce solutions to new problems using fewer data (known as TL). Furthermore, although in some
applications DL can be used without major adaptation [9], for this problem a deeper understanding
of the structure of DL networks and the optimization process they follow is necessary. Specifically,
our problem presents a heavy data imbalance, which has been an ongoing topic since before DL
approaches started dominating Artificial Intelligence. For example, the authors of [16] studied the
amount of resampling needed to obtain the best results in binary classification problems using neural
networks based on perceptrons. Their theoretical analysis showed how resampling can indeed improve
the performance of classifiers and is most indicated when the cost of misclassifying one infrequent class
is high in practical terms. However, the paper also states that the ratio between class samples needs to
be carefully studied for each application. The importance of data resampling, as well as that of the
True Positive Rate (TPR; also known as Sensitivity or recall) and False Positive Rate (FPR; also known
as Specificity) for the evaluation of its performance was further stressed in another of the foundational
studies in the area [17]. The authors also addressed the issue of cost function weighting during training
as a way to influence the output of a classifier. In recent years, the emergence of DL networks and
their dominance in computer vision [18–24] has resulted in these ideas being revisited in light of
new application opportunities. All these developments resulted in a widespread use of synthetic
data resampling techniques such as data augmentation together with DL architectures [25]. However,
most of the existing approaches use data augmentation in ways that are not directly relevant to our
problem. On the one hand, data augmentation is most often used to improve classification performance
in sets that are small but balanced [11,12,26,27]. On the other, few details are usually given on the
decisions made when using data augmentation, how the characteristics of the datasets informed them
or the degree to what they affected the final results. Therefore, our goal in this paper is to explore
practical aspects of the use of DL networks for our specific problem of detecting blueberries which was
model as a heavily imbalanced classification problem. In particular, we set out to quantify to which
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extent a careful use of data augmentation, loss function weighting and the choice of an adequate DL
architecture can improve the final classification results.

2. Materials and Methods

In this section, we present our dataset and the different methods that were used in our experiments.
First, the area where the data was acquired is described along with a detailed explanation of the
different classes visible in the images. Afterwards, the data preprocessing steps to obtain the mosaics
are mentioned. Finally, we present our general DL framework consisting of different network
architectures and data augmentation techniques for TL.

2.1. Data

Image collection was done in a natural environment defined as an “ombrotrophic bog”, i.e.,
a wetland hydrologically isolated from its environment receiving both water and nutrients exclusively
from precipitation. As the quality of these environments is vulnerable to the impact of anthropogenic
activities, a biodiversity protection program limits in situ field research as it is a standard in wetland
protected areas around the world. Therefore, images were collected for the “Lichtenmoor” wetland
(Figure 1, which is located about 60 km northwest of Hanover, in Germany (52°43′06.2′′N 9°20′41.5′′E),
by using a DJI phantom 4 drone in autumn 2018 taking advantage of seasonal red coloring of
the blueberry leaves. Three flights were conducted where approximately 350 images each were
gathered. The flights were conducted on one single day during the afternoon. The weather was
sunny, which resulted in bright spots and long shadows within the orthomosaic. These images
where then processed using the Metashape software [28] to produce one orthomosaic for each site.
The orthomosaics covered between 10.6 to 12.4 ha of the wetland and produced images of around
10,000 square pixels.

Figure 1. Location of data acquisition sites.

On these 3 orthomosaics 6 classes were identified: blueberries, trees, yellow bushes, soil,
water, and dead trees (Figure 2). The class trees contains pine trees (Pinus sylvestris), the class yellow
bushes is defined by shrubby birches (predominantly Betula pubescens, secondary Betula pendula).



Remote Sens. 2020, 12, 3431 4 of 17

However, as the purpose of these data is to detect the invasive blueberries within the images, the main
focus was on their distribution and occurrence. Blueberries, especially, show a characteristic red
color, which makes them easily recognizable and identifiable in comparison to other classes such
as trees or bushes. In contrast to this, partly visible soil that appears in reddish tones hinder the
blueberry classification. Furthermore, blueberries occur less frequently than other classes and in
relatively small areas. This can be seen in Figure 2, where the mentioned highly unbalanced classes are
visible. This imbalance is the highest when comparing blueberry and soil class. The three orthomosaics
were divided into axis-parallel patches of side length (referred from now on as “patch size” = 100).
In orthomosaic 1:162 out of 6400 patches contained blueberries while 2383 out of 6400 contained soil.
For the orthomosaics 2 and 3, respectively, these numbers were 378/14,641 blueberry, 4254/14641 soil,
and 222/7921 blueberry 2646/7921 soil. On average 2.64% of the patches over the three orthomosaics
contained blueberry while 33.23% contained soil, thus the soil class is approximately 12.5 times more
frequent than the blueberry class.

Figure 2. Section of one of the orthomosaics studied, with detail of the different classes.

Annotation and Dataset Construction

The three orthomosaics obtained were annotated by experts using the open source image edition
software GIMP [29]. Binary layers for each of the six classes were annotated in each of the three
orthomosaics. These annotations were based on color, shape and context information.

The orthomosaics, as well as the annotation binary layers, were divided into squared patches
of the same side length (given the size of the blueberry bushes, ranging from 20 to 100 pixels in
radius, we decided to use s = 100 pixels for all the experiments presented). Therefore, patches of
100 × 100 pixels were used as an input for the DL network. In the first step of the network, each patch
was resized to fit the size needed by each feature extractor. The classes present in each patch were
stored in a separate “label” list. In general, patches contained more than one class and therefore
formalized the problem as a multi-label patch classification problem.
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2.2. Definition of the DL Network

The general structure of the DL approach has two main blocks. The first block comprises a
well-known public architecture chosen among those included in the torchvision package of pytorch.
As a TL approach was used, this block is considered the Feature Extractor and pretrained weights
from the ImageNet data set were used to initialize the networks, unless stated explicitly. The second
block is composed of two independent linear layers that substitute the original last layer of the
pretrained networks. Each of these two layers is followed by a sigmoid activation function to impose
independence between the different labels that may occur in a patch. The first output represents the
probability of a patch to contain a certain label, while the second output is used to determine the
percentage of pixels that belong to the class. The idea is to implicitly enforce the network to take into
account classes with a low pixel count.

Regarding the feature extractors, the following architectures were considered as defined on
the torchvision package from pytorch (A description of the implementation of each model and a
quantitative comparison on the ImageNet dataset can be found at https://pytorch.org/docs/stable/
torchvision/models.html):

1. Alexnet (alexnet) [18] is one of the first widely used convolutional neural networks, composed of
eight layers (five convolutional layers sometimes followed by max-pooling layers and three fully
connected layers). This network was the one that started the current DL trend after outperforming
the current state-of-the-art method on the ImageNet data set by a large margin.

2. VGG (vgg19_bn) [20] represents an evolution of the Alexnet network that allowed for an increased
number of layers (19 with batch normalization in the version considered in our work) by using
smaller convolutional filters.

3. ResNet (resnet50, resnet152) [21] was one of the first DL architectures to allow higher number
of layers by including blocks composed of convolution, batch normalization, and ReLU.
Two versions with 50 and 152 layers, respectively, were used.

4. Squeezenet (squeezenet1_0) [19] used so-called squeeze filters, including point-wise filter to
reduce the number of parameters needed. A similar accuracy to Alexnet was claimed with
fewer parameters.

5. Densenet (densenet161) [22] uses a larger number of connections between layers to claim increased
parameter efficiency and better feature propagation that allows them to work with even more
layers (161 in this work).

6. Wide ResNets (wide_resnet101_2) [24] tweak the basic architecture of regular ResNets to add more
feature maps in each layer (increase width) while reducing the number of layers (network depth)
in the hopes of ameliorating problems such as diminishing feature reuse.

7. ResNeXt (resnext101_32x8d) [23] is a modification of the ResNet network that seeks to present
a simple design that is easy to apply to practical problems. Specifically, the architecture has
only a few hyper-parameters, with the most important being the cardinality (i.e., the number of
independent paths, in the model).

According to a recent study in medical image segmentation [30], the first layers of an
encoder–decoder are the ones that encode differences between image domains. In our case, we can
clearly differentiate between the ImageNet domain and our own domain (aerial image orthomosaics).
Therefore, different training strategies were used where the weights of different parts of the network
were updated to test the best TL approach for our problem. Finally, to train all these networks,
the Adam optimizer [31] and a one fit cycle learning rate scheduler to speed up convergence [32]
were used.

2.3. Data Augmentation and Transfer Learning

Data augmentation is a commonly used strategy in DL that makes it possible to increase the size
of all or part of the data set without the need to collect new data. It also allows to extend the dataset to

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
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unseen images by applying some transformations that can improve generalization. By making copies
with simple image transformations of the blueberry patches the distribution of the training set can be
altered and thus, shift the focus of the trained DL networks. The following image transformations to
augment our data were applied.

1. Small central rotations with a random angle. Depending on the orientation of the UAV, different
orthomosaics acquired during different time frames might show different perspectives of the
same trees. In order to introduce invariance to these differences, flips on the two main image axes
can be applied to artificially increase the number of samples.

2. Flips on the X and Y axes (up/down and left/right). Another way of addressing these differences
is to mirror the image on their main axes (up/down, left/right).

3. Gaussian blurring of the images. Due to the acquisition (movement, sensor characteristics,
distance, etc.) and mosaicing process, some regions of the image might also present some blurring.
Simulating these blurring with a Gaussian kernel to artificially expand the training dataset can
also be used to simulate these issues and improve generalization.

4. Linear and small contrast changes. Similarly, different lightning or shadows between regions of
the image might also affect the results. By introducing these contrast changes, these effects can be
stimulated and enlarge the number of training samples.

5. Localized elastic deformation. Finally, elastic deformation were applied to simulate the possible
different intra-species shapes of the blueberry patches.

To implement this transformations, the “imgaug” library [33] was used. This is expected to
increase the classification accuracy of the images containing the augmented classes at the cost of
decreasing that of other classes. Thus, in our case data augmentation was used to highlight the
blueberry class which needed to be identified (see Section 3.1 for details).

Additionally advantages of the transfer learning (TL) capabilities of DL networks were taken.
Whenever the available dataset is not sufficient to properly optimize the DL architecture being used,
a commonly used technique is to initialize this structure using pre-loaded weights. These weights are
typically the result of training the network to solve some related problem. Frequently, for classification
purposes, optimized nets for the ImageNet dataset [18] are used. Some recent studies have detailed
the benefits of TL [9,34,35].

2.4. Evaluation Criteria

In order to target the predictive capacity of our algorithms patch labels for the algorithm were
considered. For all patches, the relation between predicted values and real values was considered as
stated in the ground truth and broke into the usual classifications of True Positives: TP, False Positives:
FP, True Negatives: TN, False Negatives: FN. Furthermore, in order to focus on the blueberry class,
the following measures were computed on them (unless explicitly stated).

TPR = SENS =
TP

TP + FN
FPR = 1− SPEC =

FP
TN + FP

ACC =
TP + TN

TP + TN + FP + FN

(1)

3. Results

In this section, experiments were presented using real data corresponding to three orthomosaics
constructed using the UAV data acquired. All algorithms described throughout the paper
were implemented using the python programming language [36] and the pytorch Library [37].
All experiments where run using a Linux Ubuntu operating system with 10 dual-core 3GHz processors
and an NVIDIA GTX 1080 graphics board. Figure 3 shows an example of the annotated data and the
result produced by the ResNet50 network.
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Figure 3. Left, section of one of the orthomosaic. Center, the annotation mask for the blueberry class is
highlighted in black. Right, the prediction mask is superimposed to the annotation mask, with black
pixels representing a higher likelihood of containing the blueberry class.

The three orthomosaics available were divided into two for training/validation while and a the
third one for testing. The orthomosaic used for testing was rotated so all orthomosaics were used
for testing once and no orthomosaic was used for training/validation and testing at the same time
to avoid leakage between the training and testing patches. This is usually known as a leave-one-out
strategy and resulted in the following training/testing set combination.

• First fold, testing: Orthomosaic 1, (6400 patches, with 2.53% blueberry), Training: Orthomosaics
2,3 (22,562 patches with 2.66 blueberry)

• Second fold, testing: Orthomosaic 2, (14,641 patches, with 2.58% blueberry), Training:
Orthomosaics 1,3 (14,321 patches with 2.68 blueberry)

• Third fold, testing: Orthomosaic 3, (7921 patches, with 2.53% blueberry), Training: Orthomosaics
1,2 (21,041 patches with 2.57 blueberry)

The results presented in this section are averages for the TPR, FPR and accuracy results for the
Blueberry class of the three testing stages. Regarding the other classes, our experiments showed
that training the network to classify them helped to improve the classification of the blueberry class.
Infrequent classes (trees, yellow bushes, water, and dead trees) appeared to follow the same tendencies
as the blueberry class while the much more frequent soil class tended to get higher TPR and lower
accuracy. The networks used in this study could undoubtedly also be tailored to detect these classes,
however this remains out of the scope of the present work.

3.1. Data Balancing and TL

In this experiment a network (ResNet 50 [21]) was chosen that has been used to solve a variety of
classification problems. Our main focus here is to study how this network can be adapted to solve our
practical problem.

Usually all the images in the training set have the same importance. In a multi-label classification
case, each training sample will have the same contribution on the loss function and within it,
determining correctly the presence or absence of each possible label will also have the same importance.
Consequently, networks usually present a bias towards the most frequent classes. Once enough
examples have been seen by the network, it should learn to properly classify all the different classes.
However, if not enough examples of a pattern (for example, an infrequent class appearing in a patch)
are seen by a network, the network may not learn to accurately predict these occurrences.

As discussed in Section 2.1, our problem presents a severe imbalance between the classes,
especially as the blueberry class is a very infrequent class (appearing in 2.64% of patches). As the
results show, using the ResNet without adapting it to the problem characteristics results in a low
detection rate for the blueberry class. In order to obtain a higher detection rate for this class two main
approaches were applied:
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• Loss function Weighting. By giving different weights to the different classes in the loss function the
relative importance of each class can be altered. However, this is not enough, as correctly detecting
the presence of a class contributes the same as correctly detecting its absence: A network that does
not predict the blueberry class in any patch will still be right over 97% of times. Consequently,
even with loss function weighting, infrequent classes will remain underpredicted.

• Data augmentation: By making copies with simple transformations (see Section 2.3) of the
blueberry patches the distribution of the training set can be altered and thus, increase the
importance of classes in the loss function. This is expected to increase the classification accuracy
of the patches containing the augmented classes while decreasing that of other classes.

Regarding TL, we initially used weights trained on the ImageNet dataset [18] to initialize our
network. These networks were considered frozen and unfrozen. The term frozen here stands for
a network where all layers except the final (classification) one are kept unchanged during training.
Conversely, in unfrozen networks, all layers are trained and their weights are allowed to change.
The goals here were to assess whether frozen networks with ImageNet weights were able to adequately
solve our problem and to quantify the importance of these pretrained weights against random weights.
Frozen and unfrozen versions of the ResNet network were considered except for the case of a network
initialized with random weights.

To test the effect of data augmentation on the data imbalance, several possibilities were considered
concerning the training data sets and include representative examples of the main tendencies observed:

• No augmentation and no weighting of the loss function. This network was considered frozen
FNOA and unfrozen UNFNOA.

• Only weighting of the loss function, with no data augmentation, FW and UNFW. In this case,
the weights for the six classes were [6,2,2,1,2,2] in order to give more importance to the blueberry
class and less to the soil class.

• Weighting of the loss function [8,2,2,1,2,2]. The blueberry class was, thus, assigned a weight of
“8”, the soil class a weight of “1”, and the rest of classes a weight of “2”. A “high level” of data
augmentation was used, naming the data sets FHA and UNFHA. Twelve new images for each
image of the blueberry class was created.

Another important aspect of TL approaches, is the learning rate of a DL model. This parameter
controls the step size of the optimizer that changes the weights in each iteration of the training phase.
In order to analyze how it affected TL, a set of experiments with different values were performed.
A comprehensive picture is presented, among all values tested from 1× 10−5 to 0.09 with 10 sampling
points at each exponent value (1× 10−5, 2× 10−5...9× 10−5, 1× 10−4, 2× 10−4...). Figure 4 shows the
TPR, and accuracy values for the classification of Blueberry patches with the different training data
sets. FPR was left out of the Figure as its evolution determines accuracy to such an extent that the two
FPR and accuracy Figures show basically the same trends. In order to provide some more details on
the differences of behavior for the different training sets, Table 1 provides details on best and average
values for TPR, FPR, and accuracy.

In order to limit the effects of randomness, all tests were run with the same seeds for all the
pseudo-random generators used. This has two main practical effects: First, all of the presented data
sets are fixed for the test run with all the learning rates. Second, the order in which the images are fed
into the network is always the same. By removing these sources of randomness, it was ensured that
the differences should only occur from the balancing approaches.
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Figure 4. TPR (top) and accuracy (bottom) for the blueberry class. Data for training: F stands for Frozen
and UNF for unfrozen in the following cases; without data augmentation or loss function weighting
(FNOA and UNFNOA), only with loss function weighting (FW and UNFW), and with function
weighting and intensive use of data augmentation (FHA and UNFHA).

Table 1. Summary of values for all learning rates considered and the different training modes:
F stands for Frozen and UNF for unfrozen in the following cases: Without data augmentation or
loss function weighting (FNOA and UNFNOA), only with loss function weighting (FW and UNFW),
and with function weighting and intensive use of data augmentation (FHA and UNFHA).

TPR FPR ACC

Best Mean Stdev Best Mean Stdev Best Mean Stdev

FNOA 37.13 15.86 13.05 0.00 0.13 0.14 98.01 97.66 0.24
FW 37.13 15.87 13.06 0.00 0.13 0.14 98.01 97.66 0.24

FHA 87.99 61.24 8.25 2.04 6.66 5.45 96.84 92.49 5.10
UNFNOA 63.83 54.55 7.05 0.02 0.13 0.04 98.83 98.68 0.15

UNF W 66.21 54.98 7.11 0.04 0.12 0.07 98.90 98.69 0.15
UNFHA 93.39 81.31 5.85 0.47 0.89 0.35 98.93 98.64 0.21

The inverse trends observed between the FPR and accuracy happened due to the data imbalance:
as the results correspond to testing sets where the percentage of patches of each class has not been
altered, there are many more patches not containing the blueberry class than those containing it.
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Consequently, low FPR values also imply high accuracy. These accuracy values need to be properly
contextualized. For example, for orthomosaic 2, a classifier that predicts all patches to be negative
respect to the blueberry class will still reach approximately 97% classification accuracy. This happens
because only 2.53% of the patches in this orthomosaic contain the blueberry class.

The primarily interested was in finding the patches that actually do contain the blueberry class,
TPR and FPR were provided. Consequently, instances of the network should have high TPR with FPR
as low as possible. Therefore, networks are considered successful if their TPR is above 90% while
the absolute number of FP is lower than the absolute number of TP. This usually stands for a FPR
under 2% (the TPR is computed over the number of patches containing Blueberries while the FPR is
computed over the total number of patches).

Taking this into account, it can be seen that frozen versions of the network perform worse than the
unfrozen ones. Most frozen networks have problems finding the patches containing the blueberry class
and present a low (<60) TPR. An exception to this is the FHA version of the network that achieves high
TPR for some LR values at the cost of noticeably increasing its FPR and, thus, decreasing the accuracy.
Apart from this case, the other frozen networks achieve high accuracy values (over 97% for the FNOA
and FW networks) but their relatively low capacity to detect the patches containing the blueberry class
makes them unsuitable for our application. This issue shows that using ImageNet weights to solve our
problem directly with minimal retraining is not a feasible option. Although the networks thus trained
can still obtain high accuracy values, they do not provide sufficiently high blueberry TPR. The reason
for this may be that the ImageNet data set is trained to provide the best overall classification accuracy
for all classes and, thus does not account for this type of unbalanced data set. Furthermore, this also
reinforces the findings of a recent paper [30] that suggests that domain differences are encoded on the
first layers of the network. By only training the final (classification) layer, the network cannot properly
adapt to the domain differences between the ImageNet dataset and our own.

Conversely, the unfrozen networks prove more adaptable to our needs in the problem and
provided a high TPR while still retaining a low FPR and high accuracy. When no data augmentation
was used,(UNFNOA and UNFW). Although accuracies over 98% where achieved for the blueberry
class, TPR values remained low (with a maximum of 63.8% for UNFNOA and 66.21% for UNFW).
When data augmentation was used, it was possible to achieve a higher TPR at the cost of also increasing
the FPR. The best accuracy value of 98.92% with 78.56% TPR for a LR of 0.00009 was obtained by
the UNFHA network. The same network showed a tendency to increase both the TPR and FPR with
the majority of the learning rates. In terms of results obtaining a high TPR value while keeping high
accuracy, the UNFHA network obtained 93.39% TPR with accuracy 98.10% for LR 0.06.

Finally, it was tested whether or not the use of the ImageNet weights in the unfrozen networks
made a difference in order to solve the problem. The same test was run for the different learning rates
with the UNFHA data set that used data augmentation. In this case, however, the ResNet50 network
was initialized with random weights. Table 2 shows a summary of the results obtained with the best,
average and standard deviation values for the three metrics considered.

Table 2. Summary of values of the UNFHA training set when the ResNet50 network is initialized with
ImageNet and random weights.

TPR FPR ACC

Best Mean Stdev Best Mean Stdev Best Mean Stdev

ImageNet Weights 93.28 81.31 5.85 0.47 0.88 0.34 98.92 98.64 0.21
Random Weights 92.58 83.88 7.66 0.79 1.33 0.46 98.63 98.27 0.53

The results show that the network initialized with random weights achieves results close to those
achieved with the ImageNet weights. Using random weights results in higher variances for the three
metrics and slightly lower accuracy (the difference was statistically significant by using a difference of
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mean paired-samples t-test with 99% confidence level with a p-value of 0.0056). This pattern was also
observed for the FPR metric. In terms of TPR the best average was obtained by using random weights.

Statistical Significance of the Results

The experiments described so far were run with fixed pseudo-random seeds in order to limit
the random effects during training. In the following paragraphs a brief discussion and quantify the
importance of these effects were made. Two main sources of randomness were considered: (1) In the
absence of data augmentation, all the patches in two orthomosaics were used as the training set and
all the patches in the third orthomosaic as the testing set in a leave-one-orthomosaic-out strategy.
Consequently, in each fold of the leave-one-orthomosaic-out the training and testing sets were fixed.
The order in which the network sees the training patches was not fixed as the data loader randomly
shuffles the training patches at each epoch. (2) If data augmentation was used, upsampling and
downsampling have a random component. In particular, data augmentation always generates the
same number of images but with random transformations (flips, blurring, etc.). Consequently, in each
execution the distribution of the training sets is different if the random seed is not fixed.

In order to test the relative importance of these two sources of random effects, the seed for the
pseudo-random number generators was not fixed and run the ResNet50 networks with a fixed learning
rate (LR = 0.06) A) without data augmentation (to evaluate the effect of the shuffle in the training set in
the final result) and B) with data augmentation as described for the UNFHA set. The test was repeated
25 times and observed differences due to random effects are presented in Table 3.

Table 3. Summary of values of running the UNFNOA and UNFHA training sets repeatedly to assess
the extent of random effects.

TPR FPR ACC

Best Mean Stdev Best Mean Stdev Best Mean Stdev

UNFNOA 66.05 52.05 11.25 0.09 0.19 0.13 98.87 98.53 0.30
UNFHA 92.47 81.44 9.35 0.57 1.21 0.39 98.54 98.33 0.23

The first row in Table 3 summarizes the variability observed for the case that does not use data
augmentation. This variability is due to the order in which the training data is processed by the
network. The second row illustrates the variability observed when using data augmentation and
containing, in addition to the effect previously mentioned, the random effects caused by the production
of augmented images or the downsampling of the most frequent class.

The fact that the standard deviation observed for the accuracy and TPR values is larger for the case
without augmentation shows the importance of order in which the patches are read by the network.
In particular, as the initial steps of training involve larger weight updates (higher loss), few examples
of the blueberry class will hamper the ability of the network to correctly recognize it. This problem is
mitigated by using data augmentation as can be seen by the lower variances in both metrics for the
first row in Table 3. As a consequence, however, the bias towards the blueberry class results in an
increased average value for the FPR (jumping from 0.09 to 0.57 when using data augmentation with
increased variability as shown by the 0.39 stdev value for UNFHA).

Finally, the use of data augmentation produces an increase in TPR that is greater than the
differences attributed to random variability. This is evident by the jump from 66.05% TPR to 92.47%
when using data augmentation is much larger than the standard deviation observed due to randomness
(11.25%). This difference was found to be statistically significant with 99% confidence level with
p-value << 0.001.
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3.2. Comparison of Different Networks

For this experiment the effect of randomness were limited by choosing the same seed for all the
pseudo-random generators. This ensures that all the networks were trained on the exact same data
distribution (i.e., all the images were exactly the same and were read in the same order) and tested on
the same testing data set.

In this case, as already seen in Figure 4, due to data imbalance the FPR determined the accuracy
so the FPR and accuracy Figures showed the same tendencies. Consequently, Figure 5 shows TPR and
accuracy results for all the networks and learning rates studied with the FPR curve left out for the sake
of brevity.

Figure 5. TPR (top) accuracy (bottom). Models studied: Alexnet, ResNet50, ResNet152, VGG, Densenet,
ResNeXt, wideResNet.

The results show that some networks fail to produce satisfactory results for some learning rates.
A very large number of FP compromise their overall accuracy rendering them unusable in practice.
This behavior is observed for larger learning rates for Alexnet, Squeezenet, and VGG, and for a learning
rate of 0.04 for wideResNet. Densenet and the ResNet-based networks follow a much better trend with
high TPR as well as high accuracy. In order to tell their behavior apart, Figure 6 presents boxplots
summarizing their performance.
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Figure 6. Detailed comparison of ResNet50, ResNet152, VGG, Densenet, ResNext, wideResNet.
Metrics: TPR (left) and accuracy (right). Note, one outlier value for wideResNet (accuracy = 90%) was
suppressed to aid visibility.

In terms of accuracy, the best values were obtained by Densenet with 98.98. wideResNet (98.93),
ResNet50 (98.92), ResNet152 (98.91), VGG (98.90), and ResNeXt (98.90) were close in terms of best
accuracy. Finally, Squeezenet achieved the best accuracy of 98.89 and Alexnet of 98.65. The average and
stdev values for the accuracy metric show that adequate results were achieved, whereby lower
averages in accuracy were accompanied by higher variances. The extent was high for Alexnet
(mean = 92.05, stdev = 10.14), Squeezenet (92.42, 10.85), VGG (89.49, 12.24), and smaller for wideResnet
(98.18, 1.48) were the problem was only present in one of the three orthomosaics of the LR = 0.4-fold.
Higher average accuracy values were obtained (in increasing order) by ResNet152 (98.64, 0.25), ResNeXt
(98.54, 0.25), Densenet (98.60, 0.20), and finally ResNet50 (98.64, 0.20). Regarding the statistical
significance of the accuracy results observed, pairwise difference of means t-tests with paired data
were performed with a 99% level of confidence (Table 4). Methods that were not found to perform
significantly different were put in the same level. With a higher level denoting significantly higher
mean. In the case of wideResNet, its larger variance meant that its performance could not be told apart
from methods from two separate levels.

Table 4. Summary of results of the pairwise difference of means (paired data) t-tests.

Level 0 Squeezenet AlexNet

Level 1 Vgg

Level 2 ResNet152 ResNeXt wideResNet
Level 3 ResNet50 Densenet

In terms of TPR, results were considered where the accuracy was over 98% as results with a
large number of FP are not of practical use. Taking this into account, the best TPR results always
came at the cost of slightly increased FPR and, thus, decreased accuracy. The best results with
these restrictions were obtained by ResNeXt (TPR = 93.75, Acc = 98.11) ResNet50 (93.39, 98.10),
and ResNet152 (92.54, 98.13). Similar results were also obtained by Densenet (91.50, 98.14) and
wideResNet (91.73, 98.19). Squeezenet, Alexnet, and VGG topped at 90.29%, 89.80%, and 87.23%
TPR, respectively.

4. Discussion

The results in Section 3.1 show that the ResNet50 network succeeded at the classification tasks
associated to our problem. The best results were obtained by retraining the whole network (as opposed
to only the final layers as commonly done). In this respect, relying on TL to solve our problem after
only a minor retraining of the last layer is shown to be suboptimal. A data set that is large enough
to retrain the full networks is, thus, shown to be necessary to obtain the best results. Moreover,
the needed large changes of the whole network resulted in a small benefit to initializing with the
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ImageNet weights as opposed to random weights. Although the network initialized with random
weights had a less stable behavior (as shown by a larger variance observed in its accuracy over all
learning rates) and a statistically significantly smaller accuracy, it was able to obtain the best average
value for the TPR metric.

At the same time, the results also quantify how the imbalance in the labels may result in a network
that classifies most patches correctly while not providing a solution that of practical use. This happens
in situations where the minority classes are important. To solve this problem, the use of weights in the
loss function was shown as well as data augmentation, which helped to bias the training distribution
towards a result that served our interests. Even though we arbitrarily defined these interests as
high TPR with FPR under 1%, the results show that the methodology used in this experiment can
accommodate different use cases. For example, to know whether or not a particular area has been
infested by blueberries, then the UNFNOA or UNFW networks will need to find roughly 65% of the
blueberries present while adding very few (under 0.2%) false positive detections. On the other hand,
to find as many of the blueberries as possible, the UNFHA network will find 93% of them by adding
1.77% of FP.

In Section 3.2 different DL networks with the same training and testing data sets were tested in
order to limit the importance of random effects. The testing run-times of these networks were pretty
uniform and fast (under three minutes to process the images in one orthomosaic). Their training
times varied greatly with the architecture and reached, for example, more than three hours for larger
networks such as wideResNet, around 25 minutes for a mid-sized network such as ResNet50 and
a little over 8 minutes for small networks such as ALEXNET. The best results in terms of accuracy
were obtained by the Densenet network (best accuracy for the three folds) and the ResNet50 network
(best average accuracy throughout all the learning rate values). However, ResNet50, Densenet, and
wideResNet achieved similar results that did not present statistically significant differences. In terms
of TPR, results were considered as optimal if they had accuracy values over 98% in order to limit
the number of FP. Results over 90% TPR with an accuracy over 98% were achieved showing that
the networks studied can use the data augmentation considered to effectively solve the problem
of detecting the invasive blueberry in wetland orthomosaics. Best overall results were obtained by
ResNeXt (TPR = 93.75, Acc = 98.11) with ResNet50, ResNet152, Densenet, and wideResNet obtaining
similar (albeit slightly lower in terms of TPR results).

5. Conclusions and Future Work

We have shown that DL networks can be used to detect the presence of invasive blueberry bushes
in German wetlands. However, in order to achieve results that are of practical use, we needed to
modify the training sets by using data augmentation and loss function weighting. Our results were
shown to be statistically significant and the effect of randomness in training was also quantified.

In future work, we will explore the use of multichannel data (such as RGB + digital elevation maps
or multispectral data), machine learning-focused phenotyping techniques, and our pixel percentage
output to help achieve a semantic segmentation of orthomosaics [38]. We would also like to consider
the use of other loss functions for data balance, such as the focal loss. In order to improve the
effectiveness of the data augmentation used, we will also consider data augmentation using generative
adversarial networks (GANs) to generate new samples of blueberry patches. This type of approach,
where a generative network is trained to create new samples that follow the distribution of the training
dataset by fooling a network that discriminates between real and fake samples, has been recently
applied to medical imaging with great success [39,40]. Finally, we want to use the automatic blueberry
detection results produced by our networks to track the spread of the invasive blueberry species over
orthomosaics of the same site taken in different years.
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