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Abstract 

The production of customized goods is becoming more and more important for industrial companies. The 
large number of variants resulting from this, up to batch size 1 production, requires a high degree of 
flexibility. To meet these requirements, manual production processes are frequently still used. This is 
especially applicable to the area of assembly. Data acquisition is a significant task in manual assembly due 
to volatile secondary activities and alternative handling operations. The process times to be recorded are also 
influenced both consciously and unconsciously by the employees. This paper describes an approach for the 
validation and interpretation of production data of manual assembly systems. Therefore, process data are 
analysed based on the use case of terminal strip assembly in the learning factory of the Chair of Production 
Systems at the Ruhr-University Bochum is presented. Here, the validation of the product data from 2021 is 
carried out by checking the data for normal distribution. This is followed by an analysis of the data with 
regard to the effects of spikes. Furthermore, the influences of a low data basis, different degrees of 
standardization and learning effects in the course of production are analysed. Finally, a discussion on the 
findings and further procedures will take place. 
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1. Introduction

Industrial production is increasingly subject to the change from a supplier's to a buyer's market. Product life 
cycles are becoming shorter and the number of product variants is increasing. [1, 2] In addition, labour costs 
are rising and demographic developments are leading to a shortage of skilled workers [3]. In connection to 
the increasingly demanded of high flexibility and adaptability, this means a great challenge for manual 
assembly. In the field of manual assembly, there is still no automated acquisition and real-time-capable 
evaluation of production data for dynamic production control [4, 5]. One reason for this is that manual 
operations are often used where tasks change volatilely and a high degree of adaptability is required. In 
addition to these workflows, which are rather difficult to predict, individual approaches of people also 
predominate. Often, a lack of standardization in SME production environments is an additional factor here. 
Finally, data acquisition must not mean any additional work for employees, in order not to increase the 
proportion of secondary activities. Furthermore, the privacy rights of employees must be given priority.  

In this conflict, both the continuous data acquisition and subsequent filtering as well as the interpretation of 
the KPIs do not mean a proper representation of the production system. In addition to the high process 
diversity and changing environmental conditions, the diverse human factors, such as motivation, learning 
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behaviour and fatigue, pose a particular challenge for analysis and conclusions. Especially the acceptance of 
production data acquisition systems in production environments dominated by humans requires accurate data 
and key figures. With regard to the validation and analysis of data, there are approaches in the area of 
automated machines. The data captured automatically by means of sensors can be examined with regard to 
trends and distribution functions. Furthermore, approaches such as the DOE are state of the art in the analysis 
of technical systems. [6] Here, individual parameters of the systems can be varied and examined with regard 
to their model. This is not possible in the real production process of a manual assembly. 

For this reason, in this paper an approach for the validation and interpretation of production data of manual 
assembly systems is presented. Therefore, the state of the art in the field of data acquisition, processing and 
evaluation in manual assembly is discussed first. Then, process data are analysed based on the use case of 
terminal strip assembly. Here, the validation of the product data from 2021 is carried out by checking the 
data for normal distribution. This is followed by an analysis of the data with regard to the effects of spikes. 
Furthermore, the influences of a low data basis, different degrees of standardization and learning effects in 
the course of production are analysed. Finally, a discussion on the findings and further procedures will take 
place. 

2. Process time acquisition in manual assembly systems 

Manual assembly systems are often used where tasks change volatilely and a high adaptability to the 
changing circumstances is required. At the same time, due to this high flexibility, there is a challenge to be 
able to plan and control this type of work process efficiently with regard to productivity targets. [4, 5] In 
contrast to automated production, manual assembly systems are subject to a large number of influencing 
factors which have an impact on the assembly time as an important KPI. As illustrated in Figure 1, in addition 
to product and process properties as well as the design of the supplier network and the assembly system with 
its environmental conditions, primarily human factors influence the actual execution of the assembly task.  

In the context of production planning, an assembly process is initially derived from the existing product 
properties and the design of the manufacturing system. In relation to the product, its complexity should first 
be mentioned as an important factor influencing the process time. The authors Samy/ElMaraghy [8] define 
a significant correlation between increasing product complexity and increased assembly effort. The 
complexity measure described here depends, among other things, on the number and geometries of the 
components. Other important factors are the required tolerances and the type of product structure. [9] The 
process properties are directly dependent on the product properties. One of the most important influencing 
factors is the level of standardization [10, 11]. The manual processes are often found in SMEs. Especially in 
these companies with only a few employees, the workflows are less standardized and the workers often have 
a more diversified range of tasks. The lower the degree of standardization in the assembly system, the greater 
the possibilities for individual operations by the employees. This makes it more difficult to capture operating 
data accurately. Furthermore, the scope of the process and the process complexity are relevant factors [10, 
11]. Within the context of assembly, this complexity results from energetic and informational activities. 
According to Schlick, assembly involves precise movements with low forces and can therefore be classified 
as a rather energetic task with an informational proportion. [12] In particular, the technological and content-
related process diversity as well as the number of assembly operations are major complexity drivers [13]. In 
the category of production system, the number of workstations and their layout have a major influence [1, 
13]. In this context, the differentiation between one-piece flow and batch production is also important [1]. 
Finally, the required equipment and supplies [13], as well as ergonomic aspects, are also significant. 

Subsequently, the environmental effects of the assembly system are also relevant for the work being 
performed. These include first and foremost the fundamentals defined in DIN 6385 "Principles of 
ergonomics for the design of work systems" with regard to the aspects of temperature, light or even air purity. 
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[14] Also, the framework conditions related to scheduling and network aspects have an influence on the 
actual activity carried out. The order volume [10] and the order sequence need to be mentioned as well. 
Furthermore, delivery dates and the delivery reliability of suppliers in particular influence the work of the 
employees. This also includes the number of suppliers and the quality of the components [13].  

In addition to these technical influencing factors, it is primarily the human factors that have an impact on 
the assembly processes actually carried out in manual production systems. In the context of this examination 
these are classified into the categories of qualification, learning, stress, fatigue, motivation and well-being. 
[10, 13] In addition to basic qualification [15], learning in production is a particularly important influencing 
factor [16, 17]. In the production environment, learning usually means a decrease in processing times and 
material consumption over time. This occurs due to repetitive work operations and the increasing experience 
of the employee as a result. This relationship was published by Wright as learning curve theory. Assuming 
unlimited time and a constant learning rate, it can be observed that the average cumulative value per product 
decreases by the same rate when the number of products is doubled. [16, 12] In line with current knowledge, 
this correlation has been adjusted so that an average learning curve for a batch can be characterized by 
processing times which initially decrease steeply and then more slowly as the number of units increases. 
Based on the non-constant learning rate, a level of saturation finally results. Such learning effects occur 
especially at the beginning of a batch, which is why they are of particular importance in the production of 
small batches [18]. Furthermore, the more complex the activity, the steeper the learning rate [19]. In addition 
to the learning effects, the aspects of stress and fatigue [10] as well as motivation and well-being also have 
an influence on the assembly time [20]. These aspects are based on the four levels of Maslow's pyramid of 
needs. This was further developed by Landau according to production-specific issues [20]. Thus, the activity 
should first be theoretically feasible. Based on this, Landau describes the tolerability that can be achieved 
by designing occupational safety according to the state of the art. Finally, an activity that can be performed 
on a permanent basis is expected to be reasonable. This third stage involves a human-oriented work design 
as well as a fulfilment of the employees' expectations. Finally, the goal of the fourth stage is to achieve a 
high level of satisfaction by ensuring the development of personality as well as social acceptance. [20, 21]  

 
Figure 1: Factors of influence in manual assembly systems  

Considering this complex relationship, it is not surprising that it can be seen in practice how the actual 
process deviates in principle from the specifications of the assembly planning. Even if the same target of 
assembly of two or more components is achieved, it is still an individual variation of the specified work 
process.  [7] Therefore, real data from the assembly system are essential for efficient production control in 
terms of production data acquisition. From the diverse constraints in manual assembly, a high level of 
complexity can be derived for the design and implementation of a production data acquisition system (PDA). 
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This must consider the volatile activities as well as the fluctuating environmental conditions and at the same 
time must not disrupt the workflow or lead to increased secondary workloads. Still, it must be observed that 
no supervision of the employees takes place and at the same time an objective data basis is ensured. [4] Here, 
the principles of the data quality requirements defined by Fox, such as accuracy and reliability, must be 
considered [22]. Also due to these aspects, the most commonly used methods for capturing process times 
are the direct conversation with employees and the use of forms and reports by means of simple software 
tools [23]. In addition to self-recordings, multi-moment measurements and, time studies according to REFA 
continue to be the most common time determination methods in the industrial environment [24]. These are 
usually associated with a large initial effort as well as expenses in case of changes. The acquired data must 
then be processed. First, outliers and implausible values must be filtered out, and then a validity check must 
be performed. After Dekena, the box-plot method is suitable for filtering data in a production context [25]. 

In order to examine the validity of random variables with a continuous probability function, different tests 
are suitable. Common methods are the Ȥ�-test, the KS test or the Cramér-von-Mises test. [26] The procedure 
includes first the choice of a suitable model. Furthermore, the parameters of the model are estimated on the 
basis of observations and graphical methods [26]. Thus, certain probability distributions can be inferred. In 
this case, the model of normally distributed random variables is of special importance [27]. The normal 
distribution is usually seen in populations and can be used to describe the random dispersion of measured 
values. Besides determinations in natural sciences and medicine, this unimodal distribution is often strongly 
asymmetric, especially in the context of mechanical engineering. The normal distribution is usually seen in 
populations and can be used to describe the random dispersion of measured values. Besides determinations 
in natural science, this unimodal distribution is often strongly asymmetric, especially in the context of 
mechanical engineering. In the case for positive, right skewed distributed data, the natural lognormal 
distribution is applied.  Here, the higher frequencies are located on the left side. [28, 30] In manual assembly 
systems, many small random influences overlay each other multiplicatively. This leads to the assumption 
that, from a certain amount of data, a normal distribution can be observed in the process times. Furthermore, 
since each assembly task is subject to a strictly physiological limit, a right-skewed distribution is to be 
expected. This corresponds to a logarithmic distribution. Thus, a variable to be examined is log-normally 
distributed exactly when its logarithm is normally distributed [29]. For verifying the log-normal distribution, 
the data values are first logarithmised and then the normal distribution is tested [30].  

In this context, the Kolmogoroff-Smirnoff test is used to examine the normal distribution. With this 
goodness-of-fit test, the empirical distribution function is compared with the theoretical normal distribution. 
The advantage of this test is the lower effort and a good result even in case of a small number of data values 
FRPSDUHG�WR�WKH�Ȥ�-test [31]. This test can be used to check whether a random variable follows a previously 
assumed probability distribution [32]. In order to verify for normal distribution, the maximum perpendicular 
distance of the cumulative values is compared with a critical value. The calculation of the critical value 
depends on the significance level and number of samples [31]. In the literature, the significance level is often 
set between 0.01 and 0.1 [33]. It defines the range of rejection. When the sample is within this range, the 
QXOO� K\SRWKHVLV� RI� QRUPDO� GLVWULEXWLRQ� LV� UHMHFWHG��$FFRUGLQJO\�� WKH� VPDOOHU� Į� LV� FKRVHQ�� WKH� JUHDWHU� WKH�
probability for the result of the investigation to define the data set as normally distributed [34]. 

3. Examination by means of the case study terminal strip assembly 

The approach for validating and interpreting production data of manual assembly systems is explained below 
using the use case of terminal strip assembly of the Chair of Production Systems. First of all, it must be 
determined whether the use of the production data acquisition system has resulted in valid production data. 
This is the basis for using the data for the calculation of KPIs and production control. Furthermore, the data 
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are examined regarding to the influencing factors. In addition to the expected log-normal distribution of the 
process values, this includes, the analysis of learning curves as well as malfunctions and measurement errors. 

 

3.1 Experimental setup and test procedure 

The terminal strip assembly can be assigned to the area of small parts assembly with a high diversity of 
variants. It is exemplary for other manual assembly processes in mechanical engineering. The assembly 
system is operated in cooperation between the Chair of Production Systems and the company Phoenix 
Contact GmbH & Co KG and represents an industrial environment with real orders. [35] The first step in the 
production of terminal strips is to cut the rails to length. These are then transferred to workstation 1, where 
the terminals are mounted on the rails. This is followed by the labelling at workstation 2, where small labels 
are applied. After that, the assembly of circuit bridges takes place at workstation 3. Subsequently, the desired 
functionality of the terminal strip is ensured by quality tests at workstation 4. Workstation 5 is used for pre-
wiring the terminal strips. The final workstation 6 serves to package. [35] The assembly is carried out by 
two experienced employees who are supported by an assistant during peak loads. The process times of the 
assistant are not considered. The product portfolio of the terminal strip production comprises 70 variants, 
each consisting of a unique composition in terms of the number and variation of terminals, labels, circuit 
bridges and other components. In 2021, 31 of these variants were produced between 10 and 1173 times. 

In the scope of this examination, the production period from 07.01.2021 to 03.12.2021 is considered. A total 
of 8799 terminal strips were produced, of which 5740 were recorded by the PDA. This results in an 
acquisition rate of 65.23%. The reasons for the non-recorded values of about one third of the products consist 
in the non-consideration of the process times of the assistant as well as in technical aspects during the 
introduction and smaller revision steps of the PDA. Ultimately, the familiarization of the employees with 
the new system, especially at the beginning, also meant for a lower acquisition rate. The processing times 
were recorded for each assembly part process using a tablet-based app. The processing times for every 
assembly station are recorded for each order and product. In addition to these productive times (operating 
state production), the pause times and non-productive times, such as setup, rework or malfunctions, were 
also recorded. In the period under review, 85% of the data relates to the operating state production, 10% to 
pause times and 3% to setup. The data volumes of the other operating states comprise less than 1%. The 
subsequent validation of the production data focuses on the production times of the terminal assembly, 
labelling and bridge assembly stations, since this is where the assembly activities take place. In this way, a 
total of 63% of the productive times of the assembly system are analysed. 

With regard to the general conditions under which the investigations were carried out, it can be stated that 
the influencing factors shown in Figure 1 with regard to the categories of process properties, production 
system and environmental effects were constant during the period of investigation. The product properties 
are liable to the variance that is defined by the range of parts. In relation to the category order planning and 
network, the factors part quality and number of suppliers are fixed. In the course of real production, changes 
occur continuously with regard to order-specific aspects such as order sequence, order volume, deadlines 
and delivery reliability. The changes in these parameters can be considered in the analysis with the help of 
the PDA and digital order planning. The category of human factors is constant in terms of qualification. The 
parameters learning, stress, fatigue and motivation continue to fluctuate depending on the current boundary 
conditions and individual constitutions of the employees. These cannot be measured directly. However, 
conclusions can be drawn from the collected process data, so that indirect statements can be made about this 
during data analysis. Furthermore, the aspect of well-being cannot be measured with the used PDA system. 
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3.2 Presentation of results 

Consequently, the processing times at the three stations are examined for validity on the basis of the 31 
different terminal strip variants. For this purpose, the entire data set is first filtered using the box-plot method. 
Figure 2 initially shows that the variants were produced in varying numbers and frequencies in 2021. 
Furthermore, there is an data acquisition rate for each variant. The terminal strip variants are sorted in 
ascending order with regard to their assembly complexity. The complexity depends primarily on the number 
of different components, the total number of components and their properties. [36] A more complex variant 
tends to be more complex to assemble, which is also reflected in the processing times. The average 
processing times per station is 201 s for terminal strip assembly (labelling: 202 s, bridge assembly: 114 s). 

 
Figure 2: Evaluation results 

As shown in Figure 2, the procedure for validating process data of manual assembly systems described in 
Chapter 2 results in a normal distribution rate of 90% for the terminal assembly station. Out of the 30 variants 
considered here, the distributions of the recorded assembly times of 27 variants are log-normally distributed. 
A similarly high rate of 93% was obtained for the station labelling. Here, sufficient data were also collected 
for 30 variants to check the normal distribution. Thus, 2 variants are not log-normally distributed. The third 
assembly station, bridge assembly, in contrast, has significantly less data. Here, all recorded production times 
are log-normally distributed.  

 
Figure 3: Processing time histograms of terminal assembly (x - not log-normal distributed) 

3.3 Evaluation and discussion 

When taking a closer look at the individual histograms, a bell-shaped or right-skewed, logarithmic 
distribution can often be seen (see Figure 3). This pattern of the distributions allows the conclusion that it is 
valid process data. Furthermore, conclusions can be drawn about the production process and the data 
acquisition method. The frequently observed right-skewed distributions of the process values are shown as 
an example in Figure 4 using the histogram for the data of variant 8197399-03 of the station labelling. In 
relation to this variant, 529 products were produced in the period under review with an average batch size of 
21 pieces. The acquisition rate is 87% and the median processing time is 234 seconds. The exemplary 
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distribution of the measured values, which is characteristic for the majority of the data, can be distinguished 
on the basis of three different areas. It should be noted that these areas are not subject to a strict separation, 
but rather a flowing transition.  

The first area contains the lowest values up to 200 seconds. Here, a strong increase in frequency can be seen. 
In connection with the median of 234 seconds, this leads to the conclusion that the majority of the values in 
this area must be the result of technical measurement errors or incorrect usage of the PDA, since a processing 
time lower than 200 seconds is not achievable even for a skilled worker. This "physiological limit" can thus 
be seen in the majority of the histograms. In contrast, realistic values can be assumed in the second area. 
This area contains the majority of the recorded values and always includes the median of the processing 
time. Nevertheless, there is also a scattering of values between 200 and 260 seconds. This can be interpreted 
as normal performance fluctuation in manual assembly. In this example, the third area of the histogram 
contains all process values from 260 seconds and includes significantly fewer data values compared to the 
second area. For the majority of the recorded distributions, a staircase-like decrease in the frequencies with 
increasing processing time can be seen here. This is probably due to disruptions in the production process 
and problems with the assembly task. However, data resulting from incorrect operations can also be found 
here. Another reason for increased process times in this area can be learning effects. In the context of this 
variant with a high production frequency, this means a rather small influence.  

 
Figure 4: Histogram of the processing times of the terminal strip variant 8197399-03 at the labelling station 

In contrast to this example, five data records do not correspond to the log-normal distribution. A closer look 
at the measured values shows specific reasons, which will be discussed in the following using the four 
categories incorrect usage of the PDA, average processing time, lack of standardization and low data basis. 

 
Figure 5: Terminal assembly of variant 1021640-03: a) Production order processing times; b) Histogram; c) Log-

normal distribution 

First of all, as with the explanation of the measured values from the first and third area, the incorrect usage 
of the PDA should be mentioned as a source of error. This can be seen particularly in the example of variant 
1021640-03 (see Figure 5). The main reason for the non-existent log-normal distribution here is the process 
data of a few orders. This becomes clear when looking at Figure 5. Here, all 31 completed jobs of this 
terminal strip variant at the terminal assembly station are plotted. As also shown in the histogram, the 
majority of the measured values are in the range of 200 to 400 seconds. The median is 284 seconds. However, 
there are also 2 jobs with many physiologically unrealistic values below 200 seconds and a large number of 
process values above 400 seconds. In total, this means that no log-normal distribution prevails here.  
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The second category is the average processing time of the assembly activity. This is particularly evident in 
the example of the labelling of the terminal strip variant 102640-03 (see Figure 6). Here, the median of the 
processing time amounts 117 seconds. Basically, the histogram shows a similar distribution to the example 
in Figure 5. Nevertheless, the difference here is the significantly shorter processing time, which means that 
disruptions in the operating sequence and operating errors have a greater influence. With long processing 
times of several minutes per product, these are less significant than with such short processing times. 

 
Figure 6: Labelling of 1021640-03: a) Production order processing times; b) Histogram; c) Log-normal distribution 

The third category includes the error source of lack of standardization (see Chapter 2), which can be seen in 
particular in the example of the assembly of terminal strip variant 8195786-03. Figure 7 shows that two out 
of three production orders recorded have a clearly different average processing time. The difference in the 
processing time corresponds approximately to the duration of the processing time for bridge assembly. In 
both cases, no data is given for the bridge assembly, which leads to the conclusion that the employees have 
assembled the bridges already at station 2. This correlation is noticeable because of the few orders with little 
data, so that the box plot filtering does not apply.  

 
Figure 7: Labelling of 8195786-03: a) Production order processing times; b) Histogram; c) Log-normal distribution 

The fourth category includes this context of a low data basis. The terminal assembly of variant 1027086 is 
selected here as the example (see Figure 8). Here there are three different orders with an average batch size 
of 867. The median processing time is 76 seconds. An examination of the histogram shows that the 
malfunctions and failures are much more significant here than in the case of more complex variants. Another 
reason for the larger number of high process values could also be a learning effect, since this variant was 
only ordered three times.  

 
Figure 8: Terminal assembly of variant 1027086: a) Processing times of the individual production orders; b) 

Histogram; c) Log-normal distribution 

For further investigation of possible learning effects, an exponential regression line was calculated for the 
respective data of the production orders. If the algebraic sign of the gradient is negative for these functions, 
it can initially be concluded that there has been an average improvement in processing times in relation to 
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the individual products of a batch. Thus, in 75% of the 465 production orders examined, a reduction in the 
processing time per product can be observed in the course of the work progress. This can be differentiated 
in relation to the individual stations. This shows that 68% of the orders for terminal assembly have a reduced 
assembly time in the course of processing (78% for labelling, 86% for bridge assembly). There may be 
various reasons for this. According to Buck, in addition to the learning effect, changed work processes can 
be mentioned here, for example. Thus, learning effects cannot be proven here, but only disproved. [37] 

4. Conclusion and Outlook

In summary, it can be stated that the data acquired in the field of terminal block assembly can be considered 
as valid. This becomes particularly clear when looking at the distribution of frequencies in detail. This 
finding is an absolute basis for further analysis of the data set with regard to the influencing factors in manual 
assembly described above. This paper already provides important approaches for this. In addition to the 
identification of a physiological limit of the processing time, it could be shown that the influence of 
malfunctions in the operating process as well as incorrect operations increases with decreasing processing 
time. Finally, it was also shown by means of an example that a high degree of standardization is absolutely 
necessary in order to be able to calculate useful key figures on the basis of valid data. Furthermore, a small 
data basis means that the box plot method is less suitable for filtering the process values. When looking at 
the individual assembly orders, it has also become clear that a decreasing processing time per product with 
increasing work progress can be observed for the majority of the assembly lots recorded. This leads to the 
suggestion that there may be some form of learning. Here, a further assumption is that this effect occurs 
more strongly with increasing product complexity as well as with increasing batch size. In addition to this 
aspect, the influence of pause times and the influence of delivery deadlines will be the subject of further 
investigations. However, due to the complex correlations between the influencing factors, often only 
assumptions can be made. For a more precise analysis of the causes of human factors and for the creation of 
effect models, extended PDA systems and systematic experiments are required. The aim is also to vary and 
investigate influencing factors that were still set as fixed in the present use case. These include, among other 
things, the involvement of additional employees, the variation of the order sequence, and the modification 
of the process sequences, for example with regard to batch or piece production. 
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