Gottfried Wilhelm
Leibniz Universitat Hannover

Explaining and Applying
Graph Neural Networks on
Text

Bachelor’s Thesis

Computer Science

Author: Nils Cornelius Grunefeld

First Examiner: Prof. Dr. Avishek Anand
Second Examiner: Dr. Thorben Funke

March 31, 2022



Selbstandigkeitserklarung

Hiermit versichere ich, Nils Cornelius Griinefeld, dass ich diese Arbeit selb-
ststandig verfasst habe und keine weiteren als die angegebenen Quellen und
Hilfsmittel benutzt habe. Alle Stellen der Arbeit, die wortlich oder sin-
ngemafl aus anderen Quellen iibernommen wurden, habe ich als solche ken-
ntlich gemacht. Zudem wurde die Arbeit bisher in gleicher oder dhnlicher
Form noch keiner Priifungsbehorde vorgelegt.

Hannover, den 31. Marz 2022

Y il

NilsVCornelius Griinefeld




Contents

Abstract
Acknowledgements

1 Introduction

1.1 Motivation . . . . . . . . .

1.2 Outline. . . . . . . .
2 Relevant Work

2.1 Prior Research . . . . . . . . . ...

2.2 Graph Neural Networks . . . . ... ... ... ... .....

2.3 Dependency Parsing
2.4 Word Embeddings

2.5 GNN Explanations . . . . . . ... .. ...
2.5.1 GNNExplainer . . ... .. .. ... ... .......
2.5.2 PGM-Explainer . . . . . .. .. ... .. ... ...
2.5.3 Zorro. . . ...

3 Experiments
3.1 Methodology . . .
3.1.1 Classification

3.1.2 Explanation . . . . . ... ... 0oL
3.2 Results. . . .. ...
3.2.1 Experimental Setup . . . . . ... ... L.

3.2.2  C(lassification
3.2.3 Explanation

4 Conclusion

10
12
14
15
16
17

20
20
20
24
25
25
26
31

38



Abstract

Text classification is an essential task in natural language processing. While
graph neural networks (GNNs) have successfully been applied to this prob-
lem both through graph classification and node classification approaches,
their typical applications suffer from several issues. In the graph classifica-
tion case, common graph construction techniques tend to leave out syntactic
information. In the node classification case, most widespread datasets and
applications tend to suffer from encoding relatively little information in the
chosen node features. Finally, there are great benefits to be gained from
combining the two GNN approaches. To tackle these concerns, we propose
DepNet, a two-stage framework for text classification using GNN models. In
the first stage we replace current graph construction methods by utilizing
syntactic dependency parsing in order to include as much syntactic infor-
mation in the GNN input as possible. In the second stage we combine both
graph classification and node classification methods by utilizing the former to
produce node embeddings for the latter, maximizing the potential of GNNs
for text classification. We find that this technique significantly improves the
performance of both graph classification and node classification approaches
to text classification. Our code is available online?.

Thttps://git.13s.uni-hannover.de/grunefeld /gnns-for-text
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Chapter 1

Introduction

1.1 Motivation
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Figure 1.1: The two classical approaches to text classification using
graph neural networks

Text classification is a seminal task in natural language processing (NLP).
It finds application in several areas of NLP, such as sentiment analysis and
question answering [18], news filtering and spam detection [36], and search
result organization [25]. As such there has been a tremendous amount of
research into this subject, exploring a variety of techniques, from traditional
shallow learning methods to modern machine learning and deep learning
approaches. Among the latter, especially in recent times, have been graph
neural networks (GNNs), which lend themselves very well to this task as
natural language documents can in many ways be parsed into and interpreted
as graphs.



As shown in Section 2.1 and visualized in Figure 1.1a, the most commonly
used type of technique for utilizing GNNs in text classification has been pars-
ing individual documents into graphs to run graph classification methods.
This is most often done by deploying word co-occurrence graphs constructed
through sliding window algorithms, forming nodes for each unique word in
a text and edges between co-occurring words [25, 6, 26, 24, 39]. Another
perhaps less common approach is to treat text classification as a node clas-
sification task in a network of connected documents [36, 20] as visualized
in Figure 1.1b. In this case, documents are represented as nodes which are
then provided with some form of embedding on the document level as node
features. These cases tend to feature shallow embeddings consisting of hand-
crafted features such as binary word vectors encoding the presence of words
in the associated document [30].

However, both of these approaches tend to suffer from various issues.
In the case of text classification by graph classification, the common word
co-occurrence technique in graph construction tends to lose syntactic infor-
mation contained in the text, as sentence structures are not included in the
evaluation at all. In order to rectify this issue, alternative methods of graph
construction are necessary. Syntactic dependency parsing [11] constitutes
such an alternative, encoding syntactical information from given documents
in their graph representations. GNNs can presumably utilize this additional
information in order to improve their expressivity and performance. In the
case of text classification by node classification, commonly problems lie in
the document representations that are used as node features. As these fea-
tures tend to be shallow embeddings, oftentimes they contain relatively little
information about the documents they represent. As a result, GNNs operat-
ing on such document relation graphs frequently rely heavily on the relations
encoded in the graph’s edges rather than being able to utilize document-
inherent information as well.

Further, predictions produced by artificial intelligence algorithms such as
GNNs can be difficult to understand and therefore verify. This constitutes
a problem, as the understanding of any decision making process is crucial
to its evaluation and to establish inference. Motivated by this challenge, a
variety of techniques have been developed to open the black box, analyzing
and explaining the predictions made by graph neural network models [38].
This process can further be utilized to compare different GNN models and



investigate their differences, e.g. in order to evaluate whether there are gen-
uine differences in terms of model performance instead of mere coincidences.

In this study, we suggest and examine a solution to the described issues
in common graph neural network text classification methods. We propose
DepNet, a two-stage framework for text classification using GNNs, that both
combines the advantages of graph and node classification and provides a so-
lution for the issues that common text classification by graph classification
techniques suffer from. For graph classification, we examine the application
of syntactic dependency graphs instead of word co-occurrence graphs, which
constitutes the first stage of DepNet. In the second stage, we then attempt
to utilize document embeddings produced by GNNs operating on the texts
themselves as node features for node classification tasks. We hypothesize
that this approach can rectify the described issues and yield significant im-
provements in both graph classification and node classification situations.

1.2 OQOutline

We begin by providing an overview of the relevant prior work on text clas-
sification, both using classical methodologies and, more detailed, in terms
of graph neural networks. Then, we examine and explain the set of tools
we apply in the course of our experiments. We then present the main body
of our work, first in our applied methodology itself, with the results of our
experiments following after. Finally, we discuss our observations and report
a conclusion.



Chapter 2

Relevant Work

2.1 Prior Research

As a seminal task in natural language processing, text classification has been
studied for decades using a multitude of approaches [16]. These approaches
have progressed over time as the general toolset in both artificial intelligence
and machine learning in general and natural language processing specifically
have been progressed and improved. There have further been several studies
of the history and development of text classification, such as Yang and Liu
[35], Kowsari et al. [16], and Li et al. [18], which have informed the following
paragraphs.

In classical natural language processing, various techniques have been ap-
plied to text classification tasks. Among the first such methods applied to
text classification were probabilistic graphical models such as Naive Bayes
classifiers, going back to the 1960s [21]. In the same decade, further simple
classifiers were utilized for text classification, such as the K-Nearest Neigh-
bors algorithm [35]. Even simple linear regression methods such as Yang’s
Linear Least Squares Fit [34] have been applied, with some success, to the
problem at hand. Over time, however, the typically deployed methods have
risen in sophistication with more complex models such as decision trees being
utilized by Johnson et al. [10] and with the application of support vector
machines [9] in the 1990s, the field took big steps in the direction of modern
machine learning [18].



With the rise of machine learning, more specifically deep learning, new
methods of data classification have been applied to the task of text classi-
fication. While the classical NLP toolbox has yielded decent results, they
tend to require much effort in the way of feature engineering in order to
reach respectable accuracy. In relatively small datasets this is unavoidable
and traditional techniques keep producing the highest accuracies but with
the rise of ”big data”, this trade-off can increasingly often be avoided by
utilizing data driven machine learning methodologies. This process started
in the 2010s with the first comparatively simple methods in the Multilayer
Perceptrons [17] and the Recursive Neural Network [8]. Over time, the NLP
community turned to more and more sophisticated and complex algorithms,
such as Recurrent Neural Networks [19] and Convolutional Neural Networks
[13]. Finally, some authors have applied attention mechanisms to deep learn-
ing applications. As such, Zhou et al. [40] deploy an attention-based LSTM
network to further advance the application of deep learning techniques on
text classification tasks, while Vaswani et al. [31] introduce a self-attention
based method they call Transformer.

In recent years, graph neural networks have experienced rising popularity
and in that course, researchers have begun to approach the task of text
classification through the GNN framework. In doing so, text classification can
be thought of as both a graph classification task or a node classification task.
Various literature has emerged studying both strategies, while whether the
option of formulating the task at hand as a node classification problem exists
depends on whether inter-document relations are available. In such cases,
often heterogeneous graphs are chosen, combining nodes representing both
documents and text contained within those documents. An early example
of this approach is TextGCN [36], with TensorGCN [20] producing further
improvements. In text classification via graph classification cases on the
other hand, graphs necessarily contain only the content and information of
a single document. An example of such an approach is DGCNN [25] which
parses a given document into a graph using a word co-occurrence sliding
window technique. Huang et al. [6] deploy a similar method, however, they
combine these intra-document word co-occurrence graphs with global word
co-occurrence information which is incorporated as edge weights. Peng et al.
26], MPAD [24], and TextING [39] further study and improve this technique.
In the case of the first two by adding an attention mechanism to the GNN



operator and in the case of TextING by focusing on inductive capabilities by
strictly limiting training data.

2.2 Graph Neural Networks

The following introduction of graph neural networks closely follows the Graph
Representation Learning textbook by William L. Hamilton [4].
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Figure 2.1: Two social network graphs

Graphs are a powerful tool that is used widely in the field of computer
science. They are both an abstraction used for modeling and a data structure
itself. Formally, a graph G = (V| E) is a tuple of two sets V and E. V is a set
which elements represent nodes or vertices, while FE contains links or edges
between vertices. Any element of F is therefore a pair (vi,vq) : vy,v93 € V
which represents an edge between v, and vy. For example, a graph may
be used to model a social network between friends with nodes representing
individuals and edges representing friendships, as visualized in Figure 2.1a.
Here, Alice is friends with Dave, Carol is friends with Bob, Bob is friends
with Dave and Carol, and Dave is friends with Alice and Bob. Further, edges
and therefore graphs may be directed or undirected. In the undirected case, a
tuple (vq,v9) represents a symmetric connection between the two vertices vy
and vy, while in the directed case an edge tuple represents a connection from
v1 to v9. As an example, consider the social network from the undirected
case, however, instead of friendships the edges represent debt, as visualized
in Figure 2.1b. In this example, Bob is in debt to Carol, with Dave being in



debt to both Alice and Bob. Since one person being in debt to another does
not imply the reverse, simple unordered connections can clearly not model
such relationships.

Graphs may carry feature information. Beyond the existence of nodes and
relationships between them, both elements of graphs may carry information
to specify themselves. In the case of nodes, each node may be assigned an
n-dimensional vector representing node information. Oftentimes, these vec-
tors come in the form of one-hot encodings. For example in the case of our
friendship network, each node might carry a 2-dimensional encoding whether
a person enjoys two different activities. In the case of edges, edge informa-
tion may be represented both as vectors and as simple scalars to weight each
edge. In the social network case for example, one-hot edge features might
encode the kind of relationship (such as romantic or platonic), while edge
weights might represent the length of a friendship.

Due to the prevalence of graphs both as a modeling tool and a data struc-
ture and the potency of neural nets as machine learning devices, naturally
the question of if and how the two can be applied together arises. Unfortu-
nately, this is not a trivial task. Conventional neural networks operate on
fixed size, fixed structure input, such as images or weather data. Graphs on
the other hand feature neither. Graphs are of both flexible size and no set
structure.

Graph neural networks circumvent these issues by operating directly on
each node. Each node embedding is iteratively updated by aggregating neigh-
boring nodes’ information in a process called message passing. Similarly to
conventional neural networks, iterations are thought of as layers, where the
k-th layer producing an embedding h¥ of the node i can be expressed as

h¥ = update(hF ™, aggregate({hé?_le € N(i)})
where N returns a node’s neighborhood:
N(z) ={y:3(z,y) € E})

and aggregate and update are differentiable functions, of which the former
maps multiple node embeddings onto an aggregate and the latter produces
an updated node embedding from an aggregation of node embeddings and
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the current node’s own one. In combination, these two function are also
called a GNN’s operator. Notably, update almost always includes some non-
linear activity such as a sigmoid or a ReLLU function in order to increase the
model’s expressivity.

Bob
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o

Figure 2.2: Two-layer computation graphs for Bob and Carol in the
example friendship graph

In other words, for each node, a layer in a GNN first produces a mes-
sage, an aggregate of information, from the node’s neighborhood and then
combines this message with the current node representation to update it’s
embedding. As with conventional neural nets, an arbitrary number of such
layers may be chained. Notably however, there is a distinct characteristic
regarding the amount of layers in a given GNN model. When considering
a single node n € V| the first layer will draw messages from each neighbor-
ing node. A second layer will again draw messages from each neighboring
nodes, which in turn have drawn messages from their neighborhood previ-
ously, leading to a message passing chain reaching up to two hops from n.
In other words, a k-layer GNN draws messages from a k-hop neighborhood
around any given node. This neighborhood when thought of as a directed
graph with each edge representing the flow of message passing steps is also
called a node’s computation graph. An example for the computation graph
under a two-layer GNN of two nodes from Figure 2.1a is given in Figure 2.2.



After the core procedure of a GNN, it is worth considering the kind of
tasks that these models can be applied to solve. Such tasks fall into different
categories, two of which we will focus on: node classification and graph clas-
sification. In node classification, individual nodes carry labels representing
for example certain categories that nodes fall into. However, not all labels
are known, a subset of the graph’s nodes is of unknown labels, with the task
being to predict these labels from both the node’s own feature information
and it’s relations to other nodes. As such, these tasks are usually closely re-
lated to the kind of information we store about each node in it’s features. In
the case of our friendship graph for example, a node classification task might
be to predict whether a person is an extrovert or an introvert. Presumably,
both the kinds of activities that a person enjoys and the kinds of activities
their friends enjoy would carry at least some predictive power in this task
and in this case perhaps even the amount of friends that a person has. In
graph classification on the other hand, the entire graph is assigned a label.
A dataset therefore necessarily contains multiple graphs, with the goal of the
task being to label graphs of unknown category. A common example of this is
the classification of molecules. For example we might have given the chemical
structure of several molecules in the form of graphs, with atoms represented
by nodes and chemical bonds represented by edges. In such a situation, one
possible task may be to predict the toxicity of any given molecule. A GNN
would therefore try and predict toxicity both from each atom’s own qualities,
and the interactions between atoms within the molecule.

Depending on the task at hand, after iterating through the GNN layers a
readout function may be necessary. In node classification tasks, technically
it is possible to simply run a set of GNN layers such that the last layer’s
feature update produces a vector whose dimension is the same as the num-
ber of possible labels. However, it is standard practice to add for example a
softmax function after the last layer, among other reasons to turn the feature
vector into a probability distribution over all possible labels. In the case of
graph classification, we necessarily need a pooling function to aggregate the
node level information developed by the GNN. An example for such a pooling
function would be mean-pooling, which averages all node feature vectors in
the graph entry-wise to produce a mean feature vector. Often, this pooled
vector is fed again through a softmax function or a perceptron.



Regardless of what kind of task we are dealing with, in order to train the
GNN a loss function is applied to the final output of the model. Frequent
examples of such loss functions are a cross-entropy loss function or the mean
squared error. The resulting loss is then backpropagated through the model
in order to learn it’s weights and biases, using standard (stochastic) gradient
descent [29, 12] or more sophisticated methods such as Adam [14].

2.3 Dependency Parsing

In tackling classification tasks, graph neural networks rely on information
encoded in the provided graph. Such information is carried in two distinct
ways, first in the node and edge information included through associated
features and second through the relational structure of the graph itself. As
such, it is crucial in graph construction to maximize the amount of informa-
tion carried by the produced graph. In the case of text to graph parsing,
this information is separated into two complementary parts: syntactic and
semantic information.

A syntactic dependency tree is a connected, directed, acyclic graph en-
coding syntactic relations between individual components of a sentence. In
such a graph, each node n € V represents a token within the sentence while
each edge e € F encodes the syntactic dependency relationship between two
tokens. Two examples of such trees are given in Figure 2.3. Each token in the
sentence is assigned a part-of-speech tag which represents the type of word
the token contains within the given language. Examples of such types and
tags are for example noun, verb, or adjective. Dependency relations describe
the interactions between each tokens that form their roles within the given
sentence. A special case of this is the predicate of the sentence, which is
usually linked to a special head node. An example for a regular dependency
relation is a noun being turned into a sentence’s subject by it’s dependence
on the predicate. Other dependency relations include prepositions, objects,
or multiple words forming a compound.|[11]

SpaCy [5] and Stanza [28] both apply greedy transition-based parsing.
This algorithm works by first tokenizing a sentence, then successively iterat-
ing over each token and performing one of three actions. Each word is either
pushed onto a stack, parsed as a dependent child of the current highest ele-
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The quick brown fox jumps over the lazy dog.
DET ADJ ADJ NOUN VERB ADP DET ADJ NOUN

The quick brown fox jumps over the lazy dog.
DET ADJ ADJ NOUN VERB ADP DET ADJ NOUN

(b) Stanza

Figure 2.3: The sentence "The quick brown fox jumps over the lazy dog.”
parsed into a syntactic dependency tree using both spaCy and Stanza

ment on the stack, or parsed as the head node of the current highest element
of the stack. The core of this procedure is the method of determining the
action for each token. In both spaCy and Stanza, this is done using a single
layer linear perceptron. This perceptron assigns each possible action that
may be applied to a given token a score based on the current model state,
after which the highest scoring action is taken. This point is also where dif-
ferent transition-based parsers differ, specifically in what decision function is
applied and how the model state is fed into this function.

As noticable when comparing Figure 2.3a and Figure 2.3b, different de-
pendency parsers may produce different dependency trees. While sometimes
some of these different trees can be incorrect, most often differences in pars-
ing results mirror differing ways of interpreting a sentence which may all be
valid.
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2.4 Word Embeddings

Given a set W of words which we call a vocabulary, a word embedding is a
d-dimensional vector e, assigned to a given word w € W that semantically
represents the word. [11]

The Word2Vec [22] approach to word embeddings is perhaps best de-
scribed by a John Rupert Firth quote: ”You shall know a word by the com-
pany it keeps.” [2] It derives the semantic meaning of a word by what other
words it tends to occur in close proximity to, in a manner similar to word
co-occurrence algorithms. More specifically, given a corpus of text, the dic-
tionary W containing all words present in the corpus and a window size
m, the simplest Word2Vec model deploys a sliding window algorithm. This
process iterates over the given corpus and attempts to use the word ¢ in
the center of each window, also called the center word, to predict any word
o surrounding it within the window, also called a context word. With the
dot product of two vectors representing an approximate measure of vector
similarity, the probability of finding a word ¢ in the window surrounding the
word c is defined by the equation

Up Ve

(&
U *V,
ZwEW e

where 6 is the Word2Vec model represented by a set containing word vectors.
For word w € W there are two word vectors contained in 6, one each for the
case of w being a center word and a context word. We measure the accuracy
of a given Word2Vec model instance by it’s capability to use any possible
center word to predict all of it’s context words across the entire corpus,
formalized in the likelihood function

Py(olc) =

T

LO) =11 II Po(wesslw)
t=1 —m<j<m
i#0
whose optimization is the core of the Word2Vec approach. When training a
Word2Vec model, word vectors for each word w € W is initially initialized as
a random vector and then trained by applying stochastic gradient ascent on
the likelihood function. After a full training, the center and context vectors
of each word are averaged to create a single final word embedding.
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In simpler terms, Word2Vec determines word embeddings such that the
vector representations of two words that appear close to each other in a large
corpus of texts are as similar as possible. It should further be noted that the
approach described here is called the skip-gram model. Word2Vec provides a
second model, called continuous bag-of-words model, which is very similar to
the skip-gram model. The only difference is that while the skip-gram model
attempts to predict context words based on a center word, the continuous
bag-of-words model does the opposite, it attempts to predict the center word
based on context words.

While Word2Vec has seen great success in a multitude of applications
across NLP, some alternatives have been proposed that attempt to improve
on the basic Word2Vec approach, which we will therefore examine as to
whether there is any improvement to be gained. A second popular technique
to produce word embeddings is GloVe [27]. The initial significant difference
between Word2Vec and GloVe is that while GloVe applies a sliding window
technique similar to Word2Vec, it considers the amount of times a word
appears in the window of another word. In order to do this, they construct
a matrix X € NWXWI where any entry X;; counts the number of times
w; € W occurs in the context of w; € W within a given corpus. From this,
we can derive the probability of w; appearing given wj:

X

In terms of word vectors, the log probability function is now defined as

log Py(w;|w;) = v; - v;

which leads to Py(la)
zla
log “RT) 4y (v, —
og By (alD) Vg - (Vg — Up)

with v,, vy, and v, being word vectors representing the words w,, wp, and w,
respectively.

Again similarly to Word2Vec, the GloVe model assigns each word two
different vectors v and v to a given word for the case of it being the center
word and a context word respectively. Unlike Word2Vec however, the final
word embedding is produced by addition of the two. By applying a squared

13



error method, a function f that essentially behaves similar to min(z,c) for
some constant ¢, and bias terms b; and b;, the objective or loss function for
a given model 0 is thus given by

W]
L(0) = > f(Xij)(vi - 5 + b; + b; — log X;5)?

ij=1
which is again to be minimized similarly to Word2Vec.

In conclusion, GloVe examines the frequency with which different word
co-occur within a corpus and then applies a frequentist approach to derive the
probability of two words appearing closely together. These probabilities are
then used to train word embeddings. The core difference between Word2Vec
and GloVe lies in whether or not the frequency of word co-occurrences are
considered and following how the probability of a word co-occurrence is de-
fined.

2.5 GNN Explanations

As graph neural networks like most machine learning tools tend to resemble
black boxes, oftentimes, they lack transparency. Most predictions produced
by GNNs are difficult to explain on their own. Since in practice, most GNN
models do not feature explainability-by-design, end-to-end methods are nec-
essary to deal with these black box models. For this reason, a large amount of
literature and methodologies dealing with the task of explaining the behavior
of GNNs has emerged. Explanations produced by such tools may come in the
form of local or global explanations. Local explanations are concerned with
individual model predictions, seeking to explain why in a specific given case,
a model made the given decision. Global explanations on the other hand
attempt to work across all predictions made by a given model, establish-
ing which features determine the output for any arbitrary input. However,
the vast majority of existing research focuses on local explanations, while
the amount of available global explanation techniques remains significantly
smaller. [38, 7]
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Depending on the task a given GNN model is performing, such explana-
tions may come in different forms. In the case of graph classification tasks, a
common kind of explanation comes in the form of edge masks. Such masks
assign each edge in the graph a value representing it’s importance to the re-
sulting prediction. Similarly node feature masks may consist of node feature
masks, indicating the importance of each entry in the given node feature
vectors.

When dealing with node classification, the first contrast to other situa-
tions is that not the entire graph that is operated on is relevant. For any
node classification task, explanations need only consider the node’s compu-
tation graph. For these computation graphs, explanations are then similar to
those of graph classification tasks. For example, they may consist either of
edge masks or node feature masks evaluating the importance of each edge or
node feature in the computation graph to the node classification. However,
another common type of explanation is a node mask indicating which nodes
in the computation graph play a crucial role for the model’s result. This is
less common in the graph classification case.

2.5.1 GNNExplainer

GNNExplainer [37] is one of the earliest methods to generate explanations of
arbitrary graph neural network models. It can be used to explain both node
classification and graph classification models, returning an edge mask and a
node feature mask in either case.

The basic approach of GNNExplainer is to create an edge mask M over
the adjacency matrix and a node feature mask F' over the node feature vectors
in a given graph. These masks are multiplied element-wise with the adjacency
matrix and each node feature with the resulting products being fed into
the given GNN model to produce a prediction. This process is treated as
a model itself, with the edge and node feature mask representing a form
of trainable weights, that are to be minimized while keeping the GNN’s
produced prediction consistent. Formalized as an objective function this
looks as follows

%iglogF@,C(G =Ac0o(M),X=XOF)
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which is to be minimized using stochastic gradient descent or a related
method such as Adam, with F.(G, X) representing the result of the given
GNN O on the Graph G and the node features X with respect to the class
¢, and Ag representing the graph G’s adjacency matrix. The practice of this
is described in Algorithm 1.

Algorithm 1 GNN Explainere ¢ epochs (V)

1: Initialize edge mask M and feature mask F' as random
2: for i =0, ..., epochs do

3: loss =log Fo (G =Ac (M), X =XOF)

4 Propagate loss backwards using Adam

5: return M, F'

2.5.2 PGM-Explainer

PGM-Explainer [32] deploys a statistical approach to GNN explanation. It
starts by introducing the idea of perturbation in which the feature vector of
a chose node or edge is perturbed, for example by setting every entry in it’s
vector to the average of the vector’s entries.

Algorithm 2 PGM — Explainere ¢(y)

Choose 50% of G’s nodes at random as set N}
for each n € N; do
Perturb n’s features
Initialize P, = {}
for each n € G do
Insert p = x%(n,y) into P

Choose top 20 nodes by p-value as set N,
for each n € N, do
Perturb n’s features
Initialize P, = {}
: for each n € G do
Insert p = x%(n,y) into P,

— = =
T

—
w

: return Ps

16



Algorithm 2 displays PGM-Explainer’s procedure in pseudocode form, ex-
plaining the prediction y by the GNN © over the graph G. First, it randomly
perturbs half of all nodes in the graph. It then performs the chi-squared test
on all nodes, determining the significance of each node to the final predic-
tion. It then repeats this process with the twenty most important nodes.
This procedure effectively creates a probabilistic graphical model, also called
a Bayesian network, over a given graph’s nodes, quantifying their importance
to the given model’s prediction. From these node values, an edge mask is
then derived by multiplying each edge’s adjacent node’s importance values.

2.5.3 Zorro

In contrast to GNNExplainer and PGM-Explainer, Zorro [3] attempts to pro-
duce hard node masks, i.e. a discrete subset of nodes, as an explanation of a
given prediction. In order to do this, the authors apply a greedy algorithm
that iterates over the given model’s input graph. In this process, it succes-
sively selects the nodes to be included in the produced explanation of a given
prediction. It should be noted that Zorro also provides a subset of features
that is important to the explanation, however we focus on nodes in this case.

Zorro utilizes a concept called fidelity. Given a perturbed input, fidelity
essentially measures the difference between the resulting prediction under the
perturbed input versus the original input. This can be applied to measure
the fidelity of an explanation, for example a node subset, by randomly per-
turbing nodes that are not included and then measuring the fidelity. Given
an explanation .S, it’s fidelity is mathematically defined as

F(S) = Eygjzn[lox)=o(vs))

and computed empirically as displayed in Algorithm 3.

Zorro’s process utilizes this concept of fidelity by first initializing the ex-
planation, i.e. the set of relevant nodes, is as an empty set. Following, the
algorithm iteratively chooses one node at a time to include in the explana-
tion, selecting the node that maximizes the explanations fidelity in each step.
Finally, the selection process terminates once the explanation’s fidelity can
no longer be improved. The resulting set of nodes represents the subset of
the input graph that is relevant to the given model’s result. The pseudocode
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Algorithm 3 Fo ¢ sampies(S)

1: Initialize ¢ =0

2: for 1 =0, ..., samples do

3: Compute Gg by randomly perturbing nodes in G' other than those in
S

4 if ©(Gg) = O(G) then

5: Increment ¢ by 1

6: return —=
samples

for this procedure is displayed in Algorithm 4.

Algorithm 4 Zorrog ¢ - x(y)

1: Initialize S as empty set
2: while F(S) > 7 do
3: n = argmax Fg (S Un)

ne€topi (G)
4: Insert 7 into S
5: return S

A second variant of this method is Soft Zorro'. The idea of Soft Zorro
is to keep the basic procedure of Zorro but combining it with the approach
of learning by gradient descent. The reasons for this are twofold. One, that
while Zorro tends to yield good results, these come at the cost of relatively
high computational complexity through it’s combinatorial exploration of the
input graph. And two, that GNNExplainer tends to not produce very useful
results in practice. Soft Zorro therefore attempts to tackle the core issues of
both techniques by combining their advantages. This is done by adapting the
fidelity scoring mechanism of Zorro where instead of exploring all possible
fidelity improvements and taking the absolute best in an arg max manner,
a softmax approach is applied, with the masks then being optimized using
Adam. The process is displayed in Algorithm 5.

L As yet unpublished, material provided by Thorben Funke
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Algorithm 5 SoftZorrog ¢ x(y)
1: Initialize edge mask M and feature mask F' as random
2: for 1 =0, ..., epochs do
3: Calculate loss using the modified softmax fidelity
4
5

Propagate loss backwards using Adam
: return M, F

To conclude, Zorro and Soft Zorro are two methods of explaining a graph
neural network’s prediction by providing discrete subsets of the given graph’s
nodes and features that are crucial to the computed result. While Zorro
achieves this through combinatorial means of comparatively iterating through
possible combinations of node and feature subsets, Soft Zorro utilizes gradient
descent learning similar to GNNExplainer in order to iteratively learn node
and feature masks.
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Chapter 3

Experiments

3.1 Methodology

3.1.1 Classification

Stage 1 Stage 2
[
Lorem ipsum dolor
sit amet, consectetur 5> lﬁ‘ > GNN |[==0 0

adipiscing elit.

o0

=>| GNN |::>1’1I§

The quick brown

fox jumps over I:>§’( |:> GNN |[=—1

the lazy dog.

Figure 3.1: The DepNet pipeline

We provide a novel two-stage methodology we call DepNet for text classifi-
cation utilizing both text-inherent information and inter-document relations.
This methodology consists of two stages. In the first stage, we perform text
classification by graph classification over a given dataset of documents by
parsing each document into a syntactic dependency graph. In the second
stage we perform text classification by node classification by constructing an
inter-document relation graph from all documents in the dataset. To aug-
ment this process we use text embeddings produced by the first stage to
increase the amount of information encoded in the document graph, combin-
ing the power of text-inherent information and inter-text relations for text
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This paper describes a compression algorithm for probability transition

matrices. The compressed matrix is itself a probability transition matrix.

In general the compression is not error-free, but the error appears to be
small even for high levels of compression.

(a) Raw text

(d) DepNet

Figure 3.2: A sample text parsed by the three evaluated graph construction
models

classification. Further, the first stage can be applied by itself when inter-
document relations are not available.

The first stage of our methodology is in principle a simple text classi-
fication by graph classification task similar to much previous work. How-
ever, we provide a novel approach to graph construction. As shown in Sec-
tion 2.1, most previous text classification by graph classification applies a
word co-occurrence technique to graph construction, where nodes only rep-
resent unique words and edges represent co-occurrence in proximity. We
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instead deploy syntactic dependency parsing for graph construction. The
resulting graphs contain all syntactic tokens within the text as nodes, with
edges representing dependency relations between these tokens.

In our basic DepNet model, we disregard the specific labels associated
with each dependency graph edge that specify the kind of relation the edge
represents. However, we also examine whether their inclusion can improve
the model’s accuracy. We parse these dependency relations into edge feature
vectors that can be fed into a GNN model by encoding them as one-hot vec-
tors, with each entry in the vector representing a specific type of dependency
relation.

In order to evaluate this approach, we also deploy a word co-occurrence
methodology with a window size of three to build a baseline dataset. Notably,
in this case during text preprocessing we also perform stopword removal [1]
in order to maximize consistency with previous literature. Word embeddings
for out-of-vocabulary words are drawn from a continuous uniform random
distribution U_o.01,0.01]-

In addition to the conventional word co-occurance model and our Dep-
Net framework, we also consider a mixed approach. In this mixed model,
we tokenize the given text and create a node in the graph for each unique
word. However, instead of deriving edges between these nodes from the word
co-occurance approach, we parse the text again using a syntactic dependency
parser, applying dependency relations produced by this parser as edges. Ef-
fectively, this version of our graph construction is similar to the DepNet
model except that we merge tokens that occur multiple times into a single
node. The resulting model can be thought of as either a word co-occurance
graph with dependency relation edges or a syntactic dependency graph with
only unique nodes. Examples for each graph construction model we examine
are given in Figure 3.2.

To incorporate as much semantic information in our dataset as possible
while combining it with the syntactic information encoded in the graphs by
dependency parsing, word vectors are chosen as node features in every model
variant. To keep consistency with the existing literature [39], we consider two
of the most widely used word vector models, Word2Vec and GloVe.

22



If inter-document relations are available, the second stage of our method-
ology can be applied. In this stage, we construct a graph from the given set
of documents with each node representing a text and each edge representing
an inter-document relation. Further, we apply a text embedding produced by
our first stage as the feature vector for each node in this text relation graph.
This represents the main novelty of our second stage, as in most text clas-
sification by node classification cases conventionally node features contain
at most shallow embeddings of each document. In the case of CORA-ML
[30] for example, node feature vectors provided in the dataset merely contain
binary word vectors encoding the presence of words from the entire dictio-
nary of the dataset in the corresponding text. Further, in order to preserve
consistency by keeping the same GNN operators across all experiments, we
process these edge features into learnable edge weights instead of applying
them directly.

While our focus is on graph construction as a framework that can be
used with arbitrary GNN operators, in order to evaluate our approach we
run concrete graph and node classification experiments in both stages. To try
and keep these experiments as focused on the graph construction approach
as possible, we choose two GNN operators in both stages in the GCN [15]
and the GraphConv [23] operator activated by the ReLU function, which are
represented by the following equations for each GNN layer, with the former
representing the GCN operator and the latter the GraphConv operator:

B = ReLU(w” " —ELph)
JEN(i)Ui 4/ dld]

ko k—1 k—1
hf = ReLU(wohf ™" +wy Y ez xhi™)
JEN(5)
where w, wy, and w, are trainable weights, h¥ is the feature vector of node
i at layer k, e; ; is the edge weight associated with the edge (4, j), and d; is
defined as follows:
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Notably, in the case of the GCN operator, we do not add self-connections.
This is mostly to preserve compatibility with explainers such as PGM-Explainer.

We keep the rest of the model as simple as possible as well. For the
graph classification tasks in the first stage, we apply mean pooling as the
graph aggregation function and a one-layer linear perceptron f as the final
readout, resulting in the following readout function:

For the node classification tasks in the second stage, we apply a softmax
readout function after the last GNN layer:

0; =

Zj ehi

with o; and h; representing the i-th element of the corresponding vector.

3.1.2 Explanation

When considering whether possible accuracy improvements from our graph
construction framework are robust or merely coincidental, it is helpful to
examine explanations of model predictions. Accordingly, we conduct a qual-
itative explainability analysis comparing our approach to previous techniques
in order to both explain our models’ results and to verify the accuracy gains
over the baseline approach.

As explained in Section 2.5, when running graph classification tasks such
as the first stage of our methodology, explanations of a model prediction
commonly consist of an edge mask that assigns each edge in the graph a
value representing it’s importance for the resulting classification. We ap-
ply two methods of generating such edge masks, GNNExplainer and PGM-
Explainer!, on sample documents from our studied dataset. We compare the
resulting edge evaluations in order to determine whether the model’s decision
making processes differ significantly. Additionally, we run a small quantita-
tive comparison of the applied explanation methods in order to evaluate and

IFor both explainers we use the implementations provided by Wang et al. [33]
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support their results. This comparison is done by utilizing mutual informa-
tion between two explanations, which is a measure of how much one variable
predicts another or how much information one variable contains about an-
other. For example, a mutual information value of zero indicates represents
complete independence between two variables.

As the second stage of our method consists of node classification, we turn
to a different explanation technique. In node classification, the task is to ex-
plain the prediction a model produced for a given node instead of the entire
graph. Therefore, explanations explore the computation graph associated
with the given node. Typically, such explanations consist either of an edge
mask evaluating the importance of each edge in the computation graph to the
node classification, similar to the graph classification case, or a node mask
indicating which nodes in the computation graph play a crucial role for the
model’s result. We again apply two explanation methods to compare our
DepNet model to the baseline, however, in this stage we use GNNExplainer
to draw edge masks and both Zorro and Soft Zorro to draw node masks.
We again compare the results between DepNet and baseline across all three
explainers to investigate differences between the models and perform a sup-
plementary comparison of the applied explainers themselves. For the latter,
we use the Jaccard index, which is a measure of the similarity between two
sets and defined as the ratio of the size of two sets’” intersection to the size
of their union.

3.2 Results

3.2.1 Experimental Setup

In order to examine the first stage, we run several experiments by building
various datasets from the CORA-ML? set of documents. As word embed-
dings we consider Word2Vec?® and GloVe* embeddings, and as dependency
parsers we consider spaCy and Stanza. In the case of Word2Vec embeddings,
we choose 300-dimensional vectors trained on Google News data with a dic-

Zhttps://github.com/abojchevski/graph2gauss/tree/master/data
3https://code.google.com /archive /p/word2vec/
4https:/ /nlp.stanford.edu/projects/glove/
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tionary size of three million, while in the case of GloVe embeddings we choose
300-dimensional vectors trained on Wikipedia and Gigaword data with a dic-
tionary size of 400,000. For each of these experiments, we randomly split the
examined dataset into a training set and a testing set at an 8:2 ratio. The
applied GNN model is then trained for 100 epochs at a learning rate of 0.01
using the Adam optimizer. All reported results are the average accuracy and
the corrected sample standard deviation from ten independently run experi-
ments. All experiments are done twice using the GCN and the GraphConv
operator using two layers, except for the very first one, in which case only
the GCN operator is used.

As the second stage consists of node classification tasks, we change the
experimental setup slightly. For each experiment in this phase, we randomly
select 5% of the graph’s nodes as the training set, while the other 95% are
used for accuracy testing. In each experiment we again conduct ten inde-
pendent runs of training for 100 epochs using the Adam optimizer with a
learning rate of 0.01. We again report the average accuracy and corrected
sample standard deviation. We perform every experiment twice, using two
layers of both the GCN and the GraphConv operator.

3.2.2 Classification

spaCy Stanza
Word2Vec 0.7787 £ 0.011 | 0.7686 + 0.0322
GloVe 0.7504 £ 0.016 | 0.7284 + 0.0191

Table 3.1: Mixed model performance across two different word embeddings
and dependency parsers

spaCy Stanza
Word2Vec 0.7941 £+ 0.0119 | 0.7861 + 0.0087
GloVe 0.7610 £ 0.015 | 0.7341 4+ 0.0193

Table 3.2: DepNet model performance across two different word
embeddings and dependency parsers
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Initially we compare the accuracy of the first stage of our method across
different word embeddings and dependency parsers for both our mixed and
our DepNet model. The results are displayed in Tables 3.1 and 3.2. Word2Vec
significantly outperforms GloVe as the choice of word embeddings in all cases,
by at least three percentage points. Similarly, the performance of spaCy as
the dependency parser is strictly higher that that of Stanza, to a slightly
lesser extent, leading to the conclusion that the combination of the spaCy
dependency parser and Word2Vec word embeddings is the superior choice in
all situations. The standard deviation remains very small in all cases.

Dataset GCN GraphConv

CO 0.7610 £+ 0.0154 | 0.7666 + 0.0232
CO-0 0.7687 4+ 0.0260 | 0.7550 + 0.0297
Mixed 0.7787 + 0.0110 | 0.7802 + 0.0153
Mixed-0 0.7709 4+ 0.0108 | 0.7760 + 0.0150
DepNet 0.7941 4+ 0.0119 | 0.7987 + 0.0147
DepNet-0 0.7955 4+ 0.0179 | 0.7973 + 0.0113
DepNet-EF 0.7921 4+ 0.0170 | 0.7899 + 0.0199

Table 3.3: First stage model performance

Next, we compare the first stage of our method using Word2Vec vec-
tors and the spaCy dependency parser as well as our mixed model to the
conventional word co-occurrence technique as a baseline. This is done by
building different datasets from the set of documents, which we denote by
7CQO” for the co-occurrence baseline, ”Mixed” for the mixed approach, and
"DepNet” for our main model. Additionally, in this experiment we compare
zero vectors to vectors drawn from a uniform random distribution as word
embeddings for out-of-vocabulary words, denoted by the suffix ”-0” in the
corresponding datasets. Further, we considered syntactic dependency rela-
tion types as edge features and whether their inclusion might improve the
observed accuracy. The dataset in this case is denoted by the suffix "-EF”.
In order to preserve comparability and consistency with the rest of our re-
sults, the inclusion of edge features happens in the form of running each edge
feature vector through a one-layer perceptron to produce edge-weights that
are further adapted in training. The results are shown in Table 3.3.
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In this stage, replacing word co-occurrence graphs with syntactic depen-
dency graphs yields an accuracy improvement of about three percentage
points, with a small variance between the usage of zero vectors and ran-
domly sampled vectors for out-of-vocabulary words. This increase is consis-
tent across both applied GNN operators. Further, the mixed model’s perfor-
mance falls almost exactly in between the co-occurrence approach and the
first stage of DepNet, further strengthening the case for syntactic dependency
graphs providing significant amounts of information for the graph classifica-
tion model.

Notably, we find that the inclusion of edge feature information does not
yield an improvement in model accuracy. While our results even show a slight
decrease, we believe that the difference in performance here is too small to be
of any strong significance. The lack of improvement might be explained by
the semantic information encoded in the word embeddings already providing
most additional information that dependency relation types incorporate. For
example, in the case of a negation, the word "not” might already contribute
any benefits that the dependency relation type would specify through it’s
word vector.

Dataset Baseline CcO Mixed DepNet

Baseline 0.7665 £ 0.0184

Input 0.5884 4+ 0.0855 | 0.5435 + 0.0795 | 0.5956 + 0.0689

Hidden 0.7739 4+ 0.0397 | 0.8143 + 0.0253 | 0.8410 + 0.0243

Output 0.5250 4+ 0.1357 | 0.7746 + 0.0817 | 0.8415 + 0.0255

Output-0 0.8107 4+ 0.0476 | 0.8259 + 0.0799 | 0.7548 + 0.0952
Table 3.4: Second stage GCN performance

Dataset Baseline CcO Mixed DepNet

Best embedding Output-0 Output-0 Output

Accuracy 0.7665 4+ 0.0184 | 0.8107 + 0.0476 | 0.8259 + 0.0799 | 0.8415 £ 0.0255

Improvement 0.0442 0.0594 0.075
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Dataset Baseline DepNet
Baseline 0.7729 £ 0.0095

Input 0.6476 + 0.0687
Hidden 0.8373 £+ 0.0247
Output 0.8495 + 0.0266
Output-0 0.7872 £ 0.0345

Table 3.6: Second stage GraphConv performance

Dataset Baseline DepNet

Best embedding Output
Accuracy 0.7729 £ 0.0095 | 0.8495 £ 0.0266
Improvement 0.0765

Table 3.7: Second stage GraphConv improvements over baseline

Finally, we deploy the second stage of our methodology. We draw text em-
beddings from different layers of the graph classification network and apply
them as node features to a node classification GNN running on the inter-
document relation graph from the CORA-ML dataset. Specifically, in the
first case we draw these graphs embeddings from initial input word embed-
dings across the graph, in the second case from the embeddings produced
by the first layer of the first stage GNN, and in the third case from the
final embeddings produced by the second layer. We denote these cases by
"Input”, "Hidden”, and ”"Output” respectively. Additionally, we draw the
output layer’s embeddings using zero vectors for out-of-vocabulary words,
denoted by the suffix 7-0”. We compare the accuracy of this technique to
the usage of the conventional node features included in the dataset, denoted
as " Baseline”. These results are displayed in Tables 3.4 and 3.6 for the GCN
and GraphConv operator respectively. Tables 3.5 and 3.7 further display
which layer’s embedding from the first stage lead to the best accuracy and
the improvement over the baseline results.
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Here, we observe significant increase in accuracy when replacing the base-
line binary word presence vectors with text encodings produced by a graph
classification model, up to a robust 7.5 percentage point increase in accuracy
when utilizing the first stage of our methodology. This increase is observed
in both the GCN and the GraphConv scenarios. We further find that the
gains in accuracy in the second stage is directly linked to the gain in accu-
racy in the first stage in the choice of model to produce node embeddings,
which represents further evidence for the robustness of our findings. These
improvements are most likely explained by DepNet combining the advantages
of both graph classification and node classification, utilizing both intra-text
information in the first stage and inter-text information in the second stage.
Notably, we perform the second stage using a very small percentage of our
dataset for the training phase which suggests significant inductive capacities.

Some inconsistencies do arise however, most significantly in the differing
performance between node embeddings produced using zero vectors versus
randomly sampled vectors for out-of-vocabulary words. While the zero vec-
tor case seems to perform better for node embeddings produced by the word
co-occurrence model and the mixed model, this reverses in the case of Dep-
Net. Despite the DepNet model performance being consistent across both
examined GNN operators, the reason for this difference is not immediately
obvious and may require further research.

We also consider the direct joint application of both stages of DepNet.
In this setup, the first model is called directly within the forward function
of the second model, in a loop over all nodes and their documents in the
graph, to produce model-internal text and thus node embeddings. In this
case, both models can be jointly trained within one process, using a model
that directly takes both the inter-document relation graph and the raw docu-
ments as input. However, this experiment yields no practically viable results.
We do not report any preliminary findings under this setup, as a single run of
training takes about eight times as long as a stage one training and orders of
magnitude longer than a stage two iteration, while producing merely about
fifty percent accuracy. The question of why this approach failed is somewhat
puzzling, however. One would imagine that the joint training would give
the model the opportunity to hone the node embeddings produced by the
first stage, optimizing them for the final node classification. While a possible
explanation is the training set only being five percent of all nodes and thus
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documents in the graph, which might not give the first stage enough material
to generalize from, we repeated the experiment with a training set of eighty
percent without finding significant improvements. There is still a reasonable
chance that this joint model might after some adjustment outperform the
two-stage version, so we believe that further research on this issue would be
useful.

In contrast to the accuracy gains we observe, a possible disadvantage of
DepNet is the additional effort needed compared to previous methods. While
the graph construction by dependency parsing did not take significantly more
time in our experiments than word co-occurrence parsing, the usage of the
second stage of DepNet requires an entire additional course of graph clas-
sification over an entire given dataset compared to the baseline technique.
Nonetheless, this process is only needed once in preprocessing, which is why
we argue it is worthwhile. In any case, in any pure graph classification sce-
narios there is little downside to choosing syntactic dependency graphs over
word co-occurrence graphs.

3.2.3 Explanation

In order to explain the graph classification in the first stage of our method,
we draw edge masks representing the relative importance of each edge in the
graph to the explanation produced by the model. These explanations are
produced for the conventional word co-occurance graphs, our mixed model,
and our DepNet model. We deploy two different explanation techniques to
produce these edge masks, GNNExplainer and PGM-Explainer. Figure 3.3
displays the GNNExplainer results for a sample text from the CORA-ML
dataset, while Figure 3.4 displays the PGM-Explainer results for the same
sample.
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(a) CO Model (b) Mixed Model

(c) DepNet

Figure 3.3: First stage GNNExplainer
Edge thickness indicates corresponding importance value

Dataset MI

COM 0.0386
Mixed 0.0622
DepNet 0.0575

Table 3.8: Average mutual information between GNNExplainer and
PGM-Explainer explanations across 30 documents classified by each model

Our GNN explanation evidence supports the observed accuracy gains by
the first stage of DepNet. The GNNExplainer results seem to be inconclu-
sive as it appears that GNNExplainer simply does not produce explanations
of the necessary detail to evaluate differences between the evaluated mod-
els. This observation is further supported by two quantitative examinations
of the produced GNNExplainer results. First, we compare the histograms
of edge masks returned by GNNExplainer and PGM-Explainer on a sample
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Figure 3.4: First stage PGM-Explainer
Edge thickness indicates corresponding importance value

document, displayed in Figure 3.5. The explanation produced by GNNEx-
plainer clearly carries much less information than those produced by PGM-
Explainer, with the entire range of values only reaching a fifth as high and
the edge mask clearly containing significantly more noise. Second, we pick
a sample of twenty documents from the CORA-ML dataset. We produce
classifications of these texts using all three model variants, then produce
explanations for these classifications using both GNNExplainer and PGM-
Explainer. Finally, we calculate the mutual information between the two ex-
planations for each document and model. We calculate the averages across
the 30 sample documents per model variant which are displayed in Table
3.8. The figures we found are clearly very low, in the single digit percentage
range, indicating that explanations produced by GNNExplainer tend to be
significantly less expressive than and therefore inferior to those produced by
PGM-Explainer.
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Figure 3.5: Histograms of edge mask explanations over a sample text

PGM-Explainer on the other hand provides significant supporting indi-
cations. The evidence here clearly shows that the GNN model’s focus shifts
when presented with both our mixed model and DepNet compared to the
word co-occurrence model baseline. This change being consistent between
the mixed model and DepNet indicates that it does indeed stem from the
syntactic information encoded in dependency relation graphs. The accuracy
difference between these two models perhaps then stems from the additional
semantic information included in the DepNet graph, since the presented word
nodes and therefore word vectors more closely represent their actual distri-
bution within the parsed text.

As the second stage consists of node classification, we turn to two differ-
ent forms of explanations to investigate the difference between DepNet and
the baseline model. First, we again run GNNExplainer, this time returning
an edge mask indicating each edge’s importance to the final prediction over
the computation graph of a selected sample node, in our case being node
0. The results of this are displayed in Figure 3.6. Additionally, we opt to
run two further explanation methods in Zorro and Soft Zorro. In contrast
to GNNExplainer and PGM-Explainer, these do not return edge masks but
rather a discrete subset of the computation graph, indicating which nodes
are important to the resulting prediction of node 0. The results for Zorro are
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Figure 3.6: Second stage GNNExplainer on node 0
Edge thickness indicates corresponding importance value

displayed in Figure 3.7, the results for Soft Zorro in Figure 3.8.

(a) Baseline (b) DepNet

Figure 3.7: Second stage Zorro on node 0
Green nodes are determined to be relevant to the prediction
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(a) Baseline (b) DepNet

Figure 3.8: Second stage Soft Zorro on node 0
Green nodes are determined to be relevant to the prediction

Baseline DepNet
Zorro 0.4078 0.2599
Soft Zorro 0.3697 0.2708

Table 3.9: Average share of the computation graph included in a node’s
explanation

As in the first stage, evidence from generated explanations of the GNN
model support the case for the robustness of the observed accuracy improve-
ments. While GNNExplainer again produces explanations of relatively little
informational value, in this case they at least appear to suggest a clearer hier-
archy and information flow within the explained node’s computation graph.
Both Zorro and Soft Zorro, on the other hand, yield strong supportive evi-
dence. In both cases, using the node embeddings produced by the first stage
of DepNet significantly reduces the size of the produced explanation, indicat-
ing that significantly fewer neighboring nodes are necessary for a successful
classification. In order to confirm that this finding is not limited to the sam-
ple node we visualize but a consistent observation, we select a larger sample
of thirty nodes, generate explanations for each node using both Zorro and
Soft Zorro for both the baseline case and DepNet, and compute the aver-
age share of each node’s computation graph that is included in the resulting
explanation. The results are displayed in Table 3.9, indicating that the appli-
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cation of DepNet reduces the relevant share of a node’s computation graph
for it’s classification by at least a quarter. This might even suggest stronger
inductive capabilities when deploying DepNet over baseline methods.

Baseline 0.2911
DepNet 0.4033

Table 3.10: Jaccard indices between Zorro and Soft Zorro explanations
across 30 sampled baseline and DepNet classifications

Lastly, we provide a brief comparative analysis of Zorro and Soft Zorro
in order to validate their explanations. If either of the two provided methods
were to produce questionable explanations, we would expect to observe a
strong divergence, such as for example between GNNExplainer and PGM-
Explainer. If the two tools on the other hand produce explanations that
prove similar, it would appear to be relatively unlikely that both methods
provide largely invalid results. As the explanations produced by Zorro and
Soft Zorro consist of discrete subsets of a node’s computation graph, we
turn to the Jaccard index in order to perform this comparison and evaluate
the disparities between both explanation techniques. We choose a sample
of thirty nodes, classify them using both the baseline model and DepNet,
explain each classification using both Zorro and Soft Zorro, calculate the
Jaccard index between the two explanations for each model and node, and
then calculate the mean of the Jaccard indices per model. The results are
displayed in Table 3.10. As is clearly visible, Zorro and Soft Zorro diverge to
a far less significant extent than GNNExplainer and PGM-Explainer in their
explanations. In fact they tend to agree to a considerable extent, indicating
both methods provide valid and credible explanations.
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Chapter 4

Conclusion

By focusing on graph construction we provide a model-agnostic approach we
call DepNet to text classification in the presence of inter-document relations
via graph neural networks. This approach is of a two-part nature. First, we
perform text classification via graph classification by constructing individual
semantic dependency graphs from each text. Second, we apply graph em-
beddings produced by the first model as node features to a inter-document
relation graph, on which we then perform node classification. Additionally,
we apply various GNN explanation techniques to DepNet in order to explain
and verify the observed differences in performance between our model and
previous techniques.

We find that the application of syntactic dependency parsing instead of
word co-occurrence techniques leads to considerable increases in accuracy
when performing text classification by graph classification. Further, the ap-
plication of node embeddings produced by a graph classification model run
on the respective text significantly improves the results of text classification
by node classification. Both of these observations are supported by quali-
tative GNN explanation evidence. We can therefore confirm our hypothesis
and conclude that DepNet is able to both improve on the status quo of text
classification by graph classification methods and provide a useful framework
for text classification by node classification tasks.

Our findings are not without limitations. Further research is needed,

especially to study the behavior and results of DepNet when utilizing more
complex GNN operators, such as Graph Attention Networks. Further, while
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we believe that our observations represent a genuine advantage of syntactic
dependency graphs over word co-occurrence graphs in GNN applications,
more experiments examining DepNet on other datasets are needed to confirm
and generalize our results.
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