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Abstract

In this work we classify the multiplicity-free Kronecker products of irreducible char-
acters of the alternating groups where we provide formulas for the decomposition
of the products.

Furthermore, we investigate inner and outer tensor products of irreducible char-
acters of the symmetric groups which only contain constituents with multiplicity 1
and 2. For the outer tensor products we classify the products of irreducible char-
acters which only contain constituents with multiplicity 1 and 2. Additionally, we
provide a list of skew characters which we conjecture to be the only ones just con-
taining constituents with multiplicity 1 and 2. We prove that all the characters not
listed contain a constituent with multiplicity 3 or higher.

For the inner tensor product we classify all the products of irreducible char-
acters which just contain constituents with multiplicity 1 and 2. We also provide
formulas for the decomposition of these products. Together with this we obtain
a classification of the inner tensor products of skew characters of the symmetric
groups which just contain constituents with multiplicity 1 and 2.

Kurzzusammenfassung

In dieser Arbeit werden die multiplizitätenfreien Kroneckerprodukte von irreduzi-
blen Charakteren der alternierenden Gruppen klassifiziert. Dabei geben wir die
Zerlegung der Produkte explizit an.

Darüber hinaus werden die inneren und äußeren Tensorprodukte von irreduzi-
blen Charakteren der symmetrischen Gruppen untersucht. Für die äußeren Tensor-
produkte klassifizieren wir die Produke von irreduziblen Charakteren, welche nur
Konstituenten mit Multiplizität 1 und 2 enthalten. Darüber hinaus wird eine Ver-
mutung aufgestellt, welche Schiefcharaktere nur Konstituenten mit Multiplizität 1
und 2 enthalten und gezeigt, dass alle anderen Schiefcharaktere einen Konstituenten
mit einer Multiplizität von mindestens 3 enthalten.

Für das innere Tensorprodukt klassifizieren wir alle Produkte von irreduziblen
Charakteren, welche nur Konstituenten mit Multiplizität 1 oder 2 enthalten. Wir
geben Formeln für die Zerlegung dieser Produkte an. Dabei erhalten wir auch eine
Klassifikation der inneren Tensorprodukte von Schiefcharakteren, welche nur Kon-
stituenten mit Multiplizität 1 und 2 enthalten.

Keywords: Symmetric Groups, Alternating Groups, Representation theory
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CHAPTER 1

Introduction

Kronecker coefficients were introduced by Murnaghan in 1938 [Mur38]. Even
though ‘one of the main problems in the combinatorial representation theory of
the symmetric group is to obtain a combinatorial interpretation for the Kronecker
coefficients’ (Stanley [Sta99]), ‘frustratingly little is known about them’ (Bürgisser
[Bür09]). Besides their importance in combinatorial representation theory, Kro-
necker coefficients got further attention from geometric complexity theory [Mul07]
and quantum information theory [CHM07].

Over time there has been a lot of progress for coefficients which are labeled by
hooks or two-line partitions [Rem89, Rem92, RW94, Ros01, BO06, BWZ10, Liu17,
Bla18] and the homogeneous products [BK99] have been classified but apart from
these (and some other) special cases Kronecker coefficients still seem mysterious and
only very little is known for the general case. Recently Bessenrodt and Bowman
classified the multiplicity-free Kronecker products of irreducible characters of the
symmetric groups [BB17]. The aim of this thesis is to carry this result over to the
alternating groups and classify their multiplicity-free character products.

1. Outline

First, we introduce the basic concepts of representation theory of symmetric
groups together with the notation and definitions which will be used throughout
the whole thesis. The rest of this thesis is divided into three parts. In the first
part, outer tensor products of irreducible characters of the symmetric group which
contain only constituents with multiplicity 1 and 2 are classified. Furthermore,
skew characters which only contain constituents with multiplicity 1 and 2 are in-
vestigated. The results obtained here are used in the second part which classifies
the inner tensor products of irreducible characters of the symmetric groups. This
is by far the longest part of this thesis but the results will enable us to classify the
multiplicity-free character products of the alternating groups in the third part.

Part I: Skew characters and outer tensor products of characters of
the symmetric groups.
In this part, we investigate the outer tensor products of irreducible characters of
the symmetric groups and skew characters. After a short chapter about basic facts
about Littlewood-Richardson coefficients and skew characters, we first look at the
outer tensor products of irreducible characters of the symmetric groups. Here we
are able to classify all outer tensor products which only contain constituents with
multiplicity 1 and 2. In the next chapter we present a conjecture which skew
characters only contain constituents with multiplicity 1 and 2. We are not able
to show that all the listed products contain no constituents with multiplicity 3 or
higher, but we show that all other products contain one. This is sufficient for the
results on Kronecker products that we prove in the next part.

Part II: Kronecker products of characters of the symmetric groups.
We use the methods from [BB17] to classify the Kronecker products of characters
of the symmetric groups which just contain constituents with multiplicity 1 and 2.
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Outline

Additionly, we prove for some products that they contain more than one constituent
with multiplicity 3 or higher or that they contain a non-symmetric constituent with
multiplicity 3 or higher. This will be necessary in order to be able to use these results
for the next part. We start with formulas for the decomposition of the products
which contain only constituents with multiplicity 1 and 2. These all involve a
factor which is labeled by a hook or a two-line partition (with a small exception).
Together with the decompositions we prove that these are the only products of two
irreducible characters where one is labeled by a hook or a two-line partition such
that the product just contains constituents with multiplicity 1 and 2. For most
of the other products we prove by induction that these contain a constituent with
multiplicity 3 or higher. To do so we need a classification for products of skew
characters containing only constituents with multiplicity 1 and 2. At this point,
we will just be able to prove this under the assumption that the classification that
we stated for the irreducible characters is correct. So after the chapter about skew
characters, we can show with induction that most of the products which neither
involve a hook nor a two-line contain a constituent with multiplicity 3 or higher.
The last four chapters of this part will be spent finding such constituents in the
remaining products.

Part III: Multiplicity-free Kronecker products of characters of the
alternating groups.
In the last part of this thesis we prove the classification of the multiplicity-free
Kronecker products of characters of the alternating groups. For this we use the
classification of Kronecker products of characters of the symmetric groups which
only contain constituents with multiplicity 1 and 2. Most of the constituents of
the multiplicity-free products can be derived directly from the formulas for the
multiplicity-free Kronecker products of the symmetric groups ([BB17]). For the
products where it is not obvious we provide the decomposition. After a chapter
about the preliminaries we start by looking at the products of two characters labeled
by non-symmetric partitions. The results of this part can be deduced from [BB17].
In the next chapter we look at products which involve a symmetric partition. For
these we need the results of the second part. We finish this part by deducing the
multiplicity-free products of three (or more) An-characters from the classification
of multiplicity-free character products of two characters of the alternating groups.

2. Preliminaries: Representation theory of symmetric groups

Partitions and Young diagrams.
We denote the symmetric group on n letters by Sn. The representation theory of the
symmetric and alternating groups is based on partitions and their combinatorics.
A partition λ of n is a weakly decreasing finite sequence of non-negative integers

λ = (λ1, . . . , λl) such that |λ| :=
l∑
i=1

λi = n. A partition λ of n will be denoted

by λ ` n. We call the number of non-zero parts of λ the length of λ and denote
it by l(λ). By w(λ) := λ1 we denote the width of λ and by d(λ) the Durfee size
of λ. This is the number of boxes on the diagonal, i.e., d(λ) = max{i|λi ≥ i}.
Often we use a more compact notation for a partition. If the part λi is repeated r
times we indicate that by a superscript r instead of repeating the part λi r times.
For example we write (5, 33, 12) instead of (5, 3, 3, 3, 1, 1). If we use this notation,
we generally assume that all the parts of same length are grouped together. So if
λ = (λr11 , . . . , λ

rl
l ), we assume that λi > λi+1.

Partitions can be visualized by Young diagrams. Let λ ` n. The Young diagram
of λ is an array of n boxes arranged in l(λ) rows which start in the same column on
the left and the ith row (we count, like in matrices, the rows from top to bottom
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and the columns from left to right) has λi boxes for 1 ≤ i ≤ l(λ). The box in the
ith row and jth column has the coordinate (i, j). For example the Young diagram
of the partition (5, 33, 12) is given by

.

We do not distinguish strictly between a partition and the associated Young
diagram, so by abuse of notation we denote the Young diagram of the partition λ
by λ, too.

For λ ` n, the transposed or conjugated partition λ′ is defined to be the partition
which we obtain by reflecting the Young diagram of λ on the diagonal (so it coincides
with transposition for matrices), for example (5, 33, 12)′ = (6, 42, 12). If a partition
is invariant under conjugation, i.e., λ = λ′, we call it symmetric. In some cases λ
and λ′ behave similarly so we use the notation λ(

′) for λ or λ′.
Let A be a box from the Young diagram of λ ` n. If λ without A is a Young

diagram of a partition of n− 1, we call A removable and denote the corresponding
partition by λA. If there is a partition µ ` n+ 1 and a removable box B of µ such
that µB = λ, we call B an addable box of λ and write λB for µ. By Rem(λ) resp.
Add(λ) we denote the set of removable resp. addable boxes from λ. Further, we
denote with rem(λ) = |Rem(λ)| and add(λ) = |Add(λ)| the number of removable
resp. addable boxes of λ.

A lot of names for families of partitions derive from the shape of their Young
diagrams. We use the following names:

• λ ` n is called linear if λ(
′) = (n).

• We call a partition λ ` n a hook if λ2 ≤ 1 and a proper hook if λ is a hook
and λ is not linear.

• A partition λ is called a two-line partition if λ(
′) = (a, b) for suitable a, b.

If λ = (a, b), we call it a two-row partition and if λ′ = (a, b), we call it a
two-column partition.

• If d(λ) ≤ 2, we call λ a double-hook. If λ is a double-hook but not a hook
or a two-line partition, we call it a proper double-hook.

• If λ has one removable node, we call λ a rectangle and we call λ a proper
rectangle if λ is a rectangle and l(λ), w(λ) ≥ 3. Note that in this definition
a two-line rectangle is not a proper rectangle.

• If λ has at most 2 removable nodes, we call it a fat hook and a proper fat
hook if it is a fat hook but not a hook, rectangle nor a two-line partition.

Over the complex numbers the irreducible Sn characters [λ] are indexed by
partitions of n. This (natural) bijection carries the combinatorics of partitions and
tableaux over to modules and characters. Via this bijection we use the attributes
that we initially defined for partitions for the corresponding characters, too.

Kronecker coefficients.
Let λ, µ, ν ` n. We define the Kronecker coefficient g(λ, µ, ν) as the multiplicity of
[ν] in the product [λ][µ], i.e.,

[λ][µ] =
∑
ν`n

g(λ, µ, ν)[ν].
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Preliminaries: Representation theory of symmetric groups

Thus, the Kronecker coefficient is a more compact notation for special Sn scalar
products

g(λ, µ, ν) = 〈[λ][µ], [ν]〉Sn .
Moreover, we define for λ, µ ` n

g(λ, µ) := max{g(λ, µ, ν)|ν ` n}.

If [λ][µ] contains r or more constituents with multiplicity l or higher, we denote
this by g(λ, µ)r ≥ l.

For λ, µ ` n, we know that [λ][1n] = [λ′], so the g(λ(
′), µ(′)) all have the same

value and we usually just investigate the products up to conjugation. To make the
notation a bit more compact we will sometimes write [λ′] as [λ]′.

Character values.
Not only the irreducible characters, but also the conjugacy classes of the symmetric
group are indexed by partitions. For λ ` n, we write σλ for an element of the Sn
conjugacy class which contains exactly the elements of cycle type λ.

For λ, µ ` n, we can compute the character value [λ](σµ) recursively with the
Murnaghan–Nakayama rule. To state the formula we need the definition of a rim
hook.

Let λ be a partition of n and (i, j) a box of λ.
(1) The (i, j)-hook H(i,j) of λ consists of the box (i, j) together with all the

boxes of λ to the right of (i, j) in the row i and the boxes below (i, j) in
the column j.

The hook length h(i,j) of the hook H(i,j) counts the number of boxes in
H(i,j). The leg length L(H(i,j)) of the hook H(i,j) is the number of boxes
below the box (i, j) in the diagram λ. In an example for the partition
(5, 4, 3, 2, 1) the (2, 2)-hook is given by the dotted boxes. The hook length
is 5 and the leg length is 2

• • •
•
•

.
(2) The (i, j)-rim hook R(i,j) of λ consists of the rightmost box in the row

i, the last box of the column j and their connection along the rim of the
diagram of λ.

The (2, 2)-rim hook in the diagram (5, 4, 3, 2, 1) is given by the dotted
boxes

• •
• •
•

.
We have already introduced the irreducible characters of the symmetric groups.

Now, with the definition of the rim hooks we can recall the Murnaghan-Nakayama
rule which gives us a possibility to evaluate the characters on an element of the
symmetric group.

Theorem 1.1 (Murnaghan–Nakayama rule [Mur37, Nak41]). Let λ, µ be partitions
of n and σ ∈ Sn an element of cycle type λ. Let σ contain an l-cycle and let
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σ̃ ∈ Sn−l be an element of the same cycle type as σ, but with one l-cycle less. We
have the following recursive formula for the character value:

[µ](σ) =
∑

i,j such that
h(i,j)=l

(−1)L(H(i,j))[µ \R(i,j)](σ̃),

where µ \R(i,j) denotes the partition of the diagram µ without the rim hook R(i,j).
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CHAPTER 2

Preliminaries: The outer tensor product, the
Littlewood-Richardson rule and skew characters

1. Skew characters and the Littlewood-Richardson Rule

A skew partition of n is a pair of partitions (λ, µ) such that the diagram of µ is
contained in the diagram of λ and |λ| − |µ| = n. It is denoted by λ/µ. The skew
diagram corresponding to the skew partition λ/µ is the set-theoretic difference of
the diagrams of λ and µ (i.e., the set of boxes that belong to λ but not to µ). A
λ/µ skew tableau T is a filling of the skew diagram λ/µ with positive integers.

Below, a skew tableau for the skew partition (6, 5, 2, 1)/(3, 2, 1) is shown

1 1 1
1 2 2

3
3 .

We can assign a word to a (skew) tableau by reading its entries from right to
left and from top to bottom. Such a word w is called a lattice word if in every
initial part of the sequence any number i occurs at least as often as the number
i+ 1.

Further, a (skew) tableau T is called semistandard if the numbers in T are not
decreasing along the rows (from left to right) and are increasing along the columns
(from top to bottom).

Let µ be a partition of n. A (skew) tableau T is of type µ if for every i ≥ 1 the
entry i occurs µi times in T .

Definition 2.1 (Littlewood-Richardson tableaux). A skew tableau of shape λ/µ is
called a Littlewood-Richardson tableau of shape λ/µ if it is a semistandard tableau
such that the word obtained by reading the entries of the rows from right to left
and the rows from top to bottom is a lattice word.

Theorem 2.2 (Littlewood-Richardson rule). Let λ be a partition of n and µ be
a partition of m. For ν ` n +m the multiplicity of [ν] as a composition factor of
[λ]� [µ] := ([λ]× [µ]) ↑Sn+m

Sn×Sm equals the number of Littlewood-Richardson tableaux
of shape ν/λ and type ν which we denote by c(ν;λ, µ), i.e.,

[λ]� [µ] =
∑

ν`n+m

c(ν;λ, µ)[ν].

Although the Littlewood-Richardson rule was first stated by these two authors
in [LR34] it took some time until Thomas [Tho78, Tho74] and Schützenberger
[Sch77] published the first complete proofs.

Whenever we talk about products of characters in this part of the thesis, we
mean the outer tensor product which was defined in the previous theorem.

The skew tableau we have already seen is a (6, 5, 2, 1)/(3, 2, 1)-Littlewood-
Richardson tableau of type (4, 2, 2). The word we obtain by reading its rows from
right to left is 11122133.
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Skew characters and the Littlewood-Richardson Rule

Let λ/µ be a skew partition of n. We define the skew character [λ/µ] as∑
ν`n

c(λ;µ, ν)[ν].

Obviously, we can remove empty rows and columns from a skew diagram with-
out changing the corresponding skew character. We call a skew diagram without
empty rows and columns basic and usually we restrict ourselves to these skew dia-
grams. A proper skew partition is a skew partition which is neither a partition nor
a rotated partition. By [BK99, Lemma 4.4.] the skew character labeled by a proper
skew partition has at two distinct irreducible constituents. We refer to such a skew
character as a proper skew character.

In [Ste01] John Stembrige classified the multiplicity-free products of Schur func-
tions, which is equivalent to the classification of the multiplicity-free outer tensor
products of irreducible characters of the symmetric groups. Using this, Christian
Gutschwager classified the multiplicity-free skew characters in [Gut10]. Around the
same time, Hugh Thomas and Alexander Yong classified the multiplicity-free prod-
ucts of Schubert classes in [TY10], which is equivalent to Gutschwager’s result. The
classifications are given by the following theorem. The first part is equivalent to the
classification of the multiplicity-free outer tensor products of irreducible characters
of the symmetric groups. A near-rectangle is a partition which is a rectangle if we
remove either one row or one column.

Theorem 2.3. [Ste01, Gut10, TY10] Let λ = (λk11 , λ
k2
2 , . . . λ

ki
i ), α = (αl11 , . . . , α

lj
j )

be partitions and k =
i∑

a=1
ka, l =

j∑
a=1

la.

Then [λ/α] is multiplicity-free if and only if one of the following conditions
holds:

(1) λ/α decomposes into two disconnected skew diagrams µ and ν for which
up to rotation by 180◦ and/or exchanging µ with ν one of the following
conditions holds:
(a) µ is a one-line rectangle and ν is a partition;
(b) µ is a two-line rectangle and ν is a fat hook;
(c) µ is a rectangle and ν a near-rectangle;
(d) µ and ν are rectangles.

(2) λ/α is a connected basic skew diagram and one of the following conditions
holds:
(a) i = 1;
(b) j = 1 and one of the following conditions holds:

(i) α1 = 1 or l1 = 1;
(ii) λ1 = 1 + α1 or k = 1 + l;
(iii) i = 2;
(iv) i = 3 and one of the following conditions holds:

(A) α1 = 2 or l1 = 2;
(B) k1 = 1 or λ3 = 1;
(C) k2 = 1 or λ2 = 1 + λ3;
(D) k3 = 1 or λ1 = 1 + λ2;
(E) k = 2 + l or λ1 = 2 + α1.

(c) i = 2 and one of the following conditions holds:
(i) λ1 = 1 + λ2 or k2 = 1;
(ii) λ2 = 1 or k1 = 1.

(d) i = 2 and j = 2 and one of the following conditions holds:
(i) λ1 = 1 + α1 or k = 1 + l;
(ii) λ1 = 2 + λ2 or k2 = 2;
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(iii) λ2 = 2 or k1 = 2;
(iv) α1 = 1 + α2 or l2 = 1;
(v) α2 = 1 or l1 = 1.

In the following we want to classify outer-tensor products which just contain
constituents with multiplicity 1 and 2.

Theorem 2.4. A complete list (up to conjugation of all partitions or interchange
of the partitions) of outer tensor products of irreducible characters of the symmetric
groups which contain only constituents with multiplicity less or equal to 2 is given
by:

(1) The multiplicity-free outer tensor products (classified in [Ste01]);
(2) products of two irreducible characters [λ] � [µ] if λ and µ satisfy one of

the following conditions:
(a) one of the partitions is a hook and the other one is a fat hook;
(b) λ has two rows and one of the following holds:

(i) λ = (2, 2) or λ = (2, 1) and µ is arbitrary;
(ii) µ = (m− 1, 1) or m = 2k + 1 is odd and µ = (k + 1, k);
(iii) µ = (ab, (a− 1)c) or µ = (ab, 1c);
(iv) n = 2k + 1 is odd λ = (k + 1, k) and µ is a fat hook;
(v) n = 2k is even, λ = (k, k) and µ = (ab, cd, ef ) with a − c = 1

or c− e = 1 or e = 1;
(vi) µ has three removable nodes and λ = (3, 3).

(c) λ = (ab) is a rectangle and one of the following holds:
(i) µ is a fat hook and a = 3 and b ≤ 5;
(ii) µ = (c2, 2d) for some c, d ≥ 2;
(iii) b = 3 and µ = (cd, ef ) with e ≤ 3 or c− e ≤ 3;
(iv) µ = (c2, d2) with c− d ≤ 3 or d ≤ 3 or a ≤ 5;
(v) µ = ((c+ 2)2, cd) or µ = (cd, (c− 2)2);
(vi) µ = (c, d, 1e);
(vii) µ = (c+ 1, cd, 1);
(viii) a = 3 and l(µ) ≤ 3;
(ix) µ = (c, d, e) with c− 1 = d or d− 1 = e;
(x) µ = (cd, c− 1, (c− 2)e) with d = 1 or e = 1.

(d) λ is a fat hook and one of the following holds:
(i) all 4 of the possibilities λ(

′) = (ab, 1) and µ(′) = (cd, 1);
(ii) λ = (ab, a− 1) and µ = (cd, c− 1).

(3) products of three characters which satisfy one of the following conditions:
(a) [one-row]� [rectangle]� [one-column];
(b) [rectangle]� [rectangle]� [1];
(c) [1]� [1]� [anything].

This is equivalent to characterization of skew characters that decompose into
different connected components which are all partitions.

Furthermore, we would like to classify skew characters which contain no con-
stituents with multiplicity 3 or higher, but we are not able to show for all of the
products that they only contain constituents with multiplicity 1 and 2. However,
we are able to prove that the products which are not in the lists contain a con-
stituent with multiplicity 3 or higher. Since there are a lot more cases, we split our
result into several theorems (Theorem 2.5 to 2.7).

For a skew character [λ/µ], we will show that a necessary condition for having
only constituents with multiplicity 1 and 2 is that µ, possibly after rotation, has
at most 2 removable boxes. If λ/µ is connected and µ has one removable box,
the following theorem tells us if the skew character contains a constituent with
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Skew characters and the Littlewood-Richardson Rule

multiplicity 3 or higher. Since the skew character of a fat hook skewed by a rectangle
is multiplicity-free, we can assume that rem(λ) ≥ 3.

Theorem 2.5. Let λ = (λk11 , λ
k2
2 , . . . , λ

kl
l ) with l ≥ 3 and µ = (ab) be parti-

tions such that µ ⊂ λ, λ/µ is a connected basic skew diagram and [λ/µ] is not
multiplicity-free. If up to conjugation none of the following conditions hold, [λ/µ]
has a constituent with multiplicity 3 or higher:

(1) µ = (22);
(2) a+ 2 = λ1 and b = 2;
(3) l = 3 and one of the following conditions holds:

(a) µ = (33), (43), (53);
(b) there are i, j ∈ {1, 2, 3} such that λi − λi+1 = 2 and kj = 2;
(c) there are i 6= j ∈ {1, 2, 3} such that λi−λi+1 = 2, λj −λj+1 = 2 and

one of the following conditions holds:
(i) b ≤ 5;
(ii) there is an r ∈ {1, 2, 3} such that kr ≤ 3.

(d) a+ 5 ≥ λ1 and one of the following conditions holds:
(i) b = 3;
(ii) k2 = 2 and k3 = 2.

(e) a+ 4 ≥ λ1 and k1 = 2;
(f) a+ 3 ≥ λ1 and one of the following conditions holds:

(i) b ≤ 5;
(ii) there is an i such that ki ≤ 3.

(g) λ2 = a+ 1 and one of the following conditions holds:
(i) k1 = 2;
(ii) b = k1 + k2 − 1 and one of the numbers λ1 − λ2, λ3, k3 equals

2.
(h) b = 3 and there is an i such that λi − λi+1 ≤ 3.

(4) l = 4 and one of the following conditions holds:
(a) µ(′) = (23);
(b) b = 2 and one of the following conditions holds:

(i) a+ 3 ≥ λ1;
(ii) there is an i such that λi − λi+1 = 1.

(c) k1 = 1 and λ2 = a+ 1;
(d) there is an i such that λi − λi+1 = 1 and one of the following holds:

(i) λ1 − λ2 = 1 and k3 = k4 = 1;
(ii) λ2 − λ3 = 1 and k1 = k4 = 1;
(iii) λ3 − λ4 = 1 and k1 = k2 = 1;
(iv) λ4 = 1 and k1 = k2 = 1 or k1 = k3 = 1 or k2 = k3 = 1.

(e) there are i 6= j and m < n such that λi−λi+1, λj−λj+1 = 1, km = 1,
kn = 1 and one of the following holds:

(i) λ1 − 2 = λ2 − 1 = λ3 and (m,n) 6= (1, 3);
(ii) λ1 − λ2 = 1 and λ3 − λ4 = 1 and (m,n) 6= (1, 4), (2, 3);
(iii) λ1 − 1 = λ2 and λ4 = 1 and (m,n) 6= (2, 4);
(iv) λ2 − 2 = λ3 − 1 = λ4 and (m,n) 6= (2, 4);
(v) λ2 − 1 = λ3 and λ4 = 1 and (m,n) 6= (3, 4);
(vi) λ3 = 2, λ4 = 1.

(f) for at most one i ∈ {1, 2, 3, 4} is λi−λi+1 > 1 and one of the following
conditions holds:

(i) b = 3;
(ii) there is a j ∈ {1, 2, 3, 4} such that kj = 1.

(g) λ1 = a+ 2 and one of the following conditions holds:
(i) b = 3;
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(ii) there is an i ∈ {2, 3, 4} such that ki = 1.

In the next theorem we look at the case where λ/µ is connected and µ has two
removable boxes.

Theorem 2.6. Let λ = (λk11 , λ
k2
2 , ..., λ

kl
l ) with l ≥ 3 and µ = (µr11 , µ

r2
2 ) such that

µ ⊂ λ and λ/µ is a connected basic skew diagram. If up to conjugation none of the
following conditions hold, [λ/µ] has a constituent with multiplicity 3 or higher:

(1) µ = (2, 1);
(2) µ1 + 1 = λ1, l(λ)− 1 = l(µ) and r1 = µ2 = 1;
(3) r1 = r2 = 1, µ1 − 1 = µ2 and λ1 = µ1 + 1;
(4) l = 3 and one of the following holds:

(a) µ is a hook;
(b) λ1 − µ1 = 1 and one of the following holds:

(i) l(λ)− l(µ) = 1;
(ii) r2 = 1;
(iii) r1 = 1 and µ1 − µ2 = 1;
(iv) k2 = k3 = 1;
(v) there is an i such that ki = 1 and λi − λi+1 = 1 and r1 = 1;
(vi) there are i, j such that ki = 1 and µj − µj+1 = 1.

(c) there is an i such that λi − λi+1 = 1 and ki+1 = 1 and one of the
following holds:

(i) r2 = 1 and µ2 = 1;
(ii) r1 = 1 and µ1 − µ2 = 1.

(d) there is an i such that λi − λi+1 = 1 and ki = 1 and in addition,
r2 = 1 and µ1 − µ2 = 1;

(e) λ1 − λ2 = 1 and k3 = 1;
(f) λ3 = 1 and k1 = 1 or k2 = 1;
(g) r1 = r2 = 1 and one of the following holds:

(i) µ1 − µ2 = 1;
(ii) there is an i such that λi − λi+1 = 1.

(h) there are i 6= j such that λi−λi+1 = λj−λj+1 and l such that kl = 1
or rl = 1.

In contrast to the multiplicity-free case, we have outer tensor products of an
irreducible character and a skew character which contain only constituents with
multiplicity less or equal to 2 (even though we do not show this here). This is
equivalent to a skew partition which decomposes into two connected components,
one a proper skew partition, the other one a partition.

Theorem 2.7. Let ν be a partition and λ/µ be a basic and connected skew partition.
If up to rotation of λ/µ by 180◦ and/or conjugation of λ/µ and ν they are not from
the following list, the outer tensor product [λ/µ] � [ν] contains a constituent with
multiplicity 3 or higher:

(1) If µ is a rectangle, λ = (λk11 , λ
k2
2 ) and one of the following holds:

(a) ν = (1);
(b) λ1 − λ2 = 1 or λ2 = 1 and ν has one row;
(c) w(µ) = λ1 − 1 and ν has one row.

(2) if ν is a rectangle and one of the following holds:
(a) λ(

′) = (λ1, λ1 − 1);
(b) λ is a two-line partition and µ = (1);
(c) λ(

′) = (λk11 , λ1 − 1) and µ = (1);
(d) λ = (λk11 , 1) and µ = (λ1 − 1) or both conjugated.

(3) if µ and ν are both one-line partitions and one of the following holds:
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Skew characters and the Littlewood-Richardson Rule

(a) λ1 − 1 = µ1 and ν = (1);
(b) λ = (λk11 , λ

k2
2 ) and one of the following holds:

(i) l(µ) = 1 and w(ν) = 1;
(ii) λ1 − λ2 = 1 or λ2 = 1 and l(µ) = l(ν) = 1;
(iii) l(λ)− l(µ) = 1 and w(ν) = 1.

Conjecture 2.8. All outer tensor products and skew characters listed in the pre-
vious three theorems contain only constituents with multiplicity 1 and 2.

2. Equalities and inequalities for Littlewood-Richardson coefficients

In this section we collect some known equalities and inequalities which reduce the
number of cases we have to investigate. First, we need an operation on skew
diagrams. If λ/µ is a skew diagram, we denote with (λ/µ)rot the skew diagram
rotated by 180◦. If we talk about rotating a (skew) diagram, we always mean
rotating by 180◦. There are a lot of symmetries known for Littlewood-Richardson
coefficients but we just use the following well known ones:

Theorem 2.9. Let λ, µ, ν be partitions. Then the following equalities hold:
(1) c(λ;µ, ν) = c(λ; ν, µ);
(2) the conjugation symmetry c(λ;µ, ν) = c(λ′;µ′, ν′);
(3) the rotation symmetry [λ/µ] = [(λ/µ)rot].

These symmetries allow us to reduce the cases we have to look at. For two
partitions λ, µ, we define the sum λ+ µ by (λ+ µ)i = λi + µi for all i. We say we
add µ to λ (as columns). We also define λ ∪ µ := (λ′ + µ′)′. Here we say that we
add µ to λ as rows.

Lemma 2.10. [Gut10, Lemma 3.4.] Let λ = (λk11 , ..., λ
kj
j ), µ = (µ1, ..., µl), ν be

partitions.
(1) If l ≤ ki for some 0 ≤ i ≤ j, then for all n ≥ 0,

c(λ;µ, ν) = c(λ ∪ (λni );µ, ν ∪ (λni ));

(2) if µ1 ≤ λi − λi + 1 (as usual λj+1 = 0) for some 0 ≤ i ≤ j, then let

ri =
i∑

a=1
ka and for all n ≥ 0,

c(λ;µ, ν) = c(λ+ (nri);µ, ν + (nri)).

Lemma 2.11. [Gut10, Theorem 3.1.] Let λ, µ, ν be partitions and a ≥ b ≥ 0
integers. Then

c(λ;µ, ν) ≤ c(λ+ (1a);µ+ (1b), ν + (1a−b)),

as well as
c(λ;µ, ν) ≤ c(λ ∪ (a);µ ∪ (b), ν ∪ (a− b)).

The previous lemma generalizes in an obvious way to adding not only rows or
columns but suitable triples of partitions as rows or columns. If λ can be obtained
from λ̃ by adding rows and columns, we write λ � λ̃.

3. First examples

Lemma 2.12. If λ ` n and µ ` m with rem(λ), rem(µ) ≥ 3, the product [λ]� [µ]
contains a constituent of multiplicity greater or equal to 4.
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Proof: This follows since λ, µ can be obtained from (3, 2, 1) by adding rows
and columns and [3, 2, 1]� [3, 2, 1] has several constituents (for example [4, 3, 22, 1])
of multiplicity 3 and 4. We show how to obtain λ from (3, 2, 1), µ follows in the
same way.

Let λ = (λk11 , λ
k2
2 , . . . , λ

kl
l ) with l ≥ 3. We know that

c((4, 3, 22, 1); (3, 2, 1), (3, 2, 1)) = 4.

We obtain λ from (3, 2, 1) by first adding (λ1 − 3, λ2 − 2, λ3 − 1). Note that this is
a partition since we assume that λi > λi+1. Then we add

λ̃ = (λk1−11 , λk2−12 , λk3−13 , λk44 , . . . , λ
kl
l )

as rows. Thanks to Lemma 2.11 we know

c(((4, 3, 22, 1) + (λ1 − 3, λ2 − 2, λ3 − 1)) ∪ λ̃;λ, (3, 2, 1))
≥ c((4, 3, 22, 1); (3, 2, 1), (3, 2, 1)) = 4.

If we do the same for µ, we obtain c(ν;λ, µ) ≥ 4 for some partition ν. �

To find constituents of multiplicity 3 or higher, we often use a small product
and Lemma 2.11 to find a constituent for the product we are investigating, like in
the previous lemma. However, usually we do not spell out how to obtain λ and µ
from the partitions of the small product since this will be quite obvious.

Lemma 2.13. The outer tensor product of 4 or more characters contains a con-
stituent with multiplicity 3 or higher.

Proof: This follows since [1]�[1]�[1]�[1] contains [3, 1] with multiplicity 3. �

To show that a given product only contains constituents with multiplicity 1
and 2 we have different methods. Sometimes, even though it is an infinite family,
we can reduce it to a finite number of cases which we check with the computer. We
see this in the following lemma.

Lemma 2.14. (1) Let λ ` n be a partition. Then the products [λ]� [2, 1] and
[λ]� [2, 2] have only constituents of multiplicity less or equal to 2.

(2) Let λ ` n consist of three different parts, i.e., λ = (λk11 , λ
k2
2 , λ

k3
3 ). The

product [λ]� [32] only contains constituents with multiplicity 1 or 2.

Proof: We start by proving the first statement. Let λ be a partition and µ be
either (2, 1) or (2, 2). If [ν] is a constituent of [λ]� [µ], we know that

c(ν;λ, µ) = 〈[λ]� [µ], [ν]〉 = 〈[µ], [ν/λ]〉.
Without loss of generality we can assume that ν/λ is a basic skew diagram of size
|µ|. But it is easy to check with Sage (or even by hand) that all skew characters
of size 3 only contain the constituent [2, 1] with multiplicity 0, 1 or 2 and that all
skew characters of size 4 only contain the constituent [2, 2] with multiplicity 0, 1 or
2.

The second part works in the same way. We check with Sage that there is no
skew diagram α/β such that rem(α) ≤ 3, |α| − |β| = 6 and 〈[α/β], [3, 3]〉 ≥ 3. �

As we have seen in the proof of the previous lemma, it is sometimes very helpful
to switch between skew characters and the outer tensor product of two irreducible
characters. So in the following lemma we illustrate some of the methods we have
for skew characters with a simple example.

Lemma 2.15. Let λ = (λk11 , λ
k2
2 , λ

k3
3 , λ

k4
4 ) and µ = (µr11 ) be partitions such that

λ/µ is a basic skew diagram.
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First examples

(1) If µ(′) = (32), the skew character [λ/µ] only contains constituents with
multiplicity 1 and 2.

(2) If r1 = 2 and λ1 − µ1 ≤ 3, the skew character [λ/µ] only contains con-
stituents with multiplicity 1 and 2.

Proof: We start by proving the first part. Due to the conjugation symmetry
(Theorem 2.9) we can assume that µ = (23). Moreover, by Lemma 2.11, we can
assume that λi − λi+1 ≥ 2 and ki ≥ 3 for all 1 ≤ i ≤ 4. With Lemma 2.10 we can
assume that λi − λi+1 ≤ 2 and ki ≤ 3 for all 1 ≤ i ≤ 4. Together this shows that
it is sufficient to check [(83, 63, 43, 23)/(23)].

For the second part we know that r1 = 2. With Lemma 2.10 we can assume that
k1 = 2. If we add (32)/(32), Lemma 2.11 tells us that the multiplicities can only
grow. But the resulting diagram decomposes into ((λ1 − µ1)

2) and (λk22 , λ
k3
3 , λ

k4
4 ).

If λ1 − µ1 = 2, 3, the previous lemma tells us that this product only contains con-
stituents with multiplicity less or equal to 2. If λ1 − µ1 = 1, the product is even
multiplicity-free (see Theorem 2.3) �

In the last lemma we saw that not only the skew characters help us with the
outer tensor products, but it also works in the other direction. In the next lemma
we look at a skew character that we will need later for the outer tensor products.

Lemma 2.16. Let λ be a partition and µ = (λ1 − 1, 1l(λ)−2). The skew character
[λ/µ] only contains constituents with multiplicity 1 and 2.

Proof: If µ is a hook with µ1+1 = λ1 and l(µ)+1 = l(λ), we first add (1)/(1)
to λ/µ and in the next step we add (1)/(1) as a row. The resulting skew diagram is
no longer connected. Instead, it decomposes into 3 connected components. Above,
on the right and at the bottom, on the left there is a component of the shape (1).
The component in between these is a partition, too (namely the one that we obtain
from λ/µ by deleting the first row and the first column). For a partition ν ` n,
[1]� [ν] is the same character as [ν] ↑Sn+1

Sn
=

∑
A∈Add(ν)

[νA]. From this point of view it

is obvious why products of the form [ν]� [1]� [1] and therefore, also [λ/µ] contain
only constituents with multiplicity less or equal to 2. �
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CHAPTER 3

Outer tensor products

In this chapter we want to prove Theorem 2.4 (which classifies the outer tensor
products which only contain constituents with multiplicity 1 and 2). Because of
Lemma 2.13, we can focus on products of two or three irreducible characters. In
the first section we look at products of two partitions, in the second we look at
products of three partitions.

1. Products of two irreducible characters

Due to Lemma 2.12 we know that one of the partitions is a rectangle or a fat
hook. We look at the different possibilities for this partition.

One of the partitions is a hook.
The following lemma tells us whether a product of a hook with another partition
only contains constituents with multiplicity less or equal to 2. Due to the lucidity of
hook partitions we can actually construct the possible two Littlewood-Richardson
tableaux in this case (which is something that gets quite messy for other cases).
Therefore, we give two different proofs for one direction of the following lemma.
One is actually looking at the possibilities for the Littlewood-Richardson tableaux,
the other one is a bit more structural and generalizes to other cases.

Lemma 3.1. Let λ ` n ≥ 4 be a proper hook and µ ` m a partition such that
[λ] � [µ] is not multiplicity-free. The product [λ] � [µ] contains only constituents
with multiplicity less or equal to 2 if and only if µ is a fat hook.

Proof: There are two directions we have to show. If µ is not a fat hook, µ
has at least three different parts, this means µ � (3, 2, 1). Because λ is a hook
and not linear, we know that λ � (3, 1)(

′). Since [3, 2, 1] � [3, 1](
′) has [4, 3, 2, 1]

as constituent with multiplicity 3, we conclude that [λ] � [µ] has a constituent of
multiplicity at least 3.

Now let us assume that µ is a fat hook. We want to show that all the con-
stituents have multiplicity less or equal to two. Since we already know that [λ]� [µ]
is multiplicity-free if µ is a rectangle, we can assume that µ = (ab, cd) has two
removable nodes. Thanks to Lemma 2.11 we can assume that a − c, c, b, d are
greater than n. Let [ν] be a constituent of [λ]� [µ]. We know that ν/µ decomposes
into at most three hooks. Actually, up to two of the three parts could be empty
but since the maximal multiplicity of the constituents stays the same or decreases
if there are less parts we only elaborate the case that all parts are not empty. We
call them α1, α2, and α3. Then we know that

c(ν;λ, µ) = 〈[ν/µ], [λ]〉 = 〈[α1]� [α2]� [α3], [λ]〉 = 〈[α1]� [α2], [λ/α3]〉.

But λ/α3 decomposes into a one-column partition and a one-row partition and
therefore, [λ/α3] consists of two hooks. But since α1 and α2 are both hooks, we
know that all the constituents of [α1] � [α2] which are hooks only occur once. If
[β] is a hook and a constituent of [α1]� [α2], then β/α1 decomposes into a one-row
and a one-column partition. �
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Products of two irreducible characters

Remark 3.2. That products of the form [hook] � [fat hook] only contain con-
stituents with multiplicity with 1 and 2 can actually be shown with Littlewood-
Richardson tableaux in the following way:

We assume that λ is a hook and µ = (ab, cd). Let ν be a partition of n +m
such that ν ⊇ µ and that there is a Littlewood-Richardson tableau T of shape ν/µ
and content λ. Since λ is a hook, we know that ν ⊆ (a + n, (a + 1)b, (c + 1)d, 1n).
There can be two boxes of T for which the content is not already determined by
the shape of ν/µ and the content of the boxes lying in rows above. If such boxes
exist, they are:

• the last box of ν/µ in the (b+1)-th row if it is not in the (a+1)-th column
and µ/ν has a box in a row above and
• the last box of ν/µ in the (b + d + 1)-th row if it is not in the (c + 1)-th

column and µ/ν has a box in a row above.

We conclude that the only partitions which have multiplicity 2 are the ones for
which the content of both of these boxes is not already determined and λ is of such
a form that one of the boxes has to be filled with a 1 and the other box has to be
filled with an entry different from 1.

One of the partitions is a two-row partition.

Lemma 3.3. Let λ ` n ≥ 4 be a two-row partition (neither (n − 1, 1) nor (2, 2))
and µ ` m ≥ 4 not a hook such that λ, µ is not from the list of multiplicity-free
outer tensor products. Then all constituents of [λ] � [µ] have multiplicity less or
equal to 2 if and only if one of the following cases occurs:

(1) µ = (ab, (a− 1)c) or µ = (ab, 1c) for suitable a, b, c;
(2) n = 2k + 1 is odd, λ = (k + 1, k) and µ is a fat hook;
(3) n = 2k is even, λ = (k, k) and µ is of the form (ab, cd, ef ) for suitable

a, b, c, d, e, f with a− c = 1 or c− e = 1 or e = 1;
(4) µ has three removable boxes and λ = (3, 3).

Proof: We start with showing that products which are not listed contain
constituents with multiplicity 3 or higher. First, let us assume that λ1 − λ2 ≥ 2
and µ ` m such that λ, µ is not a pair from the list. If rem(µ) ≥ 3, we know that
µ � (3, 2, 1), so in this case it is sufficient to check [4, 2]� [3, 2, 1]. If µ is a fat hook
of the form (ab, cd), we know that c > 1 and a−c > 1 since the pair λ, µ is not listed
in this lemma. Therefore, it is sufficient to check the product [4, 2]� [4, 2]. If µ is a
rectangle, the product is multiplicity-free, so now we look at the case λ1 − λ2 ≤ 1.

Case 1: λ1 − λ2 = 1. Let us assume that n = 2k + 1 ≥ 5 is odd and that
λ = (k + 1, k). Since we assume the pair λ, µ is not listed in (2), we know that
rem(µ) ≥ 3. It is sufficient to check [3, 2]� [3, 2, 1].

Case 2: λ1 = λ2. Let n = 2k ≥ 6 be even and λ = (k, k). If rem(µ) ≥ 4,
we know that µ � (4, 3, 2, 1) and therefore, we can reduce it to the product
[3, 3]� [4, 3, 2, 1]. If rem(µ) = 3, we know that n ≥ 8 and that µ � (6, 4, 2) so
it is sufficient to check [6, 4, 2]� [4, 4]. Now we verify that the listed products only
have constituents with multiplicity less or equal to 2.

(1): We can assume that a−1, b and c are greater than n because of Lemma 2.11.
From now on we will not always mention Lemma 2.11 if we are using a partition
which is bigger than the original one. If [ν] is a constituent of [λ] � [µ], we know
that ν/µ decomposes into at most three parts. Two of them are two-row partitions,
we call them α1 and α2, and the third one which we call α3 is either (1), (12) or
empty. So we know that

c(ν;λ, µ) = 〈[α1]� [α2]� [α3], [λ]〉 = 〈[α2]� [α3], [λ/α1]〉.
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We know that [λ/α1] is multiplicity-free and all constituents are two-row parti-
tions. If α3 = (12), [α2] � [α3] only contains one two-row partition. Therefore,
c(ν;λ, µ) ≤ 1. If α3 = (1), [α2] � [α3] contains at most two two-row partitions.
Therefore, c(ν;λ, µ) ≤ 2.

(2): Let λ = (k + 1, k) and µ = (ab, cd) be a fat hook. We can assume that
a− c, c, b, d are greater than n. If [ν] is a constituent of [λ]� [µ], we know that ν/µ
decomposes into at most three parts, which are two-row or one-row partitions. We
call them α1, α2 and α3. We know that

c(ν;λ, µ) = 〈[α1]� [α2]� [α3], [λ]〉 = 〈[α2]� [α3], [λ/α1]〉.
Since λ = (k + 1, k), we know that (λ/α1)rot is a two-row partition skewed by (1).
This means that [λ/α1] decomposes into the sum of at most 2 two-row partitions.
It is easy to see that in the product of characters labeled by two two-row partitions
every two-row partition has at most multiplicity 1 and therefore, c(ν;λ, µ) ≤ 2.

(3): Let λ be a two-row rectangle and µ = (ab, cd, ef ), for which we know that
one of the numbers a − c, c − e, e equals 1. We can assume that the others are
greater than n and that b, d, f > 2. If [ν] is a constituent of [λ]� [µ], we know that
ν/µ decomposes into at most four partitions with up to two rows. We call them
α1, α2, α3 and α4, where α4 is either (1) or (12). With this we get

c(ν;λ, µ) = 〈[α1]� [α2]� [α3]� [α4], [λ]〉 = 〈[α2]� [α3]� [α4], [λ/α1]〉.

But since λ is a two-row rectangle, we know that [λ/α1] = [β] for some two-row
partition β. Hence,

c(ν;λ, µ) = 〈[α2]� [α3]� [α4], [λ/α1]〉 = 〈[α2]� [α3]� [α4], [β]〉
= 〈[α2]� [α3], [β/α4]〉.

On the other hand [β/α4] decomposes into at most two two-row partitions and
all the constituents of [α2]� [α3] which are two-row partitions have multiplicity 1.
Therefore, c(ν;λ, µ) ≤ 2.

(4): This has been proven in Lemma 2.14. �

By the conjugation symmetry for Littlewood-Richardson coefficients this also
solves the case in which one of the partitions is a two-column partition. So from
now on we assume that neither λ nor µ is a hook or a two-line partition. For the
last lemmas we only needed very few small products with multiplicity 3. Sadly, it
seems that in the next two lemmas more of these small products are needed. It
also gets a bit more complex to see which to which of the small products we can
reduce [λ] � [µ]. There are different ways to organize the proofs. Even though it
might look redundant to state some of these small products several times we think
that it might be a bit confusing if we mention all the different cases in which the it
can be used the first time it comes up.

One of the partitions is a rectangle.

Lemma 3.4. Let λ = (ab) be a proper rectangle (with a, b > 2) and µ ` n neither
a hook nor a two-line partition such that λ, µ is not from the list of multiplicity-
free outer tensor products. Then the product [λ] � [µ] has only constituents with
multiplicity less or equal to 2 if and only if one of the following cases occur (up to
conjugation of both partitions):

(1) µ is a fat hook and a = 3 and b ≤ 5;
(2) µ = (c2, 2d) for some c, d ≥ 2;
(3) b = 3 and µ = (cd, ef ) with e ≤ 3 or c− e ≤ 3;
(4) µ = (c2, d2) with c− d ≤ 3 or d ≤ 3 or a ≤ 5;
(5) µ = ((c+ 2)2, cd) or µ = (cd, (c− 2)2);
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Products of two irreducible characters

(6) µ = (c, d, 1e);
(7) µ = (c+ 1, cd, 1);
(8) a = 3 and l(µ) ≤ 3;
(9) µ = (c, d, e) with c− 1 = d or d− 1 = e;
(10) µ = (cd, c− 1, (c− 2)e) with d = 1 or e = 1.

Proof: We start by proving that products which are not listed have a con-
stituent with multiplicity 3 or higher. If rem(µ) ≥ 4, we reduce the product [λ]� [µ]
to [33]� [4, 3, 2, 1]. In the next step we look at µ with rem(µ) = 3 such that the pair
λ, µ is not from the list. If every part of µ occurs with multiplicity 1, we know that
l(µ) = 3 and therefore, a > 3 and µ1−µ2, µ2−µ3, µ3 ≥ 2. Otherwise, the product
would be listed in (6), (8) or (9). This implies that λ � (43) and µ � (6, 4, 2).
So for this case it is sufficient to check that [6, 4, 2] � [43] has a constituent with
multiplicity 3.

Now we assume that exactly one part has multiplicity 2 or higher and the other
ones have multiplicity 1. If it is the first part, i.e., µ = (cd, e, f) with d > 1, we know
that c− e or e− f is greater than 1 and that e 6= 2. Otherwise, the product would
be listed in (10) maybe after conjugation. Therefore, we know that µ � (42, 3, 1) or
µ � (52, 3, 2) and we need to check that [42, 3, 1]� [33] and [52, 3, 2]� [33] contain
a constituent with multiplicity 3. If the second part occurs multiple times, i.e.,
µ = (c, de, f) with e > 1, we know that d 6= 2 and if f = 1, we know that c− d > 1.
Otherwise, it would be listed after conjugation in (6) or in (7). Therefore, if f 6= 1,
µ � (4, 32, 2) and if f = 1, µ � (5, 32, 1) and we check that [4, 32, 2] � [33] and
[5, 32, 1] � [33] contain a constituent of multiplicity 3. If it is the third part which
is contained multiple times, i.e., µ = (c, d, ef ), we know that e 6= 1 and that c − d
or d − e is greater than 1. Otherwise, it would be listed in (6) or (10). Therefore,
µ � (5, 4, 22) or µ � (5, 3, 22) and it is sufficient to check that [5, 4, 22] � [33] and
[5, 3, 22]� [33] contain a constituent with multiplicity 3.

In the next step we look at the case for µ in which exactly one of the parts
has multiplicity 1 and the other two have multiplicity 2 or higher. If the last part
has multiplicity 1, i.e., µ = (cd, ef , g), we know that c > 3. Otherwise, the product
would be listed in (9) after conjugation. Hence, we conclude that µ � (4, 32, 2),
µ � (42, 3, 1) or µ � (42, 22, 1) and therefore we have to check that [42, 22, 1]� [33]
contains a constituent with multiplicity 3. We have already checked the other two
products. If the second part has multiplicity 1, i.e., µ = (cd, e, fg), we know as
before that c > 3. Otherwise, the product would be listed in (9) after conjugation.
Therefore, we obtain µ from (42, 3, 22), (42, 3, 1) or (42, 2, 12). We have to check
the products [42, 3, 22] � [33] and [42, 2, 12] � [33]. We have already checked the
third product. If the first part has multiplicity 1, i.e., µ = (c, de, fg), we know that
d > 2. Otherwise, the product would be listed in (6) after conjugation. Therefore,
µ � (4, 32, 2) or µ � (4, 32, 12). So for this part we have to check that the product
[4, 32, 12]� [33] contains a constituent with multiplicity 3. Again, we have already
checked the other product.

If all of the parts have at least multiplicity 2, we distinguish between two cases.
If b > 3, µ � (32, 22, 12) and we obtain the result since [32, 22, 11] � [34] contains
a constituent with multiplicity 3. If b = 3, we know that w(µ) > 3. Otherwise, it
would be listed in (8) after conjugation. Therefore, we obtain µ from (42, 22, 1),
(42, 3, 1) or (4, 32, 2), but we have already checked these products.

In the next step we look at µ with rem(µ) = 2, i.e., µ = (cd, ef ). If µ is a
rectangle or near-rectangle, the product is multiplicity-free, consequently we assume
that c− e, d, e, f > 1. We start with the case a = 3 or c = 4. Here we know that
b ≥ 6, d, f ≥ 4 and c− e, e ≥ 2. Otherwise, the product would be listed, possibly
after conjugation, in (1), (3) or (4) or it would be multiplicity-free. Therefore,
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µ � (44, 24) and we need to check [36] � [44, 24]. By conjugation symmetry we
can assume from now on that a, b ≥ 4 and c, d + f ≥ 5. Further, we see that at
most one of the numbers c − e, d, e, f equals 2; otherwise, the product would be
from (2) or (5) or c = 4 or d + f = 4. By conjugation symmetry we can assume
that it is either d or f . If f ≥ 3, we know that (62, 33) � µ and therefore, it is
sufficient to check the product [62, 33] � [44]. If d ≥ 3, we know that (63, 32) � µ
and therefore, it is sufficient to check the product [63, 32]� [44]. In the next step we
prove that all the products which are listed in the lemma only contain constituents
with multiplicity 1 and 2.

(1): Let [ν] be a constituent of [λ]� [µ]. We can assume by Lemma 2.11 that
µ = (cd, ef ) with c − e, e, d, f larger than ab. We know that ν/µ decomposes
into at most three parts. We call these parts α1, α2 and α3. We can assume that
|α1| ≥ |α2| ≥ |α3|. It follows that

c(ν;λ, µ) = 〈[λ]� [µ], [ν]〉 = 〈[λ], [ν/µ]〉 = 〈[λ], [α1]� [α2]� [α3]〉
= 〈[λ/α1], [α2]� [α3]〉,

where (λ/α1)rot is the diagram of a partition with width smaller or equal to 3 and
length smaller or equal to 5. Since |α2| ≤ 7, we check with Sage that there are no
partitions α2 ` m2, α3 ` m3 such that 15 −m2 −m3 ≥ m2 ≥ m3 and [α2] � [α3]
containing a constituent with multiplicity greater or equal to 3 which has width
less or equal to 3.

(2): We can assume that c − 2 and d are greater than ab. This means that if
we have ν such that [ν/µ] contains [λ], then ν/µ decomposes into three parts and
all three parts are partitions. Let us say that ν/µ decomposes into

• α1, which is the upper right part and therefore, an at most two-row par-
tition,
• α2, which is the middle part that we do not know anything about, and
• α3, which is the part at the lower left end of µ and therefore, a partition

with at most two columns.
We know that

c(ν;λ, µ) = 〈[ν/µ], [λ]〉 = 〈[α1]� [α2]� [α3], [λ]〉 = 〈[α1]� [α3], [λ/α2]〉.

Since λ is a rectangle, we know that [λ/α3] is an irreducible character (rotation
symmetry of Theorem 2.9). Therefore, (2) follows from Lemma 3.3.

(3): We can assume that d and f are greater than 3. We know that for any
constituent [ν] of [λ] � [µ] the skew partition ν/µ decomposes into three different
parts. We label them in the same way as before. We know that l(αi) ≤ 3 for all
i ∈ {1, 2, 3} and there is a j ∈ {2, 3} such that w(αj) ≤ 3. Let α1 = (α1

1, α
1
2, α

1
2).

Since b = 3, there is an obvious bijection of the Littlewood-Richardson tableaux
for 〈[α1] � [α2] � [α3], [a3]〉 and the ones which count 〈[α1

1 − α1
3, α

1
2 − α1

3] � [α2] �
[α3], [(a − α1

3)
3]〉. Hence, we can assume that α1

3 = 0. Let k ∈ {2, 3} and j 6= k .
We know

〈[ν/µ], [λ]〉 = 〈[α1]� [α2]� [α3], [λ]〉 = 〈[α1]� [α2]� [α3], [λ]〉 = 〈[α1]� [αj ], [λ/αk]〉.

If αj 6= (3, 2, 1), we know that [αj ]�[α1] only contains constituents with multiplicity
less or equal to 2. If αj is linear or a rectangle, the product is multiplicity-free,
if αj = (2, 1), this follows from Lemma 2.14, if αj is a hook, this follows from
Lemma 3.1, otherwise from Lemma 3.3 since α1 is a two-row partition. Since λ
is a three-row rectangle, we know that [λ/αk] is an irreducible character which
corresponds to a partition of length less or equal to 3. For αj 6= (3, 2, 1) it follows
that [λ] � [µ] only contains constituents with multiplicity less or equal to 2. If
αj = (3, 2, 1), we show that the constituents of length less or equal to 3 only occur
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Products of two irreducible characters

with multiplicity 1 or 2. Since w((3, 2, 1)) = 3, we know by Lemma 2.10 that we
only have to check the products of [3, 2, 1] with the two-row partitions β = (β1, β2),
where β1, β1 − β2 ≤ 3, which was done with Sage.

(4): We start with d = 3 or c − d = 3. In this case we can assume that a and
b are greater than 4c. If [ν] is a constituent of [λ] � [µ], we know that the skew
diagram ν/λ decomposes into two diagrams of partitions. If we call them α1 and
α2, we conclude that

〈[ν/λ], [µ]〉 = 〈[α1]� [α2], [µ]〉 = 〈[α1], [µ/α2]〉.

Thus, we only need to know that [µ/α2] only contains constituents with multiplicity
less or equal to 2. Since d = 3 or c−d = 3, this follows from Lemma 2.15 after using
the rotation symmetry. If a ≤ 5, we can assume by Lemma 2.11 that d, c−d ≥ 5 = a
and that b ≥ 4 = l(µ). Then with Lemma 2.10 we can assume that d, c − d = 5
and that b = 4. But the product [54]� [102, 52] was checked with Sage.

(5): We have two possibilities for µ. We start with µ = ((c + 2)2, cd). We
can assume that c and d are greater than ab. This time, ν/µ decomposes into
α1/(2, 2) and α2, where α1 and α2 are partitions. By Lemma 2.14 α1/(2, 2) only
contains constituents with multiplicity less or equal to 2. Additionally, due to
rotation symmetry [λ/α2] is an irreducible character. Thus, we know that [λ/µ]
only contains constituents with multiplicity 1 and 2. If µ = (cd, (c − 2)2), we can
assume that d and c − 2 are greater than ab. It follows that ν/µ decomposes into
at most 3 proper partitions and the middle part is contained in the missing (22)
square. The statement follows since the product of an irreducible character with
any irreducible character which is contained in (22) only contains constituents with
multiplicity 1 or 2. It is either multiplicity-free or we have seen it in Lemma 2.14.

(6): We assume that c− d, d− 1, e are greater than ab. Then ν/µ decomposes
into at most 4 parts, of which two are one-row partitions and one is a one-column
partition. In Lemma 3.6 we will see that their product only contains constituents
with multiplicity less or equal to 2. With this the statement follows in the same
way as before.

(7): We assume that a and b are greater than c(d+1)+2. If [ν] is a constituent
of [λ] � [µ], we know that ν/λ decomposes into two partitions. We call them α1

and α2. We know that

〈[ν/λ], [µ]〉 = 〈[α1]� [α2], [µ]〉 = 〈[α1], [µ/α2]〉.

Now µ/α2 is not a partition. If it was the product would be multiplicity-free. But by
rotation symmetry and Lemma 2.16 we see that [µ/α2] only contains constituents
with multiplicity 1 or 2.

(8): We assume that b is greater than 3. If [ν] is a constituent of [λ] � [µ],
the skew diagram ν/λ decomposes into two diagrams of partitions. We call them
α1 and α2. If α1 is the upper right diagram, we know that µi − α1

i ≤ 3 for all
i ∈ {1, 2, 3} and that l(α2), w(α2) ≤ 3. So we know that

〈[ν/λ], [µ]〉 = 〈[α1]� [α2], [µ]〉 = 〈[α2], [µ/α1]〉.

All we have to do is to check all skew characters with length at most 3 and at most
3 boxes in each row for a constituent with multiplicity greater or equal to 3 which
fits into (33). This was done with Sage.

(9): We know that c − d or d − e equal 1. We can assume that the other
one and e are greater than ab. Let [ν] be a constituent of [λ] � [µ]. Then ν/µ
decomposes into 3 different parts: A one-row partition, a two-row partition skewed
by (1) and an arbitrary partition. Since the skew character decomposes into two
two-row partitions and the product of a two-line partition with a linear partition
is multiplicity-free, part (9) follows.
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(10): We know that one of the exponents d or e equals 1. Starting with the
case d = 1, we can assume that e and c− 2 are greater than ab. The skew diagram
of ν/µ decomposes into a partition and another partition skewed by (2, 1). Since a
partition skewed by (2, 1) only contains constituents with multiplicity less or equal
to 2, as we have seen in Lemma 2.14, the statement follows. If e = 1, we can assume
that d and c−2 are greater than ab. Then our skew diagram decomposes into three
or four diagrams of partitions or rotated partitions. One of the partition is (2, 1)rot
if it decomposes into three parts, or two partitions are (1), in which case we need 4
parts. In the first case the proof follows from Lemma 2.14. In the later case it will
follow when we prove Lemma 3.7. �

One of the partitions is a proper fat hook.

Lemma 3.5. Let λ ` n be a proper fat hook with w(λ), l(λ) > 2 and µ ` m with
rem(µ) ≥ 2 and w(µ), l(µ) > 2, not a hook. All the constituents of the product
[λ]� [µ] have multiplicity less or equal to 2 if and only if one of the following cases
occurs:

(1) λ = (ab, a− 1) and µ = (cd, c− 1) for suitable a, b, c, d;
(2) all 4 of the possibilities λ(

′) = (ab, 1) and µ(′) = (cd, 1) for suitable a, b, c, d.

Proof: First we show that products which are not listed contain a constituent
with multiplicity at least 3. We know that λ can be obtained from one of the
partitions (3, 3, 2) or (3, 2, 2)(

′). If µ has at least three different parts, we can
therefore reduce this to either [3, 2, 2](

′)�[3, 2, 1] or [3, 3, 2]�[3, 2, 1]. These products
contain constituents with multiplicity 3. So from now on let µ be a fat hook, let us
say µ = (ab, cd) and λ = (ef , gh). If a− c = 1 and e− g = 1, this can be reduced to
[32, 2]� [3, 22]. So from now on we can assume that a− c > 1 or e−g > 1. Without
loss of generality we can assume a − c > 1. If c = g = 1, d ≥ 2 or h ≥ 2 and
therefore, this can be reduced to [32, 1]� [32, 12]. If c = 1 and g 6= 1, we reduce this
to [32, 1]� [32, 2] if f ≥ 2, [32, 1]� [4, 22] if f = 1 and e− g ≥ 2, and [3, 22]� [32, 12]
if f = 1 and e−g = 1. So now we know that a− c, c ≥ 2 and therefore, λ � (4, 2, 2)
or λ � (4, 4, 2) in the remaining cases. For µ we know that µ can be obtained from
one of the partitions (3, 2, 2)(

′) or (3, 3, 2). We check with Sage that all six possible
combinations contain a constituent with multiplicity 3. In the next step we want
to prove the other direction.

(1): We can assume that a and b are greater than c(d + 1). If [ν] is a con-
stituent of [λ] � [µ], we know that ν/λ decomposes into at most three parts. If it
is connected or decomposes into only two parts, the multiplicity of [ν] is 1. It gets
more interesting if it decomposes into three parts. All three parts are partitions.
We call them α1, α2, α3, with α2 = (1). Then we know that

c(ν;λ, µ) = 〈[α1]� [α2]� [α3], [µ]〉 = 〈[α1]� [α2], [µ/α3]〉.

Since µrot = (w(µ)l(µ))/(1) and for a partition β the skew character [β/(1)]
decomposes as [β/(1)] =

∑
B∈Rem(β)

[βB ] we obtain

〈
[α1]� [α2], [µ/α3]

〉
=

〈 ∑
A∈Add(α1)

[(α1)A],
∑

B∈Rem(β)

[βB ]

〉
,

where β = ((w(µ)l(µ)) \ α3)rot. Since |α1| + |α2| + |α3| = |µ| = |(w(µ)l(µ))| − 1,
we know that |α1| + 2 = |β|. With this it is easy to see that if |α1 ∩ β| < |α1|,
c(ν;λ, µ) = 0. For |α1 ∩ β| = |α1| we have two cases: If both boxes from the set
β \ α1 are addable boxes in α1, c(ν;λ, µ) = 2. This is equivalent to the fact that
both boxes are removable boxes in β. It happens if β/α1 is not connected. If only
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one of the boxes in the set β \ α1 is an addable box in α1 and the other one is a
removable box in β, this happens if β/α1 is connected, c(ν;λ, µ) = 1.

(2): We do this for λ′ = (ab, 1) and µ′ = (cd, 1). The other case can be solved
with the same argument. Like before we assume that a− 1 and b are greater than
cd + 1. If [ν] is a constituent of [λ] � [µ], we know that ν/λ decomposes into at
most two parts. One has the form α1/(1) for a suitable partition α1, the other one
is a partition we call α2. We know that

c(ν;λ, µ) = 〈[α1/(1)]� [α2], [µ]〉 = 〈[α1/(1)], [µ/α2]〉.

We know [α1/(1)] decomposes as
∑

A∈Rem(α1)

[(α1)A], so we have to take a closer

look at [µ/α2]. By rotation symmetry we know that there is a partition β such
that [µ/α2] = [β/(β1 − 1)]. If β/(β1 − 1) is not connected, it decomposes into
β̂ and (1), where β̂ is β without the first row. If it is connected, we look at the
possible Littlewood-Richardson tableaux. We see that [β/(β1 − 1)] decomposes as∑
B∈Add(β̂)

[β̂B ] without [β̂(1,β2+1)] which is the character where we add the box in the

first row of β̂. Now this part follows with the same argument as we used to prove
(1). �

2. Products of three irreducible characters

Lemma 3.6. Let λ, µ, ν be partitions all different from (1). Then the product
[λ]� [µ]� [ν] contains only constituents with multiplicity less or equal to 2 if and
only if one of the partitions has only one row and another partition has only one
column and the third one is a rectangle.

Proof: First we want to show that products which are not of the form

[one-row]� [one-column]� [rectangle]

contain a constituent with multiplicity 3 or higher. By conjugation symmetry we
can assume that at least two of the factors have length greater or equal to 2. If
all three have length at least 2, [12] � [12] � [12] shows that the product contains
a constituent with multiplicity at least 3. So we know that one of the partitions
is of the form (m) for some m ≥ 2. If one of the partitions has two removable
nodes, we know that it has to be one of the partitions of length greater or equal
to 2 so this reduces to the case [2, 1]� [2]� [12]. This contains a constituent with
multiplicity greater or equal to 3. We have one one-row partition and the other
two partitions can only be rectangles. But if both of them are proper rectangles or
two-line rectangle, this reduces to [2, 2] � [2, 2] � [2], which contains a constituent
with multiplicity 3. All that is left is that one of the partitions is a rectangle and
the other ones are a one-column and a one-row partition.

For the other direction look at the product [m] � [1l] � [ab]. We know that
[m] � [1l] decomposes as [m, 1l] + [m + 1, 1l−1] the sum of two character labeled
by hooks. But from the classification of the multiplicity-free outer tensor products
of irreducible characters of the symmetric groups we know that the product of a
hook and a rectangle is multiplicity-free and therefore, our product only contains
constituents with multiplicity 1 and 2. �

Lemma 3.7. Let λ, µ be partitions. The product [1] � [µ] � [λ] only contains
constituents with multiplicity less or equal to 2 if and only if

(1) λ and µ are both rectangles or
(2) λ = (1) or µ = (1).
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Proof: One direction follows since one of the partitions has at least two parts,
therefore it is � (2, 1) and the other partition has at least two boxes so it is � (2)(

′).
Hence, it is sufficient to check that [1]�[2, 1]�[2](

′) contains [3, 2, 1] with multiplicity
3.

Let us now prove the other direction. For a partition ν ` n, [1]� [ν] is the same
character as [ν] ↑Sn+1

Sn
=

∑
A∈Add(ν)

[νA]. From this point of view it is obvious why the

products from (2) contain only constituents with multiplicity less or equal to 2. For
the first part this tells us that [λ]� [1] consists of two irreducible characters which
are both near-rectangles. But since the product of a near-rectangle with a rectangle
is multiplicity-free, we know that the product of a sum of two near-rectangles with
a rectangle only contains constituents with multiplicity 1 or 2. �
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CHAPTER 4

Skew characters

In this chapter we want to prove that all connected skew characters [λ/µ] which
are not listed in Theorem 2.5 or 2.6 contain a constituent with multiplicity at least
3. We start by showing that we can assume that λ has more removable boxes than
µ. In the next step we show Proposition 4.1. This tells us that if the number of
removable boxes of λ is greater or equal to 4 and the number of removable boxes of
µ is greater or equal to 3, [λ/µ] contains a constituent with multiplicity greater or
equal to 3. Thus, we can focus on the case that µ has one or two removable boxes.

In contrast to the multiplicity-free case we have outer tensor products of an
irreducible character and a skew character which only contain constituents with
multiplicity less or equal to 2. This is equivalent to a skew partition which de-
composes into a proper skew partition and a partition. We deal with this in the
next chapter. In this chapter we generally assume that the skew diagram λ/µ is
connected.

1. Idea of the proof

We use the symmetry properties for Littlewood-Richardson coefficients from
Theorem 2.9 to reduce the number of cases we have to handle. Obviously we can
restrict ourselves to basic skew diagrams.

Further, if we have two basic skew diagrams λ/µ and α/β with (λ/µ)rot = α/β,
we know that rem(λ)−1 = rem(β) and rem(µ)+1 = rem(α). This and the rotation
symmetry of skew characters tell us that it is sufficient to consider skew characters
[λ/µ] such that rem(λ) > rem(µ).

As a first result we show that if rem(λ) ≥ 4 and rem(µ) ≥ 3, the skew character
contains a constituent with multiplicity greater or equal to 3. This together with
the previous thought allows us to restrict ourselves to the cases rem(µ) = 1 or
rem(µ) = 2.

We will show this by reducing the skew partition λ/µ with Lemma 2.11 to
a smaller skew partition λ̃/µ̃ for which we can calculate that [λ̃/µ̃] contains a
constituent with multiplicity 3 or higher. Such a small skew partition λ̃/µ̃ we will
call a seed (for λ/µ). Later we will use slight variations of this in different contexts.
But the general concept will always be the same. A seed is a small partition,
skew partition, pair of partitions or character from which we can grow the bigger
partition, skew partition, pair of partitions or character we are interested in. To
keep the sentences a bit shorter we will sometimes talk about constituents of a seed.
By this we mean the constituents of the skew character corresponding to that seed.

Proposition 4.1. Let λ = (λ1, . . . , λl) with rem(λ) ≥ 4 and µ = (µ1, . . . , µm) with
rem(µ) ≥ 3 such that λ/µ is a basic skew diagram. Then [λ/µ] has a constituent
with multiplicity 3 or higher.

Proof: If we have the skew partition λ/µ, we create a word consisting of
(0, 0), (1, 0), (0, 1), (1, 1) as follows: The word starts with (1, 1) and is generated
according to the following rule. Let (λ/µ)(i) for 2 ≤ i ≤ l(λ) be the i-th letter of
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the word. We define

(λ/µ)(i) =


(0, 0), if λi−1 = λi and µi−1 = µi

(1, 0), if λi−1 = λi and µi−1 > µi

(0, 1), if λi−1 > λi and µi−1 = µi

(1, 1), if λi−1 > λi and µi−1 > µi.

We obtain a second word by repeating this process for λ′/µ′. Not every tuple of
two such words corresponds to a skew partition, but it contains enough information
to regain the skew partition. This means that two different skew partitions do not
have the same tuple of words.

We want to use these two words as a kind of book keeping. Lemma 2.11
tells us that if we remove columns and/or rows from λ/µ, the multiplicity of the
constituents does not increase and therefore, it is sufficient to prove the proposition
for some small seeds. With the words mentioned above we want to see what we
need to remove from λ/µ to obtain a small seed for which we can actually calculate
the constituents and their multiplicities.

First, we remove skew rows and skew columns from λ/µ in such a way that we
obtain λ1/µ1 with rem(λ1) = 4, rem(µ1) = 3 and λ1/µ1 basic. There are several
ways to do this. One is the following: If rem(λ) > 4 and rem(µ) > 3, we remove the
last row of λ/µ and then we remove empty columns that might appear now. We
repeat this until rem(λ) = 4 or rem(µ) = 3. By rotation symmetry we can assume
that rem(µ) = 3. For a λ/µ with rem(λ) > 4 and rem(µ) = 3 it is obvious that
we can reduce this to a skew partition λ1/µ1 where after removing the empty rows
and columns rem(λ1) = 4 and rem(µ1) = 3. Note that neither λ/µ nor λ1/µ1 have
to be connected.

In the next step, we remove all rows λ1i /µ1
i with (λ1/µ1)(i) = (0, 0) to obtain

λ2/µ2 and all columns (λ2)′i/(µ
2)′i with ((λ2)′/(µ2)′)(i) = (0, 0) to obtain λ3/µ3.

What we are doing here is removing identical rows and columns to make the skew
partition smaller.

If (λ3/µ3)(i) = (0, 1) and (λ3/µ3)(i + 1) = (1, 0) or (λ3/µ3)(i) = (1, 0) and
(λ3/µ3)(i+1) = (0, 1), we remove the i-th row and obtain λ4/µ4 with (λ4/µ4)(i) =
(1, 1) and (λ4/µ4)(j) = (λ3/µ3)(j + 1) for j > i. We do this until none of the two
words contains the sequence (0, 1)(1, 0) or (1, 0)(0, 1). Then we remove empty rows
and columns to make our skew diagram basic. The diagram may contain empty
columns if we remove a sequence (1, 0)(0, 1) from the row-word (and empty rows
for the column-word), but removing these empty columns/rows does not reduce the
number of removable nodes. We call the resulting skew partition λ5/µ5.

Note that
l(λ5)∑
i=1

(λ5/µ5)(i) = (rem(λ5), rem(µ5) + 1) = (4, 4) and further, both

words start with (1, 1) and do not contain the sequence (0, 1)(1, 0) or (1, 0)(0, 1),
but there are still 9 possibilities for each word. Even though not every of the 81
combinations of two words corresponds to a skew partition, we do not want to check
all of them so we proceed as follows to reduce the number of possibilities.

If (λ5/µ5)(i) = (1, 0) and (λ5/µ5)(i+1) = (1, 1) and (λ5/µ5)(i+2) = (0, 1) and
λ5i+1 > µ5

i , we remove (λ5i )/(µ
5
i+1) as rows. If λ5i+1 < µ5

i , the skew partition would
not be basic, therefore we can assume that λ5i+1 = µ5

i . But in this case we know
that λ5i −λ5i+1 ≥ 2 and µ5

i −µ5
i+1 ≥ 2. This means we can remove (1i)/(1i), maybe

multiple times, obtaining a skew partition λ6/µ6 with λ6i+1 > µ6
i . Let λ7/µ7 be the

skew partition we obtain if we eliminate all sequences of the form (1, 0)(1, 1)(0, 1)
in both words.

If (λ7/µ7)(i) = (0, 1) and (λ7/µ7)(i + 1) = (1, 1) and (λ7/µ7)(i + 2) = (1, 0),
we remove (λ7i+1)/(µ

7
i ) (we can still assume that λ7/µ7 is basic). Let λ8/µ8 be the
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partition that results if we eliminate all sequences of the form (0, 1)(1, 1)(1, 0) from
both words.

Now the only possible words are

(1, 1)(1, 1)(1, 1)(1, 1), (1, 1)(1, 0)(1, 1)(1, 1)(0, 1) and (1, 1)(0, 1)(1, 1)(1, 1)(0, 1).

Further, we know if λ8/µ8 corresponds to the tuple (w1, w2), (λ8/µ8)′ corresponds
to the tuple (w2, w1). So we have the following 6 tuples to check:

(1) w1 = w2 = (1, 1)(1, 1)(1, 1)(1, 1) corresponds to the seed (4, 3, 2, 1)/(3, 2, 1);
(2) w1 = (1, 1)(1, 1)(1, 1)(1, 1) and w2 = (1, 1)(1, 0)(1, 1)(1, 1)(0, 1) corre-

spond to the seed (5, 4, 3, 2)/(3, 2, 1);
(3) w1 = (1, 1)(1, 1)(1, 1)(1, 1) and w2 = (1, 1)(0, 1)(1, 1)(1, 1)(0, 1) corre-

spond to (5, 3, 2, 1)/(4, 3, 2) but this is not a basic skew diagram so this is
not possible (it would be reduced to the seed (4, 3, 2, 1)/(3, 2, 1));

(4) w1 = w2 = (1, 1)(1, 0)(1, 1)(1, 1)(0, 1) corresponds to (52, 4, 3, 2)/(3, 2, 1),
which is a seed;

(5) w1 = (1, 1)(1, 0)(1, 1)(1, 1)(0, 1) and w2 = (1, 1)(0, 1)(1, 1)(1, 1)(0, 1) cor-
respond to the seed (5, 4, 3, 22)/(32, 2, 1);

(6) w1 = w2 = (1, 1)(0, 1)(1, 1)(1, 1)(0, 1) corresponds to (5, 3, 2, 12)/(42, 3, 2)
which is not even a skew partition so this case is not possible. �

Since in the previous proposition we do not make the assumption that λ/µ is
connected, we obtain another proof for Lemma 2.13. In addition, we obtain the
following useful corollary.

Corollary 4.2. Let λ/µ be a proper and basic skew diagram. Then [λ/µ] contains
a constituent with multiplicity 3 or higher if one of the following holds:

(1) λ/µ has at least 4 connected components;
(2) λ/µ has 3 connected components and at least one of them is a proper skew

diagram;
(3) λ/µ has two connected components and one of them is a proper skew

diagram α/β with rem(β) ≥ 2;
(4) λ/µ has two connected components which are both proper skew diagrams.

So now we know that for connected skew diagrams we can focus on the case
that µ is a rectangle or a fat hook. We start with the first.

2. µ is a rectangle

In this section we want to prove Theorem 2.5. If rem(λ) = 2, the skew character
is multiplicity-free so we start with the case rem(λ) = 3.

λ has three removable nodes.
We repeat the parts of Theorem 2.5 in which a skew partitions λ/µ with rem(λ) = 3
and rem(µ) = 1 can be listed since we will refer to this quite often in the following
proofs. We hope that this makes it easier for the reader to find the references.
Therefore, we keep the numbering as in the original theorem, even though the
condition of (3) is automatically fulfilled.

The part of Theorem 2.5 for rem(λ) = 3. Let λ = (λk11 , λ
k2
2 , λ

k3
3 ) and µ = (ab)

be partitions such that µ ⊂ λ and λ/µ is a connected basic skew diagram and [λ/µ]
is not multiplicity-free. If (up to conjugation) none of the following conditions hold,
[λ/µ] has a constituent with multiplicity 3 or higher:

(1) µ = (22);
(2) a+ 2 = λ1 and b = 2;
(3) one of the following conditions holds:

(a) µ = (33), (43), (53);
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µ is a rectangle

(b) there are i, j ∈ {1, 2, 3} such that λi − λi+1 = 2 and kj = 2;
(c) there are i 6= j ∈ {1, 2, 3} such that λi−λi+1 = 2, λj −λj+1 = 2 and

one of the following conditions holds:
(i) b ≤ 5;
(ii) there is an r ∈ {1, 2, 3} such that kr ≤ 3.

(d) a+ 5 ≥ λ1 and one of the following conditions holds:
(i) b = 3;
(ii) k2 = 2 and k3 = 2.

(e) a+ 4 ≥ λ1 and k1 = 2;
(f) a+ 3 ≥ λ1 and one of the following conditions holds:

(i) b ≤ 5;
(ii) there is an i such that ki ≤ 3.

(g) λ2 = a+ 1 and one of the following conditions holds:
(i) k1 = 2;
(ii) b = k1 + k2 − 1 and one of the numbers λ1 − λ2, λ3, k3 equals

2.
(h) b = 3 and there is an i such that λi − λi+1 ≤ 3.

If l(µ) < 3, we know that [λ/µ] is multiplicity-free, so we assume that l(µ) ≥ 3. In
Lemma 4.3 and 4.4 we deal with special cases before we look at the general case.
We begin with l(µ) = 3.

Lemma 4.3. Let λ = (λk11 , λ
k2
2 , λ

k3
3 ) and µ = (a3) such that λ/µ is a basic, con-

nected skew diagram and neither listed in Theorem 2.5 nor multiplicity-free. Then
[λ/µ] contains a constituent with multiplicity at least 3.

Proof: We know that ki ≥ 2 for i ∈ {1, 2, 3}. Otherwise, [λ/µ] would be
multiplicity-free. Further, Theorem 2.5 (3)(h) tells us that λi − λi+1 ≥ 4 and
therefore, λ � (122, 82, 42). By Theorem 2.5 (3)(d)(i) we know that a+6 ≤ λ1 and
from part (3)(a) of the same theorem we conclude that a ≥ 6. Therefore, λ/µ can
be obtained by successively adding skew rows and columns to (122, 82, 42)/(63) if
λ2 6= a+ 1. Hence, with Lemma 2.11 we can conclude that it is sufficient to show
that [(122, 82, 42)/(63)] contains a constituent with multiplicity 3. If λ2 = a + 1,
we know by Theorem 2.5 (3)(g) that k1 > 2 and therefore, we need to check
[(133, 82, 42)/(73)].

Now we explain how to obtain λ/µ from these seeds:

• If λ2 = a+ 1, we take (133, 82, 42)/(73) and add

((λ1 − 13)3, (λ2 − 8)2, (λ3 − 4)2)/((a− 7)3).

Next, we add (λk1−31 , λk2−22 , λk3−23 ) as rows.
• If λ2 > a+ 1, we take (122, 82, 42)/(63) and start by adding

((λ1 − 12)2, (λ2 − 8)2, (λ3 − 4)2)/((a− 6)3).

In the second step we add (λk1−21 , λk2−22 , λk3−23 ) as rows.
• If λ2 < a + 1, we take (122, 82, 42)/(63) and do it the other way around.

We start by adding (12k1−2, 8k2−2, 4k3−2) as rows and in the next step we
add

((λ1 − 12)k1 , (λ2 − 8)k2 , (λ3 − 4)k3)/((a− 6)3).

Since a+ 6 ≤ λ1 and k1 > 3, this is a skew partition. �

By conjugation this is equivalent to the case w(µ) = 3. From now on we assume
that w(µ), l(µ) > 3. In the next lemma we deal with the case that w(λ)−w(µ) = 3.
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Lemma 4.4. Let λ = (λk11 , λ
k2
2 , λ

k3
3 ) and µ = (ab) such that λ/µ is a basic and

connected skew diagram with λ1− a = 3 and it is neither listed in Theorem 2.5 nor
multiplicity-free. Then [λ/µ] contains a constituent with multiplicity at least 3.

Proof: Since λ/µ is not listed in Theorem 2.5 (3)(f), we know that b ≥ 6 and
k1, k2, k3 ≥ 4. Further, we know λi − λi+1 ≥ 2. Otherwise, the skew character
would be multiplicity-free. Finally, if b+1 = k1+k2, [λ/µ] is listed in Theorem 2.5
(3)(g). Because if λ1 − a = 3 and λ1 − λ2 ≥ 2, we know that λ2 ≤ a + 1, so if
b ≥ k1, we know that λ2 = a+ 1 and λ1 − λ2 = 2. We consider two different cases.

The first one is λ2 ≥ 5. We have to check the skew partitions

(74, 54, 34)/(46), (74, 54, 24)/(46).

The second case is λ2 = 4. We know that k1 ≥ 7 and we have to check the
skew partition

(77, 44, 24)/(46).

How to obtain λ/µ from one of these seeds:
• If λ2 ≥ 5, we take the seed (74, 54, 24)/(46) if λ3 = 2, and (74, 54, 34)/(46)

otherwise. We start with the seed (74, 54, c4)/(46) and add

(7k1−4, 5k2−4, ck3−4)/(4b−6)

as rows. Since b + 1 < k1 + k2, this is a skew partition. In the next step
we add

((λ1 − 7)k1 , (λ2 − 5)k2 , (λ3 − c)k3)/((a− 4)b).

• If λ2 = 4, we take the seed (77, 44, 24), (46). We start with adding

(7k1−7, 4k2−4, 2k3−4)/(4b−6)

as rows. In the next step we add ((λ1 − 7)k1)/((a− 4)b). �

By conjugation this is equivalent to the case l(λ) − l(µ) = 3, so from now on
we assume that w(µ), l(µ), w(λ)− w(µ), l(λ)− l(µ) > 3.

Proposition 4.5. If λ = (λk11 , λ
k2
2 , λ

k3
3 ) and µ = (ab) such that λ/µ is a connected,

basic skew diagram and it is neither listed in Theorem 2.5 nor multiplicity-free,
[λ/µ] contains a constituent with multiplicity at least 3.

Proof: We can assume that a, b, l(λ) − l(µ), w(λ) − w(µ) > 3. If there are
i, j such that λi − λi+1 = 2 and kj = 2, λ/µ is listed in Theorem 2.5 (3)(b).
By conjugation we can assume that λi − λi+1 ≥ 3 for all i. If all ki = 2, we
know that l(λ) = 6, but since l(µ) > 3, the skew character would be multiplicity-
free. So we look at two different cases. First we assume that there is at most one
i ∈ {1, 2, 3} such that ki = 2. Then we look at the case that there are i 6= j such
that ki = kj = 2. If for any i ki = 1, the skew character is multiplicity-free.

1st case: There is at most one i ∈ {1, 2, 3} such that ki = 2. If λ1 ≥ a+ 5 and
λ2 6= a+ 1, we obtain λ/µ from one of the seeds

(92, 63, 33)/(44), (93, 62, 33)/(44), (93, 63, 32)/(44).

If λ1 = a+ 4 or λ2 = a+ 1, then k1 ≥ 3. Additionally, by Theorem 2.5 (3)(e) and
(g) we know that if k1 + k2 = b+ 1, then k3 > 2. Therefore, we only have to look
at the characters which are corresponding to

(93, 62, 33)/(54), (93, 63, 32)/(54).

How to obtain λ/µ from these seeds:
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µ is a rectangle

• If λ1 ≥ a + 5 and λ2 6= a + 1, we take (92, 63, 33)/(44) if k2, k3 ≥ 3,
(93, 62, 33)/(44) if k2 = 2, and (93, 63, 32)/(44) if k3 = 2. There are two
different ways we need to construct the skew partition from the seeds. If
a ≥ λ2, we take the seed (9c, 6d, 3e)/(44) and add

(9k1−c, 6k2−d, 3k3−e)/(4b−4)

as rows. since a ≥ λ2, we know that k1 > b. Therefore, this is a skew
partition. In the next step we add

((λ1 − 9)k1 , (λ2 − 6)k2 , (λ2 − 3)k3)/((a− 4)b).

If a+ 1 < λ2, we take the seed (9c, 6d, 3e)/(44) and add

((λ1 − 9)c, (λ2 − 6)d, (λ3 − 3)e)/((a− 4)4).

In the next step we add (λk1−c1 , λk2−d2 , λk3−e3 )/(ab−4) as rows. If a ≤ λ3,
this is a skew partition since l(λ)−4 ≥ l(µ). If λ3 < a, we know k1+k2 > b,
so if c+ d = 5, this is a skew partition. If c+ d = 6, we know that k3 = 2
and therefore, that k1 + k2 + 1 > b (since b + 3 < k1 + k2 + k3). Hence
this is a skew partition, too.

• If λ1 = a + 4 or λ2 = a + 1, we take the seed (93, 62, 33)/(54) if k3 ≥ 3,
and (93, 63, 32)/(54) if k3 = 2. We start with the seed (93, 6c, 3d)/(54) and
add

(9k1−3, 6k2−c, 3k3−d)/(5b−4)

as rows. This is a skew partition since we know that k3 > 2 if k1 + k2 =
b+ 1. Then we add

((λ1 − 9)k1 , (λ2 − 6)k2 , (λ3 − 3)k3)/((a− 5)b)

to obtain λ/µ.
2nd case: There are i 6= j ∈ {1, 2, 3} such that ki = kj = 2. By Theorem 2.5

(3)(c) we know that a ≥ 6 and λr − λr+1 ≥ 4. If k1 = 2, we know due to The-
orem 2.5 (3)(g)(i) that λ1 − a ≥ 6 since λ1 − λ2 ≥ 4. If k2 = k3 = 2, we know
because of Theorem 2.5 (3)(d)(ii) that λ1 − a ≥ 6. Therefore, we obtain λ/µ from
(123, 82, 42)/(64) if k1 > 2, (122, 83, 42)/(64) if k2 > 2, and (122, 82, 43)/(63) if
k3 > 2. How to obtain λ/µ from one of these seeds:

• If a+ 1 < λ2, we start with the seed (12c, 8d, 4e)/(6f ) and add

((λ1 − 12)c, (λ2 − 8)d, (λ3 − 4)e)/((a− 6)f ).

In the next step we add

(λk1−c1 , λk2−d2 , λk3−e3 )/(ab−f )

as rows. This is a skew partition since k1 + k2 + k3 ≥ b+ 4.
• If a+1 ≥ λ2, we start again with the seed (12c, 8d, 4e)/(6f ) but this time

we first add
(12k1−c, 8k2−d, 4k3−e)/(6b−f )

as rows and in the next step we add

((λ1 − 12)k1 , (λ2 − 8)k2 , (λ3 − 4)k3)/((a− 6)b).

If a+ 1 = λ2, we know by Theorem 2.5 (3)(g)(ii) that k2 + k3 = 4. Since
we assume that l(λ) − b ≥ 4, we obtain b ≤ k1. Therefore, this is a skew
partition. �

After solving the case rem(λ) = 3 we look at rem(λ) = 4.
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λ has four removable nodes.
We state the part of Theorem 2.5 which is relevant for this subsection since we will
refer to this often. Again we preserve the numbering of the original theorem but
since we do not need it we skip part (3):

The part of Theorem 2.5 for rem(λ) = 4. Let λ = (λk11 , λ
k2
2 , λ

k3
3 , λ

k4
3 ) and

µ = (ab) be partitions such that µ ⊂ λ, λ/µ is a connected basic skew diagram and
[λ/µ] is not multiplicity-free. If up to conjugation none of the following conditions
hold, [λ/µ] has a constituent with multiplicity 3 or higher:

(1) µ = (22);
(2) a+ 2 = λ1 and b = 2;
(4) one of the following conditions holds:

(a) µ(′) = (23);
(b) b = 2 and one of the following conditions holds:

(i) a+ 3 ≥ λ1;
(ii) there is an i such that λi − λi+1 = 1.

(c) k1 = 1 and λ2 = a+ 1;
(d) there is an i such that λi − λi+1 = 1 and one of the following holds:

(i) λ1 − λ2 = 1 and k3 = k4 = 1;
(ii) λ2 − λ3 = 1 and k1 = k4 = 1;
(iii) λ3 − λ4 = 1 and k1 = k2 = 1;
(iv) λ4 = 1 and k1 = k2 = 1 or k1 = k3 = 1 or k2 = k3 = 1.

(e) there are i 6= j and m < n such that λi−λi+1, λj−λj+1 = 1, km = 1,
kn = 1 and one of the following holds:

(i) λ1 − 2 = λ2 − 1 = λ3 and (m,n) 6= (1, 3);
(ii) λ1 − λ2 = 1 and λ3 − λ4 = 1 and (m,n) 6= (1, 4), (2, 3);
(iii) λ1 − 1 = λ2 and λ4 = 1 and (m,n) 6= (2, 4);
(iv) λ2 − 2 = λ3 − 1 = λ4 and (m,n) 6= (2, 4);
(v) λ2 − 1 = λ3 and λ4 = 1 and (m,n) 6= (3, 4);
(vi) λ3 = 2, λ4 = 1.

(f) for at most one i ∈ {1, 2, 3, 4} is λi−λi+1 > 1 and one of the following
conditions holds:

(i) b = 3;
(ii) there is a j ∈ {1, 2, 3, 4} such that kj = 1.

(g) λ1 = a+ 2 and one of the following conditions holds:
(i) b = 3;
(ii) there is an i ∈ {2, 3, 4} such that ki = 1.

We start by proving some special cases. If λ has four removable nodes, [λ/µ] is
multiplicity-free if and only if µ is linear, l(µ)+ 1 = l(λ) or w(µ)+ 1 = w(λ). Since
we assume that [λ/µ] is not multiplicity-free, we start with the case that the length
of µ is 2.

Lemma 4.6. Let λ = (λk11 , λ
k2
2 , λ

k3
2 , λ

k4
4 ) and µ = (a2) such that λ/µ is a basic and

connected skew diagram and the corresponding character is neither multiplicity-free
nor listed in Theorem 2.5. Then [λ/µ] contains a constituent with multiplicity at
least 3.

Proof: If a = 3, [λ/µ] only contains constituents with multiplicity less or equal
to 2, see Lemma 2.15, so we can assume that a > 3. From Theorem 2.5 (4)(b) we
know not only that λ1 ≥ a + 4, but also that λi − λi+1 ≥ 2 for all i. We need to
check that [(8, 6, 4, 2)/(4, 4)] contains a constituent with multiplicity 3.
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µ is a rectangle

We obtain λ/µ from the seed (8, 6, 4, 2)/(4, 4) by first adding

(8k1−1, 6k2−1, 4k3−1, 2k4−1)

as rows and in the next step adding

((λ1 − 8)k1 , (λ2 − 6)k2 , (λ3 − 4)k3 , (λ4 − 2)k4)/((a− 4)2).

From Theorem 2.5 (4)(b)(i) follows that λ1 ≥ a + 4. Therefore, this is a skew
partition if k1 ≥ 2. If k1 = 1, we know that λ2 ≥ a + 2 because of Theorem 2.5
(4)(c). Hence, this is a skew partition. �

By conjugation the case l(µ) = 2 is equivalent to the case w(µ) = 2. From now
on we assume that l(µ), w(µ) > 2. In the next lemma we want to deal with the case
w(µ) + 2 = w(λ), since the skew character is multiplicity-free, if w(µ) + 1 = w(λ).

Lemma 4.7. Let λ = (λk11 , λ
k2
2 , λ

k3
2 , λ

k4
4 ) and µ = (ab) with a, b ≥ 3 and a+ 2 = λ1

such that λ/µ is a basic and connected skew diagram and the corresponding char-
acter is neither multiplicity-free nor listed in Theorem 2.5. Then [λ/µ] contains a
constituent with multiplicity at least 3.

Proof: We know that ki ≥ 2 for all i ∈ {1, 2, 3, 4} and that b ≥ 4 ((4)(g) of
Theorem 2.5). We have three different cases:

1st case: λ1 − λ2 ≥ 2. We know k1 ≥ b+1 and therefore, we only need to check
the seed (55, 32, 22, 12)/(34).

2nd case: λ1 − λ2 = 1 and k1 ≥ 3. We use seed (53, 42, 32, 22), (34) if λ4 ≥ 2,
(53, 42, 32, 12), (34) if λ4 = 1 and λ3 ≥ 3, and (53, 42, 22, 12), (34) if λ4 = 1 and
λ3 = 2.

3rd case: λ1 − λ2 = 1 and k1 = 2. We know that k1 + k2 > b (since λ3 ≤ a).
Hence, one of the multiplicities k1, k2 is greater or equal to 3 and l(λ) ≥ b+ 5. If
k1 = 2, we know k2 ≥ 3. Therefore, we use the seed (52, 43, 32, 22)/(34) if λ4 ≥ 2,
(52, 43, 32, 12)/(34) if λ4 = 1 and λ3 ≥ 3, and (52, 43, 22, 12)/(34) if λ4 = 1 and
λ3 = 2.

In all cases we obtain λ/µ from the corresponding seed (5c1 , νc22 , ν
2
3 , ν

2
4)/(3

4)
be by first adding

((λ1 − 5)c1 , (λ2 − ν2)c2 , (λ3 − ν3)2, (λ4 − ν4)2)/((a− 3)4).

If c1 ≥ 4, this is a skew partition since λ1 − a = 2. If c1 < 4, we know that
c1 + c2 ≥ 4, λ2 − a = 1 and ν2 = 4. Therefore, this is a skew partition. In the next
step we add

(λk1−c11 , λk2−c22 , λk3−23 , λk4−24 )/(ab−4)

as rows. If k1 > b, this is a skew partition since c1 ≤ 5. If k1 ≤ b, we know that
λ1 − λ2 = 1 and therefore, λ2 > a and k1 + k2 > b and c1 + c2 = 5. Hence this is a
skew partition. �

By conjugation this is equivalent to the case l(λ)− l(µ) = 2 so from now on we
assume that l(λ)− l(µ), w(λ)− w(µ), l(µ), w(µ) > 2.

If l(µ) ≥ 3 and every part of λ occurs with multiplicity 1 (this means l(λ) = 4),
we know that the corresponding skew character is multiplicity-free. So we can
assume that one of the parts of λ has at least multiplicity 2. Moreover, we know
that if at least three of the ki’s equal 1 that λj − λj+1 ≥ 2 for all j (Theorem 2.5
(4)(f)(ii)). In the next lemma we look at the case that exactly 3 of the ki’s equal
1. Then we look at the case exactly 2 of the ki’s equal 1 and in the last lemma we
deal with the case that at most one ki equals 1.
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Lemma 4.8. Let λ = (λk11 , λ
k2
2 , λ

k3
2 , λ

k4
4 ), where ki = 1 for all but one i ∈ {1, 2, 3, 4}

and µ = (ab) with a, b ≥ 3 and a + 2 < λ1, b + 2 < l(λ) such that λ/µ is a basic,
connected skew diagram. If the corresponding character is neither multiplicity-free
nor listed in Theorem 2.5, [λ/µ] contains a constituent with multiplicity at least 3.

Proof: From Theorem 2.5 (4)(f) we conclude that λi−λi+1 ≥ 2 for all 1 ≤ i ≤ 4
and a > 3. Since we assume that b + 2 < l(λ) we know the ki which is not 1 is
greater or equal to 3. We have 6 different seeds:

(1) If k1 > 1 and a = 4, we use the seed (83, 6, 4, 2)/(43);
(2) if k1 > 1 and a > 4, we use the seed (83, 6, 4, 2)/(53);
(3) if k2 > 1, we use the seed (8, 63, 4, 2)/(43);
(4) if k3 > 1 and λ4 = 2, we use the seed (9, 7, 53, 2)/(43);
(5) if k3 > 1 and λ4 > 2, we use the seed (9, 7, 53, 3)/(43);
(6) if k4 > 1, we use the seed (11, 9, 7, 53)/(43).

Even though we have a lot of different seeds, obtaining λ/µ is straightforward. We
start with the seed (νc11 , ν

c2
2 , ν

c3
3 , ν

c4
4 )/(d3) and add

(νk1−c11 , νk2−c22 , νk3−c33 , νk4−c44 )/(db−3)

as rows. Since all but at most one of the exponents ki− ci equal 0, we see that this
is a skew partition. In the next step we add

((λ1 − ν1)k1 , (λ2 − ν2)k2 , (λ3 − ν3)k3 , (λ4 − ν4)k4)/((a− d)b).

To see that this is a skew partition, we look at every case individually. In (1) a = d
so there is nothing to show. In (2) we know that k1 ≥ b and a + 3 ≤ λ1 so this
is a skew partition because l(λ) ≥ b + 3 and w(λ) ≥ a + 3. In (3) we know that
b < k1 + k2 and since k1 = 1, we know that a+ 2 ≤ λ2 by Theorem 2.5 (4)(c). In
(4) and (5) we know that b < k1 + k2 + k3 and that a < λ3. In the last case (6) we
know that a < λ4. �

By conjugation we now know that at least two of the ki’s and λi − λi+1 are
greater or equal to 2.

Lemma 4.9. Let λ = (λk11 , λ
k2
2 , λ

k3
2 , λ

k4
4 ), where ki = 1 for exactly two 1 ≤ i ≤ 4,

λi − λi+1 = 1 for exactly two 1 ≤ i ≤ 4 and µ = (ab) with a, b ≥ 3, a+ 2 < λ1 and
b+2 < l(λ) such that λ/µ is a basic, connected skew diagram and the corresponding
character is neither multiplicity-free nor listed in Theorem 2.5. Then [λ/µ] contains
a constituent with multiplicity at least 3.

Proof: We look at the different cases for which i, j the difference λi−λi+1 = 1
and λj − λj+1 = 1 individually.

1st case: λ1 − 2 = λ2 − 1 = λ3. We know that k1 = k3 = 1, otherwise λ/µ is
listed Theorem 2.5 (4)(e)(i). Therefore, we check [(6, 52, 4, 22)/(33)]. We obtain
λ/µ from (6, 52, 4, 22)/(33) by first adding

(λ1 − 6, (λ2 − 5)2, λ3 − 4, (λ4 − 2)2)/((a− 3)3).

This is a skew partition since λ2 + 1 > a because of Theorem 2.5 (4)(c). Then we
add

(λk2−22 , λk4−24 )/(ab−3)

as rows and obtain λ/µ. This is a skew partition since k2 + k4 > b and if λ4 < a,
we know that k2 + 2 > b.

2nd case: λ1 − 1 = λ2. We know that k1 = k4 = 1 or k2 = k3 = 1 are the two
parts with multiplicity 1. Otherwise, λ/µ is listed in Theorem 2.5 (4)(e)(ii).
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For k1 = k4 = 1 we need to check the character [(6, 52, 32, 2)/(33)]. We obtain
λ/µ by first adding (5k2−2, 3k3−2)/(3b−3) as rows to (6, 52, 32, 2)/(33) and then
adding

(λ1 − 6, (λ2 − 5)k2 , (λ3 − 3)k3 , λ4 − 2)/((a− 3)b).

This is a skew partition since λ2 − a ≥ 2 (because λ1 − λ2 = 1 and λ1 − a ≥ 3).
For k2 = k3 = 1 we need to check the character [(62, 5, 3, 22)/(33)]. We start

with adding
((λ1 − 6)2, λ2 − 5, λ3 − 3, (λ4 − 2)2)/((a− 3)b)

to (62, 5, 3, 22)/(33). Again λ2 − a ≥ 2 therefore, this is a skew partition. In the
next step we add (λk1−21 , λk4−24 )/(ab−3) as rows to obtain λ/µ. On the one hand
we know that k1 + k4 > b and on the other hand we know that if a > k4, b ≤ k1.
Therefore, this is a skew partition.

3rd case: λ1 − 1 = λ2 and λ4 = 1. We know that k2 = k4 = 1 are the two parts
with multiplicity 1. Otherwise, λ/µ is listed in Theorem 2.5 (4)(e)(iii). There-
fore, we need to check the character [(62, 5, 32, 1)/(33)]. We obtain λ/µ from
(62, 5, 32, 1)/(33) by first adding

((λ1 − 6)2, λ2 − 5, (λ3 − 3)2)/((a− 3)3).

This is a skew partition since λ1 − a ≥ 3 and therefore, λ2 − a ≥ 2. In the next
step we add (λk1−21 , λk3−23 )/(ab−3) as rows. We know that k1 + k2 > b. Further, if
a > λ3, we know that k1 ≥ b, so this is a skew partition.

4th case: λ2 − 2 = λ3 − 1 = λ4. We know that k2 = k4 = 1 are the two parts
with multiplicity 1. Otherwise, λ/µ is listed in Theorem 2.5 (4)(e)(iv). By conju-
gation this is equivalent to the case λ1 − λ2 = λ3 − λ4 = 1 and k2 = k3 = 1 with
which we already dealt.

5th case: λ2 − 1 = λ3 and λ4 = 1. We know that k3 = k4 = 1 are the two
parts with multiplicity 1. Otherwise, λ/µ is listed in Theorem 2.5 (4)(e)(v). By
conjugation this is equivalent to the case λ1 − λ2 = λ2 − λ3 = 1 and k1 = k3 = 1
with which we already dealt.

6th case: λ3 = 2 and λ4 = 1. Here, for any r 6= l with kr = kl = 1 the skew
partition is listed in Theorem 2.5 (4)(e)(vi). �

Lemma 4.10. Let λ = (λk11 , λ
k2
2 , λ

k3
2 , λ

k4
4 ), where there are at most two i such

that ki = 1 and µ = (ab) with a, b ≥ 3, a + 2 < λ1 and b + 2 < l(λ) such that
λ/µ is a basic, connected skew diagram and the corresponding character is neither
multiplicity-free nor listed in Theorem 2.5. Then [λ/µ] contains a constituent with
multiplicity at least 3.

Proof: Because of the previous lemma we can assume that λi − λi+1 = 1 for
at most one i.

1st case: λi − λi+1 > 1 for all i ∈ {2, 3, 4} and k3 6= 1 or k4 6= 1. Further, we
assume that λ2 − a > 1 if k1 < b. Note that if k3 = k4 = λ1 − λ2 = 1, the skew
partition λ/µ is listed in Theorem 2.5 (4)(d)(i) and if k1 = 1 and λ2 − a = 1 it is
listed in Theorem 2.5 (4)(c). Since λi − λi+1 > 1 for i ∈ {2, 3, 4}, we know that
λ � (7, 6, 4, 2). We look at the different possibilities for which j the multiplicity of
λj equals 1, i.e., kj = 1.

• If k1 = k2 = 1, we obtain λ/µ by adding skew rows and columns to
(7, 6, 42, 22)/(33). We start with adding

(λ1 − 7, λ2 − 6, (λ3 − 4)2, (λ4 − 2)2)/((a− 3)3).

Since k1 = k2 = 1, we know that λ3 > a. Therefore, this is a skew
partition. In the next step we add (λk3−23 , λk4−24 )/(ab−3) as rows. Since
b < k3+k4 and if a > λ4, k3+2 > b, we know that this is a skew partition.
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• If k1 = 1 and k2, k4 ≥ 2, we obtain λ/µ by adding skew rows and columns
to (7, 62, 4, 22)/(33) if λ2−a > 2, and (7, 62, 4, 22)/(43) if λ2−a = 2. Note
that λ2 − a > 1 because of Theorem 2.5 (4)(c). We start with the seed
(7, 62, 4, 22)/(c3) and add

(λ1 − 7, (λ2 − 6)2, λ3 − 4, (λ4 − 2)2)/((a− c)3).

In the next step we add (λk2−22 , λk3−13 , λk4−24 )/(ab−3) as rows. We know
that k2 + k3 + k4 > b + 1. If a > λ4, k2 + k3 + 1 > b and if a > λ3,
k2 + 1 > b. Therefore, this is a skew partition.

• If k1 = k4 = 1, we obtain λ/µ from (7, 62, 42, 2)/(33) if λ2 − a > 2, and
from (7, 62, 42, 2)/(43) if λ2 − a = 2 (again we have λ2 − a > 1). We start
with the seed (7, 62, 42, 2)/(c3) and add

(λ1 − 7, (λ2 − 6)2, (λ3 − 4)2, λ4 − 2)/((a− c)3).

In the next step we add (λk2−22 , λk3−23 )/(ab−3) as rows. We know that
k2 + k3 > b and if a > λ3, k2 + 1 > b. Therefore, this is a skew partition.

• If k1, k4 ≥ 2, we obtain λ/µ from (72, 6, 4, 22)/(c3), where c = 3 if
a = 3, and c = 4 if a > 3. If λ2 − a ≤ 1, we start by first adding
(7k1−2, 6k2−1, 4k3−1, 2k4−2)/(4b−3) as rows. Then we add

((λ1 − 7)k1 , (λ2 − 6)k2 , (λ3 − 4)k3 , (λ4 − 2)k4)/((a− 4)b).

This is a skew partition since we assume that λ2 − a > 1 if k1 < b and
therefore, k1 ≥ b. If λ2 − a ≥ 2, we start by adding

((λ1 − 7)2, λ2 − 6, λ3 − 4, (λ4 − 2)2)/((a− c)3).

In the next step we add (λk1−21 , λk2−12 , λk3−13 , λk4−24 )/(ab−3) as rows.
• If k1, k3 ≥ 2 and k4 = 1, we obtain λ/µ from (72, 6, 42, 2)/(33) if a = 3

and (72, 6, 42, 2)/(43) if a > 3. We start with the seed (72, 6, 42, 2)/(c3)
and add (7k1−2, 6k2−1, 4k3−2)/(cb−3) as rows. In the next step we add

((λ1 − 7)k1 , λ2 − 6, (λ3 − 4)k3 , λ4 − 2)/((a− c)b).

As we have seen, the arguments for the different cases are very similar, so for
the following cases we use a more compact notation, but we use the same two ways
to obtain λ/µ from the seed we have seen now.

2nd case: λi − λi+1 > 1 for all i ∈ {1, 3, 4} and k1 6= 1 or k4 6= 1. Note that if
λ2 − λ3 = 1 and λ/µ is not listed in Theorem 2.5, we know that k1 6= 1 or k4 6= 1.
We have to check the following cases:

Seeds
k1 = 1 and k2 = 1 (7, 5, 42, 22)/(33)
k1 = 1 and k2, k4 ≥ 2 (7, 52, 4, 22)/(33)
k1 ≥ 2 and k4 ≥ 2 (72, 5, 4, 22)/(33) if a = 3, (72, 5, 4, 22)/(43) if a > 3
k2 = 1 and k4 = 1 (72, 5, 42, 2)/(33) if a = 3, (72, 5, 42, 2)/(43) if a > 3
k1, k2 ≥ 2 and k4 = 1 (72, 52, 4, 2)/(33) if a = 3, (72, 52, 4, 2)/(43) if a > 3.

As before, we need two different ways.
• If λ2 > a we start with the corresponding seed (7r1 , 5r2 , 4r3 , 2r4)/(c3) and

add

((λ1 − 7)r1 , (λ2 − 5)r2 , (λ3 − 4)r3 , (λ4 − 2)r4)/((a− c)3).

For the cases where a = 3 this is even a partition. If a > 3, our assump-
tion λ2 > a tells us that λ2 − 5 ≥ a − 4 (in the second case even that
λ2 − 5 ≥ a− 3, see Theorem 2.5 (4)(c)) and in all but the first case, where
k1 = k2 = 1, r1 + r2 ≥ 3. Hence, this is a skew partition. In the first case
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µ is a rectangle

we know that k1 = k2 = 1 and therefore, that λ3 > a, so this is a skew
partition, too. In the next step we add

(λk1−r11 , λk2−r22 , λk3−r33 , λk4−r44 )/(ab−3)

as rows. By assumption λ2 > a. If λ3 < a, we know that k1 + k2 > b, but
since r1 + r2 ≤ 4, this is a skew partition. If λ3 ≥ a > λ4, we know that
k1 + k2 + k3 > b and if r4 = 2, we know that r1 + r2 + r3 = 4. Therefore,
it works if r4 = 2. If r4 = 1, this implies k4 = 1. All parts we add are
greater than a so there is no problem. If λ4 ≥ a, we know that l(λ)−3 ≥ b
and therefore, this is a skew partition.
• If λ2 ≤ a, we proceed the other way around. We start by adding

(7k1−r1 , 5k2−r2 , 4k3−r3 , 2k4−r4)/(4b−3)

as rows. Since λ2 ≤ a, we know that k1 > b. Therefore, this is a skew
partition. In the next step we add

((λ1 − 7)k1 , (λ2 − 5)k2 , (λ3 − 4)k3 , (λ4 − 2)k4)/((a− 4)b).

Since k1 > b and λ1 − a ≥ 3, this is a skew partition.
Further, we notice that the previous two cases show that all λ/µ with λi−λi+1 > 1
for all i ∈ {1, 2, 3, 4} which are not listed in Theorem 2.5 contain a constituent with
multiplicity 3 or higher. So from now on we assume that λi − λi+1 actually equals
1.

3rd case: λ3 − λ4 = 1. We know that k1 6= 1 or k2 6= 1. We have to check the
following cases:

Partitions
k1 = 1 and k2, k4 ≥ 2 (7, 52, 3, 22)/(33)
k1 = 1 and k4 = 1 (7, 52, 32, 2)/(33)

k2 = 1 and k3 = 1
(72, 5, 3, 22)/(33) if λ1 − a > 3 and λ2 − 1 > a,
(73, 5, 3, 22)/(43) if λ1 − a = 3 or λ2 − 1 = a

k1 ≥ 2 and k3 ≥ 2 (62, 4, 32, 2)/(33)
k1 ≥ 2 and k2 ≥ 2 (72, 52, 3, 2)/(33) if a = 3, (72, 52, 3, 2)/(43) if a > 3.

Again, we need two different ways to obtain λ/µ. Let (νr11 , ν
r2
2 , 3

r3 , 2r4)/(c3) be the
corresponding seed.

• If λ2 > a, we start by adding

((λ1 − ν1)r1 , (λ2 − ν2)r2 , (λ3 − 3)r3 , (λ4 − 2)r4)/((a− c)3).
If k1 = 1, we know by Theorem 2.5 (4)(c) that λ2 > a + 1. Therefore,
this is a skew partition in the first two cases. For the other cases we check
directly that λ2 − ν2 ≥ a− c. In the next step we add

(λk1−r11 , λk2−r22 , λk3−r33 , λk4−r44 )/(ab−3)

as rows. Again we have
4∑
i=1

k1−r1 ≥ b−3 since
4∑
i=1

r1 = 6 and l(λ)−b ≥ 3.

If a > λ3, we know that k1 + k2 > b but since r1 + r2 ≤ 4, we know that
k1 + k2 − r1 − r2 ≥ b − 3. If λ3 ≥ a > λ4, we know that a = λ3 since
λ3 − 1 = λ4 therefore, k1 + k2 > b. So in all cases we are adding a skew
partition.

• If λ2 ≤ a, we know that k1 ≥ b+ 1. We start by adding

(νk1−r11 , νk2−r22 , 3k3−r3 , 2k4−r4)/(cb−3)

as rows. In the next step we add

((λ1 − ν1)k1 , (λ2 − ν2)k2 , (λ3 − ν3)k3 , (λ4 − ν4)k4)/((a− c)b).
Both times it is easy to see that we are, indeed, adding skew partitions.

44



4th case: λ4 = 1. If ki > 1 for all i or there is only one i such that ki = 1 and
i 6= 1, this is by conjugation already part of the previous cases. Therefore, we just
need the following seeds:

Seed
k1 = 1 and k2, k3 ≥ 2 (7, 52, 32, 1)/(33)

k2 = 1 and k4 = 1
(72, 5, 32, 1)/(33) if λ1 − a > 3 and λ2 − a > 1,
(73, 5, 32, 1)/(43) if λ1 − a = 3 or λ2 − a = 1

k3 = 1 and k4 = 1 (62, 42, 3, 1)/(33).
We obtain λ/µ in the same two ways as before. Let (νr11 , ν

r2
2 , 3

r3 , 1)/(c3) be the
corresponding seed.

• If a < λ2, we start by adding

((λ1 − ν1)r1 , (λ2 − ν2)r2 , (λ3 − 3)r3/((a− c)3)).
If k1 = 1, we know that λ2 + 1 > a and since λ4 = 1, we know that
k1+ k2+ k3 > b+1 (both is part (4)(c) of Theorem 2.5), so this is a skew
partition in the first case. For the other cases it is obvious. In the next
step we add

(λk1−r11 , λk2−r22 , λk3−r33 , 1k4−1)/(ab−3)

as rows.
• If λ2 ≤ a, we do it the other way around and start by adding

(νk1−r11 , νk2−r22 , 3k3−r3)/(cb−3)

as rows and then add

((λ1 − ν1)k1 , (λ2 − ν2)k2 , (λ3 − ν3)k3)/((a− c)b)
to obtain λ/µ. �

λ has more than four removable nodes.

Lemma 4.11. If λ/µ is a connected and basic skew partition with rem(λ) ≥ 5
and µ = (ab) is a rectangle such that λ/µ is not listed in Theorem 2.5 and not
multiplicity-free, [λ/µ] contains a constituent with multiplicity 3 or higher.

Proof: By conjugation and Theorem 2.5 (1) we can assume that a ≥ 3 and

that b <
l−2∑
i=1

ki. We start with the case λ1 − a ≥ 3. We use one of the following

seeds:
Seed

λ1 − λ2 ≥ 2 (6, 4, 3, 2, 1)/(32)
λ2 − λ3 ≥ 2 (6, 5, 3, 2, 1)/(32)
λ3 − λ4 ≥ 2 (6, 5, 4, 2, 1)/(32)
λ4 − λ5 ≥ 2 (6, 5, 4, 3, 1)/(32)
λ5 ≥ 2 (6, 5, 4, 3, 2)/(32)

Let (6, ν2, . . . , ν5)/(32) be the seed. First we add

(6k1−1, νk2−12 , νk3−13 , ν
kl−1−1
4 , νkl−15 )/(3c−2)

as rows, where c = min(k1 + k2 + k3, b). Since ν3 ≥ 3, this is a skew partition. In
the next step we add

((λ1 − 6)k1 , (λ2 − ν2)k2−1, (λ3 − ν3)k3 , (λl−1 − ν4)kl−1 , (λl − ν5)kl)/((a− 3)c).

If λ2+1 = a, we know that λ1−λ2 ≥ 2 since λ1−a ≥ 3 and therefore, that ν2 = 4.
Hence, this is a skew partition. In the last step we add (λk44 , . . . , λ

kl−3

l−3 )/(ab−c) as
rows.
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µ is a rectangle

The case λ1 − a = 2 is still missing but this can be solved with the seeds
(52, 4, 3, 2, 1)/(33) and (5, 42, 3, 2, 1)/(33). In these last cases obtaining λ/µ from
the seed is straightforward so we omit it here. �

This concludes the proof of Theorem 2.5.

3. µ is a fat hook

In the previous section we looked at the case rem(µ) = 1. Now we focus on
rem(µ) = 2. The aim of this section is to prove Theorem 2.6. By rotation symmetry
the case where rem(λ) = rem(µ) = 2 is equivalent to the case where rem(λ) = 3
and rem(µ) = 1. Therefore, we can assume that rem(λ) ≥ 3. We start with the
case rem(λ) = 3 in a first series of lemmas and deal with the case rem(λ) ≥ 4 in a
second one. We will often refer to the different parts of Theorem 2.6. Therefore, as
in the previous section we repeat the theorem so that the references can be found
easier. But in contrast to the previous section we will not split Theorem 2.6.

Theorem 2.6. Let λ = (λk11 , λ
k2
2 , ..., λ

kl
l ) with l ≥ 3 and µ = (µr11 , µ

r2
2 ) such that

µ ⊂ λ and λ/µ is a connected basic skew diagram. If (up to conjugation) none of
the following conditions hold, [λ/µ] has a constituent with multiplicity 3 or higher:

(1) µ = (2, 1);
(2) µ1 + 1 = λ1, l(λ)− 1 = l(µ) and r1 = µ2 = 1;
(3) r1 = r2 = 1, µ1 − 1 = µ2 and λ1 = µ1 + 1;
(4) l = 3 and one of the following holds:

(a) µ is a hook;
(b) λ1 − µ1 = 1 and one of the following holds:

(i) l(λ)− l(µ) = 1;
(ii) r2 = 1;
(iii) r1 = 1 and µ1 − µ2 = 1;
(iv) k2 = k3 = 1;
(v) there is an i such that ki = 1 and λi − λi+1 = 1 and r1 = 1;
(vi) there are i, j such that ki = 1 and µj − µj+1 = 1.

(c) there is an i such that λi − λi+1 = 1 and ki+1 = 1 and one of the
following holds:

(i) r2 = 1 and µ2 = 1;
(ii) r1 = 1 and µ1 − µ2 = 1.

(d) there is an i such that λi − λi+1 = 1 and ki = 1 further r2 = 1 and
µ1 − µ2 = 1;

(e) λ1 − λ2 = 1 and k3 = 1;
(f) λ3 = 1 and k1 = 1 or k2 = 1;
(g) r1 = r2 = 1 and one of the following holds:

(i) µ1 − µ2 = 1;
(ii) there is an i such that λi − λi+1 = 1.

(h) there are i 6= j such that λi−λi+1 = λj−λj+1 and l such that kl = 1
or rl = 1.

λ has three parts.
For this whole subsection we write λ = (λk11 , λ

k2
2 , λ

k3
3 ) and µ = (µr11 , µ

r2
2 ). We

assume that λ/µ is a skew diagram which is connected, basic and neither is the
corresponding skew character multiplicity-free nor listed in Theorem 2.6. We do
not mention these assumptions again in the following lemmas.

Lemma 4.12. If ki ≥ 2 for all i ∈ {1, 2, 3} and ri ≥ 2 for all i ∈ {1, 2}, the skew
character [λ/µ] contains a constituent with multiplicity greater or equal to 3.
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Proof: If l(λ) ≥ l(µ)+2, we take the seed (32, 22, 12)/(22, 12). If l(λ) = l(µ)+1,
λ3 ≥ 2 and r1 or r2 is greater or equal to 3 and by Theorem 2.6 (4)(b)(i) that
λ1 ≥ µ1 + 2. Therefore, we can use one of the seeds

(42, 32, 22)/(23, 12), (42, 32, 22)/(22, 13).

We show how to obtain λ/µ from the seed (32, 22, 12)/(22, 12) if l(λ) ≤ l(µ)+2, the
other ones work similarly but are a bit easier. First, we handle two special cases
before we deal with the generic one.

1st case: µ2 ≥ λ2. We start with the seed (32, 22, 12)/(22, 12) and add (32) as
rows. Then we add

((λ1 − 3)4, (λ2 − 2)2, (λ3 − 1)2)/((µ1 − 2)2, (µ2 − 1)2).

Finally, we add
(λk1−41 , λk2−22 , λk3−23 )/(µr1−21 , µr2−22 )

as rows. Since µ2 ≥ λ2, we know that r1 + r2 < k1 and this is a skew partition.
2nd case: r1 + 1 ≥ k1 + k2. We know µ1 < λ2 and µ2 < λ3. We start with the

seed (32, 22, 12)/(22, 12) and add (16). In the next step we add

(4k1−2, 3k2−2, 2k3−2)/(2r1−2, 1r2−2)

as rows. Since we assume that l(λ) ≥ l(µ) + 2, this is a skew partition. In the last
step we add

((λ1 − 4)k1 , (λ2 − 3)k2 , (λ3 − 2)k3)/((µ1 − 2)r1 , (µ2 − 1)r2).

Since λ2 > µ1 and λ3 > µ2, this is a skew partition.
3rd case: µ2 < λ2 and r1 + 1 < k1 + k2. As in the cases before we start with

the seed (32, 22, 12)/(22, 12) and add

((λ1 − 3)2, (λ2 − 2)2, (λ3 − 1)2)/((µ1 − 2)2, (µ2 − 1)2).

This is a skew partition since λ1 > µ1 and λ2 > µ2. Then we add

(λk1−21 , λk2−22 , λk3−23 )/(µr1−21 , µr2−22 )

as rows. If µ1 ≤ λ3, this is a skew partition because we assume that l(λ) ≥ l(µ) + 2.
If µ1 > λ3, we know r1 − 2 ≤ k1 + k2 − 4 because of r1 + 1 < k1 + k2 that. Thus,
this is a skew partition. �

Note that if λi−λi+1 = 1 for two is it follows from Theorem 2.6 (4)(h) that all
ki, ri ≥ 2. This is covered in the previous lemma. Further, if µ1 = 2, Theorem 2.6
(4)(g) and (a) tells us that all ki ≥ 2 and both ri ≥ 2.

With the previous lemma and the conjugation symmetry we can assume that
exactly one of the numbers λ1−λ2, λ2−λ3, λ3 and/or exactly one of the numbers
µ1 − µ2, µ2 equals 1 and exactly one of the numbers k1, k2, k3 and/or exactly one
of the numbers r1, r2 equals 1.

Lemma 4.13. Let λ3 = 1. If λ/µ is not listed in Theorem 2.6, [λ/µ] contains a
constituent with multiplicity 3 or higher.

Proof: Since we assume that λ3 = 1, we know that λ1−λ2, λ2−λ3, k1, k2 > 1.
This follows from the previous lemma and Theorem 2.6 (4)(f). We check two cases.
The first one is k3 = 1, where one of the ris could equal 1 as well. The second one
is that k3 > 1 and either r1 = 1 or r2 = 1. In both cases we know since λ3 = 1 that
l(λ)− l(µ) ≥ 2 .

1st case: k3 = 1. If λ1 − µ1 = 1, we know due to Theorem 2.6 (4)(b)(ii), (v)
and (vi) that r1, r2, µ1 − µ2, µ2 ≥ 2 . Since µ1 > λ2, it follows that k1 > r1 ≥ 2 so
this can be obtained from the seed (53, 32, 1)/(42, 22).
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µ is a fat hook

If µ2 = 1 or r2 = 1, then r1, µ1−µ2 > 1. This follows from Theorem 2.6 (4)(a),
(d) and (g)(ii). In this case, λ/µ can be obtained from the seed (52, 32, 1)/(32, 1).
If µ2, r2 ≥ 2, λ/µ can be obtained from the seed (52, 32, 1)/(3, 22).

2nd case: k3 ≥ 2. If r1 = 1, we inspect two cases for which we know from the
previous lemma and Theorem 2.6 (4)(a), (4)(g)(ii) that r2, µ2 ≥ 2. First we assume
that λ1 − µ1 = 1. Thus, we know that µ1 − µ2 ≥ 2 because of Theorem 2.6
(4)(b)(iii) and we use the seed (52, 32, 12)/(4, 22). If λ1 − µ1 > 1, we use the seed
(52, 32, 1)/(3, 22). If r2 = 1, we know from Theorem 2.6 (4)(b)(ii) and (4)(g)(ii) that
λ1−µ1, r1 > 1 so we use the seed (52, 32, 1)/(32, 1) if µ2 = 1 and (52, 32, 12)/(32, 2)
if µ2 ≥ 2.

In all cases we obtain λ/µ from the seed (5l1 , 32, 1l3)/(πm1
1 , πm2

2 ) in the same
way. We start by adding

(5k1−l1 , 3k2−2, 1k3−l3)/(πr1−m1
1 , πr2−m2

2 )

as rows. We know that l1+2 = m1+m2+1 and k1+k2 > r1+ r2 so if π1 = 3, this
is a skew partition. If π1 = 4, we know that λ1 − µ1 = 1 and therefore, k1 > r1. It
follows that in the remaining cases this is a skew partition, too. In the next step
we add

((λ1 − 5)k1 , (λ2 − 3)k2)/((µ1 − π1)r1 , (µ2 − π2)r2).
Because of the way we chose the seeds we know that λ1−5 ≥ µ1−π1. Additionally,
since π1 − π2 ≤ µ1 − µ2, we know that λ1 − 5 > µ2 − π2. If r1 > k1, we know that
π1 = 3 and µ1 < λ2. If r1 + r2 > k1, we know that if π1 = 3, λ2 − µ2 ≥ 2 so this is
a skew partition. �

By conjugation the previous lemma is equivalent to the case k1 = 1. So from
now on we can assume that k1 > 1. The following two lemmas are structured in
the same way as the previous one.

Lemma 4.14. Let λ1−λ2 = 1. If λ/µ is not listed in Theorem 2.6, [λ/µ] contains
a constituent with multiplicity 3 or higher.

Proof: By Theorem 2.6 (4)(e) we know that λ2 − λ3, λ3, k1, k3 ≥ 2.
1st case: k2 = 1.
If r1 = 1 or λ1 − µ1 = 1, we know that:
• r2 ≥ 2, this follows from Theorem 2.6 (4)(b)(ii) and (4)(g)(ii).
• µ1−µ2, µ2 ≥ 2, this follows from Theorem 2.6 (4)(a), (4)(b)(vi), (4)(c)(ii).
• l(λ)− l(µ) ≥ 2, this follows from Theorem 2.6 (4)(b)(i) and (4)(b)(vi).

Therefore, we can use the seed (52, 4, 22)/(4, 22).
If l(λ) − l(µ) = 1, we know from Theorem 2.6(4)(b)(i), (ii) and (vi) that

λ1 − µ1, µ1 − µ2, r1, r2 ≥ 2. The same holds if µ2 = 1. Here because of Theo-
rem 2.6 (4)(b)(vi), (g)(ii), (a) and (c)(i). In both cases we obtain λ/µ from the
seed (52, 4, 22)/(32, 12).

If λ1 − µ1, l(λ)− l(µ), r1, µ2 ≥ 2, we use the seed (52, 4, 22)/(32, 2). From now
on we assume that k2 > 1

2nd case: r1 = 1 We know from Theorem 2.6 (4)(a), (b)(vi) and (g)(ii) that
µ2, l(λ) − l(µ), r2 ≥ 2. If λ1 − µ1 ≥ 2, we use the seed (5, 42, 22)/(3, 22). If
λ1 − µ1 = 1, we know by Theorem 2.6 (4)(b)(iii) that µ1 − µ2 ≥ 2. Again, we use
the seed (52, 4, 22)/(4, 22).

3rd case: If r2 = 1. Then r1, λ1 − µ1, l(λ)− l(µ) ≥ 2 follows from Theorem 2.6
(4)(g)(ii), (b)(ii) and (b)(vi). Therefore, we can use the seed (52, 4, 22)/(32, 2) if
µ2 ≥ 2, and (5, 42, 22)/(32, 1) if µ2 = 1.

We obtain λ/µ from the seed (5l1 , 4l2 , 22)/(πm1
1 , πm2

2 ) by first adding

((λ1 − 5)l1 , (λ2 − 4)l2 , (λ3 − 2)2)/((µ1 − π1)m1 , (µ2 − π2)m2).
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The seeds are chosen such that λ1 − 5 ≥ µ1 − π1. Further, λ2 = λ1 − 1 so if
π1 − 1 = π2, we know that µ2 − π2 ≤ λ2 − 4 and if π1 − 2 = π2, we know that
µ1 − 2 ≥ µ1. In all cases this is a skew partition. In the next step we add

(λk1−l11 , λk2−l22 , λk3−23 )/(µr1−m1
1 , µr2−m2

2 )

as rows to obtain λ/µ. �

By conjugation we can from now on assume that k3 ≥ 2. In the following two
lemmas we obtain λ/µ in the same two ways from the seed as before, first adding
the rows vs. first adding the columns. Since this is done in the same way as before
and we have seen that a lot already, we just state the seeds for the following two
lemma.

Lemma 4.15. Let λ2−λ3 = 1. If λ/µ is not listed in Theorem 2.6, [λ/µ] contains
a constituent with multiplicity 3 or higher.

Proof: By Lemma 4.13 and 4.14 we know that λ1 − λ2, λ3, k1, k3 ≥ 2. Addi-
tionally, we know that at least one of the numbers k2, r1 or r2 equals 1.

1st case: k2 = 1. If λ1 − µ1 = 1, we know from Theorem 2.6 (4)(b)(i), (ii), (v)
and (vi) that l(λ) − l(µ), r2, r1, µ1 − µ2, µ2 ≥ 2. We obtain λ/µ from the seed
(53, 3, 22)/(42, 22). By conjugation this solves the case l(λ) − l(µ) = 1, too, since
k2 = 1 and λ2 − λ3 = 1 correspond by conjugation. If r2 = 1 or µ2 = 1, it follows
from Theorem 2.6 (4)(a), (d) and (g)(ii) that r1, µ1−µ2 ≥ 2. By conjugation we can
assume that r2, µ2 ≥ 2. Therefore, we obtain λ/µ from the seed (52, 3, 22)/(3, 22).
Now we assume that k2 > 1.

2nd case: r1 = 1. Because of Theorem 2.6 (4)(a), (b)(vi) and (g)(ii) we know
that r2, µ2, l(λ) − l(µ) ≥ 2. Further, if λ1 − µ1 = 1, Theorem 2.6 (4)(b)(iii) tells
us that µ1 − µ2 ≥ 2. We can use the seed (52, 33, 2)/(4, 22) if λ1 − µ1 = 1, and
(52, 3, 22)/(3, 22), otherwise.

3rd case: r2 = 1. By Theorem 2.6 (4)(g)(ii), (b)(ii) and (vi) we know that
r1, λ1 − µ1, l(λ) − l(µ) ≥ 2. Thus, we obtain λ/µ from (52, 3, 22)/(32, 1) if µ2 = 1,
and (52, 32, 2)/(32, 2), otherwise. �

From now on we assume that λi − λi+1 ≥ 2 and ki ≥ 2.

Lemma 4.16. Let µ1−µ2 = 1. If λ/µ is not listed in Theorem 2.6, [λ/µ] contains
a constituent with multiplicity 3 or higher.

Proof: Because of the previous lemmas we can assume that either r1 or r2
equals 1.

1st case: r2 = 1. By Theorem 2.6 (4)(b)(ii) we see that λ1 − µ1, l(λ)− l(µ) ≥ 2.
We use the seed (52, 33, 2)/(32, 2).

2nd case: r1 = 1. Again, we know that λ1 − µ1, l(λ) − l(µ) ≥ 2. This time by
Theorem 2.6 (4)(b)(ii) and (iii). Here we use the seed (52, 3, 22)/(3, 22). �

By conjugation the case µ1 − µ2 = 1 is equivalent to the case r2 = 1. What is
missing is the case µ2 = 1 and r1 = 1, but these are the skew characters listed in
Theorem 2.6 (4)(a).

From now on we focus on the case that λ has more then three removable nodes.

λ has 4 or more parts.

Lemma 4.17. Let λ = (λk11 , λ
k2
2 , . . . , λ

kl
l ) with l ≥ 4 and µ = (µr11 , µ

r2
2 ) such that

λ/µ is a basic, connected skew diagram and the corresponding character it is neither
multiplicity-free nor listed in Theorem 2.6. Then [λ/µ] contains a constituent with
multiplicity at least 3.
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µ is a fat hook

Proof: 1st case: w(λ) = w(µ) + 1 and l(λ) = l(µ) + 1. By Theorem 2.6 (2)
we can, possibly after conjugation, assume that r1 > 1. Since the diagram is
connected, we know k1 > r1 and λl > µ2. Further, we know that µ1 − µ2, r2 ≥ 3
because rem(λ) ≥ 4. Therefore, we can use the seed (53, 4, 3, 2)/(42, 13).

To obtain λ/µ from this seed we start with adding

((λ1 − 5)3, λ2 − 4, λ3 − 3, λ4 − 2)/((µ1 − 42, (µ2 − 1)3))

and then we add

(λk1−31 , λk2−12 , λk3−13 , λk4−14 , λk55 . . . , λkll )/(µr1−21 , µr2−32 )

as rows. From now on we assume by conjugation and Theorem 2.6 (1) that w(µ) ≥ 3
and l(λ)− l(µ) > 1.

2nd case: µ1 − µ2 > 1. We use the seed (4, 3, 2, 1)/(3, 1) if r1 <
l−1∑
i=1

ki − 1, and

(5, 4, 3, 22)/(32, 1) if r1 ≥
l−1∑
i=1

ki − 1. How to obtain λ/µ from the seed:

• If λ2 − 1 > µ2 and r1 <
l−1∑
i=1

ki − 1 we start with adding

(λ1 − 4, λ2 − 3, λl−1 − 2, λl − 1)/(µ1 − 3, µ2 − 1)

to the seed (4, 3, 2, 1)/(3, 1). This obviously is a skew partition. In the
next step we add

(λk1−11 , λk2−12 , λk33 . . . , λ
kl−2

l−2 , λ
kl−1−1
l−1 , λkl−1l )/(µr1−11 , µr2−12 ).

First we want to see why µr1−11 fits into the outer partition. If there is

a minimal a such that λa < µ1, then
a−1∑
i=1

ki > r1. So if a < l, we add

a−1∑
i=1

ki − 2 ≥ r1 − 1 parts that are bigger or equal to µ1. If a = l, we

assume that r1 <
l−1∑
i=1

ki−1, so here we add
a−1∑
i=1

ki−3 ≥ r1−1 parts which

are greater or equal to µ1. If all parts of λ are greater or equal to µ1, we
know that l(λ) − l(µ) > 1. In the next step we show why the corner of
µr2−12 fits into the partition. If all parts of λ are greater than µ2, it follows
since l(λ) − l(µ) > 1. If there is an a such that λa < µ2, we know that
a−1∑
i=1

ki > r1 + r2 so we add at least
a−1∑
i=1

ki − 3 ≥ r1 + r2 − 2 parts which

are greater or equal to µ2.
• If λ2 − 1 ≤ µ2, we know that r1 < k1 and k1 + k2 > r1 + r2, otherwise,

the skew diagram would not be connected. This implies k1 > 2 and
l(λ) − l(µ) > 2. We start with (4, 3, 2, 1)/(3, 1) and add (4) as a row. In
the next step we add

((λ1 − 4)2, λ2 − 3, λ3 − 2, λ4 − 1)/(µ1 − 3, µ2 − 1).

This is obviously a skew partition. In the next step we add

(λk1−21 , λk2−12 , λk3−13 , λk4−14 , λk55 , . . . )/(µ
r1−1
1 , µr2−12 )

as rows. We know that r1 < k1 and r1 + r2 < k1 + k2, so this is a skew
partition, too.

• If r1 ≥
l−1∑
i=1

ki − 1, we start with the seed (5, 4, 3, 22)/(32, 1) and add

(λ1 − 5, λ2 − 4, λl−1 − 3, (λl − 2)2)/((µ1 − 3)2, µ2 − 1)
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and since µ1, µ2 + 2 ≤ λ3, this is a skew partition. In the next step we
add

(λk1−11 , λk2−12 , λk33 , . . . , λ
kl−2

l−2 , λ
kl−1−1
l−1 , λkl−2l )/(µr1−21 , µr2−12 )

as rows to obtain λ/µ.
3rd case: µ1 − µ2, λ1 − µ1 = 1. If = 1, we know by Theorem 2.6 (3) that

r1 > 1 or r2 > 1 and k1 > r1. So we take one of the seeds (42, 3, 2, 1)/(32, 2),
(42, 3, 2, 1)/(3, 22). We obtain λ/µ from the seed (42, 3, 2, 1)/(3a, 2b) by first adding

(4k1−2, 3k2−1, 2k3−1, 1k4−1)/(3r1−a, 2r2−b)

as rows. Since k1 + k2 > r1 + r2, this is a skew partition. In the next step we add

((λ1 − 4)k1 , . . . , (λ4 − 1)k4 , λk5k , . . . , λ
kl
l )/((µ1 − 3)r1 , (µ2 − 2)r2).

4th case: µ1 − µ2 = 1 and µ1 + 1 < λ1. We know that 3 ≤ µ1 ≤ λ1 − 2 so we
know that at least for one i ∈ {1, 2, 3} λi − λi+1 > 1 or λ4 > 1. We have the
following cases:

Condition Seed
λ4 > 1 (5, 4, 3, 2)/(3, 2)
λ3 − λ4 > 1 (5, 4, 3, 1)/(3, 2)
λ2 − λ3 > 1 (5, 4, 2, 1)/(3, 2)
λ1 − λ2 > 1 (5, 3, 2, 1)/(3, 2).

How to obtain λ/µ from the corresponding seed (5, a, b, c)/(3, 2):
• If λ2 > µ2 + 1, we start with adding

(λ1 − 5, λ2 − a, λl−1 − b, λl − c)/(µ1 − 3, µ2 − 2).

This is a skew partition since λ1 − µ1, λ2 − µ2 ≥ 2. In the next step we
add

(λk1−11 , λk2−12 , λk33 , . . . , λ
kl−2

l−2 , λ
kl−1−1
l−1 , λkl−1l )/(µr1−11 , µr2−12 )

as rows. If µ1 ≤ λl, this is a skew partition because we know that
l(λ)− l(µ) ≥ 2. If µ1 > λs for some s ∈ {1, . . . , l}, we know k̂s−1 > r1

where k̂s−1 =
s−1∑
i=1

ki. If s ≤ l − 1, we get r1 < k̂s−1 so we know

r1 − 1 ≤ k̂s−1 − 2. If s = l, we know that r1 + r2 < k̂l−1 (this fol-
lows since µ1 − µ2 = 1 and µ1 > λl) which implies r1 − 1 ≤ k̂l−1 − 2. So
the µr1−11 fits into the outer partition. We can do the same to see that
the µr2−12 also fits inside the outer partition.

• If µ2 + 1 ≥ λ2, we know that k1 > r1. In particular, k1 > 1 so we start
with adding (5) as a row. In the next step we add

((λ1 − 5)2, λ2 − a, λ3 − b, λ4 − c)/(µ1 − 3, µ2 − 2).

Since we assume that λ1 − µ1 > 1, this is a skew partition. In the last
step we add

(λk1−21 , λk2−12 , λk2−13 , λk4−14 , λk55 , . . . )/(µ
r1−1
1 , µr2−12 )

as rows to obtain λ/µ. Since k1 > r1 and r1 + r2 < k1 + k2 this is a skew
partition, too. �

This concludes the proof of Theorem 2.6. So fare we mostly looked at connected
skew diagrams. In the next section we look at the outer tensor product of a skew
character and a irreducible character. This is equivalent to a skew character where
the corresponding diagram decomposes into the diagram of a partition and a skew
diagram.
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µ is a fat hook

4. Product of a skew character with an irreducible character

In this section we investigate products of a skew character [λ/µ] and an irre-
ducible character [ν]. For these, we prove Theorem 2.7. As in the previous sections
we recall the theorem that we want to prove:

Theorem 2.7 Let ν be a partition and λ/µ be a basic and connected skew parti-
tion. If (up to rotation of λ/µ and/or conjugation of λ/µ and ν) they are not from
the following list, the outer tensor product [λ/µ] � [ν] contains a constituent with
multiplicity 3 or higher:

(1) If µ is a rectangle, λ = (λk11 , λ
k2
2 ) and one of the following holds:

(a) ν = (1);
(b) λ1 − λ2 = 1 or λ2 = 1 and ν has one row;
(c) w(µ) = λ1 − 1 and ν has one row.

(2) if ν is a rectangle and one of the following holds:
(a) λ(

′) = (λ1, λ1 − 1);
(b) λ is a two-line partition and µ = (1);
(c) λ(

′) = (λk11 , λ1 − 1) and µ = (1);
(d) λ = (λk11 , 1) and µ = (λ1 − 1) or both conjugated.

(3) if µ and ν are both one-line partitions and one of the following holds:
(a) λ1 − 1 = µ1 and ν = (1);
(b) λ = (λk11 , λ

k2
2 ) and one of the following holds:

(i) l(µ) = 1 and w(ν) = 1;
(ii) λ1 − λ2 = 1 or λ2 = 1 and l(µ) = l(ν) = 1;
(iii) l(λ)− l(µ) = 1 and w(ν) = 1.

Like before, we assume that rem(λ) > rem(µ). This follows from the rotation
symmetry. In this chapter we call a small product [λ̃/µ̃] � [ν̃], which contains a
constituent with multiplicity 3 or higher, a seed for [λ/µ]� [ν] if we can obtain λ/µ
from λ̃/µ̃ and ν̃ from ν by Lemma 2.11. We will just show how to obtain λ/µ from
λ̃/µ̃ since for ν and ν̃ it will be obvious. In Corollary 4.2 we have seen that we can
restrict ourselves to the case that µ is a rectangle. The only part of Theorem 2.7
where rem(λ) ≥ 3 is (3)(a). This leads to the following lemma for rem(λ) ≥ 3.

Lemma 4.18. Let λ/µ be a basic and connected skew partition with rem(λ) ≥ 3,
rem(µ) = 1. Let ν be a partition. The product [λ/µ] � [ν] contains a constituent
with multiplicity 3 or higher if one of the following holds:

(1) l(λ)− l(µ) 6= 1 and w(λ)− w(µ) 6= 1;
(2) µ is not linear;
(3) ν 6= (1).

Proof: As before, let λ = (λk11 , . . . , λ
kl
l ). We split the proof in three parts.

1st case: l(λ)− l(µ), w(λ)− w(µ) > 1. Here we use the seed [(3, 2, 1)/(1)]� [1].
We obtain λ/µ from (3, 2, 1)/(1) by first adding

(λ1 − 3, λl−1 − 2, λl − 1)/(µ1 − 1).

In the next step we add

(λk1−11 , λk22 , . . . , λ
kl−2

l−2 , λ
kl−1−1
l−1 , λkl−1l )/µ̂

as rows, where µ̂ = (µ2, µ3, . . . ). This is a skew partition since λ/µ is connected
and basic.

2nd case: w(λ)− w(µ) = 1 and l(µ) ≥ 2. We know that w(µ) ≥ 2 and l(µ) < k1.
Therefore, we can use the seed [(33, 2, 1)/(22)]� [1]. We first add

((λ1 − 3)3, λ2 − 2, λ3 − 1)/((µ1 − 2)2)

52



and then add
(λk1−31 , λk2−12 , λk3−13 , λk44 , . . . , λ

kl
l )/(µ

l(µ)−2
1 )

as rows.
3rd case: w(λ)− w(µ) = 1 and l(µ) = 1. We know that ν 6= (1), therefore, we

can use one of the seeds [(32, 2, 1)/(2)]� [12](
′). We obtain λ/µ from ((32, 2, 1)/(2))

by adding ((λ1 − 3)2, λ2 − 2, λ3 − 1)/(µ1 − 2) in the first step and then adding
(λk1−21 , λk2−12 , λk3−13 , λk44 , . . . , λ

kl
l ) as rows. �

We will henceforth restrict ourselves to skew partitions where λ has two remov-
able nodes. From now on we assume that λ = (λk11 , λ

k2
2 ). We will use this notation

in the following proofs.

Lemma 4.19. Let λ/µ be a proper and connected skew diagram and ν be a par-
tition with at least two removable nodes. Then [λ/µ] � [ν] has a constituent with
multiplicity greater or equal to 3.

Proof: For every connected and proper skew diagram where λ has two remov-
able nodes, there is either k1 ≥ 2 or λ2 ≥ 2. We assume that µ is a rectangle,
as a consequence we know that l(λ) − l(µ) or w(λ) − w(µ) is greater than 1. By
conjugation we can assume that λ2 ≥ 2 and λ1 − µ1 ≥ 2. Therefore, we can
use the seed [(3, 2)/(1)] � [2, 1]. We obtain λ/µ from (3, 2)/(1) by first adding
(λ1 − 3, λ2 − 2)/(µ1 − 1) and then adding (λk1−11 , λk2−12 )/(µ

l(µ)−1
1 ) as rows. �

Now we know that µ and ν have to be rectangles but we can refine this even a
little bit more. In the next lemma we show that at least one of the partitions µ, ν
has to be linear. After that we just look at the three remaining cases.

Lemma 4.20. Let λ/µ be a basic and connected skew partition with (22) ⊆ µ and
(22) ⊆ ν be a partition. Then [λ/µ]� [ν] contains a constituent with multiplicity 3
or higher.

Proof: Again, we can assume λ = (λk11 , λ
k2
2 ) and µ, ν are rectangles. By

conjugation we can assume that l(λ)− l(µ) > 1 and k1 ≥ 3. If λ2 ≥ 2, we use the
seed [(33, 2)/(22)]� [22]. If λ2 = 1, we use the seed [(33, 1)/(22)]� [22]. We obtain
λ/µ from (33, a)/(22) by first adding ((λ1−3)3, λ2−a)/((µ1−2)2) and then adding
(λk1−31 , λk2−12 )/(µ

l(µ)−2
1 ) as rows. �

ν is a rectangle.

Lemma 4.21. Let (22) ⊆ ν be a partition, λ/µ a skew partition and [λ/µ]� [ν] is
not listed in Theorem 2.7. Then the product contains a constituent with multiplicity
3 or higher.

Proof: By the previous lemma we can assume that µ is a one-line partition.
By conjugation symmetry we can even assume that it is a one-row partition. Then
we know that w(λ) > 2, otherwise, the product would be listed in Theorem 2.7
(2)(b). We divide the proof into different cases. First, we present the seeds. Then
we show that these seeds, indeed, cover all cases.

(1) Let l(λ) = 2. Since we assume [λ/µ] � [ν] is not listed in Theorem 2.7
(2)(a), (b), we know that µ1 ≥ 2 and λ1 − λ2 ≥ 2. Further, we assume
that λ/µ is connected so we know that λ2 > µ1. This implies λ1−µ1 ≥ 2.
Therefore, we can add (λ1−5, λ2−3)/(µ1−2) to (5, 3)/(2) to obtain λ/µ.
Hence, [(5, 3)/(2)]� [22] is a seed for [λ/µ]� [ν].

(2) If k1, k2, λ1 − λ2, µ1 ≥ 2, we use the seed [(32, 12)/(2)]� [22]. Note that
since l(µ) = 1, we know that l(λ) − l(µ) ≥ 3. We obtain λ/µ by adding
((λ1 − 3)2, (λ2 − 1)2)/(µ1 − 2) and then adding (λk1−21 , λk2−22 ) as rows.
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Product of a skew character with an irreducible character

(3) If k1, λ2, µ1 ≥ 2, we use the seed [(32, 2)/(2)] � [22]. We obtain λ/µ
from (32, 2)/(2) by first adding (3k1−2, 2k2−1) as rows and then adding
((λ1 − 3)k1 , (λ2 − 2)k2)/(µ1 − 2).

(4) If k1, λ1 − µ1, λ1 − λ2 ≥ 2, we use the seed [(32, 1)/(1)]� [22]. We obtain
λ/µ from (32, 1)/(1) by first adding ((λ1 − 3)2, λ2 − 1)/(µ1 − 1) and then
adding (λk1−21 , λk2−12 ) as rows.

(5) If k2, λ2, λ1 − µ1 ≥ 2, we use the seed [(3, 22)/(1)]� [22]. We obtain λ/µ
from (3, 22)/(1) by adding (λ1 − 3, (λ2 − 2)2)/(µ1 − 1) and then adding
(λk1−11 , λk2−22 ) as rows.

We now have a lot of different seeds for the different cases but it is not obvious
why these cover all cases, so that is what remains to be shown. If l(λ) = 2, we
refer to (1). From now on we assume that l(λ), w(λ) ≥ 3. If k1, λ2, µ1 ≥ 2, we
use (3). If k1 = 1, we know that k2 ≥ 2 since we assume that l(λ) ≥ 3. Moreover
λ2, λ1 − µ1 ≥ 2, otherwise, the skew partition would not be connected. Therefore,
this is covered by (5).

If λ2 = 1 and λ1 − µ1 = 1, we know that k1 ≥ 2 otherwise, the skew diagram
would not be connected. Theorem 2.7 (2)(d) gives us k2 ≥ 2. Because we assume
w(λ) ≥ 3 we have λ1 − λ2, µ1 ≥ 2. All together this shows that we can use (2).
If λ2 = 1 and λ1 − µ1 ≥ 2, we still know that k1 ≥ 2 otherwise, the skew diagram
would not be connected. Moreover, λ1 − λ2 ≥ 2 since w(λ) ≥ 3. Thus we are in
the setting of (4).

If µ1 = 1, k2 ≥ 2 and λ2 ≥ 2, we know that λ1 − µ1 ≥ 2. In this case we use
(5). If µ1 = 1 and k2 = 1 or λ2 = 1, we know that λ1 − λ2, k1, λ1 − µ1 ≥ 2. This
follows because we assume l(λ), w(λ) ≥ 3, λ/µ is connected and from Theorem 2.7
(2)(c). Consequently, we can use (4). �

µ is a rectangle.

Lemma 4.22. Let λ/µ be a connected and proper skew partition such that (22) ⊆ µ
and ν be a partition such that [λ/µ] � [ν] is not listed in Theorem 2.7. Then the
product contains a constituent with multiplicity greater or equal to 3.

Proof: By conjugation we can assume that λ1 − µ1 ≤ l(λ) − l(µ). We know
that ν has either one row or one column. We start with the latter. By The-
orem 2.7 (1)(a), (b) we know that k1, k2, l(ν) ≥ 2. Additionally, from the as-
sumption λ1 − µ1 ≤ l(λ) − l(µ) follows that l(λ) − l(µ) ≥ 2. If λ2 ≥ 2, we use
the seed [(32, 22)/(22)] � [12]. We obtain λ/µ from (32, 22)/(22) by first adding
((λ1− 3)2, (λ2− 2)2)/((µ1− 2)2) and then adding (λk1−21 , λk2−22 )/(µ

l(µ)−2
1 ) as rows.

If λ2 = 1, we use the seed [(33, 12)/(22)]�[12]. To obtain λ/µ from (33, 12)/(22),
we by first adding ((λ1− 3)3)/((µ1− 2)2) and then adding (λk1−31 , 1k2−2)/(µ

l(µ)−2
1 )

as rows.
From now on we assume that ν is a one-row partition. By Theorem 2.7 (1)(a)-

(c) we know that λ1−λ2, λ2, w(ν), λ1−µ1 ≥ 2. The assumption λ1−µ1 ≤ l(λ)−l(µ)
implies l(λ) − l(µ) ≥ 2. If k1 ≥ 2, we use the seed [(42, 2)/(22)] � [2]. We obtain
λ/µ from (42, 2)/(22) by adding ((λ1 − 4)2, λ2 − 2)/((µ1 − 2)2) and then adding
(λk1−21 , λk2−12 )/(µ

l(µ)−2
1 ) as rows. If k1 = 1, we use the seed [(5, 33)/(22)]� [2]. We

obtain λ/µ from (5, 33)/(22) by adding (λ1 − 5, (λ2 − 3)3)/((µ1 − 2)2) and then
adding (λk2−32 )/(µ

l(µ)−2
1 ) as rows. �

µ and ν are one-line partitions.
In the following we want to deal with the case that µ and ν are one-line partitions.
Because of Lemma 4.18 we can assume that λ = (λk11 , λ

k2
2 ). If one of the partitions
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µ, ν has one row and the other one has one column, the product is listed in The-
orem 2.7 (3)(b)(i). By conjugation we can focus on the case where both have one
row.

Lemma 4.23. Let λ = (λk11 , λ
k2
2 ) and µ, ν are one-row partitions such that µ1 < λ1

and [λ/µ]� [ν] is not listed in Theorem 2.7. Then [λ/µ]� [ν] contains a constituent
with multiplicity greater or equal to 3.

Proof: By Theorem 2.7 (3)(b)(ii), (iii) we assume that λ1−λ2, λ2, λ1 − µ1 ≥ 2.
We use the seed [(4, 2)/(2)]� [2]. We add (λ1−2, λ2−2)/(2) to (4, 2)/(2) and then
add (λk1−11 , λk2−12 ) as rows to obtain λ/µ. �
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Part 2

Kronecker products of characters of
the symmetric groups





CHAPTER 5

Preliminaries: Kronecker coefficients and adding
partitions

In the first part of the thesis we investigated outer tensor products of char-
acters of the symmetric groups. Henceforth, whenever we mention the product of
characters, we always mean the Kronecker product of these characters. To prove
the classification of the multiplicity-free Kronecker products of characters of the
alternating groups in the third part we need a classification of the Kronecker prod-
ucts of the symmetric groups which just contain constituents with multiplicity 1
and 2. This is given by the following theorem:

Theorem 5.1. Let λ, µ ` n be partitions of n. The product [λ][µ] only contains
constituents with multiplicity 1 and 2 if and only if (up to conjugating one or both
partitions and exchanging λ and µ) one of the following holds:

(1) The product is multiplicity-free (classified in [BB17]);
(2) λ is a hook and one of the following holds:

(a) Both partitions are hooks;
(b) µ is one of the following partitions(n

2
,
n

2

)
,

(
n+ 1

2
,
n− 1

2

)
, (n− 2, 2) ;

(c) l(λ) ≤ 3 or λ1 ≤ 3 and µ is a two-line partition;
(d) l(λ) ≤ 4 or λ1 ≤ 4 and µ is a rectangle;
(e) λ = (n− 1, 1) and rem(µ) ≤ 3;
(f) n = ab− 1, λ = (n− 2, 12) and µ = (ab−1, b− 1);
(g) λ = (5, 14) and µ = (33).

(3) λ is a two-row partition and one of the following holds:
(a) µ = (n− 2, 12);
(b) λ = (n− 2, 2) and µ is a two-line partition or a hook;
(c) n = 2k + 1, λ = (n− 2, 2) and µ = (k2, 1);
(d) n = ab− 1, λ = (n− 2, 2) and µ(′) = (ab−1, a− 1);
(e) λ = (n− 3, 3) and µ is a rectangle;
(f) n = 2k+1, λ = (k+1, k) and µ is a hook or µ = (µ1, µ2) with µ2 ≤ 3

or µ2 = k, k − 1;
(g) n = 2k, λ = (k, k) and µ is µ = (n − 3, 2, 1) or µ = (µ1, µ2) with

µ2 ≤ 7 or µ1 − µ2 ≤ 6;
(h) the exceptional cases where one is a two-row partition for n ≤ 18:

(i) λ = µ = (5, 3);
(ii) λ = µ = (6, 4);
(iii) λ = (4, 3) and µ = (3, 22);
(iv) λ = (42) and µ = (3, 22, 1), (32, 12), (32, 2);
(v) λ = (5, 3) and µ = (32, 2);
(vi) λ = (5, 4) and µ = (3, 23), (42, 1);
(vii) λ = (52) and µ = (4, 32), (42, 2);
(viii) λ = (8, 4), (7, 5), (6, 6) and µ = (43);
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(ix) λ = (6, 3), (5, 4) and µ = (33);
(x) λ = (8, 7) and µ = (53);
(xi) λ = (9, 9) and µ = (63).

(4) The exceptional cases where no partition is a two-line partition or a hook
are: n = 9, λ = µ = (33) or λ = (33) and µ = (42, 1).

But this theorem on its own is not enough. To deduce the results for the
alternating groups we need to put particular emphasis on the symmetric partitions
which we do with the following theorem:

Theorem 5.2. Let λ, µ ` n be partitions with g(λ, µ) > 2.

(1) Let λ = λ′. There is a ν 6= λ such that g(λ, µ, ν) > 2 if and only if λ and
µ are not from the following list:
(a) µ(′) = (n− 1, 1);
(b) n = 6, λ = (3, 2, 1) and µ(′) = (4, 2) or µ(′) = (4, 12);
(c) n = 8, λ = (4, 2, 12) and µ(′) = (42).

(2) If λ = λ′ and µ = µ′, there is a ν 6= ν′ ` n such that g(λ, µ, ν) > 2.

To prove the previous two theorems we need skew characters. If a skew partition
decomposes into several connected components, their order is not important for
the skew character. For partitions α and β we use the notation α ∗ β for all
skew partitions which decompose into two parts and these parts are α and β. The
investigation of Kronecker products of skew characters leads to the following results:

Theorem 5.3. The only product χψ of two proper skew characters which only
contains constituents with multiplicity 1 and 2 is:

χ = ψ = [(2, 1)/(1)] = [2] + [12].

Theorem 5.4. Let λ/µ be a basic, proper skew partition of n and ν ` n. The
product [λ/µ][ν] only contains constituents with multiplicity 1 and 2 if one of the
following holds (up to conjugating the partition and/or the skew partition and/or
rotating the skew partition):

(1) ν is linear and λ/µ only contains constituents with multiplicity 1 and 2;
(2) ν = (n− 1, 1) and λ/µ is from the following list:

(a) λ = (λ1, λ2)
(′) is a two-line partition and µ = (1) or λ1 − λ2 = 1;

(b) λ = (λk11 , λ1 − 1) and µ = (1);
(c) λ = (λk11 , 1) and µ = (λ1 − 1);
(d) λ/µ = (n− l) ∗ (l);
(e) n = ab+ 1 and λ/µ = (ab) ∗ (1).

(3) ν is a fat hook and λ/µ = (n− 1) ∗ (1);
(4) ν is a rectangle and λ/µ is from the following list:

(a) λ/µ equals (n− 2) ∗ (2) or (n− 2) ∗ (12);
(b) λ/µ = (n− 1, 2)/(1);
(c) λ/µ = (n− 2, n− 2, 1)/(n− 3);
(d) the exceptional pairs ν = (33) and λ/µ equals (7, 3)/(1) or (6, 4)/(1).

(5) n = 2k, ν = (k, k) and λ/µ is from the following list:
(a) λ/µ = (λ1, λ2)/(1) with λ1 − λ2 ≤ 3 or λ2 ≤ 3;
(b) λ/µ = (n− 2, n− 2, 1)/(n− 3);
(c) λ/µ = (n− l) ∗ (1l);
(d) one of the exceptional cases where λ/µ is one of the following:

(k + 2, k)/(2) for k ≤ 5, (k2, 1)/(1) for k ≤ 4, (2, 1) ∗ (1), (3) ∗ (3).

(6) the exceptional case for n = 5 where λ/µ = (22) ∗ (1) and ν = (3, 2).
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1. Results on Kronecker coefficients

In this section we collect some known results on Kronecker coefficients which
will be useful later. The following theorem tells us what the maximal length and
width of constituents of the product [λ][µ] are.

Theorem 5.5. [Dvi93, Theorem 1.6],[CM93, 2.1(d)] Let λ, µ ` n, then
|λ ∩ µ| =max{w(ν) | ν ` n with g(λ, µ, ν) > 0} and
|λ ∩ µ′| =max{l(ν) | ν ` n with g(λ, µ, ν) > 0}.

The next theorem shows that if λ, µ are not linear partitions, the constituents
of maximal length and width are different ones.

Theorem 5.6. [BK99, 3.3] Let λ, µ, ν ` n, where neither λ nor µ is a linear
partition. If g(λ, µ, ν) > 0,

w(ν) + l(ν) < |λ ∩ µ|+ |λ ∩ µ′|.

Corollary 5.7. Let λ and µ be non-linear partitions of n. Further, let [α] resp.
[β] be a constituent of maximal length resp. width in the product [λ][µ]. If |λ∩µ| ≥
|λ ∩ µ′|, β is not symmetric and if |λ ∩ µ| ≤ |λ ∩ µ′|, α is not symmetric. In
particular, one of the partitions α and β is always non-symmetric.

Proof: Let [β] be a constituent of maximal width. We can assume that
|λ ∩ µ| ≥ |λ ∩ µ′|. We show that β is not symmetric. The second statement
follows by conjugation. Due to Theorem 5.5 we know w(β) = |λ∩µ|. If β was sym-
metric, this would imply w(β) = l(β). So w(β)+ l(β) = 2|λ∩µ| ≥ |λ∩µ|+ |λ∩µ′|.
But this is a contradiction to Theorem 5.6, which concludes the proof. �

There are two different techniques we use to estimate the value of a Kronecker
coefficient.

Manivel’s semigroup property for Kronecker coefficients.
One of our main tactics when investigating Kronecker coefficients is to reduce a
product to a smaller one with Manivel’s semigroup property [Man11].

Theorem 5.8. Let α, β, γ ` m and λ, µ, ν ` n with g(α, β, γ), g(λ, µ, ν) > 0, then

g(λ+ α, µ+ β, ν + γ) ≥ max{g(α, β, γ), g(λ, µ, ν)}.
In particular,

g(λ+ α, µ+ β) ≥ max{g(λ, µ), g(α, β)}.

Dvir’s recursion.
The second main tool will be Dvir’s recursion. To state this recursive formula for
the Kronecker coefficients we need the following notation.

Notation 5.9. Let λ = (λ1, λ2, . . . , λl) ` n. We write λ̂ = (λ2, λ3, . . . , λl) for the
partition which is obtained by removing the first row of λ.

Additionally, we define

Y (λ) = {η = (η1, . . .) ` n | ηi ≥ λi+1 ≥ ηi+1 for all i ≥ 1} .

We use this to state the following theorem:

Theorem 5.10. [Dvi93, Theorems 2.3 and 2.4],[CM93, 2.1(d)]. Let λ, µ and ν =
(ν1, ν2, . . . ) be partitions of n.

Then

g(λ, µ, ν) =
∑
α`ν1
α⊆λ∩µ

〈[λ/α][µ/α], [ν̂]〉 −
∑
η∈Y (ν)
η 6=ν

η1≤|λ∩µ|

g(λ, µ, η) .
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In particular, if ν1 = |λ ∩ µ|,
g(λ, µ, ν) = 〈[λ/β][µ/β], [ν̂]〉,

where β = µ ∩ λ.

This last part allows us to use induction to prove Theorem 5.1. It implies that
[λ][µ] contains a constituent with multiplicity 3 or higher if [λ/(λ ∩ µ)][µ/(λ ∩ µ)]
does.

Formulas for hooks.
For some cases explicit formulas for Kronecker coefficients are known. The following
ones are helpful in case we deal with two hooks or a hook and a two-row partition.
We use the following notation: If E is an equality or inequality

χ(E) =

{
1, if E is true;
0, if E is false.

The following theorem contained a small mistake which we corrected:

Theorem 5.11. [Rem89, Theorem 2.1] Let gλ := g((n−k, 1k), (n−i, 1i), λ), where
k ≥ i and n− 1 ≥ k + i and λ is a partition of n. Then

(1) gλ = 0 if λ is not a hook or a double-hook;
(2) gλ = χ(k−i≤r≤k+i) if λ is the hook (n− r, 1r);
(3) if λ = (p, q, 2d2 , 1d1) is a double-hook, where d1, d2 ≥ 0 and 2 ≤ p ≤ q, we

let u = max(q, n−k−i), v0 = min(p, n−k, d2−1), v1 = min(p, n−k−d2),
w = 2n− k − i− d1 − d2, and x =

⌊w
2

⌋
. Then

gλ =


0, if q + d2 > n− k;
χ(u≤x−1≤v0) + χ(u≤x≤v1), if q + d2 ≤ n− k & w is even;
χ(u≤x≤v0) + χ(u≤x≤v1), if q + d2 ≤ n− k & w is odd.

Theorem 5.12. [Rem92, Theorem 2.2.] Let gλ := g([n− k, k], [n− i, 1i], λ), where
n ≥ 4, bn2 c ≥ k ≥ 2 and n− 2 ≥ i ≥ 1. Then

(1) gλ = 0 if λ is not a hook or a double-hook;
(2) if λ = (n− j, 1j) is a hook, then:

(a) gλ = 0 if j /∈ {i− 1, i, i+ 1};
(b) gλ = χ(k≤min(n−i,i+1)) if λ = (n− i− 1, 1i+1);
(c) gλ = χ(k≤min(n−i,i+1)) + χ(k≤min(n−i,i)) if λ = (n− i, 1i);
(d) gλ = χ(k≤min(n−i,i)) if λ = (n− i+ 1, 1i−1).

(3) if λ = (n4, n3, 2
d2 , 1d1) ` n is a double-hook, where 2 ≤ n3 ≤ n4, then:

(a) gλ = 0, if n− i /∈ {d1 + 2d1, d1 + 2d1 + 1, d1 + 2d1 + 2, d1 + 2d1 + 3};
(b) gλ = χ(n3≤j−d2≤min(n4,n3+d1)), if i = d1 + 2d2;
(c) if i = d1 + 2d2 + 1, then

gλ =χ(n3+1≤k−d2≤min(n3+d1,n4+1))

+ χ(n3≤k−d2≤min(n3+d1+1,n4))

· [1− χ(k−d2=n4=n3+d1)]

+ χ(n3−1≤k−d2≤min(n3+d1−1,n4−1));

(d) if i = d1 + 2d2 + 2, then

gλ =χ(n3+1≤k−d2≤min(n3+d1+1,n4+1))

+ χ(n3≤k−d2≤min(n3+d1−1,n4))

+ χ(n3−1≤k−d2≤min(n3+d1,n4−1));

(e) gλ = χ(n3≤k−d2≤min(n4,n3+d1,)) if i = d1 + 2d2 + 3.
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For both cases there are formulas from Rosas in [Ros01]. They work for our
purpose, too. That we are working with Remmel’s formulas is just a fashion choice.

The product with [n − 1, 1] has a very easy and explicit description which we
will need from time to time.

Lemma 5.13. [BK99, Lemma 4.1] Let n ≥ 3, and let µ be a partition of n. Then

[µ][n− 1, 1] =

 ∑
A∈Rem(µ)

∑
B∈Add(µA)

[(µA)
B ]

− [µ].

Constituents in Kronecker squares.
For Kronecker squares for some constituents explicit multiplicities are known. We
collect them in the following proposition. The results are from Saxel [Sax87], Zisser
[Zis92], and Vallejo [Val97, Val14] in this form it appeared in [BB17, Proposition
4.2.]

Proposition 5.14. Let λ ` n, λ 6= (n), (1n). Let hk = #{k-hooks in λ} for
k = 1, 2, 3 and h21 = #{non-linear 3-hooks H in λ}. Then

[λ]2 = [n] + a1[n− 1, 1] + a2[n− 2, 2] + b2[n− 2, 12] + a3[n− 3, 3]

+b3[n− 3, 13] + c3[n− 3, 2, 1] + constituents of greater depth

with a1 = h1 − 1, b2 = (h1 − 1)2, a2 = h2 + h1(h1 − 2), for n ≥ 4,
a3 = h1(h1 − 1)(h1 − 3) + h2(2h1 − 3) + h3, for n ≥ 6,

b3 = h1(h1 − 1)(h1 − 3) + (h1 − 1)(h2 + 1) + h21, for n ≥ 4,

c3 = 2h1(h1 − 1)(h1 − 3) + h2(3h1 − 4) + h1 + h21, for n ≥ 5.

In particular, for n ≥ 4 we always have a2 > 0.

Formulas for partitions with small depth.
For products which involve a partition λ of small depth, i.e., λ̂ with 2 or 3 boxes,
[Val97, Theorem 6.3.] gives us a very powerful tool to compute the decomposition
of a product [λ][µ]. We will be needing it several times, that is why we state it here
despite its length.

For a partition λ and a disjoint union of skew diagrams π, we denote by
rλ(π) the number of ways we can remove π from λ such that we obtain a par-
tition. For example rλ( ) = rem(λ), r(42,3,2,12)

( )
= 2, r(42,3,2,12) ( ) = 0, and

r(42,3,2,12)

(
t

)
= 6 (where we use t for the disjoint union of the skew diagrams,

in contrast to ∪ which we use for adding as rows).

Theorem 5.15. [Val97, Theorem 6.3] Let λ, µ be partitions of n.
(1)

g(λ, λ, (n− 2, 2)) = rλ ( ) + rλ

( )
+ rλ ( ) [rλ ( )− 2] .

(2)

g(λ, µ, (n− 2, 2)) =



 ∑
ρ`n−2
ρ⊂λ∩µ

c(2)(λ, µ, ρ)

− 1, if |λ ∩ µ| = n− 1;

c(2)(λ, µ, λ ∩ µ), if |λ ∩ µ| = n− 2;

0, if |λ ∩ µ| < n− 2;

where c(2)(λ, µ, ρ) is given by the value of (λ/ρ, µ/ρ) in the following
table:
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t
t 2 1 1

1 1 0
1 0 1.

(3)

g(λ, µ, (n− 2, 12)) =



(rλ ( )− 1)2, if λ = µ; ∑
ρ`n−2
ρ⊂λ∩µ

d(12)(λ, µ, ρ)

− 1, if |λ ∩ µ| = n− 1;

d(12)(λ, µ, λ ∩ µ), if |λ ∩ µ| = n− 2;

0, if |λ ∩ µ| < n− 2;

where d(12)(λ, µ, ρ) is given by the value of (λ/ρ, µ/ρ) in the following
table:

t
t 2 1 1

1 0 1
1 1 0.

(4)

g(λ, λ, (n− 3, 3)) =rλ ( ) + rλ

( )
+ rλ

( )
+ rλ

( )
+ [2rλ ( )− 3]

[
rλ ( ) + rλ

( )]
+ rλ ( ) [rλ ( )− 1][rλ ( )− 3].

(5)

g(λ, µ, (n− 3, 3)) =



∑
ρ`n−3
ρ⊂λ∩µ

c(3)(λ, µ, ρ)−
∑

ρ`n−2
ρ⊂λ∩µ

c(2)(λ, µ, ρ), if |λ ∩ µ| = n− 1;

∑
ρ`n−3
ρ⊂λ∩µ

c(3)(λ, µ, ρ)− c(2)(λ, µ, λ ∩ µ), if |λ ∩ µ| = n− 2;

c(3)(λ, µ, λ ∩ µ), if |λ ∩ µ| = n− 3;

0, if |λ ∩ µ| < n− 3;

where c(3)(λ, µ, ρ) is given by the value of (λ/ρ, µ/ρ) in the following
table:

t t t t
(rot)

t t 6 3 3 1 1 2
t 3 2 1 1 0 1
t 3 1 2 0 1 1

1 1 0 1 0 0

1 0 1 0 1 0
(rot)

2 1 1 0 0 1.

(6)

g(λ, λ, (n− 3, 2, 1)) =rλ

( )
+ rλ

( )
+ [3rλ ( )− 4]

[
rλ ( ) + rλ

( )]
+ 2rλ ( ) [rλ ( )− 1][rλ ( )− 3] + rλ ( ) .
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(7)

g(λ, µ, (n−3, 2, 1)) =



∑
ρ`n−3
ρ⊂λ∩µ

d(2,1)(λ, µ, ρ)

−
∑

ρ`n−2
ρ⊂λ∩µ

c(12)(λ, µ, ρ) + 1, if |λ ∩ µ| = n− 1;

∑
ρ`n−3
ρ⊂λ∩µ

d(2,1)(λ, µ, ρ)− c(12)(λ, µ, λ ∩ µ), if |λ ∩ µ| = n− 2;

d(2,1)(λ, µ, λ ∩ µ), if |λ ∩ µ| = n− 3;

0, if |λ ∩ µ| < n− 3;

where d(2,1)(λ, µ, ρ) is given by the value of (λ/ρ, µ/ρ) in the following
table:

t t t (′) (′)
(rot)

t t 12 6 2 4
t (′) 6 3 1 2

(′) 2 1 0 1
(rot)

4 2 1 1
and c(12)(λ, µ, ρ) is given by the value of (λ/ρ, µ/ρ) in the following table:

t
t 4 2 2

2 1 1
2 1 1.

(8)

g(λ, λ, (n− 3, 13)) =rλ

( )
+ rλ

( )
+ [rλ ( )− 1]

[
rλ ( ) + rλ

( )
+ 1
]

+ rλ ( ) [rλ ( )− 1][rλ ( )− 3].

(9)

g(λ, µ, (n− 3, 13)) =



∑
ρ`n−3
ρ⊂λ∩µ

d(13)(λ, µ, ρ)

−
∑

ρ`n−2
ρ⊂λ∩µ

d(12)(λ, µ, ρ) + 1, if |λ ∩ µ| = n− 1;

∑
ρ`n−3
ρ⊂λ∩µ

d(13)(λ, µ, ρ)− d(12)(λ, µ, λ ∩ µ), if |λ ∩ µ| = n− 2;

d(13)(λ, µ, λ ∩ µ), if |λ ∩ µ| = n− 3;

0, if |λ ∩ µ| < n− 3;

where d(13)(λ, µ, ρ) is given by the value of (λ/ρ, µ/ρ) in the following table:

t t t t
(rot)

t t 6 3 3 1 1 2
t 3 1 2 0 1 1
t 3 2 1 1 0 1

1 0 1 0 1 0

1 1 0 1 0 0
(rot)

2 1 1 0 0 1.
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This theorem covers the cases of Proposition 5.14, too. We stated both since
we need more than Proposition 5.14, but Proposition 5.14 is a lot more compact
and therefore easier to work with in some of the cases.

2. Adding Partitions

We often use the semigroup property of the Kronecker coefficients to conclude
that a Kronecker product has a constituent of multiplicity greater or equal to 3.
The following results help us to see that a constituent we obtain in this way is not
symmetric.

Lemma 5.16. Let λ and µ be partitions of n such that

w(λ)− l(λ) 6= w(µ)− l(µ)
and ν ` m ∈ N with l(ν) ≤ l(λ) and l(ν) ≤ l(µ). Then

w(λ+ ν)− l(λ+ ν) 6= w(µ+ ν)− l(µ+ ν)

In particular, one of the partitions λ+ ν and µ+ ν is non-symmetric.

Proof: For a symmetric partition α we know that w(α) − l(α) = 0 but our
assumptions on ν imply that l(λ+ν) = l(λ), w(λ+ν) = w(λ)+w(ν) and the same
for µ. If λ+ ν is symmetric this implies

0 = l(λ+ ν)− w(λ+ ν) = l(λ)− w(λ)− w(ν)
but since l(λ)−w(λ) 6= l(µ)−w(µ), we conclude that l(µ+ ν)−w(µ+ ν) 6= 0 and
therefore, µ+ ν is not symmetric. �

Lemma 5.17. Let α, β ` n and λ ` m, where neither α nor β is a linear partition.
Then there are partitions µ, ν ` n such that g(α, β, µ) > 0, g(α, β, ν) > 0 and one
of the partitions λ+ µ, λ+ ν is not symmetric.

Proof: From Theorem 5.5 we know that there are partitions µ, ν ` n such that
the corresponding characters are constituents of [α][β] with maximal length resp.
width. Theorem 5.6 tells us that the length of ν is strictly smaller than the length
of µ and the other way around for the width.

We prove that at least one of the partitions λ+ µ and λ+ ν is not symmetric.
We know that

w(λ+ µ) =w(λ) + w(µ), l(λ+ µ) =max(l(λ), l(µ)),

w(λ+ ν) =w(λ) + w(ν), l(λ+ ν) =max(l(λ), l(ν)),

and l(µ) > l(ν) (because µ is of maximal length),w(ν) > w(µ) (because ν is of
maximal width). We distinguish between 3 cases:

1st case: l(λ) ≥ l(µ) > l(ν). We know

l(λ+ µ) = l(λ+ ν) = l(λ)

but
w(λ+ ν) = w(λ) + w(ν) > w(λ) + w(µ) = w(λ+ µ).

2nd case: l(µ) ≥ l(λ) ≥ l(ν). If we assume that both partitions λ+µ and λ+ ν
are symmetric, we see that

l(λ+ µ) = l(µ) = w(λ) + w(µ)

l(λ+ ν) = l(λ) = w(λ) + w(ν)

but this implies that l(λ) > l(µ) which is a contradiction since w(ν) > w(µ).
3rd case: l(µ) > l(ν) ≥ l(λ). We know l(µ+ λ) = l(µ) > l(ν) = l(ν + λ). Since

w(ν) > w(µ), we conclude

w(µ+ λ) = w(µ) + w(λ) < w(ν) + w(λ) = w(ν + λ).
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So not both of the partitions can be symmetric. �

Lemma 5.18. Let λ and µ be partitions and l ∈ N. If |λ ∩ µ| = k ∈ N, then
|(λ ∪ (l)) ∩ (µ ∪ (l))| = k + l.

Proof: Let i, j be minimal such that λi ≤ l and µj ≤ l. We can assume
that i ≤ j. In the rows above i and under j the intersection of λ and µ does not
change if we add (l) as a row. We see that it is sufficient to consider the partitions
λ̃ = (λi, . . . , λj−1) and µ̃ = (µi, . . . , µj−1), where the parts are zero if the index is
greater than the length of the partition. We know that λi ≤ l and that µj−1 > l,
therefore, λ̃ ⊂ µ̃ and

λ̃ ∪ (l) = (l, λi, . . . , λj−1) ⊂ (µi, . . . , µj−1, l) = µ̃ ∪ (l).

Hence, we know |λ̃ ∩ µ̃| =
j−1∑
r=i

λr. We see that |λ̃ ∩ µ̃|+ l = |(λ̃ ∪ (l)) ∩ (µ̃ ∪ (l))| �
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CHAPTER 6

Kronecker products with hooks

Now we want to start proving Theorem 5.1. We begin with the case that one
of the partitions λ and µ is a hook. Without loss of generality we can assume this
is λ. The products of Theorem 5.1 which involve a hook are:

Proposition 6.1. Let λ, µ ` n, where λ is a hook. Then g(λ, µ) ≤ 2 if and only if
one of the following conditions is satisfied (up to conjugation of λ or µ):

(1) The product [λ][µ] is multiplicity-free [BB17], i.e., it is one of the following
cases:
(a) One of the partitions is linear;
(b) λ = (n− 1, 1) and µ is a fat hook;
(c) λ = (n− 2, 12) and µ is a rectangle;
(d) n = 2k is even and µ = (k, k).

(2) both partitions are hooks;
(3) if µ is one of the following partitions(n

2
,
n

2

)
,

(
n+ 1

2
,
n− 1

2

)
, (n− 2, 2) ;

(4) l(λ) ≤ 3 or λ1 ≤ 3 and µ is a two-line partition;
(5) l(λ) ≤ 4 or λ1 ≤ 4 and µ is a rectangle;
(6) λ = (n− 1, 1) and rem(µ) ≤ 3;
(7) n = ab− 1, λ = (n− 2, 12) and µ = (ab−1, a− 1);
(8) λ = (5, 14) and µ = (33).

Together with this we want to prove another proposition:

Proposition 6.2. Let λ, µ ` n such that λ is a hook and g(λ, µ) ≥ 2. The product
[λ][µ] has two constituents with multiplicity 3 or higher of which at least one is not
symmetric unless the pair λ, µ is from the following list:

(1) λ(
′) = (n− 1, 1);

(2) n = ab+ 1, λ(
′) = (n− 2, 12) and µ(′) = (ab, 1);

(3) λ(
′) = (n− 3, 13) and µ is a two-line partition;

(4) λ(
′) = (4, 12) and µ = (3, 2, 1).

1. Formulas for stated products

In this section we prove that all the products stated in Proposition 6.1 only
contain constituents with multiplicity 1 and 2. We do this by stating the decompo-
sitions of these products. For a lot of these products the decomposition is already
known, but still for some of them we need to prove the formulas.

Products with [n− 1, 1].
From Lemma 5.13 we obtain the following corollary for products with [n− 1, 1]:

Corollary 6.3. For µ ` n the product [n− 1, 1][µ] only contains constituents with
multiplicity 1 and 2 if and only if rem(µ) ≤ 3. Further, all the non-symmetric
constituents have multiplicity 1 and 2 if and only if rem(µ) ≤ 3 or µ = µ′.
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Formulas for stated products

Products with [n− 2, 12].
For products with [n− 2, 12] we use Theorem 5.15 to calculate the decompositions.

Lemma 6.4. Let λ = (λ1, λ2) ` n ≥ 5 be a two-row partition with λ1 > λ2 > 1
and µ = (n− 2, 12). The product [λ][µ] decomposes as:

[λ1 + 1, λ2 − 1] + [λ] + 2[λ1, λ2 − 1, 1] + [λ1 − 1, λ2 − 1, 12]

+ χ(λ2≥3)([λ1, λ2 − 2, 12] + [λ1 − 1, λ2 − 1, 2] + [λ1 + 1, λ2 − 2, 1])

+ χ(λ1−λ2≥2)([λ1 − 2, λ2, 1
2] + [λ1 − 1, λ2 + 1])

+ χ(λ1−λ2≥3)[λ1 − 2, λ2 + 1, 1] + (1 + χ(λ1−λ2≥2))[λ1 − 1, λ2, 1].

Proof: We use part (3) from Theorem 5.15 to prove the formula. Let [ν] be a
constituent of [λ][µ]. We know that |λ ∩ ν| ≥ n− 2. If |λ ∩ ν| = n− 2, ν is one of
the following partitions

(λ1 − 2, λ2, 1
2), (λ1 − 2, λ2, 2), (λ1 − 2, λ2 + 1, 1), (λ1 − 2, λ2 + 2),

(λ1 − 1, λ2 − 1, 12), (λ1 − 1, λ2 − 1, 2), (λ1, λ2 − 2, 12), (λ1, λ2 − 2, 2),

(λ1 + 1, λ2 − 2, 1), (λ1 + 2, λ2 − 2).

For λ1 − λ2, λ2 < 4 some of these are not partitions, these do not occur. We
order them after the multiset M which contains the basic skew diagrams which
correspond to {λ/(λ ∩ ν), ν/(λ ∩ ν)}.

• For the following partitions M equals
{

,
}
. The corresponding char-

acters occur with multiplicity 1:

(λ1 − 2, λ2, 1
2), (λ1, λ2 − 2, 12),

where the first partition only occurs if λ1 − 2 ≥ λ2 and the second one
only if λ2 ≥ 3.
• For the following partitions M equals { , }. The corresponding

characters do not occur in the decomposition:

(λ1 − 2, λ2 + 2), (λ1, λ2 − 2, 2), (λ1 − 2, λ2, 2), (λ1 + 2, λ2 − 2).

• For the following partitions M equals { t , }. The corresponding
characters occur with multiplicity 1:

(λ1 − 2, λ2 + 1, 1), (λ1 − 1, λ2 − 1, 2), (λ1 + 1, λ2 − 2, 1),

where the first partition only occurs if λ1 − 3 ≥ λ2 and the other ones
only if λ2 ≥ 3.
• The last partition ν such that the intersection with λ consists of n − 2

boxes is (λ1−1, λ2−1, 12). Here the multisetM is of the form
{
t ,

}
.

Therefore, the corresponding character occurs with multiplicity 1.
If |λ ∩ µ| = n− 1, we know that ν is one of the partitions

(λ1 + 1, λ2 − 1), (λ1, λ2 − 1, 1), (λ1 − 1, λ2, 1), (λ1 − 1, λ2 + 1),

where (λ1−1, λ2+1) only occurs if λ 6= (n+1
2 , n−12 ) for an odd n. For these different

possibilities for ν we have to look at the partitions ρ ` n − 2 which are contained
in λ ∩ ν and the multiset M = {λ/ρ, ν/ρ}.

• For ν = (λ1 + 1, λ2 − 1) the possibilities for ρ are: (λ1, λ2 − 2) and
(λ1 − 1, λ2 − 1). For both possibilities M = { , t }. Therefore,
[λ1 + 1, λ2 − 1] occurs with multiplicity 1.
• For ν = (λ1, λ2 − 1, 1) the possibilities for ρ are: (λ1, λ2 − 2) where
M = { , t } and (λ1 − 1, λ2 − 1) where M = { t , t }.
Therefore, [λ1, λ2 − 1, 1] occurs with multiplicity 2.
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• For ν = (λ1 − 1, λ2, 1) the possibilities for ρ are: (λ1 − 2, λ2) where
M = { , t } and (λ1 − 1, λ2 − 1) with { t , t }. Therefore,
[λ1 − 1, λ2, 1] occurs with multiplicity 2 if λ1 − 2 ≥ λ2, and multiplicity 1
otherwise.
• For ν = (λ1 − 1, λ2 + 1) the possibilities for ρ are: (λ1 − 2, λ2) and
(λ1 − 1, λ2 − 1) for both M = { , t }. Therefore, [λ1 − 1, λ2 + 1]
occurs with multiplicity 1 if λ1 − 2 ≥ λ2, and 0 otherwise.

If |λ ∩ ν| = n, we know that ν = λ and

g(λ, λ, µ) = (rem(λ)− 1)2 = (2− 1)2 = 1.

�

For the rest of this section we will spend finding the decompositions of the
products from Proposition 6.1 using Theorem 5.15, like in the last lemma.

Lemma 6.5. (1) Let n = ab + a − 1, where a ≥ 4 and b ≥ 2. The product
[n− 2, 12][ab, a− 1] decomposes as follows:

[ab−2, (a− 1)3, 2] + [ab−1, a− 1, a− 2, 12] + [ab−1, a− 1, a− 2, 2]

+ 2[ab−1, (a− 1)2, 1] + [ab, a− 3, 12] + 2[ab, a− 2, 1] + [ab, a− 1]

+ χ(b>2)[a+ 1, ab−3, (a− 1)3, 1] + 2[a+ 1, ab−2, a− 1, a− 2, 1]

+ 2[a+ 1, ab−2, (a− 1)2] + [a+ 1, ab−1, a− 3, 1] + 2[a+ 1, ab−1, a− 2]

+ χ(b>2)[(a+ 1)2, ab−3, a− 1, a− 2] + [(a+ 1)2, ab−2, a− 3]

+ χ(b>2)[a+ 2, ab−3, (a− 1)3] + [a+ 2, ab−2, a− 1, a− 2].

(2) Let n = ab+1, where a ≥ 3, b ≥ 2. The product [n−2, 12][ab, 1] decomposes
as follows:

[ab−2, (a− 1)2, 2, 1] + χ(a>3)[a
b−2, (a− 1)2, 3] + [ab−1, a− 2, 13]

+ χ(a>3)[a
b−1, a− 2, 2, 1] + 2[ab−1, a− 1, 12] + 2[ab−1, a− 1, 2] + [ab, 1]

+ χ(b>2)[a+ 1, ab−3, (a− 1)2, 12] + χ(b>2)[a+ 1, ab−3, (a− 1)2, 2]

+ [a+ 1, ab−2, a− 2, 12] + χ(a>3)[a+ 1, ab−2, a− 2, 2]

+ 3[a+ 1, ab−2, a− 1, 1] + [a+ 1, ab−1] + χ(b>2)[(a+ 1)2, ab−3, a− 2, 1]

+ χ(b>2)[(a+ 1)2, ab−3, a− 1] + χ(b>2)[a+ 2, ab−3, (a− 1)2, 1]

+ [a+ 2, ab−2, a− 1].

Proof: As for the other proofs in this section we use Theorem 5.15 for both
parts.

(1): Let λ = (ab, a− 1) and µ ` n. Theorem 5.15 (3) provides the multiplicity
g(λ, µ, ν) depending on λ∩ν. If |λ∩µ| < n−2, [µ] is not a constituent of [λ][n−2, 12].
If |λ∩µ| = n−2, we sort the partitions by the multisetM of the diagrams λ/(λ∩µ)
and µ/(λ ∩ µ).

• There is just one partition µ such that M = { t , t } namely

(a+ 1, ab−2, a− 1, a− 2, 1).

The corresponding character has multiplicity 2.
• The partitions µ where M = { , t } are

(a+ 2, ab−2, a− 1, a− 2), (a+ 1, ab−1, a− 3, 1),

(ab−1, a− 1, a− 2, 2).

The corresponding characters have multiplicity 1.
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Formulas for stated products

• The partitions µ with M =
{

, t
}

are

((a+ 1)2, ab−3, a− 1, a− 2), (a+ 1, ab−3, (a− 1)3, 1),

(ab−1, a− 1, a− 2, 12),

where ((a+1)2, ab−3, a−1, a−2) and (a+1, ab−3, (a−1)3, 1) do not occur
if b = 2. The corresponding characters have multiplicity 1.
• The partitions µ where M =

{
,

}
are

(a+ 2, ab−3, (a− 1)3), ((a+ 1)2, ab−2, a− 3),

(ab, a− 3, 12), (ab−2, (a− 1)3, 2),

where (a + 2, ab−3, (a − 1)3) does not occur if b = 2. The corresponding
characters have multiplicity 1.
• For the remaining partitions µ where M equals { , } or

{
,
}

the
corresponding characters have multiplicity 0.

If |λ ∩ µ| = n− 1, we have four possibilities for µ.
• If µ = (a+1, ab−1, a−2), (ab, a−2, 1), the possibilities for ρ ` n− 2, with
ρ ⊂ λ ∩ µ are (ab, a− 3), (ab−1, a− 1, a− 2). This means

g(λ, (n− 2, 12), (a+ 1, ab−1, a− 2)) = 2 + 1− 1 = 2,

g(λ, (n− 2, 12), (ab, a− 2, 1)) = 2 + 1− 1 = 2.

• If µ = (a+1, ab−2, (a−1)2), (ab−1, (a−1)2, 1), the possibilities for ρ ` n−2,
with ρ ⊂ λ ∩ µ are (ab−1, a− 1, a− 2), (ab−2, (a− 1)3). This means

g(λ, (n− 2, 12), (a+ 1, ab−2, (a− 1)2)) = 2 + 1− 1 = 2,

g(λ, (n− 2, 12), (ab−1, (a− 1)2, 1)) = 2 + 1− 1 = 2.

The last case we have to look at is µ = λ. Here we know

g(λ, λ, (n− 2, 12)) = (rem(λ)− 1)2 = 1.

(2): Let λ = (ab, 1) and µ ` n. If |λ ∩ µ| < n − 2, g(λ, (n − 2, 12), µ) = 0. If
|λ∩ µ| = n− 2, we sort the partitions by the multiset M = {λ/(λ∩ µ), µ/(λ∩ µ)}.

• There is no partition µ ` n such that M = { t , t }.
• The partitions µ with M = { , t } are

(a+ 2, ab−2, a− 1), (a+ 1, ab−2, a− 2, 2),

(a+ 1, ab−2, a− 2, 12), (ab−1, a− 2, 2, 1),

where the second and the fourth only occur if a > 3. The corresponding
characters have multiplicity 1.
• The partitions µ with M =

{
, t

}
are

((a+ 1)2, ab−3, a− 1), (a+ 1, ab−3, (a− 1)2, 2),

(a+ 1, ab−3, (a− 1)2, 12), (ab−2, (a− 1)2, 2, 1),

where the first three only occur if b > 2. The corresponding characters
have multiplicity 1.
• The partitions µ with M =

{
,

}
are

(a+ 2, ab−3, (a− 1)2, 1), ((a+ 1)2, ab−3, a− 2, 1),

(ab−1, a− 2, 13), (ab−2, (a− 1)2, 3),
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where the first two only occur if b > 2 and the last one only if a > 3. The
corresponding characters have multiplicity 1.
• The remaining partitions µ where M equals { , } or

{
,
}

have
multiplicity 0.

If |λ ∩ µ| = n− 1, we have four possibilities for µ.
• If

µ = (a+ 1, ab−2, a− 1, 1), (ab−1, a− 1, 2), (ab−1, a− 1, 12),

the possibilities for ρ ` n− 2, ρ ⊂ λ ∩ µ are

(ab−1, a− 1), (ab−1, a− 2, 1), (ab−2, (a− 1)2, 1)

and we get

g(λ, (n− 2, 12), (a+ 1, ab−2, a− 1, 1)) = 2 + 1 + 1− 1 = 3,

g(λ, (n− 2, 12), (ab−1, a− 1, 2)) = 1 + 1 + 1− 1 = 2,

g(λ, (n− 2, 12), (ab−1, a− 1, 12)) = 1 + 1 + 1− 1 = 2.

• If µ = (a + 1, ab−1), the only possibility for ρ ` n − 2, ρ ⊂ λ ∩ µ is
(ab−1, a − 1). With this we obtain that g(λ, (n − 2, 12), (a + 1, ab−1)) =
2− 1 = 1.

The last case we again look at is µ = λ. We know

g(λ, λ, (n− 2, 12)) = (rem(λ)− 1)2 = 1.

�

Product of [n− 3, 13] with a rectangle.

Lemma 6.6. Let n = ab, where a ≥ 4, b ≥ 3. Then [n− 3, 13][ab] is given by

[ab−3, (a− 1)3, 3] + [ab−2, a− 1, a− 2, 2, 1] + [ab−2, (a− 1)2, 12]

+ [ab−2, (a− 1)2, 2] + [ab−1, a− 3, 13] + [ab−1, a− 2, 12] + [ab−1, a− 2, 2]

+ [ab−1, a− 1, 1] + [ab] + χ(b>3)[a+ 1, ab−4, (a− 1)3, 2]

+ [a+ 1, ab−3, a− 1, a− 2, 12] + [a+ 1, ab−3, a− 1, a− 2, 2]

+ 2[a+ 1, ab−3, (a− 1)2, 1] + [a+ 1, ab−2, a− 3, 12] + 2[a+ 1, ab−2, a− 2, 1]

+ [a+ 1, ab−2, a− 1] + χ(b>3)[(a+ 1)2, ab−4, a− 1, a− 2, 1]

+ χ(b>3)[(a+ 1)2, ab−4, (a− 1)2] + [(a+ 1)2, ab−3, a− 3, 1]

+ [(a+ 1)2, ab−3, a− 2] + χ(b>3)[(a+ 1)3, ab−4, a− 3]

+ χ(b>3)[a+ 2, ab−4, (a− 1)3, 1] + [a+ 2, ab−3, a− 1, a− 2, 1]

+ [a+ 2, ab−3, (a− 1)2] + [a+ 2, ab−2, a− 2]

+ χ(b>3)[a+ 2, a+ 1, ab−4, a− 1, a− 2] + χ(b>3)[a+ 3, ab−4, (a− 1)3].

Proof: As before, we use Theorem 5.15 to prove this lemma. This time we need
parts (8) and (9) of the theorem. Let λ = (ab) and ν ` n = ab. If |λ ∩ ν| < n− 3,

g(λ, (n− 3, 13), ν) = 0.

If |λ ∩ ν| = n − 3, we again differ by the multiset M := {λ/(λ ∩ ν), ν/(λ ∩ ν)}.
There is no partition ν such that t t is an element of M . Neither is there
a partition ν such that M is given by { (′) t , (′) t } (for all four possible
choices). Both these statements follow from the fact that (ab) has one removable
and two addable nodes. Thus, we know that λ/(λ ∩ ν) is connected and ν/(λ ∩ ν)
has at most two connected components.
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Formulas for stated products

• The possibilities for ν such that M is given by
{

t ,

}
are

(a+ 2, ab−4, (a− 1)3, 1), (a+ 1, ab−4, (a− 1)3, 2).

Both only occur if b > 3. The corresponding characters have multiplicity
1.
• The possibilities for ν such that M =

{
t ,

(rot)}
are

(a+ 2, ab−3, a− 1, a− 2, 1), (a+ 1, ab−3, a− 1, a− 2, 2).

The corresponding characters have multiplicity 1.
• The possibilities for ν such that M =

{
t ,

}
are

((a+ 1)2, ab−3, a− 3, 1), (a+ 1, ab−2, a− 3, 12).

The corresponding characters have multiplicity 1.
• The possibilities for ν such that M is given by

{
t ,

(rot)}
are

((a+ 1)2, ab−4, a− 1, a− 2, 1), (a+ 1, ab−3, a− 1, a− 2, 12),

where the first one only occurs if b > 3. The corresponding characters
have multiplicity 1.

• The possibilities for ν such that M is given by
{

,

}
are

(a+ 3, ab−4, (a− 1)3), ((a+ 1)3, ab−4, a− 3), (ab−1, a− 3, 13),

(ab−3, (a− 1)3, 3),

where the first two only occur if b > 3. The corresponding characters have
multiplicity 1.
• The possibilities for ν such that M is given by

{ (rot)
,

(rot)}
are

(a+ 2, a+ 1, ab−4, a− 1, a− 2), (ab−2, a− 1, a− 2, 2, 1),

where the first one only occurs if b > 3. The corresponding characters
have multiplicity 1.
• For partitions ν ` n with |λ ∩ ν| = n − 3 with a different M we have
g(λ, (n− 3, 13), ν) = 0.

In the next step we look at the partitions ν ` n such that |λ ∩ ν| = n− 2.
• If ν is one of the partitions

(a+ 2, ab−3, (a− 1)2), ((a+ 1)2, ab−4, (a− 1)2),

(a+ 1, ab−3, (a− 1)2, 1), (ab−2, (a− 1)2, 2),

(ab−2, (a− 1)2, 12),

where ((a+1)2, ab−4, (a−1)2) only occurs if b > 3, λ∩ν = (ab−2, (a−1)2)
and {ρ ` n− 3 | ρ ⊂ λ ∩ ν} = {(ab−2, a− 1, a− 2), (ab−3, (a− 1)3)}. This
tells us that

g(λ, (n− 3, 13), (a+ 2, ab−3, (a− 1)2)) = 1 + 1− 1 = 1,

g(λ, (n− 3, 13), ((a+ 1)2, ab−4, (a− 1)2)) = 1 + 0− 0 = 1,

g(λ, (n− 3, 13), (a+ 1, ab−3, (a− 1)2, 1)) = 2 + 1− 1 = 2,

g(λ, (n− 3, 13), (ab−2, (a− 1)2, 2)) = 1 + 1− 1 = 1,

g(λ, (n− 3, 13), (ab−2, (a− 1)2, 12)) = 1 + 0− 0 = 1,

where ((a+ 1)2, ab−4, (a− 1)2) only occurs if b > 3.
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• The remaining partitions ν ` n such that |λ ∩ ν| = n− 2 are

(a+ 2, ab−2, a− 2), ((a+ 1)2, ab−3, a− 2), (a+ 1, ab−2, a− 2, 1)),

(ab−1, a− 2, 2), (ab−1, a− 2, 12).

For these partitions λ ∩ ν = (ab−1, a− 2) and

{ρ ` n− 3 | ρ ⊂ λ ∩ ν} = {(ab−1, a− 3), (ab−2, a− 1, a− 2)}.
This tells us that

g(λ, (n− 3, 13), (a+ 2, ab−2, a− 2)) = 0 + 1− 0 = 1,

g(λ, (n− 3, 13), ((a+ 1)2, ab−3, a− 2) = 1 + 1− 1 = 1,

g(λ, (n− 3, 13), (a+ 1, ab−2, a− 2, 1))) = 1 + 2− 1 = 2,

g(λ, (n− 3, 13), (ab−1, a− 2, 2)) = 0 + 1− 0 = 1,

g(λ, (n− 3, 13), (ab−1, a− 2, 12)) = 1 + 1− 1 = 1.

In the next step we look at the partitions ν ` n such that |λ∩ν| = n−1. There
are two such partitions, (a+1, ab−2, a− 1) and (ab−1, a− 1, 1). For both partitions
λ ∩ ν = (ab−1, a− 1) and {ρ ` n− 2 | ρ ⊂ λ ∩ ν} = {(ab−1, a− 2), (ab−2, (a− 1)2)}.
Further,

{ρ ` n− 3 | ρ ⊂ λ ∩ ν} = {(ab−1, a− 3), (ab−2, a− 2, a− 1), (ab−3, (a− 1)3)}.
As a consequence

g(λ, (n− 3, 13), (a+ 1, ab−2, a− 1)) = 0 + 2 + 0− 1− 1 + 1 = 1,

g(λ, (n− 3, 13), (ab−1, a− 1, 1)) = 0 + 2 + 0− 1− 1 + 1 = 1.

Finally, we consider

g(λ, (n− 3, 13), λ) = 0 + 1 + (1− 1)(1 + 1 + 1) + 1(1− 1)(1− 3) = 1.

This concludes the proof. �

With these decompositions we now have more or less explicit formulas for all
the products from the first half of the Proposition 6.1.

One direction of the proof of Proposition 6.1.

Lemma 6.7. If λ, µ ` n are listed in Proposition 6.1, g(λ, µ) ≤ 2.

Proof: We just have to collect the formulas we already have. The multiplicity-
free products have been classified in [BB17, Theorem 1.1.]. Proposition 6.1 (2)
follows directly from Theorem 5.11.

The products of the form
[
n
2 ,

n
2

]
[hook] appear in the list of multiplicity-free

Kronecker products of [BB17, Theorem 1.1.]. For the other products of Proposi-
tion 6.1 (3) and (4) we take the formula from Theorem 5.12. The theorem tells us
that all the constituents are hooks or double-hooks and that hooks have at most
multiplicity 2, so we only have to look at the double-hooks. For the double-hooks
only Theorem 5.12 (3)(c) and (d) can provide constituents with multiplicity higher
than 2. Let n = 2k + 1, λ ` n be a hook and µ = (k + 1, k). Further, let
ν = (n4, n3, 2

d2 , 1d1) be a constituent with multiplicity 3 of [λ][µ] (so it is from
Theorem 5.12 (3)(c) or (d)). In both parts we see that k − d2 ≤ n3 + d1 − 1 and
k−d2 ≤ n4−1. But if we add both inequalities, we obtain 2k−2d2 ≤ n4+n3+d1−2,
which is equivalent to n − 1 ≤ n − 2, which is obviously a contradiction. If λ is a
hook and µ = (n− 2, 2), we see that the first summand from Theorem 5.12 (3)(c)
and (d) is 0. If λ = (n− 2, 12) and µ = (µ1, µ2) is a two-row partition, we see that
d1 = 1 and d2 = 0 for Theorem 5.12 (3)(c) resp. d1 = d2 = 0 for (d). Therefore,
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Formulas for stated products

the first summand from Theorem 5.12 (3)(c) and (d) equals 0 if µ2 6= n3+1. But in
this case, the third summand equals 0. This proves that the products from Proposi-
tion 6.1 (3) and (4), which are not multiplicity-free, only contain constituents with
multiplicity 1 and 2.

We proved Proposition 6.1 (5) in Lemma 6.6. Proposition 6.1 (6) follows from
Corollary 6.3. Proposition 6.1 (7) we is given by in Lemma 6.5 and to prove Propo-
sition 6.1 (8) we calculate the decomposition with Sage. Therefore, we know that
g((5, 14), (33)) = 2. �

In the next step we want to collect the information we already have to prove
one direction of Proposition 6.2.

Lemma 6.8. All the products listed in Proposition 6.2 only have one constituent
with multiplicity greater or equal to 3 or just symmetric constituents with multiplic-
ity greater or equal to 3.

Proof: Proposition 6.2 (1) follows from Lemma 5.13. Proposition 6.2 (2) fol-
lows from Lemma 6.5. We check Proposition 6.2 (3) with Theorem 5.12. Let
λ = (n − 3, 13), µ = (µ1, µ2) be a two-row partition and ν = (n4, n3, 2

d2 , 1d1) be
a constituent of their product. Only from Theorem 5.12 (3)(c) we obtain a con-
stituent with multiplicity 3 and with the same argument as for λ = (n − 2, 12) in
the previous lemma we see that d1 = 2, d2 = 0. Additionally, we see from The-
orem 5.12 (3)(c) that we obtain a constituent with multiplicity greater or equal
to 3 if and only if µ1 − 2 ≥ µ2, µ2 ≥ 3, µ1 − 1 = n4 and µ2 − 1 = n3. Which
proves that the product has at most one constituent with multiplicity 3, namely
ν = (µ1 − 1, µ2 − 1, 12), and none with a higher multiplicity. Further, we see that
if n 6= 8, ν is not symmetric. Proposition 6.2 (4) was checked with Sage. �

2. Other products with hooks contain a constituent with multiplicity 3
or higher

Now we want to prove the other direction of Proposition 6.1 and 6.2. We split
the proof into four lemmas. We distinguish the cases according to the diagonal
length of the partitions. For that we recall the following notation: If λ is a partition,
d(λ) is the number of boxes on the main diagonal of λ, called Durfee size of the
partition λ. We use the semigroup property of the Kronecker coefficients to reduce
the pair (λ, µ) to a pair (λ̃, µ̃) for which we know that g(λ̃, µ̃) ≥ 3 and find ν̃ such
that g(λ̃, µ̃, ν̃) ≥ 3 and that one of the partitions that we obtain from ν̃ with the
semigroup property is not symmetric. We will call such a pair (λ̃, µ̃) a seed (for λ,
µ). Depending on the statement we want to prove we will sometimes need seeds
(λ̃, µ̃) such that the corresponding product [λ̃][µ̃] has at least 2 constituents with
multiplicity 3 or higher. For these seeds we will say that they have 2 constituents
with multiplicity 3 or higher even though we mean that the corresponding product
[λ̃][µ̃] has two constituents with multiplicity 3 or higher. The lemmas we want to
prove have all been checked with Sage up to n = 22, so in the following proofs we
do not have to look at the smaller cases.

Durfee size of 2 or 3.

Lemma 6.9. Let λ, µ ` n, where λ is a hook and d(µ) ≤ 3.
(1) If λ, µ are not listed in Proposition 6.1, g(λ, µ) ≥ 3.
(2) If λ, µ are neither listed in Proposition 6.1 nor in Proposition 6.2, [λ][µ]

has two constituents with multiplicity greater or equal to 3 of which one
is not symmetric.
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Proof: We verified the lemma up to n = 22 so we can assume that n ≥ 23.
If d(µ) = 1 we know that g(λ, µ) ≤ 2 and λ, µ are listed in Proposition 6.1.
Therefore, we can assume that d(µ) ≥ 2. Further, by Corollary 6.3 we can assume
that w(λ), l(λ) ≥ 3.

1st case: λ = (n− i, 1i) and µ = (n− j, j). We assume that w(λ) ≥ l(λ). We
know that i ≥ 3 and that n − j 6= j, j + 1 and j 6= 1, 2 (otherwise, the product
would be listed in Proposition 6.1).

We distinguish between two cases. First let i ≥ 4. We can choose a, b, c, d ∈ N0

in such a way that µ = µ̃ + (a, b) + (c, d), where µ̃ = (7, 3), (6, 4), (7, 5) as well as
a+ b = n− i− 6, n− i− 7 and c + d = i − 4, i − 5. First we cut off (a, b) from µ
and (a+ b) from λ, then we conjugate the hook and cut off (c+ d) from the hook
and (c, d) from the two-row partition. We obtain one of the seeds

((7, 3), (6, 14)), ((6, 4), (6, 14)), ((7, 5), (7, 15)).

For all three seeds we check that the product of their corresponding characters has
two constituents which have multiplicity 3, length and width greater than 2 and the
differences of length and width are different, therefore, we can apply Lemma 5.16,
which yields the result in this case.

If i = 3, we have seen in the previous lemma that (n − j − 1, j − 1, 12) is
a constituent with multiplicity 3 if n − 2j ≥ 2 and j ≥ 3. Alternatively, we
could use the semigroup property to reduce it to one of the seeds ((7, 3), (7, 13)) or
((6, 4), (7, 13)). By conjugation symmetry we can assume that µ is not a two-line
partition.

2nd case: λ = (n− i, 1i) and µ ` n is a double-hook with l(µ), w(µ) ≥ 3. We
prove this by induction. For n = 21, 22 we check with Sage, that all products which
are neither from Proposition 6.1 nor from Proposition 6.2 contain two constituents
[α] and [β] with multiplicity 3 or higher such that w(α), l(α), w(β), l(β) ≥ 2 and
w(α) − l(α) 6= w(β) − l(β). Since n ≥ 23 we can assume that w(µ) ≥ 7 as well as
w(λ) ≥ 12. By Lemma 6.5 we can exclude the case that n is odd, λ = (n − 2, 12)
and µ = (n−12 , n−12 , 1). We remove the second column from the right from µ and
the same number of columns of length 1 from λ to obtain λ̃ and µ̃. We remove
just a column of length 1 or 2 so the result will follow from Lemma 5.16 if we
show that λ̃ and µ̃ are neither from Proposition 6.1 nor from Proposition 6.2. Since
l(µ̃) = l(µ) ≥ 3, w(µ̃) = w(µ) − 1 ≥ 6 and d(µ̃) = d(µ) = 2, know that µ̃ is not a
rectangle nor a two-line partition nor (a, a, a − 1) for some a. Additionally, since
we removed the second column from the right from µ, we know that µ̃ = (a2, 1) for
some a if and only if µ = ((a+ 1)2, 1). Therefore we see that λ̃, µ̃ are neither from
Proposition 6.1 nor from Proposition 6.2 if λ, µ are not listed in these propositions.

3rd case: d(µ) = 3. We can prove this case by induction like the previous case.
For n = 20, 21, 22 we check with Sage, that all products which are neither from
Proposition 6.1 nor from Proposition 6.2 contain two constituents [α] and [β] with
multiplicity 3 or higher, w(α), l(α), w(β), l(β) ≥ 3 and w(α)− l(α) 6= w(β)− l(β).
Since n ≥ 23 we can assume by conjugation that w(µ) ≥ 6 as well as w(λ) ≥ 12. By
Lemma 6.5 we can exclude the case that n = 3a+1, λ = (n−2, 12) and µ = (a3, 1).
We remove the fourth column from the left from µ and the same number of columns
of length 1 from λ to obtain λ̃ and µ̃. We remove just a column of length 1, 2 or 3
so the result will follow from Lemma 5.16 if we show that λ̃ and µ̃ are neither from
Proposition 6.1 nor from Proposition 6.2. We know that µ̃ = (a3) is a rectangle if
and only if µ = ((a+1)3). Further, d(µ̃) = d(µ) = 3. Since w(µ̃) ≥ 5, we know that
µ̃ 6= (a3, a− 1) for some a. We know that if l(µ) = 3, w(µ) ≥ 8. Since we removed
the fourth column from the left, we also know that µ̃ = (a2, a−1) for some a if and
only if µ̃ = ((a + 1)2, a). We still know that µ̃ = (a3, 1) for some a if and only if
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Other products with hooks contain a constituent with multiplicity 3 or higher

µ = ((a+1)3, 1). Therefore we see that λ̃, µ̃ neither from Proposition 6.1 nor from
Proposition 6.2 if λ, µ are not listed in these propositions. �

Squares.

Lemma 6.10. Let n = a2 ≥ 16, λ ` n be a hook with l(λ), w(λ) ≥ 5 and µ = (aa).
There α, β ` n with rem(α), rem(β) ≥ 2, l(α), w(α) ≥ a+1, l(β) ≥ a, w(β) ≥ a+2
and l(α)− w(α) 6= l(β)− w(β) such that g(λ, (aa), α) ≥ 3 and g(λ, (aa), β) ≥ 3.

Proof: We prove this by induction on a. For a = 4 we obtain the result with
Sage. For a ≥ 5 we use the semigroup property. We add a column of length a
and a row of length a + 1. There is a hook λ̃ ` a2 such that λ ` (a + 1)2 can be
obtained from λ̃ by adding first (a), then maybe transposing the partition and then
adding (a+ 1). If l(λ) ≤ a+ 5, w(λ) ≥ a2 + a− 6 ≥ 2a+ 6. Thus, λ̃ can be chosen
in such a way that w(λ̃) and l(λ̃) ≥ 5. By induction we find constituents [α̃] and
[β̃] of [λ̃][aa] with multiplicity greater or equal to 3, such that l(α̃), w(α̃) ≥ a + 1,
rem(α), rem(β) ≥ 2, l(β̃) ≥ a,w(β̃) ≥ a + 2 and l(α̃) − w(α̃) 6= l(β̃) − w(β̃). We
distinguish between the case where we transpose and the case where we do not
transpose.

1st case: We do not transpose λ̃+ (a) before adding (a+ 1). In this case the
partitions α := (α̃+ (1a))′ + (1a+1) and β := (β̃′+(1a))′+(1a+1) have the desired
properties, since l(α) = l(α̃)+1, w(α) = w(α̃)+1 and the same holds for β. Thanks
to Theorem 5.8 we know that g(λ, ((a+ 1)a+1), α), g(λ, ((a+ 1)a+1), β) ≥ 3.

2nd case: We transpose λ̃+ (a) before adding (a+ 1). In this case we have the
partitions β := α̃′ + (1a) + (1a+1) and α := β̃′ + (1a) + (1a+1) with the desired
properties, where we can exchange α̃ and β̃ by α̃′ and β̃′ since (aa) is symmetric.
Here w(α) = l(β̃) + 2, l(α) = w(β̃), w(β) = l(α̃) + 2 and l(β) = w(α̃). Thanks to
Theorem 5.8 we know that g(λ, ((a+ 1)a+1), α), g(λ, ((a+ 1)a+1), β) ≥ 3. �

Durfee size greater than 3.

Lemma 6.11. Let λ = (n− i, 1i), where n− i, i+ 1 ≥ 5 and µ ` n with d(µ) ≥ 4.
Then [λ][µ] has two constituents with multiplicity greater or equal to 3 of which at
least one is not symmetric.

Proof: If we can reduce λ, µ to a pair λ̃, (d(µ)d(µ)), where λ̃ is a hook with
w(λ̃), l(λ̃) ≥ 5, we get the result by Lemma 5.16 and 6.10. It is obvious that we
can reduce λ, µ to a pair λ̃, (d(µ)d(µ)), where λ̃ is a hook. Now we want to show
that we can remove the columns and rows in such a way that l(λ̃), w(λ̃) ≥ 5. We
remove all columns and rows individually. We know that all columns and rows
that we remove have less or equal to d(µ) boxes. If l(λ) < d(µ) + 5, we know that
w(λ) > d(µ) + 5 since l(λ) + w(λ)− 1 = n ≥ d(µ)2 for d(µ) ≥ 4. If we repeat this
for all rows underneath and all columns to the right of (d(µ)d(µ)), we obtain the
result. �

Lemma 6.12. Let λ = (n− i, 1i), where i = 2, 3 and µ ` n with d(µ) ≥ 4 such that
λ, µ is not from one of the lists in Proposition 6.1 or Proposition 6.2. Then there
are two constituents with multiplicity 3 or higher of which one is not symmetric.

Proof: 1st case: i = 3. We know that µ is not a rectangle, therefore, µ has two
rows of different lengths. If µ1 > µ2 > µ3 we can remove (µ1 − µ2) from λ and µ
without reducing µ to a rectangle. Thus, we can assume that µ has two rows of
the same length which are longer than 3. Hence, we reduce µ to either (4, 3, 3) or
(4, 4, 3) if the rows of different length have length ≥ 3, to (4, 4, 3)′ if the smaller
row has length 2, and to (4, 3, 3)′ if the smaller row has length 1. Further, from
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λ we only remove boxes from the arm. For all four seeds ((4, 3, 3)(
′), (7, 13)) and

((4, 4, 3)(
′), (8, 13)) we have two constituents [α], [β] of multiplicity greater or equal

to 3 with l(α) = l(β), w(α) 6= w(β) and l(α), w(α), l(β), w(β) ≥ 4. Since we do
not conjugate the hook, we can apply Lemma 5.16 if needed.

2nd case: i = 2 If rem(µ) ≥ 3, this can easily be reduced to one of the seeds
((4, 2, 1), (5, 12)), ((4, 3, 1), (6, 12)) or ((4, 3, 2), (7, 12)). More interesting is the case
rem(µ) = 2. Let µ = (µr11 , µ

r2
2 ). If µ1 − µ2 ≥ 2, r1 ≥ 3 and r2 ≥ 2, we reduce λ

and µ to the seed ((9, 12), (33, 12)). If µ1 − µ2 = 1, we know that r1, r2 ≥ 2 and
therefore, this can be reduced to the seed ((12, 12), (42, 32)). The case r2 = 1 is
equivalent to µ1 − µ2 = 1 by conjugation. If r1 ≤ 2, we know that µ2 ≥ 4 since
d(µ) ≥ 4. Therefore, we reduce this to the seed ((9, 12), (5, 32)) if r1 = 1, and to
the seed ((12, 12), (42, 32)) if r1 = 2. All seeds have a pair of constituents which
fulfill the requirements of Lemma 5.16. �
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CHAPTER 7

Two-line partitions

In the previous chapter we have seen Kronecker products where one of the
characters is labeled by a hook. In this chapter we do the same but for a two-line
partition. The aim is to prove the following result:

Proposition 7.1. Let λ, µ ` n, where λ 6= (n− 1, 1) is a two-row partition. Then
g(λ, µ) ≤ 2 if and only if one of the following holds (up to conjugation or inter-
changing of λ and µ if both are two-line partitions):

(1) The product [λ][µ] is multiplicity-free [BB17]. This is the case if one of
the following holds:
(a) One of the partitions is linear;
(b) λ = (n− 2, 2) and µ is a rectangle;
(c) n = 2k + 1 and λ = µ = (k + 1, k);
(d) n = 2k, λ = (k, k) and µ is (k, k), (k+1, k− 1), (n− 2, 2), (n− 3, 3)

or a hook;
(e) (λ, µ) is one of the exceptional pairs:

((6, 3), (33)), ((5, 4), (33)), ((62), (43)).

(2) µ = (n− 2, 12);
(3) λ = (n− 2, 2) and µ is a two-line partition or a hook;
(4) n = 2k + 1 and λ = (n− 2, 2) and µ = (k2, 1);
(5) n = ab− 1 and λ = (n− 2, 2) and µ = (ab−1, a− 1);
(6) λ = (n− 3, 3) and µ is a rectangle;
(7) n = 2k+1 and λ = (k+1, k) and µ is a hook or µ = (µ1, µ2) with µ2 ≤ 3

or µ2 = k, k − 1;
(8) n = 2k, λ = (k, k) and µ = (n − 3, 2, 1) or µ = (µ1, µ2) with µ2 ≤ 7 or

µ1 − µ2 ≤ 6;
(9) one of the exceptional cases for n ≤ 18:

(a) λ = (4, 3) and µ = (3, 22);
(b) λ = (4, 4) and µ = (3, 22, 1), (32, 12), (32, 2);
(c) λ = µ = (5, 3);
(d) λ = (5, 3) and µ = (32, 2);
(e) λ = (5, 4) and µ = (42, 1);
(f) λ = (6, 3), (5, 4) and µ = (33);
(g) λ = (5, 5) and µ = (4, 32), (42, 2);
(h) λ = µ = (6, 4);
(i) λ = (6, 6), (7, 5), (8, 4) and µ = (43);
(j) λ = (8, 7) and µ = (53);
(k) λ = (8, 8) and µ = (44);
(l) λ = (9, 9) and µ = (63).

Additionally, if g(λ, µ) > 2 and µ is symmetric, there is a ν ` n, ν 6= µ with
g(λ, µ, ν) > 3.

Like in the previous chapter we start by finding the decompositions for the
listed products.
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Chapter 7. Two-line partitions

1. Formulas for the stated products

Products with [n− 2, 2].

Lemma 7.2. Let λ = (λ1, λ2) ` n with λ1 > λ2 > 1 and µ = (n − 2, 2). The
product [λ][µ] decomposes as follows:

(1 + χ(λ1−λ2>1))([λ] + [λ1 − 1, λ2, 1]) + (1 + χ(λ2>2))[λ1, λ2 − 1, 1]

+ [λ1 + 1, λ2 − 1] + χ(λ1−λ2>2)[λ1 − 1, λ2 + 1]

+ χ(λ1−λ2>1)[λ1 − 2, λ2, 2] + χ(λ1−λ2>3)[λ1 − 2, λ2 + 2]

+ χ(λ2>3)[λ1, λ2 − 2, 2] + [λ1 + 2, λ2 − 2]

+ χ(λ1−λ2>2)[λ1 − 2, λ2 + 1, 1] + χ(λ2>2)[λ1 − 1, λ2 − 1, 2]

+ χ(λ2>2)[λ1 + 1, λ2 − 2, 1] + [λ1 − 1, λ2 − 1, 12].

Proof: We use Theorem 5.15 (2) to prove the formula. Let [ν] be a constituent
of [λ][µ]. We know that |λ ∩ ν| ≥ n − 2. We look at the multiset M of the basic
skew partitions corresponding to λ/(λ ∩ ν) and ν/(λ ∩ ν).

• The partitions for which M = { , } are:
(λ1 − 2, λ2, 2), (λ1 − 2, λ1 + 2), (λ1, λ2 − 2, 2), (λ1 + 2, λ2 − 2),

where the first one only occurs if λ1 − λ2 > 1, the second one only if
λ1−λ2 > 3, and the third one only if λ2 > 3. The corresponding characters
occur with multiplicity 1 in [λ][µ].
• For the following partitions M equals { , t }:

(λ1 − 2, λ2 + 1, 1), (λ1 − 1, λ2 − 1, 2), (λ1 + 1, λ2 − 2, 1),

where the first one only occurs if λ1 − λ2 > 2, the second and the third
one only if λ2 > 2. The corresponding characters occur with multiplicity
1 in [λ][µ].
• For (λ1 − 1, λ2 − 1, 12) M equals

{
, t

}
, therefore, the multiplicity

of [λ1 − 1, λ2 − 1, 12] as a constituent of [λ][µ] equals 1.
• For ν ` n with |λ ∩ ν| = n− 2 with a different M , g(λ, µ, ν) = 0.

If |λ ∩ ν| = n− 1, we know that ν is one of the following partitions:

(λ1 − 1, λ2, 1), (λ1 − 1, λ2 + 1), (λ1, λ2 − 1, 1), (λ1, λ2 − 1),

where (λ1−1, λ2+1) only occurs if λ1−λ2 > 1. For these partitions we have to look
at the ρ ` n− 2 which are contained in λ ∩ ν and at the multiset M = {λ/ρ, ν/ρ}.

• For ν = (λ1 − 1, λ2, 1) the possibilities for ρ are: (λ1 − 2, λ2) which only
occurs if λ1 − 2 ≥ λ2, where M = { , t } and (λ1 − 1, λ2 − 1),
where M = { t , t }. Therefore, g(λ, µ, ν) = χ(λ1−λ2>1) + 1 since
(λ1 − 2, λ2) only occurs if λ1 − 2 ≥ λ2.
• For ν = (λ1 − 1, λ2 + 1) the possibilities for ρ are: (λ1 − 2, λ2) which

only occurs if λ1 − λ2 > 1, where M = { , t } if λ1 − 2 > λ2,
and M =

{
,
}

if λ1 − 2 = λ2. And the second possibility for ρ
is (λ1 − 1, λ2 − 1), where M = { , t }. Therefore, we obtain
g(λ, µ, ν) = χ(λ1−λ2>2) + 1.
• For ν = (λ1, λ2 − 1, 1) the possibilities for ρ are: (λ1, λ2 − 2), where
M = { , t } if λ2 > 2, and M =

{
,
}

if λ2 = 2. The second
possibility for ρ is (λ1− 1, λ2− 1), where M = { t , t }. Therefore,
g(λ, µ, ν) = 1 + χ(λ2>2).
• For ν = (λ1 + 1, λ2 − 1) the possibilities for ρ are: (λ1, λ2 − 2) and
(λ1 − 1, λ2 − 1). For both M = { , t }. Therefore, g(λ, µ, ν) = 1.
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If |λ ∩ ν| = n, we know that λ = ν. Therefore, g(λ, λ, µ) = 1 + χ(λ1−λ2>1). �

Lemma 7.3.
(1) Let n = ab − 1, for a ≥ 5 and b ≥ 3. The product [n − 2, 2][ab−1, a − 1]

decomposes as follows:

[ab−3, (a− 1)3, 12] + [ab−2, a− 1, a− 2, 12] + [ab−2, a− 1, a− 2, 2]

+ 2[ab−2, (a− 1)2, 1] + [ab−1, a− 3, 2] + 2[ab−1, a− 2, 1] + 2[ab−1, a− 1]

+ χ(b>3)[a+ 1, ab−4, (a− 1)3, 1] + 2[a+ 1, ab−3a− 1, a− 2, 1]

+ (1 + χ(b>3))[a+ 1, ab−3, (a− 1)2] + [a+ 1, ab−2a− 3, 1]

+ 2[a+ 1, ab−2, a− 2] + χ(b>4)[(a+ 1)2, ab−5, (a− 1)3]

+ χ(b>3)[(a+ 1)2, ab−4, a− 1, a− 2] + [a+ 2, ab−3, a− 1, a− 2]

+ [a+ 2, ab−2, a− 3].

(2) Let n = ab+ 1 for a ≥ 3 , b ≥ 2. The product [ab, 1][n− 2, 2] decomposes
as follows:

[ab−2, (a− 1)2, 13] + [ab−2, (a− 1)2, 2, 1] + χ(a>3)[a
b−1, a− 2, 2, 1]

+ χ(a>4)[a
b−1, a− 2, 3] + 2[ab−1, a− 1, 12]

+ (1 + χ(a>3))[a
b−1, a− 1, 2] + 2[ab, 1] + χ(b>2)[a+ 1, ab−3, (a− 1)2, 12]

+ χ(b>2)[a+ 1, ab−3, (a− 1)2, 2] + [a+ 1, ab−2, a− 2, 12]

+ χ(a>3)[a+ 1, ab−2, a− 2, 2] + (2 + χ(b>1))[a+ 1, ab−2, a− 1, 1]

+ [a+ 1, ab−1] + χ(b>3)[(a+ 1)2, ab−4, (a− 1)2, 1]

+ χ(b>2)[(a+ 1)2, ab−3, a− 1] + [a+ 2, ab−2, a− 2, 1] + [a+ 2, ab−2, a− 1].

Proof: We use (2) of Theorem 5.15 for the proofs of both parts.
(1): Let us assume that n = ab−1, where a ≥ 5 and b ≥ 3, λ = (ab−1, a−1) and

µ = (n−2, 2). If ν ` n with |λ∩ν| < n−2, then g(λ, µ, ν) = 0. If |λ∩ν| = n−2, we
look at the different possibilities for the multisetM := {λ/(λ ∩ ν), ν/(λ ∩ ν)}. First
let us look at the partitions labeling constituents with multiplicity 2. The partition
ν = (a+ 1, ab−3, a− 1, a− 2, 1) is the only one for whichM = { t , t }. This
tells us g(λ, µ, ν) = 2.

In the next step we look at the partitions labeling constituents with multiplicity
1. These are the possibilities for ν such that:

• M = { t , }, which are

(a+ 2, ab−3, a− 1, a− 2), (ab−2, a− 1, a− 2, 2), (a+ 1, ab−2, a− 3, 1).

• M =
{
t ,

}
, which are

(a+ 1, ab−4, (a− 1)3, 1), (ab−2, a− 1, a− 2, 12)

((a+ 1)2, ab−4, a− 1, a− 2),

where the first and the last only occur if b > 3.
• M = { , }, which are

(a+ 2, ab−2, a− 3) and (ab−1, a− 3, 2).

• M =
{

,
}
, which are

((a+ 1)2, ab−5, (a− 1)3) and (ab−3, (a− 1)3, 12),

where the first one only occurs if b ≥ 5.
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Formulas for the stated products

The characters labeled by these partitions are constituents of [λ][µ] with multiplicity
1. For the remaining partitions ν ` n with |λ∩ν| = n−2 the multisetM =

{
,

}
.

Therefore, the corresponding characters do not occur in the decomposition.
In the next step we look at the partitions ν ` n such that |λ ∩ ν| = n− 1.

• For the partitions (a + 1, ab−3, (a − 1)2) and (ab−2, (a − 1)2, 1) the inter-
section with λ is given by (ab−1, (a− 1)2). Hence, the partitions ρ ` n− 2
such that ρ ⊂ λ ∩ ν are (ab−3, (a− 1)3) and (ab−2, a− 1, a− 2). For both
partitions we have

g(λ, µ, ν) = 1 + 2− 1 = 2.

• If ν is given by (a+1, ab−2, a− 2) or (ab−1, a− 2, 1), the intersection with
λ is given by λ∩ ν = (ab, a− 2). Hence, the partitions ρ ` n− 2 such that
ρ ⊂ λ ∩ ν are (ab, a− 3) and (ab−1, a− 1, a− 2). Again for both cases we
have

g(λ, µ, ν) = 1 + 2− 1 = 2.

For the multiplicity of [λ] in [λ][µ] we obtain

g(λ, µ, λ) = 1 + 1 + 2(2− 2) = 2.

(2): Let n = ab+1 with b ≥ 2, a ≥ 3, λ = (ab, 1) and µ = (n− 2, 2). For ν ` n
with |λ∩ν| < n−2, we know that [ν] is not a constituent of [λ][n−2, 2]. We divide
the partitions ν ` n with |λ∩ν| = n−2 by the multisetM := {λ/(λ∩ν), ν/(λ∩ν)}.
There is no ν such that M = { t , t }, such a ν would label a constituent
with multiplicity 2.

The partitions ν ` n with |λ ∩ ν| = n− 2 and g(λ, µ, ν) = 1 are:
• The ν such that M = { t , }:

(a+ 1, ab−2, a− 2, 2), (a+ 1, ab−2, a− 2, 12), (ab−1, a− 2, 2, 1),

and (a+ 2, ab−2, a− 1),

where the first and the third one only occur if a > 3.
• The ν such that M =

{
t ,

}
:

(a+ 1, ab−3, (a− 1)2, 2), (a+ 1, ab−3, (a− 1)2, 12),

(ab−2, (a− 1)2, 2, 1), and ((a+ 1)2, ab−3, a− 1),

where the first, second and fourth one only occur if b > 2.
• The ν such that M = { , }

(a+ 2, ab−2, a− 2, 1) and (ab−1, a− 2, 3),

where the second partition only occurs if a > 4.
• The ν such that M =

{
,
}

((a+ 1)2, ab−4, (a− 1)2, 1) and (ab−2, (a− 1)2, 13),

where the first one only appears if b > 3.

For the remaining partitions we have M =
{

,
}
. Thus, the corresponding

characters are no constituents of [λ][n− 2, 2].
In the next step we check the partitions ν ` n with |λ ∩ ν| = n− 1.
• If ν = (a + 1, ab−2, a − 1, 1), (ab−1, a − 1, 2) or (ab−1, a − 1, 12), the in-

tersection λ ∩ ν = (ab−1, a − 1, 1), so the partitions ρ ` n − 2 such that
ρ ⊂ λ ∩ ν are

(ab−2, (a− 1)2, 1), (ab−1, a− 2, 1) and (ab−1, a− 1).
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With this we easily see

g(λ, (n− 2, 2), (a+ 1, ab−2, a− 1, 1)) =

{
1 + 1 + 2− 1 = 3, if b > 2;

0 + 1 + 2− 1 = 2, if b = 2;

g(λ, (n− 2, 2), (ab−1, a− 1, 2)) =

{
1 + 1 + 1− 1 = 2, if a > 3;

1 + 0 + 1− 1 = 1, if a = 3;

g(λ, (n− 2, 2), (ab−1, a− 1, 12)) = 1 + 1 + 1− 1 = 2.

• The remaining partition ν ` n with |λ ∩ ν| = n − 1 is (a + 1, ab−1). The
intersection λ ∩ ν = (ab) and the only partition ρ ` n− 2 with ρ ⊂ λ ∩ ν
is (ab−1, a− 1). Therefore,

g(λ, (n− 2, 2), (a+ 1, ab−1)) = 2− 1 = 1.

In the last step we calculate g(λ, (n− 2, 2), λ) = 1 + 1 + 2(2− 2) = 2. �

Product with [n− 3, 3].
Besides some exceptional products Theorem 5.1 lists two products which involve
(n− 3, 3) where the other factor is not a hook. These are the products of (n− 3, 3)
with (k + 1, k) and with (ab). For these products we provide the decomposition in
the following two lemmas.

Lemma 7.4. Let n = 2k + 1 ≥ 13, λ = (k + 1, k) and µ = (n− 3, 3). The product
[λ][µ] decomposes as

[λ] + [k2, 1] + 2[k + 1, k − 1, 1] + [k + 2, k − 1] + [k, k − 1, 12] + 2[k, k − 1, 2]

+ [k + 1, k − 2, 12] + 2[k + 1, k − 2, 2] + 2[k + 2, k − 2, 1] + [k + 3, k − 2]

+ [(k − 1)2, 2, 1] + [k, k − 2, 2, 1] + [k, k − 2, 3] + [k + 1, k − 3, 3]

+ [k + 2, k − 3, 2] + [k + 3, k − 3, 1] + [k + 4, k − 3].

Proof: We use Theorem 5.15 (4) and (5) for this proof. Let [ν] be a constituent
of [λ][µ]. We know that |ν ∩ λ| ≥ n − 3. We start by investigating the ν ` n with
|λ ∩ ν| = n − 3. We look again at M = {λ/(λ ∩ ν), ν/(λ ∩ ν)}. In contrast to the
previous lemma not many partitions have the same multiset M . Therefore we just
list all partitions ν ` n with |ν ∩ λ| = n− 3. These are:

ν M g(λ, µ, ν)

((k − 1)2, 13) , 0

((k − 1)2, 2, 1) , 1
((k − 1)2, 3) , 0

(k, k − 2, 13) t , 0

(k, k − 2, 2, 1) t , 1
(k, k − 2, 3) t , 1

(k + 1, k − 3, 13) , 0

(k + 1, k − 3, 2, 1) , 0
(k + 1, k − 3, 3) , 1
(k + 2, k − 3, 12) , t 0
(k + 2, k − 3, 2) , t 1
(k + 3, k − 3, 1) , t 1
(k + 4, k − 3) , 1.
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Formulas for the stated products

Since we assume that k ≥ 6, all these partitions exist.
If |λ ∩ ν| = n− 2, we know that ν is one of the following partitions:

(k, k − 1, 12), (k, k − 1, 2), (k + 1, k − 2, 12), (k + 1, k − 2, 2),

(k + 2, k − 2, 1), (k + 3, k − 2).

For the partitions ρ ` n − 3 with ρ ⊂ λ ∩ ν we have to examine the multisets
M = {λ/ρ, ν/ρ} and N = {λ/(λ ∩ ν), ν/(λ ∩ ν)} for the above listed possibilities
for ν.

• If ν = (k, k − 1, 12), the possibilities for ρ are

((k − 1)2), where M =
{

, t
}

and

(k, k − 2), where M =
{
t , t

}
.

Further, λ ∩ ν = (k, k − 1) and N =
{
t ,

}
. This tells us that

g(λ, µ, ν) = 1 + 1− 1 = 1.

• If ν = (k, k − 1, 2), the possibilities for ρ are

((k − 1)2), where M =
{

, t
}

and

(k, k − 2), where M = { t , t }.

Further, λ ∩ ν = (k, k − 1) and N = { t , }. This tells us that
g(λ, µ, ν) = 1 + 2− 1 = 2.

• If ν = (k + 1, k − 2, 12), the possibilities for ρ are

(k, k − 2), where M =
{
t , t

}
and

(k + 1, k − 3), where M =
{

, t
}
.

Further, λ ∩ ν = (k + 1, k − 2) and N =
{

,
}
. This tells us that

g(λ, µ, ν) = 1 + 0− 0 = 1.

• If ν = (k + 1, k − 2, 2), the possibilities for ρ are

(k, k − 2), where M = { t , t } and
(k + 1, k − 3), where M = { , t }.

Further, λ ∩ ν = (k + 1, k − 2) and N = { , }. This tells us that
g(λ, µ, ν) = 2 + 1− 1 = 2.

• If ν = (k + 2, k − 2, 1), the possibilities for ρ are

(k, k − 2), where M = { t , t } and
(k + 1, k − 3), where M = { , t t }.

Further, λ ∩ ν = (k + 1, k − 2) and N = { , t }. This tells us that
g(λ, µ, ν) = 2 + 1− 1 = 2.

• If ν = (k + 3, k − 2), the possibilities for ρ are

(k, k − 2), where M = { t , } and
(k + 1, k − 3), where M = { , t }.

Further, λ ∩ ν = (k + 1, k − 2) and N = { , }. This tells us that
g(λ, µ, ν) = 1 + 1− 1 = 1.
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If |λ ∩ ν| = n− 1, ν is one of the following partitions:

(k2, 1), (k + 1, k − 1, 1), (k + 2, k − 1).

For these ν we have to find the partitions ρ ` n − 3 and σ ` n − 2 such that
ρ, σ ⊂ λ∩ν and examine the basic skew diagrams which correspond to the multisets
M = {λ/ρ, ν/ρ} and N = {λ/σ, ν/σ}.

• If ν = (k2, 1), the possibilities for ρ are:

(k, k − 2), where M = { t , t } and

((k − 1)2), where M =
{

, t
}
.

The only possibility for σ is (k, k − 1), where both skew diagrams in N
are of the form t . This tells us that g(λ, µ, ν) = 1.
• If ν = (k + 1, k − 1, 1), the possibilities for ρ are:

(k, k − 2), where M = { t , t t };

((k − 1)2), where M =
{

, t
}

and

(k + 1, k − 3), where M = { , t } .

For σ we have the following possibilities:

(k, k − 1), where N = { t , t } and
(k + 1, k − 2), where N = { , t }.

This tells us that g(λ, µ, ν) = 2.
• If ν = (k + 2, k − 1), the possibilities for ρ are:

(k, k − 2), where M = { t , t };

((k − 1)2), where M =
{

,
}

and

(k + 1, k − 3), where M = { t , }.

For σ we have the possibilities (k, k−1) and (k+1, k−2), where for both
possibilities N = { , t }. This tells us that g(λ, µ, ν) = 1.

If λ = ν, we calculate with Theorem 5.15 (4) that g(λ, λ, µ) = 1. �

Lemma 7.5. Let n = ab, where a ≥ 6, b ≥ 3. The product [ab][n−3, 3] decomposes
as follows:

[ab−3, (a− 1)3, 13] + [ab−2, a− 1, a− 2, 2, 1] + [ab−2, (a− 1)2, 12]

+ [ab−2, (a− 1)2, 2] + [ab−1, a− 3, 3] + [ab−1, a− 2, 12] + [ab−1, a− 2, 2]

+ 2[ab−1, a− 1, 1] + [ab] + χ(b>3)[a+ 1, ab−4, (a− 1)3, 12]

+ [a+ 1, ab−3, a− 1, a− 2, 12] + [a+ 1, ab−3, a− 1, a− 2, 2]

+ (1 + χ(b>3))[a+ 1, ab−3, (a− 1)2, 1] + [a+ 1, ab−2, a− 3, 2]

+ 2[a+ 1, ab−2, a− 2, 1] + (1 + χ(b>3))[a+ 1, ab−2, a− 1]

+ χ(b>4)[(a+ 1)2, ab−5, (a− 1)3, 1] + χ(b>3)[(a+ 1)2, ab−4, a− 1, a− 2, 1]

+ χ(b>4)[(a+ 1)2, ab−4, (a− 1)2] + [(a+ 1)2, ab−3, a− 2]

+ χ(b>5)[(a+ 1)3, ab−6, (a− 1)3] + [a+ 2, ab−3, a− 1, a− 2, 1]

+ [a+ 2, ab−3, (a− 1)2] + [a+ 2, ab−2, a− 3, 1] + [a+ 2, ab−2, a− 2]

+ χ(b>3)[a+ 2, a+ 1, ab−4, a− 1, a− 2] + [a+ 3, ab−2, a− 3].
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Formulas for the stated products

Proof: As for the previous formula we use Theorem 5.15 (4) and (5). Let
λ = (ab) ` n, µ = (n− 3, 3) and ν ` n.

If |λ ∩ ν| < n − 3, g(λ, µ, ν) = 0. If |λ ∩ ν| = n − 3, we look at the different
possibilities for the multiset M := {λ/(λ ∩ ν), ν/(λ ∩ ν)}. There is no partition
ν ` n with |λ∩ ν| = n− 3 such that M contains t t or that M is one of the
following multisets

{ t , t } ,
{
t , t

}
,
{
t , t

}
(it is easy to see that λ/(λ ∩ ν) is connected). So all constituents [ν] for ν ` n of
[λ][µ] with |λ∩ ν| = n− 3 have multiplicity 1. They are labeled by the ν such that:

• M = { t , }, which are

(a+ 2, ab−2, a− 3, 1), (a+ 1, ab−2, a− 3, 2).

• M =
{
t ,

(rot)
}
, which are

(a+ 2, ab−3, a− 1, a− 2, 1), (a+ 1, ab−3, a− 1, a− 2, 2).

• M =

{
t ,

}
, which are

((a+ 1)2, ab−5, (a− 1)3, 1), (a+ 1, ab−4, (a− 1)3, 12),

where the first one only occurs if b ≥ 5 and the second one only if b ≥ 4.
• M =

{
t ,

(rot)
}
, which are

((a+ 1)2, ab−4, a− 1, a− 2, 1), (a+ 1, ab−3, a− 1, a− 2, 12),

where the first one only occurs if b ≥ 4.
• M = { , }, which are

(a+ 3, ab−2, a− 3), (ab−1, a− 3, 3).

• M =

{
,

}
, which are

((a+ 1)3, ab−6, (a− 1)3), (ab−3, (a− 1)3, 13),

where the first one only occurs if b ≥ 6.
• M =

{
(rot)

,
(rot)

}
, which are are

(a+ 2, a+ 1, ab−4, a− 1, a− 2), (ab−2, a− 1, a− 2, 2, 1),

where the first one only occurs if b ≥ 4.

If ν is one of these partitions, we know

g(λ, µ, ν) = 1.

The remaining partitions ν ` n with |λ∩ν| = n−3 have a differentM and therefore,
we know that g(λ, µ, ν) = 0.

Now let us investigate ν ` n with |λ ∩ ν| = n− 2. For the partitions

(a+ 2, ab−3, (a− 1)2), ((a+ 1)2, ab−4, (a− 1)2), (a+ 1, ab−3, (a− 1)2, 1),

(ab−2, (a− 1)2, 2), (ab−2, (a− 1)2, 12)
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the intersection λ ∩ ν = (ab−2, (a − 1)2). The possibilities for ρ ` n − 3 such that
ρ ⊂ λ ∩ ν are (ab−3, (a− 1)3) and (ab−2, a− 1, a− 2). With this we obtain

g(λ, µ, (a+ 2, ab−3, (a− 1)2)) = 0 + 1− 0 = 1,

g(λ, µ, ((a+ 1)2, ab−4, (a− 1)2)) =

{
1 + 1− 1 = 1, if b > 4

0 + 1− 1 = 0, if b = 4
,

g(λ, µ, (a+ 1, ab−3, (a− 1)2, 1)) =

{
1 + 2− 1 = 2, if b > 3

0 + 2− 1 = 1, if b = 3
,

g(λ, µ, (ab−2, (a− 1)2, 2)) = 0 + 1− 0 = 1,

g(λ, µ, (ab−2, (a− 1)2, 12)) = 1 + 1− 1 = 1.

The different cases occur because for small b sometimes the elements of M have a
different shape (less connected components) than for the generic case. This happens
for example for (a + 2, ab−3, (a − 1)2), too, but in that case it has no influence on
the result. The remaining possibilities for ν such that |λ ∩ ν| = n− 2 are:

(a+ 2, ab−2, a− 2), ((a+ 1)2, ab−3, a− 2), (a+ 1, ab−2, a− 2, 1),

(ab−1, a− 2, 2), (ab−1, a− 2, 12).

If ν is one of these partitions, then λ∩ν = (ab−1, a−2). In this case the possibilities
for ρ ` n − 3 such that ρ ⊂ λ ∩ ν are (ab−2, a − 1, a − 2) and (ab−1, a − 3). From
this we see that

g(λ, µ, (a+ 2, ab−2, a− 2)) = 1 + 1− 1 = 1,

g(λ, µ, ((a+ 1)2, ab−3, a− 2)) = 1 + 0− 0 = 1,

g(λ, µ, (a+ 1, ab−2, a− 2, 1)) = 2 + 1− 1 = 2,

g(λ, µ, (ab−1, a− 2, 2)) = 1 + 1− 1 = 1,

g(λ, µ, (ab−1, a− 2, 12)) = 1 + 0− 0 = 1.

We could obtain this also from the case λ ∩ ν = (ab−2, (a− 1)2) since the tables of
Theorem 5.15 are symmetric. However, since we assume that a ≥ 6, the cases for
the small b have no counterpart but we would have to argue why there occur no
special cases for 3 ≤ b ≤ 5.

In the next step we look at the partitions ν ` n such that |λ∩ν| = n−1. These
are (ab−1, a− 1, 1) and (a+1, ab−2, a− 1). In both cases λ∩ ν = (ab−1, a− 1). The
partitions ρ ` n− 3 such that ρ ⊂ λ∩ ν are (ab−3, (a− 1)3), (ab−2, a− 2, a− 1) and
(ab−1, a− 3). The partitions ρ ` n− 2 such that ρ ⊂ λ ∩ ν are (ab−2, (a− 1)2) and
(ab−1, a− 2). This tells us that

g(λ, µ, (ab−1, a− 1, 1)) = 1 + 2 + 1− 1− 1 = 2,

g(λ, µ, (a+ 1, ab−2, a− 1)) =

{
1 + 2 + 1− 1− 1 = 2, if b > 3

0 + 2 + 1− 1− 1 = 1, if b = 3
.

Finally we calculate with Theorem 5.15 (5) that g(λ, µ, λ) = 1. �

Products with [k, k].
There is one last decomposition which we can prove with Theorem 5.15.
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Formulas for the stated products

Lemma 7.6. Let n = 2k ≥ 10. The product [k, k][n−3, 2, 1] decomposes as follows:

2[k, k − 1, 1] + [k + 1, k − 1] + [(k − 1)2, 12] + [(k − 1)2, 2] + 2[k, k − 2, 12]+

2[k, k − 2, 2] + 2[k + 1, k − 2, 1] + [k + 2, k − 2] + [k − 1, k − 2, 13]+

[k − 1, k − 2, 2, 1] + [k − 1, k − 2, 3] + [k, k − 3, 2, 1] + [k + 1, k − 3, 12]+

[k + 1, k − 3, 2] + [k + 2, k − 3, 1]

Proof: The result will follow using Theorem 5.15 (6) and (7). Let λ = (k, k),
µ = (n − 3, 2, 1) and [ν] be a constituent of [λ][µ]. We know that |λ ∩ ν| ≥ n − 3.
We start with the partitions ν ` n with |λ ∩ ν| = n − 3. For these ν we have to
check the multiset M = {λ/(λ∩ν), ν/(λ∩ν)}. Since there are not many partitions
with the same multiset M we list all partitions ν ` n with |λ ∩ ν| = n − 3, like in
Lemma 7.4. We get the following results:

ν M g(λ, µ, ν)

(k − 1, k − 2, 13) , 1

(k − 1, k − 2, 2, 1) , 1

(k − 1, k − 2, 3) , 1

(k, k − 3, 13) , 0

(k, k − 3, 2, 1) , 1

(k, k − 3, 3) , 0

(k + 1, k − 3, 12) , t 1

(k + 1, k − 3, 2) t , 1

(k + 2, k − 3, 1) t , 1

(k + 3, k − 3) , 0.

If |λ ∩ ν| = n− 2, we know that ν is one of the following partitions:

((k − 1)2, 12), ((k − 1)2, 2), (k, k − 2, 12), (k, k − 2, 2),

(k + 1, k − 2, 1), (k + 2, k − 2).

For these possibilities for ν we have to find the partitions ρ ` n− 3, with ρ ⊂ λ∩ ν
and check the multisets M = {λ/ρ, ν/ρ} and N = {λ/(λ ∩ ν), ν/(λ ∩ ν)}.

• If ν = ((k − 1)2, 12), ρ = (k − 1, k − 2) and M =
{

, t
}
. Further,

λ ∩ ν = ((k − 1)2) and N =
{

,
}
. Therefore, g(λ, µ, ν) = 2− 1 = 1.

• If ν = ((k − 1)2, 2), ρ = (k − 1, k − 2) and M =
{

, t
}
. Further,

λ ∩ ν = ((k − 1)2) and N =
{

,
}
. Therefore, g(λ, µ, ν) = 2− 1 = 1.

• If ν = (k, k − 2, 12), we know that:

ρ is either (k − 1, k − 2), where M =
{

, t
}

or (k, k − 3), where M =
{

, t
}
.

Additionally, we see λ ∩ ν = (k, k − 2) and N =
{

,
}
. Therefore,

g(λ, µ, ν) = 2 + 1− 1 = 2.
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• If ν = (k, k − 2, 2), we know that ρ is either

(k − 1, k − 2), where M =
{

, t
}

or (k, k − 3), where M = { , t } .

Additionally, we see λ ∩ ν = (k, k − 2) and N = { , }. Therefore,
g(λ, µ, ν) = 2 + 1− 1 = 2.
• If ν = (k + 1, k − 2, 1), we know that ρ is either

(k − 1, k − 2), where M =
{

, t
}

or (k, k − 3), where M = { , t t } .

Additionally, we see λ ∩ ν = (k, k − 2) and N = { , t }. Therefore,
g(λ, µ, ν) = 2 + 2− 2 = 2.
• The last possibility for |λ∩ν| = n−2 is ν = (k+2, k−2). Here ρ is either

(k − 1, k − 2), where M =
{

,
}

or (k, k − 3), where M = { , t } .

Additionally, we see λ ∩ ν = (k, k − 2) and N = { , }. Therefore,
g(λ, µ, ν) = 1 + 1− 1 = 1.

If |λ ∩ ν| = n − 1, we know that ν is (k, k − 1, 1) or (k + 1, k − 1). For ρ ` n − 3,
π ` n− 2 with ρ, π ⊂ λ ∩ ν, we have to look at the multisets M = {λ/ρ, ν/ρ} and
N = {λ/π, ν/π}.

• If ν = (k, k−1, 1), the possibilities for ρ and the corresponding basic skew
diagrams are:

(k − 1, k − 2), where M =
{

, t t
}

and (k, k − 3), where M = { , t } .

The possibilities for π and the corresponding basic skew diagrams are:

(k − 1, k − 1), where N =
{

, t
}

and (k, k − 2), where N = { , t } .

Therefore, g(λ, µ, ν) = 4 + 1− 2− 2 + 1 = 2.
• If ν = (k + 1, k − 1), the possibilities for ρ and the corresponding basic

skew diagrams are:

(k − 1, k − 2), where M =
{

, t
}

and (k, k − 3), where M = { , t } .

The possibilities for π and the corresponding basic skew diagrams are:

(k − 1, k − 1), where N =
{

,
}

and (k, k − 2), where N = { , t } .

Therefore, g(λ, µ, ν) = 2 + 1− 1− 2 + 1 = 1.

If λ = ν, we see directly from (7) of Theorem 5.15 that g(λ, λ, µ) = 0. �

For the next products with [k, k] we use the combinatorial interpretation of
special Kronecker coefficients from [BO06]. For this we use Kronecker tableaux so
we need the following two definitions:
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Formulas for the stated products

Definition 7.7. Let α = (α1, α2, . . . , αl) be a sequence of non-negative integers. A
sequence a1a2 · · · an is an α-lattice permutation if in any initial factor a1a2 · · · aj ,
1 ≤ j ≤ l, we have for any positive integer i:

the number of i’s+ αi ≥ the number of (i+ 1)’s+ αi+1.

So lattice words (which we used for the Littlewood-Richardson rule) are exactly
the (0, . . . , 0)-lattice permutations.

Definition 7.8. A semi-standard Young tableau of shape λ/α and type ν/α whose
reverse reading word is an α-lattice permutation is called a Kronecker tableau of
shape λ/α and type ν/α if

(1) α1 = α2 or
(2) α1 > α2 and one of the following two conditions is satisfied:

(a) The number of 1s in the second row of λ/α is exactly α1 − α2.
(b) The number of 2s in the first row of λ/α is exactly α1 − α2.

Proposition 7.9. Let n = 2k and p ∈ N such that k ≥ 2p. The product [n−p, p][k2]
is stable. That means that for all ν ` n

g((n− p, p), (k, k), ν) = g((n+ 2− p, p), (k + 1, k + 1), ν + (12)).

Furthermore, all constituents of [n + 2 − p, p][k + 1, k + 1] can be obtained from
partitions of n by adding (12).

Proof: Let k ≥ 2p. Then we know from [BO06, Theorem 3.2.] that

g((k, k)(n− p, p), ν) =
∑
α`p

α⊂(k,k)∩ν

k(k,k)α,ν ,

where k(k,k)α,ν equals the number of Kronecker tableaux of shape (k, k)/α and type
ν/α.

First, we collect some properties of the constituents of [n − p, p][k, k] from
Theorem 5.5. If g((n− p, p), (k2), ν) > 0, we know that l(ν) ≤ 4 so ν = (k + a, k +
b, c, d). Since |ν ∩ (k2)| ≥ n− p, we know that −p ≤ b ≤ a ≤ p, 0 ≤ d ≤ c ≤ p and
−p ≤ a + b, c + d ≤ p, where a + b + c + d = 0. Since we assume that k ≥ 2p, all
these possibilities actually provide partitions of n.

Let us assume we have a Kronecker tableau T of shape (k, k)/α and type ν/α.
We know that all the 4s have to be in the second row of T , because there is no box
in the first row without a box underneath it in the second row. Since T needs to
be semi-standard, we know that the ν4 rightmost boxes of the second row are filled
with 4s. Further, the reverse reading word has to be an α-lattice permutation and
l(α) ≤ 2 so there have to be at least λ4 3s in the first row. Again, they have to be
in the λ4 rightmost boxes. Since every 3 in the first row has to have a 4 in the box
underneath it, we know that there are no more 3s in the first row. The remaining
3s are in the second row directly to the left of the 4s. So only for the 1s and 2s there
could be some choice. For a Kronecker tableau we have the different possibilities:

(1) α1 = α2 or
(2) α1 > α2 and one of the following two conditions is satisfied:

(a) The number of 1s in the second row of λ/α is exactly α1 − α2.
(b) The number of 2s in the first row of λ/α is exactly α1 − α2.

If T is of type (1), we know that there is no 2 in the first row. Otherwise, the
reverse reading word would not be an α-lattice permutation. If T is of type (2),
the number of 1s in the second row resp. the number of 2s in the first row is fixed.
Therefore, we know that for a given α with α1 = α2 there is at most one Kronecker
tableau of (k, k)/α and type ν/α and for α with α1 > α2 there are at most two: at
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most one of type (a) and one of type (b) but we have to be careful, a tableau can
be of type (a) and (b) at the same time). Now we look at the different types and
show that the existence is independent of k.

1st case: p is even and α1 = α2 = p
2 . The rightmost ν4 entries of the first row

are 3s. This can only lead to an α-lattice permutation if ν4 ≤ α2. The remaining
entries in the first row have to be 1s because α1 = α2 so there are no 2s in the first
row. Since above every box in the second row is one in the first row, there cannot
be any 1s in the second row. Therefore, we know that ν1 − α1 = k − α1 − ν4. If
we substitute ν1 by k + a, we obtain a = −ν4. This is independent of k. The ν4
rightmost entries of the second row are the 4s. The next entries are the remaining
ν3 − ν4 3s. Since all the 2s are in the second row, this can only be an α-lattice
permutation if ν3 ≤ α2 = p

2 . The remaining k − α2 − ν3 entries have to be the
2s which gives k − α2 − ν3 = ν2 − α2. Here we substitute ν2 by k + b to obtain
−ν3 = b which again is independent of k. But −ν3 = b is just equivalent to
a = −ν4 since a + b + ν3 + ν4 = 0. We see that such a tableau exists if and only
if ν = (k − a, k − b, b, a) for some 0 ≤ a ≤ b ≤ p

2 . The other cases are a bit more
involved.

2nd case: α1 > α2 and there are exactly α1 − α2 1s in the second row. We
know that in the second row from right to left there are ν4 4s, then ν3 − ν4 3s,
next k − ν3 − α1 2s, and finally α1 − α2 1s. The remaining entries have to be in
the first row. We fill the boxes in the same order as we read the reverse reading
word and check for the conditions when this is a Kronecker tableau. In the first row
we only have to check that the reverse reading word is an α-lattice permutation.
In the second row we also have to check that it is a semi-standard tableau. We
start in the first row at the right with ν4 3s. So far this is a Kronecker tableau
if and only if ν4 ≤ α2. Then there are the remaining ν2 − α2 − k + ν3 + α1 2s
(since we have ν2 − α2 2s in total and k− ν3 − α1 2s are in the second row). Since
ν2 = k + b, this equals b − α2 + ν3 + α1. We obtain b − α2 + ν3 + α1 ≤ α1 − α2

which is equivalent to b + ν3 ≤ 0. In both rows the rightmost ν4 entries and the
α1 leftmost boxes are occupied with numbers different from 2 or cut out. This will
only be a Kronecker tableau if the number of 2s is at most k − α1 − ν4. This leads
to the condition −α1 − ν4 ≥ b − α2. The leftmost entries in the first row are the
ν1−α1− (α1+α2) 1s, which are not in the second row. The α-lattice permutation
condition is no problem here but there are just k − α2 − ν4 boxes which can be
filled with 1s. Therefore, −α2− ν4 ≥ a−α1. The second row starts with the ν4 4s.
Above them there are ν4 3s so there is no problem with them. Next we have ν3−ν4
3s. If the reverse reading word is an α-lattice permutation, we know that number
of 2s that we have counted so far is ν2 − α2 − k + ν3 + α1 plus α2. This has to be
greater or equal to ν3. We obtain b + α1 ≥ 0. Further, under every 2 of the first
row there needs to be a 3. Otherwise, it would be a 2 and the tableau would not
ne semi-standard. The 2s in the first row and the 3s in the second row start in the
same column so ν2−α2−k+ν3+α1 ≤ ν3−ν4 which simplifies to b+α1+ν4 ≤ α2.
Since b+ α1 ≥ 0, this already implies ν4 ≤ α2, which we got in the first row. The
2s in the second row are no problem for the α-lattice permutation condition and we
have already ensured that there are enough 2s so that not two 1s are in the same
column by the condition we have on the number of 1s and 2s. In total we have the
following conditions, none of them depending on k:

(1) b+ ν3 ≤ 0;
(2) −α1 − ν4 ≥ b− α2;
(3) −α2 − ν4 ≥ a− α1;
(4) b+ α1 ≥ 0;
(5) b+ α1 + ν4 ≤ α2.
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3rd case: α1 > α2 and there are exactly α1 − α2 2s in the first row. We know
that the first row starts with ν4 3s. The α-lattice permutation condition tells us
that α2 ≥ ν4. Next, there are α1 − α2 2s. The last k − α1 − α1 + α2 − ν4 free
boxes in the first row are filled with 1s. In the second row, we can have at most
α1 − α2 additional 1s. Therefore, we obtain ν1 − α1 ≤ k− α1 − ν4 which simplifies
to a ≤ −ν4. But we also need at least k−α1−α1 +α2− ν4 1s to fill the remaining
boxes in the first row. This leads to a ≥ −α1 + α2 − ν4. In the second row the
first ν4 entries are the 4s, then follow ν3 − ν4 3s. These have to be above all the
2s in the first row. Otherwise, the tableau would not be semi-standard. We obtain
ν3− ν4 ≥ α1−α2 and ν3 has to be smaller or equal to the number of 2s we used so
far plus α2. This leads to ν3 ≤ α1. Next, there are the remaining ν2−α2−α1+α2

2s. The number of 2s plus α2 has to be less or equal to the number of 1s we used
so far plus α1. This leads to ν2−α2+α2 ≤ k−2α1+α2−ν4+α1, which simplifies
to b ≤ −α1 + α2 − ν4. In the last step we fill the last boxes of the second row with
the remaining 1s. These have to be in some of the α1 − α2 leftmost boxes of the
second row. So we obtain ν1 − α1 − k + 2α1 − α2 + ν4 ≤ α1 − α2, which simplifies
to a + ν4 ≤ 0, but that condition we have already seen. In total we obtain the
following conditions:

(1) α2 ≥ ν4;
(2) −α1 + α2 − ν4 ≤ a ≤ −ν4;
(3) ν3 − ν4 ≥ α1 − α2;
(4) ν3 ≤ α1;
(5) b ≤ −α1 + α2 − ν4.
4th case: α1 > α2 and the number of 1s in the second row as well as the number

of 2s in the first row equal α1 − α2. Such a tableau starts with ν4 3s in the first
row. So we obtain the condition ν4 ≤ α2. Then there are α1−α2 2s. Now we need
exactly k−α1−α1+α2−ν4 1s since there are exactly α1−α2 1s in the second row.
We obtain the equation ν1−α1−α1 +α2 = k−α1−α1 +α2− ν4 which simplifies
to a = −ν4. The second row starts with the ν4 4s, then there are ν3− ν4 3s. Under
every 2 of the first row there needs to be a 3. This leads to ν3− ν4 ≥ α1−α2. The
α-lattice permutation condition leads to the inequality ν3 ≤ α1. Now the remaining
boxes are filled with the 2s and 1s. Since from a = −ν4 follows b = −ν3, these fit
because of the condition we had for the first row. In total we obtain the following
conditions:

(1) ν4 ≤ α2;
(2) a = −ν4;
(3) ν3 − ν4 ≥ α1 − α2;
(4) ν3 ≤ α1.

With these four cases we do not only see that the product is stable for k ≥ 2p but
we can easily compute the coefficient with a computer. �

With that proposition we can compute g((k, k), (n− p, p), ν) for n = 2k ≥ 4p.
It would be possible to create a closed formula from the conditions we obtained in
the proposition but this is not very compact; nonetheless it can be used to calculate
these coefficients with the computer.

For n ≥ 4p the Proposition 7.9 provides two ways to compute the multiplicities
for the constituents of [n−p, p][k, k]. On the one hand we can compute [3p, p][2p, 2p].
The proposition tells us that the product is stable so we can read off the general
formula. On the other hand we can check the conditions for the existence of the
Kronecker tableaux easily with a computer and obtain the formula like that. In
this way we receive the following decompositions and check the proposition at some
examples at the same time.
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Lemma 7.10. Let n = 2k. The product [k, k][n − p, p] decomposes for 4 ≤ p ≤ 7
as follows:

(1) If p = 4 and n ≥ 16:

[(k − 2)2, 22] + [k − 1, k − 3, 3, 1] + [k − 1, k − 2, 2, 1] + [k − 1, k − 2, 3]

+ [(k − 1)2, 12] + [k, k − 4, 4] + [k, k − 3, 2, 1] + [k, k − 3, 3]

+ 2[k, k − 2, 2] + [k, k − 1, 1] + [k, k] + [k + 1, k − 4, 3]

+ [k + 1, k − 3, 12] + [k + 1, k − 3, 2] + [k + 1, k − 2, 1] + [k + 2, k − 4, 2]

+ [k + 2, k − 3, 1] + [k + 2, k − 2] + [k + 3, k − 4, 1] + [k + 4, k − 4].

(2) If p = 5 and n ≥ 20:

[k − 2, k − 3, 3, 2] + [(k − 2)2, 3, 1] + [k − 1, k − 4, 4, 1] + [k − 1, k − 3, 22]

+ [k − 1, k − 3, 3, 1] + [k − 1, k − 3, 4] + [k − 1, k − 2, 2, 1] + [k − 1, k − 2, 3]

+ [(k − 1)2, 2] + [k, k − 5, 5] + [k, k − 4, 3, 1] + [k, k − 4, 4] + [k, k − 3, 2, 1]

+ 2[k, k − 3, 3] + [k, k − 2, 12] + [k, k − 2, 2] + [k, k − 1, 1] + [k + 1, k − 5, 4]

+ [k + 1, k − 4, 2, 1] + [k + 1, k − 4, 3] + 2[k + 1, k − 3, 2] + [k + 1, k − 2, 1]

+ [k + 1, k − 1] + [k + 2, k − 5, 3] + [k + 2, k − 4, 12] + [k + 2, k − 4, 2]

+ [k + 2, k − 3, 1] + [k + 3, k − 5, 2] + [k + 3, k − 4, 1] + [k + 3, k − 3]

+ [k + 4, k − 5, 1] + [k + 5, k − 5].

(3) If p = 6 and n ≥ 24:

[(k − 3)2, 32] + [k − 2, k − 4, 4, 2] + [k − 2, k − 3, 3, 2] + [k − 2, k − 3, 4, 1]

+ [(k − 2)2, 22] + [(k − 2)2, 4] + [k − 1, k − 5, 5, 1] + [k − 1, k − 4, 3, 2]

+ [k − 1, k − 4, 4, 1] + [k − 1, k − 4, 5] + 2[k − 1, k − 3, 3, 1]

+ [k − 1, k − 3, 4] + [k − 1, k − 2, 2, 1] + [k − 1, k − 2, 3] + [(k − 1)2, 12]

+ [k, k − 6, 6] + [k, k − 5, 4, 1] + [k, k − 5, 5] + [k, k − 4, 22]

+ [k, k − 4, 3, 1] + 2[k, k − 4, 4] + [k, k − 3, 2, 1] + 2[k, k − 3, 3]

+ 2[k, k − 2, 2] + [k, k − 1, 1] + [k, k] + [k + 1, k − 6, 5]

+ [k + 1, k − 5, 3, 1] + [k + 1, k − 5, 4] + [k + 1, k − 4, 2, 1]

+ 2[k + 1, k − 4, 3] + [k + 1, k − 3, 12] + [k + 1, k − 3, 2] + [k + 1, k − 2, 1]

+ [k + 2, k − 6, 4] + [k + 2, k − 5, 2, 1] + [k + 2, k − 5, 3]

+ 2[k + 2, k − 4, 2] + [k + 2, k − 3, 1] + [k + 2, k − 2] + [k + 3, k − 6, 3]

+ [k + 3, k − 5, 12] + [k + 3, k − 5, 2] + [k + 3, k − 4, 1] + [k + 4, k − 6, 2]

+ [k + 4, k − 5, 1] + [k + 4, k − 4] + [k + 5, k − 6, 1] + [k + 6, k − 6].
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(4) If p = 7 and n ≥ 28:

[k − 3, k − 4, 4, 3] + [(k − 3)2, 4, 2] + [k − 2, k − 5, 5, 2] + [k − 2, k − 4, 32]

+ [k − 2, k − 4, 4, 2] + [k − 2, k − 4, 5, 1] + [k − 2, k − 3, 3, 2]

+ [k − 2, k − 3, 4, 1] + [k − 2, k − 3, 5] + [(k − 2)2, 3, 1]

+ [k − 1, k − 6, 6, 1] + [k − 1, k − 5, 4, 2] + [k − 1, k − 5, 5, 1]

+ [k − 1, k − 5, 6] + [k − 1, k − 4, 3, 2] + 2[k − 1, k − 4, 4, 1]

+ [k − 1, k − 4, 5] + [k − 1, k − 3, 22] + [k − 1, k − 3, 3, 1]

+ 2[k − 1, k − 3, 4] + [k − 1, k − 2, 2, 1] + [k − 1, k − 2, 3] + [(k − 1)2, 2]

+ [k, k − 7, 7] + [k, k − 6, 5, 1] + [k, k − 6, 6] + [k, k − 5, 3, 2]

+ [k, k − 5, 4, 1] + 2[k, k − 5, 5] + 2[k, k − 4, 3, 1] + 2[k, k − 4, 4]

+ [k, k − 3, 2, 1] + 2[k, k − 3, 3] + [k, k − 2, 12] + [k, k − 2, 2] + [k, k − 1, 1]

+ [k + 1, k − 7, 6] + [k + 1, k − 6, 4, 1] + [k + 1, k − 6, 5]

+ [k + 1, k − 5, 22] + [k + 1, k − 5, 3, 1] + 2[k + 1, k − 5, 4]

+ [k + 1, k − 4, 2, 1] + 2[k + 1, k − 4, 3] + 2[k + 1, k − 3, 2]

+ [k + 1, k − 2, 1] + [k + 1, k − 1] + [k + 2, k − 7, 5] + [k + 2, k − 6, 3, 1]

+ [k + 2, k − 6, 4] + [k + 2, k − 5, 2, 1] + 2[k + 2, k − 5, 3]

+ [k + 2, k − 4, 12] + [k + 2, k − 4, 2] + [k + 2, k − 3, 1] + [k + 3, k − 7, 4]

+ [k + 3, k − 6, 2, 1] + [k + 3, k − 6, 3] + 2[k + 3, k − 5, 2]

+ [k + 3, k − 4, 1] + [k + 3, k − 3] + [k + 4, k − 7, 3] + [k + 4, k − 6, 12]

+ [k + 4, k − 6, 2] + [k + 4, k − 5, 1] + [k + 5, k − 7, 2] + [k + 5, k − 6, 1]

+ [k + 5, k − 5] + [k + 6, k − 7, 1] + [k + 7, k − 7].

Remark 7.11. For n < 4p the formulas for the previous products have less con-
stituents, so at least for these cases the bound from Proposition 7.9 is sharp.

With the computer, we also used Proposition 7.9 to get some numerical evidence
for the following claims. For 2k = n ≥ 4p it seems like

g((n− p, p), (k, k)) =
⌊p
4

⌋
+ 1.

Let N(p, l) be the number of constituents with multiplicity at least l in the product
[n − p, p][k, k] where still n ≥ 4p. We suspect that N(p, l) = N(p + 4r, l + r)
for all r ≥ 1. We see a small example for this in Lemma 7.10. Here we have
N(4, 2) = 1 = N(0, 1) up to N(7, 2) = 11 = N(3, 1). It seems like for n ≥ 4p+ 16
that

g((k, k), (n− p, p), (λ1, λ2, λ3, λ4)) = a

if and only if

g((k, k), (n− p− 4, p+ 4), (λ1, λ2 − 2, λ3 + 2, λ4)) = a+ 1.

In the next step we show that the products [k, k][k+2, k−2] and [k, k][k+3, k−3]
only contain constituents with multiplicity 1 and 2. But these products have more
constituents as k grows. Therefore, we cannot list them all like in the previous
decompositions, instead we use a different presentation. The first product already
appeared in [BWZ10] and for the second product we use that paper to prove the
decomposition.
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We use the notation Q(n) for the partitions of n in at most four parts which
are all even or odd. For partitions of length smaller than 4 the 0’s count as even
parts, e.g. (43) = (43, 0) ∈ Q(12) counts as a partition with 4 even parts but
(33) 6∈ Q(9). By Rk(n) we denote partitions where every part is repeated at most
k times, where we assume that the partition has exactly 4 parts by adding 0 parts,
e.g. (16) = (16, 03) is not in R2(16) because the 0 part is repeated three times.

Lemma 7.12. Let n = 2k be even and λ = (k, k).
(1) Let µ = (k + 2, k − 2). The product [λ][µ] decomposes as∑

λ∈Q(n)∩R2(n)

[λ] +
∑

λ∈R1, l(λ)∈{3,4}

[λ].

(2) Let µ = (k + 3, k − 3) and ν ` n. g(λ, µ, ν) = 0 if none of the following
cases occurs:
(a) If l(ν) = 2 and ν = (ν1, ν2) with ν1 ≡ ν2 ≡ 1 mod 2 and ν2 > 1,

g(λ, µ, ν) = 1.
(b) Let l(ν) = 3, 4 and ν = (ν1, ν2, ν3, ν4) (if l(ν) = 3 we have ν4 = 0).

g(λ, µ, ν) = 2 if λ1 ≥ λ2 +2 ≥ λ3 +4 ≥ λ4 +6 and not all parts have
the same parity. Otherwise, g(λ, µ, ν) = 1 if one of the following
holds:

(i) ν1 ≡ ν2 ≡ ν3 ≡ ν4 mod 2 and ν1 > ν2 > ν3 > ν4;
(ii) ν1 ≡ ν2 6≡ ν3 ≡ ν4 mod 2 and one of the following holds:

(A) ν2 + 3 ≥ ν3;
(B) ν1 ≥ ν2 + 2 and ν3 ≥ ν4 + 2.

(iii) ν1 6≡ ν2 6≡ ν3 6≡ ν4 mod 2 and one of the following holds:
(A) ν2 + 3 ≥ ν3;
(B) ν1 + 3 ≥ ν2 and ν3 + 3 ≥ ν4.

(iv) ν1 6≡ ν2 ≡ ν3 6≡ ν4 mod 2 and one of the following holds:
(A) ν2 ≥ ν3 + 2;
(B) ν1 ≥ ν2 + 3 and ν3 ≥ ν4 + 3.

Proof: The first identity appeared in [BWZ10, Corollary 3.6.]. For the second
one we use [BWZ10, Theorem 3.1.], which states that the product [k, k][k+3, k−3]
decomposes as

[(3, 3, 0)P ] + [(4, 3, 1)P ] + [(5, 3, 2)P ] + [(6, 3, 3)P ]

+ [(5, 4, 1)P ] + [(6, 4, 2)P ] + [(7, 4, 3)P ],

where [(a, b, c)P ] is the sum over all [α] for α ` n such that α−(a, b, c) is a partition
from Q(n). If l(ν) = 1 or l(ν) > 4, we know that g(λ, µ, ν) = 0.

If l(ν) = 2, [ν] is a constituent of [λ][µ] if and only if [ν] is a constituent of
[(3, 3, 0)P ]. This proves part (a).

If l = 3, 4, either all parts of ν have the same parity or exactly two pairs of two
parts have the same parity. For ν = (ν1, ν2, ν3, ν4), [ν] is a constituent of [(a, b, c)P ]
if and only if ν1 − a, ν2 − b, ν3 − c and ν4 all have the same parity. So we divide

[(3, 3, 0)P ] + [(4, 3, 1)P ] + [(5, 3, 2)P ] + [(6, 3, 3)P ]

+ [(5, 4, 1)P ] + [(6, 4, 2)P ] + [(7, 4, 3)P ]

into four disjoint sets according to the parity of the parts. For these we can easily
see the different parts of (2)(b). If all parts have the same parity, [ν] is a constituent
of [λ][µ] if and only if [ν] is a constituent of [(6, 4, 2)P ]. So from now on we assume
that two of the parts of ν are odd and two are even. If ν1 ≡ ν2 mod 2, [ν] is a
constituent of [λ][µ] if and only if [ν] is a constituent of [(3, 3, 0)P ] + [(5, 3, 2)P ]. If
ν1 ≡ ν3 mod 2, [ν] is a constituent of [λ][µ] if and only if [ν] is a constituent of
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[(5, 4, 1)P ] + [(7, 4, 3)P ]. The last case is ν1 ≡ ν4 mod 2. Here [ν] is a constituent
of [λ][µ] if and only if [ν] is a constituent of [(4, 3, 1)P ] + [(6, 3, 3)P ]. �

Products with [k + 1, k].
The last decomposition we want to prove is the one of [k+1, k][k+2, k− 1]. To do
so we need the following connection between the inner and the outer tensor product
of characters. It can be found in [BWZ10, Page 5 (2.3)]:

Lemma 7.13. Let λ ` n, µ ` m and ν, π ` n+m. Then

〈[µ� λ], [ν][π]〉 =
∑

α,β`|µ|
α⊂ν,β⊂π

g(α, β, µ)g(λ, ν/α, π/β).

Lemma 7.14. Let n = 2k + 1. By Rk(n) we denote the k + 1 regular partitions,
like in Lemma 7.12. The product [k + 1, k][k + 2, k − 1] decomposes as∑

λ`n with
l(λ)=2

[λ] + 2
∑

λ∈R1(n) with
l(λ)=3,4

[λ] +
∑

λ∈R2(n)\R1(n)
with l(λ)=3,4

[λ].

Proof: With Lemma 7.13 we deduce that for a λ ` n
〈[2, 1]� [λ], [k+2, k+2]2〉 = 2g(λ, (k+1, k), (k+2, k−1))+g(λ, (k+1, k), (k+1, k)).

It follows from Theorem 5.5 that g((k + 1, k), (k + 2, k − 1), λ) = 0 if l(λ) > 4.
Additionally, we know g((k + 1, k), (k + 2, k − 1), (n)) = 0. Thus, we have to look
at partitions with two, three or four rows. Thanks to [Gar+12, Theorem 2.3] we
know that [k + 2, k + 2]2 consists of all the partitions of n+ 3 of length four which
have only odd parts and all partitions of n + 3 of length at most four which have
only even parts, all with multiplicity 1. If we look at the common constituents with
[2, 1]� [λ], we obtain a value for

2g(λ, (k + 1, k), (k + 2, k − 1)) + g(λ, (k + 1, k), (k + 1, k)).

Since g(λ, (k+1, k), (k+1, k)) = χ(l(λ)≤4) (see [BWZ10, Corollary 5.1.]), we receive
g(λ, (k + 1, k), (k + 2, k − 1)).

1st case: λ is a two-row partition. If λ2 = 1, 2, it follows from Lemma 5.13 resp.
Lemma 7.2 that g((k + 1, k), (k + 2, k − 1), λ) = 1. If λ = (k + 1, k), we know the
decomposition of [λ]2 and g((k + 1, k), (k + 2, k − 1), (k + 1, k)) = 1 (see [BWZ10,
Corollary 5.1.]). From now on we can assume that λ1 − λ2, λ2 ≥ 2.

If l(λ) = 2 and λ1 − λ2, λ2 ≥ 2, [λ]� [2, 1] decomposes as

[λ1, λ2, 2, 1] + [λ1, λ2 + 1, 12] + [λ1, λ2 + 1, 2] + [λ1, λ2 + 2, 1]

+ [λ1 + 1, λ2, 1
2] + [λ1 + 1, λ2, 2] + 2[λ1 + 1, λ2 + 1, 1]

+ [λ1 + 1, λ2 + 2] + [λ1 + 2, λ2, 1] + [λ1 + 2, λ2 + 1].

In case λ1 is even which implies λ2 is odd,

[λ1, λ2 + 1, 2], [λ1 + 1, λ2, 1
2] and [λ1 + 2, λ2 + 1]

are constituents of [k + 2, k + 2]2. In case λ1 is odd,

[λ1, λ2 + 1, 12], [λ1 + 1, λ2, 2] and [λ1 + 1, λ2 + 2]

are constituents of [k + 2, k + 2]2. So in both cases we obtain

3 = 2g(λ, (k + 1, k), (k + 2, k − 1)) + g(λ, (k + 1, k), (k + 1, k)).

We conclude that g((k + 1, k), (k + 2, k − 1), λ) = 1.
2nd case: l(λ) = 3. If rem(λ) = 1, we know that

[λ]� [2, 1] = [λ31, 2, 1] + [λ1 + 2, λ1 + 1, λ1].

98



Therefore, g((k + 1, k), (k + 2, k − 1), λ) = 0.
In the next step we look at λ with rem(λ) = 2. Let λ1 = λ2 > λ3. The product

[λ21, λ3]� [2, 1] decomposes as

χ(λ3≥2)[λ
2
1, λ3, 2, 1] + [λ21, λ3 + 1, 12] + [λ21, λ3 + 1, 2] + χ(λ1−λ3≥2)[λ

2
1, λ3 + 2, 1]

+ [λ1 + 1, λ1, λ3, 1
2] + χ(λ3≥2)[λ1 + 1, λ1, λ3, 2] + 2[λ1 + 1, λ1, λ3 + 1, 1]

+ χ(λ1−λ3≥2)[λ1 + 1, λ1, λ3 + 2] + [(λ1 + 1)2, λ3, 1] + [(λ1 + 1)2, λ3 + 1]

+ [λ1 + 2, λ1, λ3, 1] + [λ1 + 2, λ1, λ3 + 1] + [λ1 + 2, λ1 + 1, λ3].

The common constituents of [λ]� [2, 1] and [(k + 2)2]2 are

[λ21, λ3 + 1, 2], [(λ1 + 1)2, λ3, 1] and [λ1 + 2, λ1, λ3 + 1]

if λ1 is even and

[λ21, λ3 + 2, 1], [(λ1 + 1)2, λ3 + 1] and [λ1 + 2, λ1, λ3, 1]

if λ1 is odd. Note that if λ1 is odd, λ3 is odd, too therefore, λ1− 1 6= λ3. With this
we conclude that g((k + 1, k), (k + 2, k − 1), λ) = 1.

If rem(λ) = 2 and λ2 = 1, we know that λ is a hook and therefore, by Lemma 6.4
g((k + 1, k), (k + 2, k − 1), λ) = 1. So if λ1 > λ2 = λ3, we can assume that λ2 ≥ 2.
The product [λ]� [2, 1] decomposes as

[λ1, λ2 + 1, λ2, 2] + [λ1, (λ2 + 1)2, 1] + χ(λ1−λ2≥2)[λ1, λ2 + 2, λ2, 1]

+ χ(λ1−λ2≥2)[λ1, λ2 + 2, λ2 + 1] + [λ1 + 1, λ22, 2] + 2[λ1 + 1, λ2 + 1, λ2, 1]

+ [λ1 + 1, (λ2 + 1)2] + [λ1 + 1, λ2 + 2, λ2] + [λ1 + 2, λ22, 1]

+ [λ1 + 2, λ2 + 1, λ2] + constituents of length > 4.

We know that λ1 is odd. If λ2 is odd, too, the common constituents are

[λ1, λ2 + 2, λ2, 1], [λ1 + 1, (λ2 + 1)2] and [λ1 + 2, λ22, 1].

The first one occurs since λ1 and λ2 are both odd and therefore, λ1−λ2 ≥ 2. If λ2
is even, the common constituents are

[λ1, (λ2 + 1)2, 1], [λ1 + 1, λ22, 2], and [λ1 + 1, λ2 + 2, λ2].

In both cases we obtain that g((k + 1, k), (k + 2, k − 1), λ) = 1.
The last partitions of length 3 we have to check are the ones with three re-

movable nodes. So let λ1 > λ2 > λ3 ≥ 1. The product [λ] � [2, 1] decomposes
as

[λ1, λ2, λ3 + 1, 2] + χ(λ2−λ3≥2)[λ1, λ2, λ3 + 2, 1] + χ(λ3≥2)[λ1, λ2 + 1, λ3, 2]

+ 2[λ1, λ2 + 1, λ3 + 1, 1] + [λ1, λ2 + 1, λ3 + 2] + χ(λ1−λ2≥2)[λ1, λ2 + 2, λ3, 1]

+ χ(λ1−λ2≥2)[λ1, λ2 + 2, λ3 + 1] + χ(λ3≥2)[λ1 + 1, λ2, λ3, 2]

+ 2[λ1 + 1, λ2, λ3 + 1, 1] + χ(λ2−λ3≥2)[λ1 + 1, λ2, λ3 + 2] + 2[λ1 + 1, λ2 + 1, λ3, 1]

+ 2[λ1 + 1, λ2 + 1, λ3 + 1] + [λ1 + 1, λ2 + 2, λ3] + [λ1 + 2, λ2, λ3, 1]

+ [λ1 + 2, λ2, λ3 + 1] + [λ1 + 2, λ2 + 1, λ3] + constituents of length > 4.

The common constituents with [k + 2, k + 2]2 are:
• If λ1 and λ2 are even:

[λ1, λ2, λ3 + 1, 2], [λ1, λ2 + 2, λ3 + 1], [λ1 + 1, λ2 + 1, λ3, 1], [λ1 + 2, λ2, λ3 + 1].

• If λ1 and λ2 − 1 are even:

[λ1, λ2 + 1, λ3, 2], [λ1, λ2 + 1, λ3 + 2], [λ1 + 1, λ2, λ3 + 1, 1], [λ1 + 2, λ2 + 1, λ3].

• If λ1 and λ2 − 1 are odd:

[λ1, λ2 + 1, λ3 + 1, 1], [λ1 + 1, λ2, λ3, 2], [λ1 + 1, λ2, λ3 + 2], [λ1 + 1, λ2 + 2, λ3].
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Formulas for the stated products

• If λ1 and λ2 are odd:

[λ1, λ2, λ3 + 2, 1], [λ1, λ2 + 2, λ3, 1], [λ1 + 1, λ2 + 1, λ3 + 1], [λ1 + 2, λ2, λ3, 1].

Hence, in all four cases we obtain

5 = 2g(λ, (k + 1, k), (k + 2, k − 1)) + g(λ, (k + 1, k), (k + 1, k))

and therefore, g((k + 1, k), (k + 2, k − 1), λ) = 2.
3rd case: l(λ) = 4. Since n is odd, we know that rem(λ) ≥ 2. If rem(λ) = 2,

we know that either λ1 = λ2 = λ3 > λ4 or λ1 > λ2 = λ3 = λ4. In the first case
[λ]� [2, 1] decomposes as

χ(λ1−λ4≥2)[λ1 + 1, λ21, λ4 + 2] + [(λ1 + 1)2, λ1, λ4 + 1] + [λ1 + 2, λ21, λ4 + 1]

+ [λ1 + 2, λ1 + 1, λ1, λ4] + constituents of length > 4.

Since λ1 6≡ λ4 mod 2, the only common constituent is [λ1 + 2, λ21, λ4 + 1] and
therefore, g((k + 1, k), (k + 2, k − 1), λ) = 0. If λ1 > λ2 = λ3 = λ4, the product
[λ]� [2, 1] decomposes as

χ(λ1−λ2≥2)[λ1, λ2 + 2, λ2 + 1, λ2] + [λ1 + 1, (λ2 + 1)2, λ2] + [λ1 + 1, λ2 + 2, λ22]

+ [λ1 + 2, λ2 + 1, λ22] + constituents of length > 4.

With the same argument as in the case before the only common constituent is
[λ1 + 1, λ2 + 2, λ22] and therefore, we obtain that g((k + 1, k), (k + 2, k − 1), λ) = 0,
too.

If rem(λ) = 3, we look at three different cases. We start with λ1 = λ2 > λ3 > λ4.
The product [λ]� [2, 1] decomposes as

[λ1 + 2, λ1 + 1, λ3, λ4] + [λ1 + 2, λ1, λ3 + 1, λ4] + [λ1 + 2, λ1, λ3, λ4 + 1]

+ [(λ1 + 1)2, λ3 + 1, λ4] + [(λ1 + 1)2, λ3, λ4 + 1]

+ χ(λ1−λ3≥2)[λ1 + 1, λ1, λ3 + 2, λ4] + 2[λ1 + 1, λ1, λ3 + 1, λ4 + 1]

+ χ(λ3−λ4≥2)[λ1 + 1, λ1, λ3, λ4 + 2] + χ(λ1−λ3≥2)[λ
2
1, λ3 + 2, λ4 + 1]

+ [λ21, λ3 + 1, λ4 + 2] + constituents of length > 4.

If λ1 ≡ λ3 ≡ λ4 − 1 mod 2, the common constituents are

[λ1 + 2, λ1, λ3, λ4 + 1], [(λ1 + 1)2, λ3 + 1, λ4], [λ
2
1, λ3 + 2, λ4 + 1],

where λ1 ≥ λ3 + 2 since λ1 > λ3 and λ1 ≡ λ3 mod 2. If λ1 ≡ λ3 − 1 ≡ λ4 mod 2,
the common constituents are

[λ1 + 2, λ1, λ3 + 1, λ4], [(λ1 + 1)2, λ3, λ4 + 1], [λ21, λ3 + 1, λ4 + 2].

So we know that g((k + 1, k), (k + 2, k − 1), λ) = 1.
If λ1 > λ2 = λ3 > λ4, [λ]� [2, 1] decomposes as

[λ1 + 2, λ2 + 1, λ2, λ4] + [λ1 + 2, λ22, λ4 + 1] + [λ1 + 1, λ2 + 2, λ2, λ4]

+ [λ1 + 1, (λ2 + 1)2, λ4] + 2[λ1 + 1, λ2 + 1, λ2, λ4 + 1]

+ χ(λ2−λ4≥2)[λ1 + 1, λ22, λ4 + 2] + χ(λ1−λ2≥2)[λ1, λ2 + 2, λ2 + 1, λ4]

+ χ(λ1−λ2≥2)[λ1, λ2 + 2, λ2, λ4 + 1] + [λ1, (λ2 + 1)2, λ4 + 1]

+ χ(λ2−λ4≥2)[λ1, λ2 + 1, λ2, λ4 + 2] + constituents of length > 4.

If λ1 ≡ λ2 ≡ λ4 − 1 mod 2, the common constituents are:

[λ1 + 2, λ22, λ4 + 1], [λ1 + 1, (λ2 + 1)2, λ4], [λ1, λ2 + 2, λ2, λ4 + 1].

If λ1 ≡ λ2 − 1 ≡ λ4 − 1 mod 2, the common constituents are:

[λ1 + 1, λ2 + 2, λ2, λ4], [λ1 + 1, λ22, λ4 + 2], [λ1, (λ2 + 1)2, λ4 + 1].

Therefore, in both cases g((k + 1, k), (k + 2, k − 1), λ) = 1.
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If λ1 > λ2 > λ3 = λ4 ≥ 1, [λ]� [2, 1] decomposes as

[λ1 + 2, λ2 + 1, λ23] + [λ1 + 2, λ2, λ3 + 1, λ3] + [λ1 + 1, λ2 + 2, λ23]

+ 2[λ1 + 1, λ2 + 1, λ3 + 1, λ3] + χ(λ2−λ3≥2)[λ1 + 1, λ2, λ3 + 2, λ3]

+ [λ1 + 1, λ2, (λ3 + 1)2] + χ(λ1−λ2≥2)[λ1, λ2 + 2, λ3 + 1, λ3]

+ [λ1, λ2 + 1, λ3 + 2, λ3] + [λ1, λ2 + 1, (λ3 + 1)2]

+ χ(λ2−λ3≥2)[λ1, λ2, λ3 + 2, λ3 + 1] + constituents of length > 4.

If λ1 ≡ λ2 − 1 ≡ λ3 mod 2, the common constituents are:

[λ1 + 2, λ2 + 1, λ23], [λ1 + 1, λ2, (λ3 + 1)2], [λ1, λ2 + 1, λ3 + 2, λ3].

If λ1 ≡ λ2 − 1 ≡ λ3 − 1 mod 2, the common constituents are:

[λ1 + 1, λ2 + 2, λ23], [λ1 + 1, λ2, λ3 + 2, λ3], [λ1, λ2 + 1, (λ3 + 1)2].

Therefore, in both cases g((k + 1, k), (k + 2, k − 1), λ) = 1.
The last case that we have to look at is l(λ) = rem(λ) = 4. Here, [λ] � [2, 1]

decomposes as:

[λ1 + 2, λ2 + 1, λ3, λ4] + [λ1 + 2, λ2, λ3 + 1, λ4] + [λ1 + 2, λ2, λ3, λ4 + 1]

+ [λ1 + 1, λ2 + 2, λ3, λ4] + 2[λ1 + 1, λ2 + 1, λ3 + 1, λ4]

+ 2[λ1 + 1, λ2 + 1, λ3, λ4 + 1] + χ(λ2−λ3≥2)[λ1 + 1, λ2, λ3 + 2, λ4]

+ 2[λ1 + 1, λ2, λ3 + 1, λ4 + 1] + χ(λ3−λ4≥2)[λ1 + 1, λ2, λ3, λ4 + 2]

+ χ(λ1−λ2≥2)[λ1, λ2 + 2, λ3 + 1, λ4] + χ(λ1−λ2≥2)[λ1, λ2 + 2, λ3, λ4 + 1]

+ [λ1, λ2 + 1, λ3 + 2, λ4] + 2[λ1, λ2 + 1, λ3 + 1, λ4 + 1]

+ χ(λ3−λ4≥2)[λ1, λ2 + 1, λ3, λ4 + 2] + χ(λ2−λ3≥2)[λ1, λ2, λ3 + 2, λ4 + 1]

+ [λ1, λ2, λ3 + 1, λ4 + 2] + constituents of length > 4.

We obtain the following common constituents:

• If λ1 − 1 ≡ λ2 ≡ λ3 ≡ λ4 mod 2, they are

[λ1 + 1, λ2 + 2, λ3, λ4], [λ1 + 1, λ2, λ3 + 2, λ4],

[λ1 + 1, λ2, λ3, λ4 + 2], [λ1, λ2 + 1, λ3 + 1, λ4 + 1].

• If λ1 ≡ λ2 − 1 ≡ λ3 ≡ λ4 mod 2, they are

[λ1 + 2, λ2 + 1, λ3, λ4], [λ1 + 1, λ2, λ3 + 1, λ4 + 1],

[λ1, λ2 + 1, λ3 + 2, λ4], [λ1, λ2 + 1, λ3, λ4 + 2].

• If λ1 ≡ λ2 ≡ λ3 − 1 ≡ λ4 mod 2, they are

[λ1 + 2, λ2, λ3 + 1, λ4], [λ1 + 1, λ2 + 1, λ3, λ4 + 1],

[λ1, λ2 + 2, λ3 + 1, λ4], [λ1, λ2, λ3 + 1, λ4 + 2].

• If λ1 ≡ λ2 ≡ λ3 ≡ λ4 − 1 mod 2, they are

[λ1 + 2, λ2, λ3, λ4 + 1], [λ1 + 1, λ2 + 1, λ3 + 1, λ4],

[λ1, λ2 + 2, λ3, λ4 + 1], [λ1, λ2, λ3 + 2, λ4 + 1].

So in all four cases g((k + 1, k), (k + 2, k − 1), λ) = 2. �
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Formulas for the stated products

One direction of the proof of Proposition 7.1.

Lemma 7.15. The products in Proposition 7.1 contain only constituents with mul-
tiplicity 1 and 2.

Proof: Proposition 7.1 (1) has been proven in [BB17]. In Lemma 6.4 we have
seen Proposition 7.1 (2). The decomposition of the products of Proposition 7.1
(3) is given in Lemma 7.2 if both are two-row partitions, and if one is a hook,
we have seen this already in Lemma 6.7. Proposition 7.1 (4) and (5) we have
seen in Lemma 7.3. In Lemma 7.5 the formula for Proposition 7.1 (6) is given. In
Lemma 7.4 and 7.14 we see the missing parts of Proposition 7.1 (7). Proposition 7.1
(8) has been proven in Lemma 7.6, 7.10 and 7.12. And the exceptional cases of
Proposition 7.1 (9) have been checked with Sage. �

2. Other products with a two-row partition contain a constituent with
multiplicity 3 or higher

Now we want to prove the other direction of Proposition 7.1. We start with
the case that λ and µ are two-row partitions.

Products of two characters labeled by two-row partitions.

Lemma 7.16. Let n ∈ N, n ≥ 6 and λ = (n−i, i), µ = (n−j, j) with 3 ≤ i ≤ j ≤ n
2 .

If none of the following cases occurs:
(1) j = n−1

2 and i = n−1
2 , i = n−3

2 or i = 3;
(2) j = n

2 and i < 8 or n− 2i < 8;
(3) n = 8 and λ = µ = (5, 3) or n = 10 and λ = µ = (6, 4),

the product [λ][µ] has a non-symmetric constituent with multiplicity greater or equal
to 3. And if, further, none of the following occurs

(a) i = j = 3;
(b) i = 4 and µ = (k + 1, k) for n = 2k + 1;
(c) i = 8 and µ = (k, k) for n = 2k;
(d) n = 12 and λ = µ = (7, 5), n = 14 and λ = µ = (8, 6) or n = 26,

λ = (18, 8), (17, 9) and µ = (13, 13);
the product [λ][µ] contains a second constituent with multiplicity 3 or higher.

Proof: We assume that λ and µ are two-row partitions and that they are not
from the first list. We check the lemma up to n = 16 with Sage. We know that
all constituents of [λ][µ] have length at most 4 (see Theorem 5.5). For n > 16
we know that width of a constituent has to be larger than 4. Hence, none of the
constituents of [λ][µ] is symmetric. We find a seed that contains one constituent
with multiplicity 3 if λ and µ are from the second list, and several constituents with
multiplicity 3 if they are not from the second list. We start with the case i = 3.
If 4 ≤ j ≤ n − j − 2, we find two constituents with multiplicity 3 or higher with
the seed ((7, 3), (6, 4)). If j = 3, this can be reduced to the seed ((6, 3), (6, 3)). The
corresponding product contains one constituent with multiplicity 3. In the other
cases we have seen that the product with [n−3, 3] does not contain any constituents
with multiplicity 3 or higher.

If 4 ≤ i and n − 2j ≥ 3, this can be reduced to the seed ((7, 4), (7, 4))
which has four constituents with multiplicity 3. Now we have to look at the cases
n− 2j = 2, 1, 0. For all we can assume that i > 3.

If n− 2j = 2 and n− 2i > 2, we know that n− 2i ≥ 4 since it is even and we
reduce λ and µ to the seed ((8, 4), (7, 5)). The corresponding product contains four
constituents with multiplicity 3. If n − 2i = 2, the λ and µ can be obtained from
the seed ((9, 7)(9, 7)). The corresponding product contains three constituent with
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multiplicity 3 (that [7, 5]2 and [8, 6]2 contain a constituent with multiplicity 3 was
checked with Sage).

If n− 2j = 1, we know that n− 2i ≥ 5. For i = 4, λ and µ are from the second
list. We can reduce them to the seed ((9, 4), (7, 6)). The corresponding product
contains just one constituent with multiplicity 3. If i > 4, we reduce λ and µ to
((10, 5), (8, 7)). Here it contains three constituents with multiplicity 3.

If n− 2j = 0 and i = 8, λ and µ can be reduced to the seed ((16, 8), (12, 12)).
The corresponding product contains just one constituent with multiplicity 3. If
n − 2j = 0 and i > 8, λ and µ can be reduced to the seed ((18, 10), (14, 14))
or ((19, 9), (14, 14)) which contain several constituents with multiplicity 3. That
[13, 13][18, 8] and [13, 13][17, 9] contain one constituent with multiplicity 3 was
checked with Sage. �

Some special cases.
In the next step we look at some special cases before working on the general case:
products with two-row partitions of small depth, [k, k] and [k+1, k]. We recall that
by g2(λ, µ) ≥ 3 we mean that [λ][µ] contains at least 2 constituents with multiplicity
3 or higher.

Lemma 7.17. (1) Let λ = (n − 2, 2) and µ ` n, where µ is neither hook,
a two-row partition, a rectangle, a rectangle where the removable box is
removed, nor a rectangle where one of the addable boxes is added. There
is a partition ν such that g(λ, µ, ν) > 2 and if µ is symmetric, ν 6= µ.

(2) Let λ = (n−3, 3) and let µ ` n neither be a rectangle nor a hook nor a two-
row partition nor (λ, µ) be one of the exceptional cases. Then g2(λ, µ) ≥ 3.

(3) Let λ = (n − 4, 4) and µ ` n be neither a two-row partition nor a hook
nor let (λ, µ) be one of the exceptional pairs. If µ 6= (53)(

′), g2(λ, µ) ≥ 3.
The product [11, 4][53] has only one constituent with multiplicity 3.

Proof: For all three cases we check the statement with Sage up to n = 21
so we can always assume that n ≥ 22. Due to Lemma 7.16 we can assume that
l(µ) ≥ 3.

(1): Let λ = (n − 2, 2). We can assume that µ has at least two columns of
different size, otherwise, the product would be multiplicity-free. First, let us assume
µ is a fat hook, i.e., it is of the form (ab, cd) for positive integers a, b, c, d.

Let c = 1. We know that b > 1, otherwise µ would be a hook, and that d > 1,
otherwise, it would be one of the products from Lemma 7.3. Therefore, we reduce
(λ, µ) to the seed ((32, 12), (6, 2)). The seed contains only one constituent with
multiplicity 3 but since c = 1 and µ is a proper fat hook, we know that µ is not
symmetric.

Let c = a− 1. We have seen that g(λ, µ) = 2 if d = 1 in Lemma 7.3. Further,
b = 1 is by conjugation equivalent to the previous case. Since d > 1, we know that
µ is not symmetric and we reduce (λ, µ) to the pair ((8, 2), (32, 22)).

If c 6= 1, a − 1, we can assume that b > 1, because by conjugation b = 1
is equivalent to c = 1. Therefore, we can reduce (λ, µ) to ((8, 2), (42, 2)). Since
g2((8, 2), (4

2, 2)) ≥ 3, we know that [λ][µ] has a constituent with multiplicity 3 or
higher which is different from [µ].

If µ is not a fat hook, we know that µ 6= (3, 2, 1) since n ≥ 22. By conju-
gation we assume that w(µ) ≥ 4. We reduce (λ, µ) to one of the following seeds
((7, 2), (4, 3, 2)), ((6, 2), (4, 3, 1)), ((5, 2), (4, 2, 1)). All three seeds have at least 2
constituents with multiplicity 3 or higher. If we do not mention anything else, all
following seeds do, too.

(2): Let λ = (n − 3, 3), µ ` n not be a rectangle and (λ, µ) not be one of the
exceptional pairs. By conjugation we can assume that w(µ) ≥ 4. Now we get a lot

103
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of different cases, but they all work in the same way. We reduce µ to one of the
partitions

• (4, 2, 1), (4, 3, 1), (4, 3, 2) if rem(µ) ≥ 3.
• (42, 3), (42, 2), (42, 1) if rem(µ) = 2 and µ1 has multiplicity 2 or higher,

and (4, 22), (4, 32) if µ1 has multiplicity 1.
λ can be reduced to the two-row partition of the same size with its second row
of length 3. All that pairs are seeds which contain at least two constituents with
multiplicity 3 of higher.

(3): Let λ = (n − 4, 4) and µ ` n is neither a two-line partition nor a hook.
Further, µ 6= (42, 1)(

′), (33), (43)(
′). If µ is a rectangle, we have to distinguish two

different cases. If l(µ) = 3, we reduce it to the seed ((14, 4), (63)). If l(µ), w(µ) ≥ 4,
we reduce it to the seed ((12, 4), (44)).

Whenever we have d(µ) ≥ 4 or µ3 ≥ 6, we can reduce this to the previous cases.
Since we assume that n > 21 and that d(µ) ≤ 3, we get, maybe after conjugation,
that w(µ) ≥ 6. Let us first look at the case d(µ) = 3. Either µ3 ≥ 6 or (λ, µ) can
be reduced to one of the seeds ((7, 4), (42, 3)), ((6, 4), (4, 32)).

In the last step we assume that d(µ) = 2. Now we know that w(µ) ≥ 7. If
µ2 ≥ 3, we reduce µ to one of the following partitions (5, 5, µ3), (5, 4, µ3), (5, 3, µ3),
where µ3 ∈ {1, 2}, and λ to the two-row partition λ̃ of the same size with λ̃2 = 4.
All these seeds contain at least two constituents with multiplicity 3.

If µ2 = 2, we reduce µ to (7, 2, µ3), where µ3 ∈ {1, 2} and λ to the two-row
partition λ̃ of the same size with λ̃2 = 4. Both seeds have two constituents with
multiplicity 3, too. �

Lemma 7.18. (1) Let n = 2k ≥ 6, λ = (k, k) and µ ` n. If µ is neither a
hook, nor a two-row partition, nor (n − 3, 2, 1), nor is (λ, µ) one of the
exceptional pairs from Proposition 7.1, g(λ, µ) ≥ 3. If µ is different from
(n− 4, 22), (4, 2, 12) for n = 8 and (5, 4, 1) for n = 10, g2(λ, µ) ≥ 3.

(2) Let n = 2k+1 ≥ 5, λ = (k+1, k). If µ ` n is neither a hook nor a two-line
partition nor one of the exceptional pairs, g(λ, µ) ≥ 3. If µ(′) 6= (4, 2, 1),
g2(λ, µ) ≥ 3.

Proof: We checked all the statements up to n = 25 so we can assume that
n ≥ 26 and we can assume that w(µ) ≥ l(µ) so we know that w(µ) ≥ 6. Further,
can we assume that µ is not a two-row partition.

Both parts of Lemma 7.18 are goning to be proven simultaneously because the
proof works in the same way. In both cases we know that there are at least two
columns of µ of length greater or equal to 2, otherwise, µ would be a hook. So we
know that there are two columns of µ which are congruent modulo 2 and one of
them has length greater than 1. In the generic case we remove these two columns
from µ to obtain µ̃ and the fitting number of columns of length 2 from λ to obtain
λ̃. We obtain the result by induction and Lemma 5.17 if we reduce λ, µ to a pair
which contains just one constituent with multiplicity 3 or higher.

But there are some cases where g(λ̃, µ̃) ≤ 2. This happens if we reduce µ
to a hook, maybe even a one-line partition, a two-row partition or in the case of
λ = (k, k) to (ñ, 2, 1) for some ñ ∈ N or to one of the exceptional pairs which are
(4, 22), (4, 3, 1), (4, 32), (43), (44) and (63) if λ = (k2) and (42, 1), (53), (4, 2, 1) if
λ = (k + 1, k). Where we only need to consider exceptional pairs with width ≥ 4.
We look at these cases individually. If we reduced µ to (44), we would not remove
the two columns and have µ = (64, 22) and λ = (142) or µ = (64, 2) or (64, 12) and
λ = (132). Since n ≥ 26 and both columns that we remove have the same parity,
we know that they are of length 4, 5 or 6. For both cases we check directly that
the product contains two constituents with multiplicity 3. In the same way we can
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solve the other exceptional cases. Note that this is only necessary for (63) and (53),
in the other cases there could have been at most 2 more columns of length 6 but
then we still would not have 26 or more boxes.

After the exceptional pairs we look at some special cases. If µ = (n− l−2, 2, 1l)
with l > 1, we reduce this in both cases to the seed ((6, 2, 12), (5, 5)). Again, if
we do not mention anything else, all our seeds have at least 2 constituents with
multiplicity 3 or higher. If l = 1, we know that λ = (k + 1, k) and this can be
reduced to ((5, 4), (6, 2, 1)). In the case where µ(′) = (n − l − 3, 3, 1l), this can be
reduced to ((5, 5), (6, 3, 1)).

If we reduced µ to a hook, µ has two or three columns larger than 1. We start
with the case that µ has three columns larger than 1. Since µ is not of the form
(n− l−3, 3, 1l), we know that there are at least two columns of length ≥ 3. From µ
we remove the smallest column of length ≥ 2 together with one column of length 1
if the length of that column is odd, or two columns of length 1 if the length is even.
From λ we just remove columns of length 2. We obtain the result by induction.
Now we look at the case that µ has two columns larger than 1. If µ = (n− 4, 22),
we can reduce this to ((52), (6, 22)) if λ = (k, k). This seed has only one constituent
with multiplicity 3 In the case µ = (n−4, 22) and λ = (k+1, 1) we can reduce it to
((5, 4), (5, 22)). This seed contains several constituents with multiplicity 3. Since
we assume that µ 6= (n − l − 2, 2, 1l), we know that the second column is at least
of length 3. If the second column is of length 5, we remove (22) from µ as rows
as well as 2 columns of length 2 from λ. The result follows from Lemma 5.17. If
the second column is of length 4, we reduce this to ((4, 23), (52)) or ((5, 23, 1), (62)),
depending on the parity of l(µ). If the second column is of length 3, we know that
l(µ) ≥ 4 since we already looked at µ = (n− 4, 22)). Therefore, we can reduce this
to ((4, 22, 12), (52)) or ((5, 22, 1), (52)).

If we reduced µ to (ñ, 2, 1), we know that ñ ≥ 6 since n ≥ 26 and w(µ) ≥ l(µ).
So instead of removing two columns of the same parity, we remove two columns of
length 1 and one of length 2 from µ and two columns of length 2 from λ. �

General case.

Lemma 7.19. Let λ = (n− i, i) with 5 ≤ i < n−1
n and µ ` n is neither a hook nor

a two-line partition. Then g2(λ, µ) ≥ 3.

Proof: We prove this with induction on n. As a start for the induction, we
verified this up to n = 25 so we can assume that n ≥ 26 and with the assumption
w(µ) ≥ l(µ) also that w(µ) ≥ 6.

1st case: µ′3 > 1. We remove the 3rd and the 6th column from µ and we remove
the same number of boxes from λ in such a way that the resulting partition λ̃
satisfies λ̃2 < λ2, λ̃2 ≥ 4 and λ̃1 − λ̃2 ≥ 1. So induction and Lemma 7.17 if λ2 = 4,
or Lemma 7.18 if λ1 − λ2 = 1 provide the result for µ′3 ≥ 2.

2nd case: µ′3 = 1. We know that µ = (a, 2b, 1c), where a ≥ 6, b ≥ 1, c ≥ 0 and
b+ c ≥ 2. We remove all but the first three rows from µ and the fitting number of
columns from λ in such a way that λ̃ satisfies λ̃2 ≥ 4 and λ̃1 − λ̃2 ≥ 1 like before.
Now µ̃ = (a, 2, 1) or µ̃ = (a, 22). Possibly we get λ̃1 − 1 = λ̃2. Since we do not
want to reduce λ̃ to a two-row rectangle, we might only be able to remove an even
number of boxes from λ̃ and µ̃. We remove either (a− 6) or (a− 7) from µ̃ and the
right columns from λ̃ such that, again, λ̃ satisfies λ̃2 ≥ 4 and λ̃1 − λ̃2 ≥ 1. Now we
have one of the seeds:

((6, 2, 1), (5, 4)), ((7, 2, 1), (6, 4)),

((6, 22), (5, 4)), ((7, 22), (7, 4)), ((7, 22), (6, 5)).

All these seeds contain two constituents with multiplicity greater or equal to 3. �
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Other products contain a constituent with multiplicity 3 or higher

Proposition 7.20. Let λ ` n be a two-row partition and µ ` n such that the
pair (λ, µ) is not from Proposition 7.1. Then [λ][µ] contains a constituent with
multiplicity 3 or higher which is different from µ if µ is symmetric.

Proof: In the previous chapter we proved Proposition 6.1 so we can assume
that µ is not a hook and that λ 6= (n−1, 1). If µ is a two-row partition, we have seen
the result in Lemma 7.16. From now on we assume that l(µ) > 2. For λ2 = 2, 3, 4,
we have seen the result in Lemma 7.17. If λ1 = λ2 or λ2 + 1 = λ1, the result
has been shown in Lemma 7.18. So from now on we can assume that λ2 > 4 and
λ2 + 1 < λ1. But the case that µ is neither a hook nor a two-line partition was
proven in Lemma 7.19. �
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CHAPTER 8

Kronecker products of skew characters

In this chapter we want to look at the products of a skew character and an
irreducible character. If a skew diagram decomposes into different connected com-
ponents, the order does not matter if we are interested in the corresponding skew
character. Therefore, we recall that we write α1 ∗ · · · ∗ αr if the skew diagram
decomposes into partitions α1 up to αr, no matter in which order they appear.
In this section we want to prove that if Theorem 5.1 is true for a fixed n ∈ N,
Theorem 5.4 is also true for that n. This will allow us to use Theorem 5.4 when
we prove Theorem 5.1 with induction. Further, the proof of Theorem 5.1 will then
finish the proof of Theorem 5.4. We want to recall:

Theorem 5.4. Let λ/µ be a basic, proper skew partition of n and ν ` n. The
product [λ/µ][ν] only contains constituents with multiplicity 1 and 2 if one of the
following holds (up to conjugating the partition and/or the skew partition and/or
rotating the skew partition):

(1) ν is linear and λ/µ only contains constituents with multiplicity 1 and 2;
(2) ν = (n− 1, 1) and λ/µ is from the following list:

(a) λ = (λ1, λ2)
(′) is a two-line partition and µ = (1) or λ1 − λ2 = 1;

(b) λ = (λk11 , λ1 − 1) and µ = (1);
(c) λ = (λk11 , 1) and µ = (λ1 − 1);
(d) λ/µ decomposes into a one-column and a one-row partition;
(e) λ/µ decomposes into a rectangle and (1).

(3) ν is a fat hook and λ/µ = (n− 1) ∗ (1);
(4) ν is a rectangle and λ/µ is from the following list:

(a) λ/µ equals (n− 2) ∗ (2) or (n− 2) ∗ (12);
(b) λ/µ = (n− 1, 2)/(1);
(c) λ/µ = (n− 2, n− 2, 1)/(n− 3);
(d) the exceptional pairs ν = (33) and λ/µ equals (7, 3)/(1) or (6, 4)/(1).

(5) n = 2k, ν = (k, k) and λ/µ is from the following list:
(a) λ/µ = (λ1, λ2)/(1) with λ1 − λ2 ≤ 3 or λ2 ≤ 3;
(b) λ/µ = (n− 2, n− 2, 1)/(n− 3);
(c) λ/µ = (n− l) ∗ (1l);
(d) the exceptional cases where λ/µ is one of the following skew parti-

tions:

(k + 2, k)/(2) for k ≤ 5, (k2, 1)/(1) for k ≤ 4, (2, 1) ∗ (1), (3) ∗ (3).

(6) the exceptional case for n = 5 where λ/µ = (22) ∗ (1) and ν = (3, 2).

The following result by Gutschwager will be quite useful.

Lemma 8.1. [Gut11] Any proper skew character of Sn has two neighboring con-
stituents, i.e., constituents [λ], [µ] such that |λ ∩ µ| = n− 1.
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Chapter 8. Kronecker products of skew characters

1. Special cases

Before looking at more general cases, we have to deal with some special cases.
We look at products of a skew character which contains [n](

′) or [n−1, 1](
′) with an

irreducible character and at products of a skew character with [n− 1, 1], [n− 2, 2]
and [k, k] for n = 2k first.

Obviously, the product of a skew character and a linear character only contains
constituents with multiplicity less or equal to 2 if and only if the skew character
only contains constituents with multiplicity 1 and 2. So now we want to look at
the products of a skew character with [n − 1, 1]. For this the following lemma is
very helpful:

Products with [n− 1, 1].

Lemma 8.2. Let χ be a skew character of Sn for n ≥ 3. If χ � [1] contains a
constituent with multiplicity greater or equal to k, χ[n− 1, 1] does so, too.

Proof: Let ν ` n+ 1 such that [ν] is a constituent of χ� [1] with multiplicity
greater or equal to k. This means that there are α1, . . . , αl ` n all contained in
ν with 〈[αi], χ〉 = ki such that

∑
ki ≥ k. If l = 1, χ has a constituent with

multiplicity greater or equal to k and therefore, χ[n− 1, 1] has one, too. So we can
assume that l ≥ 2. Since n > 2, we know that one of the αi is not a rectangle. So
without loss of generality we can assume that rem(α1) ≥ 2. Since αi ⊂ ν, we know
that |αi ∩ α1| ≥ n− 1. Therefore,〈

χ[n− 1, 1], [α1]
〉
= (rem(α1)− 1)k1 +

l∑
i=2

ki ≥
l∑
i=1

ki ≥ k

as required. �

With this we can prove:

Lemma 8.3. Let λ/µ be a basic and proper skew diagram of n. The product
[λ/µ][n−1, 1] only contains constituents with multiplicity 1 and 2 if and only if one
of the following holds (up to rotation and/or conjugation of λ/µ):

(1) λ = (λ1, λ2)
(′) is a two-line partition and µ = (1) or λ1 − λ2 = 1;

(2) λ = (λk11 , λ1 − 1) and µ = (1);
(3) λ = (λk11 , 1) and µ = (λ1 − 1);
(4) λ/µ decomposes into a one-column and a one-row partition;
(5) λ/µ decomposes into a rectangle and (1).

Proof: First, we want to show that the stated products indeed only contain
constituents with multiplicity 1 and 2. First we look how [λ/µ] decomposes:

(1): If λ = (λ1, λ2) with λ1 > λ2 > 1 and µ = (1), the skew character [λ/µ]
decomposes as [λ1, λ2−1]+[λ1−1, λ2]. By rotation symmetry the case λ1−λ2 = 1
is equivalent to µ = (1).

(2): If λ = (λk11 , λ1−1) and µ = (1), then [λ/µ] = [λk1−11 , (λ1−1)2]+[λk11 , λ1−2].
(3): If λ = (λk11 , 1) and µ = (λ1− 1), the skew character [λ/µ] decomposes into

[λk1−11 , 12] + [λk1−11 , 2].
(4): If λ/µ decomposes into a one-row and a one-column partition, [λ/µ] is the

sum of two irreducible characters labeled by hooks.
(5): If λ/µ decomposes into a rectangle (ab) and (1), we know that [λ/µ]

decomposes into [a+ 1, ab−1] + [ab, 1].
In all five cases the product of [n − 1, 1] with both irreducible constituents

of [λ/µ] is multiplicity-free. Therefore, the sum only contains constituents with
multiplicity 1 and 2.
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Now we want to prove the other direction. Let λ/µ be a proper skew diagram
of n such that it is not listed in this lemma. We start with the case that λ/µ
is not connected. Thanks to Lemma 8.2 we know that [λ/µ] � [1] only contains
constituents with multiplicity 1 and 2. By Lemma 3.6 and 3.7 we know that λ/µ
decomposes into two rectangles or any partition and (1). If one of the parts is a
rectangle but not linear, we know that the other part has length or width greater or
equal to 2. Otherwise, we would be in the fifth case of this lemma. Further, we know
by Lemma 8.2 that the other part is a rectangle, too. We know that [2, 2] � [2](

′)

contains [3, 2, 1] + [23](
′). Since adding further parts cannot reduce the number of

removable boxes and neighboring constituents still stay neighboring constituents
(see Lemma 5.18), we know that [λ/µ][n − 1, 1] contains a constituent with mul-
tiplicity 3 or higher. If λ/µ decomposes into two linear partitions, we can assume
by conjugation that both linear partitions have one row, i.e., [λ/µ] = [n− a]� [a]
with 2 ≤ a ≤ n−a. We know that this contains [n]+[n−1, 1]+[n−2, 2] and there-
fore, the multiplicity of [n− 1, 1] in [n− 1, 1][λ/µ] is at least 3. If λ/µ decomposes
into a partition with two or more removable nodes and (1) this can be reduced to
([2, 1]� [1])[3, 1] in the same way as in the first case.

So from now on we can assume that λ/µ is connected. Due to the previous
lemma we know that λ/µ has to be from Theorem 2.7. We get two cases: either
λ is a fat hook and µ is a rectangle or µ is a one-line partition and l(λ) = l(µ) + 1
or w(λ) = w(µ) + 1. By conjugation we can assume in the second case that
l(λ) = l(µ) + 1.

In the most cases we want to find a constituent [α] of [λ/µ] with three or more
removable nodes and a neighboring constituent. Then we know that [λ/µ][n− 1, 1]
contains α with multiplicity greater or equal to 3. First, we assume that λ/µ is
connected and that λ has two removable nodes.

We start with the case λ = (λk11 , λ
k2
2 ) is a fat hook and µ is a rectangle.

Consider the special case that µ = (1). It is known that [λ/µ] decomposes as
[λk1−11 , λ1 − 1, λk22 ] + [λk11 , λ

k2−1
2 , λ2 − 1]. If (λk1−11 , λ1 − 1, λk22 ) has at most two

removable nodes, we know that k1 = 1 or λ1 − 1 = λ2. By the assumption that
λ/µ is connected and not listed in this lemma each of the conditions k1 = 1 or
λ1 − 1 = λ2 implies that k2 ≥ 2 and λ2 ≥ 2 . Therefore, (λk11 , λ

k2−1
2 , λ2 − 1) has

three removable nodes. This tells us that [λ/µ][n − 1, 1] has a constituent with
multiplicity 3 or higher.

From now on we assume that µ 6= (1). By conjugation we can also assume
that w(µ) ≥ 2. If l(λ) − l(µ), w(λ) − w(µ), k2, λ2 ≥ 2, we obtain λ/µ from
the seed (4, 32)/(2) if λ2 ≥ 3 or (4, 22)/(2) if λ2 = 2 by adding skew rows and
columns in the following way. First, we add (λ1 − 4, (λ2 − a)2)/(µ1 − 2), where
a equals 2 or 3 depending on which seed we start with. In the next step we add
(λk1−11 , λk2−22 )/(µr1−11 ) as rows. Further, neighboring constituents stay neighboring
constituents. We know this due to Lemma 5.18. So with Lemma 2.11 it is sufficient
to check that [(4, 32)/(2)] and [(4, 22)/(2)] contain a constituent with three remov-
able nodes and a neighboring constituent. Now we look at the cases l(λ)− l(µ) = 1,
w(λ) − w(µ) = 1, k2 = 1 or λ2 = 1 case by case. Like in this case we will use
Lemma 2.11 to reduce λ/µ to a smaller skew partition such that we can check the
corresponding character.

If w(λ)− w(µ) = 1, we can assume that k1 > l(µ). Otherwise, λ/µ would not
be connected. Therefore, we can reduce λ/µ to

• (32, 2)/(2) if λ2 ≥ 2;
• (32, 12)/(2) if λ2 = 1 and l(µ) = 1 because this implies k2 ≥ 2, otherwise,
λ/µ would be listed in (3);

• (33, 1)/(22) if λ2 = 1 and l(µ) > 1.
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Special cases

The corresponding skew characters contain a constituent with three removable
nodes and one neighboring constituent. By conjugation this also solves the case
l(λ)− l(µ) = 1 if λ is not a two-row partition.

Now we look at the case k2 = 1. If k1 = 1, we know that w(µ) < λ2 < λ1 − 1,
therefore, we can use the seed (5, 3)/(2). The corresponding character decomposes
as [(5, 3)/(2)] = [5, 1] + [4, 2] + [3, 3]. We know that [λ/µ] has a constituent with at
least two removable nodes and two neighboring constituents. Therefore, [λ/µ][n−
1, 1] contains a constituent with multiplicity 3 or higher. This also finishes the case
where l(λ)− l(µ) = 1. If k1 > 1, we can reduce λ/µ to:

• (42, 3)/(2) if λ1 − λ2 = 1;
• (42, 2)/(2) if λ2, λ1 − λ2 ≥ 2;
• and (42, 1)/(2) if λ2 = 1.

All seeds contain a constituent with three removable nodes and a neighboring con-
stituent.

Let λ2 = 1. Since w(µ) ≥ 2 and w(λ) − w(µ) ≥ 2, we know that λ1 > 3. In
addition, we know that k1 > 1, so we take the seed (42, 1)/(2), again. This tells
us that if λ is a fat hook and λ/µ is connected, the classification of the lemma is
correct.

The last case is that λ has more than two removable nodes. By conjugation we
can assume that l(µ) = 1 and w(λ)−w(µ) = 1. We take the seed (3, 2, 1)/(2). This
has a constituent with two removable nodes and two neighboring constituents. �

Before looking at the other special cases for the irreducible character, we first
look at what happens if the skew character contains [n] or [n− 1, 1].

Skew character which contains [n].

Lemma 8.4. Let [n] 6= χ be a skew character of Sn such that 〈χ, [n]〉 > 0, then
〈χ, [n]〉 = 1. Further, let λ ` n. If χ[λ] only contains constituents with multiplicity
1 and 2, one of the following holds:

(1) χ is of the form [n−a− b]� [a]� [b], where b equals 0 or 1 and λ(
′) = (n);

(2) n ≥ 2, χ = [n− 1]� [1] = [n] + [n− 1, 1] and λ has at most two removable
boxes;

(3) n ≥ 4, χ = [n− 2]� [2] = [n] + [n− 1, 1] + [n− 2, 2] and λ is a rectangle;
(4) n = 6, χ = [3]� [3] and λ(

′) = [3, 3].

Proof: Let χ be a skew character such that 〈χ, [n]〉 > 0.
(1): From the Littlewood–Richardson rule it is obvious that 〈χ, [n]〉 = 1 and

that χ is [a1] � [a2] � · · · � [al] for some positive integers a1, . . . , al which sum up
to n. So from Lemma 3.6 and Lemma 2.13 we know that χ = [n− a− b]� [a]� [b],
where b equals 0 or 1.

(2): If χ = [n− 1]� [1] = [n] + [n− 1, 1], we know (see Lemma 5.13)

χ[λ] = rem(λ)[λ] +
∑
µ`n

|λ∩µ|=n−1

[µ].

This only contains constituents with multiplicity 1 and 2 if and only if λ has one
or two removable nodes.

(3): If χ = [n− 2]� [2] = [n] + [n− 1, 1] + [n− 2, 2] and λ has more than two
removable nodes, we know that the product of [λ] with [n]+[n−1, 1] already contains
[λ] three or more times. So we can assume that rem(λ) = 1, 2. If rem(λ) = 2, we
know that [λ]([n]+[n−1, 1]) contains [λ] already two times. So if [λ]χ only contains
constituents with multiplicity 1 and 2, by Proposition 5.14

〈[λ], [λ][n− 2, 2]〉 = h2 + h1(h1 − 2) = 0,
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where hi equals the number of removable i-hooks in λ. But this means that h2 = 0.
Since λ has two removable nodes, we obtain λ = (2, 1), but this is a contradiction
to n ≥ 4. If rem(λ) = 1, we know that ([n] + [n − 1, 1])[λ] and [n − 2, 2][λ] are
multiplicity-free. Therefore, their sum only contains constituents with multiplicity
1 and 2.

(4): The product ([3]� [3])[3, 3] was checked with Sage.
For the remaining products we show that these contain a constituent with

multiplicity 3. Let χ be different from [n−1]� [1] and [n−2]� [2]. Since we assume
that χ only contains constituents with multiplicity 1 and 2, we still know that it is
of the form as stated in (1). It contains χ0 = [n] + [n− 1, 1] + [n− 2, 2] + [n− 3, 3]
if b = 0 or χ1 = [n] + 2[n− 1, 1] + [n− 2, 2] + [n− 2, 12] if b = 1. Both χi contain
[n− 2, 2]� [2] and we have seen in (3) that if λ is not a rectangle, [n− 2, 2]� [2][λ]
already contains a constituent with multiplicity 3 or higher. Hence, it is sufficient
to show that χi[cd] contains a constituent with multiplicity 3 or higher for i = 0, 1,
c, d > 1 and cd = n. Let us first look at χ0[c

d]. If c, d > 2,

〈[n− 3, 3][cd], [cd]〉 = h1(h1 − 1)(h1 − 3) + h2(2h1 − 3) + h3 = 1,

where hi equals the number of removable i-hooks in λ (see Proposition 5.14). There-
fore, χ0[λ] and χ[λ] contain [cd] with multiplicity 3 or higher. Let us now look at
the case c = 2 or d = 2. By conjugation we can assume that d = 2. If c = 3, we
are in the situation of (4). If c > 3, we know the formulas for all involved products.
So we see that 〈[c, c− 1, 1], χ0[c

2]〉 = 3. Hence, in this case χ0[λ] and χ[λ] contain
a constituent with multiplicity 3 or higher. Now let us look at χ1[c

d]. Here, we
easily see that [cd−1, c − 1, 1] is contained with multiplicity greater or equal to 3
because for n ≥ 6 since by [BB17, Proposition 3.6.] all the formulas for the involved
products are known. For n < 6 this was checked with Sage. �

In the next lemma we look at the skew characters with [n − 1, 1] as maximal
constituent, i.e., the skew character does not contain [n].

Skew character which contains [n− 1, 1].

Lemma 8.5. Let χ be a skew character of Sn which contains [n− 1, 1] as maximal
constituent and λ ` n. The product χ[λ] only contains constituents of multiplicity 1
and 2 if and only if one of the following holds (up to conjugation and/or rotation):

(1) χ only contains constituents of multiplicity 1 and 2 and λ = (n). Then χ
is of the form
(a) [(n− 1, a+ 1)/(a)] for 1 ≤ a ≤ n− 3;
(b) [(n− 1− a, 2)/(1)]� [a] for 1 ≤ a ≤ n− 4;
(c) [(n− 2− a, a+ 1)/(a)]� [1] for 1 ≤ a ≤ n− 4;
(d) [n− a− 1, 1]� [a] for 1 ≤ a ≤ n− 2;
(e) [n− 3, 1]� [1]� [1];
(f) [n− 2− a]� [a]� [12] for 1 ≤ a ≤ n− 3.

(2) λ = (n− 1, 1) and χ is [n− 1, 1] + [n− 2, 2] or [n− 1, 1] + [n− 2, 12];
(3) λ is a rectangle and χ is [n− 1, 1] + [n− 2, 2] or [n− 1, 1] + [n− 2, 12].

Proof: That all the listed products only contain constituents with multiplicity
1 and 2 is easy to verify. The products of λ with one of the summands from χ in (2)
or (3) are multiplicity-free so the sum can just contain constituents with multiplicity
1 and 2. We find (1)(d)-(f) already in Theorem 2.4. (1)(a) is even multiplicity-free
and can be found in Theorem 2.3. Since (1)(a) is multiplicity-free and decomposes

as
a∑
i=1

[n− i, i], we see that (1)(c) only contains constituents with multiplicity 1 and

2. For (1)(b) we know that [(n− 1− a, 2)/(1)] = [n− 1− a, 1] + [n− 2− a, 2]. The
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Special cases

outer tensor product of both summands with [a] is multiplicity-free, which follows
from Theorem 2.3, and the sum only contains constituents with multiplicity 1 and
2.

Now we want to prove the other direction. Let χ be a skew character which
contains just constituents with multiplicity 1 and 2 and [n − 1, 1] is its maximal
constituent. Since χ does not contain [n], we know that the corresponding skew
partition does not consist only of disconnected single-rows. But since it contains
[n− 1, 1], we know that there is one box such that the skew diagram without that
box only consists of disconnected single-rows. This tells us that if χ = [ν/µ] and ν/µ
is connected, ν/µ = (n− 1, a+ 1)/(a) for some 1 ≤ a ≤ n− 3. If ν/µ decomposes
into a proper and connected skew partition and an ordinary partition, we know
that they are listed in Theorem 2.7. Further, the ordinary partition can only be
(a − 1, 1) or (a). If the ordinary partition is (a − 1, 1), we know that the skew
character has to contain [n − a], but Lemma 8.4 tells us that this is not possible
(see the previous lemma). So the ordinary partition is (a) and the skew character
has to contain [n− a− 1, 1] and does not contain [n− a]. Hence, it is of the form
(1)(a). Using Theorem 2.7 we find that the possibilities for this are (1)(b) and
(1)(c). If ν/µ decomposes into two ordinary partitions, both of them can only be of
the form (a−1, 1) and (a). We see that χ has to be of the form [n−a−1, 1]� [a]. If
ν/µ decomposes into three ordinary partitions, we easily see from Lemma 3.6 and
Lemma 3.7 that χ = [n − 3, 1] � [1] � [1] or χ = [n − 2 − a] � [a] � [12]. Further,
we know from Corollary 4.2 that ν/µ cannot decompose into four or more parts or
that two of the parts are proper skew partitions. Now we know of which form ν/µ
can be.

If we look at products χ[λ] for λ ` n which is not linear, we still know
that the skew character has to be of that form. Thus, we know that χ con-
tains χ0 = [n− 1, 1] + [n− 2, 2] or χ1 = [n − 1, 1] + [n − 2, 12]. If rem(λ) ≥ 4,
g(λ, λ, (n − 1, 1)) ≥ 3. Therefore, χ[λ] contains [λ] with multiplicity greater or
equal to 3. If rem(λ) = 3, we know by Proposition 5.14 that

g(λ, λ, [n− 2, 2]) = h2 + h1(h1 − 2) ≥ h2 + 3 ≥ 3,

where hi is the number of removable i-hooks of λ. Therefore, χ0[λ] contains [λ]
with multiplicity at least 3. Further,

g(λ, λ, [n− 2, 12]) = (rem(λ)− 1)2 = 4

and therefore, χ1[λ] also contains [λ] with multiplicity greater than 3. In the next
step let rem(λ) = 2. We can assume that λ 6= (n − 1, 1) since we have already
dealt with this case in Lemma 8.3. We show that for all other λ the products
χ0[λ] and χ1[λ] contain a constituent with multiplicity 3. Let us begin with χ0. If
λ(
′) 6= (k + 1, k) for n = 2k + 1,

g(λ, λ, [n− 2, 2]) = h2 + h1(h1 − 2) ≥ 2.

Therefore, g(λ, λ, χ0) ≥ 3. If λ = (k + 1, k), we have the decomposition for this
product in Lemma 5.13 and 7.2. Therefore we see that [λ]χ0 contains (k+1, k−1, 1)
three times. Now we look at the product [λ]χ1. If λ is not a two-row partition or
(ab−1, a − 1) for ab − 1 = n, it follows from Proposition 6.1 that the product
[λ][n−2, 12] contains a constituent with multiplicity 3 or higher. For the remaining
cases we know the decompositions are given in Lemma 5.13, 6.4 and 6.5. We see
that [λ]χ1 contains [ab−2, (a−1)2, 1] three times if λ = (ab−1, a−1), and that [λ]χ1

contains [λ1, λ2 − 1, 1] three times if λ = (λ1, λ2).
If rem(λ) = 1 and χ = [n − 1, 1] + [n − 2, 1] or χ = [n − 1, 1] + [n − 2, 2], we

know that the products of both constituents with λ are multiplicity-free. There-
fore, the sum only contains constituents with multiplicity 1 and 2. If χ is not
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one of these characters, we know that it is from (1). Thus, χ contains χ0 =
[n − 1, 1] + [n − 2, 2] + [n − 3, 3] or χ1 = [n − 1, 1] + [n − 2, 2] + [n − 2, 12]. Let
λ = (ab). We can assume that a ≥ b. The formulas for the products ([BB17,
Proposition 3.6.] and Lemma 5.13 and 7.5) tell us that g(λ, χ0, (a

b−1, a− 1, 1)) ≥ 3
and g(λ, χ1, (a

b−1, a− 1, 1)) ≥ 3. �

Now we want to look at the products with [n−2, 2] and [k, k] for n = 2k before
dealing with the general case.

Product with [n− 2, 2].

Lemma 8.6. Let n ≥ 4, λ = (n − 2, 2) and χ be a skew character of Sn which
does not contain [n](

′) nor [n−1, 1](
′) such that [λ]χ only contains constituents with

multiplicity 1 and 2. Then n = 5 and χ = [(32, 1)/(12)](
′).

Proof: Thanks to Proposition 7.1 we know that χ can only contain characters
that correspond to two-row partitions, hooks, rectangles, [k2, 1] if n = 2k + 1, and
[ab−1, a − 1] if n = ab − 1. Further, by Lemma 8.1 we know that χ contains two
neighboring constituents. We check what these constituents could be.

If the neighboring constituents are two hooks [n− i, 1i] and [n− i− 1, 1i+1], we
can assume that 2 ≤ i ≤ n−4. With the formula from Theorem 5.12 we know that
g(λ, (n− 1, 1i), (n− i, 1i)) = 2 and g(λ, (n− i, 1i), (n− i− 1, 1i+1)) = 1. Therefore,
the multiplicity of [n− i, 1i] in [λ]χ is at least 3.

If the two neighboring constituents are two two-row partitions [n − i, i] and
[n− i− 1, i+ 1], we know that 2 ≤ i ≤ n/2− 1 and

g(λ, (n− i, i), (n− i, i− 1, 1)) + g(λ, (n− i− 1, i+ 1), (n− i, i− 1, 1)) ≥ 3

if i > 2 due to Lemma 7.2. In the case of i = 2, we get by Lemma 7.2 again
that g(λ, λ, λ) + g(λ, (n− 3, 3), λ) ≥ 3. Therefore, [λ]χ contains a constituent with
multiplicity 3 or higher.

If the two neighboring constituents are [n− 2, 2] and [n− 2, 12], we can assume
that n ≥ 6 since we checked the small cases with Sage. We can reduce λ to (4, 2)
and (n− 2, 12) to (4, 12). Therefore, we know that g((n− 2, 2), χ, (n− 3, 2, 1)) ≥ 4
since

g((4, 2), (4, 2), (3, 2, 1)) + g((4, 2), (4, 12), (3, 2, 1)) = 4

and the semigroup property.
The last possibility is n = 2k+1 and the neighboring constituents are [k+1, k]

and [k2, 1]. We check the small cases with Sage. For n ≥ 7 the decompositions of
the involved products are given in Lemma 7.2 and Lemma 7.3. In this case

g(λ, (k + 1, k), (k2, 1)) + g(λ, (k2, 1), (k2, 1)) ≥ 3.

Therefore, [λ]χ contains [k2, 1] with multiplicity 3 or higher. �

To prove the following results, we will proceed in a similar manner. We check
the possibilities for the neighboring constituents. Since we assume that χ does not
contain [n] nor [n− 1, 1], there are normally not many possibilities, except for the
products with [k, k] which we look at next. This is the most involved one.

Product with [k, k].

Lemma 8.7. Let λ/µ be a basic and proper skew partition of n = 2k and ν = (k, k).
The product [λ/µ][ν] only contains constituents with multiplicity 1 or 2 if and only
if (up to conjugation and/or rotation) one of the following holds:

(1) λ/µ is connected and one of the following holds:
(a) l(λ) = 2 and µ = (1) and λ2 ≤ 3 or λ1 − λ2 ≤ 3;
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Special cases

(b) λ = (n− 2, n− 2, 1) and µ = (n− 3) or both conjugated;
(c) one of the exceptional cases:

(i) λ/µ = (k + 2, k)/(2) and k ≤ 5;
(ii) λ/µ = (k2, 1)/(1) and k ≤ 4.

(2) λ/µ decomposes into two diagrams of partitions and one of the following
holds:
(a) λ ` n+ 1 is a hook and µ = (1);
(b) λ/µ(′) = (2) ∗ (n− 2);
(c) one of the exceptional cases:

(i) n=4 and λ/µ(′) = (2, 1) ∗ (1);
(ii) n=6 and λ/µ(′) = (3) ∗ (3).

Proof: We start by showing that the products indeed contain no constituents
with multiplicity 3 or higher.

(1): If l(λ) = 2, then [λ/(1)] = [λ1, λ2 − 1] + [λ1 − 1, λ2]. We look at the
products of [λ1, λ2 − 1] and [λ1 − 1, λ2] with [k, k]. If λ2 ≤ 3, both products are
multiplicity-free. Therefore, the sum contains only constituents with multiplicity 1
and 2. If λ = (k + 1, k), [λ/(1)] decomposes as [k, k] + [k + 1, k − 1]. Again, the
product of both constituents with [k, k] is multiplicity-free, and therefore, the sum
only contains constituents with multiplicity 1 and 2. If λ = (k + 2, k − 1), [λ/(1)]
decomposes into [k + 1, k − 1] + [k + 2, k − 2]. From [BWZ10] we know that

[k, k][k + 1, k − 1] =
∑

π`n,π 6∈E(n)
`(π)<4

[π] +
∑

π`n,π 6∈O(n)∪E(n)
`(π)=4

[π],

where O(n) resp. E(n) are the partitions with only odd resp. only even parts.
Partitions with less than four parts cannot have only odd parts since π4 = 0 counts
as even part. Further, we know from Lemma 7.12 that in [k, k][k + 2, k − 2] only
the constituents from E(n) ∪O(n) can appear with multiplicity 2. The other ones
appear with multiplicity 1. Therefore, the sum of these products only contains
constituents with multiplicity 1 and 2, as well.

If λ = (n−2, n−2, 1) and µ = (n−3), [λ/µ] decomposes as [n−2, 2]+[n−2, 12].
Again, for both constituents the product with [k, k] is multiplicity-free. Therefore,
the sum only contains constituents with multiplicity less or equal to 2.

The exceptional cases have been checked with Sage.
(2): If λ ` n + 1 is a hook and µ = (1), [λ/µ] is the sum of two hooks. The

product of each constituent with [k, k] is multiplicity-free. Therefore, the sum just
contains constituents with multiplicity 1 and 2.

The product [(n−2)∗(2)][k, k] already appeared in Lemma 8.4. The exceptional
cases have been checked with Sage.

For the other direction let [λ/µ][k, k] only contain constituents with multiplicity
1 and 2. If [ν] is a constituent of [λ/µ], g(ν, (k, k)) ≤ 2. Since there are a lot of
exceptional cases which involve two-line rectangle we check all products of [k, k]
with a skew character which contains one of the exceptional factors with Sage.
Checking all the skew characters up to n = 18 would do the same but that takes
a lot longer. After eliminating the exceptionals, according to Proposition 7.1, the
possible constituents of [λ/µ] are:

[k, k](
′), [k + 1, k − 1](

′), [k + 2, k − 2](
′), [k + 3, k − 3](

′),

[n− i, i](
′) for i ≤ 7, [n− 3, 2, 1](

′) and [hooks].
(?)

If λ/µ decomposes into four or more parts, [λ/µ] already contains a constituent
with multiplicity 3 or higher. Obviously, [λ/µ][k, k] does so, too.
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We check (?) for possible pairs of neighboring constituents. Since we assume
that [λ/µ] does not contain [n](

′) nor [n − 1, 1](
′), the possible neighboring con-

stituents are, up to conjugation, [k, k] and [k+1, k−1] or [k+1, k−1] and [k+2, k−2]
or [n − i, 1i] and [n − i − 1, 1i+1] or [n − i, i] and [n − i − 1, i + 1] for 2 ≤ i ≤ 6
or [n − 2, 2] and [n − 2, 12]. If [λ/µ] contains [n − i, i] and [n − i − 1, i + 1] with
3 ≤ i ≤ 6, we see from the formulas in Lemma 7.10 and [BO06, Theorem 4.8] that
[λ/µ][k, k] contains [k, k − 2, 2] at least three times. In the case that [n− 3, 2, 1] as
well as one of the characters [n−2, 2] or [n−2, 12] is contained in [λ/µ], the product
[λ/µ][k, k] contains [k, k − 1, 1] at least three times. This follows from Lemma 7.6
and [BB17, Proposition 3.6.]. If [λ/µ] contains [k + 2, k − 2] and [k + 3, k − 3], by
Lemma 7.12 we see that [k − 1, k − 3, 3, 1] is contained at least three times in the
product [λ/µ][k, k].

We have the following pairs of possible neighboring constituents, up to conju-
gation:

• [k, k] + [k + 1, k − 1];
• [k + 1, k − 1] + [k + 2, k − 2];
• [n− 2, 2] + [n− 3, 3];
• [n− 2, 2] + [n− 2, 12];
• [n− i, 1i] + [n− i− 1, 1i+1].

Now we show that certain combinations of characters cannot occur in the skew
character. Let α be a two-row partition from the list (?). Since we know the
decompositions for all the products, we see that if α is different from (k, k), ([α] +
[n − 3, 2, 1])[k, k] contains [k, k − 1, 1] at least with multiplicity 3. The product
([k, k] + [n− 3, 2, 1])[k, k] contains [k, k− 2, 12] 3 times if k is odd and [k, k− 2, 2] 3
times if k is even. Hence, if [λ/µ] contains a two-row character, it cannot contain
[n−3, 2, 1]. Therefore, [λ/µ] only contains characters labeled by two-row partitions
and hooks.

In the next step we look at a skew character [λ/µ] which contains one of the
two-row characters and a hook. We show that the product [λ/µ][k, k] contains
a constituent with multiplicity 3 or higher. If a skew diagram contains a 2 × 2
square, the corresponding character cannot contain any hooks. If the skew diagram
contains 3 boxes in one column, the corresponding character does not contain a
character labeled by a two-row partition. This gives quite a few restrictions on
the skew diagram. Let us assume that the skew diagram λ/µ is connected. By
Proposition 4.1 we know that λ/µ = (a, b, c)/(b− 1, c− 1) for fitting a, b, c. We can
assume that c > 0, otherwise, the character contains [n − 1, 1], which we exclude
by Lemma 8.5. But with the Littlewood-Richardson rule we see that the skew
character [(a, b, c)/(b−1, c−1)] contains [n−3, 2, 1] if not a = b and c = 1, but this
is case (1)(b). Therefore we can assume that for a connected skew diagram, the
corresponding character only consist of characters labeled by two-line partitions or
of hooks and [n− 3, 2, 1].

Let the diagram decomposes into a proper skew diagram and a diagram of
a regular partition. Due to Corollary 4.2 we conclude that the diagram is of the
form ((a, b)/(b− 1)) ∗ (c, 1) or ((a, b)/(b− 1)) ∗ (c). In both cases the corresponding
character again contains [n− 3, 2, 1]. If the diagram decomposes into two diagrams
of partitions, these are (a, 1) ∗ (b, 1), (a) ∗ (b, 1) or (a) ∗ (b). The last two cases
contain [n − 1, 1] or [n], so we can exclude them. If the diagram is of the form
(a, 1) ∗ (b, 1), the corresponding character contains [n− 3, 2, 1]. If λ/µ decomposes
into three parts, all three parts have to be partitions. There are three types of
products such that λ/µ decomposes into three parts and only contains constituents
with multiplicity 1 and 2. These are:

• (1) ∗ (1) ∗ (any (rotated) partition)
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Special cases

• (one-row) ∗ (one-column) ∗ (rectangle)
• (rectangle) ∗ (rectangle) ∗ (1)

Since all the rectangles have to be one-line partitions and all the one column par-
titions have length at most 3, it is easy to see that [λ/µ] contains [n − 3, 2, 1] if it
does not contain [n] and [n− 1, 1]. So we know that if the neighboring constituents
are two hooks, the skew character only consists of characters labeled by two-line
partitions. If the neighboring constituents are two hooks, the skew character only
consists of hooks and maybe once [n− 3, 2, 1](

′). In particular, this solves the case
that the neighboring constituents are [n− 2, 2] and [n− 12].

Let us assume [λ/µ] contains two neighboring constituents labeled by two-
line partitions. By conjugation we can assume that these are two-row partitions.
From our previous thoughts we know that [λ/µ] consists only of characters labeled
by two-line partitions. It is easy to see that all of these are actually two-row
partitions. First we assume that λ/µ is connected. If l(λ) > 2, by the Littlewood-
Richardson rule [λ/µ] would have a constituent of length >2. So we now that
λ/µ = (λ1, λ2)/(µ1). By rotation we can assume that λ1 − λ2 ≥ µ1. Now we know

that [λ/µ] =
λ2∑

i=λ2−µ1

[n − i, i]. It is easy to see that there is a constituent with

multiplicity 3 or higher if we are not in the case of (1)(a). If λ/µ is not connected
and we have two parts, we know that both parts have to be of length 1. Otherwise,
we would have a constituent of length 3 (Littlewood-Richardson rule). But this
tells us that [n] is a constituent of [λ/µ] so we are in the case of Lemma 8.4. We see
that λ/µ is listed in (2)(a) if one of the parts is just one box, and (2)(b) otherwise.

Now we assume that the neighboring constituents of [λ/µ] are two hooks. First,
let us assume that λ/µ is connected. Since [λ/µ] contains hooks, we know that the
diagram is one rim hook. Since λ/µ is not a rotated partition, we know that [λ/µ]
contains [w(λ/µ)−1, 2, 1l(λ/µ)−2]. So we know that l(λ) or w(λ) is smaller or equal
to 3. Otherwise the product with [k, k] would contain a constituent with multiplicity
3 or higher. By conjugation we can assume that λ/µ = (a, b, c)/(b− 1, c− 1). But
the following shapes cannot occur as part of the rim hook because the given filling
does not correspond to a hook or (n− 3, 2, 1):

1 1 1 · · ·
2
...

2 2 ∗ ,

1 1 . . .
1 . . . 2 2

· · · 2 ,

where the first one can be of length 2 or 3. But if l(λ/µ) = 2, the corresponding
character contains [n − 1, 1] and that case is already covered in Lemma 8.5. If
l(λ/µ) = 3, we see that up to rotation λ/µ = (n− 2, 22)/(12).

If λ/µ is not connected, we can have parts of the form (a)(
′) or ((a, b)/(b−1))(′).

It is easy to see that if this only contains constituents with multiplicity 1 and 2, we
are in case (2)(a). �

2. The general case

Now we want to look at the general case. We split this into four lemmas.
First we look at the product of a skew character with a hook, then with a two-row
partition, then with a rectangle and then with any other partition. In a fifth lemma
we look at the product of two skew characters. With the work we have done so far
there are only a few cases we have check for each lemma.
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Product with a hook.

Lemma 8.8. Let λ ` n be a hook, different from (n − 1, 1)(
′) and χ be a proper

skew character of Sn which contains neither [n](
′) nor [n−1, 1](′). Then the product

χ[λ] contains a constituent with multiplicity greater or equal to 3.

Proof: We checked this until n = 10 so that we do not have to worry about
the exceptional case. Thanks to Proposition 6.1 we know that the products which
contain just constituents with multiplicity 1 and 2 and have a hook as one of the
factors are (up to conjugation):

[hook][hook], [hook][n− 2, 2] and for n even [hook]
[n
2
,
n

2

]
and

[n− 2, 12][rectangle], [n− 2, 12][two-line] and [n− 3, 13][rectangle].

We know that χ has two neighboring constituents. If these are labeled by two
hooks [n− i, 1i] and [n− i−1, 1i+1] and λ = (n− j, 1j), then [n−|i− j|−2, 2, 1|i−j|]
has multiplicity 4 or higher in χ[λ]. This is because for two hooks (n − i, 1i)
and (n − j, 1j) the product [n − i, 1i][n − j, 1j ] contains [n − |i − j| − 2, 2, 1|i−j|]
and [n − |i − j| − 3, 2, 1|i−j|+1] with multiplicity 2. This easily follows from the
fact that g((3, 12), (3, 12), (3, 2)(

′)) = 2 and the semigroup property but it can also
be proven with Theorem 5.11. If the neighboring constituents are [n − 2, 12] and
[n−2, 2], we obtain with the same argument as before that [n−i, 2, 1i−2] has at least
multiplicity 3 in χ[λ]. We obtain that g((n− 2, 2), (n− i, 1i), (n− i, 2, 1i−2) ≥ 1
from the semigroup property since g((3, 2), (3, 12), (3, 2)) = 1. The last case is
λ = (n − 2, 12) and the two neighboring constituents of χ correspond to two two-
row partitions [n − a, a] + [n − a − 1, a + 1]. We show that [n − a − 1, a, 1] has at
least multiplicity 3 in the product χ[λ]. We use Theorem 5.15 (3). This tells us
not only that g((n− 2, 12), (n− a, a), (n− a− 1, a, 1)) = 2+1− 1 = 2 but also that
g((n− 2, 12), (n− a− 1, a+ 1), (n− a− 1, a, 1)) = 2 + 1− 1 = 2. �

Product with a two-row partition.

Lemma 8.9. Let λ = (λ1, λ2) ` n be a two-row partition with 2 < λ2 < λ1 and
χ be a proper skew character of Sn which contains neither [n](

′) nor [n − 1, 1](
′).

Then the product [λ]χ contains a constituent with multiplicity 3 or higher.

Proof: We check this up to n = 15 with Sage so that we do not have to
worry about the exceptional cases since the exceptional cases for n > 15 are of the
form [two-line rectangle][rectangle]. The products of irreducible characters which
only contain constituents with multiplicity 1 and 2 and involve a two-row partition
λ = (λ1, λ2) ` n with 2 < λ2 < λ1 are:

[n− 2, 12][two-row], [n− 2, 2][two-row], [n− 3, 3][rectangle],

if n = 2k + 1, [k + 1, k][hook], [k + 1, k]2, [k + 1, k][n− a, a] for a ≤ 3,

if n = 2k, [k, k][n− a, a] for a ≤ 7 and [k, k][k + a, k − a] for a ≤ 3.

We start with the case n = 2k + 1 and λ = (k + 1, k). Here we have four
possibilities for pairs of neighboring constituents in χ, namely [k+1, k]+[k+2, k−1],
[n− 2, 2] + [n− 3, 3], [n− 2, 2] + [n− 2, 12] and [n− i, 1i] + [n− i− 1, 1i+1]. From
the formulas for these products ([BWZ10, Corollary 4.1.] and Lemma 7.14) we see
that [k + 1, k]2 contains all partitions of n with at most length 4 exactly once and
[k + 1, k][k + 2, k − 1] contains all partitions with length 3 or 4, where all parts
are different with multiplicity 2. Therefore, these partitions are contained at least
three times in the product [λ]χ if χ contains [k+1, k] + [k+2, k− 1]. If χ contains
[n− 2, 2] + [n− 3, 3], we use the formulas from Lemma 7.3 and 7.4 to see that

g(λ, (n− 2, 2), (k + 1, k − 1, 1)) = g(λ, (n− 3, 3), (k + 1, k − 1, 1)) = 2.
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The general case

Therefore, [λ]χ contains [k + 1, k − 1, 1] at least 4 times if χ contains the neigh-
boring constituents [n − 2, 2] + [n − 3, 3]. Further, by Lemma 6.4 we know that
g(λ, (n− 2, 12), (k + 1, k − 1, 1)) = 2 and so [λ]χ contains [k+ 1, k− 1, 1] at least 4
times if χ contains [n−2, 2]+[n−2, 12]. If χ contains [n− i, 1i]+[n− i−1, 1i+1], we
can assume that n− i is odd, otherwise, we transpose and interchange both of the
summands, and that n− i ≥ 3 and i ≥ 2. Then (n− 1, 1i) and (n− i− 1, 1i+1) can
be obtained by first adding (2) n−i−32 times to (3, 12) resp. (2, 13), then transposing
and adding (2) i−2

2 times. This tells us that

g
(
(n− i, 1i), λ, ν

)
≥ g((3, 12), (3, 2), (3, 12)) = 2

and
g
(
(n− i− 1, 1i+1), λ, ν

)
≥ g((3, 12), (3, 2), (2, 13)) = 1,

where ν =
(
n−i−1

2 , 2
i−2
2 , 1

)
with eventually 20 = 1. Hence, [λ]χ contains [ν] at

least 3 times.
If λ = (n − a, a) 6= (k + 1, k) with a ≥ 3, χ has to contain the neighboring

constituents [n− 2, 2] + [n− 2, 12]. We see with Lemma 6.4 and 7.2 that

g(λ, (n− 2, 2), (n− a, a− 1, 1)) = g(λ, (n− 2, 12), (n− a, a− 1, 1)) = 2.

Thus, [λ]χ contains [n− a, a− 1, 1] at least 4 times. �

So far we have looked at products of the form [λ]χ where λ was a two-row
partition or a hook. With Proposition 6.1 and 7.1 we knew what the possible
constituents of χ were. For the following lemmas we will work under the assumption
Theorem 5.1 is true for that n. This will allow us to work in the same way as before.
At the moment we will not prove Theorem 5.4 with that. But it allows us to use
the classification of Theorem 5.4 when we prove Theorem 5.1 with induction.

Product with a rectangle.

Lemma 8.10. Assume that Theorem 5.1 holds for a fixed n ∈ N. Let λ/µ be a basic
and proper skew partition of n and ν be a proper rectangle (with l(ν), w(ν) ≥ 3).
The product [λ/µ][ν] only contains constituents with multiplicity 1 or 2 if and only
if (up to conjugation and/or rotation) one of the following holds:

(1) λ/µ = (n− 1, 2)/(1);
(2) λ/µ = (n− 2, n− 2, 1)/(n− 3);
(3) n = 9, ν = (33) and λ/µ is one of the following skew partitions:

(7, 3)/(1), (6, 4)/(1), (7, 6)/(4).

Proof: First, we prove that the given products just contain constituents with
multiplicity 1 and 2. We have already looked at (1) in Lemma 8.5. For (2) let
λ/µ = (n− 2, n− 2, 1)/(n− 3). We know that [λ/µ] = [n− 2, 2] + [n− 2, 12]. Both
products [n−2, 2][λ] and [n−2, 12][λ] are multiplicity-free. Therefore, the sum only
contains constituents with multiplicity 1 and 2. We checked the exceptional cases
with Sage.

For the other direction we check the exceptional cases of Theorem 5.1 with
Sage. So we know that χ = [λ/µ] can only contain the characters

[n− 2, 12], [n− 3, 13], [n− 2, 2], [n− 3, 3].

But we have formulas how the products of these characters with [λ] decompose
for n ≥ 18. For n < 18 we checked it with Sage. If χ contains the neighboring
constituents [n− 3, 13] + [n− 2, 12], by [BB17, Proposition 3.6.] and Lemma 6.6 we
see that [λ]χ contains [a + 1, ab−3, (a − 1)2, 1] with multiplicity 3 or higher. If χ
contains [n− 2, 2]+ [n− 3, 3], χ[λ] contains [a+1, ab−2, a− 2, 1] with multiplicity 3
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or higher ([BB17, Proposition 3.6.] and Lemma 7.5). If χ contains the neighboring
constituents [n− 2, 2] + [n− 2, 12] and nothing else, we are in case (3), so we know
that the product only contains constituents with multiplicity 1 and 2. From the
previous steps we know that it cannot contain [n− 2, 2] + [n− 2, 12] and [n− 3, 3]
or [n− 3, 13]. The only thing left is that [n− 2, 2] or [n− 2, 12] could appear with
multiplicity higher than 1. But

g(λ, (n− 2, 2), (a+ 1, ab−2, a− 2, 1)) = g(λ, (n− 2, 12), (a+ 1, ab−2, a− 2, 1)) = 1.

This tells us that neither [n − 2, 2] nor [n − 2, 12] can appear more than one time
as constituent of χ. �

General case.

Lemma 8.11. Assume that Theorem 5.1 holds for a fixed n ∈ N. Let χ be a proper
skew character of Sn and ν ` n neither be a rectangle nor a two-line partition nor
a hook. Then χ[ν] contains a constituent with multiplicity at least 3.

Proof: We check this up to n = 12 so that we do not have to worry about
the exceptional cases. Since ν is neither a two-line partition nor a hook nor a
rectangle, there are not many possibilities for ν. The non-exceptional products of
Theorem 5.1 which involve a character that is neither labeled by a hook nor by a
two-line partition are:

[ab−1, a− 1][n− 2, 12], [ab−1, a− 1][n− 2, 2], [k2, 1][n− 2, 2], [n− 3, 2, 1][k, k].

The only possible neighboring constituents are [n − 2, 2] and [n − 2, 12]. But for
n ≥ 15 we know that (Lemma 6.5 and 7.3)

g((n− 2, 12), (ab−1, a− 1), (a+ 1, ab−2, a− 2)) = 2 and

g((n− 2, 2), (ab−1, a− 1), (a+ 1, ab−2, a− 2)) = 2.

For n < 15 it was checked with Sage that ([n−2, 12]+[n−2, 2])[ab−1, a−1] contains
a constituent with multiplicity 3 or higher. Therefore, such a product contains a
constituent with multiplicity at least 3. �

Two skew characters.

Lemma 8.12. Assume that Theorem 5.1 holds for a fixed n ∈ N. If there is a
product of proper skew characters which just contains constituents with multiplicity
1 and 2, n = 2 and the product is [(2, 1)/(1)]2.

Proof: It is obvious that [(2, 1)/(1)]2 = ([2]+[12])2 = 2[2]+2[12] only contains
constituents with multiplicity 2. For the other direction there is not much to do but
to collect the results from the previous lemmas. We can assume that n > 2. Let χ
and ψ be two proper skew characters of Sn such that χψ only contains constituents
with multiplicity 1 and 2. We know that χ contains two neighboring constituents
[λ], [µ] such that the products ψ[λ] and ψ[µ] are from the previous lemmas. Let us
assume that ψ contains [n] + [n− 1, 1]. Since we assume that n > 2, we know that
not λ and µ are rectangles. Without loss of generality we can assume that λ has
two or more removable nodes. Then

〈[λ], ([n] + [n+ 1])([λ] + [µ])〉 = rem(λ) + 1 ≥ 3.

With this we can assume that neither χ nor ψ contains [n], because then it would
contain [n − 1, 1], too, by Lemma 8.4. But for n > 5, the smaller cases were
checked with Sage again, we look which irreducible characters appear in the pre-
vious lemmas, i.e., have a product with a proper skew character that just contains
constituents with multiplicity 1 and 2. The possibilities for λ and µ are (n−1, 1)(

′),
(ab) for n = ab and (k, k)(

′) for n = 2k. But there is no possibility such that λ and
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The general case

µ are two neighboring constituents. Therefore, there can be no products of proper
skew characters such that the product only contains constituents with multiplicity
1 and 2 if n > 5. �

In this chapter we have proven:

Corollary 8.13. If Theorem 5.1 is true for a fixed n ∈ N, Theorem 5.3 and 5.4
are also true for that n.
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CHAPTER 9

The induction idea and squares

1. The induction

We have proven Theorem 5.1 for products with a hook or a two-line partition.
Now we want to look at the remaining cases. We do this by induction. Let λ, µ ` n
with λ 6= µ. We define α := λ/(λ ∩ µ) and β := µ/(λ ∩ µ). The Dvir recursion
(Theorem 5.10) tells us that there is a constituent ν with maximal width such
that g(λ, µ, ν) = 〈[α][β], [ν̂]〉. Therefore, [λ][µ] has a constituent with multiplicity
3 or higher if [α][β] has one. Let γ = λ′/(λ′ ∩ µ) and δ = µ/(λ′ ∩ µ). If [γ][δ]
also has a constituent with multiplicity 3 or higher, we obtain a constituent [ν̃]
of [λ][µ] of maximal length with g(λ, µ, ν̃) ≥ 3 with the Dvir recursion. Thanks
to [BK99, Theorem 3.3] we know that w(ν) 6= l(ν̃). But this means the maximal
width is strictly larger than the maximal length or the maximal length is strictly
larger than the maximal width. In the first case a constituent of maximal width
cannot be symmetric. In the second case a constituent of maximal length cannot
be symmetric. In particular, they are always different. Since |α|, |β|, |γ|, |δ| < n,
we can use induction. We assume that Theorem 5.1 is true for all ñ < n so
with Corollary 8.13 we can assume that also Theorem 5.3 and 5.4 are true for all
ñ < n. If neither α, β nor γ, δ are listed in Theorem 5.1, 5.3 or 5.4, then [λ][µ]
has two constituents with multiplicity 3 or higher of which at least one is not
symmetric. This proves Theorem 5.1 and 5.2 for this case. If α, β or γ, µ are listed
in Theorem 5.1, 5.3 or 5.4, we can assume by conjugating λ, that α, β are listed
in one of these theorems. So now we look at all the different cases listed in these
theorems. But before doing that we first have to look at the case λ = µ. For the
following chapters we always assume that α and β are from Theorem 5.1
or Theorem 5.4 or α = β = (1) ∗ (1). Further, by Chapters 6 and 7 we can
assume that neither λ nor µ is a two-line partition or a hook.

In addition to Theorem 5.1 we want to prove Theorem 5.2. To do so it is
sufficient to find a non-symmertric constituent in [λ][µ] if λ and µ are symmetric
and two constituents if either λ or µ is symmetric. It is not easy to control if one
of the factors is symmetric or not. Therefore, we normally reduce every product
to a seed or a known product which contains two constituents with multiplicity 3
or higher. So if we use a seed, we mean that the corresponding product contains
two constituents with multiplicity 3 or higher if we do not mention anything else.
If λ and µ are symmetric, this implies that α and β are symmetric, too. And here
α and β themselves have to be symmetric, not only the corresponding basic skew
diagrams. But this is only in a very few cases possible, namely (up to interchanging
α and β):

• λ = µ;
• α = (2) ∗ (12), β = (22) and β is between the two parts of α;
• α = β = (1) ∗ (1) and both parts of β are between the two parts of α.

Only in these cases we have to argue why the constituent that we obtain is not
symmetric.
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The induction

2. Squares

Lemma 9.1. Let λ ` n. The product [λ]2 only contains constituents with multi-
plicity 1 and 2 if and only if (up to conjugation) one of the following holds:

(1) [λ]2 is multiplicity-free [BB17, Proposition 4.1.]. This is the case if and
only if

λ ∈
{
(n), (n− 1, 1),

(⌈n
2

⌉
,
⌊n
2

⌋)}
.

(2) If [λ]2 is not multiplicity-free, it only contains constituents with multiplic-
ity 1 and 2 if and only if

λ ∈ {(n− 2, 2), (5, 3), (33), (6, 4), hooks}.
Further, g2(λ, λ) ≥ 3 if g(λ, λ) ≥ 3 and λ is not from the following list:

(n− 3, 3), (7, 5), (8, 6).

Proof: That the products listed in (1) are multiplicity-free was proven in
[BB17]. We have already seen that [n−2, 2]2 and [hook]2 contain only constituents
with multiplicity 1 and 2. The remaining products have been checked with Sage.

If rem(λ) ≥ 3, we know from Proposition 5.14 that

g(λ, λ, (n− 2, 12)) = (rem(λ)− 1)2 ≥ 4 and
g(λ, λ, (n− 2, 2)) = h2 + rem(λ)(rem(λ)− 2) ≥ 3.

If λ = (λ1, λ2) is a two-row partition, we know that 3 ≤ λ2 ≤ λ1− 2. If λ2 = 3,
we reduce it to the seed ((6, 3), (6, 3)). Unlike the other seeds we are using this one
only contains one constituent with multiplicity 3, but this is sufficient for the claim
of the lemma. If λ2 = λ1 − 2 and n ≥ 16, we reduce it to the seed ((9, 7), (9, 7)).
We checked the smaller products with Sage. If 4 ≤ λ2 ≤ λ1 − 3, we reduce this to
the seed ((7, 4), (7, 4)).

Let rem(λ) = 2, but λ = (λr11 , λ
r2
2 ) be not a two-line partition. If λ2 = 1,

r1 ≥ 2, otherwise, λ would be a hook. We use the seed ((32, 1), (32, 1)). If λ2 6= 1,
we use one of the seeds ((32, 2), (32, 2)) or ((3, 22), (3, 22)) depending on r1 and r2.

For λ a rectangle, we can assume that w(λ) ≥ l(λ) with w(λ) ≥ 4 and l(λ) ≥ 3.
Therefore, we can reduce this to the seed ((43), (43)). �
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CHAPTER 10

α is linear

In the next step we look at the case that at least one of the partitions is linear.
We choose λ and µ in such a way that α := λ/(λ∩µ) is linear. If β := µ/(λ∩µ) is
connected and above α, we conjugate λ and µ. Now α and β are conjugated, too.
Further, α is above β. So without loss of generality we can assume that α is linear
and above β if β is connected. If β is not connected, we can at least assume that
there is one part of β which is to the left of α. Normally, we cannot make further
assumptions that might need conjugation of λ and µ (as, for example w(λ) ≥ l(λ)).
But if α = β′, we can and will do that. We define m := |α|.

First we look at the case that |λ ∩ µ| = n− 1, that means α = β = (1).

1. |λ ∩ µ| = n− 1

Lemma 10.1. Let |λ ∩ µ| = n− 1 (i.e., α = β = (1)), then g2(λ, µ) ≥ 3.

Proof: We checked the lemma up to n = 25 with Sage. So we assume that
n ≥ 26. In addition, we can assume w(λ) ≥ l(λ), but this implies since n > 25 that
w(λ) ≥ 6. Since α = β = (1), we know that there are two columns such that λ, µ
only differ in these two columns. If we remove these two columns, the resulting
partitions are equal. We call that partition γ. Note that w(γ) ≥ 4 since w(λ) ≥ 6.
We call the columns which are not equal C1 and C2

If γ is not listed in Lemma 9.1, we know that g2(λ, µ) ≥ 2. Now we have to look
at the cases of Lemma 9.1. If γ = (7, 5), (8, 6), we know that g(γ, γ) = 3. Since
n > 25 and w(λ) ≥ l(λ), we know that µ 6= γ + (1l) for some l ∈ N. Therefore, we
know because of Lemma 5.17 that g2(λ, µ) ≥ 3.

γ = (ñ, 3): Because of Lemma 5.17 and since g(γ, γ) ≥ 3, we can assume for µ
that C1 or C2 has no box. We obtain the following possibilities for (λ, µ) :

((n− 3, 3), (n− 4, 4)) and ((n− 1− l, 4, 1l−3), (n− 2− l, 4, 1l−2)).

However, ((n− 3, 3), (n− 4, 4)) are two-row partitions and our assumption for the
rest of this part is that neither λ nor µ is a two-line partition or a hook. For the
other case we can assume that l > 3. But if l > 3, we can reduce this to the seeds
((5, 4, 1), (42, 12)).

γ = (ñ): C1 and C2 have to be the two leftmost columns. Otherwise, λ and µ
would be hooks. We know that without loss of generality λ = (ñ + 2, 2a, 1b) and
µ = (ñ + 2, 2a−1, 1b+2), where a ≥ 2 and b ≥ 0. Otherwise, one of the partitions
would be a hook. But this can easily be reduced to the seed ((3, 22), (3, 2, 12)).

γ = (ñ, 1): C1 and C2 can be the two most left columns. Then we know that
λ = (ñ + 2, 3, 2a, 1b) and µ = (ñ + 2, 3, 2a−1, 1b+2) with ñ ≥ 3, a ≥ 1 and b ≥ 0.
This can be reduced by only removing common rows and columns to the seed
((4, 3, 2), (4, 3, 12)). C1 and C2 can be the leftmost column and the third one from
the left, a column of length 2. In this case we can assume that λ = (ñ + 2, 3, 1a)
and µ = (ñ + 2, 2, 1a+1) with ñ ≥ 3 and a ≥ 1. Otherwise, λ would be a two-row
partition. By removing some common rows and columns we reduce this to the
seed ((4, 3, 1), (4, 2, 12)). It can happen that C1 and C2 are the leftmost and the

123



|λ ∩ µ| = n− 1

rightmost column. Then λ = (ñ + 2, 2, 1a) and µ = (ñ + 1, 2, 1a+1) with ñ ≥ 3
and a ≥ 1. Here, α and β are removable. By doing so we obtain [λ ∩ µ]2, a square
which is not from Lemma 9.1. Since we assume that neither λ nor µ is a two-row
partition, we know that these are all possible options.

γ = (k, k): If C1 and C2 are the two leftmost columns, λ = (k+2, k+2, 2a, 1b)

and µ = (k + 2, k + 2, 2a−1, 1b+2) with a ≥ 1 and b ≥ 0. This can be reduced to
the seed ((42, 2), (42, 12)). The other possibility is that C1 and C2 are the left and
the rightmost column. Here, the rightmost columns can be of length 2 and 1 or 1
and 0. In this case λ = (k + 2, k + 1 + a, 1b) and µ = (k + 1 + a, k + 1, 1b+1) with
a ∈ {0, 1} and b ≥ 1. By removing common columns and rows we can reduce this
to the seed ((4, 3, 1), (32, 12)) if a = 0, and ((42, 1), (4, 3, 12)) if a = 1. Again if the
leftmost column would be the same in λ and µ, these would be two-row partitions.

γ = (k + 1, k): If C1 and C2 are the two leftmost columns, we know that
λ = (k + 3, k + 2, 2a, 1b) and µ = (k + 3, k + 2, 2a−1, 1b+2) with a ≥ 1 and b ≥ 0.
This can be reduced to the seed ((4, 3, 2), (4, 3, 12)). Another possibility is that
C1 and C2 are the leftmost column and the second column from the right. Then
λ = (k+3, k+2, 1a) and µ = (k+3, k+1, 1a+1) with a ≥ 1. This can be reduced to
the seed ((4, 3, 1), (4, 2, 12)). The last possibility is that C1 and C2 are the leftmost
and the rightmost column, but then λ = (k+3, k+1, 1a) and µ = (k+2, k+1, 1a+1)
with a ≥ 1. Here α and β are removable and we obtain [λ ∩ µ]2 which is not from
Lemma 9.1.

γ = (ñ, 2): If C1 and C2 are the two leftmost columns, λ = (ñ+ 2, 4, 2a, 1b) and
µ = (ñ + 2, 4, 2a−1, 1b+2) with a ≥ 1 and b ≥ 0. This can be reduced to the seed
((5, 4, 2), (5, 4, 12)). If C1 and C2 are the leftmost column and the fourth one from
the left, we can assume that λ = (ñ, 4, 1a) and µ = (ñ, 3, 1a+1) with a ≥ 1. This
can be reduced to the seed ((5, 4), (5, 3, 1)). If C1 and C2 are the rightmost and
the leftmost column, again, α and β are removable. If we remove them, we obtain
[λ ∩ µ]2 which is not from Lemma 9.1.

γ = (5, 3): This is not possible since we assume that n ≥ 25 and w(λ) ≥ l(λ).
We know that w(λ) ≤ 7, so we can add at most two columns of length 7, but then
there are only 22 boxes.

γ = (6, 4): For the same reason as before the only possibility is λ = (8, 6, 26),
but this implies µ = (8, 6, 25, 12). That product was checked with Sage.

γ is a hook: We can assume that l(γ) ≥ 3 and w(γ) ≥ 4. If C1 and C2 are
the two leftmost columns, we remove all besides the first three rows and all besides
the first five columns to obtain [5, 32]2 which is not from Lemma 9.1. If C1 and
C2 are the first and the third column, we know that λ = (ñ, 3a, 2b, 1c) and µ =
(ñ, 3a−1, 2b+1, 1c+1) with a ≥ 1, b ≥ 0, a + b ≥ 2 and c ≥ 0. We reduce this to
the seed ((5, 3), (5, 2, 1)). If C1 and C2 are the leftmost and the rightmost column,
again, α and β are removable. So we obtain [λ∩ µ]2 which is not from Lemma 9.1.
If C1 and C2 are the second and the third column, we know that λ = (ñ, 3a, 2b, 1c)
and µ = (ñ, 3a−1, 2b+2, 1c−1) with a, c ≥ 1 and b ≥ 0. We reduce this to the seed
[5, 3, 1][5, 2, 2]. If C1 and C2 are the second and the rightmost column, we know
that λ = (ñ, 2a, 1b) and µ = (ñ+ 1, 2a−1, 1b+1), where a ≥ 2 and b ≥ 0, otherwise,
µ would be a hook. Therefore, we can reduce it to the seed ((5, 2, 2), (6, 2, 1)). �

2. α = (1m)

Now we can assume that m = |α| = |β| > 1. If α = (1m), we do not get many
restrictions on β. β(rot) could be any partition or decompose into different partitions
from Theorem 2.4 or be any skew partition from Theorem 2.5 and Theorem 2.6 or
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decompose into a skew partition and a regular partition from Theorem 2.7. We
assume that α is above and to the right of β.

Let us start with the case that β(rot) is a partition.

β is a partition up to rotation.

Lemma 10.2. If α = (1m) and β or βrot is a partition with w(β) ≥ 3, g2(λ, µ) ≥ 3.

Proof: We remove all the common rows and columns to obtain λ̃ and µ̃. In the
next step we remove all the rows which belong to β besides one row of length w(β)
from µ̃, the corresponding rows of λ̃ and the fitting number of rows where one box
belongs to α from λ̃ and the corresponding columns of µ̃ to obtain λ̃ = µ̃′ ⊇ (43).
The result follows (by conjugation) because of Lemma 9.1. �

It will often happen that in the generic case we start with removing the common
rows and columns. The resulting partitions we will call λ̃ and µ̃. We will not always
mention that. But λ̃ and µ̃ will always be the partitions that we obtain after we
remove rows and columns from λ and µ or if we already removed columns and rows
from λ and µ, the partitions that we obtain after removing further columns and
rows from λ̃ and µ̃. If we just remove common columns and rows, we call λ̃/(λ̃∩ µ̃)
still α and µ̃/(λ̃ ∩ µ̃) still β since they differ just by translation. If we remove
columns and rows in such a way that λ̃/(λ̃ ∩ µ̃) is not just α translated we call it
α̃ and if µ̃/(λ̃∩ µ̃) is not just β translated we call it β̃. For the rest of this part we
will identify α with the part of λ which is outside of λ ∩ µ. And if we for example
say that we remove a row of length l from α, we actually mean that we remove a
row (of length ≥ l) from λ (or λ̃ if we already removed rows or columns) where α
has l boxes. We do the same for β and µ, too.

Lemma 10.3. Let α = (1m) and β with w(β) = 2 be up to rotation a proper
partition. [λ][µ] only contains constituents with multiplicity 1 and 2 if λ = (42, 1)
and µ = (33) or λ = (33) and µ = (3, 23). Otherwise, g2(λ, µ) ≥ 3.

Proof: For one direction we check with Sage that [42, 1][33] contains just con-
stituents with multiplicity 1 and 2. The other product follows by conjugating and
interchanging λ and µ. Now we show that other products contain two constituents
with multiplicity 3 or higher.

1st case: βrot is a partition, but β is not. We start with the exceptional case
βrot = (2, 1). If we removed all the common rows and columns, we would obtain
((33, 1), (25)). We would have removed too much. But we know that λ has at least
three columns, so there needs to be another column. The different possibilities we
have to investigate are:

• It is to the left of β. We call such a column C1.
• It is between α and β. We call such a column C2.
• It is above α. In that case there also is a row above α which we call R.

If we remove all the common rows and columns but C1 or C2 or R, we obtain
the seed ((43, 2, 1), (35)) if we did not remove C1, and ((43, 1), (33, 22)) if we did
not remove C2, and ((34, 1), (3, 25)) if we did not remove R. If βrot is different
from (2, 1), we remove all the common rows and columns to obtain a two-column
rectangle µ̃ and a proper fat hook λ̃ which is different from (ñ − 4, 22)(

′). The
result follows from Lemma 7.18. Alternatively, this case can be reduced to the
seeds ((34, 12), (27)) and ((35, 1), (28)).

2nd case: β is a partition. If β is different from (2), (2, 1), (2, 2), (2, 12), (22, 1),
(23), which implies m ≥ 5, we remove all the common rows and columns. Then µ̃
is a two-column partition, where the second column is at least of length 6 and λ̃
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α = (1m)

is a proper rectangle. The result follows from Lemma 7.18 or 7.19. Alternatively,
this case can be reduced to the seeds ((38), (212)), ((37), (210, 1)), ((63), (28, 12))
and ((35), (26, 13)).

Now we turn to the exceptional cases. Again, we know that µ has at least three
columns so we know that there is another column. This might be located to the
left of β, in which case we call it C1, it might be between α and β, then we call it
C2, or it might be above α, then there is a common row above α which we call R.
If β 6= (2), we just remove all the common columns and rows but C1 or C2 or R
and obtain the following seeds:

β we do not remove C1 we do not remove C2 we do not remove R
(2, 1) ((43, 12), (34, 2)) ((43), (33, 2, 1)) ((34), (3, 24, 1))
(22) ((44, 12), (36)) ((44), (34, 22)) ((35), (3, 26))
(2, 12) ((44, 13), (35, 22)) ((45), (35, 22, 12)) ((35), (3, 25, 12))
(22, 1) ((45, 13), (37, 2)) ((45), (35, 22, 1)) ((36), (3, 27, 1))
(23) ((46, 13), (39)) ((46), (36, 23)) ((37), (3, 29))

The last case we have to look at is β = (2). Again, we know that there needs
to be another row R or column C1 or C2 like above. But if we removed all the
common rows and columns but C1 or C2 or R, we would obtain a pair which just
contains constituents with multiplicity 1 and 2. We have to remove less. Let us
start with the case that there is a common column C2 between α and β. If there
was no common row, λ would be a two-row partition. Therefore, we know there
is a row R1 above α or a row R2 between α and β or a common column C to
the left of β. If we remove all the common columns and rows but C2 and R1, we
obtain the seed ((43), (4, 33, 2)). If we remove all the common columns and rows
but C2 and C, we obtain the seed ((52, 1), (42, 3)). If we remove all the common
columns and rows but C2 and R2, we obtain the seed ((42, 2), (32, 22)) if C2 and R2

are disjoint, and ((42, 3), (33, 2)) if they have a common box. From now on we can
assume that there is no common column between α and β and by conjugation and
interchanging λ and µ we can also assume that there is no common row between α
and β. If there is a column C1 to the left of β and we removed all common columns
and rows but C1, we would obtain ((42, 1), (33)) which is listed in the lemma and
only contains constituents with multiplicity 1 and 2. We know that there must be
more boxes. If C1 has a box below β, we reduce this to the seed ((42, 12), (33, 1)).
If there is a common column C3 to the left of C1, we remove all common rows and
columns but C3 and C1 to obtain the seed ((52, 2), (43)). If there is a common row
R above α, we remove all common rows and columns but R and C1 to obtain the
seed ((43, 1), (4, 33)). The case that there is a common row R above α is equivalent
to the case that there is a common column C1 to the left of β by conjugation. �

Remark 10.4. In the part α′ = β = (2) of the previous proof we maybe conjugate
and interchange α and µ but since α′ = β after conjugating and interchanging λ
and µ we still have α′ = β = (2).

Lemma 10.5. If α = β = (1m) for some m > 1, g2(λ, µ) ≥ 3.

Remark 10.6. By conjugation the previous lemma is equivalent to α = β = (m)
and will be proven in Lemma 10.11 to 10.13.

β is a skew partition.

Lemma 10.7. If α = (1m) and one of the connected parts of β is a proper skew
partition and located to the left of α (β can be connected), g2(λ, µ) ≥ 3.

Proof: We remove all the common columns and rows to obtain λ̃ and µ̃. Let
β1 be a connected part of β which is a proper skew partition and located to the
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left of α. We remove all the rows which belong to β but not to β1 and the fitting
number of rows from α. Now we have β̃ = β1 and α̃ = (1m̃) for some m̃ ∈ N,
where α̃ = λ̃/(λ̃ ∩ µ̃) and β̃ = µ̃/(λ̃ ∩ µ̃). If w(β̃) = 2, we remove all rows of β̃
except for one of the form (2)/(1), one of the form (2) and one of the form (1) (all
theses rows have to exist since β̃ is a proper and connected skew partition), the
corresponding rows of λ̃ and the fitting number of rows from α̃ together with the
corresponding rows of µ̃. We obtain the seed ((34, 1), (26, 1)). If w(β̃) ≥ 3 and β̃
has a row of the form (a)/(b) with a− b ≥ 3 we remove all rows of β̃ but this one,
the corresponding rows of λ̃ and the fitting number of rows from α̃ together with
the corresponding rows of µ̃ to obtain α̃ = (1a−b) and β̃ = (a− b). After removing
all the common rows and columns again, we obtain ((a−b+1)a−b) = λ̃ = µ̃′ ⊇ (43)

and the result follows from Lemma 9.1. If all the rows of β̃ only consist of one or
two boxes, we know that there have to be at least two rows with two boxes which
start in different columns. We remove all the rows from β̃ besides these two, the
corresponding columns of λ̃, the right number of rows from α̃ and the corresponding
rows of µ̃. In the next step we remove all the common rows and columns to obtain
one of the seeds ((44, 1), (35, 2)) or ((54, 2), (45, 2)). The second one can only occur
if w(β̃) ≥ 4 and in this case we can also always obtain the first seed if we choose
the rows that we do not remove correctly. �

Lemma 10.8. If α = (1m) and β decomposes into two or more parts which are up
to rotation all proper partitions, g2(λ, µ) ≥ 3.

Proof: We assume that there is a part of β which is located to the left of
α. We distinguish the cases by the number and width of the parts left of α. If
β has a row of length 3 to the left of α, the same argument as in Lemma 10.2
tells us that there are two constituents with multiplicity 3 or higher. Now we look
at the different possibilities for parts of width at most 2 to the left of α. From
Theorem 2.4 we know that β decomposes into at most three parts. We look at the
following possibilities:

(1) There are two parts of width 2 to the left of α.
(2) There is a part of width 2 and one of width 1 to the left of α.
(3) There are three parts of width 1 to the left of α.
(4) There are two parts of width 1 to the left of α
(5) There is one part of width 2 to the left of α.
(6) There is one part of width 1 to the left of α.
(1): If two of the connected parts from β which are to the left of α have width

2, this can be reduced to the seed ((54, 2), (45, 2)).
(2): If there is exactly one part with width 2 and one with width 1 to the left

of α, we reduce this to the seed ((43, 1), (34, 1)) or ((43, 2), (34, 2)).
(3): If β has three connected parts of width 1 and all are to the left of α, we

reduce this to the seed ((43, 2, 1), (34, 2, 1)). The next three cases are more complex.
(4): If not both of these parts are (1), this can be reduced to one of the seeds

((33, 12), (25, 1)) and ((33, 1), (24, 12)). If both of the parts are (1) and there is no
part of β which is to the right of α, we know that µ is not a two-column partition
so there is another column. Maybe there is a column C1 to the left of both parts
of β or there is a column C2 between the two parts of β or there is a column C3

between α and β or there is a column above α but this implies that there is also a
row R above α. If we remove all common columns and rows besides C1, we obtain
the seed ((42, 2, 1), (33, 2)). If we remove all common rows and column besides C2,
we obtain the seed ((42, 2), (33, 1)). If we remove all common columns and rows
besides C3, we obtain the seed ((42, 1), (32, 2, 1)), and if we remove all but R, we
obtain the seed ((33, 1), (3, 23, 1)). If there are two parts of the form (1) to the left
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of α and one part of β is to the right of α, we remove all the common rows and
columns to obtain λ̃ and µ̃. Now we remove all but one row of every part of β, the
corresponding columns of λ̃ together with the fitting number of rows from α and
the corresponding columns of µ̃. Now λ̃ = (3k+3, 1) and µ = (3 + k, 2k+3, 1) for
some k ≥ 1. If k = 1 we have a seed. If k > 1 we remove a column of length 1 from
µ̃ and the row of length 1 from λ̃, β̃ has exactly one part of width 2 to the left of
α and one part to the right of α. This is part of the next case.

(5): If there is exactly one part of β to the left of α and that part has width 2,
we start with removing all the common rows and columns to obtain λ̃ and µ̃. If β
has two parts to the right of α, we remove one of them, the corresponding rows of
λ̃ together with the right number of rows from α and the corresponding rows of µ̃.
Then we remove all rows of β except for one of every part, the corresponding rows
of λ̃ together with the fitting number of rows from α and the corresponding rows
of µ̃. Now λ̃ = (3k+3) and µ̃ = (3 + k, 2k+3). If k ≤ 3, we have a seed. If k > 3

we remove two rows of length 3 from λ̃ and three rows of length 2 from µ̃, then we
remove one row of length 3 from λ̃ and (3) from µ̃. Now λ̃ = (3k) and µ = (k, 2k).
The diagrams have the same form but k was reduced by 3. We repeat this until we
obtain a seed with w(µ) ≤ 6.

(6): Now we assume that there is exactly one part of β to the left of α and it
has width 1. We start with the case that there are two parts of β to the right of α.
We remove all the common rows and columns to obtain λ̃ and µ̃. We remove all
but one row from every part of β, the corresponding rows of λ̃, the fitting number
of rows from α and the corresponding columns of µ̃. Now λ̃ = (2 + b, 2a+b+2) and
µ̃ = (2 + a + b, 2 + b, 1a+b+2) for some a, b ≥ 1. We remove (b − 1) from λ̃ and
b− 1 rows of length 1 from µ̃. Then we remove b− 1 rows of length 2 from λ̃ and
((b− 1)2) from µ̃ to obtain λ̃ = (3, 2a+3) and µ̃ = (3+ a, 3, 1a+3). If a ≤ 2, we have
a seed which contains two constituents with multiplicity 3 or higher. If a > 2, we
reduce a similarly to the previous case: we remove a row of length 2 from λ̃ and
two rows of length 1 from µ̃, then we remove another row of length 2 from λ̃ and
(2) from µ̃. We repeat this until we obtain a seed with w(µ̃) ≤ 5.

From now on we assume that only one part of β is to the right of α. We call
the part of β which is to the left of α β1 and the one which is to the right of α β2.
First we assume that β2 is neither a one-row diagram nor (12). If β2 has only one
column, we know that it has at least length 3. This can easily be reduced to the
seed ((27), (33, 15))

Now we can assume that β2 does not only consist of rows of length 1. We remove
all the common rows and columns, all but one row from β1 and all but two rows
of which one has length at least 2 from β2 the corresponding rows of λ̃, the right
number of rows from α and the corresponding rows of µ̃. Then λ̃ = (2a+b+3) and
µ̃ = (2+ a, 2+ b, 1a+b+2) for some a ≥ b ≥ 1. The result follows from Lemma 7.18.

Let us look at the remaining cases, i.e., β has two connected components, β1

equals (1b) and is to the left of α and β2 equals (12) or (a) and is to the right of
α. If we removed all the common rows and columns, we would have at most one
constituent with multiplicity 3 or higher. We would have removed too much. Since
λ is not a two-column partition, we know that there needs to be another column. It
can be located to the left of β1 then we call it C1, between β1 and α then we call it
C2, between α and β2 then we call it C3 or to the right of β2. In the last case there
is a row above β2 which we call R. We start with the case β2 = (12) (so m = b+2).
If we remove all the common columns and rows but C1, we obtain λ̃ = (3m+2, 1m−2)
and µ̃ = (42, 22m−2). This can be reduced to the seed ((33, 1), (4, 23)). If we remove
all common rows and columns but C2, λ̃ = (3m+2) and µ̃ = (42, 2m, 1m−2). This
can be reduced to the seed ((33), (4, 22, 1)). If we remove all common rows and
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columns but C3, λ̃ = (32, 2m) and µ̃ = (42, 12m−2). This can be reduced to the
seed ((3, 22), (4, 13)). If we remove all but R, λ̃ = (3, 2m+2) and µ̃ = (33, 12m−2).
This can be reduced to the seed ((3, 23), (32, 13)).

If β2 = (a) and β1 = (1b), where m = a+ b, it works in a similar way as before,
but in the end we have to shrink β2 to obtain a seed. If we remove all common
columns and rows but C1, we obtain λ̃ = (3m+1, 1b) and µ̃ = (3 + a, 2m+b). Now
we remove (3b−1, 1b−1) from λ̃ as rows and (22b−2) from µ̃ as rows. If a ≤ 3 this
is a seed. If a > 3, we remove (32) from λ̃ and (23) from µ̃ both as rows. In the
next step we remove a row of length 3 from λ̃ and (3) from µ̃. We repeat this until
w(µ̃) ≤ 6 to obtain a seed. If we remove all the common rows and columns but C2,
we have λ̃ = (3m+1) and µ̃ = (3+a, 2m, 1b). First we remove (3b−1) from λ̃ as rows
and (2b−1, 1b−1) from µ̃ as rows. Then we shrink β2 exactly like before to obtain
one of the seeds ((33), (4, 22, 1)), ((34), (5, 23, 1)) or ((35), (6, 24, 1)). If we remove
all common rows and columns but C3, we have λ̃ = (3, 2m) and µ̃ = (3 + a, 1m+b).
The result follows from Proposition 6.2 since µ̃ is a hook. If we remove all common
rows and columns but R, λ̃ = (2 + a, 2m+1) and µ̃ = ((2 + a)2, 1m+b). We remove
(2b−1) from λ̃ as rows and (12b−2) from µ̃ as rows. In the next step we remove
(2a−1) from λ̃ as rows and ((a− 1)2) from µ̃. In a last step we remove (a− 1) from
λ̃ and (1a−1) from µ̃ as rows to obtain the seed ((3, 23), (32, 13)). �

We often shrink partitions to seeds like in the last cases of the previous lemma.
We will not always spell out every detail since it works always in the same way.

Lemma 10.9. If α = (1m) and β decomposes into different parts, g2(λ, µ) ≥ 3.

Proof: In case all of the parts from β are up to rotation proper partitions,
the previous lemma provides the result. Therefore, we can assume that one of the
parts of β is a proper skew partition. If one of the parts of β which is to the left
of α is a proper skew partition, Lemma 10.7 provides the result. From now on we
assume that the part of β which is a proper skew partition is to the right of α.
Remember that we assume that at least one part of β is to the left of α. Further,
from Corollary 4.2 we know that β hast at most two parts if one of them is a proper
skew partition.

If the part left of β has width greater or equal to 3, we remove the other part
and Lemma 10.2 tells us that g2(λ, µ) ≥ 3. For the next step we assume that the
part to the left of β has width 2. In the proof of the previous lemma we did not
need the existence of additional rows or columns in this case. So if we remove all
but one row from the skew part of β which is to the right of α, we obtain the result
from the previous lemma.

From now on we assume that β has one part to the left of α which has only
one column and one part to the right of α which is a proper skew partition. We
call the part of β which is to the left of α β1 and the other part β2. We know
that β1 = (1a) and β2 is a skew partition of b with a+ b = m. We remove all the
common rows and columns to obtain λ̃ and µ̃. Since β2 is a proper skew partition,
we know that there are i, j such that β2

i = (c)/(d) and β2
j = (e)/(f) with c > e and

d > f . We remove all rows of β2 but i and j, the corresponding columns of λ̃ as
well as the right number of rows from α together with the corresponding columns
of µ̃. Further, we remove (2a−1) from λ̃ as rows and (12a−2) from µ̃ as rows. After
removing f common columns of length 2, we obtain λ̃ = (2 + d − f, 2l+1) and
µ̃ = (2+ c− f, 2+ e− f, 1l+1), where l = c+ e−d− f . If e ≤ d, the part of β̃ which
is to the right of α̃ decomposes into two partitions and the result follows because of
Lemma 10.8. If e > d, we remove f − d rows of length 2 from λ̃ and f − d columns
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of length 2 from µ̃. Now the part of β̃ which is to the right of α decomposes into
two diagrams and the result follows from Lemma 10.8. �

Remark 10.10. The cases α = (1m) and α = (m) are connected by conjugation.
We still have to prove the case that α = β = (m). But if α = (m) and β decomposes
into several parts, we can assume that all of these parts are to the left of α (otherwise
it would be covered by the previous lemma).

3. α = (m)

β is a partition.
If α = (m), β is a partition and we removed all the common rows and columns, we
would obtain λ̃ = (w(β)+m). In this case there is a common row or column which
we do not remove and we know that such a row or column exists because λ is not
linear. There can be a common row above α or in between α and β or the row can
be to the left of β. In the last case there is a common column to the left of β. We
look at these three cases in the next three lemmas.

Lemma 10.11. Let α = (m) and β ` m is a partition. If there is a common row
above α, g2(λ, µ) ≥ 3.

Proof: Let us assume that β is neither a one-column partition nor (2). Then
we remove all the common rows and columns besides one row R above α. We obtain
λ̃ = ((w(β)+m)2) and µ̃ = (w(β)+m,w(β), β). In this case the statement follows
because of Lemma 7.18. Two remaining cases are exceptional. If we removed all
the common rows and columns but one above α, we would obtain λ̃ = ((m + 1)2)

and µ̃ = (m+ 1, 1m+1) if β is a one-column partition and λ̃ = (42) and µ̃ = (4, 22)

if β = (2). In both cases λ̃ would be a two-row partition so we know that there
needs to be another common row.

First we look at the case β = (2). Since we assume that λ is not a two-row
partition, we know that there is another row R1 above α or a row R2 between α and
β or a column C to the left of β. We remove all the common rows and columns but
R and R1 or R2 or C to obtain one of the seeds ((43), (42, 22)), or ((42, 2), (4, 23)),
or ((52, 1), (5, 32)).

If β = (1m), the situation is similar, but here we have to shrink β to obtain the
seed. We know that λ is not a two-row partition, so there has to be another row R1

above α or a row R2 between α and β or a column C to the left of β. We start with
the case that there is a column C to the left of β. If we remove all the common
rows and columns besides R and C, we obtain λ̃ = ((m+2)2, 1m) = µ̃′. The result
follows because of Lemma 9.1. If there is another row R1 above α and we remove
all the common rows and columns besides R and R1, we obtain λ̃ = ((m+1)3) and
µ̃ = ((m + 1)2, 1m+1). If m ≥ 5, we do the following: We remove (23) from λ̃ and
(32) from µ̃ and in the next step we remove (3) from λ̃ and (13) from µ̃ as rows.
We repeat this process until we obtain λ̃ with a width smaller or equal to 5. This
leads to the seeds ((53), (52, 15)), ((43), (42, 14)) and ((33), (32, 13)). The last case is
that there is a row R2 between α and β. After removing all the common rows and
columns but R and R2 this leads to λ̃ = ((m + 1)2, 1) and µ̃ = (m + 1, 1m+2). If
m > 2, we have two constituents because of Proposition 6.1 and Proposition 6.2. If
m = 2, there is only one constituent with multiplicity 3 so we would have removed
too much. But we assume that µ is no hook, so we know that there is another
common row or column. Because of the previous cases we can assume that there
is no other row above α and no column to the left of β. So we know there is a
common column C between α and β. We obtain the seed ((42, 2), (4, 2, 12)) if R2

and C have a common box, and ((42, 1), (4, 2, 13)) if they do not. �
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From now on we can assume that there is no common row above α. In the
previous lemma we have seen that removing all common columns and rows but one
might be too much in some cases. If it is, this will reduce the cases we have to look
at.

Lemma 10.12. Let α = (m) and β ` m is a partition. If there is a common row
R between α and β, g2(λ, µ) ≥ 3.

Proof: First we assume that w(β) ≥ 4 or w(β) ≥ 3 and rem(β) ≥ 2.
In this case we remove all the common rows and columns but R. We obtain
λ̃ = (m+ w(β), w(β)) and µ̃ = (w(β)2, β). The result follows from Lemma 7.17
if w(β) = 3, 4, and Lemma 7.19 if w(β) > 4.

We assume that β = (3l) for some l ≥ 1. Since λ is not a two-row partition, we
know that there is another common row. Because of the previous lemma we can
assume that it is not above α, so we know that there is another common row R1

between α and β or that there is a common column C to the left of β. If there is
another row R1 between α and β, we remove all common rows and columns but R
and R1. In the next step we remove (3l−1) from µ̃ as rows and (3(l− 1)) from λ̃ to
obtain the seed ((6, 32), (34)). If there is a common column C to the left of β, we
remove all common columns and rows but C and R. If l = 1, we obtain the seed
((7, 4, 1), (43)). If l = 2, we remove the rightmost column of β, the corresponding
column of λ̃ together with the right number of boxes from α to obtain the seed
((7, 3, 12), (34)). If l(β) > 2, we remove the two rightmost columns from β, the
corresponding columns of λ̃ together with the right number of boxes from α. Now
µ̃ is a two-column rectangle and λ̃ = (l(β) + 2, 2, 1l(β)). The result follows because
of Lemma 7.18.

If w(β) = 2 and there is a column C to the left of β, this works in the same
way. If l(β) = 1, 2, we remove all the common rows and columns but R and C
and obtain the seed ((5, 3, 1), (33)) if β = (2), ((6, 3, 12), (33, 2)) if β = (2, 1) and
((7, 3, 12), (34)) if β = (22). If l(β) > 3, we remove all the common columns and
rows but R and C, then we remove the right column from β and the corresponding
column from λ together with the right number of boxes from α and we are in the
same situation as in the case that w(β) = 3 and l(β) > 2. Even if w(β) = 1 and
l(β) > 2, this method works.

By conjugation the case β = (12) and there is a column to the left of β is
covered by the previous lemma.

Therefore we can assume for the last missing case that w(β) ≤ 2 and that there
is no column to the left of β. We still assume that there is no row above α. In the
first step we look at the case w(β) = 2. We know that λ is not a two-row partition,
so there is another row R1 between α and β. If β is not a rectangle, we remove
all the common rows and columns but R and R1. We obtain λ̃ = (m + 2, 22) and
µ̃ = (2a+3, 1b) for some a, b ∈ N with 2a + b = m. Now we remove (m − 3) from
λ̃ and (2a−1, 1b−1) from µ̃ as rows to obtain the seed ((5, 22), (24, 1)). This also
follows from the results of Section 2 of Chapter 7. If β was a rectangle, this would
maybe only contain one constituent with multiplicity 3. In this case we know that
µ is not a two-column partition. Therefore, we know that there is another common
column C between α and β. If we remove all common rows and columns but R, R1

and C, we obtain λ̃ = (3 +m, 3a, 22−a) and µ̃ = (31+a, 22−a+
m
2 ), where a = 0, 1, 2

is one smaller than the length of C after we removed all the common rows and
columns. Now we remove (m− 2) from λ̃ and (2

m
2 −1) from µ̃ as rows to obtain one

of the seeds ((5, 3a, 22−a), (31+a, 23−a)).
The last case is w(β) = 1 and there is no column to the left of β nor a row

above α. We know that neither λ nor µ is a two-line partition. Since there are no
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common columns to the left of β and no rows above α, this implies that there are
two common columns and another common row between α and β. Since neither λ
nor µ is a hook, we can choose them in such a way that the left one of the common
columns has length ≥ 2 after removing all the common rows and columns but these
4. After removing all the common rows and columns we remove (m − 1) from λ̃
and (1m−1) from µ̃ as rows to obtain one of the following seeds depending on the
length of the common rows and columns:

((4, 2, 1), (3, 2, 12)), ((4, 3, 1), (32, 12)), ((4, 22), (3, 22, 1)),

((4, 3, 2), (32, 2, 1)), ((4, 32), (33, 2)).

All of these seeds contain several constituents with multiplicity 3 or higher. �

Lemma 10.13. Let α = (m) and β ` m is a partition. If there is a common
column C to the left of β, g2(λ, µ) ≥ 3.

Proof: Because of the previous two lemmas we can assume that there is no
common row above α or between α and β. If β is different from (m), (1m), (k, k+1)
for m = 2k+1, (k2) for m = 2k or (k3) for m = 3k, we remove all the common rows
and columns but C. Now λ̃ is a hook and the result follows from Proposition 6.2.
In the five remaining cases we know that there is another common row or column
because λ is not a hook. Since we assume that there is no row above α or between
α and β, we know that there is a second column C1 to the left of β. If β 6= (m),
we remove all the common rows and columns but C and C1. If β 6= (1m), we know
that l(β) = 2, 3. We remove all but the leftmost column of β and the corresponding
columns of λ̃ together with the right number of columns of length 1 from α to
obtain the seed ((5, 22), (33)) if l(β) = 2 or ((6, 23), (34)) if l(β) = 3. If β = (1m)
for some m ≥ 2, we reduce this by 3 as we have done in the previous lemmas to
obtain one of the previous seeds or ((7, 24), (35)). If α = (m), we know that λ and
µ are not two-row partitions, so there is a common row R below β which intersects
with C or C1. If we remove all the common rows and columns but C1, C and R,
we obtain λ̃ = (2+2m, 2, a) and µ̃ = ((2+m)2, a), where a = 1 if R only intersects
with one of the columns C and C1, and a = 2 if it intersects with both. We remove
(2m− 2) from λ̃ and ((m− 1)2) from µ̃ to obtain the seed ((4, 2, a), (32, a)). �

Remark 10.14. The previous three lemmas prove the case α = β = (m) which is
equivalent to the case α = β = (1m). So they prove Lemma 10.5.

βrot is a partition.
Now we want to look at the case that βrot is a partition. Because of the previous
three lemmas we can assume that β is not a partition, so βrot has at least two
removable nodes.

Lemma 10.15. If α = (m) and βrot is a partition with three or more removable
nodes, g2(λ, µ) ≥ 3.

Proof: We start by removing all the common rows and columns to obtain λ̃
and µ̃. Since βrot has three or more removable nodes, we know β has at least two
columns C1 and C2 of different length with length strictly smaller than l(β). We
distinguish two cases. If the length of C1 and C2 is not l(β) − 1 and l(β) − 2, we
remove all columns from β but C1 and C2, and the corresponding columns from λ̃
together with the right number of boxes from α. Now µ̃ is a two-column rectangle
and λ̃ has three removable boxes and is neither of the form (l, 2, 1)(

′) for some l ∈ N
nor (5, 4, 1). Lemma 7.18 provides the result. If C1 has length l(β)− 1 and C2 has
length l(β)−2, we know that there is a column C3 of β with length l(β). We remove
all columns of β but C1, C2 and C3, further, we remove the corresponding columns
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of λ̃ together with the right number of boxes from α. We obtain λ̃ = (l, 2, 1) for
some l ∈ N and µ̃ = (3r) for some r ≥ 4. Then removing r − 4 rows of length 3
from µ̃ and (3r − 12) from λ̃ gives us the seed ((9, 2, 1), (34)). �

Lemma 10.16. If α = (m) and βrot is a partition with two removable nodes,
g2(λ, µ) ≥ 3.

Proof: Let βrot = (ab, cd). If a− c ≥ 2 and d ≥ 3, we remove all the common
rows and columns. In the next step we remove all columns from β but two of length
b and the corresponding columns of λ̃ together with the right number of boxes from
α. We obtain µ̃, a two-column rectangle and λ̃, a proper fat hook of the form (ñ, 23)
for some ñ ∈ N. Therefore, Lemma 7.18 provides the result.

If a − c ≥ 2 and d = 2, we remove all the common columns and rows. Then
we remove c − 1 columns of length b + 2 from β and a − c − 2 columns of length
b from β, the corresponding columns of λ̃ together with the right number of boxes
from α. Then we remove (3b−1) from µ̃ as rows and (3(b− 1)) from λ̃ to obtain the
seed ((8, 22), (34)).

Now we assume that d = 1 and a− c ≥ 4. After removing all the common rows
and columns we have λ̃ = (a+m, a− c) and µ̃ is a proper rectangle, so Lemma 7.19
provides the result.

Now only the exceptional cases are missing. We know that βrot = (ab, cd) and
d = 1 and a−c = 2, 3 or d ≥ 1 and a−c = 1. In these cases we do not remove all the
common rows and columns. We start with the case d ≥ 1 and a− c = 1. Since we
assume that λ is not a hook, we know that there is a common row or column. First
we assume that there is a common column C to the left of β. We remove all common
rows and columns but C. If βrot = (2, 1), βrot = (2, 12) or βrot = (22, 1), we already
have the seed ((6, 2, 1), (33)), ((7, 22, 1), (34)) or ((8, 2, 12), (34)). If l(β) = 2, 3, we
remove all but the leftmost and rightmost column of β, the corresponding columns
of λ̃ and the right number of boxes from α. Then β̃rot = (2, 1) or (2, 12) or (22, 1)
and we have the same seeds. If l(β) > 3, we remove all but the leftmost column
of β and the corresponding columns of λ̃ together with the right number of boxes
from α. Now µ̃ is a two-column rectangle of length ≥ 5 and λ̃ has three removable
nodes with length and width ≥ 5, so the result follows from Lemma 7.18.

If there is a common row R above α, we remove all common rows and columns
but R. In the next step we remove all but the two leftmost columns from β,
the corresponding columns of λ̃ and the right number of columns from α together
with the corresponding columns from µ̃. Now we know λ̃ = ((m̃ + 2)2, 1d) and
µ̃ = (m̃ + 2, 21+b+d), where m̃ = d + 2b. We start with removing ((b − 1)2) from
λ̃ and (2b−1) from µ̃ as rows. In the next step we remove ((b − 1)2) from λ̃ and
(2b− 2) from µ̃. Now we remove (1d−1) from λ̃ as rows and (d− 1) from µ̃. In the
last step we remove ((d− 1)2) from λ̃ and (2d−1) from µ̃ as rows to obtain the seed
((52, 1), (5, 23)).

If there is neither a common row above α nor a common column to the left of β,
this implies that there is a common row R between α and β. We start with the case
d > 1. We remove all common rows and columns but R and if a > 2, we remove all
but the two leftmost columns of β together with the corresponding columns from
λ̃ and the right number of columns from α. Now µ̃ is a two-column rectangle and
λ̃ = (m̃+ 2, 2, 1d) has three removable boxes. The result follows from Lemma 7.18
(since d > 1 and l(µ̃) ≥ 5). Now we assume that there is a row R between α and
β and that a − c = d = 1. We start with the case a ≥ 3. We remove all the
common rows and columns but R. In the next step we remove all but the three
leftmost columns from β, the corresponding columns from λ̃ and the right number
of columns (of length 1) from α. If l(β) = 2 we obtain the seed ((8, 3, 1), (34)).
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If l(β) > 2 we remove l(β) − 2 rows of length 3 from β̃ and (3(l(β) − 2)) from λ̃
to obtain the same seed. Now we assume that a = 2, d = 1 and that there is a
common row R between α and β. If we removed all the common rows and columns
but R, we would obtain a pair which is listed in Proposition 7.1. In particular, µ̃
would be a two-column rectangle. But our assumption is that µ is not a two-line
partition. Since we assume that there is not a common row above α nor a common
column to the left of β (since we have looked at these cases already), we know there
is a common column C between α and β. We remove all the common rows and
columns but R and C. The column C can now be of length 1 or 2. We remove
l(β)− 2 rows of length 2 from β and the corresponding number of boxes from α to
obtain the seed ((6, 2, 1), (3, 23)) if C has length 1 and ((6, 3, 1), (32, 22)) if C has
length 2.

The last missing case is d = 1 and a− c = 2, 3. The case a− c = 1 is contained
in the previous cases. If we removed all the common rows and columns, λ̃ would
be a two-row partition. We know that there is a common row R1 above α or a
common row R2 between α and β or a common column C to the left of β. Let
us start with the case that there is a common row R1 above α. We remove all
the common rows and columns but R1. In the next step we remove all but the
rightmost and the leftmost column of β together with the corresponding columns
of λ̃, the right number of columns from α together with the corresponding columns
of µ̃. If l(β̃) = 2, we obtain the seed ((52, 1), (5, 23)). If l(β̃) > 2, we first remove
(2l(β̃)−2) from µ̃ as rows and ((l(β̃)−2)2) from λ̃, then we again remove ((l(β̃)−2)2)
from λ̃ and (2l(β̃)− 4) from µ̃ to obtain the same seed as for l(β̃) = 2.

If there is a common row R2, we remove all the common rows and columns but
R2. Further, we remove all but the two leftmost and the rightmost column of β,
the corresponding columns of λ̃ together with the right number of boxes from α.
In the last step we remove l(β)− 2 rows of length 3 from µ̃ and the same number
of boxes from α̃. We obtain the seed ((7, 3, 2), (34)).

The last case is that there is a common column C to to left of β. We remove
all the common rows and columns but C. If l(β) = 2, 3, we remove all but the two
leftmost columns of β, the corresponding columns of λ̃ and the right number of
boxes from α. This gives us one of the seeds ((5, 3, 1), (33)) and ((7, 3, 1), (34)). If
l(β) > 3, we remove all but the leftmost column of β, the corresponding columns
of λ̃ and the fitting number of boxes from α to obtain λ̃ = (l(β) + 1, 2, 1l(β)−1) and
µ̃ = (2l(β)+1). The result follows from Lemma 7.18. �

β is a connected skew partition.

Lemma 10.17. If α = (m) and β = β1/β2 is a connected proper skew partition of
m, g2(λ, µ) ≥ 3.

Proof: We start with rem(β2) ≥ 2. This means w(β) ≥ 3 and that there is a
column C2 such that in this column β2 is not zero and smaller than l(β2). Let C1

be the leftmost column of β and C3 the rightmost column of β. We remove all the
common rows and columns. In the next step we remove all columns of β but C1,
C2 and C3, the corresponding columns from λ̃ and the right number of boxes from
α. Note that β̃ is not necessarily connected any more. Now we remove the last
l(β̃1)−l(β̃2) rows from µ̃ and the corresponding number of boxes from α̃. If there are
any common rows, we remove them, too (there is a common column but we do not
remove that). If β̃2 = (2, 1), we have the seed ((6, 2, 1), (33)) or ((5, 2, 1), (32, 2)). If
β̃2 = (2, 12), we remove the last row of µ̃ and the right number of boxes from λ̃ to
obtain the seed ((4, 2, 12), (32, 2)) or ((5, 2, 12), (33)). If β̃2 = (22, 1), we have one of
the seeds ((5, 22, 1), (32, 22)), ((6, 22, 1), (33, 2)) and ((7, 22, 1), (34)). If β̃2 = (23, 1)
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and λ̃ has a row of length 2, we reduce this to the case β̃2 = (22, 1), otherwise, we
have the seed ((8, 23, 1), (35)). In the other cases we remove the rightmost column
of β̃, the corresponding column of λ̃ and the right number of boxes from α̃. Now µ̃
is a two-column rectangle and the result follows from Lemma 7.18.

From now on we assume that β2 is a rectangle. We start with w(β2) ≥ 2 and
l(β2) ≥ 2. We remove all the common rows and columns. In the next step we
remove all the columns of β which are to the right of β2 besides the leftmost of
these columns, further we remove the corresponding columns of λ̃ and the right
number of boxes from α. For β̃ = β̃1/β2 we know that all the columns of β̃1 are
longer than l(β2). This means β̃ = ((w(β2)+1)l(β

2+1))/β2∪π for some partition π
which can be removed. If we remove π together with the fitting number of columns
from α, β̃rot is a partition, so the result follows from the previous lemma from the
part a− c ≥ 2 and d ≥ 2. In this part of the proof we did not need any additional
rows or columns.

Now we look at the cases l(β2) or w(β2) equals 1. We start with the l(β2) = 1.
Let β2 = (a). If a ≥ 3, we remove all the common rows and columns. Now
λ̃ = (w(β)+m, a) and µ̃ is neither a rectangle, a two-line partition, a hook nor can
we get one of the exceptional cases. The result follows from Lemma 7.17 if a = 3, 4,
and Lemma 7.19, otherwise. If a = 1, 2, we do not remove all the common rows
and columns. Since λ is not a two-row partition, we know that there is a common
row R1 above α or a common row R2 between α and β or a common column C to
the left of β. If there is a common row R1, we remove all the common rows and
columns but R1. Now λ̃ = ((w(β) +m)2, a) and µ̃ = (w(β) +m,w(β), β1). Since
β is a proper skew partition, we know that m ≥ 4. We remove the row of length a
from λ̃ and (a) from µ̃. Now λ̃ is a two-row rectangle and the result follows from
Lemma 7.18. If there is a common row R2, we remove all the common rows and
columns but R2. Now λ̃ = (w(β) +m,w(β), a) and µ̃ = (w(β)2, β1). If w(β) > 2,
we remove all but the top row of β1 and the right number of boxes from α. We
obtain λ̃ = (2w(β)− a,w(β), a) and λ̃ = (w(β)3). This can be reduced to the seed
((6 − a, 3, a), (33)). If w(β) = 2, we know that the lowest row of β1 has length
1. We remove all but the highest and the lowest row from β1 together with the
right number of boxes from α to obtain the seed ((4, 2, 1), (23, 1)). If there is a
column C to the left of β, we remove all the common rows and columns but C. If
l(β) > 2 we remove all but the leftmost column of β, the corresponding columns of
λ̃ together with the right number of boxes from α. Now λ̃ = (1 + l(β), 2, 1l(β)−1)
and µ̃ = (2l(β)+1), so the result follows from Lemma 7.18. If l(β) = 2, we remove all
columns of β but the leftmost and the rightmost, the corresponding columns of λ̃
together with the right number of boxes from α to obtain the seed ((5, 2, 1), (32, 2)).

From now on we assume that β2 = (1a) for some a > 1. If a > 3 or a = 3 and
w(β1) > 2 or a = 2 and w(β1) > 2 and β1 is different from (bc, 1) and (bc, c−1), we
remove all the common rows and columns. Now λ̃ is a hook and the result follows
from Proposition 6.2. The remaining cases are exceptional. We start with a = 2,
3 and β1 is a two-column partition, but not a two-column rectangle because β is
a proper skew partition. We know that µ is not a two-column partition, so there
is a common column C1 to the left of β or a common column C2 between α and β
or a common row R above α. If we remove all the common rows and columns but
C1, we remove the rightmost column of β together with the right number of boxes
from α. Now µ̃ is a two-column rectangle and λ̃ has three removable boxes, and
further, l(λ̃) ≥ 5 and w(λ̃) ≥ 4, so the result follows from Lemma 7.18. If there is
a common column C2, we remove all the common columns and rows except for C2.
Now λ̃ is a hook of width and length ≥ 3 and µ̃ has three columns of different size
and is different from (3, 2, 1). The result follows from Proposition 6.2. If there is a
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common row R, we remove all the common rows and columns but R. In the next
step we remove (1a) from λ̃ as rows and (a) from µ̃. This works since m > a. Now λ̃
is a two-row rectangle of width ≥ 7 and µ̃ has three removable nodes, l(µ̃), w(µ̃) ≥ 4
(since m > a+1) and µ̃ 6= (4, 2, 12). The result follows from Lemma 7.18. The last
case we look at is a = 2 and β1 equals (bc, 1) or (bc, b− 1) for b ≥ 3. We know that
λ is not a hook, so there is a common row R1 above α or a common row R2 between
α and β or a common column C to the left of β. Note that informally speaking a
common column between α and β only makes λ not a hook if it is of length ≥ 2,
but this implies that there is a common row above α or between α and β. If there
is a row R1 above α and we remove all the common rows and columns but R1, we
remove the two rows of length 1 from λ̃ and (2) from µ̃. Now λ̃ = ((w(β) +m)2)
and µ̃ = (w(β)+m− 2, w(β), β1) and the result follows from Lemma 7.18. If there
is a row R2 and we remove all the common rows and columns but R2, we remove
all but the two leftmost columns of β, the corresponding columns of λ̃ together
with the right number of columns from α. In the next step we remove all rows
below the fifth one of µ̃ and the right number of boxes from α̃. Now we obtain the
seed ((6, 2, 12), (25)). If there is a common column C, we remove all the common
rows and columns but C. If l(β) ≥ 4, we remove all but the leftmost column from
β, the corresponding columns of λ̃ together with the right number of boxes from
α. We obtain λ̃ = (l(β), 22, 1l(β)−2) and µ̃ = (2l(β)+1) and the result follows from
Lemma 7.18. If l(β) = 3, we know that β1 = (b2, b − 1), otherwise, β would not
be connected. We remove all but the two leftmost columns of β, the corresponding
columns of α together with the right number of boxes from α to obtain the seed
((7, 22, 1), (34)). �

β decomposes into three connected components.

Lemma 10.18. If α = (m) and β decomposes into three parts, g2(λ, µ) ≥ 3.

Proof: By Corollary 4.2 we know that all three parts of β are partitions or
rotated partitions. Further, we assume that all the parts of β are to the left of α (see
Remark 10.10). We start with removing all the common rows and columns. Then
we remove all but one column from every part of β, the corresponding columns
of λ̃ together with the fitting number of columns from α. If a part of β is a
rotated partition, λ̃ and µ̃ might have common rows now, which we remove. Now
λ̃ = (a+ b+ c+ 3, 2a, 1b) and µ̃ = (3a+1, 2b, 1c) for a, b, c ≥ 1. If c > 1, we remove
(c − 1) from λ̃ and (1c−1) from µ̃ as rows to obtain λ̃ = (4 + a + b, 2a, 1b) and
µ̃ = (3a+1, 2b, 1). If b > 2, we first remove (12) from λ̃ as rows together with (2)

from µ̃ as row. In the next step we remove (2) from λ̃ and (2) from µ̃ as row. We
repeat this process until we obtain λ̃ = (4+ a+ b̃, 2a, 1b̃) and µ̃ = (3a+1, 2b̃, 1) with
b̃ = 1, 2. With essentially the same procedure for a we can reduce these partitions
to one of the seeds λ̃ = (4 + ã + b̃, 2ã, 1b̃) and µ̃ = (3ã+1, 2b̃, 1), where ã = 1, 2, 3

and b̃ = 1, 2. �

β decomposes into two connected components.

Lemma 10.19. If α = (m) and β decomposes into two parts of which one is a
proper skew partition or a rotated partition (but not a rectangle), g2(λ, µ) ≥ 3.

Proof: In all cases we start with removing all the common rows and columns
to obtain λ̃ and µ̃ and we assume that all the parts of β are to the left of α (see
Remark 10.10). If β has a part β1 which is a proper skew partition, there are two
skew columns which start in different rows and end in different rows. We call these
columns C1 and C2. Further, we choose a column C3 from the other connected
part of β. Now we remove all columns of β but C1, C2, C3 and the fitting number
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of columns from α. If there is no row where C1 and C2 both have a box, the
rest of the skew partition decomposes into two parts. The result follows from the
previous lemma. From now on we can assume that after removing all those rows
and columns β̃ still has only two connected components. We start with the case
that the right part of β is the skew partition. Maybe after removing common rows,
λ̃ = (3 + m̃, 2a, 1b+c) and µ̃ = (3a+b+1, 2c, 1d), where m̃ = a+ 2b+ c+ d. Now we
remove (d) from λ̃ and (1d) from µ̃ as rows. If a = b = c = 1, we have the seed
((7, 2, 12), (33, 2)). If a+ b+ c > 3, we remove (a+ b+1) from λ̃ and (1a+b+1) from
µ̃. Since µ̃ is a two-column rectangle of length ≥ 5 and λ̃ has three removable nodes
and l(λ̃), w(λ̃) ≥ 4, the result follows from Lemma 7.18. If the skew part is the
left one of the connected parts of β, the same method again leads to a rectangular
two-column partition µ̃ of length ≥ 5 and a partition with three removable nodes
λ̃ with l(λ̃), w(λ̃) ≥ 4 or to the seed ((8, 2, 1), (32, 22, 1)).

Now let us assume that β has one part which is a rotated partition. We call
the lower left part of β β2 and the upper right part β1. If β1 is a rotated parti-
tion, we remove all but one column from β2, all but the leftmost and the rightmost
column from β1, the corresponding columns of λ̃ together with the fitting num-
ber of columns of length 1 from α. Then we remove the remaining boxes of β2

and the fitting number of boxes from α. If l(β1) = 2, 3 or β̃1
rot

= (2, 13), we
have the seed ((6, 2, 1), (33)) if β̃1

rot
= (2, 1), ((7, 22, 1), (34)) if β̃1

rot
= (2, 12),

((8, 2, 12), (34)) if β̃1
rot

= (22, 1), and ((8, 23, 1), (35)) if β̃1
rot

= (2, 13). If l(β̃2) > 3

and β̃1
rot
6= (2, 13), we remove the rightmost column of β̃1, the corresponding col-

umn of λ̃ together with the right number of boxes from α̃. Now µ̃ is a two-column
rectangle and λ̃ has three removable boxes and since β̃1

rot
6= (2, 13), we cannot get

an exceptional case. The result follows from Lemma 7.18.
If β2 is a rotated partition, we remove all but the leftmost and the rightmost

column from β2, all but the leftmost column from β1, the corresponding columns
of λ̃ together with the right number of columns of length 1 from α. We obtain
λ̃ = (3+ m̃, 2a, 1b) and µ̃ = (3a+1, 2b+c) for some a, b, c ∈ N, where m̃ = a+ b+2c.
If c ≥ 2, we remove (2c − 2) from λ̃ and (2c−1) from µ̃. If a = b = 1, we have the
seed ((7, 2, 1), (32, 22)). If a + b > 2, we remove (a + 1) from λ̃ and the column of
length a+1 from µ̃. Now µ̃ is a two-column rectangle of length greater or equal to
5 and λ̃ has three removable nodes and w(λ̃), l(λ̃) ≥ 4. So the result follows from
Lemma 7.18. �

Lemma 10.20. If α = (m) and β decomposes into two parts which are both parti-
tions, g2(λ, µ) ≥ 3.

Proof: We call the upper right part of β β1 and the lower left part β2. Again,
we can assume that both parts of β are to the left of α. We start with the case
l(β1) ≥ 2 and w(β2) ≥ 2. First we remove all the common rows and columns. We
remove all but the leftmost column from β1 and all but the two leftmost columns
from β2, the corresponding columns of λ̃ and the right number of boxes from α.
Now λ̃ = (3 + m̃, 2l(β

1)) and µ̃ = (3l(β
1)+1, 2b, 1c). In the next step we remove

(2b−1, 1c) from µ̃ as rows and (2b + c − 2) from λ̃. If l(β1) = 2, we have the seed
((7, 22), (33, 2)). If l(β1) > 2, we remove the column of length l(β1) + 1 from µ̃ and
(a + 1) from λ̃. Now µ̃ is a two-column rectangle and λ̃ = (4, 2l(β

1)). The result
follows from Lemma 7.18.

Now we look at w(β2) = 1. In this case we do not remove all the common rows
and columns. We know that λ is not a hook, therefore, there is a common row R1

above α or a common row R2 between α and β1 or a common column C1 to the left
of β2 or a common column C2 between β1 and β2. If there is a common R1 above
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α, we remove all the common rows and columns but R1. If m = 2, we have the
seed ((42, 1), (4, 22, 1)). If m = 3, we have one of the seeds ((52, 1), (5, 22, 12)) or
((52, 12), (5, 23, 1)) or ((62, 1), (6, 32, 1)). If m > 3, we remove l(β1) rows of length
1 from λ̃ and (l(β1)) from µ̃. Now λ̃ is a two-row rectangle of width at least 6
and µ̃ has three removable nodes and the second column has length at least 3.
The result follows from Lemma 7.18. If there is a common row R2 between α and
β1, we remove all the common rows and columns but R2. If w(β1) = 1, µ̃ is a
two-column partition and the second column is of length at least 3, λ̃ has three
removable nodes and the result follows from Lemma 7.17 if the second column is of
length 3 or 4, Lemma 7.18 if β2 = (1), and Lemma 7.19, otherwise. If w(β1) > 1,
we remove all but the leftmost column of β1, the corresponding columns of λ̃ and
the right number of boxes from α. This reduces it to the case w(β1) = 1. If there
is a common column C1 to the left of β, we remove all the common columns and
rows but C1. Then we remove all but the leftmost column of β1, the corresponding
columns of λ̃ together with the right number of boxes from α. Now β̃1 and β̃2 have
width 1. We successively reduce the length of β̃1 by 3 and the length of β̃2 by 2
to obtain the seed ((3 + a + b, 2a, 1b), (3a+1, 2b)) for 1 ≤ a ≤ 3 and 1 ≤ b ≤ 2. If
there is a common column C2 between β1 and β2 and l(β1) > 1, we remove all the
common rows and columns but C2. Then we remove all but the leftmost column
of β1 to obtain λ̃ = (3 + a + b, 2a) and µ̃ = (3a+1, 1b), where a ≥ 2. We remove
(b− 1) from λ̃ and (1b−1) from µ̃. If a ≥ 5, we reduce a successively by 3 to obtain
a seed ((4 + a, 2a), (3a+1, 1)) for 2 ≤ a ≤ 4. If l(β1) = 1, λ̃ would be a two-row
partition if we removed all the common rows and columns but C2. So we know
that there is another common row. But we can assume that this row is not above α
nor to the left of β nor between α and β1 because we have already looked at these
cases. Therefore, we assume that there is a common row R between β1 and β2. We
remove all the common rows and columns but C2 and R, then we remove all but
one column of β1, the corresponding columns of λ̃ together with the right number
of boxes from α. Further, we remove all but the topmost row of β2 and the right
number of boxes from α̃. We obtain the seed ((5, 22), (32, 2, 1)) if R and C2 have a
common box, and ((5, 2, 1), (32, 12)) if they do not.

Now we look at the case l(β1) = 1. We can assume that w(β2) > 1. If we
removed all the common rows and columns, λ̃ would be a two-row partition. Since
λ is not a two-row partition, we know that there is a common row R1 above α or
a common row R2 between α and β1 or a common row R3 between β1 and β2 or
a common column C to the left of β. If there is a common row R1 above α, we
remove all the common rows and columns but R1 and all but one column of β1 and
all but one column of β2, the corresponding columns of λ̃ with the right number
of columns from α and the corresponding columns of µ̃. Now λ̃ = ((3 + a)2, 1)
and µ̃ = (3 + a, 22, 1a). We successively reduce a by 2 until we obtain a seed
(((3 + a)2, 1), (3 + a, 22, 1a)) for 1 ≤ a ≤ 2. If there is a row R2 or R3, we remove
all the common rows and columns but R2 or R3. Then we remove all but the
topmost row of β2 and the right number of boxes from α. In the last step we
remove all columns of β̃ but one from β1 and two from β̃2, the corresponding
columns of λ̃ together with the right number of boxes from α̃. We obtain the seed
((6, 3, 2), (33, 2)) if we did not remove R2 and ((6, 22), (32, 22)) if we did not remove
R3. If there is a common column C to the left of β, we remove all the common rows
and columns but C. In the next step we remove all the columns from β but one
from β1 and one from β2. Now λ̃ = (4+ a, 2, 1a) and µ̃ = (32, 2a). We successively
reduce a by 2 until we obtain a seed ((4 + a, 2, 1a), (32, 2a)) for 1 ≤ a ≤ 2. �
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CHAPTER 11

α is equivalent to (m− 1, 1)

We know that α and β are up to conjugation and/or rotation from Theorem 5.1,
5.3 and 5.4. If α and ν are (skew) partitions of m, we use the notation α ≡ ν for
α equals ν up to rotation and/or conjugation. We say α is equivalent to ν. In this
chapter we assume that α or β is equivalent to (m − 1, 1). Again, we can assume
that α ≡ (m − 1, 1) and that α is above and to the right of one part of β. Since
α ≡ (m − 1, 1) and [α][β] just contains constituents with multiplicity 1 and 2, we
have the following possibilities for β (again up to equivalence):

(1) β is a partition with rem(β) ≤ 3;
(2) β is a skew partition and one of the following holds:

(a) λ = (λ1, λ2)
(′) is a two-line partition and µ = (1) or λ1 − λ2 = 1;

(b) λ = (λk11 , λ1 − 1) and µ = (1);
(c) λ = (λk11 , 1) and µ = (λ1 − 1);
(d) λ/µ decomposes into a one-column and a one-row partition;
(e) λ/µ decomposes into a rectangle and (1).

We can assume that β is not linear since we have dealt with that already in the
previous chapter.

We consider two different cases: first we look at the case that β is up to rotation
a proper partition, then at the case that β is a proper skew partition.

1. Up to rotation β is a partition

Lemma 11.1. If α(rot) = (m−1, 1) and β is up to rotation a proper partition with
three or less removable nodes, g2(λ, µ) ≥ 3.

Proof: We start with the case α = (m−1, 1) and β is a proper partition. Here
we have a lot of exceptional cases with which we deal first. If β = (2, 1m−2) or
m = 2k is even and β = (2k) or m = 2k + 1 and β = (2k, 1), we have exceptional
families. If α = (5, 1) and β = (32), we have an exceptional case. We start with
the case β = α′ = (2, 1m−2). We know that λ is not a two-row partition so there
is another row R1 above α or R2 between α and β. By conjugation the case that
there is a column to the left of β is equivalent to the case that there is a row
R1 above α. If we remove all the common rows and columns but R1, we obtain
λ̃ = ((m+1)2, 3) and µ̃ = (m+1, 23, 1m−2). We successively reduce m by 2 until we
obtain the seed ((42, 3), (4, 23, 1)) if m is odd and ((52, 3), (5, 23, 12)) if m is even.
If we remove all the common rows and columns but R2, we obtain λ̃ = (m+1, 3, 2)
and µ̃ = (24, 1m−2). The result follows from Lemma 7.17. Alternatively, this can
be reduced to the seed ((5, 3, 2), (24, 12)).

The two cases m = 2k and β = (2k) and m = 2k+1 and β = (2k, 1) work very
similarly. We remove the same rows and columns but get different seeds. We show
the β = (2k) case explicitly and state the β = (2k, 1) case in brackets. We know that
λ is not a two-row partition, so there is another row. If there is a row R1 above α, we
remove all the common rows and columns besides R1 and obtain λ̃ = ((m+ 1)2, 3)

and µ̃ = (m + 1, 2k+2) (for β = (2k, 1) we obtain λ̃ = ((m + 1)2, 3) and µ̃ =
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(m+1, 2k+2, 1)). We remove (12) from λ̃ and (2) from µ̃ as row and then (12) from
λ̃ and (2) from µ̃. We repeat this procedure until we obtain the seed ((52, 3), (5, 24))
(resp. ((62, 3), (6, 24, 1))). If there is a row R2 between α and β, we remove all the
common rows and columns but R2 to obtain λ̃ = (m + 1, 3, 2) and µ̃ = (2k+3)

(resp. λ̃ = (m + 1, 3, 2) and µ̃ = (2k+3, 1)). The result follows from Lemma 7.18.
If the common row is below β, we know that there also is a common column C
to the left of β. We remove all the common rows and columns but C to obtain
λ̃ = (m+2, 4, 1k) and µ̃ = (3k+2) (resp. λ̃ = (m+2, 4, 1k+1) and µ̃ = (3k+2, 2)). If
l(λ̃) ≥ 7 (resp. ≥ 8), we remove (6) from λ̃ and (32) from µ̃ as rows and (13) from
λ̃ as rows and (3) from µ̃ as row. We repeat this until l(λ̃) = 4, 5, 6 (resp. 5, 6, 7).
We obtain one of the seeds ((6, 4, 12), (34)), ((8, 4, 13), (35)), ((10, 4, 14), (36)) (resp.
((7, 4, 13), (34, 2)), ((9, 4, 14), (35, 2)), ((11, 4, 15), (36, 2))).

In the exceptional case α = (5, 1) and β = (32) we proceed in the same manner.
We know, since λ has more than two rows, that there is a common row. If there
is a common row R1 above α and we remove all the common rows and columns
but R1, we obtain the seed ((82, 4), (8, 34)). If there is a common row R2 between
α and β and we remove all the common rows and columns but R2, we obtain the
seed ((8, 4, 3), (35)). If there is a common column C to the left of β and we remove
all the common rows and columns but C, we obtain the seed ((9, 5, 12), (44)).

If β is a two-column partition, we know that β has two rows of length 2 and
two rows of length 1. After removing all the common rows and columns this can
easily be reduced to the seed ((7, 3), (24, 12)).

If w(β) > 2, we remove all the common rows and columns. In this case we
obtain λ̃ = (m + w(β) − 1, w(β) + 1) and µ̃ = (w(β)2, β). The result follows from
Lemma 7.17 if w(β) = 3, and Lemma 7.19 if w(β) > 3.

If αrot = (m− 1, 1) and β is a partition, still assuming that β is not linear, we
have an exceptional case if αrot = (2, 1) and β = (2, 1). We know that λ is not a
two-row partition and therefore, there is another row R1 above α or a row R2 in
between α and β or a column C to the left of β. If we remove all common rows and
columns but R1, we obtain the seed ((43), (4, 3, 22, 1)). If we remove all common
rows and columns except of R2, we obtain the seed ((42, 2), (3, 23, 1)). If we remove
all common rows and columns except of C, we obtain the seed ((52, 12), (4, 32, 2)).

In all the other cases we remove all the common rows and columns to obtain λ̃
which is a two-row rectangle and µ̃ which is a proper fat hook or has three or more
removable nodes and w(µ̃), l(µ̃) ≥ 4. Lemma 7.18 tells us that g2(λ̃, µ̃) ≥ 3.

If α = (m− 1, 1) and βrot is a partition, we can assume rem(βrot) ≥ 2 and that
βrot is different from (2, 1), which excludes the exceptional case. If l(β) = 2, we
know that βrot = (a, b) with b ≥ 1 and a ≥ 3. We remove all the common rows
and columns to obtain λ̃ = (a + m − 1, a + 1, a − b) and µ̃ = (a4). If b ≥ 2, we
remove (m + a − 8, a − 3, a − b − 1) from λ̃ and ((a − 3)4) from µ̃ to obtain the
seed ((7, 4, 1), (34)). If b = 1, we remove (m + a − 7, a − 3, a − 3) and ((a − 3)4)
to obtain the seed ((6, 4, 2), (34)). If l(β) > 2, we remove all the common rows
and columns to obtain λ̃ and µ̃. Then we remove all but the leftmost and the
rightmost column from µ̃ and the corresponding columns of λ̃ together with the
right number of columns of length 1 from α. We obtain µ̃ which is a two-column
rectangle and λ̃ which has three removable nodes. Since we assume that l(β) > 2,
we know g2(λ̃, µ̃) ≥ 3 (see Lemma 7.18).

If αrot = (m − 1, 1) and βrot is a partition, we assume, again, that β is not a
partition. We remove all the common rows and columns to obtain λ̃ and µ̃. Now
we remove all but the rightmost and leftmost column from µ̃, the corresponding
columns from λ̃ and the fitting number of columns of length 2 from λ̃ and length
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1 from µ̃. If λ̃ 6= µ̃′, we remove (12) from λ̃ and (2) from µ̃ as row and again, (12)
from λ̃ and (2) from µ̃ (this time not as row). We repeat this process until λ̃ = µ̃′.
The result now follows from Lemma 9.1. �

Lemma 11.2. If α(rot) = (2, 1m−2) and β is up to rotation a proper partition,
g2(λ, µ) ≥ 3.

Proof: The case m = 3 is contained in the previous lemma. So we assume that
α is above β, m ≥ 4 and that β is not linear. We start with the case α = (2, 1m)
and β is a partition. We have the exceptional case α = (2, 12) and β = (22). If
α = (2, 12) and β = (22), we know that µ is not a two-column partition. Like in the
exceptional cases in the previous lemma we get three seeds. If there is a common
column C1 to the left of β and we remove all common columns and rows but C1,
we obtain ((5, 42, 12), (35)). If there is a common column C2 between α and β and
we remove all common columns and rows but C2, we obtain ((5, 42), (33, 22)). If
there is a common row R above α and we remove all common columns and rows
but R, we obtain ((42, 32), (4, 25)). Now let us look at the general case. Here we
remove all the common rows and columns. If w(β) = 2, µ̃ is a two-column partition
and λ̃ = (4, 3m−2). Since we assume that β 6= (22), g2(λ̃, µ̃) ≥ 3. This follows from
Lemma 7.18 if β is (2k) or (2k, 1), and Lemma 7.19, otherwise. If w(β) ≥ 3 and
β = α′ = (3, 1), we obtain the seed ((5, 42), (34, 1)). If β 6= (3, 1), we know that
m ≥ 5. Further, α and β are removable. If we remove them, we obtain λ̃ = µ̃ which
are rectangles and contain (34). The result follows from Lemma 9.1.

In the we assume that α = (2, 1m−2) and βrot is a partition but β is not a
partition. We remove all the common rows and columns. If w(β) = 2, we can
assume that βrot 6= (2, 1m−2) because by conjugating and interchanging λ and
µ this is contained in the case αrot = (m − 1, 1). So we reduce this to the seed
((4, 33, 1), (27)). If w(β) ≥ 3 and βrot = (m−1, 1), we have the seed ((5, 42, 2), (35))

if m = 4. If m > 4, we remove the two lowest rows of λ̃ and the corresponding rows
of µ̃. Now α̃ = (2, 1m−3) and β̃ = (m − 1) are removable. After removing them,
λ̃ = µ̃ are rectangles which contain (43). The result follows from Lemma 9.1. If
βrot 6= (m− 1, 1), we remove all the rows of µ̃ which belong to β besides the lowest
one and the corresponding rows of λ̃ together with all but the lowest w(β) rows
from α and the corresponding rows from µ̃. We obtain λ̃ = ((w(β) + 1)w(β)) = µ̃′.
The result follows from Lemma 9.1.

In the next step let us look at the case αrot = (2, 1m−2) and β is a partition.
We start with removing all the common rows and columns. We can assume that
β is neither (m − 1, 1) nor (2, 1m−2). By conjugating and interchanging λ and µ
these are contained in the previous case and the case α = (m− 1, 1). If w(β) = 2,
we know that β = (2a, 1b) with a ≥ 2. We remove (4m−4) from λ̃ as rows and
(3m−4, 2a−2, 1b) from µ̃ as rows to obtain the seed ((43), (32, 23)). If w(β) ≥ 3,
we know that m − β1 ≥ 2 since we assume that β is neither linear nor (m − 1, 1).
Therefore, we can remove all rows but β1 of β from µ̃, all but the top β1 rows
from λ̃ and the corresponding rows from µ̃. We obtain λ̃ = ((β1 + 2)β1) and
µ̃ = ((β1 + 1)β1 , β1). If we remove a column of length β1 from λ̃ and a row of
length β1 from µ̃, we obtain λ̃ = µ̃ = ((β1 + 1)β1) ⊇ (43). The result follows from
Lemma 9.1.

The last case is αrot = (2, 1m−2) and βrot is a partition and β is not. We start
with removing all the common rows and columns. If w(β) = 2, we reduce this to
the seed ((42, 1), (3, 23)). If w(β) ≥ 2 and α = β′, we have λ̃ = µ̃′. Therefore, the
result follows from Lemma 9.1. From now on we know that βrot 6= (m− 1, 1). This
tells us that m− w(βrot) ≥ 2. Now we remove all the rows of µ̃ which belong to β
but the lowest one, the corresponding rows of λ̃ together with all but the highest
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Up to rotation β is a partition

w(βrot) rows of λ̃ and the corresponding rows from µ̃. After removing a common
column we obtain λ̃ = µ̃′ = ((w(β) + 1)w(β)) ⊇ (43). Therefore, the result follows
from Lemma 9.1. �

2. β is a skew partition

We only have to look at the skew partitions β = β1/β2 such that [m− 1, 1][β]
only contains constituents with multiplicity 1 and 2. By Lemma 8.3 we know that
the possibilities for β are (up to equivalence):

(1) β1 is a two-line partition (not a rectangle) and β2 = (1);
(2) β1 = ((β1

1)
k1 , β1

1 − 1) and β2 = (1);
(3) β1 = ((β1

1)
k1 , 1) and µ = (β1

1 − 1);
(4) β1/β2 decomposes into a one-column and a one-row partition;
(5) β1/β2 decomposes into a rectangle and (1).

Lemma 11.3. If αrot = (m−1, 1)(
′) and β is (up to equivalence) from Lemma 8.3,

g2(λ, µ) ≥ 3.

Proof: We remove all common rows and columns. We look at the five possi-
bilities for β individually. We start with the first one. By rotation and conjugation
we have eight cases but we will look at the pairs where β just differs by rotation
together. For the two where αrot = (m − 1, 1) and β is a two-row skew parti-
tion, we remove all columns of β but the rightmost, the leftmost and one column
of length 2, the corresponding columns from λ̃ and all but two columns of length
1 and one of length 2 from α and the corresponding columns of µ̃ to obtain the
seed ((62, 1), (5, 32, 2)). If αrot = (2, 1m−2) and β is a two-column skew partition,
we do the same as before but for rows instead of columns and obtain the seed
((43, 1), (32, 23, 1)). If αrot = (m − 1, 1) and µ̃ has two columns, we remove a row
of length 1 from λ̃ and one of length 1 from µ̃. Since β2 = (1) or the difference
of the two columns of β2 equals 1, β̃ is now a (rotated) partition and the result
follows from Lemma 11.1. Since β was a proper skew partition, m ≥ 4 and we do
not have the exceptional case of that lemma. If αrot = (2, 1m−1) and β = (a, b)/(c)
is a two-row skew partition, we remove min(a− b, c) = 1 columns of length m from
λ̃ and µ̃. α does not change but β̃ is now a (rotated) partition so the result follows
from Lemma 11.2.

Let αrot = (m − 1, 1), β1 = (ab, a − 1) for a > 2 and b > 1 and β2 = (1).
We remove all but the leftmost and the rightmost column of β, the corresponding
columns of λ̃, the right number columns of length 1 from α and the corresponding
columns of µ̃. Now β̃ = (2b, 1)/(1) is a two-column skew partition, αrot = (m̃−1, 1)
and the result follows from the previous case. If αrot = (2, 1m−2), β1 = (ab, a− 1)
and β2 = (1), we can do the same but with rows instead of columns to reduce this
to the case that β is a two-row skew partition. Further, these cases are invariant
under conjugation and rotation of β, so here we just have these ones.

If β1 = (ab, 1) and β2 = (a−1), the case is, again, invariant under rotation, but
this time not under conjugation, therefore, we also have to look at the conjugated
case for both possibilities of α. If αrot = (m − 1, 1), we remove all columns of
β but the rightmost and the leftmost, the corresponding columns of λ̃, the right
number of columns of length 1 from α and the corresponding columns of µ̃. Now
α̃rot = (m̃−1, 1) and β̃ is a two-column partition skewed by (1), so the result follows
from that case. If αrot = (2, 1m−2) and β = (a + 1, ab)/(1b), we can do the same
but with rows instead of columns to reduce it to the case αrot = (2, 1m̃−2) and β is
a two-row partition skewed by (1). If αrot = (m− 1, 1) and β = (a+1, ab)/(1b), we
remove all columns of β but the two leftmost columns, the corresponding columns of
λ̃, the right number of columns of length 1 from α together with the corresponding
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columns from µ̃. Now α̃rot = (m̃ − 1, 1) = (β̃rot)′, so the result follows from
Lemma 9.1. Again, if α and β are conjugated, we can do the same for rows instead
of columns. The result follows again from Lemma 9.1.

If β decomposes into one column and one row, we do not assume that any part
of β is to the left of α. Therefore, we can assume that αrot = (m − 1, 1). If the
column of β is actually just one box, we remove all but two columns from the row
of β, the corresponding columns of λ̃, the right number of columns of length 1 from
α and the corresponding columns of µ̃ to obtain one of the following seeds:

Position of β Seed
Both parts are to the left of α ((52, 2), (4, 32, 2)) or ((52, 1), (4, 32, 1))
One part is to the left and
one is to the right of α ((33), (5, 2, 12)) or ((43, 5, 3, 22), (5, 3, 22))

Both parts are to the right of α ((4, 23), (5, 4, 1)) or ((3, 23), (5, 3, 12)).

From now on we assume that the column of β has two or more boxes. We remove
all but one column from the row of β, the corresponding columns of λ̃, the right
number of columns of length 1 from α and the corresponding columns of µ̃. Now we
want to shrink the column of β or reduce this to a previous result, but this works
differently regarding the position. First we assume that both parts of β are to the
left of α. If the column of β is the leftmost part, we have λ̃ = ((m̃ + 1)2, 1) and
µ̃ = (m̃, 22, 1m̃−1). If m̃ = 3, 4, we check this with Sage. If m̃ > 4 we remove a row
of length 1 from λ̃ and µ̃. Now λ̃ is a two-row rectangle and the result follows from
Lemma 7.18. If the column is the right part of β, we have λ̃ = ((m̃ + 1)2, 1m̃−1)

and µ̃ = (m̃, 2m̃, 1). We remove (1) from λ̃ as row and from µ̃ as row. Now λ̃′ = µ̃
and the result follows from Lemma 9.1. Next we assume that α is in between
the two parts of β. If the column is to the left of α, we obtain λ̃ = (m̃3) and
µ̃ = (m̃ + 1, m̃ − 1, 1m̃). We check the cases m̃ = 3, 4, 5 with Sage. If m̃ ≥ 6, we
remove (23) from λ̃ and (32) from µ̃. In the next step we remove (13) from λ̃ and
(13) from µ̃ as rows. We repeat this until w(λ̃) ≤ 6 to obtain one of the pairs we
checked for m̃ = 3, 4, 5. If the column is to the right of β, we have λ̃ = (m̃m̃+1)
and µ̃ = ((m̃ + 1)m̃−1, m̃ − 1, 12). If m̃ = 3, we check this with Sage. If m̃ > 3,
we remove a column of length m̃+ 1 from λ̃ and (m̃− 1, 12) from µ̃ as rows. Now
λ̃ = µ̃′ = ((m̃ − 1)m̃+1) and the result follows from Lemma 9.1. Last we assume
that both parts of β are to the right of α. If the column is the left part of β, we have
λ̃ = (m̃, (m̃− 1)m̃+1) and µ̃ = (m̃+ 1, m̃m̃−1, m̃− 2). If m̃ = 3, we check this with
Sage. If m̃ > 3, we remove (m̃, m̃− 1) from λ̃ as rows and (m̃+1, m̃− 2) from µ̃ as
rows. Now λ̃′ = µ̃ = (m̃m̃−1), so the result follows from Lemma 9.1. If the column is
the right part of β, we obtain λ̃ = (m̃m̃−1, (m̃−1)3) and µ̃ = ((m̃+1)m̃−1, m̃, m̃−2).
If m̃ = 3, we check this with Sage. If m̃ > 3, we remove ((m̃− 1)2) as rows from λ̃
and (m̃, m̃− 2) as rows from µ̃. In the next step we remove the last row of length
m̃− 1 from λ̃ and a column of length m̃− 1 from µ̃. Now λ̃ = µ̃′ = (m̃m̃−1).

If β decomposes into a rectangle and a single node, we can assume that it the
rectangle has width and length at least 2 (otherwise, we are in the previous case).
Again, we assume that αrot = (m− 1, 1), but we cannot make any assumptions on
the order of α and β. We remove all but one column of the rectangle and the fitting
number of columns of length 1 from α so that we reduce this case to the previous
one. �

Lemma 11.4. If α = (m − 1, 1)(
′) and β is (up to equivalence) from Lemma 8.3,

g2(λ, µ) ≥ 2.

Proof: We have the same possibilities for β as in the lemma before. Again,
we look at these case by case and start in all cases with removing all the common
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β is a skew partition

rows and columns. If it is not mentioned otherwise, we assume that α is to the
right of β. We start with the case α = (m − 1, 1) and β = (a, b)/(c) is a two-
row skew partition. We remove all columns of β but one of the skew columns
of length 1, one column of length 2 and one not-skew column of length 1, the
corresponding columns of λ̃ and all columns of α but the one of length 2 and two
of length 1. We obtain the seed ((6, 4, 1), (33, 2)). If α = (2, 1m−2) and β is a
two-column skew partition, we can do the same but for rows instead of columns to
obtain the seed ((4, 32, 1), (25, 1)). If α = (2, 12) and β = (3, 2)/(1), we check that
g2((5, 4

2, 1), (34, 2)) ≥ 3. If α = (2, 1m−2) and β = (a, b)/(c), we can assume that
m ≥ 4. We remove min(a− b, c) = 1 columns of length m from λ̃ and µ̃. Now β̃ is
a partition if c ≤ a− b, or a rotated partition if c ≥ a− b. The result follows from
Lemma 11.2. If α = (m − 1, 1) and β = (2a, 1b)/(1c), we have λ̃ = (m + 1, 3, 1c)
and µ̃ = (22+a, 1b). Since µ̃ is a two-column partition, the result follows from
Lemma 7.18 if b = 1, and Lemma 7.19, otherwise.

The second case can be reduced to the two-row or two-column case like in the
previous lemma.

The third case also works like in the previous lemma (with very tiny adjust-
ments).

Let β decomposes into a column and a row. We assume that α = (m − 1, 1)
but drop the assumption that α is to the right of (a part) of β. If the column is of
length 1, we remove all but two boxes from the row of β, the corresponding columns
from λ̃, all but one column of length 1 and the column of length 2 from α and the
corresponding columns of µ̃ to obtain one of the following seeds:

Position of β Seed
Both parts are to the left of α ((5, 4, 1), (33, 1)) or ((5, 4, 2), (33, 2))
One part is to the left and
one is to the right of α ((32, 2), (5, 13)) or ((42, 3), (5, 23))

Both parts are to the right of α ((4, 22, 1), (5, 4)) or ((3, 22, 1), (5, 3)).

From now on we know that the column of β has at least two boxes. We remove
all but one box of the row from β, the corresponding columns from λ̃ and the right
number of columns of length 1 from α with the corresponding columns of µ̃. First
we assume that both parts of β are to the left of α. If the column is the leftmost
part of β, this can easily be reduced to the seed ((4, 3, 1), (23, 12)) by removing
boxes from the column of β and the arm of α. If the column is the right part of β,
the result follows from Lemma 7.18 since µ̃ = (2m̃+1, 1) and λ̃ = (m̃ + 1, 3, 1m̃−1)
has three removable nodes. Next we assume that α is in between the two parts of
β. If the column is to the left of α, µ̃ is a hook with w(µ̃) ≥ 4 and l(µ̃) ≥ 5 and
λ̃ = (m̃2, 2). The result follows from Proposition 6.2. If the column is to the right
of β, λ̃ = (m̃m̃, 2) and µ̃ = ((m̃+ 1)m̃−1, 13). If m̃ = 3, we check this with Sage. If
m̃ ≥ 4, we remove a row of length 2 from λ̃ and two rows of length 1 from µ̃. Then
we remove a common column of length m̃ from λ̃ and µ̃. Now λ̃′ = µ̃ = (m̃m̃−1).
The result follows from Lemma 9.1. In the last step we assume that both parts of β
are to the right of α. If the column is the left part of β, we have λ̃ = (m̃, (m̃−1)m̃, 1)
and µ̃ = (m̃ + 1, m̃m̃−1). If m̃ = 3, we check this with Sage. If m̃ > 3, we remove
(m̃, 1) from λ̃ as rows and (m̃ + 1) from µ̃ as row. Now λ̃′ = µ̃ = (m̃m̃−1) and
the result follows from Lemma 9.1. If the column is the right part of β, we have
λ̃ = (m̃m̃−1, (m̃− 1)2, 1) and µ̃ = ((m̃+ 1)m̃−1, m̃). Again, if m̃ = 3, we check this
with Sage. If m̃ > 3, we remove (m̃− 1, 1) from λ̃ as rows and the row of length m̃
from µ̃. Now we remove a common column of length m̃− 1 from both and obtain
λ̃′ = µ̃ = (m̃m̃−1). So the result follows from Lemma 9.1.
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Like in the previous lemma the case β decomposes into a rectangle with length
and width at least 2 and one box can be reduced to the previous case. �

This concludes the part that α ≡ (m − 1, 1). Together with the part α ≡ (m)
this was the most complex part because here we did not know much about β. In
the remaining chapters we know much more about the possibilities for β.
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CHAPTER 12

α is a skew partition

In this chapter we assume that α is a skew partition. Further, we assume that
β is not linear or equivalent to (m − 1, 1). Since we work under the assumption
that the classification is correct for m we only have to look at the products from
Theorem 5.4.

In contrast to the previous sections, we do not assume that α is to the right
of β, because if α decomposes into different parts this might get a bit confusing.
Instead, we can choose for either α or β if we just look at α or α′ resp. β or β′.

1. The exceptional pairs

Lemma 12.1. If α, β is an exceptional pair from Theorem 5.4, g2(λ, µ) ≥ 3.

Proof: In all but two cases we remove the common rows and columns to obtain
the seed.

If α(rot) = (2, 1) ∗ (1) and β = (2, 2), both are invariant under conjugation.
Therefore, we can assume that (2, 1)(rot) is to the left of β. We obtain six seeds
by removing all the common rows and columns depending on the position of (1).
These are:

α = Position of (1) Seed
(2, 1) ∗ (1) To the left of (2, 1) ((33, 2, 1), (52, 12))
(2, 1) ∗ (1) Between (2, 1) and (2, 2) ((33, 2, 1), (52, 2))
(2, 1) ∗ (1) To the right of (2, 2) ((5, 23, 1), (43))

(2, 2)/(1) ∗ (1) To the left of (2, 1) ((34, 1), (52, 2, 1))
(2, 2)/(1) ∗ (1) Between (2, 1) and (2, 2) ((33, 22), (52, 2, 1))
(2, 2)/(1) ∗ (1) To the right of (2, 2) ((5, 24), (43, 1)).

If α(′) = (3) ∗ (3) and β(′) = (3, 3), both parts of α are of the same shape. By
conjugation we can assume that β = (3, 3). We have the two possibilities, (3) ∗ (3)
and (13) ∗ (13) for α, and three possibilities for the position of β. In total we have
six seeds, these are:

α = Position of β Seed
(3) ∗ (3) β is to the left of α ((9, 6), (6, 33))
(3) ∗ (3) β is between the two parts of α ((9, 33), (63))
(3) ∗ (3) β is to the right of α ((63, 3), (92, 3))
(13) ∗ (13) β is to the left of α ((53, 43), (43, 35))
(13) ∗ (13) β is between the two parts of α ((53, 15), (45))
(13) ∗ (13) β is to the right of α ((25, 13), (52, 13)).

Let m = 2k, 3 ≤ k ≤ 5, α(′) = (k + 2, k)/(2) and β(′) = (k, k). By conjugation
we can assume that β = (k, k). Further, α is invariant under rotation. So α can
be (k+2, k)/(2) or (2k, 12)/(12) and we have two possibilities for the position of β.
So in total we obtain four seeds for each m ∈ {6, 8, 10}. These are:
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α = Position of α Seed
(k + 2, k)/(2) α is to the left of β (((k + 2)3, k), ((2k + 2)2, 2))
(k + 2, k)/(2) α is to the right of β ((2k + 2, 2k), (k + 2, k3))
(2k, 12)/(12) α is to the left of β ((2k+2, 12), ((k + 2)2, 12))
(2k, 12)/(12) α is to the right of β (((k + 2)k, (k + 1)2), ((k + 1)2, kk+2)).

All these seeds can be checked directly, but for k = 5 the last seed ((75, 62), (62, 57))
takes some time. Instead we can reduce this further to ((75), (57)) and the result
follows from Lemma 9.1.

In the next step we look at the exceptional cases m = 2k for 2 ≤ k ≤ 4,
α ≡ (k2, 1)/(1) and β(′) = (k2). Here we have two cases where we do not obtain
seeds if we remove all the common rows and columns. We look at these first. If
α = (22, 1)/(1), β = (2, 2) and β is to the right of α, we cannot remove all the
common rows and columns to obtain a seed. If we removed all the common rows
and columns, λ̃ would be a two-column partition. Since we assume that λ is not a
two-column partition, we know that there is an extra column. If there is an extra
column to the left of β, we call it C1. If it is between α and β, we call it C2. If
there is an extra column above α, there is an extra row above α which we call R.
We remove all the common rows and columns but C1, C2 or R to obtain one of the
following seeds:

We do not remove Seed
C1 ((34, 2), (52, 2, 12))
C2 ((32, 22, 1), (52, 1))
R ((4, 24, 1), (43, 1)).

If α = (3, 2)/(1) is to the right of β = (2, 2), we know that λ is not a two-row
partition. Therefore, there needs to be another row R1 above α or R2 between α
and β or a column C to the left of β. If we remove all common rows and columns
but R1, R2 or C, we obtain one of the following seeds:

We do not remove Seed
R1 ((52, 4), (5, 3, 23))
R2 ((5, 4, 2), (3, 24))
C ((6, 5, 12), (4, 33)).

In the remaining cases we obtain the seed by removing all the common rows
and columns. Let m = 2k for 2 ≤ k ≤ 4, α ≡ (k2, 1)/(1) and β(′) = (k2). We can,
again, assume by conjugation that β = (k2). We have four possibilities for α (α
can be conjugated and rotated) and two for the position of α. For every k > 2 we
obtain eight seeds. For k = 2 two of the cases are covered in the previous paragraph
and these are no seeds, further, for k = 2 α is invariant under rotation. The seeds
are:

α= Position of α Seed
(k2, 1)/(1) α is left of β ((k4, 1), ((2k)2, 1))
(k2, 1)/(1) α is right of β (((2k)2, k + 1), (k + 1, k4))

(3, 2k−1)/(1) α is left of β ((33, 2k−1), ((3 + k)2, 1))
(3, 2k−1)/(1) α is right of β ((k + 3, (k + 2)k−1), (k + 1, kk+1))

(k2, k − 1)/(k − 1) α is left of β ((k4, k − 1), ((2k)2, k − 1))
(k2, k − 1)/(k − 1) α is right of β (((2k)2, 2k − 1), (2k − 1, k4))
(3k−1, 2)/(1k−1) α is left of β ((3k+1, 2), ((k + 3)2, 1k−1))
(3k−1, 2)/(1k−1) α is right of β (((k + 3)k−1, k + 2), ((k + 1)k−1, k3)).

Where the entries in the first and fourth row are seeds for k = 3, 4 the other ones
for k = 2, 3, 4.
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For the last exceptional pairs β = (33) and α is equivalent to (7, 3)/(1) or
(6, 4)/(1). Since β is invariant under conjugation, we can assume that α is a two-
row skew partition. After removing all the common rows and columns we obtain
the following seeds:

α= Position of α Seed
(6, 4)/(1) α is to the left of β ((64, 4), (93, 1))
(6, 4)/(1) α is to the right of β ((9, 7), (4, 34))
(6, 5)/(2) α is to the left of β ((64, 5), (93, 2))
(6, 5)/(2) α is to the right of β ((9, 8), (5, 34))
(7, 3)/(1) α is to the left of β ((74, 3), (103, 1))
(7, 3)/(1) α is to the right of β ((10, 6), (4, 34))
(7, 6)/(4) α is to the left of β ((74, 6), (103, 4))
(7, 6)/(4) α is to the right of β ((10, 9), (7, 34)).

�

2. α is connected

Lemma 12.2. If m = ab for a, b ≥ 2, α(rot) = (m − 1, 2)/(1) and β = (ab),
g2(λ, µ) ≥ 3.

Proof: We can assume that m ≥ 6 because m = 4 is covered in the exceptional
cases. We remove all the common columns and rows. If α = (m−1, 2)/(1) is to the
right of β, λ̃ = (a+m− 1, a+ 2) is a two-row partition and µ̃ = (a+ 1, ab+1) is a
proper fat hook, so the result follows from Lemma 7.17 if a = 2, and Lemma 7.19 if
a > 2. If α = (m− 1,m− 2)/(m− 3) is to the right of β, λ̃ = (a+m− 1, a+m− 2)
and µ̃ = (a+m− 3, ab+1). The result follows from Lemma 7.18.

If α is to the left of β and b = 2, we reduce this to the seed ((33, 2), (52, 1)) (for
both possibilities of α). If b > 2, we remove a column of length b+1 from λ̃ and µ̃.
Now α̃(rot) = (m− 2, 2) and β̃ = β is still a rectangle. These cases follow when we
prove Lemma 13.7. �

Lemma 12.3. If β = (k, k) and α is a two-line skew partition, g2(λ, µ) ≥ 3.

Proof: We can assume that m = 2k ≥ 6 because we have seen n = 4 in the
exceptional cases. We remove all the common rows and columns to obtain λ̃ and
µ̃. If α is a two-row skew partition, this can be reduces to ((33, 2), (52, 1)) if α is to
the left of β. If α is to the right of β, we can assume that α 6= (3, 2)/(1) because we
have seen this case in the exceptional cases. Since m ≥ 6, λ̃ is a two-row partition
with w(λ̃) ≥ 7 and µ̃ is a proper fat hook. The result follows from Lemma 7.18 or
from Lemma 7.19.

If α = (2a, 1b)/(1c) is to the left of β, we can assume that α 6= (22, 1)/(1)

because we have seen this in the exceptional cases. Therefore, λ̃ = (2a+2, 1b) is a
two-column partition (and not a rectangle) with l(µ̃) ≥ 6 and µ̃ = ((k+2)2, 1c) is a
proper fat hook. So the result follows from Lemma 7.18 if b = 1 or from Lemma 7.19
if b ≥ 2.

If α = (2a, 1b)/(1c) is to the right of β, we obtain λ̃ = ((k + 2)a, (k + 1)b) and
µ̃ = ((k + 1)c, ka+b−c+2). We remove min(b, c) rows of length k + 1 from λ̃ and
µ̃. Now α̃ is a two-column partition and the result will follow from Lemma 14.1
and 14.2. �

Lemma 12.4. If m = 2k, α ≡ ((m− 2)2, 1)/(m− 3) and β = (k, k), g2(λ, µ) ≥ 3.

Proof: We can assume that m ≥ 6 because m = 4 is covered in the exceptional
cases. Note that α is invariant under rotation. We remove all the common rows
and columns. If α = ((m− 2)2, 1)/(m− 3), we remove all columns of length 1 from
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α is connected

α but two, the corresponding columns of µ̃ and all but three columns of β together
with the corresponding columns from λ̃. We obtain the seed ((72, 4), (6, 34)) if α is
to the right of β, and ((44, 1), (72, 3)) if α is to the left of β.

If α = (3, 2m−3)/(1m−3) and β is to the left of α, λ̃ = (k + 3, (k + 2)m−3) and
µ̃ = ((k + 1)m−3, k3). If m = 6, we have the seed ((6, 53), (43, 33)). If m > 6,
we remove two columns of length m − 2 and one of length 1 from λ̃, a column of
length m− 3 and one of length m from µ̃. Now α̃ = ((k− 1)2) and β̃ = (1m−2) are
removable and the result follows from Lemma 9.1.

If α = (3, 2m−3)/(1m−3) and β is to the right of α, λ̃ = (33, 2m−3) and µ̃ =
((k+3)2, 1m−3). If m = 6, we have the seed ((33, 23), (62, 13)). If m > 6, we remove
a column of length 3 from λ̃ and three rows of length 1 from µ̃. Now λ̃ = (2m) and
µ̃ = ((k + 3)3, 1m−6) and the result follows from Lemma 7.18. �

Lemma 12.5. If m = ab, for a, b ≥ 3, α = ((m − 2)2, 1)/(m − 3) and β = (ab),
g2(λ, µ) ≥ 3.

Proof: We remove all the common columns and rows. We remove all but two
columns of β, the corresponding columns from λ̃, all but 2b− 4 columns of length
1 from α and the corresponding columns of µ̃. Now β̃ is a two-column rectangle
and α̃ is of the same form as α but with 2b instead of m boxes, so the result follows
from Lemma 12.4. �

3. α decomposes into two parts

Lemma 12.6. If α(′) = (m− 1) ∗ (1) and β ` m has at most two removable nodes,
g2(λ, µ) ≥ 3.

Proof: By conjugation we assume that α = (m − 1) ∗ (1) but we have six
different possibilities for the ordering of the parts of α and β. Since β is not linear
nor (m − 1, 1)(

′), we know that m ≥ 4. We start with the case that (1) is the
rightmost part, followed by (m − 1) and the leftmost part is β. We remove all
common rows and columns to obtain λ̃ = (w(β) + m,w(β) + m − 1) and µ̃ =
(w(β) +m− 1, w(β), β). The result follows from Lemma 7.18.

Next, let us look at the case that (m− 1) is the rightmost part, followed by (1)
and the leftmost part is β. Again, we remove all the common rows and columns to
obtain λ̃ = (w(β) +m,w(β) + 1) and µ̃ = (w(β) + 1, w(β), β). Since w(β) ≥ 2, the
result follows from Lemma 7.17 if w(β) = 2, 3, and Lemma 7.19 if w(β) ≥ 4.

For the next case we assume that (m − 1) is to the right of β and (1) to the
left of β. If µ is not a two-row rectangle, we remove all the common rows and
columns to obtain λ̃ = (w(β) +m, 1l(β)+1) and µ̃ = (w(β) + 1, β1 + 1, β2 + 1, . . . ).
If µ̃ is a rectangle, we know that l(β) > 2, therefore, w(λ̃), l(λ̃) ≥ 5 and l(µ̃) ≥ 4.
The result follows from Proposition 6.2. If β is not a rectangle, µ̃ is a fat hook
and w(λ̃), l(λ̃) ≥ 4. The result follows, again, from Proposition 6.2. If β is a two-
row rectangle, we know that µ is not a hook. Therefore, there is another row or
column. If we remove all the common rows and columns but a row R1 above the
upper part of α or a row R2 between the upper part of α and β, we remove all
but two columns of β, the corresponding columns of λ̃ and all but three columns of
the upper part of α together with the corresponding columns of µ̃. We obtain the
seed ((62, 13), (6, 33)) if there is a common row R1, or ((6, 3, 13), (34)) if there is a
common row R2. If there is a common column C1 to the left of the left part of α
or a common column C2 between the left part of α and β, we can do the same to
obtain the seed ((7, 23), (43, 1)) if there is a common column C1, and ((7, 22, 1), (43))
if there is a common column C2.

If (1) is to the right of β and (m−1) is to the left of β, we distinguish two cases.
In both cases we start by removing all the common rows and columns. If l(β) = 2,
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we remove all but the two leftmost columns of β (the two remaining columns of β
are of length 2 since β 6= (m− 1, 1)), the corresponding columns of λ̃, all but three
columns from the left part of α and the corresponding columns of µ̃. We obtain
the seed ((6, 33), (53)). If l(β) > 2, we remove all but the leftmost column of β,
the corresponding columns of λ̃, the column of length 1 from the right part of α,
all but l(β) columns from the left part of α and the corresponding columns of µ̃.
In the next step we remove the common row to obtain λ̃ = (l(β)l(β)+1) = µ̃′. The
result follows from Lemma 9.1.

If both parts of α are to the left of β, this works essentially as before. If l(β) = 2,
we obtain the seed ((43, 3), (62, 3)) if (1) is the right part of α, and ((43, 1), (62, 1))
if (1) is the left part of α. If l(β) > 2, we obtain the result with Lemma 9.1. �

Lemma 12.7. If α(′) = (m−1)∗(1) and βrot has two removable nodes, g2(λ, µ) ≥ 3.

Proof: Again, we assume that α = (m− 1) ∗ (1) and look at the six different
possibilities that we have for the ordering of α and β. We remove all the common
rows and columns to obtain λ̃ and µ̃. If (m − 1) is to the left of β and l(β) = 2,
we remove all but the leftmost and the rightmost column of β, the corresponding
columns of λ̃, all but two columns of (m− 1) and the corresponding columns of µ̃.
We obtain one of the seeds ((5, 3, 22), (43)), ((4, 32, 2), (52, 2)) and ((4, 32, 1), (52, 1))
depending on the position of (1). If l(β) > 2 we remove all but the rightmost column
of β, the corresponding columns of λ̃, the column with (1) from α, the right number
of columns from (m− 1) and the corresponding columns of µ̃. After removing the
common rows and columns again, we obtain λ̃ = (l(β)l(β)+1) = µ̃′.

If β is to the left of both parts of α, we remove all but the leftmost and the
rightmost column of β, the corresponding columns of λ̃ and the fitting number
of columns from (m − 1) together with the corresponding columns of µ̃. Now
β̃ = (2a)/(1b). If b > 2, we remove (12) from λ as rows and (2) from µ until we
obtain λ̃ and µ̃ with β̃ = (2ã)/(1b̃) with b̃ ∈ {1, 2}. If (m − 1) is the rightmost
part, we reduce this to the seed ((5, 3, 1), (3, 23)) if b̃ = 1, and ((6, 3, 12), (3, 24))

if b̃ = 2. If (1) is the rightmost part, λ̃ = (m̃ + 2, m̃ + 1, 1b̃) with b̃ ∈ {1, 2} and
µ̃ = (m̃ + 1, 2ã+1). We remove (1) from λ̃ and (1) from µ̃. Now α̃rot = (m̃ − 1, 1)

and β̃ is a rotated two-column partition. The result follows from Lemma 11.1.
If (1) is to the left of β and (m − 1) is to the right of β, we remove all but

the leftmost and the rightmost column from β, the corresponding columns from λ̃
together with the right number of boxes from (m− 1). Now λ̃ = (m+2, 2a, 1b) and
µ̃ = (3a+b). We reduce a and b by 3 until we obtain a seed with a, b ∈ {1, 2, 3}. �

In the next step we want to look at the case that α = (n − 2) ∗ ((2)(′)) and
β is a rectangle. But if α = (2) ∗ (12) and β = (22), it can happen that λ and µ
are symmetric. So in this case we do not only want to find two constituents with
multiplicity 3 or higher but we want to know that one of them is not symmetric.
Therefore, we first look at that case.

Lemma 12.8. If α = (2) ∗ (12) and β = (22), g2(λ, µ) ≥ 3. If β is between the two
parts of α, the product [λ][µ] contains a non-symmetric constituent with multiplicity
3 or higher.

Proof: We start with the case that both parts of α are on one side of β. By
conjugation we can assume that this is the right side. In both cases we remove all
the common rows and columns. If (2) is the rightmost part, we obtain the seed
((5, 32), (3, 24)). If (12) is the rightmost part, we obtain the seed ((52, 4), (42, 23)).

Now we assume that β is between the two parts of α. If (2) is to the left of
β, we remove all the common rows and columns to obtain the seed ((52, 23), (44)),
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α decomposes into two parts

which contains a non-symmetric constituent (for example (34, 22)) with multiplicity
higher than 3. If there are two or more common rows above β or two or more
common columns to the left of β, the non-symmetric constituent in [λ][µ] follows
from Lemma 5.17. If there is just one common row above β and/or one common
column to the left of β, we see that the constituent that we obtain from (34, 22)′

cannot be symmetric if we compare length and width.
If (12) is to the left of β and (2) is to the right of β, we know that λ is not a

hook. Therefore, we know that there is a common row R1 above (2) or a common
row R2 between (2) and β or a common column to the left of (12) or a common
column between (12) and β. By symmetry and conjugation we can assume that
there is a common row. If we remove all common rows and columns but R1, we
obtain the seed ((52, 14), (5, 33)). We obtain the seed ((5, 3, 14), (34)) if we remove
all the common rows and columns but R2. Both seeds contain a non-symmetric
constituent with multiplicity 3 or higher for example (33, 2, 13) and (33, 13). With
the same argument as before we obtain that the product [λ][µ] contains a non-
symmetric constituent. �

Lemma 12.9. If m = ab for a, b ≥ 2, α(′) = (m− 2) ∗ (2) or α(′) = (m− 2) ∗ (12)
and β = (ab), g2(λ, µ) ≥ 3.

Proof: By conjugation we can assume that the part of α which has two boxes
is (2). We start with the case that α = (2)∗(1m−2). Because of the previous lemma
we can assume that m ≥ 6. We remove all the common rows and columns. If both
parts of α are to the right of β, we start with the case that m is even and β = (2

m
2 ).

This can be reduced to the seed ((5, 32), (3, 24)) if (2) is the right part of α, and
((52, 4), (42, 23)) if (1m) is the right part of α. If a > 2, we remove all but one row
of β, the row of α of length 2, the corresponding row of µ̃ and the right number
of rows of length 1 from α together with the corresponding rows of µ̃. If (2) is the
left part of α, we have two common columns that we remove. Now in both cases
λ̃ = ((a+ 1)a) = µ̃′, so the result follows from Lemma 9.1.

Now we assume that one of the parts of α is to the right of β and the other one
is to the left of β. If (2) is to the right of β, α̃ is a hook and, since m ≥ 6, the result
follows from Proposition 6.2. If (2) is to the left of β, we remove all but one row
of β, the corresponding rows of λ̃, the row of length 2 of α and the right number
of rows of length 1 from α together with the corresponding rows from µ̃. If a = 2,
we obtain the seed ((52, 2), (43)). If a > 2, we remove the two common columns to
obtain λ̃ = ((a+ 1)a) = µ̃′. The result follows from Lemma 9.1.

In the next step we assume that both parts of α are to the left of β. If (1m−2)
is the left part of α, we remove all but two rows from β, the corresponding rows
from λ̃ and the right number of rows of length 1 from α. In the next step we
remove all but two columns of β̃ and all but two rows of length 1 from α̃. We
obtain the seed ((33, 12), (52, 1)). If (2) is the left part of α, λ̃ = (3m−2+b, 2) and
µ̃ = ((3+a)b, 2m−2). If we remove a column of lengthm−2+b from both partitions,
λ̃ is a two-column rectangle and the result follows from Lemma 7.18.

Now we look at the second case α = (m−2)∗ (2). If both parts are to the right
of β, λ̃ is a two-row partition and µ̃ is a proper fat hook. The result follows from
Lemma 7.17 if a = 2 and (2) is the left part of α, and Lemma 7.19, otherwise.

For the next case we assume that one part of α is to the right of β. If b = 2,
this can be reduced to the seed ((6, 23), (43)). If b > 2 and (m − 2) is to the left
of β, we remove all but one column of β, the corresponding columns of λ̃, the two
columns of length 1 from the right part of α as well as all but b columns of the
left part of α together with the corresponding columns of µ̃. After removing the
common row of length b + 1, we obtain λ̃ = (bb+1) = µ̃′. The result follows from
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Lemma 9.1. If b > 2 and (2) is to the left of β, we remove all but one column from
β and the fitting number of columns of length 1 from α. Now β̃ = (1b) and the
result follows from Lemma 10.8 (from part (5) where we do not need the existence
of extra rows or columns).

The last case is that both parts of α are to the left of β. If b = 2, this can
be reduced to the seed ((43, 2), (62, 2)). If b > 2, we remove all but one column of
β, all columns from α but b columns from (m− 2) and the corresponding columns
from µ̃. Maybe after removing a common row, λ̃ = (bb+1) = µ̃′. The result follows
from Lemma 9.1. �

Lemma 12.10. If m = 2k, α = (m− l) ∗ (1l) for 3 ≤ l ≤ m− 3 and β(′) = (k, k),
g2(λ, µ) ≥ 3.

Proof: By conjugation we can assume that β = (k, k). We remove all the
common rows and columns. We start with the case that both parts of α are to the
right of β. We remove an even number of columns from (m − l) such that one or
two boxes are left, the corresponding columns of µ̃, the right number of columns
from β̃ and the corresponding columns of λ̃. If there are two boxes left, the result
follows from Lemma 12.9, if there is just one box left, it follows from Lemma 12.6.

For the next case we assume that β is between the two parts of α. If (m− l) is
to the left of β, we can do the same as before. If (1l) is to the left of β and (m− l)
is to the right of β, λ̃ is a hook and the result follows from Proposition 6.2.

For the last case we assume that both parts of α are to the left of β. If (m−l) is
the left part of α, we can reduce this part so that the result follows from Lemma 12.9
or 12.6 like before. If (1l) is the left part of α, we remove an even number of boxes
from (1l) and (k, k) until there are one or two boxes of (1l) left. Then we remove
an even number of columns from (m − l), the corresponding columns from µ̃ and
the right number of boxes from β̃. We obtain the seed ((43, 1), (62, 1)) if l is odd,
and ((33, 12), (52, 1)) if l is even. �

4. α and β are skew partitions

Lemma 12.11. If m = 2, α = (1)∗(1) and β = (1)∗(1), the product [λ][µ] contains
two constituents with multiplicity 3 or higher of which one is not symmetric.

Proof: There are exactly four rows and four columns of λ and µ which are not
identical. If we remove all the identical rows and columns, we end up with λ̃ and µ̃
which are partitions of 8 which are inside (44) such that α and β are still (1) ∗ (1).
Up to exchanging λ̃ and µ̃ we have the following possible pairs:

((4, 3, 1), (3, 22, 1)), ((4, 22), (32, 12)), ((4, 2, 11), (3, 22))

In all three cases the corresponding products contain [4, 14] and [4, 2, 12] with mul-
tiplicity 3 or higher. Why is one of the constituents from [λ][µ] which arises from
these not symmetric? We can obtain λ̃ and µ̃ from λ and µ by removing parts in
such a way that we can apply Lemma 5.16 or Lemma 5.17. �
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CHAPTER 13

α is a fat hook, a rectangle or has three removable
nodes

Since we assume that α and β are listed (up to equivalence) in Theorem 5.1, we
know that rem(α(rot)), rem(β(rot)) ≤ 3. In almost all the remaining products α or
β is equivalent to a hook or a two-line partition. The products from Theorem 5.1
where none of the factors is a hook or a two-line partition are [33]2, [33][42, 1] and
[33][3, 23]. Before we look at the case that α and β are equivalent to a hook or a
two-line partition, we start with the cases where one of them is neither a hook nor
a two-line partition. Like in the previous chapters we can assume (by conjugating
and exchanging λ and µ) that α is neither a hook nor a two-line partition. In
contrast to the previous chapter we assume again that α is to the right and above
β.

1. α has three removable nodes

If rem(α(rot)) = 3, there are not many possibilities for α and β. Namely there
are (up to equivalence):

• m = 2k is even, α = (m− 3, 2, 1) and β = (k, k);
• m = 8, β = (4, 4) and α = (3, 22, 1).

We assume again that α is to the right of β.

Lemma 13.1. If m = 2k, α ≡ (m− 3, 2, 1) and β(′) = (k, k), g2(λ, µ) ≥ 3.

Proof: We start by removing all the common rows and columns to obtain λ̃
and µ̃. If β = (2k) and α is a partition, µ̃ is a two-column rectangle and the result
follows from Lemma 7.18.

If β = (k, k), α is a partition and m = 6, we have the seed ((6, 5, 4), (35)). If
m > 6, we remove α and β and the result follows from Lemma 9.1.

If αrot = (m − 3, 2, 1) and β = (k, k), this can easily be reduced to the seed
((63), (5, 4, 33)).

If αrot = (3, 2, 1m−5) and β = (k, k), we can assume that m > 6, since m = 6
is covered in the previous case. We remove one row of β, the row of length 3 and
k − 3 rows of length 1 from α and the corresponding rows of µ̃. Now β̃ = (k) and
l(α̃) ≥ 3, therefore, the result follows from Lemma 10.2.

If αrot = (3, 2, 1m−5) and β = (2k), this can easily be reduced to the seed
((53), (4, 3, 24)).

If αrot = (m − 3, 2, 1) and β = (2k), we can again assume that m > 6. λ̃ =
((m − 1)3) and µ̃ = (m − 2,m − 3, 2k+1). We remove a row of length m − 1 from
λ̃ and we remove a row of length m − 3 and one of length 2 from µ̃. Now λ̃ is a
two-row rectangle and the result follows from Lemma 7.18. �

Lemma 13.2. If m = 8, α ≡ (3, 22, 1) and β(′) = (4, 4), g2(λ, µ) ≥ 3.

Proof: We remove all the common rows and columns to obtain the seed. We
have four possibilities for α and two possibilities for β so in total we get eight seeds.
There are:
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α β Seed
(3, 22, 1) (4, 4) ((7, 62, 5), (46))
(3, 22, 1) (24) ((5, 42, 3), (28))
(4, 3, 1) (4, 4) ((8, 7, 5), (45))
(4, 3, 1) (24) ((6, 5, 3), ((27))

(34)/(2, 12) (4, 4) ((74), (6, 52, 43))
(34)/(2, 12) (24) ((54), (4, 32, 25))
(43)/(3, 1) (4, 4) ((83), (7, 5, 43))
(43)/(3, 1) (24) ((53), (4, 32, 25)).

�
For the exceptional cases from Theorem 5.1 we often just have to remove all

the common rows and columns, like in the previous lemma, to obtain a seed.

2. α is a proper fat hook

If α is a proper fat hook, we know that α and β are up to equivalence a pair
from the following list (since we can exclude the cases that β is equivalent to (m)
or (m− 1, 1)):

(1) If m = ab− 1 and α = (ab−1, a− 1) and β = (m− 2, 12) or β = (m− 2, 2);
(2) if m = 2k + 1 is odd and α = (k2, 1) and β = (n− 2, 2);
(3) one of the exceptional pairs:

((4, 3), (3, 22)), ((42), (32, 12)), ((42), (32, 2)), ((5, 3), (32, 2)),

((5, 4), (3, 23)), ((52), (4, 32)), ((52), (42, 2), ((33), (42, 1)).

Lemma 13.3. If m = ab− 1 for a, b ≥ 3, α ≡ (ab−1, a− 1) and β ≡ (m− 2, 12) or
β ≡ (m− 2, 2), g2(λ, µ) ≥ 3.

Proof: We start with removing all common rows and columns. We assume
that α is above β. We start with the case that α and β are partitions. If l(α) ≥ 3
and w(β) ≥ 3 and one of them is strictly bigger, we remove α and β to obtain two
rectangles which contain (43)(

′), so the result follows from Lemma 9.1. If l(α) and
w(β) equals three, we remove all but the one columns resp. row of length 3 from
α and β to obtain the seed ((43), (34)). This solves the three cases where α is a
partition and β = (m−2, 12), (m−2, 2), (3, 1m−3). If α and β are partitions, only
the case β = (22, 1m−4) is missing. Here µ̃ is a two-column partition and the result
follows from Lemma 7.19.

For the next case we assume that α = (ab)/(1) and β is a partition. If w(β) ≥ 3

and b or w(β) is strictly greater than 3, we remove (ab) from λ̃ and (w(β) + 1, β̂)

from µ̃ as rows. We obtain two rectangles λ̃ = ((w(β))b) = µ̃. The result follows
from Lemma 9.1. If l(α) = w(β) = 3, we know that β = (3, 1m−3). We remove
columns of length 3 from λ̃ and the corresponding number of rows of length 1 from
β until w(λ̃) = 5 to obtain the seed ((53), (4, 33, 12)). What is missing is the case
β = (22, 1m−4). This can be reduced to the seed ((43), (3, 24, 1)).

From now on we can assume that βrot is a partition. If α(rot) = (ab−1, a − 1)
and βrot = (m− 2, 2), we remove a column of length 2 and b− 2 columns of length
1 from β, the corresponding columns from λ̃ and a column of length b from α. Now
β̃rot = (m̃− 1, 1) and the result follows from Lemma 11.2.

If βrot = (22, 1m−4) and α is a partition,λ̃ = ((a + 2)b−1, a + 1, 1m−4) and
µ̃ = (2m−2+b). The result follows from Lemma 7.18.

If βrot = (22, 1m−4) and αrot is a partition, we remove a row of length 1 from
λ̃ and a column of length 1 from µ̃. Now λ̃ = ((a + 2)b) and µ̃ = (2m−2+b). The
result follows from Lemma 7.18.
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If βrot = (m − 2, 12), we remove all columns of α but one of length b, the
corresponding columns of µ̃ and all columns of β but b columns of length 1 together
with the corresponding columns of λ̃. After removing two common rows, we obtain
λ̃ = (bb+1) = µ̃′ and the result follows from Lemma 9.1.

If βrot = (3, 1m−3), we remove all of α but two length a, the corresponding rows
of µ̃, the right number of rows of length 1 from β and the corresponding rows of
λ̃. Now λ̃ = ((a+ 3)2, 22a−3) and µ̃ = (32a), where α̃ = (a2) and β̃rot = (3, 12a−3).
This will be solved in Lemma 14.3. �

Lemma 13.4. If m = 2k+1 ≥ 7 is odd, α ≡ (k2, 1) and β ≡ (n−2, 2), g2(λ, µ) ≥ 3.

Proof: In all cases we start with removing all common rows and columns
to obtain λ̃ and µ̃. Let us start with the case that α and β are partitions. If
β = (m − 2, 2) and α is a partition, α and β are removable. After removing
them, we obtain two rectangles λ̃ = µ̃ which contain (43). The result follows from
Lemma 9.1. If β = (22, 1m−4) and α = (k2, 1), λ̃ = ((k+2)2, 3) and µ̃ = (25, 1m−4).
We remove m− 7 rows of length 1 from β and m−7

2 columns of length 2 from α to
obtain the seed ((52, 3), (25, 13)). If β = (22, 1m−4) and α = (3, 2k−1), we remove
k − 3 rows of length 4 from λ̃ and k − 3 times (2, 12) from µ̃ as rows to obtain the
seed ((5, 42), (25, 13)).

In the next step we look at the case that αrot and β are partitions. If β =
(m− 2, 2) and αrot = (3, 2k−1), λ̃ = ((m+ 1)k) and µ̃ = ((m− 1)k−1, (m− 2)2, 2).
We remove k+1 columns of length k from λ̃ to obtain ((k+1)k). From µ̃ we remove
the k − 1 leftmost columns and the rightmost one which are (kk−1, (k − 1)2, 2) to
obtain (kk+1). The result follows, again, from Lemma 9.1. If β = (m − 2, 2) and
αrot = (k2, 1), λ̃ = ((3k−1)3) and µ̃ = (3k−2, (2k−1)3, 2). We remove ((3k−9)3)

from λ̃ and (3k− 9, (2k− 6)3) to obtain the seed ((83), (7, 53, 2)). If β = (22, 1m−4)

and αrot = (k2, 1), λ̃ = ((k+2)3) and µ̃ = (k+1, 24, 1m−4). For k = 3, 4, 5, this is
a seed. If k > 5, we remove (13) from λ̃ and (3) from µ̃ and in the next step (23)

from λ̃ and six rows of length 1 from µ̃. We repeat this until we reach one of the
seeds. If β = (22, 1m−4) and αrot = (3, 2k−1), λ̃ = (5k) and µ̃ = (3k−1, 23, 1m−4).
We remove (5k−3) as rows from λ̃ and (3k−3, 1m−7) from µ̃ as rows to obtain the
seed ((53), (32, 23, 13)).

In the next paragraph we look at the case that α and βrot are partitions. We
start with βrot = (m − 2, 2) and α = (k2, 1). We have λ̃ = ((3k − 1)2, 2k, 2k − 3)
and µ̃ = ((2k − 1)5). We remove ((2k − 6)5) from µ̃ and ((3k − 9)2, (2k − 6)2)

from λ̃ to obtain the seed ((82, 6, 3), (55)). If βrot = (m − 2, 2) and α = (3, 2k−1),
λ̃ = (2k+2, (2k+1)k−1, 2k−3) and µ̃ = ((2k−1)k+2). We remove ((k−1)k+2) from µ̃

and (k+1, kk−1, k−3) from λ̃ to obtain λ̃ = ((k+1)k, k) and µ̃ = (kk+2). We remove
the common row of length k to obtain two rectangles λ̃ = µ̃′. The result follows from
Lemma 9.1. If βrot = (22, 1m−4) and α = (k2, 1), we obtain λ̃ = ((k + 2)2, 3, 1m−4)
and a two-column rectangle µ̃ = (2m+1). The result follows from Lemma 7.18. If
α = (3, 2k−1) and βrot = (22, 1m−4), we obtain λ̃ = (5, 4k−1, 12k−3) and a two-
column rectangle µ̃ = (23k−1). Again, the result follows from Lemma 7.18.

The last case we have to look at is αrot and βrot are partitions. If αrot = (k2, 1)

and βrot = (m − 2, 2), λ̃ = ((3k − 1)3, 2k − 3) and µ̃ = (3k − 2, (2k − 1)4). We
remove ((3k− 9)3, 2k− 6) from λ̃ and (3k− 9, (2k− 6)4) from µ̃ to obtain the seed
((83, 3), (7, 54)). If αrot = (k2, 1) and βrot = (22, 1m−4), we obtain the partitions
λ̃ = ((k+2)3, 12k−3) and µ̃ = (k+1, 22k+1). If k = 3, 4, 5 these are seeds. If k > 5,
we remove (23) from λ̃ and (23) from µ̃ as rows. In the next step we remove (3) from
λ̃ and (13) from µ̃ and (16) from λ̃ as rows together with (23) from µ̃ as rows. We
repeat this until we obtain one of the seeds ((53, 13), (4, 27)), ((63, 15), (5, 29)) and
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α is a proper fat hook

((73, 17), (6, 211)). If αrot = (3, 2k−1) and βrot = (22, 1m−4), we have λ̃ = (5k, 12k−3)

and µ̃ = (3k−1, 22k). We remove (5k−3, 12k−6) from λ̃ as rows and (3k−3, 22k−6)
from µ̃ as rows to obtain the seed ((53, 13), (32, 26)). If αrot = (3, 2k−1) and βrot =

(m − 2, 2), we obtain λ̃ = ((2k + 2)k, 2k − 3) and µ̃ = ((2k)k−1, (2k − 1)3). We
remove ((k + 1)k, k − 3) from λ̃ and (kk−1, (k − 1)3) from µ̃. In the next step we
remove the common row of length k to obtain λ̃′ = (kk+1) = µ̃. The result follows
from Lemma 9.1. �

Lemma 13.5. If α is equivalent to a proper fat hook and (α, β) is one of the
exceptional pairs, g2(λ, µ) ≥ 3.

Proof: In all eight cases we do the same, we just remove all the common rows
and columns and obtain a seed which contains two constituents with multiplicity
greater or equal to 3. But if β is not a rectangle and α and β are not symmetric,
we have sixteen different seeds. So this is easy but tedious work. By conjugation
we can assume that α is above β. We get the following seeds:

((4, 3), (3, 22)): We have sixteen seeds. These are:

((7, 62), (44, 3)), ((72, 5), (44, 3)), ((5, 42), (26, 1)), ((52, 3), (26, 1)),

((7, 62, 1), (45)), ((72, 5, 1), (45)), ((5, 42, 1), (27)), ((52, 3, 1), (27)),

((73), (52, 42, 3)), ((73), (6, 43, 3)), ((53), (32, 24, 1)), ((53), (4, 25, 1)),

((73, 1), (52, 43)), ((73, 1), (6, 44)), ((53, 1), (32, 25)), ((53, 1), (4, 2)).

((42), (32, 12)): We have eight seeds. These are:

((72, 52), (46)) ((8, 62), (45)), ((52, 32), (28)), ((6, 42), (27)),

((74), (62, 44)), ((83), (62, 43)), ((54), (42, 26)), ((63), (42, 25)).

((42), (32, 2)): We have four seeds. These are:

((72), (34, 2)), ((72, 1), (35)), ((54), (63, 2)), ((54, 1), (37)).

((5, 3), (32, 2)): We have eight seeds. These are:

((82, 7)(54, 3)), ((52, 4), (26, 12)), ((82, 7, 2), (55)), ((52, 4, 12), (28)),

((83), (6, 53, 3)), ((53), (3, 25, 12)), ((83, 2), (6, 54)), ((53, 12), (3, 27)).

((5, 4), (3, 23)): We have sixteen seeds. These are:

((8, 73), (55, 4)), ((92, 6), (54, 4)), ((5, 43), (28, 1)), ((62, 3), (27, 1)),

((84), (63, 52, 4)), ((93), (8, 53, 4)), ((54), (33, 25, 1)), ((63), (5, 26, 1)),

((8, 73, 1), (56)), ((92, 6, 1), (55)), ((5, 43, 1), (29)), ((62, 3, 1), (28)),

((84, 1), (63, 53)), ((93, 1), (8, 54)), ((54, 1), (33, 26)), ((63, 1), (5, 27)).

((5, 5), (4, 32)): We have eight seeds. These are:

((9, 82), (55)), ((83, 6), (56)), ((6, 52), (28)), ((53, 3), (29)),

((93), (62, 53)), ((84), (7, 55)), ((63), (32, 26)), ((54), (4, 28)).

((5, 5), (42, 2)): We have eight seeds. Theses are:

((92, 7), (55)), ((82, 72), (56)), ((62, 4), (28)), ((52, 42), (29)),

((93), (7, 54)), ((84), (62, 54)), ((63), (4, 27)), ((54), (32, 27)).

((33), (42, 1)): We have four seeds. These are:

((72, 4), (36)), ((6, 53), (37)), ((73), (6, 35)), ((64), (43, 34)).

�
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3. α is a proper rectangle

In this section we assume that α is a proper rectangle. We know that α and β
are up to equivalence a pair from the following list (since we can exclude that β is
equivalent to (m) and (m− 1, 1)):

(1) β is a hook with w(β) ≤ 4 or l(β) ≤ 4;
(2) β = (m− 2, 2) or (m− 3, 3);
(3) the exceptional cases:

((5, 14), (33)), ((7, 5), (43)), ((8, 4), (43)), ((6, 6), (43)),

((6, 3), (33)), ((5, 4), (33)), ((8, 7), (53)), ((8, 8), (44)), ((9, 9), (63)), ((33), (33)).

We start with the exceptional cases:

Lemma 13.6. If (α, β) is an exceptional pair from Proposition 7.1 and α is a
rectangle, g2(λ, µ) ≥ 3.

Proof: The idea is always the same. We remove all common rows and columns.
Sometimes we get a seed like this. Sometimes we still have to remove a bit more
because the partitions are still too big. And in two case we have to remove less.
This leads up to eight different seeds for one exceptional pair.

((33), (5, 14)): If β = (5, 14), we obtain the seed ((83), (54, 14)) after removing
all the common rows and columns. If βrot = (5, 14), we obtain λ̃ = (83, 44) and
µ̃ = (58). We remove two rows and two columns of length 8 and obtain the seed
((8, 44), (38)).

((43), (7, 5)): If β or βrot equals (25, 12), we remove all the common rows and
columns and obtain one of the seeds:

((63), (28, 12)) ((54), (29, 12)), ((63, 12), (210)), ((54, 12), (211)).

In the other cases we have to remove more than just the common rows and columns.
If α = (43) and β = (7, 5), we obtain λ̃ = (113) and µ̃ = (74, 5) after removing all
the common rows and columns. Here we remove five columns of length 3 from λ̃
and three columns of length 5 from µ̃ to obtain the seed ((63), (44, 2)). If α = (43)

and βrot = (7, 5), we obtain λ̃ = (113, 2) and µ̃ = (75). Here we remove five
columns of length 3 from λ̃ and three columns of length 5 from µ̃ to obtain the
seed ((63, 2), (45)). If α = (34) and β = (7, 5), we obtain λ̃ = (104) and µ̃ = (75, 5).
Here we remove three columns of length 4 from λ̃ and one row of length 7 together
with the row of length 2 from µ̃. We end up with the seed ((74), (74)). If α = (34)

and βrot = (7, 5), we obtain λ̃ = (104, 2) and µ̃ = (76). In a first step we remove
a row of length 10 together with the one of length 2 from λ̃ and two columns of
length 6 from µ̃ to obtain λ̃ = (103) and µ̃ = (56). In the next step we remove four
columns of length 3 from λ̃ and two columns of length 6 from µ̃ to obtain the seed
((63), (36)).

((43), (8, 4)): If β = (8, 5), we remove α and β after removing all the common
rows and columns and in both cases obtain two rectangles λ̃ = µ̃ which contain
(43). The result follows from Lemma 9.1. If β or βrot equals (24, 12), we obtain the
seeds directly after removing all the common rows and columns. These are:

((63), (27, 14)), ((54), (28, 14)), ((63, 14), (211)), ((54, 14), (212)).

The missing cases are all where βrot = (8, 4). If α = (43), we obtain λ̃ = (123, 4)
and µ̃ = (85) after removing all common rows and columns. Here we remove five
columns of length 3 and three columns of length 5 to obtain the seed ((73, 4), (55)).
If α = (34), we have λ̃ = (114, 4) and µ̃ = (86) where we remove six columns of
length 4 and four columns of length 6 to obtain the seed ((54, 4), (46)).
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α is a proper rectangle

((43), (62)): If β = (62), we start for both choices of α with removing all the
common rows and columns. Now α and β are removable and if we remove them,
we obtain two rectangles λ̃ = µ̃ which contain (43). If β = (26) and α = (34) and
we remove all the common rows and columns, we obtain the seed ((54), (210)). If
β = (26) and α = (43), we would obtain ((63), (29)) if we removed all the common
rows and columns. But this is an exceptional case from Theorem 5.1. Here we
would have removed too much. But we know that µ is not a two-column partition,
so there is a common column C1 to the left of β or a common column C2 between
α and β or there is a common column to the right of α but that means there is a
common row R above α. If we remove all common rows and columns but C1, we
obtain the seed ((73, 16), (39)). If we remove all common rows an columns but C2,
we obtain the seed ((73), (33, 26)). If we remove all common rows and columns but
R we obtain ((64), (6, 29)).

((33), (6, 3)): Here we just remove all the common rows and columns and obtain
one of the following seeds:

((93), (64, 3)), ((93), (65)), ((53), (26, 13)), ((53, 13), (29)).

((33), (5, 4)): If β = (24, 1), we would remove too much if we removed all the
common rows and columns. Again, we know that µ is not a two-column partition,
so there is a common column C1 to the left of β or a common column C2 between α
and β or there is a common row R above α. We obtain the seed ((63, 15), (37, 2)) if
we remove all the common rows and columns but C1, ((63), (33, 24, 1)) if we remove
all the common rows and columns but C2, and ((54), (5, 27, 1)) if we remove all the
common rows and columns but R. In the three other cases we obtain the seed by
removing all the common rows and columns. These are:

((83), (54)), ((83, 1), (55)), ((53, 1), (28)).

((53), (8, 7)): In all cases we remove all the common rows and columns. If β or
βrot equals (27, 1), we directly obtain one of the following seeds:

((73), (210, 1)), ((73, 1), (211)), ((55), (212, 1)), ((55, 1), (213)).

If β = (8, 7), α and β are removable. After removing them we obtain two rectangles
λ̃ = µ̃ which contain (43). If βrot = (8, 7) and α = (53), we obtain λ̃ = (133, 1)

and µ̃ = (85). Here we remove five columns of length 3 from λ̃ and three columns
of length 5 from µ̃ to obtain the seed ((83, 1), (55)). If βrot = (8, 7) and α = (35),
we obtain λ̃ = (115, 1) and µ̃ = (87). We remove seven columns of length 5 from λ̃
and five columns of length 7 from µ̃ to obtain the seed ((37), (45, 1)).

((44), (82)): In both cases we remove all the common rows and columns. If
β = (28), we directly obtain the seed ((64), (212)). If β = (82), λ̃ = (124) and
µ̃ = (86). We remove two rows of length 2 from λ̃ and four columns of length 6
from µ̃ to obtain the seed ((122), (46)).

((63), (92)): In all cases we remove all the common rows and columns. If
β = (92), we remove α and β to obtain two rectangles λ̃ = µ̃ which contain (43).
The result follows from Lemma 9.1. If β = (29), we remove all the common rows and
columns and obtain the seed ((83), (212)) if α = (63), and ((56), (215)) if α = (36).

((33), (33)): After removing all common rows and columns we obtain the seed
((63), (36)). �

In the next step we look at the case β ≡ (m− 2, 2) or β ≡ (m− 3, 3).

Lemma 13.7. If m = ab for a, b ≥ 3, α = (ab) is a proper rectangle and β is
equivalent to (m− 2, 2) or (m− 3, 3), g2(λ, µ) ≥ 3.
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Proof: In all cases we start with removing all the common rows and columns.
If β = (m − 2, 2) or β = (m − 3, 3), α and β are removable. We remove them to
obtain two rectangles λ̃ = µ̃ which contain (43). The result follows from Lemma 9.1.

If βrot = (m− 2, 2) or βrot = (m− 3, 3), we remove all but one column of α, all
but the b leftmost columns from β and the corresponding columns from λ̃. After
removing a common row λ̃ = ((b+ 1)b) = µ̃′. The result follows from Lemma 9.1.

If β = (22, 1m−4) or β′ = (32, 1m−6), λ̃ = ((a + 2)b) and µ̃ = (2b+2, 1m−4) or
µ̃ = (2b+3, 1m−6). In both cases µ̃ is a two-column partition and the result follows
from Lemma 7.19.

If βrot = (22, 1m−4) or βrot = (23, 1m−6), λ̃ = ((a+2)b, 1m−4) and µ̃ = (2b+m−2)

or λ̃ = ((a+2)b, 1m−6) and µ̃ = (2b+m−6). In both cases µ̃ is a two-column rectan-
gle and the result follows from Lemma 7.18. �

The last thing we have to look at in this chapter are the products of a hook
and a rectangle.

Lemma 13.8. If α is a proper rectangle and β is equivalent to a hook with l(β) ≤ 4
or w(β) ≤ 4, g2(λ, µ) ≥ 3.

Proof: In all cases we remove all common rows and columns. First we assume
that β is a hook (because of Lemma 11.1 we can assume that l(β), w(β) ≥ 3). If
w(β) = l(α) = 3, we remove all but one column from α and all rows of length 1
from β and obtain the seed ((43), (34)). Now we can assume that w(β) or l(α) is
greater than 3. We remove α and β to obtain two rectangles λ̃ = µ̃ which contain
(43)(

′) and the result follows from Lemma 9.1.
From now on we assume that βrot is a hook with l(β) ≤ 4 or w(β) ≤ 4. We

start with the case l(β) ≤ 4 so we know w(β) > b. We remove all but one column
from α and all but the b leftmost columns from β together with the corresponding
columns from λ̃. After removing the common rows we obtain λ̃ = ((b + 1)b) = µ̃′.
The result follows from Lemma 9.1. If w(β) ≤ 4, we remove the topmost b−w(β)+1

rows and (b − w(β) + 1)a rows where β is of length 1 from both λ̃ and µ̃. In the
next step we remove the column which contains more than just one box of βand
the corresponding column of λ̃ together with all but one column of α. Now we
remove some of the common rows to obtain the seed ((32, 24), (27)) if w(β) = 3,
and ((43, 32), (36)) if w(β) = 4. �
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CHAPTER 14

α and β are hooks or two-line partitions

The only products from Theorem 5.1 which are missing are the ones where α
and β are equivalent to two-line partitions or hooks. We start with the case that
m = 2k is even and α = (k, k)(

′).

1. α = (k, k)(
′)

Let α = (k, k). Since we assume that our classification is correct for m, we
know that [α][β] only contains constituents with multiplicity 1 and 2 if and only if
β is (up to equivalence) from the following list:

(1) β = (m− a, a) with a ≤ 7;
(2) β = (k + a, k − a) with a ≤ 3;
(3) β = (m− 3, 2, 1) (we have seen that in Lemma 13.1);
(4) β is a hook ;
(5) one of the exceptional cases (we have already seen them in the previous

sections).

Lemma 14.1. If m = 2k, α(′) = (k, k) and β(′) = (β1, β2) ` m is a two-line
partition (with β2 > 1), g2(λ, µ) ≥ 3.

Proof: By conjugation of λ and µ we can assume that α is above β. We start
with some exceptional cases. First the three cases α = β = (22), (32), (42). If we
removed all the common rows and columns, we would obtain (((2k)2), (k4)). For
k = 2, 3, 4 this is not a seed. But we assume that λ is not a two-row partition, so
we know there is a third row. This might be located above α or between α and β
or to the left of β. If there is a row R1 is above α and we remove all the common
rows and columns besides R1, we obtain the seed (((2k)3), (2k, k4)) for k = 2, 3, 4.
If there is a row to the left of β, we know that there also is a column C1 to the left
of β. If we remove all the common rows and columns besides C1, we obtain the
seed (((2k+1)2, 12), ((k+1)4). In the last step we assume that there is a common
row R2 between α and β. We can assume that there is neither a row above α nor
a column left of β. If we remove all the common rows and columns besides R2,
we obtain (((2k)2, k), (k5)). For k = 3, 4 this is a seed. If k = 2, we would have
removed too much. But for k = 2 we know that µ is not a two-column partition
and since we assume that there is no column to the left of β and no row above α,
the only possibility is that there is a column C2 between α and β. If we remove all
common rows and columns besides R2 and C2, we obtain the seed ((52, 2), (32, 23))
if R2 and C2 have no common box, and ((52, 3), (33, 22)) if they do.

Now let us look at the case α = (23) and β = (22, 12). If we removed all the
common rows and columns, we would obtain ((43), (25, 12)). But we know µ is not a
two-column partition. Therefore, there is a column C1 to the left of β or C2 between
α and β or above (and maybe to the right) of α, then there is a row R above α. We
obtain the seed ((53, 14), (35, 22)) if we remove all the common rows and columns
but C1, ((53), (33, 22, 12)) if we remove all the common rows and columns but C2,
and ((44), (4, 25, 12)) if we remove all the common rows and columns but R.
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α = (k, k)(
′)

Let α = (k, k) and β = (2a, 1b) be a two-column partition. If we removed all
the common rows and columns, λ̃ would be ((k+2)2) and µ̃ would be a two-column
partition. In a lot of cases we would have removed too much. But we know that
λ is not a two-row partition, so we know that there is another row. If that row
R1 is between α and β, we remove all the common rows and columns besides R1

and then successively remove (12) from λ̃ and (2) or (12) from µ̃ as rows until we
obtain the seed ((52, 2), (26)) if b = 0 and ((52, 2), (25, 12)) if b > 0. If there is a row
R2 above α, we remove all the common rows and columns besides R2. We obtain
λ̃ = ((k+2)3) and µ̃ = (k+2, 2a+2, 1b). Now we successively remove first (13) from
λ̃ and (3) from µ̃ and then (23) from λ̃ and (23) or (22, 12) or (2, 14) or (16) from µ̃

as rows until w(λ̃) = 4, 5, 6. If w(λ̃) = 4 (and we removed the correct parts from µ̃),
we obtain the seed ((43), (4, 24)). If w(λ̃) = 5, we obtain the seed ((53), (5, 25)) if
a ≥ 3, and ((53), (5, 24, 12)) if b ≥ 2. If w(λ̃) = 6, we obtain the seed ((63), (6, 26))
if a ≥ 4, ((63), (6, 25, 12)) if a ≥ 3 and b ≥ 2, and ((63), (6, 24, 14)) if b ≥ 4. If the
common column C is to the left of β, we remove all the common rows and columns
besides C. If b > 0, we remove (12) from λ̃ and (2) from µ̃ as row. In the next step
we remove (12) from λ̃ as rows and (2) from µ̃ as row. We do this b

2 times. Now
α̃ = β̃′ = (a, a). If a > 2 and we conjugate λ̃ and µ̃, this is the previous case. If
a = 2 we have the seed ((52, 12), (34)).

We have checked the exceptional cases. For all the other cases we start with
removing all the common rows and columns. If β = α = (k, k), we know because of
the previous cases that k ≥ 5, so we can reduce this to the seed ((102), (54)). If β
is a two-row partition with β1 > β2, we know that β2, β1 − β2 ≥ 2 since m is even
and β 6= (m− 1, 1). This can be reduced to the seed ((72), (43, 2)).

If α = (2k) and β is a two-row partition, we can assume that k > 2. For the
case α = (23) and β = (32) we check the seed ((53), (35)). If β 6= (32), we know
that w(β) > 3. When we remove α and β, we obtain two rectangles λ̃ = µ̃ which
contain (43). The result follows from Lemma 9.1.

If α = (2k) and β = (2a, 1b) is a two-column partition, by conjugation we can
assume that β 6= α. Since we already checked β = (22, 12) with the exceptional
cases, we know that k > 3 and can reduce these to the seed ((44), (26, 14)) if a = 2,
and ((44), (27, 12)) if a > 2. �

Lemma 14.2. If m = 2k is even, α(′) = (k2) and βrot ` m is a two-line partition,
g2(λ, µ) ≥ 3.

Proof: We can assume that α is above β. Further, we can assume that β is
not a two-line rectangle nor β ≡ (m− 1, 1). In all cases we remove all the common
rows and columns. We start with α = (k2) and βrot = (a, b) is a two-row partition.
We remove (22) from λ̃ and (14) from µ̃ b − 2 times and (32, 2) from λ̃ and (24)
from µ̃ a−b

2 − 1 times. We obtain the seed ((72, 2), (44)).
If βrot = (2a, 1b), µ̃ is in both cases a two-column rectangle and the result

follows from Lemma 7.18.
Let α = (2k) and βrot be a two-row partition. If k = 3, after removing all

the common columns and rows we obtain the seed ((63, 2), (45)). If k ≥ 4, we can
always remove from µ̃ columns which contain k boxes of β and the corresponding
columns of λ̃ together with one column of α such that the remaining partition β̃
still has width at least 3. The new α̃ = (1k) and β̃ is a one-row or a rotated two-row
partition. The result follows from Lemma 10.2. �

Lemma 14.3. If m = 2k, α(′) = (k, k) and β ` m is equivalent to a hook,
g2(λ, µ) ≥ 3.
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Proof: Again, we assume that α is above β and that β 6≡ (m− 1, 1). Since the
length and width of β is greater or equal to 3, we know that m ≥ 6. In all cases we
remove all the common rows and columns to obtain λ̃ and µ̃. We start with the case
α = (2k) and β is a hook. If k = 3, we have the seed ((53), (34, 13)) if w(β) = 3, and
((63), (44, 12)) if w(β) = 4. If k > 3, we remove α and β to obtain two rectangles
λ̃ = µ̃ = ((w(β))k) which contain (34). The result follows from Lemma 9.1.

If α = (k2) and β is a hook, λ̃ is a two-row rectangle and the result follows
from Lemma 7.18.

Let α = (2k) and βrot be a hook. We know that w(β) ≥ 3. We remove
(w(β) + 2, (w(β) − 1)2) from λ̃ as rows and ((w(β))3) from µ̃ as rows until one of
the following happens:

• If w(β) = 3, 4, we obtain the seed ((52, 23), (37)) or ((63, 32), (46));
• if w(β) > 4 is even, we do this until l(β̃) = 1. Since w(β̃) ≥ 6 we know

that l(α̃) ≥ 3, so the result follows from Lemma 10.2;
• if w(β) ≥ 5 is odd, we do this until l(β̃) = 2. Now the result follows from

Lemma 11.1.
In the last case we look at α = (k2) and βrot is a hook. If w(β) = 3, we know

that l(β) is even, so we remove a column of length l(β) + 2 (which equals m) from
µ̃ and α from λ̃. Now µ̃ = (2m) and λ̃ = (32, 2m−3). The result follows from
Lemma 7.18. If w(β) ≥ 5 is odd, we remove a column of length l(β)+2 from µ̃ and
l(β)+2

2 rows of length 2 from λ̃. In the next step we remove a row of length w(β)−1

from µ̃ and w(β)−1
2 rows of length 2 from λ̃. Now λ̃ = µ̃ = ((w(β)− 1)l(β)+1). The

result follows from Lemma 9.1. If w(β) ≥ 4 is even, we do it the other way around,
we start with removing a row of length w(β) from µ̃ and w(β)

2 columns of length 2
from λ̃. In the next step we remove a column of length l(β) + 1 from µ̃ and l(β)+1

2

columns of length 2 from λ̃. Again, λ̃ = µ̃ = ((w(β) − 1)l(β)+1) and the result
follows from Lemma 9.1. �

2. α and β are two-line partitions

Now we assume that α and β are two-line partitions. Here we can exclude
the case that one of them is (k, k)(

′) because of lemma Lemma 14.1. We solve the
remaining cases in the following lemma. Since we assume that α 6≡ (m− 1, 1) 6≡ β,
we know that m ≥ 5.

Lemma 14.4. If α and β are equivalent to two-line partitions, g2(λ, µ) ≥ 3.

Proof: Let α be above β. We have four possibilities for α and β, so in total
sixteen cases where some are equivalent by conjugation. We order them as follows:

(1) α and β are two-row partitions. By conjugation this equivalent to α and
β being two-column partitions;

(2) α is a two-column partition and β is a two-row partition;
(3) α is a two-row and β a two-column partition;
(4) αrot is a two-row partition and β is a two-row partition. By conjugation

this is equivalent to α being a two-column partition and βrot being a
two-column partition;

(5) αrot is a two-row partition and β is a two-column partition. By conju-
gation this is equivalent to α being a two-row partition and βrot being a
two-column partition;

(6) α is a two-row partition and βrot is a two-row partition. By conjugation
this is equivalent to αrot being a two-column partition and β being a
two-column partition;
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α and β are two-line partitions

(7) α is a two-column partition and βrot is a two-row partition. By conjuga-
tion this is equivalent to αrot being a two-column partition and β being a
two-row partition;

(8) αrot and βrot are two-row partitions. By conjugation this is equivalent to
αrot and βrot being two-column partitions;

(9) αrot is a two-row partition and βrot a two-column partition;
(10) αrot is a two-column partition and βrot a two-row partition.

We solve these cases one by one.
(1): We remove all common rows and columns to obtain λ̃ = (β1+α1, β1+α2)

and µ̃ = (β3
1 , β2). Now the result follows from Lemma 7.18 or Lemma 7.19.

(2): We remove again all common rows and columns. If α = (22, 1) and
β = (3, 2), we have the seed ((52, 4), (34, 2)). If α 6= (22, 1), we know not only that
l(α), w(β) > 3 but also that α and β are removable. We remove α and β to obtain
two rectangles λ̃ = µ̃ ⊇ (44). The result follows from Lemma 9.1, again.

(3): This is a bit more complicated. We have some exceptional cases, these
are: α = β′ = (3, 2), α = β′ = (4, 2), m = 2k + 1 is odd and (maybe after
conjugation) α = (k + 1, k) and β = (2k, 1), β = (2k−1, 13) or β = (22, 1m−4).
In all of the exceptional cases we proceed in the same way. We know that λ is
not a two-row partition. Therefore, there is another row or column in λ which we
do not remove. Let us start with the case α = β′ = (3, 2), (4, 2). If there is a
common row R1 above α and we remove all common rows and columns besides
R1, we obtain the seed ((52, 4), (5, 24, 1)) or ((62, 4), (6, 24, 12)). If there is a row
R2 between α and β and we remove all the common rows and columns besides R2,
we obtain the seed ((5, 4, 2), (25, 1)) or ((6, 4, 2), (25, 12)). If there is no common
row above β, there is one to the left of β, but this means there is a column C to
the left of β. By conjugation this is equivalent to the case that there is a row R1

above α. In the next step we look at the case m = 2k + 1, α = (k + 1, k) and
β = (2k, 1), β = (2k−1, 13) or β = (22, 1m−4). We have the same options for an
extra row or column as in the case before. If there is a common row R2 between
α and β, we remove all the common rows and columns except for R2. We remove
(12) from λ̃. From µ̃ we remove (2) as row if β 6= (22, 1m−4), and (12) as rows if
β = (22, 1m−4). We do this until we obtain the seed ((5, 4, 2), (25, 1)) if β = (2k, 1)
or β = (22, 1m−4), and ((4, 3, 2), (23, 13)) if β = (2k−1, 13). If there is a common
row R1 above α, we remove all the common rows and columns but R1. Then we
remove (23) from λ̃ and (23) from µ̃ as rows if β 6= (22, 1m−4) resp. (16) as rows if
β = (22, 1m−4). In the next step we remove (13) from λ̃ and (3) from µ̃. We repeat
these two steps (bk−13 c times) until w(λ̃) ≤ 6 if β 6= (22, 1m−4) resp. w(λ̃) ≤ 7

if β = (22, 1m−4) to obtain one of the following seeds: If β = (2k, 1), we obtain
((42, 3), (4, 23, 1), ((52, 4), (5, 24, 1)) or ((62, 5), (6, 25, 1). If β = (2k−1, 13), we obtain
((42, 3), (4, 22, 13)), ((52, 4), (5, 23, 13)) or ((62, 5), (6, 24, 13). If β = (22, 1m−4), we
obtain ((52, 4), (5, 24, 1)), ((62, 5), (6, 24, 13)) or ((72, 6), (7, 24, 15)). If there is a
common column to the left of β and β′ = α, this is equivalent to the previous
case by conjugation. The case β = (2k−1, 13) can be solved with exactly the same
procedure as in the previous case (after conjugation). We obtain the three seeds
(which are again stated with α̃ above β̃) ((5, 4, 13), (32, 23)), ((6, 5, 14), (33, 23)) and
((7, 6, 15), (34, 23)). For the case β = (22, 1m−4) we can reduce k by 1 with a similar
idea as before to obtain the seed ((6, 5, 13), (34, 2)). In the generic case we remove
all common rows and columns and obtain a product of two two-line partitions which
contains two constituent with multiplicity 3 or higher, see Lemma 7.16.

(4): We remove all common rows and columns. Now λ̃ is a two-row rectangle
and the result follows from Lemma 7.18.
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(5): If m > 5, we remove all common rows and columns. Now λ̃ is a two-
row rectangle and the result follows from Lemma 7.18. If m = 5, we know that
α ≡ β ≡ (3, 2). If we removed all common rows and columns, we would just
have one constituent with multiplicity 3. But in this case we know that λ is not a
two-row partition. Therefore, there is a common row R1 above α or R2 between
α and β or a common column C to the left of β. If we remove all the common
columns and rows but R1, we obtain the seed ((53), (5, 3, 23, 1)). If we remove all
the common rows and columns except for R2, we obtain the seed ((52, 2), (3, 24, 1)).
If we remove all all the common rows and columns except for C, we obtain the seed
((62, 13), (4, 33, 2)).

(6): We remove all common rows and columns. Then we remove all columns
which belong to α besides two of length 2 and one of length 1 together with all the
columns of µ̃ which belong to β besides two of length 2 and one of length 1 and the
corresponding columns of λ̃ to obtain the seed ((6, 5, 1), (34)).

(7): We remove all the common rows and columns. If m = 5, 6, we directly
obtain the seed ((52, 4, 1), (35)) or ((62, 52, 2), (46)). Ifm = 7 and α′ = (4, 3) = βrot,
we obtain the seed ((63, 5, 1), (46)). In all other cases we remove the rightmost
column of α and the minimal number of columns of β with the same number of
boxes and the corresponding columns from λ̃. Now α̃ = (1l(α)) and w(β̃) ≥ 3. The
result follows from Lemma 10.2.

(8): This can easily be reduced to the seed ((62, 1), (4, 33)) after removing all
the common rows and columns.

(9): We remove all the common rows and columns to obtain λ̃ = (a2, 1b) and
µ̃ = (c, 2d) for some a ≥ 5, b ≥ 1, c, d ≥ 3. If c = b + 2, the result follows from
Lemma 9.1 by conjugating µ̃. So by conjugating and exchanging λ̃ and µ̃ we can
assume that c < b + 2. After removing (c − 2) from µ̃ and (1c−2) from λ̃, µ̃ is a
two-column rectangle and the result follows from Lemma 7.18.

(10): We remove all the common rows and columns. If m = 5, we obtain the
seed ((53, 1), (4, 34)). If m = 6, we obtain the seed ((64, 2), (52, 44)). If m = 7 and
(αrot)′ = βrot = (4, 3), we obtain the seed ((64, 1), (5, 45). In all other cases we
proceed in the following way: We remove the column of length b from µ̃ together
with the corresponding column of length a + b from λ̃ and the minimal number
of columns from λ̃ and µ̃ such that the β part of these columns has a boxes. We
obtain α̃ which is a one-column partition and β̃ with w(β̃) ≥ 3. The result follows
from Lemma 10.2. �

3. α and β are hooks

Lemma 14.5. If α and β are equivalent to hooks, g2(λ, µ) ≥ 3.

Proof: We assume that neither α nor β is linear or equivalent to (m − 1, 1).
We remove all common columns and rows. We split the proof into three parts.

1st case: α and β are hooks. We can assume that α is above β. If l(α) > 3 or
w(β) > 3, we remove α and β to obtain λ̃ = µ̃ ⊇ (43)(

′) two rectangles and the
result follows from Lemma 9.1. If l(α) = w(β) = 3, we remove (m− 3) from λ̃ and
(1m−3) from µ̃ to obtain the seed ((43), (34)).

2nd case: α or β is a hook and the other one is a rotated hook. Without loss
of generality we can assume that α is above β and that αrot and β are hooks. We
remove rows of length w(α)+w(β) from λ̃ and (w(α)+w(β)− 1, 1) from µ̃ as rows
until l(α̃) = 2 or l(β̃) = 2. The result follows from Lemma 7.18 and 11.2 (we know
that |α̃| = m̃ ≥ 4 and w(β̃) ≥ 3, this excludes the exceptional cases from these
lemmas which are relevant for this).
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α and β are hooks

3rd case: αrot and βrot are hooks. Here we remove (w(α)+w(β), w(β)−1) from
λ̃ as rows and (w(α) + w(β) − 1, w(β)) from µ̃ as rows until l(α̃) = 2 or l(β̃) = 2.
The result follows from Lemma 11.1 and 11.2. �

4. α is a hook and β is a two-line partition

Lemma 14.6. If α is equivalent to a hook and β is equivalent to a two-line partition,
g2(λ, µ) ≥ 3.

Proof: Without loss of generality we can assume that α is above β, that
α, β 6≡ (m− 1, 1) and that β is not a two-line rectangle. In all cases we start with
removing all the common rows and columns to obtain λ̃ and µ̃.

1st case: α is a hook and β is a two-row partition. We directly obtain the seed
((6, 42), (34, 2)) if m = 5. If m > 5, we know that w(β) > 3 since β 6= (3, 3). We
remove α and β to obtain two rectangles which contain (43). The result follows
from Lemma 9.1.

2nd case: α is a hook and β(rot) is a two-column partition. Now µ̃ is a two-
column partition and λ̃ is a proper fat hook or has three removable nodes. The
result follows from Lemma 7.18 or 7.19.

3rd case: αrot is a hook and β is a two-row partition. If l(α) = 3, 4, this can
easily be reduced to the seed ((63), (52, 32, 2)) if l(α) = 3, and ((54), (43, 32, 2)) if
l(α) = 4. If l(α) > 4, we remove all the columns where α has a column of length 1
and a fitting number of columns where β has columns of length 1 or 2 from λ̃ and
µ̃. This works since the two rows of β are of different length. Now α̃ and β̃ are
removable. We remove them to obtain two rectangles λ̃ = µ̃ which contain (35).
The result follows from Lemma 9.1.

4th case: αrot is a hook and β(rot) is a two-column partition. We remove all but
one of the rows of length 1 from α, the corresponding rows of µ̃ and the right number
of rows from β in such a way that w(β̃) = 2 with the corresponding columns of λ̃
if β is a skew partition. Now α̃rot = (m̃− 1, 1). If β̃ is a two-column partition, λ̃ is
a two-row rectangle and the result follows from Lemma 7.18. Otherwise, the result
follows from Lemma 11.1. Since α̃rot 6= (2, 1), we do not get one of the exceptional
cases from the lemma.

5th case: α(rot) is a hook and βrot = (a, b) is a two-row partition. If l(α) = 3,
this can be reduced to the seed ((6, 42, 1), (35)) if α is a hook, and ((63, 1), (52, 33))
if αrot is a hook. If l(α) = 4, it can be reduced to the seed ((5, 43, 1), (36)) if α is a
hook, and ((54, 1), (43, 33)) if αrot is a hook. If l(α) ≥ 5, we remove all the columns
of length 1 from α, the corresponding columns if α is a rotated hook, together with
the minimal number of columns from β with the same number of boxes and the
corresponding columns of α̃. Now α̃ = (1l(α)) and w(β̃) ≥ 3. The result follows
from Lemma 10.2. �

This concludes the proof of Theorem 5.1 and Theorem 5.2. By Corollary 8.13
we also proved Theorem 5.3 and Theorem 5.4. Equipped with these results we now
look at the multiplicity-free Kronecker products of characters of the alternating
groups.
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Part 3

Multiplicity-free Kronecker products
of characters of the alternating

groups





CHAPTER 15

Preliminaries: Representation theory of the
alternating groups

1. Irreducible An characters and conjugacy classes

The background for the representation theory of the alternating groups can be
found in [JK81].

Irreducible An characters.
We denote the alternating group on n letters by An. Let λ ` n. By [λ] ↓An we

denote the restriction of [λ] to An. As before, over the complex numbers.
• If λ is not symmetric, [λ] ↓An= [λ′] ↓An is irreducible. We write {λ} for

this An character.
• If λ is symmetric, the character [λ] ↓An decomposes as the sum of two

distinct, irreducible An characters which we call {λ}+ and {λ}−, i.e.,
[λ] ↓An= {λ}+ + {λ}−.

This is a complete list of the irreducible An characters and the listed characters
are pairwise distinct.

The characters {λ}+ and {λ}− are conjugated. Therefore, they often behave
similarly so we write {λ}± for {λ}+ or {λ}−. If we have a λ ` n, a priori we do
not know if λ is symmetric or not so we write {λ}(±) for {λ} if λ is not symmetric,
and {λ}± if λ is symmetric.

An conjugacy classes.
Let λ ` n. The elements of cycle type λ form a conjugacy class of Sn. Let

sgn(λ) =
l(λ)∏
i=1

(−1)λi−1 = 1. The elements of cycle type λ are also elements of An.

• If λ has a nonzero part with multiplicity 2 or higher or an even nonzero
part, also in An all elements of cycle type λ are conjugated. We denote
that conjugacy class by Cλ and an arbitrary element from that class by
σλ.

• If all the nonzero parts are pairwise distinct and odd, the elements of cycle
type λ form two conjugacy classes in An, we denote them by C+

λ and C−λ .
Further, we denote by Cλ the union of these two classes. An arbitrary
element from the class C+

λ we denote by σ+
λ resp. an element from C−λ by

σ−λ .
There is a bijection from the set of symmetric partitions of n to the set of

partitions of n with only pairwise different odd parts. For λ ` n we denote by
h(λ) the partition with d(λ) parts and the ith part has h(i,i) boxes, i.e., h(λ) is the
partition of n which parts are the length of the hooks on the main diagonal of λ. If
λ is symmetric, h(λ) consists only of odd and pairwise different parts. This yields
a bijection from the set of symmetric partitions of n to the set of partitions of n
with only pairwise different odd parts.

This bijection transfers a connection between a symmetric character and a
splitting conjugation class.
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Irreducible An characters and conjugacy classes

Character values.

• If λ ` n is not symmetric, {λ}(σ) = [λ](σ) for all σ ∈ An.
• If λ ` n is symmetric and σ 6∈ Ch(λ),

{λ}+(σ) = {λ}−(σ) =
1

2
[λ](σ).

• If λ ` n is symmetric and h(λ) = (h1, . . . hd), then

[λ](σh(λ)) = (−1)(n−d)/2 =: eλ.

Further,

{λ}±(σ+
h(λ)) =

1

2

eλ ±
√√√√eλ

d∏
i=1

hi

 ,

{λ}±(σ−h(λ)) =
1

2

eλ ∓
√√√√eλ

d∏
i=1

hi

 .

So the classes C+
h(λ) and C−h(λ) are the only classes on which the characters

{λ}+ and {λ}− differ and {λ}+ and {λ}− are the only irreducible characters which
differ on these conjugacy classes. This leads to the idea of critical classes [Bes18].

With that notation we can state the main result.

2. Main Theorem

The goal of this part is to prove the following theorem. For this we use the
results we have proven in the previous part.

Theorem 15.1. Let λ, µ ` n be partitions. The product {λ}(±){µ}(±) is multiplicity-
free if and only if up to exchanging λ and µ and/or conjugating λ and/or µ one of
the following cases occurs:

(1) One of the characters is the trivial character;
(2) λ = (n − 1, 1) and µ is symmetric with at most 3 removable nodes or µ

is not symmetric, has at most 2 removable nodes and is different from
(kk−1, k − 2)(

′), (k, 1k)(
′), (3, 2)(

′);
(3) n = 2k + 1 ≥ 15 is odd and λ = µ = (k + 1, k);
(4) n = 2k, λ = (k, k) and one of the following holds:

(a) k ≥ 7 or k ∈ {3, 5} and µ = (k, k) or µ = (k + 1, k − 1);
(b) k 6= 4 and µ = (n− 2, 2) or µ = (n− 3, 3);
(c) µ is a hook different from (k, 1k)(

′).
(5) n = ab for a, b ≥ 3, n 6= 12, λ = (ab) and µ = (n−2, 2) or µ = (n−2, 12);
(6) n = 2k + 1 is odd and λ = µ = (k + 1, 1k)
(7) (λ, µ) is one of the exceptional pairs:

((2, 2), (2, 2)), ((3, 12), (3, 2)), ((3, 2, 1), (3, 3)), ((4, 4), (32, 2)),

((5, 14), (33)), ((33), (33)), ((33), (5, 4)), ((33), (6, 3)).

To prove this we want to use the results from the previous part. The following
lemma makes the connection between Sn products and An products more evident.
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3. Transition from Sn to An products

Lemma 15.2. Let n ≥ 4, and let λ, µ, ν be partitions of n.
(1) If λ, µ, ν are not symmetric,

〈{λ}{µ}, {ν}〉An = 〈[λ][µ], [ν]〉Sn + 〈[λ][µ], [ν′]〉Sn .
(2) If λ = λ′ is symmetric, while µ 6= µ′ and ν 6= ν′ are not,

〈{λ}±{µ}, {ν}〉An = 〈[λ][µ], [ν]〉Sn .
(3) If λ = λ′ and ν = ν′ are symmetric with λ 6= ν, while µ 6= µ′ is not,

〈{λ}±{µ}, {ν}±〉An =
1

2
〈[λ][µ], [ν]〉Sn .

Proof: The first part follows by restricting the Sn product [λ][µ] and using the
results from Section 1 of this chapter.

Let us look at the second part. Since λ is symmetric (and µ, ν are not), we
know that

〈[λ][µ], [ν]〉Sn = 〈[λ][µ], [ν′]〉Sn .
So if we restrict this to the alternating group, we get

〈({λ}+ + {λ}−){µ}, {ν}〉An = 2〈[λ][µ], [ν]〉Sn .
From [BK99, Lemma 5.3] we know that

〈{λ}+{µ}, {ν}〉An = 〈{λ}−{µ}, {ν}〉An .
This proves part (2). Further, [BK99, Lemma 5.3] tells us that for λ 6= ν both
symmetric and µ not symmetric

〈{λ}±{µ}, {ν}±〉An = 〈{λ}±{µ}, {ν}±〉An
for all choices of the signs. Therefore, part (3) follows in the same way. �

Since {λ}+ stays {λ}+ (if eλ = 1) or becomes {λ}− (if eλ = −1) the previous
lemma leads to the following corollary.

Corollary 15.3. (1) Let λ, µ ` n ≥ 4 be not symmetric. The product {λ}{µ}
is multiplicity-free if and only if [λ][µ] is multiplicity-free and g(λ, µ, ν) +
g(λ, µ, ν′) ≤ 1 for all non-symmetric ν ` n.

(2) Let λ, µ ` n ≥ 4, where λ = λ′ is symmetric and µ 6= µ′ is not. For
{λ}±{µ} to be multiplicity free it is necessary that g(λ, µ, ν) ≤ 1 for all
non-symmetric ν ` n and g(λ, µ, ν) ≤ 2 for all symmetric λ 6= ν ` n. In
particular, if g(λ, µ)2 ≥ 3, {λ}±{µ} is not multiplicity-free.

(3) Let λ, µ ` n ≥ 4, λ 6= µ both be symmetric. If there is a non-symmetric ν `
n such that g(λ, µ, ν) ≥ 3, none of the products {λ}±{µ}± is multiplicity-
free.

With this corollary, the results of [BB17] and Part 2 we will be able prove
Theorem 15.1 for the majority of all partitions.
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CHAPTER 16

Non-symmetric products

In this chapter we want to investigate which of the multiplicity-free products
of non-symmetric characters of the symmetric groups stay multiplicity-free if we
restrict them to the alternating group. Since we know the explicit formulas for
these products, it is easy to check when a product of the symmetric group contains
two conjugated constituents (and therefore, is not multiplicity-free if we restrict it).
For these multiplicity-free An products the decomposition in irreducible characters
can easily be derived from the decomposition of the Sn product. Therefore, it is
not stated here.

For the multiplicity-free Kronecker products of characters of the symmetric
groups we have the following theorem:

Theorem 16.1. [BB17, Theorem 1.1.]
Let λ, µ be partitions of n. The product [λ][µ] is multiplicity-free if and only if

the partitions λ, µ satisfy one of the following conditions (up to conjugation of one
or both of the partitions):

(1) One of the partitions is linear, the other one arbitrary;
(2) one of the partitions is (n− 1, 1) the other one is a fat hook;
(3) n = 2k and λ = µ = (k, k) or n = 2k + 1 and λ = µ = (k + 1, k);
(4) n = 2k, one of the partitions is (k, k), the other one is one of (k+1, k−1),

(n− 3, 3) or a hook;
(5) one of the partitions is a rectangle, the other one is one of (n − 2, 2),

(n− 2, 12);
(6) the partition pair is one of the exceptional pairs ((33), (6, 3)), ((33), (5, 4)),

and ((43), (62)).

We look at all the products from the previous theorem which do not involve
symmetric partitions. We do this case by case.

Obviously, products of the form {n}{λ} are still irreducible. From now on we
focus on products where none of the factors is the trivial character. Further, there
is the exceptional multiplicity-free S12 product [43][62]. For this we check with Sage
that it contains for example [62] and [26]. Therefore, the restriction to A12 is not
multiplicity-free.

1. Products with {n− 1, 1}

We recall Lemma 5.13: For λ, ν ` n,

g((n− 1, 1), λ, ν) =


rem(λ)− 1, if λ = ν;

1, if |λ ∩ ν| = n− 1;

0, otherwise.

We use this to get the following result for the alternating groups:

Lemma 16.2. Let λ ` n be non-symmetric. The product {λ}{n−1, 1} is multiplicity-
free if and only if λ is a fat hook and up to conjugation of λ none of the following
occurs:
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Products with {n− 1, 1}

(1) n = k2 + 1 ≥ 4 and λ = (kk, 1);
(2) n = k2 − 2 ≥ 4 and λ = (kk−1, k − 2);
(3) n = 2k and λ = (k + 1, 1k−1);
(4) n = 8 and λ = (4, 22).

Proof: Let λ ` n be non-symmetric. If λ is not a fat hook, [λ][n − 1, 1] has
a constituent with multiplicity 2 of higher (namely [λ]) and therefore, by Corol-
lary 15.3 we know that the product {λ}{n− 1, 1} is not multiplicity-free.

Let λ be from (1)-(3). We know that |λ ∩ λ′| = n− 1. Hence,

g(λ, λ, (n− 1, 1)) = g(λ, λ′, (n− 1, 1)) = 1.

By Corollary 15.3 the product {λ}{n− 1, 1} is not multiplicity-free. Moreover, the
exceptional case {7, 1}{4, 22} has {4, 3, 1} as constituent with multiplicity 2.

From now on let neither λ nor λ′ be from (1)-(4). Let [ν] be a constituent
of [λ][n − 1, 1] for some non-symmetric ν ` n. We will show that [ν′] is not a
constituent of [λ][n− 1, 1]. Let us first look at some special cases:

1st case: λ is a hook. If λ = (a, 1b), the product [n− 1, 1][a, 1b] decomposes as:

[a+ 1, 1b−1] + χ(b>1)[a, 2, 1
b−2] + [a, 1b] + χ(a>2)[a− 1, 2, 1b−1] + [a− 1, 1b+1].

Here, (a + 1, 1b−1)′ = (a − 1, 1b+1) if and only if a = b + 1 so the hook would be
symmetric. The same holds for (a, 2, 1b−2)′ = (a− 1, 2, 1b−1). If and only if a = b,
(a + 1, 1b−1) and (a, 1b) are conjugated which is the third case of the lemma (by
conjugation). The last case is (a, 1b)′ = (a − 1, 1b+1) this holds just if a = b + 2
which is the third case of the lemma.

2nd case: λ rectangle. We assume that λ = (ab) ` n, where a > b ≥ 2. There
is only one box we can remove and two we can add. So

[ab][n− 1, 1] = [a+ 1, ab−2, a− 1] + [ab−1, a− 1, 1].

But (a + 1, ab−2, a − 1)′ = (ab−1, a − 1, 1) just if a = b so the square would be
symmetric.

3rd case: λ = (ab, c). We know that [n− 1, 1][λ] decomposes as:

[ab, c] + [ab−1, a− 1, c, 1] + χ(b>1)[a+ 1, ab−2, a− 1, c] + χ(a>c+1)[a
b−1, a− 1, c+ 1]

+ χ(c>1)[a
b, c− 1, 1] + [a+ 1, ab−1, c− 1].

The constituents have the following length and width:
ν length width

(ab, c) b+ 1 a
(ab−1, a− 1, c, 1) b+ 2 a

(a+ 1, ab−2, a− 1, c) b+ 1 a+ 1
(ab−1, a− 1, c+ 1) b+ 1 a

(ab, c− 1, 1) b+ 2 a
(a+ 1, ab−1, c− 1) b+ χ(c>1) a+ 1

where (a+1, ab−2, a− 1, c) only appears if b > 1, (ab−1, a− 1, c+1) only appears if
a > c+1 and (ab, c−1, 1) only appears if c > 1. We see that two of the constituents
can only be conjugated if a ∈ {b, b+1, b+2}. If a = b and c > 1, the only partitions
which could be conjugated (from the values of the table) are (a+ 1, aa−2, a− 1, c)
and (a + 1, aa−1, c − 1), but they are not. If a = b and c = 1, this is the first case
of the lemma.

If a = b + 1, the partitions (aa−1, c) and (aa−2, a − 1, c + 1) are conjugated if
and only if c = a − 2. This is the second case of the lemma. Further, from the
length and width one of the partitions (aa−2, a − 1, c, 1) and (aa−1, c − 1, 1) could
be the conjugate of (a+ 1, aa−3, a− 1, c) or (a+ 1, aa−2, c− 1), to the second one
only if c > 1. We see that the only times we got a pair of conjugates is if c = a− 2,
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then (aa−2, a− 1, a− 2, 1)′ = (a+1, aa−3, a− 1, a− 2), this is again the second case
of the lemma, or if c = a− 1 but then λ would be symmetric.

If a = b+2, only (aa−3, a− 1, c, 1) and (aa−2, c− 1, 1) could be conjugated but
they are not.

4th case: λ = (ab, 1d). Here we assume that b, d > 1 and a > 2. The product
[n− 1, 1][λ] decomposes as

[a+ 1, ab−1, 1d−1] + [a+ 1, ab−2, a− 1, 1d] + [ab, 2, 1d−2]

+ [ab, 1d] + [ab−1, a− 1, 2, 1d−1] + [ab−1, a− 1, 1d+1].

In the following table it is easy to see when two constituents are conjugated.
ν ν1 − ν2 ν′1 − ν′2

(a+ 1, ab−1, 1d−1) 1 d− 1
(a+ 1, ab−2, a− 1, 1d) 1 + χ(b>2) d

(ab, 2, 1d−2) 0 d− 2
(ab, 1d) 0 d

(ab−1, a− 1, 2, 1d−1) 1 d− 1
(ab−1, a− 1, 1d+1) χ(b>2) d+ 1

There are no constituents which can be conjugated except for (a + 1, ab−1, 1d−1)
and (ab−1, a− 1, 2, 1d−1) for d = 2, and indeed, for d = 2, a = 3 and b = 2 they are
(this is the fourth case of the lemma).

5th case: λ = (ab, cd). Here (assuming a− c, c, b, d > 1) [n−1, 1][λ] decomposes
as :

[ab, cd] + [a+ 1, ab−1, cd−1, c− 1] + [a+ 1, ab−2, a− 1, cd] + [ab, c+ 1, cd−2, c− 1]

+ [ab−1, a− 1, c+ 1, cd−1] + [ab, cd−1, c− 1, 1] + [ab−1, a− 1, cd, 1].

Here, we combine the previous methods. But first we notice that we can exclude
[ab, cd] because it is the only constituent with 2 removable nodes.

ν l(ν) w(ν) ν1 − ν2 ν′1 − ν′2
(a+ 1, ab−1, cd−1, c− 1) b+ d a+ 1 1 χ(c>2)

(a+ 1, ab−2, a− 1, cd) b+ d a+ 1 1 + χ(b>2) 0
(ab, c+ 1, cd−2, c− 1) b+ d a 0 χ(c>2)

(ab−1, a− 1, c+ 1, cd−1) b+ d a χ(b>2) 0
(ab, cd−1, c− 1, 1) b+ d+ 1 a 0 1 + χ(c>2)

(ab−1, a− 1, cd, 1) b+ d+ 1 a χ(b>2) 1
By looking at length and width we see that two constituents can only be con-

jugated if a ∈ {b + d − 1, b + d, b + d + 1}, where the cases a = b + d − 1 and
a = b + d + 1 are conjugated. For a = b + d − 1 we see by including the last
two columns that there are no partition which can be conjugated. If a = b + d
(a + 1, ab−1, cd−1, c − 1) and (ab−1, a − 1, cd, 1) can be conjugated, and they are if
and only if µ is symmetric. The same holds for the pairs (a+1, ab−2, a−1, cd) with
(ab, cd−1, c− 1, 1) and (ab, c+ 1, cd−2, c− 1) with (ab−1, a− 1, c+ 1, cd−1). �

2. Products of two-row partitions and hooks

Now we look what happens with the products of two-row partitions. In this
case the decomposition of the products is known. For the general case they can
be found in [RW94, Ros01] (where the formula in [RW94] contains some errors but
can be fixed [Bri06]). Conveniently for the special cases that we need the formulas
have appeared in [BWZ10, Corollary 3.5., Corollary 5.1.], [Gar+12, Theorem 2.3]
and [Man10, Theorem 1.]. These are a bit more handy than the general ones. In
this form they are from [BB17, Proposition 3.3.].

Proposition 16.3. Let k ∈ N.
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Products of two-row partitions and hooks

(1) For n = 2k + 1, we have

[k + 1, k]2 =
∑
λ`n
l(λ)≤4

[λ].

(2) Let n = 2k, we let E(n) and O(n) denote the sets of partitions of n into
only even parts and only odd parts, respectively, then

[k, k]2 =
∑

λ∈E(n)
l(λ)≤4

[λ] +
∑

λ∈O(n)
l(λ)=4

[λ] .

(3) Let n = 2k, then

[k, k][k + 1, k − 1] =
∑

λ`n,λ6∈E(n)
l(λ)<4

[λ] +
∑

λ`n,λ6∈O(n)∪E(n)
l(λ)=4

[λ] .

We derive the following results for the alternating groups.

Corollary 16.4. Let 2 ≤ k ∈ N, then {k + 1, k}2 is multiplicity-free if and only if
k ≥ 7.

Lemma 16.5. Let n = 2k ≥ 6 be even and λ ` n non-symmetric. The product
{k, k}{λ} multiplicity-free if up to conjugation of λ one of the following holds:

(1) k 6= 4, 6 and λ = (k, k) or λ = (k + 1, k − 1);
(2) k 6= 4 and λ = (n− 2, 2);
(3) k 6= 4 and λ = (n− 3, 3);
(4) λ is a hook and different from (k, 1k).

Proof: Let λ ` n = 2k ≥ 6 be non-symmetric. Because of Theorem 16.1 and
Corollary 15.3 we know that {λ}{k, k} contains a constituent with multiplicity 2
or higher if λ(

′) is neither a hook, (n− 2, 2), (n− 3, 3), (k, k) nor (k + 1, k − 2).
We start with the case that λ is (n − 2, 2), (n − 3, 3), (k, k) or (k + 1, k − 2).

We know that all the constituents of [λ][k, k] have length less or equal to 4 (The-
orem 5.5). Therefore, {λ}{k, k} is multiplicity-free if n > 16. For n ≤ 16 we
calculate the products with GAP and see for which n they are multiplicity-free.

From now on we assume that λ = (n− i, 1i) is a hook. We know that {λ}{k, k}
is multiplicity-free if and only if g(λ, (k, k), ν) + g(λ, (k, k), ν′) ≤ 1 for all non-
symmetric ν ` n (Corollary 15.3). Thanks to Theorem 5.12 and [Ros01, Theorem
4] we know that all the constituents of [k, k][λ] are hooks or double-hooks, so we
only have to look at these cases. Let ν ` n with g(λ, (k, k), ν) = g(λ, (k, k), ν′) = 1.

First case: ν = (n− j, 1j) is a hook. By Theorem 5.12 we know that

j + 1 ∈ {i− 1, i, i+ 1} and n− j ∈ {i− 1, i, i+ 1}.

This is only possible if i = k or i = k − 1. But the only partitions of this form are
(k, 1k) and its conjugated.

Second case: ν is a proper double-hook. Let ν = (n4, n3, 2
d2 , 1d1) ` n with 2 ≤

n3 ≤ n4. Like in the first case with Theorem 5.12 we obtain that ν and ν′ can only
be constituents of [k, k][λ] if

i ∈ {d1 + 2d2, d1 + 2d2 + 1, d1 + 2d2 + 2, d1 + 2d2 + 3} and
i ∈ {n3 + n4 − 4, n3 + n4 − 3, n3 + n4 − 2, n3 + n4 − 1}.

From this follows n − 4 ≤ 2i ≤ n + 2 since n4 + n3 + 2d2 + d1 = n. Therefore,
i = k − 2, k − 1, k, k + 1. We have already excluded the cases i = k − 1, k. We
assume i = k − 2 the other case follows by conjugation. We show that

g(λ, (k, k), ν) = g(λ, (k, k), ν′) = 1
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implies that ν = ν′. Theorem 5.12 tells us that k − 2 ≤ d1 + 2d2 ≤ k + 1 (since
g(λ, (k, k), ν) = 1) and k − 2 ≤ n4 + n3 − 4 ≤ k + 1 (since g(λ, (k, k), ν′) = 1).
From these two inequalities we obtain d1 + 2d2 = k − 2. This means that the first
two columns have the same number of boxes as the first two rows, therefore, it is
sufficient to prove that d2 + 2 = n3.

Due to Theorem 5.12 we know that for d1 + d2 = k − 2 = i

g((k, k), λ, ν) = χ(n3≤k−d2≤min{n4,n3+d1}).

It follows that

k − d2 ≤ n3 + d1

⇔ k ≤ n3 + d1 + d2

⇔ k ≤ n3 + d1 + d2 + k − 2− 2d2 − d1
⇔ d2 + 2 ≤ n3.

We can repeat the same calculation for ν′ to obtain d2 + 2 ≥ n3. Together we get
d2 + 2 = n3 which implies that ν is symmetric. �

3. Products involving rectangles

Now we want to look at the multiplicity-free Sn products with a rectangle.
Since we have already looked at the cases (k, k), we assume that length and width
of the rectangle are greater or equal to 3.

Lemma 16.6. Let n = ab, where b > a ≥ 3. The products {n − 2, 2}{ab} and
{n− 2, 12}{ab} are multiplicity-free if and only if n 6= 12.

Proof: The formulas for the Sn products are known (see [BO06, Corollary
4.6.] and [BB17, Proposition 3.6.]) so we check these like in the (n − 1, 1) case
(Lemma 16.2). We start with the product [n− 2, 2][ab]. The possible constituents
are:

Partition length width
(ab) b a

(ab−1, a− 1, 1) b+ 1 a
(ab−2, (a− 1)2, 12) b+ 2 a

((a+ 1)2, ab−4, (a− 1)2) b a+ 1
(a+ 1, ab−2, a− 1) b a+ 1

(a+ 1, ab−3, (a− 1)2, 1) b+ 1 a+ 1
(a+ 2, ab−2, a− 2) b a+ 2
(a+ 1, ab−2, a− 2, 1) b+ 1 a+ 1

(ab−1, a− 2, 2) b+ 1 a

where (ab−1, a− 2, 2) only occurs if a > 3. From the length and width we see that
two of the constituents can only be conjugated if b = a + 1, a + 2. If b = a + 2,
there is one constituent which could be symmetric (but is not) but not two which
could be conjugated.

If b = a+ 1, by looking at the length and width, ((a+ 1)2, aa−3, (a− 1)2) and
(a+1, aa−1, a−1) could be conjugated and (a+2, aa−1, a−2) could be conjugated
to one of the partitions (a+ 1, aa−2, (a− 1)2, 1) or (a+ 1, aa−1, a− 2, 1). However,
we see that ((a+1)2, aa−3, (a− 1)2) and (a+1, aa−1, a− 1) cannot be conjugated,
neither can (a+2, aa−1, a−2) and (a+1, aa−2, (a−1)2, 1). The last thing we check
is that (a + 2, aa−1, a − 2) and (a + 1, aa−1, a − 2, 1) are conjugated if and only if
a = 3 (and b = 4) which is the case exactly if n = 12.

Now we do the same for the product [n − 2, 12][ab]. The possible constituents
are:
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Products involving rectangles

Partition length width
(a+ 2, ab−3, (a− 1)2) b a+ 2
(a+ 1, ab−2, a− 1) b a+ 1
(a+ 1, ab−2, a− 2, 1) b+ 1 a+ 1
(ab−2, (a− 1)2, 2) b+ 1 a

(a+ 1, ab−3, (a− 1)2, 1) b+ 1 a+ 1
((a+ 1)2, ab−3, a− 2) b a+ 1

(ab−1, a− 2, 12) b+ 2 a
(ab−1, a− 1, 1) b+ 1 a .

Again we only have to look at the case b = a+ 1 (for the same reasons). From
looking at the length and width, (a+1, aa−1, a−1) and ((a+1)2, aa−2, a−2) could
be conjugated and (a+2, aa−2, (a−1)2) could be conjugated to (a+1, aa−1, a−2, 1)
or (a+1, aa−2, (a− 1)2, 1). Here, (a+1, aa−1, a− 1) and ((a+1)2, aa−2, a− 2) are
conjugated if and only if a = 3 but (a + 2, aa−2, (a − 1)2) is never conjugated to
(a+ 1, aa−1, a− 2, 1) or (a+ 1, aa−2, (a− 1)2, 1). �

We have checked for all multiplicity-free products of irreducible Sn characters
labeled by non-symmetric partitions if they stay irreducible if we restrict them
to An. From Corollary 15.3 we know that the multiplicity-free An products we
obtained in that way are all, where both characters are labeled by non-symmetric
partitions. In the next chapter we will look what happens if one or both characters
are labeled by symmetric partitions.
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CHAPTER 17

Symmetric products

In this chapter we want to look at multiplicity-free products which involve
irreducible An characters which are labeled by symmetric partitions. First, we
derive the formulas for the products of Theorem 15.1 where at least one of the
factors is labeled by a symmetric partition.

1. Decomposition of multiplicity-free symmetric products

We start with investigating products of the form {λ}±{µ}, where one of the
factors is symmetric and the other one is not. Here, the multiplicities of all the
constituents but {λ}± can directly be derived from the known Sn formulas with
Lemma 15.2. Thus, we just state these multiplicities instead of the whole decom-
position of the product.

We name the multiplicity of {λ}± in the product {µ}{λ}+ with m±, where
the signs have to coincide, i.e., m± := 〈{µ}{λ}+, {λ}±〉. Then we know that
m∓ = 〈{µ}{λ}−, {λ}±〉, where the signs have to differ. With this we can state
a result which connects the multiplicity of a character {µ} for a non-symmetric
partition µ in the products {λ}±{λ}± with the Kronecker coefficient g(λ, λ, µ) and
the character value [µ](σh(λ)). Here, we use eλ, defined in Section 1 of Chapter 15
in the subsection about character values, as an index, where it stands for + or −
instead of +1 or −1.

Lemma 17.1. Let λ = λ′ ` n be a symmetric partition and µ 6= µ′ be a non-
symmetric partition. Then

〈({λ}±)2, {µ}〉 = meλ and 〈{λ}+{λ}−, {µ}〉 = m−eλ .

Further,

m± =
1

2
(g(λ, λ, µ)± [µ](σh(λ))).

Proof: By definition m± = 〈{µ}{λ}+, {λ}±〉 = 〈{µ}, {λ}+{λ}±〉. But we
know that {λ}+ = {λ}eλ which shows the first claim. To prove the second one we
look at m+ +m− and m+ −m−. We know that

{µ}{λ}± = m±{λ}+ +m∓{λ}− + other constituents.

But this tell us that
g(λ, λ, µ) = m+ +m−.

From [Bes18, Lemma 2.3. (2)] we know that [µ](σh(λ)) = m+−m−. These two facts
tell us that

2m± = g(λ, λ, µ)± [µ](σh(λ))

which proves the second part. �

With the previous lemma we compute the unknown multiplicities for products
in which one of the factors is symmetric.
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Decomposition of multiplicity-free symmetric products

Products involving one symmetric partition.

Lemma 17.2. Let λ = λ′ be a symmetric partition of n ≥ 4. The products

{λ}±{n− 1, 1}

are multiplicity-free if and only if λ has at most three removable nodes. If λ is a
rectangle,

〈{λ}+{n− 1, 1}, {λ}±〉 = 〈{λ}−{n− 1, 1}, {λ}±〉 = 0.

If λ has two removable nodes,

〈{λ}±{n− 1, 1}, {λ}±〉 = 0 and 〈{λ}∓{n− 1, 1}, {λ}±〉 = 1.

If λ has three removable nodes,

〈{λ}+{n− 1, 1}, {λ}±〉 = 〈{λ}−{n− 1, 1}, {λ}±〉 = 1.

Proof: Let λ ` n be symmetric. If ν ` n with ν 6= λ we know from Lemma 5.13
that

g(λ, (n− 1, 1), ν) =

{
1, if |λ ∩ ν| = n− 1;

0, otherwise.

By Lemma 15.2 the multiplicity of {ν}(±) as constituent of {n − 1, 1}{λ}± is 1 if
|λ ∩ ν| = n − 1, and 0, otherwise. So now we calculate the multiplicities m± with
the previous lemma. If λ is a square, then g(λ, λ, (n− 1, 1)) = 0 and therefore, this
case is trivial.

If λ is a fat hook, we know that [n − 1, 1](σh(λ)) = −1 because λ has no hook
of length 1 on the main diagonal. With Theorem 1.1 we see that all but the last
rim hook that we remove are in the arm of (n− 1, 1). Since g(λ, λ, (n− 1, 1)) = 1
we obtain m+ = 0 and m− = 1. So

〈{λ}±{µ}, {λ}±〉 = 0 and 〈{λ}±{µ}, {λ}∓〉 = 1.

If λ has three removable nodes, we know that σh(λ) has one fix-point, because
h(λ) has exactly one part of length 1. Since the character value of [n − 1, 1] can
be interpreted as number of fix-points of σh(λ) minus one, [n − 1, 1](σh(λ)) = 0.
Together with g(λ, λ, (n− 1, 1)) = 2 this tells us that m+ = m− = 1 and therefore,

〈{λ}+{n− 1, 1}, {λ}±〉 = 〈{λ}−{n− 1, 1}, {λ}±〉 = 1.

If λ has 4 or more removable nodes, we know that [n − 1, 1](h(λ)) ∈ {0,−1},
because if rem(λ) is odd, it has 1 fix-point and if it is even, none. But

g(λ, λ, (n− 1, 1)) = rem(λ)− 1 > 2

and therefore, m+ or m− is strictly greater than 1. �

To see how the constituents of [λ][µ] for a symmetric partition λ are divided
between {λ}+{µ} and {λ}−{µ} we often look at the critical classes h(λ).

Lemma 17.3. If n = a2 ≥ 9, the products {aa}±{n − 2, 2} and {aa}±{n − 2, 12}
are multiplicity-free, where

〈{aa}±{n− 2, 2}, {aa}±〉 = 0 and 〈{aa}±{n− 2, 2}, {aa}∓〉 = 1

and
〈{aa}±{n− 2, 12}, {aa}±〉 = 〈{aa}±{n− 2, 12}, {aa}∓〉 = 0.

Further, {2, 2}± is of degree 1 therefore, {2, 2}±{2, 2}± (for all four choices)
and {2, 2}±{2, 12} are irreducible. The products are given by {2, 2}+{2, 2}− = {4},
({2, 2}±)2 = {2, 2}∓ and {2, 2}±{3, 1} = {3, 1}.
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Proof: The part about {2, 2}± was calculated with GAP. In the other part only
the multiplicity of {aa}± does not directly follow from the Sn product. We know
that [n− 2, 2][aa] and [n− 12][aa] are multiplicity-free. Therefore, by Lemma 15.2
we know that all constituents of the products {aa}±{n−2, 2} and {aa}±{n− 2, 12}
which are different from {aa}± have multiplicity 1. We calculate the missing mul-
tiplicities with Lemma 17.1. Due to Proposition 5.14 we know that

g((aa), (aa), (n− 2, 12)) = (rem(aa)− 1)2 = 0.

Hence, the multiplicity of {aa}± in {aa}±{n − 2, 12} has to be zero, too. For the
product with {n−2, 2} we calculate againm+ andm− from Lemma 17.1. By Propo-
sition 5.14 we know that g((aa), (aa), (n − 2, 2)) = 1. The Murnaghan–Nakayama
rule (Theorem 1.1) tells us that

[n− 2, 2](σh(aa)) = [2, 2](σ(3,1)) = −1,

where h(aa) = (. . . , 5, 3, 1) ` n. This tells us that m+ = 0 and m− = 1. With the
first part of Lemma 17.1 we conclude

〈{aa}±{n− 2, 12}, {aa}±〉 = 0 and 〈{aa}±{n− 2, 12}, {aa}∓〉 = 1.

This proves the lemma. �

Product of two symmetric hooks.

Lemma 17.4. Let λ = (k + 1, 1k) be the symmetric hook of n = 2k + 1 ≥ 5, then
any of the 4 products {λ}±{λ}± is multiplicity-free.

If n ≡ 1 mod 4,

({λ}±)2 =

k
2−1∑
j=0

{n− 2j, 12j}+
∑
µ`n

d(µ)=2

{µ}+ {λ}± and

{λ}+{λ}− =

k
2−1∑
j=0

{n− 2j − 1, 12j+1}+
∑
µ`n

d(µ)=2

{µ}.

If n ≡ 3 mod 4,

({λ}±)2 =

k−1
2 −1∑
j=0

{n− 2j − 1, 12j+1}+
∑
µ`n

d(µ)=2

{µ}+ {λ}∓ and

{λ}+{λ}− =

k−1
2∑
j=0

{n− 2j, 12j}+
∑
µ`n

d(µ)=2

{µ}.

Proof: From [Rem89, Theorem 2.1.] and [Ros01] we know that for µ ` n

g(λ, λ, µ) =


2, if µ is a double-hook;
1, if µ is a hook;
0, if µ is neither a hook nor a double-hook.

If µ is not a hook or a double-hook, there is nothing to show.
If µ is a proper double-hook, we know from the Murnaghan-Nakayama rule

that [µ](σ(n)) = 0, where h(λ) = (n). By Lemma 17.1 the four inner products
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Decomposition of multiplicity-free symmetric products

〈{λ}±{λ}±, {µ}〉 all have the same value no matter how we choose the signs. This
means that for all four choices

〈{λ}±{λ}±, {µ}〉 = 1.

If µ 6= λ is a hook, we know that [µ](σ(n)) = (−1)l(µ)−1. If n ≡ 1 mod 4, we
compute eλ = 1. So with Lemma 17.1 we see that all the hooks of odd length are
constituents of the products ({λ}±)2 with multiplicity 1 and all the hooks of even
length are constituents of {λ}+{λ}−, again with multiplicity 1. If n ≡ 3 mod 4,
eλ = −1 and therefore, it is the other way around, meaning all the hooks of even
length are constituents of the products ({λ}±)2 with multiplicity 1 and all the hooks
of odd length are constituents of {λ}+{λ}−, again with multiplicity 1.

The last multiplicities we need to check are the ones for {λ}±. If n ≡ 1 mod 4,
we know that {λ}±(σ+

(n)) =
1
2 (1±

√
n). So we get for the product

({λ}±{λ}±)(σ+
(n)) =

1

4
(1± 2

√
n+ n) =

1

2
(1±

√
n) +

1

4
(n− 1),

({λ}+{λ}−)(σ+
(n)) =

1

4
(1− n).

Since n is odd, all the proper double-hooks are not symmetric and λ is the only
symmetric hook. All possible constituents but {λ}± have character values from Z
on the class (n)+. Further, g(λ, λ, λ) = 1, so {λ}+ and {λ}− appear exactly ones,
therefore, we obtain

〈{λ}+{λ}+, {λ}+〉 = 〈{λ}−{λ}−, {λ}−〉 = 1.

If n ≡ 3 mod 4, {λ}±(σ+
(n)) =

1
2 (−1±

√
−n) and therefore,

{λ}±{λ}±(σ+
(n)) =

1

4
(1± 2(−

√
−n)− n) = 1

2
(−1∓

√
−n) + 1

4
(3− n),

{λ}+{λ}−(σ+
(n)) =

1

4
(1 + n).

Applying the same argument as before it now follows:

〈{λ}+{λ}+, {λ}−〉 = 〈{λ}−{λ}−, {λ}+〉 = 1.

This proves the decompositions of the products. �

2. Other products are not multiplicity-free

In the next step we want to show that the products which we investigated in the
last section are the only multiplicity-free products involving symmetric partitions.
First, we look at the case that one of the partitions is symmetric and the other one
is not.

Product of a symmetric and a non-symmetric character.
Let λ, µ ` n be two partitions such that λ = λ′ is symmetric and µ 6= µ′ is not.
If {λ}±{µ} is multiplicity-free, we know that on the level of the symmetric group
g(λ, µ, ν) ∈ {0, 1} for all ν ` n with ν 6= ν′ and g(λ, µ, ν) ∈ {0, 2} for all ν ` n
with ν = ν′ and ν 6= λ (see Corollary 15.3). We investigated these products in
the second part of this thesis and if we use these results we obtain the following
theorem:

Theorem 17.5. Let λ = λ′ ` n and µ 6= µ′ ` n be two partitions such that the
product {λ}±{µ} is multiplicity-free. Then λ, µ are one of the following pairs (up
to conjugation of µ):

(1) µ is a linear partition;
(2) µ = (n− 1, 1) and λ has at most 3 removable nodes;
(3) n = a2, λ = (aa) and µ = (n− 2, 2) or µ = (n− 2, 12);
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(4) one of the exceptional cases:

((3, 12), (3, 2)), ((3, 2, 1), (3, 3)), ((32, 2), (4, 4)), ((33), (5, 4)), ((33), (6, 3)).

Proof: That products of the form {n}{λ}± are multiplicity-free is obvious.
That the exceptional cases are multiplicity-free can easily be checked with GAP. For
the other products we have seen in Lemma 17.2 and 17.3 that they are multiplicity-
free. For the other direction we first we assume that one of the partitions λ, µ is
a hook. Proposition 6.1 and 6.2 together with Corollary 15.3 tell us that the only
possibilities for λ and µ (up to conjugation of µ) are the following:

(a) µ = (n);
(b) µ = (n− 1, 1) and λ = λ′ is symmetric;
(c) n = 2k + 1 is odd, λ = (k + 1, 1k) and µ 6= µ′ is a hook;
(d) n = a2, λ = (aa) and µ = (n− i, 1i) with i ≤ 3;
(e) n = a2 − 1, λ = (aa−1, a− 1) and µ = (n− 2, 12);
(f) n = 2k + 1 is odd, λ = (k + 1, 1k) and µ = (k + 1, k) or µ = (n− 2, 2);
(g) the exceptional case n = 6, µ = (4, 12) and λ = (3, 2, 1).

For these we only have to check the formulas we have for the Sn products, where
we can calculate 〈{λ}+{µ}, {λ}±〉 with Lemma 17.1 if needed. We do this case by
case. Obviously, (a) is multiplicity-free. The case µ(′) = (n− 1, 1) we have already
proven with Lemma 17.2. So we assume that µ 6= (n− 1, 1).

In part (c) we obtain (λ, µ) from the seed ((3, 12), (3, 12)) with the semigroup
property (Theorem 5.8). Since [3, 2] is contained twice in [3, 12]2, [λ][µ] has a
constituent [ν] with multiplicity 2 which is not a hook ((3, 2) has Durfee-size 2
and it does not decrease by adding boxes). Since [λ][µ] only contains hooks and
double-hooks, we know that it contains a double-hook ν with multiplicity 2. Since
n is odd, we know that ν is not symmetric and therefore, {ν} has multiplicity 2 in
the products {λ}±{µ}.

In part (d) we assume that i > 1. If i = 3, the formula from Lemma 6.6 for the
product on the symmetric group level tells us that {a + 1, aa−2, a − 2, 1} appears
as a constituent with multiplicity 2. If i = 2, the product is multiplicity-free as we
have seen in Lemma 17.3.

For part (e) we assume that λ = (aa−1, a − 1) and µ = (n − 2, 12). Then
the formula from Lemma 6.5 for the Sn product tells us that {aa−1, a − 2, 1} is a
constituent with multiplicity 2 of the An product.

To prove part (f), let n = 2k + 1, λ = (k + 1, 1k) and µ = (k + 1, k) or
µ = (n − 2, 2). Theorem 5.12 tells us that for n ≥ 7 g(λ, µ, (k + 1, 2, 1k−2)) = 2,
and therefore, {k + 1, 2, 1k−2} is a constituent with multiplicity 2 of the products
{λ}±{µ}. That the n = 5 case is multiplicity-free was checked with GAP.

For (g) was checked with the GAP, that {4, 1, 1}{3, 2, 1}± both contain {4, 2}
with multiplicity 2.

In the next step we look at the possibilities if one of the partitions is a two-row
partition (for n > 4 this has to be µ and the case λ = (2, 2) we have already seen
in Lemma 17.3). Since we already looked at the case that one of the partitions is
a hook, we can assume that none of the partitions is a hook. Here Proposition 7.1
tells us that the Sn product contains a constituent with multiplicity 3 or higher
which is different from λ, and therefore, the An product contains a constituent
with multiplicity 2 or higher, if λ and µ are not from the following list:

(a) n = a2, λ = (aa) and µ = (n− 2, 2) or µ = (n− 3, 3);
(b) n = a2 − 1, λ = (aa−1, a− 1) and µ = (n− 2, 2);
(c) for n = 6, λ = (n − 3, 2, 1) = (3, 2, 1) is symmetric, so we have to check

the product with µ = (3, 3);
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Other products are not multiplicity-free

(d) one of the exceptional cases λ = (3, 3, 2) and µ = (4, 4) or µ = (5, 3) or
λ = (4, 2, 12) and µ = (4, 4) or λ = (33) and µ = (5, 4) or (6, 3).

If λ = (aa) and µ = (n− 2, 2), the product is multiplicity-free, as we have shown in
Lemma 17.3. If µ = (n − 3, 3), the formula for the Sn product (Lemma 7.5) tells
us that {aa−1, a− 1, 1} appears twice in the An product.

If λ = (aa−1, a− 1) and µ = (n− 2, 2), the formula from Lemma 7.3 for the Sn
product tells us that {aa−1, a− 2, 1} is a constituent with multiplicity 2 of the An
product.

We check with GAP that:
• {3, 2, 1}±{3, 3} is multiplicity-free;
• {32, 2}±{5, 3} is not multiplicity-free, it contains {5, 2, 1} twice;
• {32, 2}±{4, 4} is not multiplicity-free, it contains {4, 2, 12}± twice;
• {4, 2, 12}±{4, 4} is not multiplicity-free, it contains {4, 3, 1} twice;
• {33}±{5, 4} and {33}±{6, 3} are multiplicity-free.

If neither λ nor µ is a hook nor a two-row partition, we just have to check the
case {33}±{42, 1} for n = 9 (since in {33±}{33}± both partitions are symmetric),
this follows from Theorem 5.1 and Theorem 5.2. For these products were checked
with GAP that they contain {5, 2, 12} with multiplicity 2 and therefore, we know
that there are no multiplicity-free products involving exactly one symmetric factor
and no hook or two-row partition. �

Products of different symmetric character.

Theorem 17.6. Let λ, µ ` n be symmetric partitions such that λ 6= µ and one of
the products {λ}±{µ}± is multiplicity-free, then λ and µ are (5, 14) and (33) and
all of the products are multiplicity-free.

Proof: We know if there is a non-symmetric partition ν ` n with g(λ, µ, ν) > 2,

〈{λ}±{µ}±, {ν}〉 =
1

2
g(λ, µ, ν) > 1.

Therefore, we can focus on the pairs from Theorem 5.1 and Theorem 5.2, but
there are three possibilities such that λ and µ are both symmetric. One is that
λ = µ are symmetric hooks. The second one is λ = µ = (33) but these two violate
the assumption λ 6= µ. The third pair is (5, 14) and (33). That the 4 products
{5, 14}±{33}± are multiplicity-free was checked with GAP. �

Symmetric squares.
In this subsection we investigate the character products of the form {λ}±{λ}± for
a symmetric partition λ which is not a hook. In Lemma 17.4 we already did this
for hooks.

Proposition 17.7. Let λ = λ′ be a symmetric partition. If one of the products
{λ}±{λ}± is multiplicity-free, all products are and one of the following holds:

(1) λ is a hook;
(2) n = 4 and λ = (2, 2);
(3) n = 9 and λ = (33).

Proof: If λ is a hook we have seen the products in Lemma 17.4. Further, that
the eight products {33}±{33}±, {2, 2}±{2, 2}± are, indeed, all multiplicity-free was
checked with GAP. What is missing is to show that the other products contain
constituents with multiplicity 2 or lager. From now on let λ ` n be a symmetric
partition which is neither hook, (2, 2) nor (33). We use Lemma 17.1 to show that
for a fitting partition µ ` n the multiplicities m+ and m− are greater or equal to 2.
We use different constituents according to the number of removable nodes λ has.
Therefore, we have three cases.
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1st case: rem(λ) ≥ 3. Let µ = (n− 2, 12). We know by Proposition 5.14 that

g(λ, λ, µ) = (rem(λ)− 1)2 ≥ 4.

We compute character value [µ](σh(λ)) with the Murnaghan–Nakayama rule (The-
orem 1.1). If rem(λ) is odd, we know that h(λ) has a part of length 1. In this case
we remove all but the last two parts of h(λ). From µ we can only remove parts
from the arm since every part we remove is greater or equal to 5. If we now try to
remove the second smallest part from h(λ), we realize that this is not possible since
we would have to remove a (ñ + 1)-hook from (ñ, 12). Therefore, [µ](σh(λ)) = 0.
Hence, m+ = m− = 1

2g(λ, λ, µ) ≥ 2 if rem(λ) is odd. If rem(λ) is even, we know
that all parts of h(λ) are greater or equal to 3 and λ has at least 4 removable nodes.
So if we remove every part but the smallest one, we know that we have to remove
the corresponding hooks in the arm of µ. If we then remove the smallest part, we
remove the two boxes in the leg and therefore, [µ](σh(λ)) = 1. Since λ has at least
4 removable nodes, we know g(λ, λ, µ) ≥ 9 and m+ = 1

2 (g(λ, λ, µ) + 1) ≥ 5 and
m− = 1

2 (g(λ, λ, µ)− 1) ≥ 4.
2nd case: rem(λ) = 2. We need two different possibilities for µ. We start with

µ = (n− 3, 3). We know from [Val14, Theorem 7.12] or Theorem 5.15 that

g(λ, λ, µ) = h1(h1 − 1)(h1 − 3) + h2(2h1 − 3) + h3,

where hi equals the number of i-hooks in λ. Ifmin(h(λ)) > 3, we conclude that h2 =
4 and h3 ≥ 2, hence, g(λ, λ, µ) ≥ 4. If min(h(λ)) = 3 we know that n = a2−1 for an
a ∈ N and λ = (aa−1, a−1). We see with GAP that the products {3, 3, 2}±{3, 3, 2}±
contain {5, 2, 1} with multiplicity 2 if the signs match, and {4, 2, 2} with multiplicity
2 otherwise. So we can assume that a ≥ 4. With this, we know that h1 = 2, h2 = 2
and h3 = 3, therefore, g(λ, λ, µ) = 3. In the next step we look at the character
value [µ](σh(λ)). If min(h(λ)) > 3, we apply the Murnaghan–Nakayama rule to see
that [µ](σh(λ)) = 0. We can remove the hooks corresponding to all but the largest
part of h(λ) only from the first row of µ, but h(λ)1 ≥ 7, therefore, we would need to
remove a h(λ)1 hook from the partition (h(λ)1 − 3, 3), but all the hooks contained
in this partition contain at most h(λ)1 − 2 boxes. If min(h(λ)) = 3, we see that if
we remove all but the two smallest parts (which are 5 and 3),

[µ](σh(λ)) = [5, 3](σ(5,3)) = 1.

Ifmin(h(λ)) > 3, we obtain thatm+ = m− ≥ 2 and ifmin(h(λ)) = 3, we obtain
that m+ = 2 and m− = 1. So all that is missing is the m− case for min(h(λ)) = 3.

To solve this, let µ = (n − 3, 2, 1). We know from [Val14, Theorem 7.12] or
Theorem 5.15 that

g(λ, λ, µ) = 2h1(h1 − 1)(h1 − 3) + h2(3h1 − 4) + h1 + h21,

where h21 is the number of non-linear 3 hooks in λ. Since we know that λ =
(aa−1, a − 1), we know that h1 = 2, h2 = 2 and h21 = 1, hence, g(λ, λ, µ) = 3.
Next, we have to calculate [µ](σh(λ)). But again, if we remove all but the two
smallest parts from h(λ), we obtain

[µ](σh(λ)) = [5, 2, 1](σ(5,3)) = −1.
So we obtain m− = 2, which solves this case.

3rd case: rem(λ) = 1. We calculate the multiplicities m+ and m− for µ = (n−
6, 4, 2). We know n = a2 for some a ≥ 4 and λ = (aa). First we want to show
that g(λ, λ, µ) ≥ 4. For this we use the semigroup property (Theorem 5.8) and
induction. We calculate with Sage that g((44), (44), (10, 4, 2)) = 4. We know that
g(1k, 1k, k) = 1 for all k ≥ 1. By induction we assume that

g(((a− 1)a−1), ((a− 1)a−1), (a2 − 2a+ 1− 6, 4, 2)) ≥ 4.
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Other products are not multiplicity-free

We add the triple (1a−1), (1a−1) and (a− 1) and obtain that

g((aa−1), (aa−1), (a2 − a− 6, 4, 2)) ≥ 4.

We conjugate the first two partitions and obtain

g(((a− 1)a), ((a− 1)a), (a2 − a− 6, 4, 2)) ≥ 4.

This time we add (1a), (1a) and (a). This yields to

g((aa), (aa), (a2 − 6, 4, 2)) ≥ 4.

In the next step we want to compute [µ](σh(λ)). We know exactly how h(λ)
looks like: h(λ) = (2a − 1, 2a − 3, . . . , 5, 3, 1). All the hooks we can remove from
the second or third row of µ consist of 5 or less boxes. So we remove all the parts
from h(λ) which are greater or equal to 9 from the first row. We end up with
[µ](σh(λ)) = [10, 4, 2](σ(7,5,3,1)) = 0. This tells us that the multiplicity of {µ} as a
constituent in any of the products {λ}±{λ}± is greater or equal to 2. �

This finishes the proof of Theorem 15.1. We want to conclude this thesis by
using Theorem 15.1 to look at the product of three irreducible An characters.

3. Product of three characters

Proposition 17.8. The only products of three irreducible An characters which are
multiplicity-free, such that none of the characters is the trivial one, are for n = 4
the products

{2, 2}±{2, 2}±{2, 2}± and {2, 2}±{2, 2}±{3, 1} (in both cases all choices for ±).

Proof: We check the small cases with GAP. So we can assume that n > 9 to
eliminate the exceptional cases. But that the products which are stated for n = 4
are multiplicity-free is not surprising since {2, 2}± are characters of degree 1.

Let λ, µ, ν ` n > 9 all be non-linear. If λ, µ, ν are non-symmetric and
{λ}{µ}{ν} is multiplicity-free, we know by Lemma 15.2 that also the Sn product
[λ][µ][ν] is multiplicity-free. Thanks to [BB17, Theorem 1.2.] we know that there is
no such Sn product. Hence, there is no multiplicity-free product of three irreducible
An characters which are labeled by non-symmetric and non-linear partitions.

Consequently we can now focus on the products of Theorem 15.1 where a
character is labeled by a symmetric partition. Without loss of generality we can
assume that λ is symmetric. We know that not only λ and µ are a pair from
Theorem 15.1, but also all constituents of {λ}±{µ}(±) are labeled by partitions
which are listed in Theorem 15.1 (2)-(6). But this is not possible. We check that
the products from Theorem 15.1 (2), (5) and (6) contain a constituent which is
labeled by a non-symmetric partition which has three removable nodes. �
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