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We describe some recent results for a class of nonlinear hydrodynamical approximation models
where the geometric approach gives insight into a variety of aspects. The main contribution concerns
analytical results for Euler equations on the diffeomorphism group of the circle for which the inertia
operator is a nonlocal operator.
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1. Introduction

In a seminal paper [1], Arnold pointed out that the Euler equations of hydrodynamics can be
viewed geometrically as the geodesic equations on the diffeomorphism group endowed with
an invariant metric. This work can be viewed as a generalization of the theory developed
by Euler [21] around 1765 which involves the rotation group in R

3 in the description of the
motion of a rigid body.

More recently, many approximations models to the governing equations of the classical
water-wave problem have been found to arise in a similar way; examples include the equa-
tions of Korteweg–de Vries (KdV), Camassa–Holm (CH), Degasperis–Procesi (DP), Hunter–
Saxton (HS), and of Constantin–Lax–Majda (CLM), to mention the most prominent ones
(see [13, 29, 31] for the hydrodynamical relevance of these equations). This geometric view-
point is not only aesthetically appealing, but is also useful in the study of well-posedness
and stability issues, as well as in gaining insight into blow-up phenomena [6].
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There is an extensive activity in deriving approximations models for a variety of specific
physical regimes that cannot be summarized here. Nevertheless, it appears that among all
these models, some have a particular intricate geometric structure. The KdV equation is
a re-expression of the geodesic flow on the Bott–Viraoro group equipped with the L2-right
invariant metric [34]. It has an integrable structure as an infinite bi-Hamiltonian system [37]
and its solitary wave solutions are solitons [38]. The CH equation [3] can be recast as the
geodesic flow on the diffeomorphism group of the circle Diff∞(S1) equipped with the H1-
right-invariant metric [41]. Recently, it has been shown [17] that the DP equation [15] can
also be recast as a geodesic equation on Diff∞(S1), although in this case the linear connection
does not derive from an invariant metric [35]. Both the CH and DP equations are integrable
(they have a bi-Hamiltonian structure) and admit peakon solutions [5, 7, 9, 14]. Finally the
HS and CLM equations admit geometric interpretations on homogeneous spaces.

The theory of Euler equations on Diff∞(S1) is the study of right-invariant Riemannian
metrics on Diff∞(S1). Such a metric is defined by an inner product on Vect(S1) � C∞(S1),
which usually can be written as

〈u, v〉 =
∫

S1

(Au)vdx,

where A is a symmetric, positive, linear operator, which is called for historical reasons the
inertia operator of the corresponding system. This problem has been extensively studied
by many authors (see [11, 12, 17, 32, 44] for instance) when the inertia operator A is
a differential operator. In [19], the CLM equation was considered. It corresponds to the
homogeneous Ḣ1/2-right-invariant metric on the homogeneous space Diff∞(S1)/Rot(S1).
Its inertia operator, which is not local, is of the form HD, where H denotes the Hilbert
transform and D := d/dx the spatial derivative. The study of this example lead to develop
a more general theory [18] when A is a Fourier multiplier, including the important case of
Hs metrics with s ≥ 1/2.

The goal of this short paper is to present an overview of this theory and to discuss, after
having recalled the geometrical framework, important examples arising as approximation
models in the mathematical description of water-waves.

The paper is organized as follows: In Sec. 2, we review the geometric framework in which
Euler equations on a Lie group can be studied. Section 3 offers a large selection of exam-
ples with hydrodynamical background arising as Euler equations on Diff∞(S1) or related
groups. In Sec. 4, we reduce the local existence problem for geodesics to the smoothness
of the conjugates of the inertia operator on some extended Banach approximation man-
ifold of Diff∞(S1). Section 5 is devoted to the study of inertia operators for which this
smoothness condition is fulfilled. In Sec. 6 finally, further geometric considerations about
the minimization problem for geodesics are discussed.

2. Geometric Framework

It is known since Euler [22] in 1765, that the free motions of a rigid body correspond to the
geodesics of a left-invariant metric on the rotation group (which represents the kinetic energy
of the rigid body). As noticed by Poincaré [43] in 1901, this approach can be generalized
to any mechanical system, provided there is a Lie group which acts transitively on the
configuration space. This theory has been extended by Arnold [1] in 1966 to continuum
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mechanics. He has recast the evolution equations of an ideal fluid (with fixed boundary) as
the geodesic equations for a right-invariant metric on the diffeomorphism group.

2.1. Semi-invariant metrics on a Lie group

A right-invariant (or left-invariant) Riemannian metric on a Lie group G is defined by
an inner product on its Lie algebra g, or equivalently, by a symmetric invertible operator
A : g → g∗. In this context the operator A is called an inertia operator.

The corresponding Riemannian connection is also right-invariant and is given by

∇ξuξv =
1
2
[ξu, ξv] +B(ξu, ξv),

where ξu is the right-invariant vector field generated by u ∈ g and B is the right-invariant
tensor field generated by the bilinear operator

B(u, v) =
1
2

[
(adu)�(v) + (adv)�(u)

]
,

where u, v ∈ g. In this formula, ad�
u is the adjoint (relatively to the inner product given by

A) of the natural action of the Lie algebra on itself given by

adu : w �→ [u,w].

Remark 2.1. Notice that B vanishes if the metric is bi-invariant, because then

ad�
u = − adu

for all u ∈ g.

2.2. The Euler equation

Given a smooth path g(t) in G, we define its Eulerian velocity, which lies in the Lie algebra
g, by

u(t) = Rg−1(t)ġ(t),

where Rg stands for the right translationa in G.

Proposition 2.1. A path g(t) is a geodesic if and only if its Eulerian velocity u satisfies
the first-order equation

ut = −B(u, u). (2.1)

This equation for the velocities is known as the Euler equation.

Remark 2.2. This formalism can be extended to any semi-invariant symmetric linear
connection on a Lie group G. The fact that this connection is derived from a semi-invariant
Riemannian metric is not essential, as explored in [17].

aWe use the same notation Rg for the diffeomorphism of G, as well as for its tangent map.
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Example 2.1 (Motion of a free rigid body around a fixed point). To give a paradig-
matic example, letG be the rotation group SO(3) which acts transitively of the configuration
space of a rigid body. The metric corresponds to the kinetic energy of the body, which is
left-invariant. It is represented in the Lie algebra so(3) � (R3,∧) by the inertia tensor A of
the rigid body

Axx =
∫

Σ
(y2 + z2)dµ, Axy = −

∫
Σ
xydµ, . . .

which is a positive, symmetric 3 × 3 matrix. The Euler equation is given by

ωt = A−1(Aω ∧ ω),

where ω is the angular velocity (relative to the body).

Example 2.2 (Motion of an ideal fluid). In [1], Arnold observed that the equations
which described the motion of an ideal fluid (with fixed boundary) could also be interpreted
as the geodesics of a right-invariant metric but on an infinite-dimensional Lie group. In this
case, G is the infinite-dimensional Lie group SDiff(D) of volume-preserving diffeomorphisms
of the fluid domain D. The Lie algebra SVect(D) of SDiff(D) is the vector space of diver-
gence free vector fields on D which are tangent to the boundary. The metric corresponds
to the kinetic energy of the fluid which is right-invariant. It is represented by the L2 inner
product on SVect(D)

〈u, v〉 :=
∫

D
u(x) · v(x)dx.

The corresponding Euler equation

ut = u ∧ rotu− gradh, div u = 0

described the motion of perfect fluid (ρ = 1) where u = ϕt ◦ ϕ−1 is the Eulerian velocity of
the fluid and the enthalpy h is related to the pressure by h = 1

2‖u‖2 + p.

2.3. The Euler–Poincaré equation

A Riemannian metric on a manifold M permits to identify its tangent bundle TM with
its cotangent bundle T ∗M and the canonical symplectic structure on T ∗M can be pulled
back on TM . The metric defines a function H̄ on TM and the geodesics corresponds to the
integral curves of the Hamiltonian vector field XH̄ on TM .

When the manifold M is a Lie group G, the canonical symplectic structure on T ∗G is
invariant by right and left translations Rg and Lg. It induces on g∗ � T ∗G/G a Poisson
structure, called the Lie–Poisson bracket

{H,K}LP(m) = (m, [dmH, dmK]), H,K ∈ C∞(g∗).

Notice that dmH, dmK are elements of g.
A right- (or left-) invariant Hamiltonian function H̄ on T ∗G induces a reduced function

H on g∗ and a Hamiltonian system

mt = ad∗dmH̄m, m ∈ g∗ (2.2)
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called the Euler–Poincaré equation. In (2.2),

ad∗
um(v) := −m([u, v]), u, v ∈ g, m ∈ g∗

is the coadjoint action of g on g∗.
When the Hamiltonian corresponds to a right-invariant metric on G, defined by the

inertia operator A : g → g∗, we have H(m) = (m,A−1m) and we get

mt = ad∗A−1mm, m ∈ g∗.

Writing m = Au, the Euler–Poincaré equation (2.2) corresponds to the covariant counter-
part of the Euler equation (2.1).

2.4. A conservation law

The fact that the group G is a symmetry group for the Hamiltonian system leads to a
conservation law (Noether’s theorem). For a right-invariant Hamiltonian, we get

d

dt
(Ad∗

g−1 m) = 0, (2.3)

where m = Au and

Ad∗
g m(v) := m(Lg−1Rg.v), g ∈ G, v ∈ g, m ∈ g∗

is the coadjoint action of G on its dual Lie algebra g∗.

Example 2.3. In the case of the rigid body, this conservation law corresponds to conserva-
tion of the angular momentum. In the case of the ideal fluid, it corresponds to the Helmholtz
conservation law (the vorticity is transported along the flow).

Remark 2.3. The conservation law (2.3) implies that every solution m(t) of the Euler–
Poincaré equation stays on the coadjoint-orbit of the initial data m(0) (iso-vorticity).

3. Euler Equations with Hydrodynamical Background

After Arnolds’s founding paper, a large number of evolution equations arising in mathe-
matical physics have been shown to be derived the same way [33, 34, 41, 42]. Among them,
several approximations models in hydrodynamics. In this section, we will present some
examples which correspond to Euler equations on the diffeomorphism group of the circle
Diff∞(S1) or related groups.

3.1. Right-invariant metrics on Diff∞(S1)

Let Diff∞(S1) denotes the group of all smooth and orientation preserving diffeomorphisms
of the circle. This group is naturally equipped with a Fréchet manifold structure. More
precisely, we can cover Diff∞(S1) with charts taking values in the Fréchet vector space
C∞(S1) and in such a way that the change of charts are smooth maps (see [12] or [16] for
more details). Since the composition and the inverse are smooth maps for this structure we
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say that Diff∞(S1) is a Fréchet–Lie group, cf. [26]. Its Lie algebra Vect(S1) is isomorphic to
C∞(S1) with the Lie bracket given by

[u, v] = uxv − uvx.

A right-invariant metric on Diff∞(S1) is defined by an inner product on the Lie algebra
Vect(S1) = C∞(S1). In this paper, we shall consider an inner product which is given by

〈u, v〉 =
∫

S1

(Au)vdx,

where A : C∞(S1) → C∞(S1) is a linear operator on C∞(S1), which commutes with D :=
d/dx, i.e. A is a Fourier multiplier, given by

(Au)(x) =
∑
n∈Z

a(n)ûn exp(2iπnx),

where ûn is the nth Fourier coefficients of u, cf. [18]. The sequence a : Z → C is the symbol
of A and we shall use the notation A = op(a). In the sequel we shall specify conditions on
a, which guarantee that A is continuous, invertible, and symmetric.

By translating the above inner product, we obtain an inner product on each tangent
space TϕDiff∞(S1)

〈η, ξ〉ϕ = 〈η ◦ ϕ−1, ξ ◦ ϕ−1〉id =
∫

S1

η(Aϕξ)ϕxdx,

where η, ξ ∈ TϕDiff∞(S1) and Aϕ = Rϕ ◦ A ◦ Rϕ−1. This smooth family of pre-Hilbertian
structures, indexed by ϕ ∈ Diff∞(S1), defines a weak b Riemannian metric on Diff∞(S1).

An important special case corresponds to the Hk inner product (k ∈ N) on C∞(S1)

〈u, v〉Hk :=
∫

S1

(uv + uxvx + · · · + u(k)
x v(k)

x )dx

for which the inertia operator is given by

Ak = 1 − d2

dx2
+ · · · + (−1)k

d2k

dx2k
.

More generally, the Hs inner product on C∞(S1) (s ∈ R
+) is given by

〈u, v〉Hs :=
1
2

∑
n∈Z

(1 + n2)s(ûnv̂n + ûnv̂n).

The corresponding inertia operator is the Fourier multiplier

As := op((1 + n2)s).

bThe metric is called weak, because the corresponding topology induced on each tangent space of the Fréchet
manifold Diff∞(S1) is weaker than the usual Fréchet topology.
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3.2. Euler equations on Diff∞(S1)

In general, the existence of a symmetric, linear connection, compatible with a weak Rieman-
nian metric is far from being granted. However, in the situation we consider, the adjoint
operator ad�

u is well-defined and given by

ad�
u v = A−1(2(Av)ux + (Av)xu)

for u, v ∈ C∞(S1). Hence, one can define

B(u, v) =
1
2
A−1[2(Av)ux + (Av)xu+ 2(Au)vx + (Au)xv]

and check that the expression

Dξ(t)
Dt

=
(
ϕ,wt +

1
2
[u,w] +B(u,w)

)
,

where ξ(t) = (ϕ(t), w(t)) is a vector field defined along the curve ϕ(t) in Diff∞(S1) and
u(t) := ϕt ◦ϕ−1, defines a right-invariant, symmetric linear connection on Diff∞(S1) which
is compatible with the (weak) metric induced by A. The corresponding Euler equation on
Diff∞(S1) is given by

ut = −A−1{(Au)xu+ 2(Au)ux}.
Example 3.1. For A = I (L2 metric), we get the inviscid Burgers equation:

ut + 3uux = 0. (3.1)

Example 3.2. For A = I −D2 (H1 metric), we get the dispersionless CH equation:

ut − utxx + 3uux − 2uxuxx − uuxxx = 0. (3.2)

3.3. Euler equations on Diff∞(S1)/Rot(S1)

When the “inertia operator” A is not invertible, the theory may still be meaningful, provided
we reduce to a homogeneous space G/K in place of a Lie group G. In fact, the original
paper of Poincaré [43] deals with homogeneous spaces rather than Lie groups, and the
Euler-Poincaré equation is well-defined in that case [33]. Unfortunately, there is no simple
contravariant formulation of this equation such as the Euler equation, in general. Indeed,
in this case, the Eulerian velocity is only defined up to a path in K (see [45]). Nevertheless,
in some cases, the theory can be simplified by restricting to a subgroup.

This is the case, for instance, for a Fourier multiplier A on C∞(S1) such that kerA = R.
Then, A defines an isomorphism

A : {u ∈ C∞(S1);u(x0) = 0} → {m ∈ C∞(S1); m̂0 = 0},
where x0 is some arbitrary point on S

1. Therefore, we are lead to consider A as the (non-
degenerate) inertia operator for a right-invariant metric on the subgroup Diff∞

x0
(S1) of

diffeomorphisms which fix x0, whose Lie algebra is

{u ∈ C∞(S1);u(x0) = 0},
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and its (regular) dual Lie algebra may be identified with

{m ∈ C∞(S1); m̂0 = 0}.

Example 3.3. For A = D2 (which corresponds to the homogeneous Ḣ1 metric), we get
the HS equation:

uxxt + uuxxx + 2uxuxx = 0. (3.3)

Example 3.4. For A = HD (which corresponds the homogeneous Ḣ1/2 metric), where H
is the Hilbert transform, we get the modified CLM equation:

Huxt + uHuxx + 2uxHux = 0. (3.4)

3.4. Euler equation on the Bott–Virasoro group

The Virasoro group Vir is a central extension of Diff∞(S1) by R. The group multiplication
is given by the formula

(ϕ,α) ◦ (ψ, β) =
(
ϕ ◦ ψ,α+ β − 1

2

∫
S1

log(ϕ(ψ(x)))xd logψx

)
,

where (ϕ,α), (ψ, β) ∈ Vir, see [25]. It is a Fréchet Lie group whose Lie algebra vir can be
identified with the space C∞(S1) × R with Lie bracket

[(u, a), (v, b)] =
(
uxv − uvx,

∫
S1

uvxxxdx

)
,

where (u, a), (u, b) ∈ vir � C∞(S1) × R.
We consider an inner product on vir given by

〈(u, a), (v, b)〉 =
∫

S1

A(u)vdx + ab,

where A is a Fourier multiplier on C∞(S1). The corresponding Euler equation on vir is
given by

ut = −A−1[u(Au)x + 2(Au)ux − auxxx], at = 0.

Example 3.5. For A = I (L2 metric on vir), we get the KdV equation:

ut + 3uux − auxxx = 0, a ∈ R. (3.5)

Example 3.6. For A = I −D2 (H1 metric on vir), we get the general CH equation:

ut − utxx + 3uux − 2uxuxx − uuxxx − auxxx = 0, a ∈ R. (3.6)
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3.5. Semi-direct products

It is also interesting to consider Euler equations on semi-direct products. For instance, let
Diff∞(S1)�C∞(S1) be the semi-direct product of the diffeomorphism group Diff∞(S1) with
the Abelian group C∞(S1). The group operation is given by

(ϕ, f) · (ψ, g) := (ϕ ◦ ψ, f + g ◦ ϕ−1),

where ϕ,ψ ∈ Diff∞(S1) and f, g ∈ C∞(S1). For the H1 × L2 metric on the Lie algebra
C∞(S1) � C∞(S1), the corresponding Euler equation corresponds to the two-component
CH equation:

ρt = −(ρu)x, ut − uxxt = −3uux + 2uxuxx + uuxxx − ρρx, (3.7)

a generalization of the CH equation (see [4, 8, 23, 30]).

3.6. Non-metric Euler equations

As noticed before, the Euler equation is still meaningful for a semi-invariant, symmetric
linear connection, even if it is not derived from a semi-invariant metric. This generalization
of the theory permits to interpret geometrically [17] the so-called b-equations [15, 28]

mt = −(mxu+ bmux), m := Au = u− uxx, (3.8)

where b ∈ R. For b = 2 we recover the CH equation and for b = 3 we obtain the DP equation

ut − utxx + 4uux − 3uxuxx − uuxxx = 0, (3.9)

another integrable model which has been extensively studied in the last decade. It is admit-
ted that the b-equations are integrable only for b = 2 and b = 3.

Each of them corresponds to the Euler equation (with real parameter b) for the right-
invariant, symmetric linear connection on Diff∞(S1) induced by

B(u, v) =
1
2
A−1[(Av)xu+ (Au)xv + b(Av)ux + b(Au)vx].

Remark 3.1. This connection derives from a semi-invariant metric only for b = 2 (see [35,
20]). In all cases, nevertheless, the solutions of (3.8) satisfy the conservation law

(m(t) ◦ ϕ(t))ϕb
x(t) = m(0).

In the non-metric case, however, this does not derive from (2.3).

4. Local Existence of Geodesics

Although the geometric theory presented above is appealing and can be used to state some
stability results, using for instance sectional curvatures [1], the theory remains somewhat
formal, due to the fact that analysis on Fréchet manifold is not an easy task. To circumvent
the serious analytical difficulties encountered in working rigorously with the actual configu-
ration space (smooth diffeomorphisms), Ebin and Marsden [16] enlarged this configuration
space to spaces with a more convenient structure where a rigorous study can be pursued.
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4.1. The group of diffeomorphisms of class Hq

For q > 3/2, let Dq(S1) be the set of C1-diffeomorphisms of the circle which are of class Hq.
This set has the structure of a Banach manifold (modeled on Hq(S1)). It is a topological
group but not a Lie group, composition and inversion in Dq(S1) are continuous but not
differentiable.

From an analytic point of view, Diff∞(S1) may be viewed as an inverse limit of these
Banach manifolds

Diff∞(S1) =
⋂
q> 3

2

Dq(S1).

The scales of space {Dq(S1)}q>3/2 is called a Banach manifold approximation of Diff∞(S1).

4.2. The geodesic equation as an ODE

Notice that the right-hand side of the Euler equation

ut = −A−1[u(Au)x + 2(Au)ux]

is of order 1 because if u ∈ Hq(S1) then A−1[u(Aux)] ∈ Hq−1(S1). Hence the Euler equation
cannot be realized as a dynamical system on any of the Banach spaces Hq(S1).

It is however quite surprising that in Lagrangian coordinates, this problem can be over-
came, provided the order of A is not less than 1. In fact, let ϕ be the flow of the time
dependent vector field u and let v = ϕt. Then vt = (ut + uux) ◦ ϕ and u solves the Euler
equation if and only if (ϕ, v) is a solution of

{
ϕt = v,

vt = Sϕ(v),
(4.1)

where

Sϕ(v) := (Rϕ ◦ S ◦Rϕ−1)(v),

and

S(u) := A−1{[A,u]ux − 2(Au)ux}.
The main observation is that if A is a differential operator of order r ≥ 1 then the

quadratic operator

S(u) := A−1{[A,u]ux − 2(Au)ux}
is of order 0 because the commutator [A,u] is of order less than ≤ r− 1. One might expect,
that for a larger class of operators A, the quadratic operator S to be of order 0 and the
second order system (4.1) to be the local expression of an ODE on the Banach manifold
TDq(S1).

Remark 4.1. For the Euler equation on the Bott–Virasoro group

ut = −A−1[u(Au)x + 2(Au)ux − auxxx], at = 0,
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the same process leads to a second-order system of the form (4.1) but for which

S(u) = −A−1(−[A,u](ux) + 2(Au)ux − auxxx).

In that case, the quadratic operator S might be expected to be of order 0 provided that
r ≥ 3 rather than r ≥ 1 (see [10]).

4.3. The geodesic spray

The second-order vector field on Diff∞(S1), defined in a local chart by

F : (ϕ, v) �→ (v, Sϕ(v))

is called the geodesic spray, cf. [36].
Notice that, even if S can be extended to a quadratic, bounded operator Hq(S1) →

Hq(S1), we can only conclude, a priori, that F extends continuously on TDq(S1). Indeed,
(ϕ, u) �→ u ◦ ϕ and ϕ �→ ϕ−1 are only continuous, but not differentiable. In Sec. 5, we will
give conditions on A which ensure that F extends to a smooth vector field Fq on TDq(S1),
for q large enough.

If the extension of Fq to TDq(S1) is smooth, the application of the Picard–Lindelöf
theorem on the Banach manifold TDq(S1) ensures that, given any (ϕ0, v0) ∈ TDq(S1), there
is a maximal solution (ϕ, v) of (4.1), defined on an interval Jq(ϕ0, v0), such that

(ϕ(0), v(0)) = (ϕ0, v0).

4.4. A no gain, no loss result

A remarkable observation due to Ebin and Marsden (see [16, Theorem 12.1]) states that,
if the initial data (ϕ0, v0) are smooth, the maximal time interval of existence Jq(ϕ0, v0) is
independent of the parameter q. This is an essential ingredient which makes it possible to
avoid Nash–Moser type schemes to establish local existence of geodesics on Diff∞(S1).

Notice first that the spray F is invariant under right translations Rη. In a local chart,
we have

F (Rηϕ,Rηv) = (Rηv,RηSϕ(v)).

Indeed, if η ∈ Diff∞(S1), Rη is a diffeomorphism of Dq(S1) for all q > 3/2, and the invariance
property under Rη is true for the extended spray Fq. This property, is inherited by the flow
Ψq of Fq on TDq(S1). In a local chart we have

Ψq(Rηϕ,Rηv, t) = RηΨq(ϕ, v, t).

In particular (see [18] for the details), specializing to η = τs, the spatial rotation by s on
S

1, and taking the derivative in s at s = 0, we get

D(ϕ,v)Ψq(ϕ0, v0, t) · (ϕ0x, v0x) = (ϕx(t), vx(t)).

Now, since D(ϕ,v)Ψq(ϕ0, v0, t) is a bounded, linear operator on the Banach space Hq(S1) ×
Hq(S1), we obtain that if the initial data (ϕ0, v0) is of class Hq+1 then (ϕ(t), v(t)) is of class
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Hq+1 (no loss). Going backward, we get that if (ϕ(t), v(t)) is of class Hq+1 for some t > 0
then (ϕ0, v0) is of class Hq+1 (no gain).

Proposition 4.1 (Ebin–Marsden [16]). Let (ϕ, v) be a solution of (4.1) on TDq(S1)
with initial data (ϕ0, v0).

(1) If (ϕ0, v0) ∈ TDq+1(S1) then (ϕ(t), v(t)) ∈ TDq+1(S1) for all t ∈ Jq(ϕ0, v0).
(2) If there exists t ∈ Jq(ϕ0, v0)\{0} such that (ϕ(t), v(t)) ∈ TDq+1(S1) then (ϕ0, v0) ∈

TDq+1(S1).

A consequence of Proposition 4.1 is the following local existence theorem for geodesics
on Diff∞(S1) (see [18]).

Theorem 4.1. Suppose that the spray F extends to a smooth vector field Fq on the Banach
manifold TDq(S1), for all q large enough. Then, given any (ϕ0, v0) ∈ TDiff∞(S1), there
exists a unique non-extendable solution

(ϕ, v) ∈ C∞(J, TDiff∞(S1))

of (4.1), with initial data (ϕ0, v0), defined on the maximal interval of existence J = (t−, t+).
Moreover, the solution depends smoothly of the initial data.

5. Smoothness of the Spray

In this section, we shall investigate under which conditions on the inertia operator A, the
spray F extends to a smooth vector field Fq on TDq(S1), for q large enough. In the following,
we suppose that A extends, for all q large enough, to a bounded, linear isomorphism

A : Hq(S1) → Hq−r(S1),

where r ≥ 1 is fixed. In terms of the symbol a of the Fourier multiplier A, this is equivalent
to assume that a does not vanish, and that

a(n) = O(|n|r), 1
a(n)

= O(|n|−r).

As already stated, even if A is a bounded operator from Hq(S1) to Hq−r(S1), one cannot
conclude directly that the mapping

(ϕ, v) �→ Aϕ(v) := Rϕ ◦ A ◦Rϕ−1(v)

is smooth from Dq(S1)×Hq(S1) to Hq−r(S1), because (ϕ, v) �→ Rϕ(v) is not differentiable.
A first reduction of the problem consists to show, however, that if this maps is smooth then
F extends to a smooth vector field on TDq(S1) (see [18] for the proof).

Lemma 5.1. Let q > r + 1/2. Suppose that the mapping

(ϕ, v) �→ Aϕ(v), Dq(S1) ×Hq(S1) → Hq−r(S1)

is of class Cm+1. Then the mapping

(ϕ, v) �→ Sϕ(v), Dq(S1) ×Hq(S1) → Hq(S1)

is of class Cm, where S(u) = A−1{[A,u]ux − 2(Au)ux}.
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Remark 5.1. This proposition has to be compared to the well-known fact, in classical
Riemannian geometry, that the spray is of class Cm provided the metric is of class Cm+1.

We are therefore reduced to investigate for which Fourier multiplier A of order r is the
mapping

ϕ �→ Aϕ, Dq(S1) → L(Hq(S1),Hq−r(S1))

smooth, for sufficiently large q. If A is a differentiable operator, then Aϕ(v) is a rational
expression of ϕx, v and their derivatives (see [17], for instance). Hence for q > r + 1/2, the
map is smooth (because Hs(S1) is a Banach algebra for s > 1/2).

Example 5.1. For D = d/dx we get

Dϕ(v) =
vx

ϕx
, D2

ϕ(v) =
vxx

(ϕx)2
− vxϕxx

(ϕx)3
, . . . .

However, this argument does not apply to a general Fourier multiplier. In [18], we have
established smoothness of the conjugates for a larger class of (nonlocal) Fourier multiplier.

Theorem 5.1 (Escher–Kolev [17]). Let A = op(a(ξ)) be a Fourier multiplier of order
r ≥ 1. Suppose that, for each n ≥ 1, the symbol a satisfies the following conditions:

(1) fn(ξ) := ξn−1a(ξ) is of class Cn−1,

(2) f
(n−1)
n is absolutely continuous,

(3) there exists a constant Cn > 0 such that

|f (n)
n (ξ)| ≤ Cn(1 + ξ2)(r−1)/2, a.e.

Then the map

ϕ �→ Aϕ, Dq(S1) → L(Hq(S1),Hq−r(S1))

is smooth for each q ∈ (r + 3
2 ,∞).

Remark 5.2. The hypothesis on the symbol of the operator A can easily be checked on
explicit examples. It is satisfied for the Hs metric on Diff∞(S1) for which

a(ξ) = (1 + |ξ|2)s,

and for the homogeneous metric Ḣs on Diff∞(S1)/Rot(S1) for which

a(ξ) = |ξ|2s

provided s ≥ 1/2. For s = 1/2, we get the Ḣ1/2 metric on Diff∞(S1)/Rot(S1), which
corresponds to the modified CLM equation (3.4).
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Sketch of proof. The proof consists mainly in three steps.

Step 1: Computing the derivatives. The map (ϕ, v) �→ Aϕ(v) is smooth on the Fréchet
manifold Diff∞(S1) × C∞(S1). The nth Gâteaux partial derivative in ϕ can be written as

∂n
ϕAϕ(v, δϕ1, . . . , δϕn) = RϕAnRϕ−1(v, δϕ1, . . . , δϕn),

where An is a (n + 1)-linear operator, which is given by a recursive formula involving
commutators. In particular, for n = 1, we get:

A1(u0, u1) = [u1, A]u0x.

Step 2: Extension of An to the Sobolev spaces. Let em(x) = exp(2iπmx) for m ∈ Z.
Then

An(em0 , . . . , emn) = an(m0, . . . ,mn)em0+···+mn ,

where an is given by a recursive formula involving a. For instance

a1(m0,m1) = (2iπ)m0[a(m0) − a(m0 +m1)].

The hypothesis on the symbol a of A leads to the inequality

|an(m0, . . . ,mn)| ≤ Cn(1 +m2
0)

r/2 · · · (1 +m2
n)r/2,

from which we can deduce that An extends to a bounded (n + 1)-linear operator from
Hq(S1) to Hq−r(S1).

Step 3: Smoothness of Aϕ. The mapping

ϕ �→ Rϕ, Dq(S1) → L(Hρ(S1))

is locally bounded c for 3/2 < ρ ≤ q. Since ϕ �→ ϕ−1 is continuous on Dq(S1) for q > 3/2,
the same is true for ϕ �→ Rϕ−1. Therefore

ϕ �→ An,ϕ := RϕAnRϕ−1 , Dq(S1) → Ln+1(Hq(S1),Hq−r(S1))

is locally bounded, for each n ≥ 0. Using the mean value theorem, we deduce then inductively
that

{ϕ �→ An+1,ϕ is locally bounded} ⇒ {ϕ �→ An,ϕ is locally Lipschitz},
and

{ϕ �→ An+1,ϕ is locally Lipschitz} ⇒ {ϕ �→ An,ϕ is differentiable}.
Since Aϕ is a bounded, linear operator, we can then conclude that

ϕ �→ Aϕ

is smooth.

cBut not continuous, although the mapping (ϕ, v) �→ v ◦ ϕ is continuous.
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6. The Minimization Problem

6.1. The exponential map

The geodesic flow of a smooth spray on a Banach manifold M satisfies the following remark-
able property

ϕ(t, x0, sv0) = ϕ(st, x0, v0),

which is a consequence of the quadratic nature of the spray [36]. Hence, the exponential
mapping expx0

(the time one of the flow) is well-defined on a neighborhood of 0 in Tx0M .
For a strong metric, this mapping is a local diffeomorphism from a neighborhood of 0 in
Tx0M onto a neighborhood of x0 in M . It defines a privileged chart around x0, called a
normal neighborhood.

On a Fréchet manifold, and in particular on the group Diff∞(S1), the existence of this
chart is not granted. In that case, even the group exponential is not locally surjective [40].
Moreover, it was shown in [11] that the Riemannian exponential map for the L2 metric
(Burgers equation) on Diff∞(S1) is not a local C1-diffeomorphism near the origin. Nev-
ertheless, for the Hk metrics (k ≥ 1) (see [12]), the Riemannian exponential map is a
smooth, local diffeomorphism. This result is still true for Hs metrics provided s ∈ [1/2,+∞)
(see [17, 18]).

6.2. Minimizing the arc-length

On a strong Riemannian manifold, given two nearby points x and y, there exists a unique
geodesic, joining these two points, which minimizes (globally) the arc-length. This is a
consequence of the existence of normal neighborhoods. This is no longer true for a weak
Riemannian metric (pre-Hilbertian structure) in general. Indeed, it may happen that the
lower bound of arc-lengths between any pair of points always vanishes. This is the case
for the L2 metric on Diff∞(S1) as was shown in [39]. Nevertheless, for a right-invariant
metric on Diff∞(S1), which extends smoothly to a weak Riemannian metric on each Banach
approximation Dq(S1), with a smooth spray, there exists a unique geodesic which minimizes
locally the arc-length (weak version) [18]. This is the case, for instance, for the H1/2-metric
on Diff∞(S1). Notice that this is not in contradiction with the fact that the global infimum
of arc-length between each pair of diffeomorphisms, in this case, vanishes identically [2].

6.3. The geodesic semi-distance

On a finite-dimensional Riemannian manifold M , the lower bound of the arc-lengths of
piecewise C1 paths γ between two points

dg(x, y) = inf
γ

∫ 1

0
‖γ̇(t)‖gdt,

defines a distance on M , that is

x �= y ⇒ dg(x, y) > 0.

This is an essential property of a strong Riemannian metric (see [36, Chap. VII]). This is
no longer true, in general, for a weak Riemannian metric. In that case, this function is only
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a semi-distance. It may even happen that this function vanishes identically as was proved
in [39] for the right-invariant metric induced by the L2 metric on Diff∞(S1). This result
has been completed recently in [2], where it was shown that the geodesic semi-distance ds

induced by the Hs metric vanishes identically on Diff∞(S1) if s ∈ [0, 1/2], whereas ds is a
distance for s > 1/2.

7. Conclusion

In this paper, we have presented a survey of approximation models in water waves that
can be recast as Euler equations for weak, right-invariant metrics on Diff∞(S1) or related
groups. In all relevant cases, the inertia operator is a Fourier multiplier (i.e. a continuous
linear operator on C∞(S1) which commutes with d/dx) or build from a Fourier multiplier
(in the case of the Bott–Virasoro group or for the two-component CH, for instance).

We have provided a condition on the symbol of the inertia operator A which ensures
that its conjugates

ϕ �→ Aϕ,

extends smoothly to Dq(S1) for sufficiently large q. We have used this result to prove
that the spray extends smoothly to the Banach approximation manifolds TDq(S1) and
established local existence of geodesics using a no loss, no gain result. This method was
successfully applied to the Hs right-invariant metric on Diff∞(S1) and the homogeneous
Ḣs right-invariant metric on Diff∞(S1)/Rot(S1) for s ≥ 1/2.

Our methods should apply to establish the existence of smooth geodesics for the Weil–
Petersson equation (corresponding to the Ḣ3/2 metric on Diff∞(S1)/PSL(2,R)) provided
we can prove a reduction Lemma 5.1. This equation was studied in [24], where it has been
shown that this metric is strong on a “replacement” for D3/2(S1) (which does not exists as a
topological group) and that geodesics are complete on this extended manifold. Nevertheless,
it is not clear that geodesics on Diff∞(S1)/PSL(2,R) can be obtained from [24].

In a second part, we have discuss the minimization problem for geodesics of a weak
Riemannian metric. It was shown that when the spray can be extended smoothly to the
Banach approximation manifolds, the geodesics minimize locally the arc-length between
two nearby points. This has to be compared to what happens for a strong Riemannian
metric, where the geodesics minimize globally the arc-length between two nearby points.
The problem whether the geodesics minimize globally the arc-length if the geodesic semi-
distance is moreover a distance (like for CH, for instance) remains to be studied.

In all the above study, we have limited ourselves to the periodic case. It should be
emphasized that this is not a serious limitation and that the theory can be extended to the
non-periodic case, provided we impose some kinds of decreasing conditions at infinity.d The
natural candidate for this is the group

DiffH∞(R) = {id + f ; f ∈ H∞(R) and f ′ > −1},

dBecause Diff∞(R) is not a regular Fréchet Lie group in the sense of Milnor (see [40]). In a regular Lie
group, elements of the Lie algebra correspond to one-parameter subgroups.
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where

H∞(R) =
+∞⋂
n=1

Hn(R).

It was shown in [27] that DiffH∞(R) is a regular Fréchet Lie group.
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