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Abstract: Physically motivated models of electromechanical motion systems are required
in several applications related to control design and auto-tracking, model-based fault
detection, feed-forward, and simply interpretation. However, attempts to create such
models automatically via structure and parameter identification struggle with ambiguities
regarding the correct internal structure of the model. Designing a reasonable set of
candidate models is difficult, because it is not known which models are distinguishable and
which are not. This paper gives a simple to use necessary condition for indistinguishability
of multiple mass models as they are used to model the control-relevant features of motion
systems. In an automated way models are generated that can be created by considering
elasticities at different positions in the mechanical structures. The condition is applied to
these models for the case of three masses. In three examples it is shown that the criterion
simplifies the subsequent structure and parameter identification considerably by reducing
the number of possible models. For higher numbers of masses, however, it would become
intractable.
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1 Introduction example in the fields of control design, Kalman-
filtering, model-based fault diagnosis, and rapid control
prototyping bright-grey box models are often required.
Sometimes the inner structures of a given system are also
useful for understanding and interpretation.

Bright-grey box models of servo control systems have
not been superseded by the currently raising black-
box models, because several applications require the
knowledge of the system’s internal structure. For
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Because modelling is time-consuming and requires
expert knowledge it is seductive to automate the
process of model building. Unified experiments could be
conducted followed by an algorithm that identifies the
parameters of several candidate models with different
structures and selects the one with the best fit. In
this way the structure is identified along with the
parameters. Procedures of this type are called structure
and parameter identification, model selection, model
structure optimization and have been described in
several publications: South et al. (1996); Gray et al.
(1997); Aguilar et al. (2001); Madar et al. (2004);
Winkler et al. (2004); dos Santos Coelho and Pessoa
(2009); Tantau et al. (2019). In addition to these offline
methods observers have been described that identify not
only states but also model instances of switched models
online (Gémez-Gutiérrez et al. (2017)).

In this study we focus on multiple mass models
(MMS) as they are used to model machine tools,
robots with elastic joints, stacker cranes, conveyors, etc.
Identifying the best suitable MMS structure of a given
system allows to determine at which point structural
compliances should be considered in the model and
at which point the compliance can be neglected, that
is modelled by a rigid connection. The same holds
for masses and rotary inertias. While the problem of
selecting a suitable model complexity is excluded here we
want to study the selection of the best possible multiple
mass model of a certain given order.

The problem with the naive solution to identify the
parameters of all candidate models and to select the
one with the best fit is that of indistinguishability. The
question of distinguishability of models with different
structures asks whether input-output experiments exist
that allow to isolate the model with the best fit or
if on the contrary other candidate models with a
different structure will fit just as well for any excitation.
This consideration is important because otherwise the
model selection algorithm would output results with
treacherous certainty leading to wrong conclusions.

1.1 Definitions

Different notions of model distinguishability exist in
the literature: Strict distinguishability deals with the
question if for two models an input trajectory exists that
will produce the same output, so that the models cannot
be discriminated (Motchon et al. (2017)). This is not
relevant for the structure and parameter identification
where the question is rather if an input trajectory exists
that can discriminate. QOutput-distinguishability and
bound-distinguishability are concepts that investigate if
two models can produce the same output for any input
and initial state, not necessarily the same for both
models (Gémez-Gutiérrez et al. (2017)). Clearly, these
definitions differ from the question at hand, as explained
next.

Starting point for the analysis of distinguishability
is a finite set of model structures M (-), Ma(-), ... with

the same number of inputs and outputs. The parameter
values p, € 2 and p, € Q of the systems M (p) and
M (p) are called equivalent if the corresponding system
outputs are identical for all admissible input trajectories
(Vajda (1981)). This definition is limited to single points
in parameter space but can be extended to locally and
structurally equivalent parameterized systems: If there
are an open neighbourhood V of p, and V of Py where
for every p € V there is an equivalent parameter value
p € V and vice versa, then the two systems M(p) and
M (p) are called locally equivalent. Structural equivalence
of the systems means that the above is true not only for a
neighbourhood but for every p € Q, respectively p € €,
except for points of a set of zero measure (Vajda (1981)).

While the definitions of equivalence treat both models
interchangeably, terms related to (in)distinguishability
are sometimes used in a directed way: Model M (-) is
said to be structurally indistinguishable (s.i.d.) from
M(-) if for almost any admissible p there is at least
one equivalent p (Raksanyi et al. (1985); Avdeenko and
Kargin (2000)). In this case M(-) is called the generating
model, while M (-) is the model to be built (Walter et al.
(1984)). If no equivalent parameter vector exists for any
point in parameter space, the models are said to be
structurally distinguishable (Raksanyi et al. (1985)) or
structurally output distinguishable (s.o0.d.) (Walter et al.
(1984)). Note that M(-) is (s.0.d.) from M(-) does not
imply that M(-) is (s.0.d.) from M(-), because M(-)
may be more flexible and equipped with more model
parameters. Also, a model can be neither s.o.d. nor s.i.d.
(Walter et al. (1984)).

As a further refinement of systems that are
not structurally indistinguishable but also not
structurally distinguishable Godfrey and Chapman
(1989) investigated regions of indistinguishability. These
are regions in ) in which equivalent parameter values in
) can be found. Often, they are limited by the fact that
parameter values in p must be real and non-negative.

A different understanding of distinguishability
analysis is to generically create a set of models of a
certain class that are indistinguishable from a given
structure or a set of structures (Godfrey and Chapman
(1989)), but this usually more difficult question is not
followed here.

1.2 Methods for distinguishability analysis

Methodologically, the investigation starts from the set
of algebraic or differential equations that describe the
model and depending on the method also the excitation.
Then, all quantities are eliminated from the set of
equations that are not necessary to describe the input-
output behaviour, such as state variables, time, and the
inputs themselves. The resulting minimal representation
is called the ezhaustive summary (Walter et al. (1984))
or the structural invariant vector / moment invariants
(Vajda (1981)) of the model. It is then tested for
the existence of solutions with the help of computer
algebra and elimination theory. Examples of solvers
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for polynomial functions are given in Raksanyi et al.
(1985). The minimal representation consists mostly of
algebraic equations, an exception may be the local state
isomorphism theorem for nonlinear state space models
where differential equations are solved (Godfrey et al.
(1994)).

Methods for generating the exhaustive summary
include the transfer function or Laplace transform
approach (Bellman and Astrém (1970)) and the
similarity  transformation approach (Avdeenko and
Kargin (2000)) for linear systems, as well as the time-
power series or Taylor series approach (Pohjanpalo
(1978)), generating-series approach (Raksanyi et al.
(1985); Walter and Pronzato (1996)) and local state
isomorphism approach (Evans et al. (2004)) for nonlinear
systems. For nonlinear but rational models differential
algebra has been used in Meshkat et al. (2018).

The problem of proving (in)distinguishability is
closely related to identifiability. The difference is that
in identifiability tests one questions the uniqueness of a
solution, while in distinguishability tests one questions
the existence of any solution. Accordingly, existing
necessary and sufficient criteria differ significantly
(Godfrey et al. (1994); Raksanyi et al. (1985)). For
example, equating the Markov parameters of two models
to show structural equivalence is often not readily
possible because a high number of equations had to be
considered, while it may be possible to show structural
identifiability with only a subset of these equations.

In addition to these computationally extensive
methods necessary conditions for indistinguishability
have been formulated (Godfrey and Chapman (1989);
Zhang et al. (1991)). They can serve to eliminate some
of the candidate models in a preceding step. Recently,
a web application, called DISTING has been made
available, which allows to apply these conditions to linear
compartmental models (Davidson et al. (2017)).

1.3 Contributions

Indistinguishability of different parameterized model
structures is mostly known from biomedical modelling
and chemical reaction kinetics (Evans et al. (2004))
represented by compartmental models (Yates et al.
(2009)). In this paper the question is applied to multiple
mass models as they are used to describe control-
relevant features of electromechanical motion systems.
These systems allow a distinction based on the order
of resonances and antiresonances. The derived criterion
is often easier to apply than existing methods, even by
visual comparison of the systems’ frequency response
functions. It is possible to exclude some or most of
the candidate models in the case of two and three
masses. Higher numbers of masses are not considered
here, because the complexity of equations would be
prohibitive.

Among the existing methods the transfer function
approach is probably the most straightforward choice for
models with a linear transfer function. However, it often

Y
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Figure 1: Exemplary multipe mass model with Ng = 3,
Ngap = 1; Nact+ = 37 Nact— = 13 Nmeas+ = 27 Nmeas— — 0

fails to provide conclusive answers for multiple mass
systems as the equations tend to be long. Especially,
regional distinguishability is difficult to investigate from
these equations. The generic nature of all the cited
methods ignores special cases that occur only for
particular parameter combinations. The analysis in this
papers considers also these special cases.

2 Combinatory generation of multiple mass
models

The intention of this section is to determine how
many multiple mass models can be created for a given
number of masses by arranging the springs, actuator and
sensor in different positions and accordingly how many
different models must be investigated in the subsequent
section. If the analysis shows that all the models are
distinguishable, it is possible to decide based on a
measured frequency response function (FRF), which
model fits the measurement best, i.e. where structural
compliance should be considered in the model based
on a given measurement. We restrict ourselves to linear
chains of masses without branching or loops and with
only one actuator and one sensor, as shown in Fig. 1.
¢; and d; stand for linear springs and viscous dampers,
respectively. Although the translational case is displayed,
the analysis would work equivalently in a purely rotatory
setting. Actuators and sensors are modelled as ideal
transfer elements, notwithstanding the fact that more
detailed models exist, including for example hysteresis
(Vaiana et al. (2018)).

For a given number N of masses the complete
set of possible models can be created by arranging
the sensor, the actuator and the gap. The gap refers
to the one position in the chain where the spring
is missing, representing the degree of freedom of
the positioner/motion system. It is located between
masses Ngap € N and ngap, + 1. Actuator and sensor have
one point of actuation muet+ € N, resp. measurement
Nmeas+ € N and a reference point against which the
force is applied n,c— € N, resp. the measurement is
made Nmeas— € N. An index of 0 refers to the rigid
environment instead of a mass. The set of possible
models can be constructed by varying these five indices
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under constraint of the following rules:

0 < ngap < N —1,

0 < ngei— < ngap,

Ngap + 1 < Nacir < Vg, (1)
0 < Neas— < Ngap,

Ngap + 1 < Nmeast+ < Np.

For N = 2...5 masses the number of possible models is
given in the second row of Tab. 1.

This enumeration includes also those models where
some of the masses are either not excited or the sensor
signal is not sensitive to their vibration by construction.
So, independent of the parameters the number of
effective masses reduces and the transfer function (TF)
simplifies to that of a reduced-order model. In order to
exclude such degradations the following rules must be
integrated in addition to (1):

(2)

Ngap = 0V ngee— > 0,

Ngap = 0V Nmeas— > 0.
The first condition ensures excitability of all masses,
while the second ensures sensitivity of the measurement
to all masses. In the example in Fig. 1 the second
condition is violated: Mass 1 is excited but it does
not influence the measurement. As a result of including
rules (2) the number of possible models reduces, see third
row of Tab. 1.

Table 1 Number of possible models for different numbers
of masses depending on how degradations and
redundancies are counted.

Masses N ‘1 2 3 4 5
Basic combinations | 1 8 34 104 259

Degradation-free 1 5 17 50 129
+ Reduncancy-free | 1 3 11 29 73

Finally, redundant combinations must be excluded
from the counting. Here, redundant refers to the
situation that two models can be converted into each
other by simply renaming/renumbering some of their
elements. If the only difference between two models is the
naming of their elements, they should not be counted as
two. This can be prevented by the following additional
rules:

3)

Nact+ S Nmeas+>
Nact+ < Ngap T+ |—(NB - ﬂgap)/2—|,

which leads to the last row of Tab. 1. The symbol
[ ] means rounding up to full integers. Both rules are
violated by the example in Fig. 1.

In the next section a thorough analysis of these
redundancy- and degradation-free combinations is
performed in order to determine which of the models
can or cannot be distinguished from an input-output
measurement. We restrict the analysis to Np =3

because for Ny =1 the situation is trivial and for
N =2 it is well known that both collocated models
show an antiresonance-resonance (AR) behaviour
independent of the parameters, while the third model
has a resonance (R) FRF (Coelingh et al. (2002)). Higher
counts of masses would lead to very long equations
and the pursued thorough analysis of all TFs would
be tedious or even intractable. For 3-mass systems the
complete list of 11 possible models is shown in Tab. 2.
Spring-damper elements are displayed as springs.

3 Distinguishability criterion

The distinguishability analysis deals with the question
if a candidate model to be investigated can be
parameterized in a way that it resembles a given
FRF. The FRF could be obtained from a generating
model or a measurement. It is uniquely defined by the
gain at one frequency and the set of poles and zeros.
Referring to the above definitions of indistinguishable
and equivalent models or parameters, this question
is clearly not answered by an analysis of structural
indistinguishability, because here distinguishability is
determined by characteristics that hold only in
subregions of the parameter space or even in sets of zero
measure, for example when poles and zeros cancel out. It
is rather a question of regional indistinguishability with
emphasis on special cases such as pole-zero cancellation
(PZC) that occur due to dependencies among the
parameters.

A necessary condition for indistinguishability in this
sense is that the model to be built can show a given
pattern of poles and zeros in the TF for physical
parameters p € RT < co. Pattern means the frequency
and location in the complex plane, as delineated shortly.
These poles and zeros mostly show up as resonances and
antiresonances in the FRF. In order to keep the analysis
simple, damping is neglected in the analysis of Sec. 3
and 4 and only the inertance (force to acceleration) is
considered, but the results hold also for position and
velocity output and it is assumed that damping changes
the FRFs, especially the frequencies of resonances and
antiresonances, only minimally. As a result of these
restrictions only even exponents of s appear in the TF:

b2n52n + + b282 + b()
G(s) = 2n 2 :
a9,8°™ + ... + ass* + ag

(4)

It is convenient to substitute = —s? and to discuss
the location of roots in §2 rather than in s, because for
the most common case of purely imaginary, complex
conjugate roots in s the equivalence in €2 is just one
positive, real number.

In Fig. 2 the three possible locations of roots in the
complex plane are shown. Because the coefficients are
real, the roots in €2 are either real or complex conjugate.
For real roots in €2, it must be further distinguished
between positive and negative locations, because in the
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Table 2 Complete set of 3-mass models to be considered
in the analysis. Collocated systems are marked by
an asterisk *.

1D Sketch
Y
-
1
my AvA ma AvA ms3
C12 C23
-l y .
F =
A2
mi AvA me AvA ms
c12 €23
-l y [
F —>
A3
my AvA Mo AvA ms3
C12 C23
<l y [
F —>
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my AvA me AvA ms3
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former case the roots in s are complex conjugate, purely
imaginary (left figure) and with damping they move into
the left plane, so that the phase is changed by +180°.
They appear as resonances and antiresonances in the
FRF. In the latter case (middle figure) non-minimal
phase roots (nm) in s occur and the phase remains
unchanged. This is also true for the right case.

Q real, 2 >0 Q real, 2 <0 Q2 complex conj.
x X %
0 0 %X X 0
x X X
0 0 0

Figure 2: Locations of roots in the complex plane for s
(black) and Q (grey)

Additional poles in the origin determine the type of
the TF (inertance, mobility, receptance), but they are
not of interest for the pattern of poles and zeros needed
for the distinguishability analysis.

The pattern of poles and zeros is analysed for all
eleven systems in the following section. Concatenating
As for antiresonances and Rs for resonances gives the
FRF type, e.g. ARR, ARAR, .... The objective is to
find out which FRF types are possible for each model.
Once the FRF types have been assigned, a preselection
of possible models can be made for a measured or
calculated FRF based on these results.

4 Distinguishability analysis

This section analyses the distinguishability of the eleven
models shown in Tab. 2 by investigating possible FRF
types as explained in Sec. 3. The analysis is started by
utilising common properties of multiple mass systems in
the first part of this section.

4.1 Common properties of multiple mass systems

The transfer function matrix from force to position can
be written in matrix form:

a(w) = (C - w2M)_1 with s =iw (5)

with the stiffness matrix C' and mass matrix M. The
eigenvalue problem

0=(C-QM)X with Q=uw? (6)

can be solved for the eigenvalues and eigenvectors,
summarized in the matrices A and W, respectively.
The eigenvalues in A are always real and non-
negative, because C' is positive (semi-)definite and M is
positive definite (Janschek (2010); Dresig and Holzweifig
(2016)). They are identical to the poles of (4) and
accordingly only the left case in Fig. 2 is encountered in
the denominator polynomials of all systems.

The mass-normalized matrix of eigenvectors ® is
defined as

& =UM'/? width M, =¥TMP. (7)

® is used as a transformation to write the TF in modal
coordinates:

a(w)=® (A —w’T) " T (8)
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A single entry from force input at coordinate k to
position output at coordinate j is given by the partial
fraction form (Ewins (2000)):

r (I)kr
aﬁk Z AJ —OJ2 (9)

From (9) two more properties can be inferred: Firstly,
the TF matrix is symmetric, which means that systems
C2 and C4 have the same TF and are structurally
equivalent. Secondly, the property of interlacing can be
explained, i.e. zeros will always appear between the poles
at w? = A,,.. Because the numerator of each summand
in (9) is always positive when force and measurement
coincide (collocated system, j = k), the entire fraction is
positive for w? < A, and negative for w? > A,,. Adding
these fractions in the sum of (9) leads to transitions
from negative to positive between adjacent resonances,
which show up as antiresonances (Ewins (2000)). This
is true also for systems B1, C1, C3 where sensor and
actuator are applied to two masses in a differential
fashion, because the describing coordinates of the system
can always be chosen accordingly. Because of the gap
(unconstrained system), the receptance TF a;;(w) will
always have the first eigenvalue at zero and accordingly
there must be a zero before the first nonzero resonance
frequency. This is also true for acceleration output as the
poles and zeros of the undamped system are unaffected
by the sensor type. Consequently, systems Al, A4, B1,
Cl and C3 are known to have ARAR FRFs, unless
double resonances in combination with PZC occur, which
remains to be investigated.

In the following, for each of the eleven models all
possible FRF types are collected that can be encountered
depending on the physical parameters. It is utilized that
all physical parameters are real and greater than zero but
not infinite. The analysis starts with the denominators
followed by the entire TF's.

4.2 Grouping according to the denominator

Questions that cannot be answered by the general
rules for multiple mass resonators are answered in the
following by looking into the system’s equations. Since
the denominator of the TF is independent of the sensor
and actuator locations, it is possible to divide the models
into three categories depending on the denominator,
which is determined exclusively by the position of the
gap. These categories are marked by the leading letter
of the ID in Tab. 2 (A, B, C).

Again, the substitution 2 = —s? = w? is made and
the denominator is solved for roots in . As explained
above, only the left case in Fig. 2 is expectable for the
poles but it remains to be investigated if double poles
can occur.

The denominator of system A is given by

Denp =my.0.30% — (c12(my.3 + ma.3) + cazmy

(10)
May3)§) + C12C23M1 4243

Here and in the following the abbreviations are used:

Mitj = (m; +my),

my.; = (m; - my).

Dena has two poles in Q:

C23
t12 = (:F\/ RA +mimag3 + m3m1+2>

2m1 2.3

MaM1y243 — M1.3
c23/(2¢12m1.3)

mami o

053/0%2 .

2.2
Ry =mimj 5 —

They are always distinct as can be shown by solving for
the spring constants with respect to t; and ts:

Cl2 = -2 (i\/E-F i1 + t2)a (11)

2miy2
mo.
23 = 3 23 (:F\/ Ry + 14 thz), (12)
m243
4mq sty t
with R1 = (tl - t2)2 - M (13)
ma2Mmi4+2+43

Without numeric values it is not known which of the two

solutions for ci1o and ca3 is correct, but that is not of

interest here. For cq9,co3 to be real it is necessary that
. 2 4my.atqt

R; > 0 or equivalently (t; — t2)* > m2n113+12+23' So, t; and

to must be distinct.

The denominator of system B is given by

DenB = (61 — mlﬂ)(623m2+3 — m2.3Q) (14)

with the two poles

c Co3™M
t = 717 ty = 231243 (15)
mi ma.3

corresponding to the left and the right part of the system
separated by the gap. Depending on the parameters
either ¢1 or to is larger:

c m m

R Y (16)
C23 m3z M2

and if equality holds in (16) both resonances coincide.
For system C the denominator is

2
Denc = —m1.2.30° + ma(ciamit2 + maci)2 — ciciams

with the two poles:

C12 c1mo
ti12= (¥\/ Roc+mip2 + >7
1-2 C12

2m
2c1ma(my —ms)  c2m3 (17)
- 1m3
Rc = m%+2 — p + 5 -
12 €12

Similar to system A the spring constants can be
calculated from the poles:

% (i\/RQ o+ t2), (18)
cip = L2 (:F\/R2 +t +t2), (19)

2my 4o

C1

with R2 = (tl - t2)2 - 4@t1t2. (20)
my
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For real-valued spring constants Rs must be positive
or zero and accordingly (t; — t3)? > 4%151@, so double
poles are not possible.

What remains is the analysis of the numerators and
zeros of the TFs. Where are the zeros located with
respect to each other and the poles and is PZC possible?

4.8 Analysis of the eleven 8-mass models

For the analysis of the zeros in the TF's it is necessary to
investigate each of the eleven models separately because
the zeros depend on the locations of actuators and
sensors as well as on the gap. As explained in Sec. 4.1, the
pattern of the collocated systems Al, A4, B1, C1, and
C3 is already known, except for the possibility of PZC,
which remains to be investigated. Parameter sets leading
to PZC are found with the help of computer algebra. If
it returns no solution with valid physical parameters, it
is believed that PZC does not exist.

4.3.1 System Al

As this is a collocated system we only need to search for
PZCs. The numerator

2
Numai = ma.3Q° 4+ (—may3ca3 — m3c12)Q + c12¢23

has two zeros, which must be positive and interlacing
as can be inferred from the property of collocation.
PZC is encountered only for ¢15 = 0 or ca3 = 0, which is
excluded by the assumptions on the physical parameters.
As a conclusion, only ARAR FRFs are possible for this
system.

4.8.2 System A2

The numerator of this model is given by
NUmAQ = —mgclgﬂ + C12C23. (21)

It has only one zero n = ca3/ms, which is obviously real
and positive. Because this model is not collocated, it is
necessary to investigate permissible orders of poles and
zeros. To do so, the zero is solved for co3 and equated
with (12), which can be solved for mq:

((n = ta)ma + mgn)((n — t1)me + man)
(n —t2)(n —t1)ma + mgn?

my; = — . (22)
t1 corresponds to the lower and t; to the higher
frequency. This expression can be utilized to test the
validity of different pole-zero orders starting with n >
to > tq:

>0 >0

((n = ta)ma + mgn) ((n — t1)ma + mgn)
(n — t2)(n — t1)my + man? (23)

>0

which is not possible. In the case t5 > n > t; it is less
straightforward to see if a positive solution exists for m;:

<0Vv>0 >0

((n —t2)ma + man) ((n — t1)ma + man)

mq1 = — 9 24
! (n —to)(n — t1)mg + man? (24)
<0V>0
because two possibilities exist:
>0 <0
1. =—-"—— 2. =——. 25
m <0 or m >0 (25)
For the first possibility it can be followed:
(n—ta)mg +mgn >0
Lm2___m 7 (26)
ms n — tQ
(n —t2)(n —t1)mg +man® <0
- mo > 77,2 (27)
ms (n—tl)(n—tg)'
This can be rewritten into
n? n
>
(n—tl)(n—tg) n —to (28)
=t <0,

which contradicts the finding that poles must be positive
and accordingly the first possibility in (25) can be
abandoned. With a similar reasoning it can be shown
that the second possibility is always true, so to > n > t;
is valid.

In the case t > t; > n, also, two possibilities exist:

<0v>0 <0Vv>0

((n —t2)ma +msn) ((n — t1)ma + msn)
(n —to)(n — ty)my + man?

mp = — . (29)

>0

If the first brace in the enumerator is negative and the
second brace is positive, it can be followed that:

(n —to2)mg +msn <0
my n (30)

(n—ti)ma +msn >0
mo n

= — < -
ms n—t

= t9 > 1y,

(31)

so this case is possible, while the opposite (first brace
positive and second brace negative) is not.

PZC is possible for the lower resonance frequency t;
and the condition can be found by equating t; = n:

iz _m (32
C23 ms

With only one zero the second pole cannot be
compensated. In summary, the model A2 can show the
FRF types ARR, RAR, and due to PZC also R.
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4.3.83 System A3

The denominator of this model has no zeros because of
the maximal distance between actuator and sensor:

NumA3 = C12C23. (33)

As already known from the analysis of the system type
A poles, this model has two distinct resonances, so the
FRF is of type RR.

4.8.4 System A}

From the numerator
Numag = (c12 — m1§2)(ca3 — m3Q) (34)
the zeros can be obtained:

ny = Clg/ml, Nng = 023/m3. (35)
Obviously, they are always real and positive. With
condition (32) PZC is possible with the reduced-order
TF:

—m3) + co3

GPZC (S) = (36)

—mg.38) + m11243C23

For this parameter combination the zeros also coincide.
Further investigations are not necessary because the
model is collocated. If the condition of PZC is not met,
the FRF is ARAR, otherwise the only possible FRF type
is AR, because a second PCZ is not possible for my, m3 >
0.

4.8.5 System A5

The numerator of this model is close to A2:
Numaps = —mica3§) + c12¢23 (37)

and accordingly the procedure to determine the pattern
of poles and zeros is similar. Firstly, it is noted that
the zero of the numerator in  (n = ¢13/m;) is always
real and positive. In order to determine the order of
resonances and antiresonances the zero is solved for cja
and equated with (11). Solving this expression for m;
leads to

((n —t2)ma + min)((n — t1)ms +min)
(n—t2)(n —t1)mg + myn?

m3 = — ) (38)

which is the same expression as (22), except that m;
and mg are exchanged. With the same reasoning as for
system A2 it can be shown that the zero may be at lower
frequencies than both poles, as well as between them,
but not above.

PZC is possible for the lower resonance frequency t;
if the condition (32) is met.

4.8.6 System Bl

The numerator of this system is given by

2

NumBl —m3m1+gﬂ (39)
— (miyoq3ca3 +mscy)Q + cicas

with two zeros. As this model is collocated it is clear that

the roots are real and positive and that the frequencies

are interlacing, so the FRF is of the form ARAR if no

PZC occurs. PZC is possible for

C1 my mi
_ = — 4 —,

(40)
C23 ms ma2

In this case the two poles coincide with the higher
antiresonance frequency. Because of the collocation
property the resulting reduced-order TF shows AR
behaviour with the remaining pole and zero:

m243C23 mica3
tred = y  MNred = . (41)
ma.3 m3mi42

A PZC of the remaining pole and zero is not possible for
mg > 0,mz > 0.

4.8.7 System B2
The numerator
Numpy = ma.30Q% — co3my 12430 + c1co3 (42)
has two zeros:
ni2 = g2 <m1+2+3 F \/m%+2+3 - 4"275”) (43)

In contrast to the other systems the zeros can be identical
and also complex. They are complex for

4me.3c
2 2.3C1
Mito43 7023 . (44)

In this case the corresponding four zeros in s are
conjugate complex and located symmetric to the
imaginary axis as shown in Fig. 2, third case. At
their common frequency the slope of the asymptotic
amplitude rises by 480 dB/dec, while the phase remains
unchanged. If condition (44) is not fulfilled, the ordinary
situation of real, positive zeros is found and real, negative
zeros mq o are never possible, because the root in (43) is
always smaller than mjy213. Both sides of (44) may be
equal so that the zeros coincide.

Order of poles and zeros: In the following, possible
orders of poles and zeros are determined assuming for
now that all four roots are distinct and real. The
equations for poles and zeros (four in total) can be used
to derive expressions for poles and zeros only without
physical parameters, which are then used to validate
orders of resonances and antiresonances. To do so, the
expressions for t; and ty from (15) are solved for ¢;
and co3, respectively. Equally, from n; and ny in (43)
expressions for ¢; and co3 are derived and equated:

mi4243M17M2
cp=mt = ——— 45
1 111 ny+ng ( )
mo.3t mo.3(n1 +n
Co3 = 232 _ 23(1 2). (46)
m243 mi4+2+3
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From these equations two expressions for m; can be
found:
M243M172 (t2 —n1 —n2)may3

! tl (Tll + TLQ) — nins9 7t2 ( )

Equation (47) is solved for t;:
ning

tH=—"7"".
! ny —ta + no

(48)
This term can easily be evaluated because it contains
no physical parameters but only the frequencies of
interest. In the following, different assumptions about
the frequencies of the poles with respect to the zeros are
made and validated along this equation. In this analysis
ny is the lower zero, ny refers to the higher zero.

Case t; < ny: From (48) it can be seen that this is
only possible if t5 is also less than nq:

LR L R P (49)
ny  np—tg+ne
vice versa t; > ny implies t9 > ny. This rules out the
RARA and RAAR arrangements.

Case t; < ng: Similar to the case t; < n; this is only
possible if to < mo, so t; > ny implies to > no. For this
reason ARAR is not a valid sequence either. Remaining
FRF types for distinct and real poles and zeros are
AARR, ARRA, and RRAA.

PZC: Now, the assumption of distinct poles and zeros
is dropped, but we still exclude the case of complex zeros.
The same condition, that leads to identical poles, see
(40), causes PZC of n; or ny with both poles:

C231MM2+3

(50)
ma.3

nyp =1t =1l =
In this case the remaining zero is given by cogmi/ma.3.
Depending on the parameters the FRF type is AR or
RA or if in addition to (40) m; = mg + mg, both zeros
are identical and a complete cancellation of all poles and
zeros occurs, i.e. the 3-mass system behaves like a 1-mass
system. The FRF type is called constant (C).

Double zeros: Double zeros occur if equality holds
n (44). Inserting this expression in t1 2 it can easily
be shown that for mj; > mgoy3 the two poles have a
lower frequency than the double zero. The FRF is called
RRAZ. For m; < may3 it is the other way round, A2RR.
On the other hand, double poles and zeros at different
frequencies cannot be expected for any parameterization
because the condition that leads to identical poles also
causes PZC, as said before.

Complex zeros: At last the case of complex zeros
in Q is included. Complex zeros do not show up as
antiresonances in the FRF of the undamped system, see
exemplary parameterization of system B2 in Fig. 3. It is
now analysed when in relation to the poles this special
case can be expected.

We recall the condition for complex zeros:

4cimo.g !

Cond; : mi o g — ——o <0 (51)
C23

80 F Fa— " =
% System B2
.E 6ol — — — - Asymptotes
£ P U/
2 a0} Y S S
S Yl
S R B
o 90 I ]
=180 ) : I— _I .
< M B |
£ 2701 : .
360 1 —e
10 102
Frequency in Hz
Figure 3: FRF of systems B2 with RR
(nm) characteristic. m; =0.01kg, mg =0.02kg,
mg = 0.015kg, ¢1 = 200N /m, dy =0.01N - s/m,

Co3 = 1OON/H1, d23 =0.01N- s/m

and the condition for identical poles:
Conds : atlm, ™ (52)
C23 M3 M2

In order to compare both equations they are solved for
Cp:

I Ccazm? o, -
Cond; : ¢ > %, (53)
m2.3
Condy : ¢ = Coslinina+s (54)
ma.3

Equating these two expressions for c¢; leads to a
contradiction:
2
C231M1M243 ; C23M74043
mo.3 4m2.3 (55)
= (m2+3 — m1)2 < 0.

In other words, identical poles and complex zeros are
mutually exclusive. Complex zeros can only occur if the
poles are distinct, which reduces the number of FRF
types to distinguish.

In summary, system B2 shows AARR, RRAA, or
ARRA behaviour if the two zeros in ) are real and
distinct and the two poles in 2 are distinct. For real zeros
PZC can occur once, leading to AR or RA behaviour
or twice, leading to a constant gain and phase FRF
(C). Under certain circumstances both zeros are identical
while the poles are either both larger or smaller than the
double zero (A2RR or RRA?). Finally, the zeros in
can also become complex, which results in a non-minimal
phase RR FRF with zeros that show no antiresonances
but raise the slope of the amplitude response (nm).

4.3.8 System C1

This system is collocated and it is known from Sec. 4.2

that the poles are distinct, so the only possible FRF type

is ARAR. The numerator is given for completeness:
Numci = — mamy 4303

(56)
+ (M1y2+3c12 + Mac1)2 — c1e12.
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4.8.9 Systems C2 and C4

These two systems are identical for reasons of reciprocity,
with the numerator:

2
Numca 4 = —mima§2” 4+ (Mi4243¢12 + mact ) — cicia.

The zeros are given by:

c12 c1me
me =g (?\/ Reo4 +miqoqys + >7

1.2 C12

012m22
2
(57)

It can be shown that n; and ns cannot coincide by
solving the two expressions (57) for ¢;2 (alternatively for

61):

201m2(m2+3 — ml) +

C12 C12

2
Rega=mi g5+

mi.
C12 2 (:t\/ Rg +n1 + ng),

© 2magogs £8
2 4n1n2m2+3 ( )
R3 = (n1 — Tlg) I —
my
For c15 to be real it is clear that (n; — ng)? > %.

From this it also follows that Rco 4 is never zero and
because it is positive for arbitrary values, negative values
can be excluded for reasons of continuity, so the zeros
cannot become complex. The question if negative, real
zeros exist, is equivalent to the question if |/Rc2 4 can
be greater than mjio43 + c1ma/c12. As these two are
already known to be positive, we can equally check the
possibility of

2
c1mo
Reog > <m1+2+3 + ) . (59)
C12
Expanding these expressions and eliminating common
terms leads to

mi.2C1 mi.2C1

—2 > 2

c12 crz (60)
which is a contradiction given that all physical
parameters are positive. PZC would be possible only
for ¢4 =0 or ¢12 =0 or mg = 0. Inserting an arbitrary
set of parameters leads to an ARRA FRF, which due
to continuity and the previously mentioned properties

seems to be the only possible FRF type.
4.83.10 System C38

The numerator is:
Numgs = — m1m2+3§22—|— (61)
(Mmiyo43ci2 + c1mag3)§d — cieia.
The zeros
nyg = a2 <:F\/ Roz +mayoys + Clm2+3>,
2mimays 12
2c1mat3(m1 — May3) N tm3

C12 C12

2
Res =mijoys —

cannot engage in PZC, except for ¢; =0 or ¢12 =0 or
ms = 0. Accordingly, since this is a collocated system,
only ARAR is possible.

4.4 Summary of the findings

Table 3 summarizes the expectable FRF types for each
model and the systems that can show the same FRF
types in the right column.

Table 3 Frequency response function characteristics of
the investigated systems. A: antiresonance, R:
resonance, C: constant without resonances or
antiresonances, nm: non-minimal phase, that is
zeros exist in the right half of the s-plane

ID | Possible FRF types | Pot. similar systems
Al* ARAR A4,B1,C1,C3
A2 ARR, RAR, R A5
A3 RR -
A4q* ARAR A1,B1,C1,C3
AR B1,B2
A5 ARR, RAR, R A2
B1* ARAR A1,A4,C1,C3
AR A4,B2
RRAA, AARR, RA -
ARRA C2,C4
RR (nm) -
B2 AR B1,A4
A%RR, RRA? -
C -
cr* ARAR A1,A4,B1,C3
C2 ARRA B2, C4
C3* ARAR A1,A4,B1,C1
C4 ARRA B2, C2

With the help of this table the procedure for
identifying the model structure is as follows. Firstly,
the pattern of poles and zeros is determined visually
from the measured FRF. Then all systems that can
show this type of FRF are chosen from the table.
Finally, the parameters are identified and the results are
compared. It is not guaranteed that all models that can
show a particular FRF type will lead to equally good
identification results, firstly because parameter bounds
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Figure 4: FRFs of systems A2 and A5 for equivalent
parameter values

further restrict the flexibility of the model and secondly
because the FRF type is by its nature only a necessary
condition. This point is demonstrated in the examples of
the next section.

5 Examples

This section gives some examples of situations that can
occur when Tab. 3 is used to identify the model structure
for a given measurement. As a first example a simulated
system of type A2 is used as the generating model,
parameterized according to Tab. 4 so that it shows an
ARR FRF. The question is which system could have
produced the FRF apart from A2, while the only prior
knowledge is that all physical parameters are real, finite,
and greater than zero. System A5 is the only one that
can show this FRF and accordingly it is optimized to
match the FRF of system A2. As can be seen in Fig.
4 both FRFs are in exact agreement. Furthermore, the
parameters of system A5 are all positive, see Tab. 4.
In this case it is not possible to discriminate the two
systems without additional sensor information or expert
knowledge.

As a side note, it can be shown that systems
A2 and A5 are even structurally equivalent, because
their transfer functions have the same symbolic form
and all not identically constant moment invariants are
independent, which is proved by the fact that the
number of determinable parameters equals the number
of not identically constant moment invariants, see Tab. 5
(Vajda (1981)). The number of determinable parameters
represents the generic rank of the Jacobian matrix of the
TF coefficients derived with respect to the parameters
and the first denominator coefficient normalized to 1
(Vajda (1981)). Not identically constant are all moment
invariants, except for the leading 1 in the denominator.

As a second example the system B2 is parameterized
to show an ARRA behaviour and is used as the
generating model. System C2 is chosen as the model
to be built because its FRF type is equally ARRA.

m p

2 gl ) Generating moc.lel

= Model to be built

: A

S 40t

Z oo \ -

180 F — T 7
|

°, 90+ , g

=

@ 0 —

B

A -9} 1
-180 ) = ) 4

10! 10?

Frequency in Hz

Figure 5: FRFs of systems B2 and C2 after the model
to be built, C2, has been optimized to resemble the
generating model, B2

However, it shows a different FRF after optimizing its

parameters, see Fig. 5, Tab. 6. The reason is that for

system C2 the poles and zeros are linked in the following

way:

—mgc1z + R4 — R5(mg)
2m1.2

tl —ny = s (62)

macia + R4 — R5(mg3)
2m1.2

Nng — tg = ) (63)
where the exact terms of the abbreviations R4 and R5
are not of interest here. So, once the difference t; —
n1 is known, the difference t; — ny is already fixed.
Although the overall number of parameters of the
undamped system (i.e. 5) is sufficient to adjust the 5
degrees of freedom of the system (1 gain, 2 resonances,
2 antiresonances), the system is not flexible enough to
adapt to system B2. This can be explained from the
number of determinable parameters as given in Tab. 5.
For system C2 it is only 4 out of 5, one degree of freedom
is lost.

As a third example a measured FRF is used instead
of the generating model, see Fig. 6. It stems from the
horizontal axis of the mast of a stacker crane. Clearly,
this FRF is of ARAR type. According to Tab. 3 all
collocated systems must be further considered. In a first
step only one of the models is identified in physical
parameters, including damping, see the grey line in
Fig. 6. Then the five free coefficients of the undamped TF
are calculated from the physical parameters. Finally, the
physical parameters of the other collocated systems are
calculated analytically from the coefficients, see Tab. 7.
Although some of the resulting parameters differ by
almost one order of magnitude, it is probably difficult to
decide which model is correct.

6 Discussion

With the findings of Sec. 4 a necessary condition for
indistinguishability of models is established that allows
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Table 4 Parameters of the models A2 and A5 corresponding to the FRF in Fig. 4. All masses in kg, all stiffnesses in N/m,

dampings in N - s/m.

1D | my ma m3 c1 Ccl2  C23 dy di2  dos
Generating model (A2) | 0.01 0.01  0.02 - 100 100 - 0.01 0.01
Model to be built (A5) | 0.063 0.015 0.010 444 - 173 0.039 - 0.016

Table 5 Number of determinable parameters for the eleven 3-mass systems with 5 parameters each and number of not
identically constant moment invariants. Damping is not considered.

ID A1* A2 A3 A4* A5 BI1* B2 CI1* C2 C3* (4
Determinable parameters 5 4 3 5 4 5 4 5 4 5 4
Not 1dent1c5}11y cpnstant 5 4 3 5 4 5 5 5 5 5 5

moment invariants

Table 6 Parameters of the models B2 and C2 corresponding to the transfer function in Fig. 5. All masses in kg, all

stiffnesses in N/m, dampings in N - s/m.

ID ‘ my ma ms C1 Ci12  C23 d; di2 das
Generating model (B2) | 0.01 0.01 0.01 100 - 200 0.01 - 0.01
Model to be built (C2) | 0.011 0.0044 0.030 190 96 - 001 o0.01 -
n 20 that it is not straightforward in practice to correctly
< \ /\ identify the correct TF type visually, for example the
S ‘ L //\ ’/ S non-minimal phase configuration of system B2 and the
E OF \ / \ \ 1 type with double zero (A2RR) of the same system. Also,
) \/ \/ . with higher damping it is generally more difficult to
;na \y Measurement distinguish visually between a valley and a zero.
 mm— —— Model to be built The examples of Sec. 5 have shown that th
90 F ples of Sec ave shown tha e
. r\ preselection based on our necessary condition reduces
g ol \ [ the number of possible options considerably which leads
Z J \‘/ to shorter calculation times of the otherwise long-lasting
= 00 —— A \\ structure and parameter identification. A shortcoming
— is, however, that the rules derived here give no criterion

10!
Frequency in Hz

10° 10?

Figure 6: Experimental FRF and fitted ARAR FRF
corresponding to system Al

Table 7 Parameters of the collocated models
corresponding to the FRF in Fig. 6. All masses in
kg, all stiffnesses in N/m, dampings are not
printed. A4 and B1 allow two solutions each being
not globally identifiable.

1D my m2 m3 c1 cl2 €23
Al | 0.0044 0.0173 0.0184 - 46.8 14.3
Ad 0.0084 0.0044 0.0273 - 31.4 153
0.0273 0.0044 0.0084 - 153 314
BI 0.038 0.0049 0.0351 53.5 - 58.9
0.0056 0.0194 0.0206 76.7 - 14.2
C1 | 0.0049 0.0091 0.040 31.5 274 -
C3 | 0.0421 0.0049 0.040 67.7 589 -

to make a preselection of possible models for a given
frequency response function. While the derivations are
tedious and only little can be explained from general
principles of machine dynamic, the results can be applied
easily to a class of multi-mass resonators with up to
three masses. Only in a few cases, it can be expected

for the final decision for one best model. In order to
make this final decision further prior knowledge about
parameter bounds or likely and unlikely structures would
be required.

The decision if a model structure is correct or
not will be exacerbated when experimental FRFs are
distorted due to higher dynamics and nonlinearities. In
the second example it was easy to see that system C2 was
distinguishable, but in real-world experiments the model
is always a simplification of reality and it will be difficult
to decide if deviations are caused by these simplifications
or by the wrong model structure.

Finally, the method is not arbitrarily extendible
to higher numbers of masses or systems with more
complex structures, e.g. branching and combined rotary
and translational motion, because it cannot fully be
automatized. Nevertheless, for the defined constraints
of combinatorial possibilities the analysis is considered
complete so that it can be utilized for up to three masses.

7 Conclusions and Future Works

7.1 Conclusions

In this paper distinguishability of multiple mass
resonators was delineated as they result from considering
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elasticities and concentrated masses in electromechanical
motion systems at different positions. This question is
relevant for an identification of the model structure
together with its parameters. The presented method
allows to make a preselection of models based
on the transfer function type, i.e. the order and
existence of resonances, antiresonances and non-
minimal phase zeros. The distinguishability analysis
is easy to use and explicitly considers special
parameter combinations of the generating model. This
contrasts with common definitions and methods for
distinguishability investigation.

It was shown that up to three masses the number
of possible models is overseeable and that a thorough
analysis of all options can be carried out analytically
with tenable effort. Accordingly, the analysis was limited
to the resulting eleven 3-mass models. Applying our
necessary condition for distinguishability often cannot
narrow down the set of candidates to a single model.
For the final decision it is recommended to identify the
parameters of the remaining candidate models and to
infer the correct model from plausibility verifications of
the resulting parameters.

7.2 Future Works

A lot more work should be done in the field of
indistinguishability analysis of multiple mass systems
as this is an important requirement for structure and
parameter identification. While easy to use necessary
conditions for equivalence of structures exist (Vajda
(1984); Davidson et al. (2017)), attention should focus
on sufficient conditions and the application to motion
systems.

Often, the result of the analysis is that the
physically correct structure cannot be determined. We,
therefore, plan to investigate the benefit of additional,
temporary sensors for identification and commissioning.
Accelerometers and gyroscopes can be placed at different
positions of the structure with little effort as a
temporary solution to aid the structure and parameter
identification. Moreover, instead of deciding for a single
model in the selection procedure future works could focus
on averaging several models with weights in proportion
to their fit. An example is the work of Chen and Ding
(2017).
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