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Abstract

We study some aspects of the generalized geometry of nilmanifolds and examine to which extent different
types of fluxes can coexist on them. Nilmanifolds constitute a class of homogeneous spaces which are
interesting in string compactifications with fluxes since they carry geometric flux by construction. They are
generalized Calabi–Yau spaces and therefore simple examples of generalized geometry at work. We identify
and classify Dirac structures on nilmanifolds, which are maximally isotropic subbundles closed under the
Courant bracket. In the presence of non-vanishing fluxes, these structures are twisted and closed under
appropriate extensions of the Courant bracket. Twisted Dirac structures on a nilmanifold may carry multiple
coexistent fluxes of any type. We also show how dual Dirac structures combine to Courant algebroids and
work out an explicit example where all types of generalized fluxes coexist. These results may be useful in
the context of general flux compactifications in string theory.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Fluxes are an important ingredient of all modern approaches to string compactifications [1].
In particular they serve as a powerful tool in the efforts to reveal interesting string vacua and
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stabilize their moduli. They conventionally appear as vacuum expectation values of antisymmet-
ric tensor fields or as non-trivial geometric twists [2,3]. The existence of more general types of
fluxes was indicated in the study of unconventional string backgrounds [3] and studied in [4,5],
but for some time their precise geometric description remained unclear. Such fluxes were dubbed
“non-geometric” but progress in their understanding has yielded this term a misnomer and there-
fore it will not be used in the present paper. Indeed, these more general flux types should be
understood via a generalized approach to geometric structures.

Generalized Complex Geometry (GCG) is a generalization of standard complex and symplec-
tic geometry [6,7], which has also provided new tools for string compactifications [8]. It is in fact
the appropriate framework to study the generalized fluxes that were mentioned above without in-
troducing mathematically obscure additional ingredients. The essence of this setting lies in the
organization and extension of the geometric transformations of the fields of a theory, i.e. diffeo-
morphisms and gauge transformations, to O(d,d) transformations. The latter is identical to the
T-duality group of string theory compactified on a d-dimensional torus.1

In this paper we utilize certain tools of GCG to study fluxes on nilmanifolds. The latter are
simple GC manifolds, see Ref. [10], which carry a natural geometric flux and they have appeared
in numerous instances as internal spaces in string compactifications, e.g. in Refs. [2,11]. Here we
pose the following main question:

• How much can we dress a nilmanifold with fluxes?

or, equivalently,

• Can all types of fluxes coexist on a nilmanifold?

Let us already stress that this question does not refer to cases which are T-dual to purely geomet-
ric ones in the standard sense [12]. The question has an affirmative answer in certain such cases
but this is not a remarkable result from the viewpoint of new possibilities for string vacua. Here
we examine such a possibility when a geometric dual is not available.

As a strategic choice we use the notion of Dirac structure in GCG [13]. Dirac structures are
maximally isotropic subbundles of a (twisted) Courant algebroid which are closed under the
(twisted) Courant bracket. This makes them attractive because the Jacobi identity is always sat-
isfied on them and in a sense one can define a good coordinate system on these submanifolds.
Concentrating on step-2 nilmanifolds,2 we study and classify the Dirac structures on them by
considering arbitrary deformations introduced by tensor fields of rank (p, q) with p + q = 2.
These include 2-forms B , not necessarily closed, 2-vectors β , not necessarily Poisson and mixed
(1,1) tensors. The Dirac structures which close under the Courant bracket introduce the inte-
grability conditions of closed B and Poisson β and they come in two general types, spanned
by a specific form of generalized vectors. These are fluxless cases corresponding to constant
background moduli. In particular, in the 3-dimensional example of the Heisenberg nilmanifold
the moduli space of Dirac structures is 5-dimensional, consisting of one three-parameter fam-
ily and one two-parameter family. More possibilities arise when deformed Courant brackets are

1 A related but independent development, implementing T-duality at the level of (extended) target space, goes under
the name of double field theory, see Ref. [9] for recent reviews.

2 Higher-step nilmanifolds can be studied with the same tools. This choice is here just a simplification which can be
raised if necessary.
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considered. In particular, introducing an H -twisted Courant bracket, where H = dB , allows for
twisted Dirac structures which are closed under the new bracket. Similarly an R-twisted bracket,
where R = 1

2 [β,β]S , the latter being the Schouten bracket, lead to twisted Dirac structures under
it. These cases correspond to turning on H and R flux respectively, on top of the already present
geometric f flux. The general setting of these results was essentially described before, e.g. in
Refs. [14–16], albeit without reference to Dirac structures. Twisted Poisson structures in string
theory were also discussed in Ref. [17].

The most interesting aspect comes about when both H and R fluxes are considered simul-
taneously. This naturally leads to a bracket with both H and R twists, a particular version of
the Roytenberg bracket [18]. We examine the conditions under which Dirac structures are ob-
tained, thus showing that they may carry multiple fluxes of any type. In particular, it turns out
that apart from the geometric flux f , present by construction, H , R and also Q fluxes appear.
A detailed example based on the Heisenberg nilmanifold is presented where we identify all the
non-vanishing components of the H,R,f and Q fluxes as well as their origin.

Moreover we discuss how two Dirac structures are combined to form a (twisted) Lie bial-
gebroid. The latter provides a Courant algebroid when the two Dirac structures are orthogonal,
or dual, to each other [19,20]. In the fluxless case we show that it is possible to combine the
two families of Dirac structures on a step-2 nilmanifold such that a Courant algebroid with all
moduli fields present is obtained. In particular, for the 3-dimensional Heisenberg nilmanifold all
five parameters are non-vanishing. This is achieved by rotating appropriately the bases of the
two structures such that they become orthogonal. The rotation is performed with an element of
type (1,1) which is a contraction B · β . This method can be also extended to the cases involving
multiple fluxes. In particular, we show that a twisted Courant algebroid with all flux types in co-
existence can be constructed on the Heisenberg nilmanifold. The associated bracket is again the
one with H and R twist and the two dual almost Dirac structures are closed under this bracket.

These results provide an affirmative answer to the main question that we posed above, showing
that flux backgrounds without geometric duals are in principle possible. Although we do not deal
here with the question of whether this mechanism actually leads to true string backgrounds, we
suggest our findings as an indication that a lot more possibilities exist for flux backgrounds than
the ones that have been studied before. In particular we would expect that such constructions can
provide in the long run an explanation for the origin of all 4-dimensional gauged supergravities.

2. Generalized geometry of step-2 nilmanifolds

2.1. Brief review of generalized geometry

In this brief section we collect some definitions and results of generalized geometry. In partic-
ular, we are going to present only the material which is necessary for the comprehension of the
rest of the paper. A more detailed presentation may be found in Ref. [7].

Generalized geometry [6,7] extends the standard tangent bundle over a manifold M to the sum
of its tangent and cotangent bundles, TM ⊕ T∗M, at least locally. Sections of this vector bundle
are generalized vectors, X = X + η, X ∈ TM, η ∈ T∗M. One can define the Courant bracket on
the sections of TM ⊕ T∗M by the formula

[X + η,Y + ξ ]C = [X,Y ]L +LXξ −LY η − 1
d(ιXξ − ιY η), (2.1)
2
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where we used the standard Lie bracket for vectors, [ , ]L, the Lie derivative of 1-forms along
vectors, LXη = ιXdη + d(ιXη), and the contraction of vectors and forms, ιXη. Adding a smooth
map ρ : TM ⊕ T∗M → TM, called anchor, plus a bilinear form

〈X + η,Y + ξ 〉 = 1

2
(ιXξ + ιY η), (2.2)

one obtains (with some additional compatibility conditions between the aforementioned struc-
tures) a Courant algebroid. The bracket (2.1) is skew-symmetric, but does not satisfy the Jacobi
identity.3 In particular, the Jacobiator of three generalized vectors X,Y,Z under the Courant
bracket is given by

Jac(X,Y,Z) = [[X,Y]C,Z
]
C

+ cycl. = dN(X,Y,Z), (2.3)

where N is the Nijenhuis operator, defined as

3N(X,Y,Z) = 〈[X,Y]C,Z
〉 + 〈[Y,Z]C,X

〉 + 〈[Z,X]C,Y
〉
. (2.4)

A Courant algebroid can alternatively be constructed out of Lie bialgebroids via a generaliza-
tion of the Drinfeld double construction [19]. One starts from a Lie algebroid, a vector bundle L

over a manifold M equipped with a Lie bracket { , } and an anchor map ρ : L → TM, which on
the space Γ (L) of sections of L satisfies

ρ
({X,Y }) = {

ρ(X),ρ(Y )
}
, X,Y ∈ Γ (L), (2.5)

{X,f Y } = f {X,Y } + (Lρ(X)f )Y, f ∈ C∞(M). (2.6)

Then one defines a Lie bialgebroid as a pair of Lie algebroid structures on a vector bundle L

and its dual, L∗, having a unique extension to a Courant algebroid structure on L ⊕ L∗, with
the symmetric form of the type (2.2). For the original Courant bracket, L = TM with the usual
bracket of vector fields and the anchor being the identity, and L∗ = T∗M with the zero bracket
on 1-forms and a zero anchor. Note that when the manifold M is reduced to a point, one recovers
Lie (bi)algebras.

In this paper we focus on a specific type of Lie algebroids, the Dirac structures. We have
seen that the Jacobiator of the Courant bracket is proportional to an exact term of a bilinear
expression. We can then define an almost Dirac structure as a maximally isotropic subbundle L

of a Courant algebroid satisfying 〈X+η,Y +ξ 〉 = 0,∀X+η,Y +ξ ∈ L, on which the Jacobiator
vanishes. If this subbundle is involutive, i.e. closed under the Courant bracket restricted to L,
we obtain an integrable Dirac structure (obviously, a Lie algebroid). As an example of a Dirac
structure one can take the tangent bundle, TM ⊂ TM ⊕ T∗M. This subbundle is isotropic, i.e.,
〈X,Y 〉 = 0,∀X,Y ∈ TM. Moreover, the restriction of the Courant bracket to TM is the standard
Lie bracket of vector fields and thus involutive. The construction of explicit Dirac structures
as well as of some additional structures within the framework of generalized geometry will be
discussed in the following sections for M being a nilmanifold.

3 One could instead define the Dorfman bracket

[X + η,Y + ξ ]D = [X,Y ]L +LXξ − ιY dη,

which does satisfy the Jacobi identity, but it fails to be skew-symmetric.
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2.2. Nilmanifolds

Nilmanifolds are homogeneous manifolds which incorporate geometric fluxes and are con-
structed as orbits of a lattice in a nilpotent Lie group. The nilpotence degree of the underlying
Lie group is transfered to the nilpotence index or step of the associated nilmanifold. This index
can be read off from the relations between the structure constants of the associated Lie algebra.
The invariant 1-forms which span the cotangent bundle of an arbitrary step-2 nilmanifold in d
dimensions can be written as

ei = δi
c dxc − 1

2
f i

bcx
b dxc = ei

c dxc, (2.7)

where xa are Cartesian coordinates and f i
ab are antisymmetric in their lower indices. These are

the structure constants of a step-2 nilpotent Lie algebra and they satisfy the relation

f c
aif

j
bc = 0, (2.8)

with no summation over repeated indices. Indices a, b, c, . . . are used for the coordinate basis,
spanned by the dxa , while indices i, j, k, . . . are reserved for the so-called Mal’cev basis, spanned
by ei . These 1-forms satisfy the Maurer–Cartan equations

dei + 1

2
f i

jke
j ∧ ek = 0 (2.9)

and, unlike the dxa , they are globally well defined. The invariant 1-vectors which span the tangent
bundle of a nilmanifold are given as

θi = δc
i ∂c − 1

2
f c

ibx
b∂c = ẽc

i ∂c, (2.10)

and they are dual to the 1-forms ei . Indeed, Eq. (2.2) implies that

〈
θi, e

j
〉 = 1

2
δ
j
i . (2.11)

In the above expressions we introduced the twist matrix ei
c, which is defined as

ei
c = δi

c − 1

2
f i

bcx
b, (2.12)

as well as its inverse

ẽc
i = δc

i + 1

2
f c

aix
a. (2.13)

These two quantities satisfy the obvious relations

ei
cẽ

c
j = δi

j , (2.14)

ẽc
i e

i
d = δc

d . (2.15)

Moreover, an obvious relation between the structure constants and the twist matrix is

f i
ab = 2∂[bei

a]. (2.16)

The above 1-forms and 1-vectors can be initially defined on the covering space of the nilmanifold,
which is a group manifold, and then they are projected to the homogeneous space under the action
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of a discrete subgroup. This generalizes the corresponding construction of a torus as a quotient
of Rd by Z

d . The identifications that have to be made take the following general form,

(
xa, ∂b

) ∼
(

xa + ca + 1

2
f a

jbc
j xb, ∂b + 1

2
f a

bkc
k∂a

)
, (2.17)

where ci ∈ 2πRi
Z and Ri the radii of the corresponding cycles.

For a step-2 nilmanifold, the Maurer–Cartan equations take also the alternative form

dei = −1

2
f i

bc dxb ∧ dxc. (2.18)

Comparing with (2.9) we read off the relation f i
jk = f i

bcẽ
b
j ẽ

c
k , which on step-2 manifold be-

comes f i
jk = f i

bcδ
b
j δc

k . The simplicity of the above geometric quantities allows for a simple set
of closed formulae for the interior product of vectors and forms as well as for the corresponding
Lie derivatives. Indeed this set of equations for the interior product is

ι∂a dxb = δb
a,

ιθi
dxb = δb

i − 1

2
f b

icx
c = ẽb

i ,

ι∂a e
j = δ

j
a + 1

2
f

j
acx

c = e
j
a,

ιθi
ej = δ

j
i . (2.19)

The corresponding Lie derivatives may be easily calculated, and they give the following expres-
sions,

L∂a dxb = 0,

Lθi
dxb = −1

2
f b

ij e
j ,

L∂a e
j = −1

2
f

j
aie

i,

Lθi
ej = −f

j
ike

k. (2.20)

The above expressions are useful in explicit computations.
The sections of the direct sum of the tangent and the cotangent bundle, TM ⊕ T∗M, are arbi-

trary generalized vectors

X= uie
i + viθi, (2.21)

ui, v
i being constant coefficients. This is essentially an expansion over the basis of the extended

bundle. In particular, TM is d-dimensional with basis {θi}, T∗M is also d-dimensional with basis
{ei} and TM ⊕ T∗M is 2d-dimensional. The natural basis of the latter is given by the trivial
extension of the bases of its constituents, namely by the 2d generalized vectors {θi + 0,0 + ei}.
Note that we used the same symbol to denote the zero 1-vector and the zero 1-form but this
should cause no confusion to the careful reader.

The Lie bracket of two 1-vectors θi in the Mal’cev basis is

[θi, θj ]L = f k θk. (2.22)
ij
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Using the properties of the Lie bracket and the Lie derivative, the Courant bracket is computed
as

[X,Y]C = vi ṽj f k
ij θk + (

viũj − ṽiuj

)
f

j
kie

k ≡ λkθk + μke
k := Z, (2.23)

where X= uie
i + viθi and Y= ũie

i + ṽiθi . This makes evident the fact that the Courant bracket
is a closed operation.

3. Dirac structures on nilmanifolds

3.1. Deformations and Dirac structures

Although the Courant bracket is a closed operation for any maximal set of generalized vec-
tors, this ceases to be generally true for a non-maximal subset of generalized vectors on the
Courant algebroid. However, one can find rank d subbundles where the bracket does close.
These are exactly the Dirac structures on the manifold [13]. For a nilmanifold one sees imme-
diately that both TM and T∗M are Dirac structures, since both the tangent and the cotangent
bundles are isotropic, i.e. the bilinear form (2.2) vanishes for 1-vectors and 1-forms sepa-
rately; on both subspaces the Courant bracket is closed, with the only non-vanishing one being
[θi, θj ]C = [θi, θj ]L = f k

ij θk, θi ∈ TM and the anchor maps being identity and zero for TM and

T∗M, respectively. Let us denote the subbundles with basis elements θi and ei as L0 and L∗
0

respectively, namely

(L0)i := θi,
(
L∗

0

)i := ei . (3.1)

Then obviously the bialgebroid L0 ⊕ L∗
0 is a Courant algebroid, since according to Eq. (2.2)

〈θi, e
j 〉 = 1

2δ
j
i .

It is important to realize that the above subbundles are not the only ones which constitute
Dirac structures. One can work towards a classification of Dirac structures on a nilmanifold by
considering arbitrary deformations. The possible deformations are generated by tensors of rank
(p, q),p + q = 2, with (2,0) tensors being 2-vectors, not necessarily Poisson, (0,2) tensors
being a 2-forms, not necessarily closed, and (1,1) tensors being mixed. This can be seen as
follows. The general element of the Lie algebra so(L ⊕ L∗) � so(d,d) acting on L ⊕ L∗ can be
decomposed as(

F β

B −F ∗

)
, F ∈ End(L), B : L → L∗, β : L∗ → L.

Starting from L = TM we see that B is 2-form, β is 2-vector and the endomorphism F : L → L

and its dual F ∗ : L∗ → L∗ can be represented by a (1,1) mixed tensor. Exponentiation of the
general algebra element produces an orthogonal transformation which leaves the bilinear form
(2.2) invariant [7]. For example,

eβ :=
(

1 β

0 1

)
, eβ(X + η) = X + ιXβ + η.

In the following we will use the symmetry transformations generated by exp(B), exp(β), and
exp(F ) to deform the Dirac structures.4

4 These transformations were called twist transformation in [21].
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Note that any d-dimensional nilmanifold could be thought of as the plain torus T d with “geo-
metric flux” turned on. Indeed, let us start from a plain torus, which is also a step-1 nilmanifold.
The corresponding generalized vectors are X = vi∂i + ui dxi . Acting on the generalized vectors
with the mixed tensor5 F = 1

2f c
abx

a dxb ∧ ∂c we obtain:

eFX= vi

(
δc
i ∂c + 1

2
f c

aix
a∂c

)
+ ui

(
δi
c dxc − 1

2
f i

abx
a dxb

)
= viθi + uie

i, (3.2)

where ei and θi are given by the expressions (2.7) and (2.10), respectively. Higher-order terms
vanish in this case because of the condition (2.8), which holds identically for any step-2 nilman-
ifold. This is no longer true for higher-step nilmanifolds. The expression (2.8) can be recast in
the form of a bracket as

[F,F ]S = 0, (3.3)

where the generalized Schouten bracket [ · , · ]S is the extension of the Courant bracket for higher-
rank generalized vectors and defined as

[X1 ∧ · · · ∧Xp,Y1 ∧ · · · ∧Yq ]S
=

∑
ij

(−1)i+j [Xi ,Yj ]C ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xp ∧Y1 ∧ · · · ∧ Ŷj ∧ · · · ∧Yq,

(3.4)

where the hat over a generalized vector denotes exclusion. The Dirac structures of the case under
study remain isotropic and integrable exactly due to the condition (2.8), or equivalently (3.3). In
that sense, these expressions should be thought of as integrability conditions for almost Dirac
structures.

Let us reconsider a step-2 nilmanifold as a starting point with the standard basis of 1-vectors
θi and globally well-defined 1-forms ei . We would now like to deform the corresponding Dirac
structures using an arbitrary 2-form B or 2-vector β , which can be x-dependent quantities and
are written as

B = 1

2
B̃ab(x)dxa ∧ dxb = 1

2
Bij (x)ei ∧ ej , (3.5)

β = 1

2
β̃ab(x)∂a ∧ ∂b = 1

2
βij (x)θi ∧ θj , (3.6)

where we wrote two expressions, one for each basis. The relation among the two sets is given by
the equations

B̃cd = Bij e
i
ce

j
d , (3.7)

β̃cd = βij ẽc
i ẽ

d
j . (3.8)

There are two cases to be examined, in particular

(LB)i := e−B(L0)i = ẽc
i

(
∂c − B̃cl dxl

)
, (3.9)

(
L∗

β

)i := eβ
(
L∗

0

)i = ei
c

(
dxc + β̃cl∂l

)
, (3.10)

5 The wedge product for the mixed tensors is defined as dxi ∧ ∂j = dxi ⊗ ∂j − ∂j ⊗ dxi . It does not antisymmetrize
the upper and lower indices.
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in obvious notation, where the subscript denotes the type of the deformation. The other two pos-
sibilities are trivial, i.e. (Lβ)i := eβθi = θi ≡ (L0)i and (L∗

B)i := e−Bei = ei ≡ (L∗
0)

i . In other
words, the θi subbundle is stable under 2-vector deformations, while the ei one is stable under
2-form deformations. The expressions (3.9) and (3.10) were written in terms of the coordinate
basis, but it is more useful to express them in the Mal’cev basis. Indeed, in this basis they simply
become

(LB)i = θi − Bij e
j , (3.11)(

L∗
β

)i = ei + βij θj . (3.12)

In the following we will use the latter expressions, i.e. we will stick to the globally well-defined
elements of the Mal’cev basis.

Next, we would like to know which of the above possible deformations are still integrable, i.e.
under which ones the bracket remains closed so that they still constitute Dirac structures. From
the physical point of view, we would like to know which is the maximal possible set of fluxes
(or background moduli in the constant case) that could be turned on over the nilmanifold as a
compactification manifold in a string-theory framework. In order to examine this question, let us
exploit the expressions (3.11)–(3.12).

3.1.1. Isotropy
The first rather trivial step is to examine the isotropy of the structures under the bilinear form.

This is straightforward. It holds that

〈LB,LB〉 = 〈
L∗

β,L∗
β

〉 = 0, (3.13)

where the indices where suppressed. This is true for any deformation B and β respectively,
and therefore no additional requirements are introduced. This renders LB and L∗

β almost Dirac
structures.

3.1.2. Closure
The second criterion concerns the closure of the Courant bracket on the subbundle, which

would upgrade each almost Dirac structure to a Dirac structure indeed. The Courant bracket of
two LB elements is found to be[

(LB)i, (LB)j
]
C

= f k
ij (LB)k − 3

(
θ[kBij ] + f m[kiBj ]m

)
ek, (3.14)

where we repeatedly used the integrability condition (2.8). In order for the Courant bracket to
close, a sufficient condition is that the second term vanishes. This is true as long as the 2-form B

has vanishing exterior derivative, namely

dB = 0 ⇒ closure of LB Courant bracket. (3.15)

Indeed, recall that the components Bij correspond to the Mal’cev basis and therefore

dB = 1

2
dBij ∧ ei ∧ ej + 1

2
Bij d

(
ei ∧ ej

)

= 1

2
∂aBij dxa ∧ ei ∧ ej − 1

4
Bij

(
f i

kle
k ∧ el ∧ ej − f

j
kle

k ∧ el ∧ ei
)

= 1

6

(
3∂aBij ẽ

a
k ei ∧ ej ∧ ek − 3Bijf

i
kle

j ∧ ek ∧ el
)

= 1
3
(
θkBij + f m

ki Bjm

)
ei ∧ ej ∧ ek, (3.16)
6
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which proves the above assertion. This does not mean that the 2-form has to be constant. Indeed,
it is enough to have, for example,

Bab = c[axb] + constant. (3.17)

Then this proves that

dB = 0 ⇒ LB is a Dirac structure. (3.18)

On the other hand, for the second case we compute
[(

L∗
β

)i
,
(
L∗

β

)j ]
C

= (
θkβ

ij + 2f [j
klβ

i]l)(L∗
β

)k + 3
(
βl[k(θlβ

ji]) + βl[iβmjf
k]
ml

)
θk. (3.19)

In order for this bracket to close we find

[β,β]S = 0 ⇒ closure of L∗
β Courant bracket. (3.20)

In other words, β better be a Poisson 2-vector respecting the geometric twist. Note once more
that we work in the Mal’cev basis, where

[β,β]S = 1

6
3
(
βlkθlβ

ji + βliβmjf k
ml

)
θi ∧ θj ∧ θk. (3.21)

The above show that

[β,β]S = 0 ⇒ L∗
β is a Dirac structure. (3.22)

3.1.3. Anchor maps
The definition of a Lie algebroid includes an anchor map compatible with the bracket on the

algebroid as in Eq. (2.5). For the Dirac structures that we discussed above the anchor maps are
given as

ρ: LB → e−BTM, ρ
(
θi − Bij e

j
) = θi − Bij e

j , (3.23)

ρ∗: L∗
β → e−BTM, ρ∗(ei + βij θj

) = βij
(
θj − Bjke

k
)
. (3.24)

Summarizing, on an arbitrary step-2 nilmanifold there are two families of Dirac structures,
and the results appear in the following table.

Dirac structure Basis Bracket Condition

LB Θi := θi − Bij e
j [ , ]C dB = 0

L∗
β Ei := ei + βij θj [ , ]C [β,β]S = 0

3.2. Twisted Dirac structures and fluxes

Although in the beginning of this section we considered general 2-form and 2-vector defor-
mations, the closure of the Courant bracket was very restrictive. It led to the conditions of B

being closed and β being Poisson. In physical terms, with the definitions

H = dB and R = 1

2
[β,β]S, (3.25)

these conditions mean that there is no H or R flux respectively.
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The inclusion of fluxes in the present framework is rather straightforward. For example, for the
NS–NS flux H , the question now becomes whether an integrable deformation for H = dB �= 0
can be introduced. In this case one defines the H -twisted Courant bracket:

[X + η,Y + ξ ]H = [X + η,Y + ξ ]C + τH , (3.26)

where

τH = ιY ιXH. (3.27)

We can now define a H -twisted Dirac structure which is closed under the H -twisted Courant
bracket for dH = 0 [7]. Indeed, in the LB case we directly compute

(τH )ij = 3
(
θ[kBij ] + f m[kiBj ]m

)
ek. (3.28)

Then it directly follows from Eq. (3.14) that[
(LB)i, (LB)j

]
H

= f k
ij (LB)k, (3.29)

which shows that the H -twisted bracket automatically closes without any further conditions.
Here we use the identity as the anchor map compatible with H -twisted bracket.

A similar strategy is followed for the case of R flux, which corresponds to the case of the
2-vector β not being Poisson. The important role here is played by the Schouten bracket for β .
As we mentioned before, when β is Poisson it satisfies

[β,β]S = 0. (3.30)

However, in general the Schouten bracket gives a 3-vector R = 1
6Rijkθi ∧ θj ∧ θk = 1

2 [β,β]S . It
is then natural to use an alternative bracket, the Roytenberg or simply R-bracket. This is defined
as

[X + η,Y + ξ ]R = [X + η,Y + ξ ]C − τR, (3.31)

where now

τR = R(η, ξ, ·). (3.32)

In particular, in the L∗
β case we directly compute

(τR)ij = 3
(
βl[k(θlβ

ji]) + βl[iβmjf
k]
ml

)
θk. (3.33)

Then it is evident from Eq. (3.19) that
[(

L∗
β

)i
,
(
L∗

β

)j ]
R

= Q
ij
k

(
L∗

β

)k
, (3.34)

where

Q
ij
k = θkβ

ij + 2f
[j
kl βi]l . (3.35)

This shows that the R-twisted bracket closes automatically without further conditions, and the
L∗

β is a R-twisted Dirac structure. The anchor map compatible with the R-twisted bracket is the
one given in Eq. (3.24).

A less obvious result is obtained by attempting to use the R-twisted bracket in the case of LB

and asking whether closure of the almost twisted Dirac structure under this bracket is possible.
One then computes
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(τR)ij = BilBjm

(
βn[lθnβ

km] + βn[mβplf k]
pn

)
θk. (3.36)

Then the R-bracket takes the form
[
(LB)i, (LB)j

]
R

= f k
ij (LB)k − 3

(
θ[kBij ] + f m[kiBj ]m

)
ek

− BilBjm

(
βn[lθnβ

km] + βn[mβplf k]
pn

)
θk. (3.37)

It is then observed that this bracket closes under the condition

3
(
θ[rBij ] + f m[riBj ]m

) = −BilBjmBkr

(
βn[lθnβ

km] + βn[mβplf k]
pn

)
. (3.38)

Indeed, then the result is
[
(LB)i, (LB)j

]
R

= f ′ k
ij (LB)k, (3.39)

with

f ′ k
ij = f k

ij − BilBjm

(
βn[lθnβ

km] + βn[mβplf k]
pn

)
. (3.40)

Therefore, the R-bracket for LB closes under the condition (3.38), and then LB is a R-twisted
Dirac structure. We will discuss the meaning of this statement in a while. The anchor map in this
case is also the identity map.

Similarly there is a further interesting possibility obtained by evaluating the H -twisted Dirac
bracket for the almost Dirac structure L∗

β . First of all, one computes

(τH )cd = βciβdj
(
θ[kBij ] + f m[kiBj ]m

)
ek. (3.41)

Then the H -twisted bracket becomes
[(

L∗
β

)i
,
(
L∗

β

)j ]
H

= Q
ij
k

(
L∗

β

)k + 3
(
βl[k(θlβ

ji]) + βl[iβmjf
k]
ml

)
θk

+ βipβjq
(
θ[kBpq] + f m[kpBq]m

)
ek, (3.42)

which closes only under the condition

3
(
βl[r(θlβ

ji]) + βl[iβmjf
r]
ml

) = βipβjqβkr
(
θ[kBpq] + f m

[kpBq]m
)
. (3.43)

If satisfied, then we obtain
[(

L∗
β

)i
,
(
L∗

β

)j ]
H

= Q
′ ij
k

(
L∗

β

)k (3.44)

with

Q
′ ij
k = Q

ij
k + βipβjq

(
θ[kBpq] + f m[kpBq]m

)
. (3.45)

Therefore, the H -twisted bracket closes for L∗
β under the condition (3.43). This result was previ-

ously obtained in an analysis of twisted Poisson structures performed in [22,23]. In this case the
anchor map compatible with the H -twisted bracket is given as in (3.24).

Finally, one could ask what happens with the almost Dirac structures LB and L∗
β when we

deform the bracket both with H and R twists. We evaluate explicitly the following extended
bracket

[X,Y]HR = [X,Y]C + τH − τR. (3.46)

One can easily show that
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[
(LB)i, (LB)j

]
HR

= f k
ij (LB)k − BilBjm

(
βn[lθnβ

km] + βn[mβplf k]
pn

)
θk, (3.47)

so that the integrability condition for the H - and R-twisted almost Dirac structure LB is

(τR)ij ∈ LB ⇔ BilBjmBkn

(
βp[lθpβnm] + βq[mβplf n]

pq

) = 0. (3.48)

For the dual structure we obtain[(
L∗

β

)i
,
(
L∗

β

)j ]
HR

= Q
ij
k

(
L∗

β

)k + βipβjq
(
θ[kBpq] + f m[kpBq]m

)
ek, (3.49)

so the integrability condition in this case is

(τH )ij ∈ L∗
β ⇔ βipβjqβkr

(
θ[rBpq] + f m[rpBq]m

) = 0. (3.50)

The anchor maps for the last two cases will be analyzed in Section 4.
Summarizing, the resulting possibilities for twisted Dirac structures on step-2 nilmanifolds

are given in the following table:

Twisted Dirac structure Bracket Condition

LB [ , ]H –

L∗
β [ , ]R –

LB [ , ]R Hijk = − 1
3BilBjmBknR

lmn

L∗
β [ , ]H Rijk = 1

3βilβjmβknHlmn

LB [ , ]HR BilBjmBknR
lmn = 0

L∗
β [ , ]HR βilβjmβknHlmn = 0

The following remarks are in order. First of all, it is easy to see that in the middle two cases
the H and R fluxes are interrelated. This means that in case the one on the right hand side of
any equation vanishes, so does the other. Such cases essentially boil down either to the previous
ones of untwisted Dirac structures or to Dirac structures with different fluxes along different
cycles of the manifold (when the manifold is of sufficiently high number of dimensions, e.g.
six). This is interesting but not remarkable because one can always find a geometric dual of these
set-ups. However, the last two lines are much less restrictive and much more interesting. Indeed,
in these cases both types of H and R flux can be simultaneously and independently present in
the same Dirac structure under a well-defined twist of the bracket. Therefore, we encounter cases
where a geometric dual is not available. The doubly twisted bracket plays an instrumental role
in this construction. This will become clear in the example that follows in Section 3.3.3. Finally,
let us note that all these results refer only to individual Dirac structures. Whether these can be
consistently combined to form Lie bialgebroids and therefore Courant algebroids is a different
issue, which we address in Section 4.

3.3. Example: Dirac structures on the Heisenberg nilmanifold

Let us now apply the above results to the simplest possible case of the 3-dimensional Heisen-
berg nilmanifold. This will make more clear the amount of parameters in the two families of
Dirac structures, as well as the fact that our statements about the cases where fluxes are present
are meaningful and not empty.
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For the case at hand, let us choose the unique non-vanishing structure constant to be f 3
12 =

−f 3
21 = 1, and pick the polarization where the globally well-defined 1-forms are

e1 = dx1, e2 = dx2, e3 = dx3 − 1

2
x1 dx2 + 1

2
x2 dx1. (3.51)

Hence, the dual 1-vectors are

θ1 = ∂1 − 1

2
x2∂3, θ2 = ∂2 + 1

2
x1∂3, θ3 = ∂3. (3.52)

Then the Courant bracket of two arbitrary generalized vectors reads explicitly as

[X,Y]C = (
v1ṽ2 − v2ṽ1)θ3 + (

v2ũ3 − ṽ2u3
)
e1 − (

v1ũ3 − ṽ1u3
)
e2. (3.53)

The elements e1, e2 and θ3 are all central. This implies that the Courant bracket always produces
a central element.

3.3.1. Constant moduli - fluxless case
Let us now examine the classification of Dirac structures. As we discussed before, there are

two such families accompanied by two conditions. The families have the general form

Θi = θi − Bij e
j , (3.54)

Ei = ei + βij θj , (3.55)

with i, j = 1,2,3. Therefore, before imposing the integrability conditions there are six param-
eters in total, three for each family. Turning to the conditions, the first one is that the 2-form
B = 1

2Bij e
i ∧ ej is closed. For constant moduli Bij this is satisfied automatically due to the fact

that

d
(
ei ∧ ej

) = 0. (3.56)

Therefore no reduction of the parameters occurs for the first family, which is a genuine three-
parameter one. The second condition is that β = 1

2βij θi ∧ θj is a Poisson 2-vector. For constant
moduli βij we compute

[β,β]S = βijβklf m
ik θm ∧ θj ∧ θl

= 2
(
β12)2

θ1 ∧ θ2 ∧ θ3. (3.57)

This vanishes only for β12 = 0. Therefore we conclude that a reduction of the number of param-
eters by one occurs for the second family of Dirac structures, thus leaving only a two-parameter
family. These two families, with a total of five parameters, exhaust the Dirac structures on the
Heisenberg nilmanifold.

3.3.2. Single twist deformations
The above result changes for twisted Dirac structures, i.e. in the presence of fluxes. In that

case all six parameters of the two families can be retained. Let us work out in some detail the
corresponding twisted cases.

Consider the 2-form

B = N
x1e2 ∧ e3 + N

x2e3 ∧ e1 + N
x3e1 ∧ e2, (3.58)
3 3 3
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whose exterior derivative is

H = dB = Ne1 ∧ e2 ∧ e3. (3.59)

This obviously satisfies dH = 0, as it should. Then the subbundle LB , spanned by Θi , is a twisted
Dirac structure under the H -twisted bracket without any further restrictions.

In the previous section we claimed that LB can be an R-twisted Dirac structure as well, under
a condition that relates H and R. Examining this condition in the present case, it boils down to
N = 0 for any R. This means that the above 2-form B is forced to vanish. More generally, B just
needs to be closed. In other words, LB is also an R-twisted Dirac structure as long as dB = 0,
i.e. the H flux vanishes. This is the H=0 limit of the doubly-twisted Dirac structure appearing
in the fifth line of the previous table.

Similar results hold for the second type of Dirac structure. Indeed, one can invoke (3.57) to
introduce a non-Poisson 2-vector. It is enough to consider the previous one, i.e.

β = 1

2
βij θi ∧ θj (3.60)

with constant parameters, albeit without imposing the restriction of vanishing β12. Then

R = (
β12)2

θ1 ∧ θ2 ∧ θ3, (3.61)

and L∗
β , spanned by Ei , is a twisted Dirac structure under the R-twisted bracket without any

further restrictions.
As before, we should check whether an H -twisted Dirac structure is obtained as well. This

is indeed the case, however the restriction β12 = 0 enters again. This means that L∗
β is also an

H -twisted Dirac structure if [β,β]S = 0, i.e. in the absence of R flux. This is the R = 0 limit of
the doubly-twisted Dirac structure appearing in the sixth line of the previous table.

3.3.3. Multiple twist deformations
In order to analyze the case with both twists, we consider the following set-up of 2-form and

2-vector,

B = Nx1e2 ∧ e3, (3.62)

β = √
cθ1 ∧ θ2, (3.63)

where
√

c = β12 is some constant. The corresponding fluxes are given as

H = Ne1 ∧ e2 ∧ e3, (3.64)

R = cθ1 ∧ θ2 ∧ θ3. (3.65)

As a consequence,

dH = 0, (3.66)

[β,R]S = 0, (3.67)

which are obvious because there is no 4-form or 4-vector on a 3-dimensional manifold. The
associated Dirac structures are

LB = {
θ1, θ2 − Nx1e3, θ3 + Nx1e2} = {Θi}, (3.68)

L∗ = {
e1 + √

cθ2, e
2 − √

cθ1, e
3} = {

Ei
}
. (3.69)
β
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These Dirac structures are both H - and R-twisted, and one can easily check that the conditions
from Section 3.2 are fulfilled for B and β given in (3.62) and (3.63), respectively. We evaluate
explicitly the extended bracket (3.46), starting from the contributions from the twists,

(τH )ij = Nεijke
k, (τH )ij = cNεij3e3, (3.70)

(τR)ij = cεijkθk, (τR)ij = c
(
Nx1)2

ε1ij θ1, (3.71)

where

(τH )ij = βikβjl(τH )kl, (3.72)

(τR)ij = BikBjl(τR)kl . (3.73)

For LB with the HR-twisted bracket we find

[Θ1,Θ2]HR = θ3 + Nx1e2 = Θ3,

[Θ2,Θ3]HR = −c
(
Nx1)2

Θ1,

[Θ1,Θ3]HR = 0. (3.74)

It is observed that the bracket closes, at least with some non-constant coefficients. Similarly, the
HR-twisted bracket for L∗

β yields

[
E1,E2]

HR
= cNE3,[

E2,E3]
HR

= √
cE2,[

E1,E3]
HR

= √
cE1. (3.75)

Even in this simple example of the 3-dimensional nilmanifold, the HR-twisted Dirac struc-
tures carry a plethora of fluxes of all types. We postpone a detailed presentation of the compo-
nents and the origin of these fluxes to Section 4.2.2, after we will have discussed the construction
of Courant algebroids based on these Dirac structures.

4. Lie bialgebroids from dual Dirac structures

4.1. Construction of bialgebroids

Let us now examine whether we can combine the Dirac and twisted Dirac structures that were
identified in the previous section into Lie bialgebroids defining Courant and twisted Courant
algebroids. This is done by combining two Dirac structures L and L∗ as L ⊕ L∗, such that they
are orthogonal with respect to the bilinear form (2.2), namely

〈
(L)i,

(
L∗)j 〉 = 1

2
δ
j
i . (4.1)

This means that these mutually dual Dirac structures must satisfy the same relation as the ele-
mentary ones L0 and L∗

0, for which 〈θi, e
j 〉 = 1

2δ
j
i according to the definition (2.2).

We consider the most general possibility. To construct a Lie bialgebroid, we attempt to com-
bine the two general classes of Dirac structures on a nilmanifold, i.e.

L = LB ⊕ L∗ . (4.2)
β
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To establish that L is a Courant or twisted Courant algebroid, it remains to check the orthogonal-
ity condition (4.1). We directly compute

1

2
G

j
i := 〈

(LB)i,
(
L∗

β

)j 〉 = 1

2

(
δ
j
i + Bikβ

kj
) = 1

2

(
δ
j
i + F

j
i

)
, (4.3)

where we defined the specific tensor of (1,1) type6

F = B · β = Bikβ
kj ei ∧ θj . (4.4)

In general, the scalar product matrix G
j
i is not equal to δ

j
i . There are two ways to proceed. The

first one demands that Bikβ
kj = 0. However, we shall see that this is too restrictive. Here we will

follow the second, more general and more interesting path.
Recall that any O(d,d) transformation M of (1,1) type, acting as (LB)i → (M LB)i and

(L∗
β)i → (M−tL∗

β)i , where −t denotes the inverse transpose, does not alter the matrix G of
bilinear products. However, in combining two Dirac structures, there is the freedom of choosing
bases in each one independently of the other one, by defining

(LB)′i = C
j

i (LB)j , (4.5)(
L∗

β

)′ i = Di
j

(
L∗

β

)j
, (4.6)

where C and D are arbitrary but unrelated GL(d) matrices. Obviously, these transformations do
not change the type of the Dirac structure, since they just rotate the corresponding bases. The
matrix of scalar products in the new bases is

G
′ j
i = 2

〈
(LB)′i ,

(
L∗

β

)′ j 〉 = Ci
kGk

lDl
j = (

CGDt
)j

i

!= δ
j
i , (4.7)

where in the last step we demand it to acquire the desired form. Therefore, we are looking for
matrices C and D such that the following matrix equation is satisfied,

CGDt = 1d. (4.8)

There are many solutions to this equation, as long as G is invertible. For example, one can
consider

(i) C = G−1, D = 1d (4.9)

or

(ii) C = 1d, D = G−t . (4.10)

A more general solution may be written as

C = G−α, D = G(α−1)t . (4.11)

We obtain that L is indeed a Lie bialgebroid, and it defines a Courant or twisted Courant alge-
broid, depending on the bracket and the additional conditions. In particular, in the fluxless case,
L is a Courant algebroid with the standard, untwisted Courant bracket, under the conditions that
dB = 0 and [β,β]S = 0. Note that the present section is independent of whether B is a closed
2-form and β is a Poisson 2-vector. This allows us to construct twisted Courant algebroids with
several fluxes turned on. In the following specific example we will give explicit expressions for
C and D.

6 The important role of such elements may be also appreciated by looking at the fluxes appearing in [24], although
those were obtained in a different context.
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4.2. Example: Courant algebroids on the Heisenberg nilmanifold

4.2.1. Fluxless case
Let us revisit the simple example of the 3-dimensional Heisenberg nilmanifold from the view-

point of Lie bialgebroids. Since we are in three dimensions we can express the parameters as

Bik = εijkα
j , (4.12)

βik = εijkρj . (4.13)

For the moment we work with constant moduli. Thus B is a closed 2-form and β a Poisson
2-vector. The vanishing of the Schouten bracket demands ρ3 to be zero.

The bases for the two types of Dirac structures then read

LB := {
θi − εijkα

j ek
}
, (4.14)

L∗
β := {

ei + εijkρj θk

}
. (4.15)

It is directly computed that

Gm
i = 2

〈
(LB)i,

(
L∗

β

)m〉 = δm
i (1 + �α · �ρ) − αmρi. (4.16)

This matrix can easily be inverted,

(
G−1)j

m
= 1

1 + �α · �ρ
(
δ
j
m + ρmαj

)
. (4.17)

The two extremal solutions to (4.8) are thus given by

(i) C = 1 + �ρ ⊗ �α
1 + �α · �ρ , D = 13, (4.18)

(ii) C = 13, D = 1 + �α ⊗ �ρ
1 + �α · �ρ (4.19)

and lead respectively to

(i)
{
(LB)′i

} = 1

1 + �α · �ρ
{
θi − εijkα

j ek + ρi �α · �θ}
,

{(
L∗

β

)′i} = {
ei + εijkρj θk

}
, (4.20)

(ii)
{
(LB)′i

} = {
θi − εijkα

j ek
}
,

{(
L∗

β

)′i} = 1

1 + �α · �ρ
{
ei + εijkρj θk + αi �ρ · �e}. (4.21)

Intermediate solutions can also be worked out. In any case, the bialgebroid L′
B ⊕L′ ∗

β is a Courant
algebroid with the standard Courant bracket, and all the moduli are present; none of them, apart
from β12, has to vanish. The vanishing of ρ3 = β12 guarantees that the Courant bracket in the
subbundles L′

B and L′ ∗
β closes and that they remain Dirac structures.

4.2.2. Multiple coexistent fluxes
We now turn to the most interesting case when fluxes are present in the construction. As we

already pointed out, the discussion in Section 4.1 is rather general and does not depend on the
fluxes. We illustrate the situation in an example.
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We start from the setting of Section 3.3.3, with

B = Nx1e2 ∧ e3, β = √
cθ1 ∧ θ2 (4.22)

and H - and R-twisted Dirac structures

LB = {
θ1, θ2 − Nx1e3, θ3 + Nx1e2} = {Θi}, (4.23)

L∗
β = {

e1 + √
cθ2, e

2 − √
cθ1, e

3} = {Ei}. (4.24)

We have shown that these structures are involutive under the extended bracket (3.46). Let us now
consider the sum of the two twisted Dirac structures, L = LB ⊕ L∗

β . We only need to find the
proper basis rotations C and D to produce a twisted Courant algebroid. The only non-vanishing
combination of B · β is B32β

21 = √
cNx1 �= 0. In other words, the matrix G is

G =
⎛
⎝

1 0 0

0 1 0√
cNx1 0 1

⎞
⎠ . (4.25)

Inverting it is trivial,

G−1 =
⎛
⎝

1 0 0

0 1 0

−√
cNx1 0 1

⎞
⎠ . (4.26)

We choose here the solution C = G−1 and D = 13. This yields the Dirac structures in the rotated
bases,

LB = {
Θ ′

i

} = {
θ1, θ2 − Nx1e3, θ3 − √

cNx1θ1 + Nx1e2}, (4.27)

L∗
β = {

E′ i} = {
e1 + √

cθ2, e
2 − √

cθ1, e
3}, (4.28)

which differs from (4.23) and (4.24) only by a shift of Θ3,

Θ ′
3 = Θ3 − √

cNx1Θ1. (4.29)

The isotropy of each structure is evidently preserved. Finally, let us take a look at the extended
brackets in the new basis. For the elements of LB we have:

[Θ1,Θ2]HR = Θ ′
3 + √

cNx1Θ1,[
Θ2,Θ

′
3

]
HR

= √
cNx1Θ ′

3,[
Θ1,Θ

′
3

]
HR

= −√
cNΘ1 (4.30)

while the commutation relations for L∗
β remain the same as in (3.75). This proves the assertion

that LB ⊕ L∗
β , with the twisted Dirac structures in the above bases, is an HR-twisted Courant

algebroid. In this construction we anchor both subbundles into LB = e−BTM:

ρ: LB → LB, ρ(Θi) = Θi, (4.31)

ρ∗: L∗
β → LB, ρ∗(Ei

) = βijΘj . (4.32)

The anchor ρ is compatible with the bracket on LB , i.e. ρ([Θi,Θj ]HR) = [ρ(Θi), ρ(Θj )]HR ,
but for L∗ we find that
β
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ρ∗([Ei,Ej
]
HR

) = [
ρ∗(Ei

)
, ρ∗(Ej

)]
HR

+ ρ
(
R

(
Ei,Ej , ·)). (4.33)

These anchor maps turn (LB,L∗
β) into a quasi-Lie bialgebroid which gives rise to a Courant

algebroid structure on LB ⊕ L∗
β [18].

The importance of this result lies in the fact that all different types of fluxes coexist in the
above construction. Before listing them, let us compute the mixed HR-commutators for com-
pleteness. These are

[
Θ1,E

1]
HR

= √
cΘ ′

3 − √
cNx1E2 + √

cNE3,[
Θ1,E

2]
HR

= 0,[
Θ1,E

3]
HR

= −E2 − √
cΘ1,[

Θ2,E
1]

HR
= √

cNx1E1,[
Θ2,E

2]
HR

= √
cΘ ′

3,[
Θ2,E

3]
HR

= E1 − √
cΘ2 − √

cNx1E3,[
Θ ′

3,E
1]

HR
= −√

cNE1 + cNΘ2,[
Θ ′

3,E
2]

HR
= −cNΘ1,[

Θ ′
3,E

3]
HR

= √
cNx1E2. (4.34)

We group the fluxes that have appeared. By construction there are the metric flux f 3
12 = 1, which

defines the nilmanifold, the H = dB flux H123 = N and the R = 1
2 [β,β]S flux R123 = c, appear-

ing below.

Value Flux Origin

1 f 3
12 Metric

N H123 H = dB

c R123 R = 1
2 [β,β]S

From the sets of commutation relations we see additional effective fluxes with the general
index structure Fk

ij and Q
jk
i . These fluxes are not fundamental since they originate from non-

vanishing combinations of the metric, B and β . They are listed in the following table together
with their origin.

Value Fluxes Origin

cN Q̃12
3 Q̃ = Q′ − Q = 1

2βilβjmHijnθl ∧ θm ∧ en

√
c Q23

2 ,Q13
1 Q = βilf n

lm θn ∧ θi ∧ em

√
cN F 1

31 F = ∂m(Bnlβ
li)θi ∧ em ∧ en

√
cNx1 F̃ 1

12 F̃ = 1
2βilBlj f

j
mnθi ∧ em ∧ en

√
cNx1 F̌ 3

23 F̌ = Bilβ
lj f n

jmei ∧ em ∧ θn
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For the first two lines, we refer to the expressions (3.35) and (3.45) and we do not exhibit
their vanishing terms in the example at hand. Quantities with the index structure F i

ij and Q
ij
i are

encountered. These are customarily set to zero, which is not the case here. In [4] they were set to
zero, in order for f and Q to be individually T-dual to H -flux from a 4-dimensional viewpoint.
Here we are in a totally different context, where we ask for coexistence of fluxes without a
geometric dual. From a higher-dimensional viewpoint, a vanishing of these quantities is related
to the compactness of the internal manifold [2]. However, in the present case all of them are
derived quantities, decomposable into f 3

12,B23 and β12, and they appear because of the rotation
of the bases that we used to construct the Courant algebroid. The underlying nilmanifold is still
the one with structure constant f 3

12.
We conclude that the geometric deformation considered dresses the 3-dimensional nilmani-

fold with a large set of coexistent fluxes of all types.

5. Discussion on flux coexistence and related issues

The O(d,d) global symmetry of (10−d)-dimensional gauged supergravities inherited by
T-duality led to the introduction of general gaugings corresponding to so-called “non-geometric”
fluxes [4]. However, it still remains a puzzle whether these lower-dimensional supergravities
have a 10-dimensional origin or, in other words, how they are obtained by dimensional reduc-
tion. Perhaps the most critical question in this discussion is whether the multiflux situations in
four dimensions, expressed for example in terms of gauge algebras with general structure con-
stants, are vacuous in ten. This may be reformulated as a question on the amount of fluxes that an
internal space can admit or, posed differently, on whether all types of general fluxes can coexist
in ten dimensions in a mathematically meaningful manner.

There are two possibilities related to flux coexistence. We begin with the less remarkable
one. This amounts to starting with an appropriate nilmanifold, rich enough in geometric flux,
and applying consecutive T-dualities to reach a situation with all types of fluxes. This is close in
spirit to the conventional point of view on the subject that goes through duality transformations,
and it is usually expressed in terms of the flux chain

Hijk
Ti←→ f i

jk

Tj←→ Q
ij
k

Tk←→ Rijk. (5.1)

Clearly, this chain is the simplest possible one but very far from being the most general. Indeed,
an arbitrary nilmanifold has multiple structure constants, and one may dualize, in some cases
formally, along directions that have a different effect on each one. In order to illustrate this
situation with an example, let us consider the 6-dimensional nilmanifold with structure constants
f 4

13, f
6
14, f

5
23, f

6
25. This is a step-3 nilmanifold which was studied in the third reference of [11].

The simple flux chain (5.1) is then enhanced to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f 4
13

f 6
14

f 5
23

f 6
25

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

T6←→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f 4
13

H146

f 5
23

H256

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

T3←→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q34
1

H146

Q35
2

H256

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

T1←→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R134

f 1
46

Q35
2

H256

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (5.2)

The rightmost entry indeed contains all types of fluxes, but it is obvious that it has a geometric
dual at the leftmost entry. This happens because different fluxes penetrate different cycles of
the manifold. Therefore we will not delve into more details about this case. More constructions
along these lines appeared in [25]. Furthermore, it should be mentioned that both (5.1) and (5.2),
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although they can be understood from a four-dimensional viewpoint, they are less clear in ten
dimensions. Indeed, the last dualities cannot be performed with the standard procedure of the
Buscher rules because the corresponding isometries are broken in these cases. This problem
may be overcome in the context of generalized T-duality, as in Ref. [12]. However, as already
mentioned, we are not working on such cases in the present paper and therefore this is not further
discussed.

A more interesting construction was presented in the present paper. In particular, we chose
to work with Dirac structures, which are subbundles of the Courant algebroid where the skew-
symmetric Courant bracket is also associative. Therefore, Dirac structures are the physically
sensible subbundles of a general Courant algebroid. After classifying these structures and dis-
cussing how fluxes are introduced, we showed that it is possible to turn on multiple coexistent
fluxes along the same cycles of a nilmanifold. Even in the simplest 3-dimensional case, the cor-
responding Courant algebroid contains the fluxes

⎧⎨
⎩

H123

f 3
12

R123

⎫⎬
⎭ +

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F 1
13

F̃ 1
12

F̌ 3
23

Q̃12
3

Q13
1

Q23
2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (5.3)

The difference with the previous case is evident. In particular there is no T-duality, formal or not,
that could geometrize this situation in the standard, non-generalized, sense of geometry. This
provides a clear proof of principle for the existence of genuine multiflux generalized geometries.
Although the question whether these multiflux geometries correspond to true string backgrounds
is not addressed in this paper, our results clearly motivate further investigation. A closely related
issue is that there is no a priori reason that the mathematical quantities we introduced in this
paper are in one to one correspondence to the fluxes of Ref. [4]. Although such a relation can
be expected due to previous work on the subject, such as Refs. [12,15,26] for example, a more
precise treatment that would show such a correspondence is due.

Since Dirac structures are often associated to D-branes [27–29], we expect that, building on
relations described in [30], our result may be translated into brane language and that coexistence
of fluxes corresponds to bound states of non-standard or exotic branes [31,32] which source these
fluxes.

The generalized geometric approach to unconventional cases of manifolds with fluxes is also
appropriate to address quantization. This was emphasized in [16], where an elegant phase-space
point of view was suggested. From another standpoint the phase-space interpretation was also
advocated in [33] using matrix theory. More recently, the phase-space structure of R flux back-
grounds was also broadly discussed in [34].

Finally, cases with multiple coexistence of fluxes were recently studied in the context of asym-
metric orbifolds, where the connection to 4-dimensional gauge supergravities was discussed [35].
It would be interesting to relate this approach to the one adopted in the present paper.
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[22] C. Klimčík, T. Strobl, J. Geom. Phys. 43 (2002) 341, arXiv:math/0104189 [math.SG].
[23] P. Ševera, A. Weinstein, Prog. Theor. Phys. Suppl. 144 (2001) 145, arXiv:math/0107133 [math.SG].
[24] G. Aldazabal, W. Baron, D. Marqués, C. Núñez, J. High Energy Phys. 1111 (2011) 052, arXiv:1109.0290 [hep-th];

G. Aldazabal, W. Baron, D. Marqués, C. Núñez, J. High Energy Phys. 1111 (2011) 109 (Erratum).
[25] F. Haßler, D. Lüst, J. High Energy Phys. 1307 (2013) 048, arXiv:1303.1413 [hep-th].
[26] D. Andriot, A. Betz, J. High Energy Phys. 1312 (2013) 083, arXiv:1306.4381 [hep-th].

http://refhub.elsevier.com/S0550-3213(14)00087-X/bib4643s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib4643s2
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib4643s3
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib5353s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib5353s2
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib5353s3
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib6B737474s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib6B737474s2
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib6B737474s3
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib6B737474s4
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib5368656C746F6E3A323030356366s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib446162686F6C6B61723A323030357665s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib67636731s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib67636732s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib6763677375677261s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib6763677375677261s2
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib6763677375677261s3
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib6763677375677261s3
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib646674s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib646674s2
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib646674s3
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib7369786D616E69666F6C6473s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib6E696Cs1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib6E696Cs2
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib6E696Cs3
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib6E696Cs4
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib44616C6C2741676174613A323030377372s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib44616C6C2741676174613A323030377372s2
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib44616C6C2741676174613A323030377372s3
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib6469726163s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib48616C6D616779693A323030386472s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib48616C6D616779693A323030386472s2
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib426C756D656E686167656E3A323031327063s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib426C756D656E686167656E3A323031327063s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib426C756D656E686167656E3A323031327063s2
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib426C756D656E686167656E3A323031327063s3
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib426C756D656E686167656E3A323031327063s3
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib426C756D656E686167656E3A323031327063s4
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib426C756D656E686167656E3A323031327063s4
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib537A61626Fs1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib4C7573743A323031326670s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib526F79s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib526F79s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib526F79s2
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib7765696Es1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib7765696Es2
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib736576657261s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib44413039s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib6B73s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib7377s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib416C64617A6162616C3A323031316E6As1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib416C64617A6162616C3A323031316E6As2
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib486173736C65723A32303133777361s1
http://refhub.elsevier.com/S0550-3213(14)00087-X/bib416E6472696F743A32303133786361s1


82 A. Chatzistavrakidis et al. / Nuclear Physics B 883 (2014) 59–82
[27] P. Grange, S. Schäfer-Nameki, Nucl. Phys. B 770 (2007) 123, arXiv:hep-th/0609084.
[28] T. Asakawa, S. Sasa, S. Watamura, J. High Energy Phys. 1210 (2012) 064, arXiv:1206.6964 [hep-th].
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