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Abstract— Physical parameters of a vehicle drivetrain are
required in many applications. In the context of fault diagnosis,
for example, knowledge about the installed components or
parts can provide insights in order to verify if they behave in
accordance with standards or deviate from them in a way that
adversely affects the operating performance. For this purpose
a frequency domain identification approach is presented, which
is based only on standard mounted sensors. In the presented
method in particular nonlinear effects are taken into account
resulting from backlash. In order to guarantee a unique
parameter set a local identifiability analysis is performed.
The main idea of the method is to exploit the dependency
between the frequency response of the nonlinear system and
the magnitude of the test-signal to improve optimization of the
physical parameters. Finally, identification results using real
measurement data are presented.

I. INTRODUCTION

Model-based approaches are being given increasingly at-
tention in the field of automotive engineering and are used
for manifold applications and assignments. In this term
simulation models are used e.g. for controller design, fault
detection and diagnosis, condition monitoring, and online-
parameter estimation in order to obtain the longitudinal
road gradient or road friction coefficient [1]–[4]. For this
purpose accurate models are required. Special challenges
arise in particular during parameter identification. Since
the installation of additional sensors lead to further effort,
only standard sensors are available. Hence, the identification
process becomes more complex. Regarding grey-box models,
the confidence in the identified physical parameters must
be validated for the given measurements and procedure in
order to judge the usability of the results for model-based
application.
The vehicle drivetrain contains all components from the
engine to the tires. In this paper, the physical parameters
of a vehicle drivetrain are to be identified using only the
torque and the averaged engine speed when the vehicle is at
idle-speed, the transmission is in neutral gear, and the clutch
is engaged. Hence, the drivetrain contains the dual mass
flywheel (DMF), the rotating parts of the gearbox and the
engine, which is considered separately. The installed DMF
is a nonlinear component with multi-level springs, backlash
and dry friction [5]. In the past two decades the system’s
dynamics of the DMF have already been investigated in
detail. Accurate nonlinear models are found in [5], [6], that
show very good agreement in a wide range from idle-speed
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up to 5000 min−1. The DMFs were measured on a test
bench with precisely provided torque on the drive and load
sides, as well as angles and angular velocity measurements.
However, for identification purpose on production vehicles
these models are not usable, as the solver require step size
about 100 µs and due to a lack of sensors. Time domain
identification methods of systems with backlash have been
described in [7], [8]. However, these require at least the
measurement of the engine side angular position, which is
not available in this case. Further challenges are motor-
excited vibrations that superimpose with the engine speed.
Frequency domain methods, described in [9], [10], point out
the influence of backlash on the frequency response, but
don’t use it for identification. Therefore this paper presents
a frequency-based approach in which two chirp signals of
different amplitudes are used. Since the operating point has
an influence on the system response as described in section
II-B, the identification is carried out in closed-loop at almost
constant speed. Within the framework of an identifiability
analysis, the presented identification procedure is finally
evaluated using a simulation example and real measurement
data.
The paper is organized as follows. In section II the closed-
loop model within the nonlinear drivetrain model and engine
dynamics is introduced. In section III the frequency do-
main identification approach is presented. The identification
analysis follows in section IV and the results with real
measurement data are discussed in section V. Finally, a
conclusion is given in section VI.

II. MODELING

For the purpose of identification the closed-loop system
is introduced in Fig. 1. The idle-speed controller provides a
torque request of the combustion engine in order to adjust the
idle-speed nsetpoint. Adding the generated test-signal Ttest
for excitation of the drivetrain, the total torque request Tecu
is formed. The applied torque Teng with mean-value torque
Tm (see section II-A) may vary according to Tecu depending
on how well the engine is calibrated in certain operating
point. The measured engine speed ñ using a speed sensor is
obtained in order to close the loop. Furthermore cylinder
pressure sensors are given to reconstruct the mean-value
torque Tm. For the results within this paper each cylinder
is equipped with a sensor. In case of a single sensor, the
reconstruction can be replaced by model-based methods that
are state of the art [11]. In the following sections the briefly
introduced components are described in detail, as they have
been implemented in Matlab/SIMULINK.



A. Engine dynamics
The engine torque Teng consists of the combustion torque

Tcmb, the compression and expansion torque Tc/e and the
mass torque Tj. As they arise from non-continuous combus-
tion and non-linear torque transmission on the crankshaft
drive, they depend on the angular position ϕ1 and speed of
the crankshaft ω1.

Teng =

Ncyl∑
i=1

Tcmb(ϕ1,i) + Tc/e(ϕ1,i) + Tj(ϕ1,i, ω1,i) (1)

In order to approximate the combustion torque Tcmb of a
single cylinder a Fourier-series describing a rect-function can
be used [12]
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The applied mean-value engine torque Tm according to one
working cycle of 4π rad is a nonlinear function of many
variables, such as fuel mass ṁf , air/fuel ratio λa/f , engine
speed ϕ̇1, EGR rate xegr etc. [13]. Depending on how well
the combustion engine is calibrated, the mean-value engine
torque follows the requested torque Tecu appropriately

Tm = Tecu · f(ṁf , λa/f , ϕ̇1, xegr, ...). (3)

For a perfectly calibrated engine the nonlinear function is
equal to 1 for all operating points. Using the cross-sectional
cylinder area A, manifold pressure pl, the maximum cylinder
volume Vz, the minimum cylinder volume Vc, the isentropic
exponent κ, the cylinder position s and velocity ṡ, which
depend on the crankshaft position ϕ, Tc/e can be expressed
as follows

Tc/e = A pl

( Vz
Vc +As(ϕ1)

)κ
ṡ(ϕ). (4)
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Fig. 1: Closed-loop system consisting of four-clyinder four-
stroke combustion engine, the drivetrain, a speed sensor,
cylinder pressure sensors, idle-speed controller and a test-
signal generator.

At last the mass torque Tj follows the equation

Tj =moscr
2ω2
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where the crank radius r, the ratio of the crank radius to
connecting rod length λP = r/l are denoted. The mass of
the piston and approximately 1/3 of the total connecting rod
mass is contained in mosc.

B. Drivetrain dynamics

In this paper only a good approximation of the dynamic
behavior at idle-speed is decisive. For this purpose the
drivetrain is assumed as three mass system shown in Fig. 2,
which is based on [6] and [14]. Nevertheless there are other
model structures conceivable, that also lead to a frequency
response similar to Fig. 3. For the given there are some
simplifications carried out. First, the multistage arc springs
are replaced by springs with constant stiffness c12, since the
identification takes place at constant speed. The backlash ε12
arises as the arc spring is shorter than its tunnel. The DMF
furthermore exhibits coulomb friction characteristic, which is
represented by Tc,12. As the clutch is engaged ε23 denotes
backlash in the gear and the clutch hub. Torque losses Tloss
are assumed to be constant at idle-speed. This leads to the
equation of motion:

J1ϕ̈1 = Teng − Tloss
− c12(δ12 − ε12)− d12δ̇12 − Tc,12sign(δ̇12)

J2ϕ̈2 = c12(δ12 − ε12) + d12δ̇12 + Tc,12sign(δ̇12)

− (c23(δ23 − ε23) + d23(δ̇23 − ε̇23)
(6)

J3ϕ̈3 = c23(δ23 − ε23) + d23(δ̇23 − ε̇23)

The deflection is defined as δ12 = ϕ1−ϕ2 and δ23 = ϕ2−ϕ3,
respectively its time derivative. The backlash is described
introducing the states ε12 and ε23:

ε =

 εmax, δ ≥ εmax

δ, εmin < δ < εmax

εmin, δ ≤ εmin

(7)

In case of gear play a physical model according to ε̇23 is
used, which can be reference in [15]. Due to crankshaft
based discrete events, the model is solved in angle discrete
sampling using a angle transformation, as [6] suggested in
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Fig. 2: Model structure of the drivetrain.



terms of calculation efficiency. A step size of φs = π
30 rad

is set. At idle-speed of n = 1000 min−1 the sample time is
1 ms corresponding to following equation

Ts =
φs
ω1

=
φs
n

30

π
. (8)

Therefore, a sample time Ts in the following refers to an
angle step size φs according to the current engine speed n.

C. Sensors

The engine speed measurement is performed using a mean
average filter in order to filter engine induced oscillations of
the second order. As its oscillation period is given by half
crankshaft rotation φ2o = π, there are Nwin = 30 data points
to be averaged. The discrete frequency response at n is∣∣∣Gn(jω)

∣∣∣ =
1

Nwin

∣∣∣ sin(ω/2 TsNwin)

sin(ω/2 Ts)

∣∣∣30

π
, (9)

with circular frequency ω. The filtered engine speed ñ is
sampled with φs,n = π/2. The mean-valued torque T̃m can
only be measured at working stroke. Hence, for a single
cylinder Tm is sampled with 8φs,n. Using four cylinder pres-
sure sensors in total the sampling is performed with 2φs,n.
According to ñ the torque needs to be up-sampled about
factor L = 2 by holding the last value. This interpolation
method complies with the convolution with a rect-function
in time-domain. In frequency-domain it can be expressed as
follows (see [16])∣∣∣Gp(jω)

∣∣∣ =
1

L

∣∣∣ sin(ω/2 Ts,pL)

sin(ω/2 Ts,p)

∣∣∣, (10)

Ts,p =
φs,n
n

30

π
=

15

n
,

using the sample time Ts,p.

III. IDENTIFICATION METHOD
In order to estimate the frequency response of the driv-

etrain a test-signal is added to the output of the idle-speed
controller according to Fig. 1. This approach can be found
in related experiments [9], [10]. In this paper the system
is excited using a chirp signal with duration TD, starting
frequency f1, final frequency f2 and amplitude Atest:

Ttest = Atest sin
(

2π
(1

2

(
f2 − f1

) t

TD
+ f1

)
t
)
. (11)

The frequency response Gxy(jω) is determined by estima-
tion of the power spectral density (PSD) φxx(Ω) and φxy(Ω)
of the input x(t) and output y(t), that are sampled with Ts

rxx(k) =
1

N

N−1∑
n=1

xnxn+k,

φxx(Ω) = F{rxx(k)},

rxy(k) =
1

N

N−1∑
n=1

xnyn+k, (12)

φxy(Ω) = F{rxy(k)},

Gxy(jω) =
Tsφxy(Ω)

Tsφxx(Ω)
=
Sxy(jω)

Sxx(jω)
,

Fig. 3: Measurement data of the frequency response using a
test-signal with different amplitudes.

using the Fourier-Transformation of the auto-correlation
rxx(k) and cross-correlation rxy(k). The estimation can be
improved by means of the Welch-method [17]. The measure-
ment data is decomposed into various overlapped segments,
so that the PSD is estimated from the averaged segments.
As the identification is performed in closed-loop, , the input
x(t) is correlated with disturbances, that interfere with the
feedback y(t). In order to obtain the correct frequency
response of the plant the following equation is applied

Gxy(jω) =
Szy(jω)

Szx(jω)
, (13)

using the test-signal z(t). In our case x(t) is T̃m(t), y(t) is
ñ(t) and z(t) is Ttest(t). Considering Gn and Gp, the dy-
namic behaviour of the drivetrain and the engine is calculated
as follows

|GDRV(jω)| = |GT̃mñ
(jω)||Gp(jω)||Gn(jω)|−1, (14)

|GENG(ω)| = |GTecuT̃m
(jω)||Gp(jω)|−1. (15)

In order to obtain the parameters θ, the frequency response
|GDRV(jω)| using measurement data and |G̃DRV(ω,θ)| cor-
responding to model predicted data are calculated following
eq. (14). The objective function to be minimized in frequency
domain is defined as normalized root mean squared error

NRMSE =
‖ζ(ω)− ζ̃(ω,θ))‖2

‖ζ(ω)− 1
N

∑N
i=1 ζ(ωi)‖2

. (16)

ζ(ω) = 20 log (|GDRV(jω)|),
ζ̃(ω,θ) = 20 log (|G̃DRV(jω,θ)|).

In case of using two measurements with different amplitudes
the errors are added

NRMSE = NRMSE(Atest,1) + NRMSE(Atest,2). (17)

Fig. 3 shows the dynamic behaviour of GDRV with different
amplitudes Atest of the test-signal. As discussed in section
IV-A, the lower resonance frequency is left shifted for small
amplitudes Atest. This effect can be assigned to backlash,
which is discussed in the next section.



IV. IDENTIFIABILITY ANALYSIS

Repeating an optimization algorithm several times using
random initial parameter values and all else unchanged may
lead to different results for each repetition. In order to avoid
such case, the identifiability has to be ensured. Following a
general definition by [18], model parameters θ are identi-
fiable, if their estimates θ̂ converge to the true values θ0.
In this context there is a distinction between structural and
practical identifiability. Using a minimal set of independent
parameters to describe the equations of motion of a system
guarantees structural identifiability. Otherwise there are re-
dundant parameters. It is a property of the system equations
[18], while practical identifiability takes into account the
quality of the excitation signal and the amount of measured
data. An introduction with further details can be found in
[19]. By means of a reduced model structural identifiability
analysis is performed using an analytical approach and the
concept of profile likelihood [20] in order to illustrate the
benefit of the identification method that is introduced in this
paper.

A. Analytic approach

First, a simple dual mass system is considered with
additional gain parameter K acting as engine dynamics at
a quasi-stationary operating point:

G(s) =
K

s(J1 + J2)

1 + sdc + s2 J2c
1 + sdc + s2 J1J2

(J1+J2)c

. (18)

Regarding the bodeplot the magnitude is uniquely described
by minimal parameters, given by the asymptote for low
frequencies G(s → 0), high frequencies G(s → ∞), the
natural frequency ω0(D) and damping ratio D(D) of the
denominator and numerator ω0(N), D(N). According to [21]
these characteristics can be calculated as follows, using the
total mass J∑ = J1 + J2 and the mass ratio x = J1

J∑ :

G(s→ 0) =
1

s

Kα

J∑α
=

1

s

K∗

J∗∑ ,

G(s→∞) =
1

sx

Kα

J∑α
=

1

sx

K∗

J∗∑ ,

ω0(D) =

√
1

1− x
cα

J∑α
=

√
1

1− x
c∗

J∗∑ , (19)

D(D) =
1

2

√
1

1− x
(dα)2

J∑αcα
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1

2

√
1

1− x
(d∗)2

J∗∑c∗
,

ω0(N) = ω0(D)

√
1

x
, D(N) = D(D)

√
1

x

In order to check, if there is an unambiguous assignment
between characteristics and the physical parameter, the real
parameters θ = {J∑ , c, d,K} are scaled by α. Since θ can
be substituted by θ∗ without changing the characteristics,
there is a correlation between them. Only parameter x is
structurally identifiable in this identification setup. It can
therefore be assumed, that a structural identification of the
drivetrain and the engine dynamics at the same time is not

Fig. 4: Deflection of an undamped system with backlash.
The black solid line shows the behaviour with parameter c
and ε. Using two sinusoidal test-signals in respect to Atest,1

and Atest,1 leads to a unique result.

possible. Next, backlash is added to the system. At this point
an analytically based answer on structural identifiability is
not easy to give. Nevertheless, a statement can be made for
the undamped case. Using a sinusoidal torque test-signal with
amplitude Atest a certain deflection

δ =
Atest

c
(20)

occurs (see Fig. 4). The deflection is increased about ε in case
of additional backlash. A linearized model at this operating
point shows a decreased spring stiffness

clin =
Atest

δ + ε
=

Atest

Atest + εc
c (21)

This leads to a left shifted natural frequency. However, ε and
c cannot be determined uniquely from clin and Atest. Hence,
for a given c∗ there is a

ε∗ =
( 1

clin
− 1

c∗

)
Atest. (22)

Thus, a further correlation is pointed out for {c, ε} using
a certain Atest. In order to obtain a unique result the
identification should include at least two different excitation
amplitudes. Using eq. (22) with Atest,1 and Atest,2, there is
a unique solution( 1

clin,1
− 1

c

)
Atest,1 =

( 1

clin,2
− 1

c

)
Atest,2

Atest,1

Atest,2
=

(c− clin,2)clin,1
(c− clin,1)clin,2

c =
clin,1clin,2(Atest,1 −Atest,2)

Atest,1clin,2 −Atest,2clin,1
(23)

This relation is illustrated in Fig. 4. In the following sub-
section, the identifiability of the system using the likelihood
approach is regarded in order to verify the assumptions. First,
a brief introduction is given.

B. Profile likelihood approach

According to [20] the main idea behind the likelihood
approach is to identify all parameters, except of one remain-
ing at a fixed value and save the corresponding objective
value. In order to explore the parameter space within certain



Fig. 5: Likelihood profiles according to the identification setups 1-4 beginning with top panel. Setup 4 consists of the fourth
and fifth row. Each profile has been evaluated with seven equidistant points. The true values are always at 0.5.

boundaries, this is repeated for a series of values. Evaluating
the objective function a profile of each parameter θi may
reveal two extremes. If the profile has a unique minimum,
the parameter is structural identifiable, as the estimated
parameters θ̂ converge to the real parameters θ0. A perfectly
flat profile is given in case of ambiguous parameters, so
that the corresponding objective function is minimal for any
fixed parameter values, as long as the other parameters do
not reach their limits. Practically non-identifiable parameters
have a unique minimum, but they do not cross a threshold
for a desired confidence level of a χ2-distribution. However
in this paper only structural identifiability is investigated. In
order to neglect the influence of the quality of the measure-
ment data, a simulation model with arbitrary parameter set is
used to obtain reference data. Each parameter is assigned to
limits, that are ±100% of the true value. Thus, they can be
zero. Since the parameters have different dimensions, they
are normalized to a range of [0, 1]. In order to calculate the
likelihood profiles, seven equidistant points are determined.
Each identification starts with randomized parameter set.
Four different identification setups are analyzed:

1) Two mass system without backlash, using one test-
signal, θ = {J∑ , x, c, d,K}

2) Two mass system considering backlash, using one test-
signal, θ = {J∑ , x, c, d, ε}

3) Two mass system considering backlash, using two test-
signals, θ = {J∑ , x, c, d, ε}

4) Three mass system (see Fig. 2), using two test-signals,
θ = {J∑ , x1, x12, c12, c23, d12, d23, Tc,12, ε12, ε23},
with x1 = J1

J1+J2
, x12 = J1+J2

J1+J2+J3
.

Regarding setup 1 in Fig. 5 the approach confirms the
results from section IV. The profiles of the parameters
θ = {J∑ , c, d,K} show a flat shape. Parameter x, on the
other hand, has a clear minimum. In identification setup 2
the parameters θ = {c, ε} are of particular interest. Their
profiles indicate a minimum, however, the shape is rather
flat, especially in increasing direction. The reason for this
asymmetry is that for larger values of backlash a correspond-
ing c can be found, that produces a very similar frequency
response as the correct parameter set. Small values of ε show
a linear model behavior that cannot mimic the nonlinear
measurement properly, which is revealed by the decreasing
side of the profiles. Repeating this setup with two different
measurements according to setup 3, parameters c and ε depict
a significantly steeper profile on both sides. Regarding setup
4 parameters c12, c23, ε12 and ε23 are well distinguishable.
The damping parameters have a lower gradient, but still show
a unique minimum. A discussion about transferability of
these results on real measurement data is given in the next
section.



V. EXPERIMENTAL RESULTS

In this section the results for the drivetrain parameters
according to eq. (6) are presented. The engine dynamics is
assumed to be independent from excitation frequency and
simplified to K as described in section IV. It forms the
excitation signal and hence affects the frequency response.
But in reference to the results of section IV, K must not be
estimated along with the drivetrain parameters. Hence it is
obtained separately using the mean of the values of |GENG|
(see eq. (15)) and is expressed as follows

K =
1

N

N∑
i=1

|GENG(ωi,θ)|. (24)

The corresponding results of the frequency response are
illustrated in Fig. 6. The test-signals with Atest = 5 Nm
and Atest = 10 Nm have been selected for identification
(see upper panel) and the other for validation. An overall
accurate fit between simulated and real measurement data
can be determined. However the graph referred to Atest =
2 Nm indicates most deviations and some irregular shape at
2 Hz− 5 Hz. This is due to the very low excitation resulting
in a low signal-to-noise ratio. Hence any disturbances effect
the measurements more significant. Furthermore it has to be
noticed, that for real measurements such case of a perfect
fit is not achievable for example due to measurement noise,
disturbance and model reduction. Hence the cost function
is greater than zero as in the presented case. Under this
condition the profiles given in Fig. 5 are rounded or even
flat at certain error level. So an assignment is only possible
within a value range of the flat region.

VI. CONCLUSIONS

In this paper a frequency based identification approach
has been presented in order to obtain physical parameters of
the given nonlinear drivetrain model using standard sensors.
Within an identifiability analysis of the model it could be

Fig. 6: Measured and identified frequency responses. The
thin lines represent real measure data of the vehicle.

verified, that the estimation provides unique parameters,
considering certain conditions. First is, that the engine dy-
namics, expressed by a constant gain parameter K, cannot
be estimated along with the drivetrain parameters. In case
of backlash, the corresponding width ε correlates with the
stiffness coefficient c, which may lead to ambiguous results
according to the measurement quality and model accuracy.
As presented a significant improvement is achieved using at
least two measurements with different excitation amplitudes.
Finally the method has been applied to real measurement
data, which show a sufficient agreement with the presented
model.
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