Sigma-model limit of Yang-Mills instantons in higher dimensions

Andreas Deser ${ }^{\text {a }}$, Olaf Lechtenfeld ${ }^{\text {a,b,* }}$, Alexander D. Popov ${ }^{\text {a }}$
${ }^{\text {a }}$ Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
${ }^{\text {b }}$ Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany

Received 24 December 2014; received in revised form 7 March 2015; accepted 10 March 2015
Available online 12 March 2015
Editor: Hubert Saleur

Abstract

We consider the Hermitian Yang-Mills (instanton) equations for connections on vector bundles over a $2 n$-dimensional Kähler manifold X which is a product $Y \times Z$ of p - and q-dimensional Riemannian manifold Y and Z with $p+q=2 n$. We show that in the adiabatic limit, when the metric in the Z direction is scaled down, the gauge instanton equations on $Y \times Z$ become sigma-model instanton equations for maps from Y to the moduli space \mathcal{M} (target space) of gauge instantons on Z if $q \geq 4$. For $q<4$ we get maps from Y to the moduli space \mathcal{M} of flat connections on Z. Thus, the Yang-Mills instantons on $Y \times Z$ converge to sigma-model instantons on Y while Z shrinks to a point. Put differently, for small volume of Z, sigma-model instantons on Y with target space \mathcal{M} approximate Yang-Mills instantons on $Y \times Z$. © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP ${ }^{3}$.

1. Introduction and summary

The Yang-Mills equations in two, three and four dimensions were intensively studied both in physics and mathematics. In mathematics, this study (e.g. projectively flat unitary connections and stable bundles in $d=2$ [1], the Chern-Simons model and knot theory in $d=3$, instantons and Donaldson invariants [2] in $d=4$ dimensions) has yielded a lot of new results in differential

[^0]and algebraic geometry. There are also various interrelations between gauge theories in two, three and four dimensions. In particular, Chern-Simons theory in $d=3$ dimensions reduces to the theory of flat connections in $d=2$ (see e.g. [3,4]). On the other hand, the gradient flow equations for Chern-Simons theory on a $d=3$ manifold Y are the first-order anti-self-duality equations on $Y \times \mathbb{R}$, which play a crucial role in $d=4$ gauge theory.

The program of extending familiar constructions in gauge theory, associated to problems in low-dimensional topology, to higher dimensions was proposed by Donaldson and Thomas in the seminal paper [5] (see also [6]) and developed in [7-14] among others. An important role in this investigation is played by first-order gauge-field equations which are a generalization of the anti-self-duality equations in $d=4$ to higher-dimensional manifolds with special holonomy (or, more generally, with G-structure [15,16]). Such equations were first introduced in [17] and further considered in [18-22] (see also the references therein).

Instanton equations on a d-dimensional Riemannian manifold X can be introduced as follows $[17,5,10]$. Suppose there exist a 4 -form Q on X. Then there exists a ($d-4$)-form $\Sigma:=* Q$, where $*$ is the Hodge operator on X. Let \mathcal{A} be a connection on a bundle E over X with curvature $\mathcal{F}=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}$. The generalized anti-self-duality (instanton) equation on the gauge field then is [10]

$$
\begin{equation*}
* \mathcal{F}+\Sigma \wedge \mathcal{F}=0 \tag{1.1}
\end{equation*}
$$

For $d>4$ these equations can be defined on manifolds X with special holonomy, i.e. such that the holonomy group G of the Levi-Civita connection on the tangent bundle $T X$ is a subgroup in $\mathrm{SO}(d)$. Solutions of (1.1) satisfy the Yang-Mills equation

$$
\begin{equation*}
\mathrm{d} * \mathcal{F}+\mathcal{A} \wedge * \mathcal{F}-(-1)^{d} * \mathcal{F} \wedge \mathcal{A}=0 \tag{1.2}
\end{equation*}
$$

The instanton equation (1.1) is also well defined on manifolds X with non-integrable G-structures, i.e. when $\mathrm{d} \Sigma \neq 0$. In this case (1.1) implies the Yang-Mills equation with (3-form) torsion $T:=* \mathrm{~d} \Sigma$, as is discussed e.g. in [23-27].

Manifolds X with a ($d-4$)-form Σ which admits the instanton equation (1.1) are usually calibrated manifolds with calibrated submanifolds. Recall that a calibrated manifold is a Riemannian manifold (X, g) equipped with a closed p-form φ such that for any oriented p-dimensional subspace ζ of $T_{x} X,\left.\varphi\right|_{\zeta} \leq \operatorname{vol}_{\zeta}$ for any $x \in X$, where $\operatorname{vol}_{\zeta}$ is the volume of ζ with respect to the metric g [28]. A p-dimensional submanifold Y of X is said to be a calibrated submanifold with respect to φ (φ-calibrated) if $\left.\varphi\right|_{Y}=\operatorname{vol}_{Y}$ [28]. In particular, suitably normalized powers of the Kähler form on a Kähler manifold are calibrations, and the calibrated submanifolds are complex submanifolds. On a G_{2}-manifold one has a 3-form which defines a calibration, and on a $\operatorname{Spin}(7)$-manifold the defining 4 -form (the Cayley form) is a calibration as well [5,6].

It is not easy to construct solutions of (1.1) for $d>4$ and to describe their moduli space. ${ }^{1}$ It was shown by Donaldson, Thomas, Tian [5,10] and others that the adiabatic limit method provides a useful and powerful tool. The adiabatic limit refers to the geometric process of shrinking a metric in some directions while leaving it fixed in the others. ${ }^{2}$ It is assumed that on X there is

[^1]a family Σ_{ε} of (d-4)-forms with a real parameter ε such that $\Sigma_{0}=\lim _{\varepsilon \rightarrow 0} \Sigma_{\varepsilon}$ defines a calibrated submanifold Y of X. Then one can define a normal bundle $N(Y)$ of Y with a projection
\[

$$
\begin{equation*}
\pi: N(Y) \rightarrow Y . \tag{1.3}
\end{equation*}
$$

\]

The metric on X induces on $N(Y)$ a Riemannian metric

$$
\begin{equation*}
g_{\varepsilon}=\pi^{*} g_{Y}+\varepsilon^{2} g_{Z} \tag{1.4}
\end{equation*}
$$

where $Z \cong \mathbb{R}^{4}$ is a typical fibre. In fact, the fibres are calibrated by a 4-form Q_{ε} dual to Σ_{ε}. The metric (1.4) extends to a tubular neighborhood of Y in X, and (1.1) may be considered on this subset of X. Anyway, it was shown [5,10,6] that solutions of the instanton equation (1.1) defined by the form Σ_{ε} on (X, g_{ε}) in the adiabatic limit $\varepsilon \rightarrow 0$ converge to sigma-model instantons describing a map from the ($d-4$)-dimensional submanifold Y into the hyper-Kähler moduli space of framed Yang-Mills instantons on fibres \mathbb{R}^{4} of the normal bundle $N(Y)$.

The submanifold $Y \hookrightarrow X$ is calibrated by the ($d-4$)-form Σ defining the instanton equation (1.1). However, on X there may exist other p-forms φ and associated φ-calibrated submanifolds Y of dimension $p \neq d-4$. In such a case one can define a different normal bundle (1.3) with fibres \mathbb{R}^{d-p} and deform the metric as in (1.4). However, this task is quite difficult technically and will be postponed for a future work. As a more simple task, one may take a direct product manifold $X=Y \times Z$ with $\operatorname{dim}_{\mathbb{R}} Y=p$ and $\operatorname{dim}_{\mathbb{R}} Z=q=d-p$ with a p-form $\varphi=v o l_{Y}$, or consider non-flat manifolds Z and a ($d-4$)-form Σ defining (1.1). In string theory $\operatorname{dim}_{\mathbb{R}} X=10$, and calibrated submanifolds Y are identified with worldvolumes of p-branes where p varies from zero to ten.

In this short paper we explore the direct product case $X=Y \times Z$ with $\operatorname{dim}_{\mathbb{R}} Y=p \neq d-4$ for Kähler manifolds X and the adiabatic limit of the Hermitian Yang-Mills equations on bundles over X. We will show that for even p (and hence even q) the adiabatic limit of (1.1) yields sigma-model instanton equations describing holomorphic maps from Y into the moduli space of Hermitian Yang-Mills instantons on Z. For odd p and q the consideration is more involved, and we describe only the case $p=q=3$ in which we obtain maps from Y into the moduli space of flat connections on Z. For the purpose of this paper, this special case sufficiently illustrates the main features of the odd-dimensional cases.

2. Moduli space of instantons in $d \geq 4$

Bundles. Let X be an oriented smooth manifold of dimension d, G a semisimple compact Lie group, \mathfrak{g} its Lie algebra, P a principal G-bundle over X, \mathcal{A} a connection 1-form on P and $\mathcal{F}=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}$ its curvature. We consider also the bundle of groups $\operatorname{Int} P=P \times_{G} G$ (G acts on itself by internal automorphisms: $h \mapsto g h g^{-1}, h, g \in G$) associated with P, the bundle of Lie algebras $\operatorname{Ad} P=P \times_{G} \mathfrak{g}$ and a complex vector bundle $E=P \times_{G} V$, where V is the space of some irreducible representation of G. All these associated bundles inherit their connection \mathcal{A} from P.

Gauge transformations. We denote by \mathbb{A}^{\prime} the space of connections on P and by \mathcal{G}^{\prime} the infinitedimensional group of gauge transformations (automorphisms of P which induce the identity transformation of X),

$$
\begin{equation*}
\mathcal{A} \mapsto \mathcal{A}^{g}=g^{-1} \mathcal{A} g+g^{-1} \mathrm{~d} g \tag{2.1}
\end{equation*}
$$

which can be identified with the space of global sections of the bundle Int P. Correspondingly, the infinitesimal action of \mathcal{G}^{\prime} is defined by global sections χ of the bundle $\operatorname{Ad} P$,

$$
\begin{equation*}
\mathcal{A} \mapsto \delta_{\chi} \mathcal{A}=\mathrm{d} \chi+[\mathcal{A}, \chi]=: D_{\mathcal{A}} \chi \tag{2.2}
\end{equation*}
$$

with $\chi \in \operatorname{Lie}^{\prime}=\Gamma(X, \operatorname{Ad} P)$.
Moduli space of connections. We restrict ourselves to the subspace $\mathbb{A} \subset \mathbb{A}^{\prime}$ of irreducible connections and to the subgroup $\mathcal{G}=\mathcal{G}^{\prime} / Z\left(\mathcal{G}^{\prime}\right)$ of \mathcal{G}^{\prime} which acts freely on \mathbb{A}. Then the moduli space of irreducible connections on P (and on E) is defined as the quotient \mathbb{A} / \mathcal{G}. We do not distinguish connections related by a gauge transformation. Classes of gauge equivalent connections are points $[\mathcal{A}]$ in \mathbb{A} / \mathcal{G}.
Metric on \mathbb{A} / \mathcal{G}. Since \mathbb{A} is an affine space, for each $\mathcal{A} \in \mathbb{A}$ we have a canonical identification between the tangent space $T_{\mathcal{A}} \mathbb{A}$ and the space $\Lambda^{1}(X, \operatorname{Ad} P)$ of 1-forms on X with values in the vector bundle $\operatorname{Ad} P$. We consider \mathfrak{g} as a matrix Lie algebra, with the metric defined by the trace. The metrics on X and on the Lie algebra \mathfrak{g} induce an inner product on $\Lambda^{1}(X, \operatorname{Ad} P)$,

$$
\begin{equation*}
\left\langle\xi_{1}, \xi_{2}\right\rangle=\int_{X} \operatorname{tr}\left(\xi_{1} \wedge * \xi_{2}\right) \quad \text { for } \quad \xi_{1}, \xi_{2} \in \Lambda^{1}(X, \operatorname{Ad} P) \tag{2.3}
\end{equation*}
$$

This inner product is transferred to $T_{\mathcal{A}} \mathbb{A}$ by the canonical identification. It is invariant under the \mathcal{G}-action on \mathbb{A}, whence we get a metric (2.3) on the moduli space \mathbb{A} / \mathcal{G}.

Instantons. Suppose there exists a ($d-4$)-form Σ on X which allows us to introduce the instanton equation

$$
\begin{equation*}
* \mathcal{F}+\Sigma \wedge \mathcal{F}=0 \tag{2.4}
\end{equation*}
$$

discussed in Section 1. We denote by $\mathcal{N} \subset \mathbb{A}$ the space of irreducible connections subject to (2.4) on the bundle $E \rightarrow X$. This space \mathcal{N} of instanton solutions on X is a subspace of the affine space \mathbb{A}, and we define the moduli space \mathcal{M} of instantons as the quotient space

$$
\begin{equation*}
\mathcal{M}=\mathcal{N} / \mathcal{G} \tag{2.5}
\end{equation*}
$$

together with a projection

$$
\begin{equation*}
\pi: \mathcal{N} \xrightarrow{\mathcal{G}} \mathcal{M} . \tag{2.6}
\end{equation*}
$$

According to the bundle structure (2.6), at any point $\mathcal{A} \in \mathcal{N}$, the tangent bundle $T_{\mathcal{A}} \mathcal{N} \rightarrow \mathcal{N}$ splits into the direct sum

$$
\begin{equation*}
T_{\mathcal{A}} \mathcal{N}=\pi^{*} T_{[\mathcal{A}]} \mathcal{M} \oplus T_{\mathcal{A}} \mathcal{G} \tag{2.7}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
T_{\mathcal{A}} \mathcal{N} \ni \tilde{\xi}=\xi+D_{\mathcal{A} \chi} \quad \text { with } \quad \xi \in \pi^{*} T_{[\mathcal{A}]} \mathcal{M} \quad \text { and } \quad D_{\mathcal{A} \chi} \in T_{\mathcal{A}} \mathcal{G} \tag{2.8}
\end{equation*}
$$

where $\tilde{\xi}, \xi \in \Lambda^{1}(X, \operatorname{Ad} P)$ and $\chi \in \Lambda^{0}(X, \operatorname{Ad} P)=\Gamma(X, \operatorname{Ad} P)$. The choice of ξ corresponds to a local fixing of a gauge.

Metric on \mathcal{M}. Denote by ξ_{α} a local basis of vector fields on \mathcal{M} (sections of the tangent bundle $T \mathcal{M}$) with $\alpha=1, \ldots, \operatorname{dim}_{\mathbb{R}} \mathcal{M}$. Restricting the metric (2.3) on \mathbb{A} / \mathcal{G} to the subspace \mathcal{M} provides a metric $\mathbb{G}=\left(G_{\alpha \beta}\right)$ on the instanton moduli space,

$$
\begin{equation*}
G_{\alpha \beta}=\int_{X} \operatorname{tr}\left(\xi_{\alpha} \wedge * \xi_{\beta}\right) . \tag{2.9}
\end{equation*}
$$

Kähler forms on \mathcal{M}. If X is Kähler with a complex structure J and a Kähler form $\omega(\cdot, \cdot)=$ $g(J \cdot, \cdot)$, then the Kähler 2-form $\Omega=\left(\Omega_{\alpha \beta}\right)$ on \mathcal{M} is given by

$$
\begin{equation*}
\Omega_{\alpha \beta}=-\int_{X} \operatorname{tr}\left(J \xi_{\alpha} \wedge * \xi_{\beta}\right) \tag{2.10}
\end{equation*}
$$

It is well known that the moduli space of framed instantons ${ }^{3}$ on a hyper-Kähler 4-manifold X (with three integrable almost complex structures J^{i}) is hyper-Kähler, with three Kähler forms

$$
\begin{equation*}
\Omega_{\alpha \beta}^{i}=-\int_{X} \operatorname{tr}\left(J^{i} \xi_{\alpha} \wedge * \xi_{\beta}\right) \tag{2.11}
\end{equation*}
$$

3. Hermitian Yang-Mills equations

Instanton equations. On any Kähler manifold X of dimension $d=2 n$ there exists an integrable almost complex structure $J \in \operatorname{End}(T X), J^{2}=-\mathrm{Id}$, and a Kähler $(1,1)$-form $\omega(\cdot, \cdot)=g(J \cdot, \cdot)$ compatible with J. The natural 4-form

$$
\begin{equation*}
Q=\frac{1}{2} \omega \wedge \omega \tag{3.1}
\end{equation*}
$$

and its dual $\Sigma=* Q$ allow one to formulate the instanton equation (2.4) for a connection \mathcal{A} on a complex vector bundle E over X associated to the principal bundle $P(X, G)$. The fibres \mathbb{C}^{N} of E support an irreducible G-representation. For simplicity, we have in mind the fundamental representation of $\mathrm{SU}(N)$. One can endow the bundle E with a Hermitian metric and choose \mathcal{A} to be compatible with the Hermitian structure on E.

The instanton equations in the form (2.4) with $\Sigma=\frac{1}{2} *(\omega \wedge \omega)$ may then be rewritten as the following pair of equations,

$$
\begin{equation*}
\mathcal{F}^{0,2}=-\left(\mathcal{F}^{2,0}\right)^{\dagger}=0 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\omega^{n-1} \wedge \mathcal{F}=0 \quad \Leftrightarrow \quad \omega\right\lrcorner \mathcal{F}=\omega^{\hat{\mu} \hat{\nu}} \mathcal{F}_{\hat{\mu} \hat{\nu}}=0 \tag{3.3}
\end{equation*}
$$

where $\hat{\mu}, \hat{v}, \ldots=1, \ldots, 2 n$, and the notation $\omega\lrcorner$ exploits the underlying Riemannian metric of X for raising indices of ω. Eqs. (3.2)-(3.3) were introduced by Donaldson, Uhlenbeck and Yau [19] and are called the Hermitian Yang-Mills (HYM) equations. ${ }^{4}$ The HYM equations have the following algebro-geometric interpretation. Eq. (3.2) implies that the curvature $\mathcal{F}=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}$ is of type $(1,1)$ with respect to J, whence the connection \mathcal{A} defines a holomorphic structure on E. Eq. (3.3) means that $E \rightarrow X$ is a polystable vector bundle. The moduli space \mathcal{M}_{X} of HYM connections on E, the metric $\mathbb{G}=\left(G_{\alpha \beta}\right)$ and the Kähler form $\Omega=\left(\Omega_{\alpha \beta}\right)$ on \mathcal{M}_{X} are introduced as described in Section 2 after specializing X to be Kähler.
Direct product of Kähler manifolds. The subject of this paper is the adiabatic limit of the HYM equations (3.2)-(3.3) on a direct product

[^2]\[

$$
\begin{equation*}
X=Y \times Z \tag{3.4}
\end{equation*}
$$

\]

of Kähler manifolds Y and Z. The dimensions p and q of Y and Z are even, and $p+q=2 n$. Let $\left\{e^{a}\right\}$ with $a=1, \ldots, p$ and $\left\{e^{\mu}\right\}$ with $\mu=p+1, \ldots, 2 n$ be local frames for the cotangent bundles $T^{*} Y$ and $T^{*} Z$, respectively. Then $\left\{e^{\hat{\mu}}\right\}=\left\{e^{a}, e^{\mu}\right\}$ with $\hat{\mu}=1, \ldots, 2 n$ will be a local frame for the cotangent bundle $T^{*} X=T^{*} Y \oplus T^{*} Z$. We introduce on $Y \times Z$ the metric

$$
\begin{equation*}
g=g_{Y}+g_{Z}=\delta_{a b} e^{a} \otimes e^{b}+\delta_{\mu \nu} e^{\mu} \otimes e^{\nu}=\delta_{\hat{\mu} \hat{\nu}} e^{\hat{\mu}} \otimes e^{\hat{\nu}} \tag{3.5}
\end{equation*}
$$

and an integrable almost complex structure

$$
\begin{equation*}
J=J_{Y} \oplus J_{Z} \in \operatorname{End}(T Y) \oplus \operatorname{End}(T Z), \quad J_{Y}^{2}=-\mathrm{Id}_{Y} \quad \text { and } \quad J_{Z}^{2}=-\mathrm{Id}_{Z} \tag{3.6}
\end{equation*}
$$

whose components are defined by $J_{Y} e^{a}=J_{b}^{a} e^{b}$ and $J_{Z} e^{\mu}=J_{v}^{\mu} e^{\nu}$. Likewise, the Kähler form $\omega(\cdot, \cdot)=g(J \cdot, \cdot)$ on $Y \times Z$ decomposes as

$$
\begin{equation*}
\omega=\omega_{Y}+\omega_{Z} \tag{3.7}
\end{equation*}
$$

with components $\omega_{Y}=\left(\omega_{a b}\right)$ and $\omega_{Z}=\left(\omega_{\mu \nu}\right)$.
Splitting of the HYM equations. We introduce on $X=Y \times Z$ local coordinates $\left\{y^{a}\right\}$ and $\left\{z^{\mu}\right\}$ and choose $e^{a}=\mathrm{d} y^{a}, e^{\mu}=\mathrm{d} z^{\mu}$. Any connection on the bundle $E \rightarrow X$ is decomposed as

$$
\begin{equation*}
\mathcal{A}=\mathcal{A}_{Y}+\mathcal{A}_{Z}=\mathcal{A}_{a} \mathrm{~d} y^{a}+\mathcal{A}_{\mu} \mathrm{d} z^{\mu} \tag{3.8}
\end{equation*}
$$

where the components \mathcal{A}_{a} and \mathcal{A}_{μ} depend on $(y, z) \in Y \times Z$. The curvature \mathcal{F} of \mathcal{A} has components $\mathcal{F}_{a b}$ along $Y, \mathcal{F}_{\mu \nu}$ along Z, and $\mathcal{F}_{a \mu}$ which we call "mixed".

Note that the holomorphicity conditions (3.2) may be expressed through the projector

$$
\begin{equation*}
\bar{P}=\frac{1}{2}(\operatorname{Id}+\mathrm{i} J), \quad \bar{P}^{2}=\bar{P} \tag{3.9}
\end{equation*}
$$

onto the (0,1)-part of the complexification of the cotangent bundle $T^{*} X=T^{*} Y \oplus T^{*} \mathrm{Z}$ as

$$
\begin{equation*}
\bar{P} \bar{P} \mathcal{F}=0 \tag{3.10}
\end{equation*}
$$

which in components reads

$$
\begin{equation*}
\left(\delta_{\hat{\mu}}^{\hat{\sigma}}+\mathrm{i} J_{\hat{\mu}}^{\hat{\sigma}}\right)\left(\delta_{\hat{\hat{\nu}}}^{\hat{\lambda}}+\mathrm{i} J_{\hat{\nu}}^{\hat{\lambda}}\right) \mathcal{F}_{\hat{\sigma} \hat{\lambda}}=0 . \tag{3.11}
\end{equation*}
$$

From (3.6) it follows that these equations split into three parts:

$$
\begin{array}{lll}
\left(\delta_{a}^{c}+\mathrm{i} J_{a}^{c}\right)\left(\delta_{b}^{d}+\mathrm{i} J_{b}^{d}\right) \mathcal{F}_{c d}=0 & \Leftrightarrow & \mathcal{F}_{Y}^{0,2}=0 \\
\left(\delta_{\mu}^{\sigma}+\mathrm{i} J_{\mu}^{\sigma}\right)\left(\delta_{v}^{\lambda}+\mathrm{i} J_{v}^{\lambda}\right) \mathcal{F}_{\sigma \lambda}=0 & \Leftrightarrow & \mathcal{F}_{Z}^{0,2}=0 \tag{3.13}
\end{array}
$$

and

$$
\begin{equation*}
\mathcal{F}_{a v} J_{\mu}^{v}+J_{a}^{c} \mathcal{F}_{c \mu}=0 \quad \Leftrightarrow \quad \mathcal{F}_{a \mu}-J_{a}^{c} J_{\mu}^{v} \mathcal{F}_{c v}=0 \tag{3.14}
\end{equation*}
$$

Finally, with the help of (3.7) the stability equation (3.3) takes the form

$$
\begin{equation*}
\left.\left.\omega_{Y}\right\lrcorner \mathcal{F}_{Y}+\omega_{Z}\right\lrcorner \mathcal{F}_{Z}=\omega^{a b} \mathcal{F}_{a b}+\omega^{\mu \nu} \mathcal{F}_{\mu \nu}=0 \tag{3.15}
\end{equation*}
$$

4. Adiabatic limit of the HYM equations for even \boldsymbol{p} and \boldsymbol{q}

Moduli space \mathcal{M}_{Z}. In order to investigate the adiabatic limit of (3.12)-(3.15), we introduce on $X=Y \times Z$ the deformed metric and Kähler form

$$
\begin{equation*}
g_{\varepsilon}=g_{Y}+\varepsilon^{2} g_{Z} \quad \text { and } \quad \omega_{\varepsilon}=\omega_{Y}+\varepsilon^{2} \omega_{Z} \tag{4.1}
\end{equation*}
$$

while the complex structure $J=J_{Y} \oplus J_{Z}$ does not depend on ε according to (3.6). Since J_{Y} and J_{Z} are untouched, (3.12)-(3.14) keep their form in the adiabatic limit $\varepsilon \rightarrow 0$. In particular, (3.12) implies that $\mathcal{F}_{Y}^{0,2}=0$, i.e. the bundle $E \rightarrow Y \times Z$ is holomorphic along Y for any $z \in Z .{ }^{5}$ On the other hand, (3.15) for $\varepsilon \rightarrow 0$ becomes

$$
\begin{equation*}
\left.\omega_{Z}\right\lrcorner \mathcal{F}_{Z}=\omega^{\mu \nu} \mathcal{F}_{\mu \nu}=0 \tag{4.2}
\end{equation*}
$$

which together with (3.13) means that \mathcal{A}_{Z} is a HYM connection (framed instanton) on Z for any given $y \in Y$. We denote the moduli space of such connections by

$$
\begin{equation*}
\mathcal{M}_{Z}=\mathcal{N}_{Z} / \mathcal{G}_{Z} \tag{4.3}
\end{equation*}
$$

where \mathcal{N}_{Z} is the space of all instanton solutions on Z for a fixed $y \in Y$, and \mathcal{G}_{Z} consists of the elements of \mathcal{G} with the same fixed value of y. We here suppress the y dependence in our notation. The moduli space \mathcal{M}_{Z} is a Kähler manifold on which we introduce the metric \mathbb{G} and Kähler form Ω with components

$$
\begin{equation*}
G_{\alpha \beta}=\int_{Z} \operatorname{tr}\left(\xi_{\alpha} \wedge *_{Z} \xi_{\beta}\right) \quad \text { and } \quad \Omega_{\alpha \beta}=-\int_{Z} \operatorname{tr}\left(J_{Z} \xi_{\alpha} \wedge *_{Z} \xi_{\beta}\right) \tag{4.4}
\end{equation*}
$$

similar to (2.9) and (2.10) but now with $\xi_{\alpha} \in \Lambda^{1}(Z, \operatorname{Ad} P)$ and the Hodge operator $*_{Z}$ defined on Z. Note that for $\operatorname{dim}_{\mathbb{R}} Z=2$ the HYM equations (3.13) and (4.2) enforce $\mathcal{F}_{Z}=0$, i.e. \mathcal{M}_{Z} becomes the moduli space of flat connections on bundles $E(y)$ over a two-dimensional Riemannian manifold Z.

A map into \mathcal{M}_{Z}. The bundle $E(y)$ is a HYM vector bundle over Z for any $y \in Y$. Letting the point y vary, the connection $\mathcal{A}_{Z}=\mathcal{A}_{\mu}(y, z) \mathrm{d} z^{\mu}$ on $E(y)$ defines a map

$$
\begin{equation*}
\phi: Y \rightarrow \mathcal{M}_{Z} \quad \text { with } \quad \phi(y)=\left\{\phi^{\alpha}(y)\right\} \tag{4.5}
\end{equation*}
$$

where ϕ^{α} with $\alpha=1, \ldots, \operatorname{dim}_{\mathbb{R}} \mathcal{M}_{Z}$ are local coordinates on \mathcal{M}_{Z}. This map is constrained by our remaining set of equations, namely (3.14) for the mixed field-strength components

$$
\begin{equation*}
\mathcal{F}_{a \mu}=\partial_{a} \mathcal{A}_{\mu}-\partial_{\mu} \mathcal{A}_{a}+\left[\mathcal{A}_{a}, \mathcal{A}_{\mu}\right]=\partial_{a} \mathcal{A}_{\mu}-D_{\mu} \mathcal{A}_{a} \tag{4.6}
\end{equation*}
$$

Similarly to (2.7) and (2.8), $\partial_{a} \mathcal{A}_{\mu}$ decomposes into two parts,

$$
\begin{equation*}
T_{\mathcal{A}_{Z}} \mathcal{N}_{Z}=\pi^{*} T_{\left[\mathcal{A}_{Z}\right]} \mathcal{M}_{Z} \oplus T_{\mathcal{A}_{Z}} \mathcal{G}_{Z} \quad \Leftrightarrow \quad \partial_{a} \mathcal{A}_{\mu}=\left(\partial_{a} \phi^{\alpha}\right) \xi_{\alpha \mu}+D_{\mu} \epsilon_{a} \tag{4.7}
\end{equation*}
$$

where $\left\{\xi_{\alpha}=\xi_{\alpha \mu} \mathrm{d} z^{\mu}\right\}$ is a local basis of vector fields on \mathcal{M}_{Z}. Here, ϵ_{a} are \mathfrak{g}-valued gauge parameters which are determined by the gauge-fixing equations

$$
\begin{equation*}
\left(\partial_{a} \phi^{\alpha}\right) g^{\mu v} D_{\mu} \xi_{\alpha \nu}=0 \quad \Rightarrow \quad g^{\mu \nu} D_{\mu} D_{\nu} \epsilon_{a}=g^{\mu v} D_{\mu} \partial_{a} \mathcal{A}_{v} \tag{4.8}
\end{equation*}
$$

[^3]Substituting (4.7) into (4.6), the mixed field-strength components simplify to

$$
\begin{equation*}
\mathcal{F}_{a \mu}=\left(\partial_{a} \phi^{\alpha}\right) \xi_{\alpha \mu}-D_{\mu}\left(\mathcal{A}_{a}-\epsilon_{a}\right) \tag{4.9}
\end{equation*}
$$

Inserting this expression into our remaining equations (3.14), we obtain

$$
\begin{equation*}
\left(\partial_{a} \phi^{\alpha}\right) \xi_{\alpha \mu}-J_{a}^{c} J_{\mu}^{\sigma}\left(\partial_{c} \phi^{\alpha}\right) \xi_{\alpha \sigma}=D_{\mu}\left(\mathcal{A}_{a}-\epsilon_{a}\right)-J_{a}^{c} J_{\mu}^{\sigma} D_{\sigma}\left(\mathcal{A}_{c}-\epsilon_{c}\right) \tag{4.10}
\end{equation*}
$$

as a condition on the map ϕ.
Sigma-model instantons. In order to better interpret the above equations, we multiply both sides with $\mathrm{d} z^{\mu} \wedge *_{Z} \xi_{\beta}$, take the trace over \mathfrak{g}, integrate over Z and recognize the integrals in (4.4). The integral of the right-hand side of (4.10) vanishes due to (4.7)-(4.8) (orthogonality of $\xi_{\alpha} \in T \mathcal{M}_{Z}$ and $D \chi \in T \mathcal{G}_{Z}$), and we end up with

$$
\begin{equation*}
\left(\partial_{a} \phi^{\alpha}\right) G_{\alpha \beta}+J_{a}^{c}\left(\partial_{c} \phi^{\alpha}\right) \Omega_{\alpha \beta}=0 . \tag{4.11}
\end{equation*}
$$

Inverting the moduli-space metric G and introducing the almost complex structure \mathcal{J} on \mathcal{M}_{Z} via its components

$$
\begin{equation*}
\mathcal{J}_{\beta}^{\alpha}:=\Omega_{\beta \gamma} G^{\gamma \alpha}, \tag{4.12}
\end{equation*}
$$

we rewrite (4.11) as

$$
\begin{equation*}
\partial_{a} \phi^{\alpha}=-J_{a}^{c}\left(\partial_{c} \phi^{\beta}\right) \mathcal{J}_{\beta}^{\alpha} \quad \Leftrightarrow \quad \mathrm{d} \phi=-\mathcal{J} \circ \mathrm{d} \phi \circ J . \tag{4.13}
\end{equation*}
$$

Using $J_{c}^{a} J_{b}^{c}=-\delta_{b}^{a}$ and $\mathcal{J}_{\gamma}^{\alpha} \mathcal{J}_{\beta}^{\gamma}=-\delta_{\beta}^{\alpha}$, alternative versions are

$$
\begin{equation*}
\left(\partial_{a} \phi^{\beta}\right) \mathcal{J}_{\beta}^{\alpha}-J_{a}^{b}\left(\partial_{b} \phi^{\alpha}\right)=0 \quad \Leftrightarrow \quad \mathcal{J} \circ \mathrm{~d} \phi=\mathrm{d} \phi \circ J \tag{4.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\delta_{a}^{b}+\mathrm{i} J_{a}^{b}\right)\left(\partial_{b} \phi^{\beta}\right)\left(\delta_{\beta}^{\alpha}-\mathrm{i} \mathcal{J}_{\beta}^{\alpha}\right)=0 \quad \Leftrightarrow \quad \mathcal{P} \circ \mathrm{~d} \phi \circ \bar{P}=0, \tag{4.15}
\end{equation*}
$$

with the obvious definition for \mathcal{P}.
These equations mean that $\phi^{1}+\mathrm{i} \phi^{2}, \phi^{3}+\mathrm{i} \phi^{4}, \ldots$ are holomorphic functions of complex coordinates on Y, i.e. ϕ is a holomorphic map. It is clear that our equations (4.15) are BPS-type (instanton) first-order equations for the sigma model on Y with target space \mathcal{M}_{Z}, whose field equations define harmonic maps from Y into \mathcal{M}_{Z}. For $\operatorname{dim}_{\mathbb{R}} Y=\operatorname{dim}_{\mathbb{R}} Z=2$ these equations have appeared in [31] as the adiabatic limit of the HYM equations on the product of two Riemann surfaces. ${ }^{6}$ Our (4.15) generalize [31] to the case $\operatorname{dim}_{\mathbb{R}} Y>2$ and $\operatorname{dim}_{\mathbb{R}} Z \geq 2$. From the implicit function theorem it follows that near every solution ϕ of (4.15) there exists a solution $\mathcal{A}_{\varepsilon}$ of the HYM equations (3.2)-(3.3) for ε sufficiently small. In other words, solutions of (4.15) approximate solutions of the HYM equations on X.

5. Adiabatic limit of gauge instantons for $p=q=3$

If the Kähler manifold X is a direct product of two odd-dimensional manifolds Y and Z, i.e. if $p=\operatorname{dim}_{\mathbb{R}} Y$ and $q=\operatorname{dim}_{\mathbb{R}} Z$ are both odd, then we may need to impose conditions on the geometry of Y and Z for $X=Y \times Z$ to be Kähler. However, we are not aware of these demands

[^4]outside of special cases, such as products of tori. Therefore, we restrict ourselves to tori Y and Z with $p=q=3$ since already this case illustrates essential differences from the case of even p and q. More general situations demand more effort and will be considered elsewhere.
Deformed structures. We consider the Calabi-Yau space
\[

$$
\begin{equation*}
X=Y \times Z=T^{3} \times T_{r}^{3} \tag{5.1}
\end{equation*}
$$

\]

where T^{3} is a 3-torus and T_{r}^{3} is another 3-torus, with r marked points (punctures). We endow X with the deformed metric

$$
\begin{align*}
g_{\varepsilon} & =g_{T^{3}}+\varepsilon^{2} g_{T_{r}^{3}} \\
& =e^{1} \otimes e^{1}+e^{2} \otimes e^{2}+e^{3} \otimes e^{3}+\varepsilon^{2}\left(e^{4} \otimes e^{4}+e^{5} \otimes e^{5}+e^{6} \otimes e^{6}\right) \tag{5.2}
\end{align*}
$$

and choose the basis of $(1,0)$-forms as

$$
\begin{equation*}
\theta^{1}=e^{1}+\mathrm{i} \varepsilon e^{4}, \quad \theta^{2}=e^{2}+\mathrm{i} \varepsilon e^{5} \quad \text { and } \quad \theta^{3}=e^{3}+\mathrm{i} \varepsilon e^{6} \tag{5.3}
\end{equation*}
$$

with a real deformation parameter ε.
The combined torus $T^{3} \times T_{r}^{3}$ supports an integrable almost complex structure J satisfying $J \theta^{j}=\mathrm{i} \theta^{j}$ for $j=1,2,3$, which determines its components,

$$
\begin{equation*}
J e^{\hat{\mu}}=J_{\hat{v}}^{\hat{\mu}} e^{\hat{\nu}}: \quad J_{4}^{1}=J_{5}^{2}=J_{6}^{3}=-\varepsilon \quad \text { and } \quad J_{1}^{4}=J_{2}^{5}=J_{3}^{6}=\varepsilon^{-1} \tag{5.4}
\end{equation*}
$$

For the Kähler form $\omega(\cdot, \cdot)=g(J \cdot, \cdot)$ the components are

$$
\begin{equation*}
\omega_{14}=\omega_{25}=\omega_{36}=\varepsilon \quad \text { and } \quad \omega_{41}=\omega_{52}=\omega_{63}=-\varepsilon \tag{5.5}
\end{equation*}
$$

Adiabatic limit for instantons. The HYM equations (3.2) and (3.3) on $T^{3} \times T_{r}^{3}$ with J and ω given by (5.4) and (5.5) read

$$
\begin{align*}
& \mathcal{F}_{a b}+\mathrm{i} \mathcal{F}_{a \mu} J_{b}^{\mu}+\mathrm{i} J_{a}^{\mu} \mathcal{F}_{\mu b}-J_{a}^{\mu} J_{b}^{v} \mathcal{F}_{\mu \nu}=0, \\
& \mathcal{F}_{\mu \nu}+\mathrm{i} \mathcal{F}_{\mu b} J_{v}^{b}+\mathrm{i} J_{\mu}^{b} \mathcal{F}_{b \nu}-J_{\mu}^{a} J_{v}^{b} \mathcal{F}_{a b}=0, \\
& \mathcal{F}_{a \mu}+\mathrm{i} \mathcal{F}_{a b} J_{\mu}^{b}+\mathrm{i} J_{a}^{\nu} \mathcal{F}_{\nu \mu}-J_{a}^{v} J_{\mu}^{b} \mathcal{F}_{v b}=0, \tag{5.6}
\end{align*}
$$

with $a, b=1,2,3$ and $\mu, \nu=4,5,6$, as well as

$$
\begin{equation*}
\mathcal{F}_{14}+\mathcal{F}_{25}+\mathcal{F}_{36}=0 \tag{5.7}
\end{equation*}
$$

In the adiabatic limit $\varepsilon \rightarrow 0$ the first two lines of (5.6) reduce to

$$
\begin{equation*}
\mathcal{F}_{45}=\mathcal{F}_{46}=\mathcal{F}_{56}=0 \tag{5.8}
\end{equation*}
$$

while the mixed-component part of (5.6) together with (5.7) produces

$$
\begin{align*}
& \mathcal{F}_{16}-\mathcal{F}_{34}=0, \quad \mathcal{F}_{35}-\mathcal{F}_{26}=0, \quad \mathcal{F}_{24}-\mathcal{F}_{15}=0 \quad \text { and } \\
& \mathcal{F}_{14}+\mathcal{F}_{25}+\mathcal{F}_{36}=0 \tag{5.9}
\end{align*}
$$

Recall that

$$
\begin{equation*}
\mathcal{A}=\mathcal{A}_{Y}+\mathcal{A}_{Z}=\mathcal{A}_{a}(y, z) \mathrm{d} y^{a}+\mathcal{A}_{\mu}(y, z) \mathrm{d} z^{\mu} \tag{5.10}
\end{equation*}
$$

is a connection on a vector bundle E over $X=T^{3} \times T_{r}^{3}$. From (5.8) we learn that \mathcal{A}_{Z} is a flat connection on $Z=T_{r}^{3}$ for any $y \in Y=T^{3}$. We denote by \mathcal{N}_{Z} the space of solutions to (5.8) and
by \mathcal{M}_{Z} the moduli space of all such connections. From (5.9) we see that in the adiabatic limit there are no restrictions on \mathcal{A}_{Y}, since the components \mathcal{A}_{a} and $\mathcal{F}_{a b}$ no longer appear.

Sigma-model equations. For the mixed components $\mathcal{F}_{a \mu}$ of the field strength we have

$$
\begin{equation*}
\mathcal{F}_{a \mu}=\partial_{a} \mathcal{A}_{\mu}-D_{\mu} \mathcal{A}_{a}=\left(\partial_{a} \phi^{\alpha}\right) \xi_{\alpha \mu}-D_{\mu}\left(\mathcal{A}_{a}-\epsilon_{a}\right) \tag{5.11}
\end{equation*}
$$

where, as in Section 4, we used for $\partial_{a} \mathcal{A}_{\mu}$ the decomposition formula (4.7) and introduced the map

$$
\begin{equation*}
\phi: T^{3} \rightarrow \mathcal{M}_{T_{r}^{3}} . \tag{5.12}
\end{equation*}
$$

Let us, for a short while, relax the gauge fixing (4.8) and allow $\phi(y)$ to take values in the full solution space $\mathcal{N}_{T_{r}^{3}}$. Correspondingly $\xi_{\alpha}=\xi_{\alpha \mu} \mathrm{d} z^{\mu}$ will be momentarily a basis of all vector fields on $\mathcal{N}_{T_{r}^{3}}$, and ϵ_{a} are undetermined.

Substituting (5.11) into (5.9), we obtain the equations

$$
\begin{align*}
& \left(\partial_{1} \phi^{\alpha}\right) \xi_{\alpha 6}-\left(\partial_{3} \phi^{\alpha}\right) \xi_{\alpha 4}=D_{6}\left(\mathcal{A}_{1}-\epsilon_{1}\right)-D_{4}\left(\mathcal{A}_{3}-\epsilon_{3}\right), \\
& \left(\partial_{3} \phi^{\alpha}\right) \xi_{\alpha 5}-\left(\partial_{2} \phi^{\alpha}\right) \xi_{\alpha 6}=D_{5}\left(\mathcal{A}_{3}-\epsilon_{3}\right)-D_{6}\left(\mathcal{A}_{2}-\epsilon_{2}\right), \\
& \left(\partial_{2} \phi^{\alpha}\right) \xi_{\alpha 4}-\left(\partial_{1} \phi^{\alpha}\right) \xi_{\alpha 5}=D_{4}\left(\mathcal{A}_{2}-\epsilon_{2}\right)-D_{5}\left(\mathcal{A}_{1}-\epsilon_{1}\right) \tag{5.13}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\partial_{1} \phi^{\alpha}\right) \xi_{\alpha 4}+\left(\partial_{2} \phi^{\alpha}\right) \xi_{\alpha 5}+\left(\partial_{3} \phi^{\alpha}\right) \xi_{\alpha 6} \\
& \quad=D_{4}\left(\mathcal{A}_{1}-\epsilon_{1}\right)+D_{5}\left(\mathcal{A}_{2}-\epsilon_{2}\right)+D_{6}\left(\mathcal{A}_{3}-\epsilon_{3}\right) \tag{5.14}
\end{align*}
$$

Multiplying both sides with $\xi_{\beta \mu}$ for $\mu=4,5,6$ and integrating $\operatorname{tr}\left(\xi_{\alpha \mu} \xi_{\beta \nu}\right)$ over T_{r}^{3}, the above four equations yield the $3 \operatorname{dim}_{\mathbb{R}} \mathcal{N}_{T_{r}^{3}}$ relations

$$
\begin{equation*}
\partial_{a} \phi^{\alpha}+\pi_{a}{ }_{c}^{b}\left(\partial_{b} \phi^{\beta}\right) \Pi_{\beta}^{c \alpha}=\mathfrak{j}_{a}^{\alpha}, \tag{5.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\pi_{a}{ }_{c}^{b}:=\varepsilon_{a c}^{b} \quad \text { and } \quad \Pi_{\beta}^{a \alpha}:=\Pi_{\beta \gamma}^{a} G^{\gamma \alpha} \tag{5.16}
\end{equation*}
$$

with

$$
\begin{equation*}
G_{\alpha \beta}=\int_{T_{r}^{3}} \mathrm{~d}^{3} z \delta^{\mu v} \operatorname{tr}\left(\xi_{\alpha \mu} \xi_{\beta \nu}\right) \quad \text { and } \quad \Pi_{\alpha \beta}^{a}=\int_{T_{r}^{3}} \mathrm{~d}^{3} z \varepsilon^{a+3 \mu v} \operatorname{tr}\left(\xi_{\alpha \mu} \xi_{\beta \nu}\right) \tag{5.17}
\end{equation*}
$$

The right-hand side of (5.15) is given by

$$
\begin{equation*}
\mathfrak{j}_{a}^{\alpha}=G^{\alpha \beta} \int_{T_{r}^{3}} \mathrm{~d}^{3} z \operatorname{tr}\left\{\delta_{a}^{b} \delta^{\mu v}+\varepsilon_{a c}^{b} \varepsilon^{c+3 \mu v}\right\} D_{\mu}\left(\mathcal{A}_{b}-\epsilon_{b}\right) \xi_{\beta v} \tag{5.18}
\end{equation*}
$$

The $(1,1)$ tensors $\pi_{a}=\left(\varepsilon_{a c}^{b}\right), a=1,2,3$, on T^{3} and the $(1,1)$ tensors $\Pi_{a}=\left(\delta_{a b} \Pi_{\beta}^{b \alpha}\right)$ on $\mathcal{N}_{T_{r}^{3}}$ satisfy the identities

$$
\begin{equation*}
\pi_{a}^{3}+\pi_{a}=0 \quad \text { and } \quad \Pi_{a}^{3}+\Pi_{a}=0 \tag{5.19}
\end{equation*}
$$

i.e. they define three so-called f-structures [33] correspondingly on T^{3} and on $\mathcal{N}_{T_{r}^{3}}$. To clarify their meaning we observe that (5.19) defines orthogonal projectors

$$
\begin{equation*}
P_{a}:=-\pi_{a}^{2} \quad \text { and } \quad P_{a}^{\perp}:=\mathbb{1}_{3}+\pi_{a}^{2} \tag{5.20}
\end{equation*}
$$

of rank two and rank one on T^{3} and similarly orthogonal projectors

$$
\begin{equation*}
\mathcal{P}_{a}:=-\Pi_{a}^{2} \quad \text { and } \quad \mathcal{P}_{a}^{\perp}:=\mathrm{Id}+\Pi_{a}^{2} \tag{5.21}
\end{equation*}
$$

on $\mathcal{N}_{T_{r}^{3}}$, where Id is the identity tensor. The tangent bundle $T\left(T^{3}\right)$ splits into eigenspaces of P_{a},

$$
\begin{equation*}
T\left(T^{3}\right)=T\left(T_{a}^{2} \times S_{a}^{1}\right)=T\left(T_{a}^{2}\right) \oplus T\left(S_{a}^{1}\right)=L_{a} \oplus N_{a} \quad \text { for } \quad a=1,2,3 \tag{5.22}
\end{equation*}
$$

which defines on T^{3} two distributions L_{a} and N_{a} of rank two and one, respectively, and decomposes the 3 -torus in three different ways. Analogously, the projector \mathcal{P}_{a} yields a splitting

$$
\begin{equation*}
T\left(\mathcal{N}_{T_{r}^{3}}\right)=\mathcal{L}_{a} \oplus \mathcal{N}_{a} \tag{5.23}
\end{equation*}
$$

which is in fact induced by the factorization of T_{r}^{3} into a two-dimensional torus and a circle.
We now come back to the question of gauge fixing. Recalling that \mathcal{A}_{Z} is flat on T_{r}^{3}, we gauge away one component, say

$$
\begin{equation*}
\mathcal{A}_{6}=0 \quad \Rightarrow \quad \xi_{\alpha 6}=\delta_{\alpha} \mathcal{A}_{6}=0 \tag{5.24}
\end{equation*}
$$

from which it follows in (5.17) that

$$
\begin{equation*}
\Pi_{\alpha \beta}^{1}=\Pi_{\alpha \beta}^{2}=0 \tag{5.25}
\end{equation*}
$$

and only $\Pi_{\alpha \beta}^{3}$ is non-vanishing. With (5.24) our moduli space $\mathcal{M}_{T_{r}^{3}}$ is reduced to the moduli space $\mathcal{M}_{T_{r}^{2}}$ of flat connections on the torus $T_{r}^{2} .{ }^{7}$ Furthermore, j_{a}^{α} defined by (5.18) must be zero since ξ_{α} with the gauge-fixing condition (5.24) are tangent to the moduli space $\mathcal{M}_{T_{r}^{2}}$ of flat connections on T_{r}^{2} and therefore orthogonal to $D_{\mu}\left(\mathcal{A}_{b}-\epsilon_{b}\right)$ in (5.18) tangent to the gauge orbits. Thus, after fixing the gauge $\mathcal{A}_{6}=0$ the sigma-model instanton equations (5.15) reduce to

$$
\begin{equation*}
\left(\partial_{1}+\mathrm{i} \partial_{2}\right) \phi^{\beta}\left(\delta_{\beta}^{\alpha}-\mathrm{i} \mathcal{J}_{\beta}^{\alpha}\right)=0 \quad \text { and } \quad \partial_{3} \phi^{\alpha}=0 \tag{5.26}
\end{equation*}
$$

where $\partial_{a}:=\partial / \partial y^{a}$ and $\mathcal{J}_{\beta}^{\alpha}:=\Pi_{\beta}^{3 \alpha}$ is a complex structure on the Kähler moduli space $\mathcal{M}_{T_{r}^{2}}$ of flat connections on T_{r}^{2}. Hence, for $p=q=3$ we obtain the degenerate case of holomorphic maps

$$
\begin{equation*}
\phi: T^{2} \rightarrow \mathcal{M}_{T_{r}^{2}} \tag{5.27}
\end{equation*}
$$

from T^{2} into the moduli space $\mathcal{M}_{T_{r}^{2}}$. This is degenerate in the sense that the HYM connection on $T^{3} \times T_{r}^{3}$ in the adiabatic limit for (5.2) is implicitly reduced to a HYM connection on $T^{2} \times T_{r}^{2}$.

Remark. The above degeneracy is not generic but relates only to the case of $q=3$. As a counterexample, let us consider $q=4$, for instance the G_{2}-instanton equations (for a definition see e.g. [5,6,12,14]) on the 7 -manifold

$$
\begin{equation*}
X=Y \times Z=T^{3} \times Z \quad \text { with } \quad Z=T^{4}, \quad K 3 \quad \text { or } \quad \mathbb{R}^{4} . \tag{5.28}
\end{equation*}
$$

In the adiabatic limit of $\varepsilon \rightarrow 0$ with the deformed metric $g_{\varepsilon}=g_{Y}+\varepsilon^{2} g_{Z}$ the G_{2}-instanton equations become

[^5]\[

$$
\begin{equation*}
\partial_{a} \phi^{\alpha}+\varepsilon_{a c}^{b}\left(\partial_{b} \phi^{\beta}\right) \mathcal{J}_{\beta}^{c \alpha}=0 . \tag{5.29}
\end{equation*}
$$

\]

This looks similar to (5.15) with $\mathfrak{j}_{a}^{\alpha}=0$ and features three complex structures $\mathcal{J}^{c}=\left(\mathcal{J}^{c}{ }_{\beta}^{\alpha}\right)$ (instead of f-structures Π^{c}) on the hyper-Kähler moduli space \mathcal{M}_{Z} of framed Yang-Mills instantons on the hyper-Kähler 4-manifold Z. These equations were discussed e.g. in [6,13] in the form of Fueter equations. In the above case (5.28) they define maps $\phi: T^{3} \rightarrow \mathcal{M}_{Z}$ which are sigma-model instantons minimizing the standard sigma-model energy functional.

Acknowledgement

This work was partially supported by the Deutsche Forschungsgemeinschaft grant LE 838/13.

References

[1] M. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond. A 308 (1983) 523.
[2] S. Donaldson, P.B. Kronheimer, The Geometry of Four-Manifolds, Clarendon Press, Oxford, 1990.
[3] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351; S. Elitzur, G.W. Moore, A. Schwimmer, N. Seiberg, Remarks on the canonical quantization of the Chern-SimonsWitten theory, Nucl. Phys. B 326 (1989) 108.
[4] D.S. Freed, Classical Chern-Simons theory. Part 1, Adv. Math. 113 (1995) 237, arXiv:hep-th/9206021; D.S. Freed, Classical Chern-Simons theory. Part 2, Houst. J. Math. 28 (2002) 293.
[5] S.K. Donaldson, R.P. Thomas, Gauge theory in higher dimensions, in: The Geometric Universe, Oxford University Press, Oxford, 1998.
[6] S.K. Donaldson, E. Segal, Gauge theory in higher dimensions II, in: N.C. Leung, S.-T. Yau (Eds.), Surveys in Differential Geometry, vol. 16, International Press, Boston, 2009, arXiv:0902.3239 [math.DG].
[7] R.P. Thomas, Gauge theories on Calabi-Yau manifolds, PhD thesis, Oxford University, 1997; R.P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds and bundles of K3 fibrations, J. Differ. Geom. 54 (2000) 367.
[8] C. Lewis, $\operatorname{Spin}(7)$ instantons, PhD thesis, Oxford University, 1998.
[9] J.M. Figueroa-O'Farrill, C. Kohl, B.J. Spence, Supersymmetric Yang-Mills, octonionic instantons and triholomorphic curves, Nucl. Phys. B 521 (1998) 419, arXiv:hep-th/9710082; H. Kanno, A note on higher dimensional instantons and supersymmetric cycles, Prog. Theor. Phys. Suppl. 135 (1999) 18, arXiv:hep-th/9903260.
[10] G. Tian, Gauge theory and calibrated geometry, Ann. Math. 151 (2000) 193, arXiv:math/0010015; T. Tao, G. Tian, A singularity removal theorem for Yang-Mills fields in higher dimensions, J. Am. Math. Soc. 17 (2004) 557.
[11] S. Brendle, Complex anti-self-dual instantons and Cayley submanifolds, arXiv:math/0302094.
[12] H.N. Sà Earp, Instantons on G_{2}-manifolds, PhD thesis, Imperial College London, 2009.
[13] A. Haydys, Gauge theory, calibrated geometry and harmonic spinors, J. Lond. Math. Soc. 86 (2012) 482, arXiv: 0902.3738 [math.DG].
[14] T. Walpuski, G_{2}-instantons on generalised Kummer constructions, Geom. Topol. 17 (2013) 2345, arXiv:1109.6609 [math.DG];
A. Clarke, Instantons on the exceptional holonomy manifolds of Bryant and Salamon, J. Geom. Phys. 82 (2014) 84, arXiv: 1308.6358 [math.DG];
H.N. Sà Earp, Generalised Chern-Simons theory and G_{2}-instantons over associative fibrations, SIGMA 10 (2014) 083, arXiv:1401.5462 [math.DG].
[15] S.M. Salamon, Riemannian Geometry and Holonomy Groups, Pitman Res. Notes Math., vol. 201, Longman, Harlow, 1989.
[16] D. Joyce, Compact Manifolds with Special Holonomy, Oxford University Press, Oxford, 2000.
[17] E. Corrigan, C. Devchand, D.B. Fairlie, J. Nuyts, First order equations for gauge fields in spaces of dimension greater than four, Nucl. Phys. B 214 (1983) 452.
[18] R.S. Ward, Completely solvable gauge field equations in dimension greater than four, Nucl. Phys. B 236 (1984) 381.
[19] S.K. Donaldson, Anti-self-dual Yang-Mills connections on a complex algebraic surface and stable vector bundles, Proc. Lond. Math. Soc. 50 (1985) 1;
S.K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231;
K.K. Uhlenbeck, S.-T. Yau, On the existence of hermitian Yang-Mills connections on stable bundles over compact Kähler manifolds, Commun. Pure Appl. Math. 39 (1986) 257;
K.K. Uhlenbeck, S.-T. Yau, A note on our previous paper, Commun. Pure Appl. Math. 42 (1989) 703.
[20] M. Mamone Capria, S.M. Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988) 517;
R. Reyes Carrión, A generalization of the notion of instanton, Differ. Geom. Appl. 8 (1998) 1.
[21] T.A. Ivanova, A.D. Popov, (Anti)self-dual gauge fields in dimension $d \geq 4$, Theor. Math. Phys. 94 (1993) 225;
M. Günaydin, H. Nicolai, Seven-dimensional octonionic Yang-Mills instanton and its extension to an heterotic string soliton, Phys. Lett. B 351 (1995) 169.
[22] L. Baulieu, H. Kanno, I.M. Singer, Special quantum field theories in eight and other dimensions, Commun. Math. Phys. 194 (1998) 149, arXiv:hep-th/9704167;
M. Blau, G. Thompson, Euclidean SYM theories by time reduction and special holonomy manifolds, Phys. Lett. B 415 (1997) 242, arXiv:hep-th/9706225;
B.S. Acharya, J.M. Figueroa-O'Farrill, B.J. Spence, M. O'Loughlin, Euclidean D-branes and higher dimensional gauge theory, Nucl. Phys. B 514 (1998) 583, arXiv:hep-th/9707118.
[23] D. Harland, T.A. Ivanova, O. Lechtenfeld, A.D. Popov, Yang-Mills flows on nearly Kähler manifolds and G_{2}-instantons, Commun. Math. Phys. 300 (2010) 185, arXiv:0909.2730 [hep-th];
K.P. Gemmer, O. Lechtenfeld, C. Nölle, A.D. Popov, Yang-Mills instantons on cones and sine-cones over nearly Kähler manifolds, J. High Energy Phys. 09 (2011) 103, arXiv:1108.3951 [hep-th].
[24] D. Harland, A.D. Popov, Yang-Mills fields in flux compactifications on homogeneous manifolds with SU(4)-structure, J. High Energy Phys. 02 (2012) 107, arXiv:1005.2837 [hep-th];
A.D. Popov, R.J. Szabo, Double quiver gauge theory and nearly Kähler flux compactifications, J. High Energy Phys. 02 (2012) 033, arXiv:1009.3208 [hep-th];
B.P. Dolan, R.J. Szabo, Solitons and Yukawa couplings in nearly Kähler flux compactifications, Phys. Rev. D 88 (2013) 066002, arXiv: 1208.1006 [hep-th].
[25] D. Harland, C. Nölle, Instantons and Killing spinors, J. High Energy Phys. 03 (2012) 082, arXiv:1109.3552 [hep-th]; T.A. Ivanova, A.D. Popov, Instantons on special holonomy manifolds, Phys. Rev. D 85 (2012) 105012, arXiv: 1203.2657 [hep-th].
[26] M. Wolf, Contact manifolds, contact instantons, and twistor geometry, J. High Energy Phys. 07 (2012) 074, arXiv: 1203.3423 [hep-th].
[27] S. Bunk, T.A. Ivanova, O. Lechtenfeld, A.D. Popov, M. Sperling, Instantons on sine-cones over Sasakian manifolds, Phys. Rev. D 90 (2014) 065028, arXiv:1407.2948 [hep-th];
S. Bunk, O. Lechtenfeld, A.D. Popov, M. Sperling, Instantons on conical half-flat 6-manifolds, arXiv:1409.0030 [hep-th].
[28] R. Harvey, H.B. Lawson Jr., Calibrated geometries, Acta Math. 148 (1982) 47.
[29] A.G. Sergeev, Vortices and Seiberg-Witten Equations, Nagoya Univ. Math. Lectures, Nagoya, 2002.
[30] A.G. Sergeev, Adiabatic limit in Ginzburg-Landau and Seiberg-Witten equations, Proc. Steklov Inst. Math. (ISSN 0081-5438) 289 (2015), in press.
[31] S. Dostoglou, D.A. Salamon, Self-dual instantons and holomorphic curves, Ann. Math. 139 (1994) 581.
[32] M. Bershadsky, A. Johansen, V. Sadov, C. Vafa, Topological reduction of 4-d SYM to 2-d sigma models, Nucl. Phys. B 448 (1995) 166, arXiv:hep-th/9501096.
[33] K. Yano, M. Kon, $C \mathbb{R}$-Submanifolds of Kählerian and Sasakian Manifolds, Birkhäuser, Boston, 1983.

[^0]: * Corresponding author.

 E-mail addresses: Andreas.Deser@itp.uni-hannover.de (A. Deser), Olaf.Lechtenfeld@itp.uni-hannover.de (O. Lechtenfeld), Alexander.Popov @itp.uni-hannover.de (A.D. Popov).

[^1]: ${ }^{1}$ Some explicit solutions for particular manifolds X were constructed e.g. in [21,23,25,14,27].
 ${ }^{2}$ In lower dimensions, the adiabatic limit was successfully used for a description of solutions to the $d=2+1$ GinzburgLandau equations and to the $d=4$ Seiberg-Witten monopole equations (see e.g. reviews [29,30] and the references therein).

[^2]: ${ }^{3}$ Framed instantons are instantons modulo gauge transformations which approach the identity at a fixed point.
 4 Instead of (3.3) one sometimes finds $\omega\lrcorner \mathcal{F}=i \lambda \operatorname{Id}_{E}$ with $\lambda \in \mathbb{R}$. We take $\lambda=0$, i.e. assume $c_{1}(E)=0$, since one may always pass from a rank- N bundle of non-zero degree to one of zero degree by considering $\tilde{\mathcal{F}}=\mathcal{F}-\frac{1}{N}(\operatorname{tr} \mathcal{F}) \mathbf{1}_{N}$.

[^3]: ${ }^{5}$ We can always choose a gauge such that $\mathcal{A}_{Y}^{0,1}=0$ and locally $\mathcal{A}_{Y}^{1,0}=h^{-1} \partial_{Y} h$ for a G-valued function $h(y, z)$.

[^4]: ${ }^{6}$ See also [32] where this limit was discussed in the framework of topological Yang-Mills theories.

[^5]: 7 For simplicity we locate all punctures on the two-dimensional torus.

