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Derived categories and the genus of space curves

Emanuele Macr̀ı and Benjamin Schmidt

Abstract

We generalize a classical result about the genus of curves in projective space by Gruson
and Peskine to principally polarized abelian threefolds of Picard rank one. The proof is
based on wall-crossing techniques for ideal sheaves of curves in the derived category. In
the process, we obtain bounds for Chern characters of other stable objects such as rank
two sheaves. The argument gives a proof for projective space as well. In this case these
techniques also indicate an approach for a conjecture by Hartshorne and Hirschowitz
and we prove first steps toward it.

1. Introduction

A celebrated result in the theory of space curves is the following [Hal82, GP78, Har80].

Theorem 1.1 (Gruson–Peskine, Harris). Let d, k > 0 and g > 0 be integers. Let C ⊂ P3 be an
integral curve of degree d and arithmetic genus g. Assume

• H0
(
P3, IC(k − 1)

)
= 0 and

• d > k(k − 1).

Then

g 6
d2

2k
+

1

2
d(k − 4) + 1− ε for ε =

1

2
f

(
k − f − 1 +

f

k

)
,

where d ≡ −f (mod k) and 0 6 f < k.

For example, if k = 1, this says that the largest genus for a fixed degree is given by that of a
plane curve; that is, g 6 (d− 1)(d− 2)/2. For k = 2, it corresponds to Castelnuovo’s inequality
for non-planar curves [Har77, Chapter IV, Theorem 6.4]. The first goal of this article is to prove a
version of this theorem for other threefolds by using the theory of stability in the derived category.
The second goal is to attack a conjecture by Hartshorne and Hirschowitz for d 6 k(k− 1) in the
case of P3 with similar techniques.

Tilt stability. Given a curve C ⊂ P3, there are two exact sequences in the category of
coherent sheaves associated with its ideal sheaf IC . For a non-zero section of H0(P3, IC(h)), we
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can simply consider the associated sequence

0→ OP3(−h)→ IC → F → 0 .

Otherwise, for a non-zero section of H2
(
P3, IC(m − 4)

)
= Ext1(IC ,OP3(−m)), we can consider

the corresponding extension

0→ OP3(−m)→ E → IC → 0 .

The genus of C can be bounded, by bounding the Chern characters of both E and F . Just
using the first exact sequence is not enough to conclude the proof of Theorem 1.1, since the
bound therein is not decreasing for h large. The key observation in our approach is that E can
also be thought of as a subobject of the ideal sheaf IC , but in a different abelian category. By
using a notion of stability on these categories and by just taking the first factor of the Harder–
Narasimhan filtration of IC with respect to this stability, we can select a canonical sequence
among all these.

More generally, let X be a smooth projective threefold. We are going to use the notion of tilt
stability. It is reviewed in Section 2. This is a weak stability condition in the bounded derived
category of coherent sheaves on X, which was introduced in [BMT14] (based on Bridgeland
stability on surfaces [Bri08, AB13]). It can be thought of as a generalization of the classical notion
of slope stability for sheaves on surfaces. If we fix an ample divisor H on X, it roughly amounts
to replacing the category of coherent sheaves with the heart of a bounded t-structure Cohβ(X)
in the bounded derived category Db(X) and the classical slope with a new slope function να,β.
Everything depends on two real parameters α, β ∈ R with α > 0. The starting point for us is that
for α� 0 and β < 0, and for any curve C ⊂ X, the ideal sheaf IC is να,β-stable (see Lemma 2.5
for details). The key idea is to study variation of stability for IC with to respect to α and β.

The main theorem. Let X be a smooth projective threefold of Picard rank one; that is,
its Néron–Severi group is generated by the class of a single ample divisor H. For a subvariety
Y ⊂ X of dimension n = 1, 2, we define its degree as Hn · Y/H3. We also define an extension
of the remainder term in Theorem 1.1 as follows. For a rational number d ∈ 1

2Z and an integer
k > 1, we set

ε(d, k) =
1

2
f

(
k − f − 1 +

f

k

)
+ ε(d, 1) for ε(d, 1) =

{
1/24 if d /∈ Z ,
0 if d ∈ Z ,

where d ≡ −f(mod k) and 0 6 f < k with f ∈ 1
2Z.

Theorem 1.2 (See Theorem 3.1). Assume that X satisfies Assumptions A, B, C given below.
Let k ∈ Z>0 and d ∈ 1

2Z>0, and let C ⊂ X be an integral curve of degree d. Further, assume

• H0(X, IC((k − 1)H ′) = 0 for any divisor H ′ in the same numerical class as H, and

• d > k(k − 1).

Then
ch3(IC)

H3
6 E(d, k) :=

d2

2k
+
dk

2
− ε(d, k) .

For example, in characteristic zero, the assumptions of Theorem 1.2 are satisfied in the case
of P3, principally polarized abelian threefolds of Picard rank one, and index two Fano threefolds of
Picard rank one with degree one or two. In fact, the case of P3 is independent of the characteristic
of the field, and Theorem 1.1 holds in that case. We note that already the case k = 1 strengthens
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a conjecture by Debarre [Deb94, Section 5] and a result by Pareschi–Popa [PP08, Theorem B]
for the special case of principally polarized abelian threefolds of Picard rank one (see [LN16] for
results on general polarized abelian varieties). The precise assumptions are the following.

Assumption A. The Néron–Severi group is generated by the class of an ample divisor H.
Moreover, the Chern character of any E ∈ Coh(X) satisfies ch2(E) ∈ 1

2H
2 · Z and ch3(E) ∈

1
6H

3 · Z.

Without the part about ch2(E) in Assumption A, curves of small degree pose issues. Some
bounds can be proved without this assumption, but they do not seem optimal. However, the
Picard rank one assumption is more important in our argument, since without it determining
the tilt stability of ideal sheaves becomes substantially more involved. The part about ch3(E) is
for computational reasons to bound the Chern characters of rank two sheaves.

Assumption B. Any slope semistable sheaf E ∈ Coh(X) satisfies

∆(E) :=

(
H2 · ch1(E)

)2 − 2
(
H3 · ch0(E)

)
(H · ch2(E))

(H3)2
> 0 .

Assumption B is well known to be true in characteristic zero, being a consequence of the clas-
sical Bogomolov inequality [Rei78, Bog79, Gie79]. In positive characteristic, it is only sometimes
satisfied, for example for P3 and abelian threefolds (see [Lan04] for more details).

For any β ∈ R and E ∈ Db(X), we define the twisted Chern character chβ(E) := ch(E)·e−βH .
Note that for β ∈ Z, this is simply saying chβ(E) = ch(E(−βH)).

Assumption C. For any να,β-semistable object E ∈ Cohβ(X), the inequality

Qα,β(E) := α2∆(E) +
4
(
H · chβ2 (E)

)2(
H3
)2 −

6
(
H2 · chβ1 (E)

)
chβ3 (E)(

H3
)2 > 0

holds.

Assumption C is the crucial ingredient in the proof. It roughly tells us that the ideal sheaf
of a curve of large genus has to be destabilized at a certain point, and it allows us to reduce
the number of possible walls. This assumption is part of a more general conjecture in [BMT14,
BMS16] for characteristic zero. The case of P3 was shown in [Mac14b], and the proof actually
works in any characteristic. The smooth quadric hypersurface in P4 was done in [Sch14]. Later,
both of these were generalized to Fano threefolds of Picard rank one in [Li19]. Moreover, the case
of abelian threefolds were handled independently in [MP15, MP16] and [BMS16], and Calabi–
Yau threefolds of abelian type in [BMS16]. Most recently, it was shown in [Kos18] for the case
of P2 ×E, P1 × P1 ×E, and P1 ×A, where E is an arbitrary elliptic curve and A is an arbitrary
abelian surface. For higher Picard rank, it is known to be false in general. Counterexamples were
given in [Sch17, Kos18, MS19]. In general, a relation between Assumption C and Castelnuovo
theory for projective curves [Har82a, CCD93] was already observed in [BMT14, Tra14].

Strategy of the proof. The general idea of the proof of Theorem 1.2 is to study potential walls
in tilt stability in the (α, β)-plane for the ideal sheaf of a curve C ⊂ X, namely codimension one
loci at which stability changes. By the Hirzebruch–Riemann–Roch theorem, bounding ch3(IC)
is equivalent to bounding the genus. As mentioned previously, Assumption C implies that there
has to be at least one wall. For each wall, there exists a semistable subobject E with semistable
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quotient G. Bounding the third Chern character for E and G induces a bound for ch3(IC). In
order to bound the Chern characters of E and G, we study tilt stability for these objects. It turns
out that ∆(E),∆(G) < ∆(IC), and since these numbers are non-negative integers, this process
has to terminate.

To unify the notation among different X, we set

H · ch(E) :=

(
H3 · ch0(E)

H3
,
H2 · ch1(E)

H3
,
H · ch2(E)

H3
,
ch3(E)

H3

)
.

The condition d > k(k − 1) implies that this process only requires the study of three types
of objects which are handled in the next three statements.

Proposition 1.3 (See Proposition 3.2). Let E ∈ Cohβ(X) be a να,β-semistable object for some
(α, β) with either H · ch(E) = (1, 0,−d, e) or H · ch(E) = (−1, 0, d, e). Then

e 6
d(d+ 1)

2
− ε(d, 1) = E(d, 1) .

If E is an ideal sheaf of a curve, then Proposition 1.3 is the k = 1 version of Theorem 1.2.
Using derived duals (see Proposition 2.6 for details), it is only necessary to prove the case of
positive rank.

Theorem 1.4 (See Theorem 3.4). Let E ∈ Cohβ(X) be a να,β-semistable object for some (α, β)
with H · ch(E) = (0, c, d, e), where c > 0. Then

e 6
c3

24
+
d2

2c
− ε

(
d+

c2

2
, c

)
.

The case c = 1 for Theorem 1.4 was proved for P3 in [Sch15, Lemma 5.4].

Theorem 1.5 (See Theorem 3.6). Let E ∈ Cohβ(X) be a να,β-semistable object for some (α, β)
with H · ch(E) = (2, c, d, e).

(i) If c = −1, then d 6 0 and e 6 1
2d

2 − d+ 5
24 − ε

(
d− 1

2 , 1
)
.

(ii) If c = 0, then d 6 0.

(a) If d = 0, then e 6 0.
(b) If d = −1

2 , then e 6 1
6 .

(c) If d 6 −1, then e 6 1
2d

2 + 5
24 − ε

(
d+ 1

2 , 1
)
.

If X = P3 and c = −1, Theorem 1.5 implies the corresponding case of Theorem 1.10 by
Hartshorne and Hirschowitz even without the reflexiveness hypothesis. The case c = 0 gives
a weaker bound here. For just P3, we could get the stronger bound by a more careful analysis,
but it turns out to be wrong for more general threefolds.

All of these statements, including Theorem 1.2, are proved with the following strategy. Let E
be the object for which we want to bound ch3(E). We start by proving the statement for small
values of ∆(E) using Qα,β(E) > 0 whenever E is να,β-semistable. For larger values of ∆(E),
this strategy provides non-optimal bounds [BMT14, Mac14b, Sun18, Sun19]. Instead, we study
wall-crossing via the following steps. Assume that ch3(E) is larger than expected. As explained
before, we can assume ch0(E) > 0.

(1) Besides implying the existence of a destabilizing wall, the inequality Qα,β(E) > 0 gives
a bound on the rank of the destabilizing subobject (see Lemma 2.4 for details). For example,
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for ideal sheaves of curves satisfying the assumptions of Theorem 1.2, the subobject can
only be of rank one or two. Let

0→ F → E → G→ 0

be the destabilizing sequence. The argument is always symmetric in F and G, and without
loss of generality, we can assume ch0(F ) > 1.

(2) Using the fact that chβ1 (F ) > 0 and chβ1 (G) > 0 for any β along the wall, we obtain a lower
and upper bound on ch1(F ).

(3) The Bogomolov inequality ∆(F ) > 0 yields an upper bound on ch2(F ). The inequality
∆(G) > 0 yields another bound on ch2(F ) (lower or upper bound depending on the rank
of G). Moreover, the fact that a wall cannot lie in the area Qα,β(E) < 0 leads to a lower
bound on ch2(F ). Overall, this reduces the problem to finitely many walls.

(4) Next, we use some previously obtained bounds for ch3(F ) and ch3(G) to bound ch3(E).

(5) In general, the walls are linearly ordered. The last step is to check that the previous bound
is decreasing with this ordering, and the largest wall still provides a contradiction.

We prove the statements in the following order. First, the case c = 1 in Theorem 1.4 is
proved via Qα,β(E) > 0 (see Lemma 3.3 for details). Next, we prove Proposition 1.3. It turns
out that the subobjects are also of rank one, for which we use induction, and the bounds on the
quotients follow from the c = 1 case in Theorem 1.4. After that, we use Proposition 1.3 on both
subobjects and quotients to prove Theorem 1.4. All of the previous statements are used to prove
Theorem 1.5 with an induction on ∆(E). Finally, Theorem 1.2 can be proved using the same
steps again.

The Hartshorne–Hirschowitz conjecture. Coming back to the case of projective space, our
aim is to improve our techniques toward a possible approach to the Hartshorne–Hirschowitz
conjecture, namely to the case d 6 k(k − 1). Let us first recall the statement of the conjecture
[Har87, HH88, Har88].

For given integers d and k, let G(d, k) be the maximal genus of an integral curve C ⊂ P3 with
degree d such that C is not contained in a surface of degree less than k. It is easy to check that
d > 1

6(k2 + 4k + 6). For d > k(k − 1), the genus G(d, k) is given by Theorem 1.1, since a curve
with genus G(d, k) always exists under those assumptions. If

1
6

(
k2 + 4k + 6

)
6 d < 1

3

(
k2 + 4k + 6

)
,

then it is not hard to find a bound from above for G(d, k), but currently it is still not known in
full generality if this bound is sharp (see [Har87, BBE+97] for results in this direction). We are
interested in the remaining case

1
3

(
k2 + 4k + 6

)
6 d 6 k(k − 1) . (1.1)

Note that this case only makes sense for k > 5. We first introduce another error term as follows.
For any integer c ∈ Z, let

δ(c) :=


3 if c = 1, 3 ,

1 if c ≡ 2 (mod 3) ,

0 otherwise .
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Then, for any integers k > 5 and f ∈ [k − 1, 2k − 5], we define integers

A(k, f) := 1
3

(
k2 − kf + f2 − 2k + 7f + 12 + δ(2k − f − 6)

)
,

B(k, f) := 1
3

(
k2 − kf + f2 + 6f + 11 + δ(2k − f − 7)

)
.

A straightforward computation shows that A(k, f) is an increasing function for f ∈ [k − 1,
2k − 5] and that it partitions our range of d in (1.1): A(k, k − 1) =

⌈
1
3

(
k2 + 4k + 6

)⌉
and

A(k, 2k − 5) = k(k − 1) + 1. Moreover, we have A(k, f) < B(k, f) 6 A(k, f + 1).

Conjecture 1.6 (Hartshorne–Hirschowitz, see Conjecture 4.1). Let d, k > 0 be integers. Assume
A(k, f) 6 d < A(k, f + 1) for some f ∈ [k − 1, 2k − 6]. Then

G(d, k) = d(k − 1) + 1−
(
k + 2

3

)
+

(
f − k + 4

3

)
+ h(d) ,

where

h(d) =

{
0 if A(k, f) 6 d 6 B(k, f) ,
1
2(d−B(k, f))(d−B(k, f) + 1) if B(k, f) 6 d < A(k, f + 1)) .

By [HH88], it is known that there exist curves with genus G(d, k) satisfying the hypothesis
of the conjecture. Therefore, one only has to prove that every curve satisfies this bound. This is
known for a few values of f : the cases f = k−1, k were proved in [Har88], while the case f = 2k−6
is in [GP83], f = 2k − 7 in [Ell91], f = 2k − 8, 2k − 9 in [ES92], and f = 2k − 10 in [Str90].

This conjecture is partially based on the fact that this bound is obtained for curves with an
extension

0→ OP3(−f − 4)→ E → IC → 0

by bounding the third Chern character of the reflexive sheaf E. This sequence constitutes a po-
tential wall in tilt stability for IC because in our abelian category, this corresponds to an exact
sequence

0→ E → IC → OP3(−f − 4)[1]→ 0 .

It turns out that our approach requires to study walls above or below this wall with slightly
different methods, and therefore, we suggest the following two questions. We need one extra bit
of notation (see Theorem 2.2 for a more detailed description of walls and their possible shapes).
Given two elements E,F ∈ Db

(
P3
)
, let W (E,F ) be the locus in the (α, β)-plane where E and F

have the same να,β-slope. In the cases we will be interested in, these loci are semicircles with
center on the β-axis.

Question 1.7. Assume the hypothesis of Conjecture 1.6. Let C be an integral curve of genus g
and degree d such that H0(IC(k − 1)) = 0. If IC is destabilized in tilt stability above or at the
numerical wall W (IC ,O(−f − 4)[1]), does g 6 G(d, k) hold?

Our second main result is an affirmative answer to this question in a smaller range.

Theorem 1.8 (See Theorem 4.2). Question 1.7 has an affirmative answer if A(k, f) 6 d 6 B(k, f)
and the base field has characteristic zero.

A full proof of the conjecture also requires studying walls below W (IC ,O(−f − 4)[1]). We
suggest the following approach.

Question 1.9. Assume the hypothesis of Conjecture 1.6, and let C be destabilized below the wall
W (IC ,O(−f − 4)[1]). Is the maximal possible genus of C decreasing with the size of the wall?
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All arguments in Section 3 suggest that the maximum ch3 for semistable objects is decreasing
with the size of the wall even beyond ideal sheaves. The most serious obstacle for studying this
question is the fact that, in general, destabilizing subobjects can be reflexive sheaves of high
rank. Beyond rank two, results are scarce. Another problem is that we would need to consider
more general bounds for not necessarily integral curves, but in our setting this is probably more
approachable. In any case, a positive answer to both Question 1.7 and Question 1.9 would indeed
prove Conjecture 1.6 since if C does not satisfy the conjecture, then IC will be destabilized at a
certain point.

In order to handle rank two objects in the proof of Theorem 1.8, we need the following result
[Har82b, Theorem 0.1], [GP83], [Har87, Theorems 3.2 and 3.3], [HH88], and [Har88, Theorem 1.1].

Theorem 1.10. Assume that the base field has characteristic zero. Let E ∈ Coh
(
P3
)

be a rank
two reflexive sheaf with ch(E) = (2, c, d, e), c > −1, and H0(E) = 0. Then d 6 1

6c
2− 2

3c−1− 1
3δ(c).

Moreover,

(i) if 1
6c

2 − c− 8
3 −

1
3δ(c− 1) 6 d 6 1

6c
2 − 2

3c− 1− 1
3δ(c), then h2(E) = 0 and

e 6 −11
6 c− 2d− 2 ;

(ii) if d 6 1
6c

2 − c− 8
3 −

1
3δ(c− 1), then

h2(E) 6

(
c2 − 6c− 6d− 2δ(c− 1)− 10

)(
c2 − 6c− 6d− 2δ(c− 1)− 16

)
72

and

e 6
c4

72
− c3

6
+

5c2

36
+
c

3
− c2d

6
+ cd+

d2

2
+
d

6
+

2

9
− δ(c− 1)

18

(
c2 − 6c− 6d− δ(c− 1)− 13

)
.

Furthermore, these bounds are strict in the sense that there are rank two stable reflexive
sheaves E with H0(E) = 0 reaching them in all cases.

A more detailed tilt stability version of Theorem 1.10 is surely necessary to answer Ques-
tions 1.7 and 1.9 in general.

Finally, we illustrate our approach in one example. In Proposition 4.10, we prove Conjec-
ture 1.6 in the case d = A(k, 2k − 11) when k > 31. For a fixed k, this is the largest degree for
which the conjecture is unknown. We have no doubt that a slightly more careful analysis would
also handle the cases k < 31.

Notation

X smooth projective threefold over an algebraically closed field F
H fixed ample divisor on X

Db(X) bounded derived category of coherent sheaves on X
Hi(E) ith cohomology group of a complex E ∈ Db(X)
H i(E) ith sheaf cohomology group of a complex E ∈ Db(X)

D(·) derived dual RHom(·,OX)[1]
ch(E) Chern character of an object E ∈ Db(X)

ch6l(E)
(

ch0(E), . . . , chl(E)
)

H · ch(E)

(
H3 · ch0(E)

H3
,
H2 · ch1(E)

H3
,
H · ch2(E)

H3
,
ch3(E)

H3

)
H · ch6l(E)

(
H3 · ch0(E)

H3
, . . . ,

H3−l · chl(E)

H3

)
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2. Background on stability conditions

In [BMT14], the notion of tilt stability was introduced as an auxiliary notion in between slope
stability and a conjectural construction of Bridgeland stability on threefolds. It turns out to be
useful in its own right, as pointed out, for example, in [Sch15, Xia18]. In this section, we give
a quick introduction to tilt stability and its basic properties. We will restrict to the case of Picard
rank one, even though the theory can be developed more generally.

2.1 Definition

Let X be a smooth projective threefold over an algebraically closed field F. The first assumption
we will make in this article is to restrict its possible divisors and curves.

Assumption A. The Néron–Severi group is generated by the class of an ample divisor H; that is,
N1(X) = Z·H. Moreover, the Chern character of any sheaf E ∈ Coh(X) satisfies ch2(E) ∈ 1

2H
2·Z

and ch3(E) ∈ 1
6H

3 · Z.

This assumption is not needed for the results in this preliminary section, but it will be
important for the remainder of the article. It holds in particular for P3, for principally polarized
abelian threefolds of Picard rank one, and for Fano threefolds of Picard rank one, index two, and
degree one or two.

The classical slope for a coherent sheaf E ∈ Coh(X) is defined as

µ(E) :=
H2 · ch1(E)

H3 · ch0(E)
,

where division by zero is interpreted as +∞. A coherent sheaf E is called slope (semi)stable if
for any non-trivial proper subsheaf F ⊂ E, the inequality µ(F ) < (6)µ(E/F ) holds. We will
assume that the following assertion holds. In characteristic zero this is nothing but a consequence
of the classical Bogomolov inequality [Rei78, Bog79, Gie79]. In positive characteristic, it holds,
for example, in P3 and abelian threefolds [MR83, Lan04].1

Assumption B. Any slope semistable sheaf E ∈ Coh(X) satisfies

∆(E) :=

(
H2 · ch1(E)

)2 − 2
(
H3 · ch0(E)

)
(H · ch2(E))(

H3
)2 > 0 .

Note that, by using Assumption A, we have ∆(E) ∈ Z. Let β be an arbitrary real number.
Then the twisted Chern character chβ is defined to be e−βH · ch. Explicitly,

chβ0 = ch0, chβ1 = ch1−βH · ch0 , chβ2 = ch2−βH · ch1 +1
2β

2H2 · ch0 ,

chβ3 = ch3−βH · ch2 +1
2β

2H2 · ch1−1
6β

3H3 · ch0 .

The process of tilting is used to construct a new heart of a bounded t-structure. For more
information on the general theory of tilting, we refer to [HRS96, BvdB03]. A torsion pair is
defined by

Tβ := {E ∈ Coh(X) : any quotient E � G satisfies µ(G) > β} ,
Fβ := {E ∈ Coh(X) : any subsheaf F ⊂ E satisfies µ(F ) 6 β} .

1In [Lan04], a general Bogomolov inequality is proved over any field, by adding an extra term to the inequality in
Assumption B. However, this is generally not enough to define tilt stability.
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The heart of a bounded t-structure is given as the extension closure Cohβ(X) := 〈Fβ[1], Tβ〉. Let
α > 0 be a positive real number. The tilt slope is defined as

να,β :=
H · chβ2 −1

2α
2H3 · chβ0

H2 · chβ1
.

Similarly as before, an object E ∈ Cohβ(X) is called tilt-(semi)stable (or να,β-(semi)stable) if
for any non-trivial proper subobject F ⊂ E, the inequality να,β(F ) < (6)να,β(E/F ) holds. As-
sumption B implies that this notion of stability is well defined and that it shares many properties
with slope stability for sheaves [BMT14]; in particular, Harder–Narasimhan filtrations exist and
stability is open for varying (α, β).

2.2 Walls and inequalities

A version of the classical Bogomolov inequality also holds in tilt stability assuming that it holds
for slope semistable sheaves.

Theorem 2.1 (Bogomolov inequality for tilt stability, [BMT14, Corollary 7.3.2]). Assume that
Assumption B holds. Then, any να,β-semistable object E ∈ Cohβ(X) satisfies ∆(E) > 0.

The following inequality involving the third Chern character was conjectured in [BMT14] and
was brought into the following form in [BMS16].

Assumption C. For any να,β-semistable object E ∈ Cohβ(X), the following inequality holds:

Qα,β(E) := α2∆(E) +
4
(
H · chβ2 (E)

)2(
H3
)2 −

6
(
H2 · chβ1 (E)

)
chβ3 (E)(

H3
)2 > 0 .

In our setting of Picard rank one, this is known to hold in characteristic zero2 for both Fano
threefolds [Mac14b, Sch14, Li19] and abelian threefolds [MP15, MP16, BMS16].

Let Λ ⊂ Z⊕Z⊕ 1
2Z be the image of the map H ·ch62. Notice that να,β factors through H ·ch62.

Varying (α, β) changes the set of stable objects. A numerical wall in tilt stability with respect
to a class v ∈ Λ is a non-trivial proper subset W of the upper half plane given by an equation of
the form να,β(v) = να,β(w) for another class w ∈ Λ. We will usually write W = W (v, w).

A subset S of a numerical wall W is called an actual wall if the set of semistable objects with
class v changes at S. The structure of walls in tilt stability is rather simple. Parts (i)–(iv) of
Theorem 2.2 are usually called Bertram’s nested wall theorem and appeared in [Mac14a], while
parts (v) and (vi) can be found in [BMS16, Appendix A].

Theorem 2.2 (Structure theorem for walls in tilt stability). Let v ∈ Λ be a fixed class. All
numerical walls in the following statements are with respect to v.

(i) Numerical walls in tilt stability are either semicircles with center on the β-axis or rays
parallel to the α-axis. Moreover, a semicircular wall with radius ρ and center s satisfies(

H3 · ch0(v)
)2(

H3
)2 ρ2 + ∆(v) =

(
H3 · ch0(v)s−H2 · ch1(v)

)2(
H3
)2 .

If v0 6= 0, there is exactly one numerical vertical wall given by β = v1/v0. If v0 = 0, there is
no actual vertical wall.

2Some of the arguments in the known proofs do generalize directly to positive characteristic. For example, in P3

Assumption C holds over any field.
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(ii) The curve να,β(v) = 0 is given by a hyperbola, which may be degenerate. Moreover, this
hyperbola intersects all semicircular walls at their top point.

(iii) If two numerical walls given by classes w, u ∈ Λ intersect, then v, w and u are linearly
dependent. In particular, the two walls are completely identical.

(iv) If a numerical wall has a single point at which it is an actual wall, then all of it is an actual
wall.

(v) If there is an actual wall numerically defined by an exact sequence of tilt semistable objects
0→ F → E → G→ 0 such that H · ch62(E) = v, then

∆(F ) + ∆(G) 6 ∆(E) .

Moreover, equality holds if and only if H · ch62(G) = 0.

(vi) If ∆(E) = 0, then E can only be destabilized at the unique numerical vertical wall. In
particular, shifts of line bundles are tilt semistable everywhere.

If W = W (v, w) is a semicircular wall in tilt stability for two numerical classes v, w ∈ Λ, then
we denote its radius by ρW = ρ(v, w) and its center on the β-axis by sW = s(v, w). The structure
of the locus Qα,β(E) = 0 fits right into this picture; indeed, a straightforward computation shows
the following.

Lemma 2.3. Let E ∈ Db(X). The equation Qα,β(E) = 0 is equivalent to

να,β(E) = να,β

(
H2 · ch1(E)

H3
,
2H · ch2(E)

H3
,
3 ch3(E)

H3

)
.

In particular, Qα,β(E) = 0 describes a numerical wall in tilt stability.

2.3 Further properties

We will need the following modification of [CH16, Proposition 8.3]. It is a highly convenient tool
to control the rank of destabilizing subobjects.

Lemma 2.4. Assume that a tilt semistable object E is destabilized by either a subobject F ↪→ E
or a quotient E � F in Cohβ(X) inducing a non-empty semicircular wall W . Assume further
that we have ch0(F ) > ch0(E) > 0. Then the inequality

ρ2W 6
∆(E)

4 ch0(F )(ch0(F )− ch0(E))

holds.

Proof. For all (α, β) ∈ W , we have the inequalities H2 · chβ1 (E) > H2 · chβ1 (F ) > 0. This can be
rewritten as

H2 · ch1(E) + β
(
H3 · ch0(F )−H3 · ch0(E)

)
> H2 · ch1(F ) > βH3 · ch0(F ) .

Since H2 ·ch1(F ) is independent of β, we can maximize the right-hand side and minimize the left-
hand side individually in the full range of β between sW −ρW and sW +ρW . By our assumptions,
this leads to

H2 · ch1(E) + (sW − ρW )
(
H3 · ch0(F )−H3 · ch0(E)

)
> (sW + ρW )H3 · ch0(F ) .

By rearranging the terms and squaring, we get(
2H3 · ch0(F )−H3 · ch0(E)

)2
ρ2W 6

(
H2 · ch1(E)−H3 · ch0(E)sW

)2
=
(
H3 · ch0(E)

)2
ρ2W +

(
H3
)2

∆(E) .
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The claim follows by simply solving for ρ2W .

Objects that are stable for α� 0 are closely related to slope semistable objects.

Lemma 2.5 ([BMS16, Lemma 2.7]). If E ∈ Cohβ(X) is να,β-semistable for all α � 0, then it
satisfies one of the following conditions:

(i) we have H−1(E) = 0, and H0(E) is a torsion-free slope semistable sheaf;

(ii) we have H−1(E) = 0, and H0(E) is a torsion sheaf; or

(iii) the sheaf H−1(E) is torsion-free slope semistable, and H0(E) is either 0 or a torsion sheaf
supported in dimension less than or equal to one.

Conversely, assume that E ∈ Coh(X) is a torsion-free slope stable sheaf and β < µ(E). Then
E ∈ Cohβ(X) is να,β-stable for α� 0.

Instead of directly using the usual derived dual, we define

D : Db
(
P3
)
→ Db

(
P3
)
, E 7→ RHom(E,O)[1] .

Proposition 2.6 ([BMT14, Proposition 5.1.3]). Assume that E ∈ Cohβ(X) is να,β-semistable
with να,β(E) 6=∞. Then there exists a triangle

Ẽ → D(E)→ T [−1]→ Ẽ[1] ,

where Ẽ ∈ Coh−β(X) is να,−β-semistable and T is a torsion sheaf supported in dimension zero.

Finally, the following elementary result will be used several times.

Lemma 2.7. Let β0 = p/q ∈ Q, with p, q coprime. Let E ∈ Cohβ0(X) be such that either

chβ01 (E) = (1/q) ·H or chβ01 (E) = 0. Then, E does not have any wall on the ray β = β0 unless it
is the unique vertical wall. More precisely, for all α1, α2 > 0, the object E is να1,β0-(semi)stable
if and only if it is να2,β0-(semi)stable.

3. Classical bounds beyond projective space

The main goal of this section is to prove Theorem 3.1 below. Let X be a smooth projective variety
over an algebraically closed field F for which Assumptions A, B, and C hold. The examples to
keep in mind for X are P3 and principally polarized abelian threefolds in characteristic zero.
We denote by H the ample generator of NS(X), for example, the hyperplane class for P3 or
a Θ-divisor for an abelian threefold.

The degree of a hypersurface Y ⊂ X is defined as k = (H2 · Y )/H3. If C ⊂ X is a one-
dimensional closed subscheme, we define its degree as d = (H · C)/H3. Note that k ∈ Z and
d ∈ 1

2Z. If X = P3, we even have d ∈ Z. The arithmetic genus of C is defined as g = 1− χ(OC).
By the Hirzebruch–Riemann–Roch theorem, we know

g = 1− χ(OC) = 1 +
KX · C

2
− ch3(OC) = 1 +

KX · C
2

+ ch3(IC) .

Therefore, bounding g is equivalent to bounding ch3(IC). The following error terms for any
d ∈ 1

2Z will occur in this and subsequent statements:

ε(d, 1) =

{
1/24 if d /∈ Z ,
0 if d ∈ Z ,
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and for k > 1

ε̃(d, k) =
1

2
f

(
k − f − 1 +

f

k

)
,

ε(d, k) = ε̃(d, k) + ε(d, 1) ,

where d ≡ −f(mod k) and 0 6 f < k. The inclusion of ε(d, 1) is related to the fact that As-
sumption A says that ch3(E) ∈ 1

6H
3 for any object E ∈ Db(X). It simply constitutes a rounding

term; all statements can be equivalently stated with ε̃(d, k), and we will do so throughout the
proofs for simplification.

Theorem 3.1. Let k ∈ Z>0 and d ∈ 1
2Z>0, and let C ⊂ X be an integral curve of degree d.

Further, assume

• H0(X, IC((k − 1)H ′) = 0 for any divisor H ′ in the same numerical class as H, and

• d > k(k − 1).

Then
ch3(IC)

H3
6 E(d, k) :=

d2

2k
+
dk

2
− ε(d, k) .

We will also write

Ẽ(d, k) =
d2

2k
+
dk

2
− ε̃(d, k) .

3.1 Stable rank one objects

Recall that for any curve C ⊂ P3 of degree d and genus g, the inequality

g 6 1
2(d− 1)(d− 2)

holds. We will prove the following generalization to tilt semistable objects on X whose Chern
character is that of an ideal sheaf. This corresponds to the k = 1 version of Theorem 3.1.

Proposition 3.2. Let E ∈ Cohβ(X) be a να,β-semistable object for some (α, β) with either
H · ch(E) = (1, 0,−d, e) or H · ch(E) = (−1, 0, d, e). Then

e 6 1
2d(d+ 1)− ε(d, 1) = E(d, 1) .

Note that the condition ch1(E) = 0 is no real restriction since it can always be achieved
by tensoring with an appropriate line bundle. In order to prove the proposition, we will first
need to deal with torsion sheaves supported on a hypersurface of class H. The following lemma
generalizes [Sch15, Lemma 5.4] from P3 to X.

Lemma 3.3. Let E ∈ Cohβ(X) be a να,β-semistable object with H · ch(E) = (0, 1, d, e). Then

e 6 1
24 + 1

2d
2 − ε

(
d+ 1

2 , 1
)
.

Proof. As previously, the term ε
(
d+ 1

2 , 1
)

is simply a rounding term, and it is enough to show
that e 6 1

24 + 1
2d

2. For any (α, β) in the semidisk α2 + (β − d)2 6 1
4 , the inequality Qα,β(E) > 0

implies the claim. We are done if we can show that there is no wall outside this semidisk.
Lemma 2.4 implies that if a wall has radius squared larger than 1

4∆(E) = 1
4 , it must be induced

by a rank zero subobject. But such a subobject destabilizes E either for all (α, β) or for none.

Proof of Proposition 3.2. Assume ch0(E) = −1. By Proposition 2.6, there exists a triangle

Ẽ → D(E)→ T [−1]→ Ẽ[1] ,
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where Ẽ ∈ Coh−β(X) is να,−β-semistable and T is a torsion sheaf supported in dimension zero.
We have ch(Ẽ) = (1, 0,− ch2(E), ch3(E)+ch3(T )). Thus, it is enough to deal with the ch0(E) = 1
case. The proof of that case is by induction on d. If d = 0, then Qα,β(E) > 0 is equivalent to
e 6 0. Let d = 1

2 . Then we have ch−1(E) =
(
1, 1, 0, e − 1

3

)
. All semicircular walls intersect the

vertical line β = −1. Since there is no vertical wall at β = −1, this implies that E has to be
stable for β = −1 regardless of α. Therefore, we can use Q0,−1(E) > 0 to obtain e 6 1

3 . Let
d > 1, and assume for a contradiction that

e > 1
2d(d+ 1) .

Note again that we can ignore ε(d, 1) because it is just a rounding term. We write sQ := −3e/2d.
Assumption C implies

α2 + (β − sQ)2 >
9e2 − 8d3

4d2
=: ρ2Q .

This equation describes the complement of a semidisk, and there are no stable objects inside.
Therefore, a potentially stable object must become strictly semistable at some larger semicircular
wall. We will show that E can only be destabilized by either a subobject F ↪→ E or a quotient
E � F with ch0(F ) = 1. Let ch0(F ) = r > 1 and H2 · ch1(F ) = xH3. We have

ρ2Q −
d

4
=

9e2 − 8d3

4d2
− d

4
>

9

16
(d− 1)2 > 0

and can deduce r = 1 from Lemma 2.4.

The center of the numerical wall between E andO(−2H) is given by s(E,O(−2H)) = −1
2d−1.

This compares to sQ as follows:

s(E,O(−2H))− sQ > 1
4(d− 1) > 0 .

Therefore, all walls are bigger than the numerical wall with O(−2H); that is, x = −1. To simplify
the notation, we will write

H · ch(F ) = (1, 0,−y, z) · (H · ch(O(−H))) =
(
1,−1,−y + 1

2 , y + z − 1
6

)
.

The center of the wall is given by s(E,F ) = y − d − 1
2 . In order for the wall to be outside the

semidisk with no semistable objects, the inequality

y − d− 1

2
6 −3e

2d
< −3

4
(d+ 1)

needs to hold. This implies

0 6 y < 1
4(d− 1) 6 1

2(d− 1) .

By induction, we know z 6 y(y + 1)/2. Let G be the quotient E/F , respectively the subobject
of the map E � F . We have

H · ch(G) =
(
0, 1, y − d− 1

2 , e− z − y + 1
6

)
.

Lemma 3.3 implies

0 6
1

24
+

(
y − d− 1/2

)2
2

−
(
e− z − y +

1

6

)
=

(d− y)2

2
+
d+ y

2
+ z − e

<
(d− y)2

2
+
d+ y

2
+
y(y + 1)

2
− d(d+ 1)

2
= y2 + y − dy 6 0 .

The final inequality is obtained as follows: in y, the parabola y2 + y − dy has a minimum for
y0 = 1

2(d− 1) > y. Hence, the maximum occurs for y = 0.
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3.2 Stable rank zero objects

In this section, we will prove the following bound for rank zero objects. It is a generalization of
Lemma 3.3 beyond objects supported on divisors numerically equivalent to H.

Theorem 3.4. Let E ∈ Cohβ(X) be a να,β-semistable object with H · ch(E) = (0, c, d, e), where
c > 0. Then

e 6
c3

24
+
d2

2c
− ε

(
d+

c2

2
, c

)
. (3.1)

As in the previous section, we will replace ε by ε̃ and E by Ẽ in the proof since the difference
is just a rounding term that comes for free at the end. The case c = 1 was already shown in
Lemma 3.3. Throughout this section, we will prove the theorem, assuming its notation and c > 2.

Lemma 3.5. Assume that (3.1) does not hold.

(i) We can bound ε̃
(
d+ 1

2c
2, c
)
6 1

8(c2 − c) .

(ii) The radius ρQ of the semidisk Qα,β(E) 6 0 is given by

ρ2Q =
6ce− 3d2

c2
>

1

4
c2 −

6ε̃
(
d+ 1

2c
2, c
)

c
>
c2 − 3c+ 3

4
>

(
2c− 3

4

)2

.

(iii) The object E is destabilized along a wall W induced by 0 → F → E → G → 0 or
0→ G→ E → F → 0, where F has positive rank. Let H · ch(F ) = (r, x, y, z).

(iv) We have r = 1.

(v) There are inequalities

c2

8
+
dx

c
− d2

2c2
− 3f

2
+

3f2

2c
+

3f

2c
− 3f2

2c2
< y 6 min

{
x2

2
,
(c− x)2

2
+ d

}
.

(vi) The inequalities

d

c
+
c

2
+

3

4
> x >

d

c
+
c

2
− 3

4
hold; that is, either x = d/c+ c/2 + f/c, or x = d/c+ c/2 + f/c− 1.

(vii) If c = 2, then y = min
{
1
2x

2, 12(2− x)2 + d
}

.

(viii) We have

z 6
x4

8
− x3

3
− x2y

2
+
x2

4
+ xy +

y2

2
− y

2
.

(ix) We have

e 6
c4

8
− c3x

2
+

3c2x2

4
− cx3

2
+
x4

4
− c3

3
+
c2d

2
+ c2x− cdx− cx2 +

dx2

2
− c2y

2

+ cxy − x2y +
c2

4
− cd+

d2

2
− cx

2
+ dx+

x2

2
+ cy − dy + y2 +

d

2
− y .

Proof. (i) The function ε̃(d+ 1
2c

2, c) has a maximum for f = 1
2c, and in that case, ε̃

(
d+ 1

2c
2, c
)

=
1
8(c2 − c).

(ii) The semidisk Qα,β(E) 6 0 is given by

α2 +

(
β − d

c

)2

6
6e− 3d2

c2
.
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The fact that (3.1) does not hold and part (i) lead to the inequalities

6ce− 3d2

c2
>
c2

4
−

6ε̃
(
d+ 1

2c
2, c
)

c
>
c2 − 3c+ 3

4
>

(
2c− 3

4

)2

.

(iii) By part (ii), the region Qα,β(E) < 0 is non-empty and there has to be a wall for E.

(iv) When E gets destabilized, there is either a subobject or a quotient F with non-negative
rank. If ch0(F ) > 2, then by Lemma 2.4, the radius ρW must satisfy

ρ2W 6
∆(E)

4 ch0(F )2
6
c2

16
6
c2

4
− 3c

4
+

3

4
.

But by part (ii), the wall W is too small to exist. Assume ch0(F ) = 0. Then the equation
να,β(F ) = να,β(E) is independent of (α, β) and cannot induce a wall.

(v) Solving the two inequalities ∆(F ),∆(G) > 0 for y leads to

y 6 min

{
x2

2
,
(c− x)2

2
+ d

}
.

We know that W must be outside the semidisk Qα,β(E) < 0. The radius of W can be computed as

ρ2W =
2c2y + d2 − 2cdx

c2
> ρ2Q >

c2

4
−

6ε̃
(
d+ 1

2c
2, c
)

c
.

Solving the inequality for y leads to the claimed lower bound for y.

(vi) We know that ρW > (2c− 3)/4 and sW = d/c. By the construction of Cohβ(X), we have

0 6 (H2 · chβ1 (F ))/H3 6 c for all β appearing along the wall W . Rearranging the terms leads to

c+ β > x > β .

Since the middle term is independent of β, we can vary β independently on the left and right to
get

d

c
+
c

2
+

3

4
> c+ sW − ρW > x > sW + ρW >

d

c
+
c

2
− 3

4
.

(vii) Assume c = 2. If x = d/c+ c/2 + f/c, then

(c− x)2

2
+ d−

(
c2

8
+
dx

c
− d2

2c2
− 3f

2
+

3f2

2c
+

3f

2c
− 3f2

2c2

)
= −f(f − 1)

4
<

1

2
.

If x = d/c+ c/2 + f/c− 1, then

x2

2
−
(
c2

8
+
dx

c
− d2

2c2
− 3f

2
+

3f2

2c
+

3f

2c
− 3f2

2c2

)
= −(f − 1)(f − 2)

4
<

1

2
.

In both cases, we can conclude by part (v).

(viii) Since F has rank 1, we can use Proposition 3.2 to bound z as claimed.

(ix) Since G has rank −1, Proposition 3.2 applies, and together with (viii) the last claim fol-
lows.

Proof of Theorem 3.4. We need to maximize the function

gc,d,x(y) :=
c4

8
− c3x

2
+

3c2x2

4
− cx3

2
+
x4

4
− c3

3
+
c2d

2
+ c2x− cdx− cx2 +

dx2

2
− c2y

2

+ cxy − x2y +
c2

4
− cd+

d2

2
− cx

2
+ dx+

x2

2
+ cy − dy + y2 +

d

2
− y
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under the numerical constraints imposed on c, d, x, y by Lemma 3.5. The argument works as
follows: We will show that gc,d,x(y) is increasing in y and that we can, therefore, reduce to

y = min

{
x2

2
,
(c− x)2

2
+ d

}
.

Note that we can assume d > 3 since for d = 2, we established that this is the only possible value
for y. The function gc,d,x(y) is a parabola in y with minimum at

y0 =
c2

4
− cx

2
+
x2

2
− c

2
+
d

2
+

1

2
.

The proof will proceed individually for each of the two possible values for x.

(1) Assume x = d/c+ c/2 + f/c. Then

y − y0 >
(
c2

8
+
dx

c
− d2

2c2
− 3f

2
+

3f2

2c
+

3f

2c
− 3f2

2c2

)
−
(
c2

4
− cx

2
+
x2

2
− c

2
+
d

2
+

1

2

)
=
c

2
− 3f

2
+

3f2

2c
+

3f

2c
− 2f2

c2
− 1

2
=: hc(f) .

Note that hc(f) is a parabola in f with minimum at f0 = (3c2 − 3c)/(6c− 8). For c > 3, we get

hc(f0) =
(3c− 7)(c− 1)

24c− 32
> 0 ,

and thus, gc,d,x(y) is increasing under our restrictions on c, d, x, y. Finally

gc,d,x

(
(c− x)2

2
+ d

)
=
c3

24
+
d2

2c
− ε̃

(
d+

c2

2
, c

)
.

(2) Assume x = d/c+ c/2 + f/c− 1. Then

y − y0 >
(
c2

8
+
dx

c
− d2

2c2
− 3f

2
+

3f2

2c
+

3f

2c
− 3f2

2c2

)
−
(
c2

4
− cx

2
+
x2

2
− c

2
+
d

2
+

1

2

)
=
c

2
− 3f

2
+

3f2

2c
+

5f

2c
− 2f2

c2
− 1 =: hc(f) .

Note that hc(f) is a parabola in f with minimum at f0 = (3c2 − 5c)/(6c− 8). For c > 3, we get

hc(f0) =
(3c− 7)(c− 1)

24c− 32
> 0 ,

and thus, gc,d,x(y) is increasing under our restrictions on c, d, x, y. Finally,

gc,d,x

(
x2

2

)
=
c3

24
+
d2

2c
− ε̃

(
d+

c2

2
, c

)
.

3.3 Stable rank two objects

In this section, we prove the following bound for tilt stable rank two objects.

Theorem 3.6. Let E ∈ Coh(X) be a να,β-semistable rank two object for some (α, β) with
H · ch(E) = (2, c, d, e).

(i) If c = −1, then d 6 0 and e 6 1
2d

2 − d+ 5
24 − ε

(
d+ 1

2 , 1
)
.

(ii) If c = 0, then d 6 0.

(a) If d = 0, then e 6 0.
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(b) If d = −1
2 , then e 6 1

6 .
(c) If d 6 −1, then e 6 1

2d
2 + 5

24 − ε
(
d+ 1

2 , 1
)
.

Note that
d2

2
+

5

24
− ε

(
d+

1

2
, 1

)
∈ 1

6
Z

for any d ∈ 1
2Z. Again, we will be able to ignore ε

(
d+ 1

2 , 1
)

as it is simply a rounding term.

The bounds on d are a consequence of the Bogomolov inequality. The bounds on e will be
proved via an induction on the discriminant ∆(E). We start with two lemmas for cases of low
discriminant.

Lemma 3.7. If E ∈ Cohβ(X) is a tilt semistable object with H · ch(E) = (2, 0, 0, e), then e 6 0.

Proof. Since E ∈ Cohβ(X), we must have β < 0. The inequality on e is then equivalent to
Qα,β(E) > 0.

Lemma 3.8. If E ∈ Cohβ(X) is a tilt semistable object with H · ch(E) =
(
2, 0,−1

2 , e
)
, then

e 6 1
6 .

Proof. If E is semistable for some α > 0 and β ∈ R inside the closed semidisk α2+
(
β + 3

4

)2
6 1

16 ,
then Qα,β(E) > 0 implies e 6 1

4 . By Assumption A, this means e 6 1
6 .

Next, we will show that E has to be semistable for some point inside this closed semidisk.
If not, then E is destabilized by a semistable subobject F along the vertical line β = −1. If
ch0(F ) 6 0, then we work with the quotient E/F instead. Therefore, we can assume ch0(F ) > 1.
We can compute

H · ch−162(E) =
(
2, 2, 12

)
.

Let H · ch−162(F ) = (r, x, y). Then the definition of Cohβ(X) and the fact that we are not dealing
with a vertical wall implies 0 < x < 2; that is, x = 1. At the wall, we have

y − 1
2rα

2 = να,−1(F ) = να,−1(E) = 1
4 −

1
2α

2 .

If r = 1, then this implies y = 1
4 , in contradiction to Assumption A. If r > 2, we get y > 1

4 .
However, that implies ∆(F ) = 1− 2ry 6 1− 4y < 0, giving a contradiction.

Lemma 3.9. Let E ∈ Cohβ(X) be a tilt semistable object with H · ch(E) = (2, c, d, e). Assume
either

(i) c = −1, d 6 0, and e > 1
2d

2 − d+ 1
3 ; or

(ii) c = 0, d 6 −1, and e > 1
2d

2 + 1
3 .

Then E is destabilized along a semicircular wall induced by an exact sequence 0 → F → E →
G→ 0, where F and G have rank at most two.

Proof. (i) Assume c = −1. Then the radius ρQ of the semidisk Qα,β(E) 6 0 satisfies

ρ2Q −
∆(E)

12
=

16d3 − 3d2 + 36de+ 36e2 − 6e

(4d− 1)2
+
d

3
− 1

12

>
108d4 + 40d3 + 24d2 − 60d+ 23

12(4d− 1)2
> 0 .

By Lemma 2.4, any destabilizing subobjects or quotients must have rank less than or equal to
two.
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(ii) Assume c = 0. Then the radius ρQ of the semidisk Qα,β(E) 6 0 satisfies

ρ2Q −
∆(E)

12
=

4d3 + 9e2

4d2
+
d

3

>
27d4 + 64d3 + 36d2 + 12

48d2
> 0 .

By Lemma 2.4, any destabilizing subobjects or quotients must have rank less than or equal to
two.

Proof of Theorem 3.6. If c = −1, then ∆(E) = 1− 4d > 0. Since d ∈ 1
2Z, we get d 6 0. If c = 0,

then ∆(E) = −4d > 0 implies d 6 0. We will prove the bounds on e simultaneously in both
cases via induction on ∆(E). Lemmas 3.7 and 3.8 provide the start of the induction. To deduce
a contradiction, assume that the upper bounds on e claimed in the theorem do not hold.

The strategy of the proof is to show that there is no wall outside the semidisk Qα,β(E) < 0
and, therefore, there is no wall for such an object. By Lemma 3.9, we know that E is destabilized
along a semicircular wall W induced by a subobject F ↪→ E of rank less than or equal to two.
By replacing F with the quotient E/F if necessary, we can assume that F has rank one or two.
Let H · ch(F ) = (r, x, y, z). Note that we have ∆(F ) < ∆(E), and we intend to use the induction
hypothesis on F in case r = 2.

(1) Assume c = −1, d 6 0, and e > 1
2d

2 − d+ 1
3 .

(a) Assume that F has rank one. Then

Q0,−3/2(E) = 4d2 − 12d− 12e+ 9
4 6 −2d2 − 7

4 < 0 .

This implies

x+
3

2
=
H2 · ch−3/21 (F )

H3
> 0 .

Since x > 0 implies the wall to be on the wrong side of the vertical wall, we must have x = −1.
The Bogomolov inequality ∆(F ) > 0 implies y 6 1

2 . We need a second bound of y from below.
We have s(E,F ) = d − 2y. Moreover, the center of the semidisk Qα,β(E) < 0 is given by
sQ = (d+ 6e)/(4d− 1). Since no wall can be inside this semidisk, we must have

0 6 sQ − s(E,F ) =
d+ 6e

4d− 1
− d+ 2y 6

d2 − 8dy + 4d+ 2y − 2

1− 4d
.

This implies y > (d2 + 4d− 2)/(8d− 2). Applying Proposition 3.2 to F gives z 6 1
2y

2− 2y+ 17
24 .

We can apply the same proposition to the quotient E/F to obtain

e 6
d2

2
− dy +

y2

2
− d

2
+
y

2
+ z 6

d2

2
− dy + y2 − d

2
− 3y

2
+

17

24
=: ϕd(y) .

We have to maximize this expression in y, which defines a parabola with minimum. Therefore,
the maximum has to occur on the boundary. We can compute

ϕd
(
1
2

)
= 1

2d
2 − d+ 5

24 .

Moreover,

d2

2
− d+

1

3
− ϕd

(
d2 + 4d− 2

8d− 2

)
=

14d4 + 4d3 + 2d2 − 12d+ 1

8(4d− 1)2
> 0 .
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(b) Assume that F has rank two. As in the rank one case, we get

x+ 3 =
H2 · ch−3/21 (F )

H3
> 0 ;

that is, x > −2. If x = −1, we are dealing with the vertical wall, and if x > 0, then the wall is
on the wrong side of the vertical wall. Hence, we must have x = −2. The Bogomolov inequality
says y 6 1. We need to bound y from below. We have s(E,F ) = d− y. Moreover, the center of
the semidisk Qα,β(E) < 0 is given by sQ = (d+ 6e)/(4d− 1). Since no wall can be inside this
semidisk, we must have

0 6 sQ − s(E,F ) =
d+ 6e

4d− 1
− d+ y 6

d2 − 4dy + 4d+ y − 2

1− 4d
.

This implies y > (d2 + 4d− 2)/(4d− 1). In particular, for d = 0, we have 1 > y > 2, and such a
wall simply cannot exist. Therefore, we can assume d 6 −1

2 . Applying Lemma 3.3 to the quotient
E/F leads to

e 6 1
2(d− y)2 + z + 1

24 .

The next step is to apply induction to F (1). If y = 1, then H · ch3(F (1)) = z + 1
3 6 0; that is,

z 6 −1
3 . This leads to

e 6 1
2d

2 − d+ 5
24 .

If y = 1
2 , then ch3(F (1)) = z − 1

6 6
1
6 ; that is, z 6 1

3 . This leads to

e 6 1
2d

2 − 1
2d+ 1

2 <
1
2d

2 − d+ 1
3 .

Assume y 6 0. Then we have

d2 + 4d− 2

4d− 1
6 y 6 0 .

This implies d 6 −9
2 . We can apply induction to F (1) to get z 6 1

2y
2 − 2y + 11

8 . Therefore,

e 6 1
2d

2 − dy + y2 − 2y + 17
12 =: ϕd(y) .

This expression defines a parabola with minimum in y. Therefore its maximum will occur on the
boundary. We have

1
2d

2 − d+ 1
3 − ϕd(0) > −d− 13

12 > 0 .

On the other boundary point, we have

1

2
d2 − d+

1

3
− ϕd

(
d2 + 4d− 2

4d− 1

)
=

36d4 − 12d3 − 40d2 + 20d− 13

12(4d− 1)2
> 0 .

(2) Assume c = 0, d 6 −1, and e > 1
2d

2 + 1
3 .

(a) Assume that F has rank one. Then

Q0,−1(E) = 4d2 − 4d− 12e 6 −2d2 − 4d− 4 < 0 .

Thus, W (F,E) must contain a point (α,−1), and we have

0 <
H2 · ch−11 (F )

H3
= x+ 1 ;

that is, x > −1. However, if x > 0, then we are dealing with either the vertical wall or a wall to
the right of the vertical wall. Therefore, the wall cannot exist.
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(b) Assume that F has rank two. Then as in the rank one case, we have Q0,−1(E) < 0, and
thus,

0 <
H2 · ch−11 (F )

H3
= x+ 2 ;

that is, x > −2. Again, x > 0 implies that we do not deal with a wall to the left of the vertical
wall. Overall, we must have x = −1. The inequality ∆(F ) > 0 implies y 6 0. We need to bound
y from below. We have s(E,F ) = d − y. Moreover, the center of the semidisk Qα,β(E) < 0 is
given by sQ = 3e/2d. Since no wall can be inside this semidisk, we must have

0 6 sQ − s(E,F ) 6 −d
2 − 4dy − 2

4d
.

This implies y > (d2 − 2)/4d. We can apply Lemma 3.3 to the quotient E/F to get

e 6 1
2(d− y)2 + z + 1

24 .

The next step is to apply induction to F to get z 6 1
2y

2 − y + 5
24 , which implies

e 6 1
2(d− y)2 + z + 1

24 6
1
2d

2 − dy + y2 − y + 1
4 =: ϕd(y) .

This expression defines a parabola in y with minimum. Therefore, the maximum will occur on a
boundary point. We get 1

2d
2 + 1

3 − ϕd(0) > 1
12 > 0. Moreover,

1

2
d2 +

1

3
− ϕd

(
d2 − 2

4d

)
=

9d4 + 12d3 − 8d2 − 24d− 12

48d2
> 0 .

3.4 Bounding the arithmetic genus of integral curves

We will now prove Theorem 3.1 in a series of lemmas. The proof will be by contradiction. We
already dealt with the case k = 1 in Proposition 3.2. Therefore, we will assume k > 2 in this
proof.

Lemma 3.10. Under the assumptions of Theorem 3.1, the inequality e > E(d, k) implies e >
Ẽ(d, k) + 1

8 > Ẽ(d, k). In particular, Theorem 3.1 requires only to prove e 6 Ẽ(d, k).

Proof. We know e ∈ 1
6Z. The statement now follows from the fact that E(d, k) ∈ 1

6Z and
ε(d, 1) + 1

8 6
1
6 .

Lemma 3.11. (i) The following bound holds: ε̃(d, k) 6 1
8k

2 − 1
8k.

(ii) If h > k and d > h(h − 1), then Ẽ(d, k) > Ẽ(d, h); that is, the function Ẽ(d, k) is strictly
decreasing in k as long as d > k(k − 1).

Proof. The first part was already observed in Lemma 3.5 part (i); namely, ε̃(d, k) is a parabola
in f with maximum at f = 1

2k.

For the second part, it is enough to show Ẽ(d, k) > Ẽ(d, k + 1) whenever d > k(k + 1). Let
m > k + 2 be the unique integer such that d = mk − f , where 0 6 f < k. We will deal with the
following three cases individually.

(1) Assume m > 2k + 1. Then d > 2k2. We have

Ẽ(d, k)− Ẽ(d, k + 1) >

(
d2

2k
+
dk

2
− k2

8
+
k

8

)
−
(

d2

2(k + 1)
+
d(k + 1)

2

)
=
−k4 − 4dk2 + 4d2 − 4dk + k2

8
(
k2 + k

) .
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Therefore, it is enough to show that the function

ϕk(d) = −k4 − 4dk2 + 4d2 − 4dk + k2

is positive. The fact that d > 2k2 implies ϕ′k(d) = −4k2 + 8d − 4k > 0. Thus, for k > 2, we
have ϕk(d) > ϕk

(
2k2
)

= 7k4 − 8k3 + k2 > 0. If k = 1, then we have d > k(k + 1) + 1
2 = 5

2 , and
ϕ1

(
5
2

)
= 5 > 0.

(2) Assume m 6 2k and 0 6 f 6 2k−m+ 3
2 . Let d ≡ −f ′(mod k+ 1) for 0 6 f ′ < k+ 1. Then

f ′ = m+ f − k − 1 and Ẽ(d, k)− Ẽ(d, k + 1) = (k − f)(m− k − 1) > 0.

(3) Assume m 6 2k and 2k −m + 2 6 f < k. Note that this range for f is non-empty if and
only if m > k + 3. Let d ≡ −f ′ (mod k + 1) for 0 6 f ′ < k + 1. Then f ′ = m+ f − 2k − 2, and
Ẽ(d, k)− Ẽ(d, k+ 1) = 2fk− 3k2 − fm+ 2km+ f − 3k is linear in f and increasing. Therefore,
the minimum occurs at f = 2k −m+ 2, where

Ẽ(d, k)− Ẽ(d, k + 1) = (m− k − 2)(m− k − 1) > 0 .

Lemma 3.12. Let C ⊂ X be an integral curve. Assume that IC is destabilized via an exact
sequence 0 → E → IC → G → 0 in Cohβ(X) defining a semicircular wall in tilt stability.
Then E is a reflexive sheaf.

Proof. The long exact sequences

0→ H−1(E)→ 0→ H−1(G)→ H0(E) = E → IC → H0(G)→ 0

shows that E is a sheaf. Since both H−1(G) and IC are torsion free sheaves, so is E. Let Q
be the cokernel of the natural inclusion E ↪→ E∨∨. If Q = 0, we are done. If not, Q has to be
supported in dimension less than or equal to one. The strategy of the rest of the proof is to obtain
a contradiction to Q 6= 0. We get a commutative diagram with exact sequences in Cohβ(X) as
rows:

0 // E //

��

E∨∨ //

��

Q //

��

0

0 // IC // I∨∨C = OX // OC // 0 .

The kernel K of Q→ OC in Cohβ(X) is also a torsion sheaf supported in dimension less than
or equal to one. The snake lemma leads to a map K → G, but G is semistable and this map has
to be trivial. Therefore, we get an injection K ↪→ E∨∨. Since E∨∨ is torsion free, we must have
K = 0. Because C is integral, the injective map Q→ OC implies that Q is scheme-theoretically
supported on C. Moreover, E∨∨ → OX is injective in Cohβ(X). Note that along the wall, we

must have 0 < H · chβ1 (E) < H · chβ1 (IC) = H · chβ1 (OX). Let d be the degree of C. The final
contradiction is obtained via

να,β(E∨∨) =
d

H · chβ1 (E)
+ να,β(E) =

d

H · chβ1 (E)
+ να,β(IC)

>
d

H · chβ1 (OX)
+ να,β(IC) = να,β(OX)

because OX is stable in the whole (α, β)-plane.

Lemma 3.13. The equation of the semidisk Qα,β(IC) 6 0 is given by

α2 +

(
β +

3e

2d

)2

=
9e2 − 8d3

4d2
. (3.2)
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Assume that r is a positive integer such that

e2 >
2(2r + 1)2

9r(r + 1)
d3 .

Then IC is destabilized via an exact sequence 0 → E → IC → G → 0 defining a semicircular
wall in tilt stability, where 0 < ch0(E) 6 r.

Proof. The claim about the equation is a straightforward calculation. For the second part observe
that the hypothesis on e2 implies

9e2 − 8d3

4d2
>

d

2r(r + 1)
> 0 .

Therefore, IC has to destabilize at some point before Qα,β(IC) < 0. Moreover, we can use
Lemma 2.4 to conclude that E cannot have rank greater than or equal to r + 1.

Lemma 3.14. Assume that e > Ẽ(d, k) holds.

(i) The object IC is destabilized along a semicircular wall W induced by 0→ E → IC → G→
0, where E is a reflexive sheaf. Let H · ch(E) = (r, x, y, z). Then either r = 1 or r = 2.

(ii) Let µ0 > k be the unique integer such that either d = µ20− f ′ or d = µ0(µ0 + 1)− f ′, where
d ≡ −f ′(modµ0) for 0 6 f ′ < µ0. If r = 1, then k 6 −x 6 µ0. If r = 2, there are two
possibilities.

(a) If d = µ20 − f ′, then x = −2µ0 or x = −2µ0 + 1.
(b) If d = µ0(µ0 + 1)− f ′, then x = −2µ0 or x = −2µ0 − 1.

Proof. (i) If such a wall exists, then the reflexivity of E follows immediately from Lemma 3.12.
By Lemma 3.13, it is enough to show e > (5/3

√
3) d3/2 to get both r 6 2 and the existence of

the wall. Because of Lemma 3.11(i) and Lemma 3.10, it is enough to show that the function

ϕk(d) =
d2

2k
+
dk

2
− k2

8
+
k

8
− 5

3
√

3
d3/2

is non-negative whenever d > k(k − 1). The function ϕk has a local maximum at d0 = 1
3k

2, a
local minimum at d1 = 3

4k
2, and no other local extrema. Since d0 < k(k − 1), it is enough to

check the positivity at d1. Indeed, we have

ϕk

(
3

4
k2
)

=
k(k − 2)2

32
> 0 .

(ii) If r = 1, then E is a line bundle, and k 6 −x follows from Hom(O(−k + 1), IC) = 0. By
Lemma 3.11, we have Ẽ(d, µ0) 6 Ẽ(d, k) and henceforth, e > Ẽ(d, µ0). For any point (α, β) ∈W
with α > 0, we have H · chβ1 (IC) > H · chβ1 (E) > 0. This can be rewritten as

(r − 1)β > x > rβ .

Note that if Q0,β(IC) < 0, then there is an α > 0 such that (α, β) ∈ W . Since x is an integer,
the remaining claim is equivalent to showing the following two statements.

(a) If d = µ20 − f ′, then Q0,−µ0−1/2(IC) < 0 and Q0,2−2µ0(IC) < 0.
(b) If d = µ0(µ0 + 1)− f ′, then Q0,−µ0−1(IC) < 0 and Q0,1−2µ0(IC) < 0.

The semidisk Q0,−µ0−1(IC) < 0 becomes smaller when e decreases. Therefore, it is enough to
check these inequalities for e = Ẽ(d, µ0).
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Assume d = µ20 − f ′. Then

Q0,−µ0−1/2(IC) = −3f ′2µ0 + 2f ′µ20 − µ30 + 5
2f
′2 + f ′µ0 + 1

2µ
2
0 − 2f ′ .

This is a parabola in f ′ with maximum at

f ′ =
2µ20 + µ0 − 2

6µ0 − 5
.

From this maximum, we get

Q0,−µ0−1/2(IC) 6 −2(2µ0 + 1)(µ0 − 1)3

6µ0 − 5
< 0 .

Next, we have

Q0,2−2µ0(IC) = −6f ′2µ0 + 8f ′µ20 − 4µ30 + 10f ′2 − 14f ′µ0 + 8µ20 − 2f ′ .

This is a parabola in f ′ with maximum at

f ′ =
4µ20 − 7µ0 − 1

6µ0 − 10
.

From this maximum, we get

Q0,2−2µ0(IC) 6 −
(
8µ20 − 16µ0 − 1

)
(µ0 − 1)2

6µ0 − 10
< 0

unless µ0 = 2. In that case, we have Q0,2−2µ0(IC) = −2f ′2 + 2f ′. However, we used e = Ẽ(d,m)
but could have used e = Ẽ(d,m) + 1

8 to obtain a strict inequality.
Assume d = µ0(µ0 + 1)− f ′. Then

Q0,−µ0−1(IC) = −3f ′2µ0 + 2f ′µ20 − µ30 + f ′2 + 3f ′µ0 − 2µ20 + f ′ − µ0 .

This is a parabola in f ′ with maximum at

f ′ =
2µ20 + 3µ0 + 1

6µ0 − 2
.

From this maximum, we get

Q0,−µ0−1(IC) 6 −
(
8µ20 − 8µ0 − 1

)
(µ0 + 1)2

12µ0 − 4
< 0 .

Finally, we have

Q0,1−2µ0(IC) = −6f ′2µ0 + 8f ′µ20 − 4µ30 + 7f ′2 − 6f ′µ0 + µ20 − 5f ′ + 5µ0 .

This is a parabola in f ′ with maximum at

f ′ =
8µ20 − 6µ0 − 5

12µ0 − 14
.

From this maximum, we get

Q0,1−2µ0(IC) 6 −
(
4µ20 + 2µ0 − 5

)
(4µ0 − 5)(2µ0 − 1)

24µ0 − 28
< 0 .

Lemma 3.15. Assume d = µ20 − f ′, d ≡ −f ′(modµ0), 0 6 f ′ < µ0, and

e > Ẽ(d, µ0) = µ30 + 1
2f
′2 − 2f ′µ0 + 1

2f
′ .

Furthermore, suppose that IC is destabilized at a wall W induced by an exact sequence 0 →
E → IC → G→ 0, where E is reflexive and tilt stable along W .
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(i) If H · ch(E) = (2,−2µ0, y, z), then the following hold:

(a) The Chern character of E(µ0) is
(
2, 0,−µ20 + y,−2

3µ
3
0 + µ0y + z

)
.

(b) We have

2µ40 − 4f ′µ20 + 3f ′2µ0 + 3f ′µ0 − 4f ′2

2
(
µ20 − f ′

) < y 6 µ20 and 0 6 f ′ <
2µ20 − 3µ0
3µ0 − 4

.

Moreover, if µ0 ∈ {2, 3, 4}, then y = µ20.
(c) The inequality

e 6 1
2µ

4
0 + f ′µ20 − 2

3µ
3
0 − µ20y + 1

2f
′2 − 2f ′µ0

+ 1
2µ

2
0 − f ′y + 2µ0y + 1

2y
2 + 1

2f
′ − 1

2y + z

holds.
(d) If y = µ20, then

z 6 −1
3µ

3
0 and e 6 µ30 + 1

2f
′2 − 2f ′µ0 + 1

2f
′ = Ẽ(d, µ0) .

In particular, the wall W cannot exist.
(e) If y = µ20 − 1

2 , then

z 6 −1
3µ

3
0 + 1

2µ0 + 1
6 and e 6 µ30 + 1

2f
′2 − 2f ′µ0 + f ′ − 1

2µ0 + 13
24 .

In particular, the wall W cannot exist.
(f) If y 6 µ20 − 1, then

z 6 1
2µ

4
0 + 2

3µ
3
0 − µ20y − µ0y + 1

2y
2 + 5

24 ,

e 6 µ40 + f ′µ20 − 2µ20y + 1
2f
′2 − 2f ′µ0 + 1

2µ
2
0 − f ′y + µ0y + y2 + 1

2f
′ − 1

2y + 5
24 .

In particular, the wall W cannot exist.

(ii) If H · ch(E) = (2,−2µ0 + 1, y, z), then the following hold:

(a) The Chern character of E(µ0 − 1) is given by(
2,−1,−µ20 + µ0 + y,−2

3µ
3
0 + 3

2µ
2
0 + µ0y − µ0 − y + z + 1

6

)
.

(b) The second Chern character of E satisfies

4µ40 − 8f ′µ20 − 6µ30 − 11f ′2 + 6f ′2µ0 + 18f ′µ0 − 3f ′

4
(
µ20 − f ′

) < y 6 µ20 + f ′ − 2µ0 +
1

2
.

Moreover, in the case µ0 = 2 we have f ′ > 1.
(c) The inequality

e 6 1
2µ

4
0 + f ′µ20 − 8

3µ
3
0 − µ20y + 1

2f
′2 − 4f ′µ0 + 6µ20

− f ′y + 4µ0y + 1
2y

2 + 2f ′ − 4µ0 − 2y + z + 17
24

holds.
(d) We have

z 6 1
2µ

4
0 − 1

3µ
3
0 − µ20y + 1

2y
2 + 1

24

e 6 µ40 + f ′µ20 − 3µ30 − 2µ20y + 1
2f
′2 − 4f ′µ0 + 6µ20

− f ′y + 4µ0y + y2 + 2f ′ − 4µ0 − 2y + 3
4 .

In particular, the wall W cannot exist.

Proof. (i) Assume H · ch(E) = (2,−2µ0, y, z).
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(a) This part is a straightforward calculation.
(b) By Theorem 3.6, we get −µ20+y 6 0; that is, y 6 µ20. The center of W (E, IC) is given by

s(E, IC) =
−2µ20 + 2f ′ − y

2µ0
.

The semidisk Qα,β(IC) < 0 becomes smaller when e decreases, and we can bound it from below
by setting e = Ẽ(d, µ0). Therefore, the center sQ of this semidisk satisfies

sQ <
−6µ30 − 3f ′2 + 12f ′µ0 − 3f

4µ20 − 4f ′
.

The lower bound on y is a consequence of the fact that W is outside of Qα,β(IC) < 0; that
is, s(E, IC) 6 sQ. Comparing the lower and upper bound for y leads to the bound on f ′. If
µ0 ∈ {2, 3, 4}, then

2µ40 − 4f ′µ20 + 3f ′2µ0 + 3f ′µ0 − 4f ′2

2
(
µ20 − f ′

) > µ20 −
1

2
.

(c) This inequality on e is an application of Proposition 3.2 to the quotient G.
(d) Assume y = µ20. The upper bound on z follows from Theorem 3.6 applied to E(µ0). The

bound on e is a direct consequence of applying the bound on z to the previous upper bound
for e.

(e) Assume y = µ20 − 1
2 . The upper bound on z follows from Theorem 3.6 applied to E(µ0).

The bound on e is a direct consequence of applying the bound on z to the previous upper bound
for e. Indeed, for µ0 6= 2, we can use

f ′ <
2µ20 − 3µ0
3µ0 − 4

to get

µ30 + 1
2f
′2 − 2f ′µ0 + f ′ − 1

2µ0 + 13
24 6 µ

3
0 + 1

2f
′2 − 2f ′µ0 + 1

2f
′ .

(f) Assume y 6 µ20 − 1. The upper bound on z follows from Theorem 3.6 applied to E(µ0).
The bound on e is a direct consequence of applying the bound on z to the previous upper bound
for e. We are left to show that this inequality implies e 6 Ẽ(d, µ0). This can be done by showing
that the function

Ẽ(d, µ0)−
(
µ40 + f ′µ20 − 2µ20y + 1

2f
′2 − 2f ′µ0 + 1

2µ
2
0 − f ′y + µ0y + y2 + 1

2f
′ − 1

2y + 5
24

)
= −µ40 − f ′µ20 + µ30 + 2µ20y − 1

2µ
2
0 + f ′y − µ0y − y2 + 1

2y −
5
24 =: ϕ(y, f ′, µ0)

is non-negative. This function is a parabola in y with maximum. The maximum occurs at

y0 = µ20 + 1
2f
′ − 1

2µ0 + 1
4 .

We will show that y0 lies before our range for y and therefore, ϕf ′,µ0 has a minimum for y = µ2−1.
Indeed, we can compute

ψ(µ0, f
′) :=

2µ40 − 4f ′µ20 + 3f ′2µ0 + 3f ′µ0 − 4f ′2

2
(
µ20 − f ′

) − y0

=
6f ′2µ0 − 6f ′µ20 + 2µ30 − 6f ′2 + 4f ′µ0 − µ20 + f ′

4
(
µ20 − f ′

) .

The numerator is a parabola in f ′ with minimum at

f ′0 =
6µ20 − 4µ0 − 1

12(µ0 − 1)
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and

ψ(µ0, f
′
0) =

12µ40 − 24µ30 + 20µ20 − 8µ0 − 1

8
(
6µ20 − 6µ0 − 1

)
(2µ0 − 1)

> 0 .

Finally, we get

ϕ(y, f ′, µ0) > ϕ
(
µ20 − 1, f ′, µ0

)
= −f ′ + µ0 − 41

24 > 0 ,

due to the upper bound on f ′ and µ0 > 5.

(ii) Assume H · ch(E) = (2,−2µ0 + 1, y, z).

(a) This part is a straightforward calculation.
(b) The inequality ∆(G) > 0 is equivalent to y 6 µ20 + f ′− 2µ0 + 1

2 . The center of W (E, IC)
is given by

s(E, IC) =
−2µ20 + 2f ′ − y

2µ0 − 1
.

The semidisk Qα,β(IC) < 0 becomes smaller when e decreases, and we can bound it from below
by setting e = Ẽ(d, µ0). Therefore, the center sQ of this semidisk satisfies

sQ <
−6µ30 − 3f ′2 + 12f ′µ0 − 3f

4µ20 − 4f ′
.

The lower bound on y is then obtained from the fact that W is outside this lower bound of the
semidisk; that is, s(E, IC) < sQ. Finally, if µ0 = 2, then comparing the upper and lower bound
on y leads to f ′ > 1.

(c) This inequality on e is a direct application of Proposition 3.2 to the quotient G.
(d) The upper bound on z follows from Theorem 3.6 applied to E(µ0 − 1). The bound on e

is a direct consequence of estimating z in the previous upper bound for e. We have to maximize
the function

ϕ(y, f ′, µ0) := µ40 + f ′µ20 − 3µ30 − 2µ20y + 1
2f
′2 − 4f ′µ0 + 6µ20

− f ′y + 4µ0y + y2 + 2f ′ − 4µ0 − 2y + 3
4 .

This function is a parabola in y with minimum at

y0 = µ20 + 1
2f
′ − 2µ0 + 1 .

We will show that y0 lies before our range for y, and, therefore, the maximum occurs at y =
µ20 + f ′ − 2µ0 + 1

2 . Let

ψ(µ0, f
′) :=

4µ40 − 8f ′µ20 − 6µ30 − 11f ′2 + 6f ′2µ0 + 18f ′µ0 − 3f ′

4
(
µ20 − f ′

) − y0

=
6f ′2µ0 − 6f ′µ20 + 2µ30 − 9f ′2 + 10f ′µ0 − 4µ20 + f ′

4
(
µ20 − f ′

) .

The numerator is a parabola in f ′ with minimum at

f ′0 =
6µ20 − 10µ0 − 1

12µ0 − 18

and

ψ(µ0, f
′
0) =

12µ40 − 48µ30 + 56µ20 − 20µ0 − 1

8
(
12µ30 − 24µ20 + 10µ0 + 1

) ,
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which is positive for µ0 > 3. When µ0 = 2, then we get f ′0 = 1
2 but f ′ > 1. Then, ψ(2, 1) = 0.

Finally, we get

ϕ(y, f ′, µ0) > ϕ
(
µ20 + f ′ − 2µ0 + 1

2 , f
′, µ0

)
= Ẽ(d, µ0) .

Lemma 3.16. Assume d = µ0(µ0 + 1)− f ′, d ≡ −f ′(modµ0), 0 6 f ′ < µ0, and

e > Ẽ(d, µ0) = µ30 + 1
2f
′2 − 2f ′µ0 + 3

2µ
2
0 − 1

2f
′ + 1

2µ0 .

Furthermore, suppose that IC is destabilized at a wall W induced by an exact sequence 0 →
E → IC → G→ 0, where E is reflexive and tilt stable along W .

(i) If H · ch(E) = (2,−2µ0, y, z), then the following hold:

(a) The Chern character of E(µ0) is given by
(
2, 0,−µ20 + y,−2

3µ
3
0 + µ0y + z

)
.

(b) We have

2µ40 + 3f ′2µ0 − 4f ′µ20 + µ30 − 4f ′2 + 5fµ0 − µ20
2
(
µ20 − f ′ + µ0

) < y 6 µ20 + f ′ − µ0 < µ20 .

If y = µ20 − 1
2 , then f ′ = µ0 − 1

2 .
(c) The following inequality holds:

e 6 1
2µ

4
0 + f ′µ20 − 5

3µ
3
0 − µ20y + 1

2f
′2 − 3f ′µ0 + 3µ20

− f ′y + 3µ0y + 1
2y

2 + 1
2f
′ − 1

2µ0 −
1
2y + z .

(d) If y = µ20 − 1
2 , then f ′ = µ0 − 1

2 and

z 6 −1
3µ

3
0 + 1

2µ
2
0 + 1

6 and e 6 µ30 + 1
2µ

2
0 + 1

6 .

In particular, the wall W cannot exist.
(e) If y 6 µ20 − 1, then

z 6 1
2µ

4
0 + 2

3µ
3
0 − µ20y − µ0y + 1

2y
2 + 5

24 ,

e 6 µ40 + f ′µ20 − µ30 − 2µ20y + 1
2f
′2 − 3f ′µ0 + 3µ20 − f ′y

+ 2µ0y + y2 + 1
2f
′ − 1

2µ0 −
1
2y + 5

24 .

In particular, the wall W cannot exist.

(ii) If H · ch(E) = (2,−2µ0 − 1, y, z), then the following hold:

(a) The Chern character of E(µ0) is given by
(
2,−1,−µ20 − µ0 + y,−2

3µ
3
0 − 1

2µ
2
0 + µ0y+ z

)
.

(b) We have

4µ40 + 6f ′2µ0 − 8f ′µ20 + 8µ30 − 5f ′2 − 2f ′µ0 + 7µ20 − 3f ′ + 3µ0

4
(
µ20 − f ′ + µ0

) < y 6 µ20 + µ0 .

(c) We have

e 6 1
2µ

4
0 + f ′µ20 + 1

3µ
3
0 − µ20y + 1

2f
′2 − f ′µ0 + 1

2µ
2
0 − f ′y + µ0y + 1

2y
2 + z + 1

24 .

(d) We have

z 6 1
2µ

4
0 + 5

3µ
3
0 − µ20y + 2µ20 − 2µ0y + 1

2y
2 + µ0 − y + 5

24 ,

e 6 µ40 + f ′µ20 + 2µ30 − 2µ20y + 1
2f
′2 − f ′µ0 + 5

2µ
2
0 − f ′y − µ0y + y2 + µ0 − y + 1

4 .

In particular, the wall W cannot exist.

Proof. (i) Assume H · ch(E) = (2,−2µ0, y, z).
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(a) This part is a straightforward calculation.
(b) The inequality ∆(G) > 0 is equivalent to y 6 µ20 + f ′ − µ0. The semicircular wall

W (E, IC) has center

s(E, IC) = −2µ20 − 2f ′ + 2µ0 + y

2µ0
,

and the open semidisk Qα,β(IC) < 0 has center

sQ = − 3e

2
(
µ20 + µ0 − f ′

) .
Since this semidisks center increases when e decreases, the semidisk itself becomes smaller in
that case, and we can bound it from below by setting e = Ẽ(d, µ0). The lower bound on y is then
obtained from the fact that W is outside this semidisk; that is, s(E, IC) 6 sQ. If y = µ20 − 1

2 ,
then y 6 µ20 + f ′ − µ0 implies f ′ = µ0 − 1

2 .
(c) This inequality on e is a direct application of Proposition 3.2 to the quotient G.
(d) Assume y = µ20 − 1

2 and f ′ = µ0 − 1
2 . The upper bound on z follows from Theorem 3.6

applied to E(µ0). The bound on e is a direct consequence of estimating z in the previous upper
bound for e. Indeed,

e 6 µ30 + 1
2µ

2
0 + 1

6 < µ30 + 1
2µ

2
0 + 3

8 = Ẽ(d, µ0) .

(e) Assume y 6 µ20 − 1. The upper bound on z follows from Theorem 3.6 applied to E(µ0).
The bound on e is a direct consequence of estimating z in the previous upper bound for e. We
are left to show that this inequality implies e 6 Ẽ(d, µ0). This can be done by showing that the
function

ϕ(y, f ′, µ0) = Ẽ(d, µ0)−
(
µ40 + f ′µ20 − µ30 − 2µ20y + 1

2f
′2 − 3f ′µ0

+ 3µ20 − f ′y + 2µ0y + y2 + 1
2f
′ − 1

2µ0 −
1
2y + 5

24

)
= −µ40 − f ′µ20 + 2µ30 + 2µ20y + f ′µ0 − 3

2µ
2
0 + f ′y

− 2µ0y − y2 − f ′ + µ0 + 1
2y −

5
24 .

is positive. This function is a parabola in y with maximum. The maximum occurs at y0 =
µ20 + 1

2f
′ − µ0 + 1

4 . We will show that y0 lies before our range for y and that, therefore, the
minimum in our range occurs for y = µ2 + f ′ − µ0. We can compute

ψ(µ0, f
′) :=

2µ40 + 3f ′2µ0 − 4f ′µ20 + µ30 − 4f ′2 + 5fµ0 − µ20
2
(
µ20 − f ′ + µ0

) − y0

=
6f ′2µ0 − 6f ′µ20 + 2µ30 − 6f ′2 + 4f ′µ0 + µ20 + f ′ − µ0

4
(
µ20 − f ′ + µ0

) .

The numerator is a parabola in f ′ with minimum at

f ′0 =
6µ20 − 4µ0 − 1

12µ0 − 12

and

ψ(µ0, f
′
0) =

12µ40 + 24µ30 − 52µ20 + 16µ0 − 1

96µ30 − 48µ20 − 64µ0 + 1
> 0 .

Thus, ϕ(y, f ′, µ0) has a minimum y = µ2 + f ′ − µ0, where

ϕ
(
µ2 + f ′ − µ0, f ′, µ0

)
= 1

2µ0 −
1
2f
′ − 5

24 > 0 .

(ii) Assume H · ch(E) = (2,−2µ0 − 1, y, z).
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(a) This part is a straightforward calculation.
(b) By Theorem 3.6 applied to E(µ0), we have y 6 µ20 + µ0. The semicircular wall W has

center

s(E, IC) = −2µ20 − 2f ′ + 2µ0 + y

2µ0 + 1
,

and the open semidisk Qα,β(IC) < 0 has center

sQ = − 3e

2
(
µ20 + µ0 − f ′

) .
Since this semidisk’s center increases when e decreases, the semidisk itself becomes smaller in
that case, and we can bound it from below by setting e = Ẽ(d, µ0). The lower bound on y is a
consequence of the fact that W is outside this semidisk; that is, s(E, IC) 6 sQ.

(c) This inequality on e is a direct application of Proposition 3.2 to the quotient G.
(d) The upper bound on z follows from Theorem 3.6 applied to E(µ0). The bound on e is a

direct consequence of estimating z in the previous upper bound for e. We have to maximize

ϕ(y, f ′, µ0) = µ40 + f ′µ20 + 2µ30 − 2µ20y + 1
2f
′2 − f ′µ0 + 5

2µ
2
0 − f ′y − µ0y + y2 + µ0 − y + 1

4 .

This function is a parabola in y with minimum at y0 = µ20 + 1
2f
′ + 1

2µ0 + 1
2 . We will show that

y0 lies before our range for y and that, therefore, the maximum occurs at y = µ20 + µ0. We want
to show that

ψ(µ0, f
′) :=

4µ40 + 6f ′2µ0 − 8f ′µ20 + 8µ30 − 5f ′2 − 2f ′µ0 + 7µ20 − 3f ′ + 3µ0

4
(
µ20 − f ′ + µ0

) − y0

=
6f ′2µ0 − 6f ′µ20 + 2µ30 − 3f ′2 − 2f ′µ0 + 3µ20 − f ′ + µ0

4
(
µ20 − f ′ + µ0

)
is non-negative. The numerator is a parabola in f ′ with minimum at

f ′0 =
6µ20 + 2µ0 + 1

12µ0 − 6

and

ψ(µ0, f
′
0) =

12µ40 + 24µ30 − 28µ20 − 16µ0 − 1

8
(
12µ30 − 8µ0 − 1

) > 0 .

Finally,

ϕ
(
µ20 + µ0, f

′, µ0
)

= µ30 + 1
2f
′2 − 2f ′µ0 + 3

2µ
2
0 + 1

4 6 Ẽ(d, µ0) .

Proof of Theorem 3.1. By Lemma 3.14(i), we know that IC is destabilized by an exact sequence
0→ E → IC → G→ 0, where H · ch(E) = (r, x, y, z), E is reflexive, and r = 1 or r = 2.

Assume r = 1. Then E is a line bundle with H · ch1(E) = x. and by Lemma 3.14(ii) we
get x 6 −k and d > −x(−x − 1). Then H · ch(G) =

(
0,−x,−d − 1

2x
2, e − 1

6x
3
)
, and a direct

application of Theorem 3.4 gives e 6 Ẽ(d,−x). By Lemma 3.11, we get e 6 Ẽ(d, k), which is in
contradiction to the assumption e > Ẽ(d, k).

Assume r = 2. As previously, let µ0 > k be the unique integer such that either d = µ20− f ′ or
d = µ0(µ0 + 1)− f ′, where d ≡ −f ′(modµ0) and 0 6 f ′ < µ0. Then Lemma 3.14(ii) implies that
we are in any of the four situations described in Lemmas 3.15 and 3.16. These lemmas imply
that e 6 Ẽ(d, µ0). Since µ0 > k, we again get a contradiction by using Lemma 3.11 to obtain
e 6 Ẽ(d, k).
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4. Toward the Hartshorne–Hirschowitz conjecture

In the previous section, we gave a new proof for the maximal genus of a degree d curve C ⊂ P3

with H0(IC(k − 1)) = 0 for some positive integer k satisfying d > k(k − 1). The main open
question is what happens for

1
3

(
k2 + 4k + 6

)
6 d 6 k(k − 1) .

Let us rewrite the conjectural answer for this case in terms of the Chern character. Recall from
the introduction that for any integer c ∈ Z, we defined

δ(c) =


3 if c = 1, 3 ,

1 if c ≡ 2 (mod 3) ,

0 otherwise .

Then, for any integers k > 5 and f ∈ [k − 1, 2k − 5], we defined integers

A(k, f) = 1
3

(
k2 − kf + f2 − 2k + 7f + 12 + δ(2k − f − 6)

)
,

B(k, f) = 1
3

(
k2 − kf + f2 + 6f + 11 + δ(2k − f − 7)

)
.

Conjecture 4.1 (Hartshorne–Hirschowitz). Let C ⊂ P3 be an integral curve of degree d such
that H0(IC(k − 1)) = 0 for some positive integer k. Assume A(k, f) 6 d < A(k, f + 1) for
f ∈ [k − 1, 2k − 6]. Then

ch3(IC) 6 E(d, k) := d(k + 1)−
(
k + 2

3

)
+

(
f − k + 4

3

)
+ h(d) ,

where

h(d) =

{
0 if A(k, f) 6 d 6 B(k, f) ,
1
2(d−B(k, f))(d−B(k, f) + 1) if B(k, f) 6 d < A(k, f + 1)) .

The goal of this section is to prove the following result.

Theorem 4.2. Assume the hypothesis of Conjecture 4.1. Furthermore, let A(k, f) 6 d 6 B(k, f),
and assume that the base field has characteristic zero. If IC is destabilized in tilt stability above
or at the numerical wall W (IC ,O(−f − 4)[1]), then ch3(IC) 6 E(d, k).

4.1 Bounding sections of ideal sheaves

The results in this section are elementary ingredients in the proof of Theorem 4.2.

Proposition 4.3. Let Z ⊂ P2 be a zero-dimensional subscheme of length n. Then

h0(IZ(l)) 6

(
l + 1

2

)
for any integer l < n.

Proof. If n = l + 1, then OP2(l) is l-very ample (see [CG90] for details on this notion) and
h0(IZ(l)) =

(
l+1
2

)
. More generally, for n > l + 1, the statement follows from a straightforward

induction on n.

The following corollary will be crucial to the proof of the proposition.
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Corollary 4.4. Let C ⊂ P3 be an arbitrary one-dimensional subscheme of degree d. Then

h0(IC(l)) 6

(
l + 2

3

)
for any integer l < d.

Proof. The proof will be achieved by induction on l. Indeed, for l 6 0 we have h0(IC(l)) = 0.
Assume that we know that the statement holds for some l > 0. Let H ⊂ P3 be a general plane
such that the scheme-theoretic intersection Z = H ∩ C is zero-dimensional and of length d. We
have a short exact sequence

0→ O(l)→ O(l + 1)→ OH(l + 1)→ 0 .

By tensoring with IC , we get another short exact sequence

0→ IC(l)→ IC(l + 1)→ IC ⊗OH(l + 1) = IZ/P2(l + 1)→ 0 .

This sequence is exact on the left since the map IC(l)→ IC(l+1) is injective by direct inspection.
As a consequence, we can use Proposition 4.3 and the inductive hypothesis to obtain

h0(IC(l + 1)) 6 h0(IC(l)) + h0(IZ/P2(l + 1)) 6

(
l + 2

3

)
+

(
l + 2

2

)
=

(
l + 3

3

)
.

4.2 Proof of Theorem 4.2

Lemma 4.5. The objects IC and O(−f − 4)[1] are in the category Cohβ
(
P3
)

along the wall
W (IC ,O(−f − 4)[1]). If IC is destabilized by a map IC → O(−f − 4)[1], then Conjecture 4.1
holds for C.

Proof. The first claim holds if and only if −f − 4 < β(IC) = −
√

2d. Therefore, we have to show
1
2(f + 4)2 − d > 0. By definition,

(f + 4)2

2
− d > (f + 4)2

2
−A(k, f + 1)

>
(f + 4)2

2
− 1

3
(k2 − k(f + 1) + (f + 1)2 − 2k + 7(f + 1) + 15)

=
1

6
f2 +

1

3
fk − 1

3
k2 + f + k +

1

3
.

The last term is a parabola in f with minimum at f = −k− 3. Since we have f > k− 1, we can
get a lower bound by setting f = k − 1, where

1
6f

2 + 1
3fk −

1
3k

2 + f + k + 1
3 = 1

6k
2 + 4

3k −
1
2 > 0 .

Let E be the kernel of the morphism IC → O(−f − 4)[1]. The second claim immediately follows
from Theorem 1.10 applied to E(k − 1).

Lemma 4.6. Assume A(k, f) 6 d 6 B(k, f). Then walls for objects with Chern character ch(IC)
above or at the numerical wall with O(−f − 4)[1] are induced by a rank two subobject that is
a reflexive sheaf.

Proof. Since C is integral, we already showed in Lemma 3.12 that the destabilizing subobject has
to be reflexive. All we have to show is that it is of rank two. The radius of W (IC ,O(−f − 4)[1]
is given by

ρ2 = ρ(IC ,O(−f − 4)[1])2 =

(
f + 4

2
− d

f + 4

)2

.
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By Lemma 2.4, the inequality ρ2 > 1
12d will imply that the subobject has rank at most two. This

inequality is equivalent to(
3(f + 4)

4
− d

f + 4

)(
f + 4

3
− d

f + 4

)
> 0 .

This would follow from d < 1
3(f+4)2. The inequalities k−1 6 f 6 2k−6 imply 1

2f+3 6 k 6 f+1.
We know that

d 6 A(k, f + 1)− 1 6
f2 − fk + k2 + 9f − 3k + 20

3
.

The right-hand side is a parabola in k with minimum at k = 1
2f + 3

2 . Therefore, we get an upper
bound by setting k = f + 1, which leads to

d 6
f2 + 7f + 18

3
=

(f + 4)2

3
− f − 2

3
<

(f + 4)2

3
.

Lastly, we have to rule out that IC is destabilized by a line bundle. The largest point of the
intersection of W (IC ,O(−f − 4)[1] with the β-axis is given by β0 = −2d/(f + 4). We are done
if we can show that β0 > −k. This is equivalent to showing d < 1

2(f + 4)k. We can compute

(f + 4)k

2
− d > (f + 4)k

2
−B(k, f)

>
(f + 4)k

2
− k2 − fk + f2 + 6f + 14

3

= −f
2

3
+

5fk

6
− k2

3
− 2f + 2k − 14

3
.

The last term defines a parabola in f with maximum. Its minimum has to be given at either
f = k − 1 or f = 2k − 6. For f = 2k − 6, we get

(f + 4)k

2
− d > k − 14

3
> 0 ,

and for f = k − 1, we get

(f + 4)k

2
− d > k2

6
− k

6
− 3 > 0 .

Lemma 4.7. Assume that IC is destabilized at or above the numerical wall with O(−f − 4)[1]
but not by a quotient IC � O(−f − 4)[1]. Furthermore, let A(k, f) 6 d 6 B(k, f). Then IC is
destabilized by a quotient IC � G(−f − 5) of rank −1 with ch1(G) = 0. Moreover,

ch2(G) ∈
[
A(k, f + 1)− d, f + 5

2
− d

f + 4

]
.

Proof. By Lemma 4.6, we know that IC has to be destabilized by an exact sequence 0 → E →
IC → G′ → 0 in Cohβ

(
P3
)
, where E has rank two and is a reflexive sheaf. Let x = ch1(G

′),
G = G′(x), and y = ch2(G). Note that, by definition, ch1(G) = 0. The wall W (IC ,O(−f − 4)[1])
intersects the β-axis at the two points

β0 = −f − 4 and β1 = − 2d

f + 4
.

Since W (IC ,O(−f − 4)[1]) is less than or equal to W (IC , G), we get

0 6 chβ1 (G(−x)) = x+ β 6 chβ1 (IC) = −β
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for any β such that there is a point (α, β) ∈ W (IC ,O(−f − 4)[1]). In particular, we can
choose both β0 and β1 in these inequalities to obtain f + 4 6 x 6 4d/(f + 4). The center
of W (IC ,O(−f − 4)[1]) is given by

s(IC ,O(−f − 4)[1]) = −f + 4

2
− d

f + 4
.

The center of W (IC , G) is given by

s(IC , G) =
y − d
x
− x

2
.

Therefore, the fact that W (IC ,O(−f − 4)[1]) is smaller than W (IC , G) implies

y 6
(2d− x(f + 4))(f + 4− x)

2(f + 4)
=: ϕd,f (x) .

We have

ch62(E(k − 1)) =
(
2, 2k − x− 2, k2 − kx+ 1

2x
2 − d− 2k + x− y + 1

)
.

Since H0(IC(k− 1)) = 0, we must have H0(E(k− 1)) = 0. Thus, we can apply Theorem 1.10 to
get the following bound on y:

y >
k2

3
− kx

3
+
x2

3
− d+

2k

3
− x

3
+
δ(2k − x− 2)

3
= A(k, x− 4)− d

>
k2

3
− kx

3
+
x2

3
− d+

2k

3
− x

3
=: ψd,k(x) .

We will rule out specific values of x by showing that ϕd,f (x) < ψd,k(x). The first step in the
proof is to show that if ϕd,f (x) < ψd,k(x), then ϕd,f (x′) < ψd,k(x

′) for any x′ > x. This will be
achieved by comparing the derivatives in x that are given by

ϕ′d,f (x) = x− d

f + 4
− f + 4

2
and ψ′d,k(x) =

2x

3
− k

3
− 1

3
.

Combining this with d 6 A(k, f + 1)− 1 and x 6 4d/(f + 4), we get

ψ′d,k(x)− ϕ′d,f (x) =
f

2
− k

3
− x

3
+

5

3
+

d

f + 4

>
f

2
− k

3
+

5

3
− d

3(f + 4)

>
7f2 − 4fk − 2k2 + 48f − 18k + 80

18(f + 4)
.

The numerator is a parabola in f with minimum at f = 2
7k−

24
7 . Therefore, it is enough to plug

f = k − 1 into the numerator, where indeed k2 + 20k + 39 > 0. To summarize, we showed that
it is enough to rule out x = f + 6 by using A(k, f) 6 d 6 B(k, f). In this case, the derivative of
ϕ by d is larger than the derivative of ψ by d. Therefore, we obtain ϕd,f (f + 6) < ψd,k(f + 6) if
this holds for any upper bound on d, for example,

d 6 B(k, f) 6
k2 − kf + f2 + 6f + 14

3
.

Using this upper bound for d, we get

ψd,k(f + 6)− ϕd,f (f + 6) >
2

3
· 2f2 − 3fk + k2 + 9f − 8k + 10

f + 4
.
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The numerator is a parabola in f with minimum at f = 3
4k −

9
4 . Setting f = k − 1 leads to

2f2 − 3fk + k2 + 9f − 8k + 10 > 3 > 0 .

Finally, the bounds on y follow by setting x = f + 5 in ϕ and A(k, x− 4)− d.

Lemma 4.8. Assume that IC is destabilized at or above the numerical wall with O(−f − 4)[1],
by an exact sequence 0 → E → IC → G(−f − 5) → 0, where ch0(G) = −1 and ch1(G) = 0. If
A(k, f) 6 d 6 B(k, f), then h2(E(k − 1)) = 0.

Proof. Let y = ch2(G). We have

ch62(E(k − 1)) =
(
2, 2k − f − 7, 12f

2 − fk + k2 − d+ 6f − 7k − y + 37
2

)
.

By Theorem 1.10, it is enough to show

ch2(E(k − 1))−
(

1

6
ch1(E(k − 1))2 − ch1(E(k − 1))− 8

3
− δ(2k − f − 8)

3

)
=

1

3
f2 − 1

3
fk +

1

3
k2 − d+

8

3
f − 1

3
k +

δ(2k − f − 8)

3
− y + 6

is non-negative. By Lemma 4.7, we have

y 6
f + 5

2
− d

f + 4
.

Additionally, we can use d 6 B(k, f) and f > k − 1 to obtain

1

3
f2 − 1

3
fk +

1

3
k2 − d+

8

3
f − 1

3
k +

δ(2k − f − 8)

3
− y + 6

>
3f2 − 4fk + 2k2 + 15f − 8k + 18 + (2f + 8)δ(2k − f − 8)− (2f + 6)δ(2k − f − 7)

6f + 24

>
3f2 − 4fk + 2k2 + 9f − 8k

6f + 24
> 0 .

Recall that for any E∈Db
(
P3
)
, we defined the derived dual D(E)=RHom(E,O)[1].

Lemma 4.9. Let E ∈ Cohβ
(
P3
)

for some β > 0 be a tilt semistable object for α � 0 with
ch(E) = (−1, 0, d, e). Then there is a distinguished triangle

IC′ → D(E)→ T [−1]→ IC′ [1] ,

where C ′ ⊂ P3 is a closed subscheme and T is a sheaf supported in dimension zero. If d > 0,
then dimC ′ = 1. If d = 0, then dimC ′ = 0.

Proof. Choose α� 0 such that both (α, β) and (α,−β) are above the largest wall in tilt stability
for walls with respect to (−1, 0, d) or (1, 0,−d). By Proposition 2.6, we have a distinguished
triangle

Ẽ → D(E)→ T [−1]→ Ẽ[1] ,

where T is a sheaf supported in dimension zero and Ẽ is να,−β-semistable. By our choice of α
and the fact that ch62(Ẽ) = (1, 0,−d), we can use Lemma 2.5 to see that Ẽ is a slope semistable
sheaf and, thus, must be an ideal sheaf as claimed.

Proof of Theorem 4.2. Lemma 4.5 already shows that Conjecture 4.1 holds for C if IC is desta-
bilized by a quotient IC � O(−f − 4)[1]. Therefore, by Lemmas 4.7 and 4.8, we can assume
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that IC is destabilized by an exact sequence 0→ E → IC → G(−f−5)→ 0, where ch0(G) = −1,
ch1(G) = 0, and h2(E(k − 1)) = 0. We set y = ch2(G).

Next, we will check that G(−f − 5) is stable for α� 0 by showing that W (IC , G(−f − 5)) is

above or equal to the largest wall for G(−f−5). We have ch−f−41 (G(−f−5)) = 1. Therefore, there
is no wall for G(−f − 5) that intersects the vertical line β = −f − 4. However, by assumption,
W (IC , G(−f−5)) is larger than W (IC , O(−f−4)), which contains the point α = 0, β = −f−4.

Note that the conjecture is equivalent to

χ(IC(k − 1)) 6

(
f − k + 4

3

)
.

The equality h0(IC(k − 1)) = 0 implies h0(E(k − 1)) = 0. Thus, we get

χ(E(k − 1)) 6 −h1(E(k − 1)) 6 −h0(G(k − f − 6)) .

By Lemma 4.9, we know that D(G) fits into a distinguished triangle

IC′ → D(G)→ T [−1]→ IC′ [1] ,

where C ′ ⊂ P3 is a one-dimensional subscheme and T is a sheaf supported in dimension zero.
Therefore, we get

χ(IC(k − 1)) = χ(E(k − 1)) + χ(G(k − f − 6)) 6 −h0(G(k − f − 6)) + χ(G(k − f − 6))

6 h2(G(k − f − 6)) = ext2(D(G),O(k − f − 6)[1])

= h0(D(G)(f − k + 2)) = h0(IC′(f − k + 2)) .

The degree of C ′ is given by

y > A(k, f + 1)− d > A(k, f + 1)−B(k, f) = f − k + 3 .

Hence, we can use Corollary 4.4 to obtain

χ(IC(k − 1)) 6 h0(IC′(f − k + 2)) 6

(
f − k + 4

3

)
.

4.3 An example

We finish the article by giving a proof of Conjecture 4.1 for d = A(k, 2k − 11) and k > 31.

Proposition 4.10. Let C ⊂ P3 be an integral curve of degree d = A(k, 2k − 11) such that
H0(IC(k − 1)) = 0 for some integer k > 31, and let ch(IC) = (1, 0,−d, e). Then

e 6 E(d, k) .

Lemma 4.11. Assume the hypothesis of Proposition 4.10, and assume e > E(d, k).

(i) We have

A(k, 2k − 11) = k2 − 7k + 19 ,

E
(
k2 − 7k + 19, k

)
= k3 − 21

2 k
2 + 87

2 k − 65 .

(ii) The ideal sheaf IC is destabilized via a short exact sequence 0→ E → IC → G(7−2k)→ 0,
where ch1(G) = 0 and E is a reflexive sheaf of rank two.

(iii) If ch(G) = (−1, 0, y, z), then 0 6 y 6 6.

(iv) We have χ(G(6− k)) 6 1
6k

3 − 4k2 − ky + 1
2y

2 + 191
6 k + 17

2 y − 84.

(v) We have h2(E(k − 1)) 6
(
y−2
2

)
.
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Proof. (i) This part is a simple computation.

(ii) Let ρQ be the radius of the semidisk Qα,β(IC) 6 0. Using e > k3 − 21
2 k

2 + 87
2 k− 65, we get

ρ2Q −
∆(IC)

24
>

8k6 − 168k5 + 903k4 + 1402k3 − 35817k2 + 147360k − 229600

48
(
k2 − 7k + 19

)2 > 0 .

By Lemma 2.4, any destabilizing subobject of IC has rank at most two. Moreover, this shows
that the region where Qα,β(IC) < 0 is non-empty. Thus, IC has to be destabilized at some point,
and by Lemma 3.12, any destabilizing subobject E has to be a reflexive sheaf.

Assume ch0(E) = 1. Then E is a line bundle. Using e > k3 − 21
2 k

2 + 87
2 k − 65 we obtain

Q0,−k(IC) < −7k3 + 125k2 − 674k + 1444 < 0 .

Using H0(IC(k − 1)) = 0, we see that there are no lines bundles destabilizing IC as subobjects.
We showed that E is a rank two reflexive sheaf. Let G(−x) be the quotient, where ch1(G) = 0
for some x ∈ Z.

Next, we check that x = 2k−7. We know that the wall W (E, IC) has to be outside the region
Qα,β(IC) < 0. Thus, for any β ∈ R with Q0,β(IC) < 0, we get

0 < chβ1 (G) = x+ β < chβ1 (IC) = −β .

The inequality e > k3 − 21
2 k

2 + 87
2 k − 65 can be used to show that

Q0,−2k+8(IC) < −2k3 + 50k2 − 308k + 756 6 0 ,

Q0,−k+3(IC) < −k3 + 38k2 − 245k + 616 6 0 .

In particular, x = 2k− 7 holds. Let sQ be the center of the semidisk Qα,β(IC) 6 0 on the β-axis.
The inequality s(E, IC) 6 sQ together with e > k3 − 21

2 k
2 + 87

2 k − 65 implies

0 6 y <
9(3k2 − 23k + 64)

4(k2 − 7k + 19)
< 7 .

(iii) By Proposition 3.2, we have z 6 1
2y(y + 1). The statement then follows from the Hirzebruch–

Riemann–Roch theorem. Recall that the Todd class of P3 is given by
(
1, 2, 116 , 1

)
.

(iv) This is a direct consequence of Theorem 1.10 applied to E(k − 1).

Proof of Proposition 4.10. Note that for d = A(k, 2k − 11), Conjecture 4.1 is equivalent to

χ(IC(k − 1)) 6

(
f − k + 4

3

)
+ h(d) =

(
k − 7

3

)
.

Assume e > E(d, k); then Lemma 4.11 implies that IC is destabilized by a quotient IC �
G(7− 2k), where ch1(G) = 0. We have 0 6 y 6 6 for y = ch2(G). Then

χ(IC(k − 1)) 6
1

6
k3 − 4k2 − ky +

1

2
y2 +

191

6
k +

17

2
y − 84 +

(
y − 2

2

)
6

(
k − 7

3

)
.
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