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A B S T R A C T

Optoacoustic (OA) measurements can not only be used for imaging purposes but as a more general tool

to ‘‘sense’’ physical characteristics of biological tissue, such as geometric features and intrinsic optical

properties. In order to pave the way for a systematic model-guided analysis of complex objects we

devised numerical simulations in accordance with the experimental measurements. We validate our

computational approach with experimental results observed for layered polyvinyl alcohol hydrogel

samples, using melanin as the absorbing agent. Experimentally, we characterize the acoustic signal

observed by a piezoelectric detector in the acoustic far-field in backward mode and we discuss the

implication of acoustic diffraction on our measurements. We further attempt an inversion of an OA signal

in the far-field approximation.

� 2016 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recent progress in the field of optoacoustics (OAs) has been
driven by tomography and imaging applications in the context of
biomedical optics. Motivated by their immediate relevance for
medical applications, high resolution scans on living tissue proved
the potential of this optical absorption based measurement
technique [1–3]. Requiring a multitude of detection points
distributed around the source volume, OA tomography allows
for the reconstruction of highly detailed images, see, e.g. Ref. [4],
assuming a mathematical model that mediates the underlying
diffraction transformation of OA signals [5–8]. However, for most
cases of in vivo measurements, especially on humans, it is not
feasible to place ultrasound detectors at the far side of the
illumination source with the ‘‘object’’ in between, i.e. to work in
forward mode. Instead, it is worked in backward mode, where
detector and irradiation source are positioned on the same side of
the sample. Using elaborate setups combining the paths of light
and sound waves, it is possible to co-align optical and acoustic
focus within the sample, without the OA-detector blocking the
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optical illumination. By scanning over a multitude of detection
points, it is then possible to produce 3D images [9]. E.g. Fabry–
Perot polymer film based OA ultrasound mapping devices that are
naturally inclined towards backward-mode measurements and
proved useful to provide 3D images with high spatial resolution
where reported in Ref. [10].

A conceptually different approach is to perform measurements
by means of a single, unfocused transducer. Although it is not
possible to obtain OA images of arbitrary 3D objects with a fixed
irradiation source and a single detection point, useful information
of the internal material properties can be gained. The 1D
absorption profile contains information about the absorber
concentration as well as its depth distribution. In this regard,
acoustic near-field measurements by means of a transparent
optoacoustic detector were shown to reproduce the depth profile
of absorbed energy density and absorption coefficient without the
need of extensive postprocessing [11–14]. However, requiring
close proximity (in the order of the lateral source extent) and plane
wave symmetry, near-field conditions are unrealistic considering
most measurement scenarios. In contrast, the acoustic far-field
regime allows for a much higher experimental flexibility, albeit at
the cost of the straight-forward interpretation of the measure-
ments. More precisely, in the far-field, when the distance between
detector and source is large compared to the lateral extent of the
source, OA signals exhibit a diffraction-transformation, which is
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Sketch of the experimental setup. (a) Arrangement of the components as

discussed in the text, see Section 2. (b) Layer composition of the three different

phantoms PI, PII and PIII used for our measurements and the numerical simulations

reported in Section 4. The label ‘‘C’’ represents clear PVA-H, ‘‘S’’ labels low

absorption, and ‘‘M’’ stands for high absorption. Note that, the clear layer at the

bottom is 10 mm thick. Thus, signal reflections from interfaces of materials with

differing acoustic properties occur well outside the measurement range in that

direction.
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characteristic for the underlying system parameters [15–18]. Here,
aiming at the reliable measurement of material properties it is
fundamental to understand the entire signal shape. In particular, in
the acoustic far-field, OA signals of layered media exhibit a train of
compression and rarefaction peaks and phases, signaling a sudden
change of the absorptive characteristics. Regarding more complex
structures intuition falls short and thus suitable simulations are
needed for their interpretation. To validate the numerical
approach, the comparison of the calculated signals with experi-
mental measurements on structures with a priori known proper-
ties is essential. By investigating both, simulation of and
measurement on a layered structure, knowledge can be obtained
and subsequently transferred to more complex problems.

In the presented article, we thoroughly prepare and analyze
polyvinyl alcohol hydrogel (PVA-H) phantoms, comprised of layers
doped with different concentrations of melanin. The acoustic
properties of the PVA-Hs match those of soft tissue, i.e. human skin
[19,20]. Note that melanin is the main endogenous absorber in the
epidermis [21], and thus can be used to model melanomas. In this
regard, layers with higher concentrations of melanin absorb a
greater amount of photothermal energy and expand more
intensely than surrounding layers with low concentrations. The
stress waves emitted by these OA sources, detected in the acoustic
far field after experiencing a shape transformation due to
diffraction, are put under scrutiny here. Therefore, experimental
measurements are complemented by custom numerical simula-
tions. Besides analytic theory and experiment, the latter form a
‘‘third pillar’’ of contemporary optoacoustic studies [5].

The article is organized as follows. In Section 2 we describe the
experimental setup and elaborate on the preparation of the tissue
phantoms used for the measurements. In Section 3 we recapitulate
the theoretical background of optoacoustic signal generation and
detail our numerical approach to compute the respective signals
for point-detectors, followed by details of the experimental results
and complementing simulations in Section 4. We summarize our
findings in Section 5.

2. Methods and material

In the following, the experimental setup is presented with focus
on the phantom preparation process and arrangement of the
layered tissue samples.

2.1. Photoacoustic measurement setup

For the detection of the OA pressure transient a self-built
piezoelectric transducer is employed. This ultrasound detector is
composed of a 9 mm thick piezoelectric polyvinylidene fluoride
(PVDF) film with �50 nm indium tin oxide (ITO) electrodes
sputtered on both sides. An in depth description of the detector is
beyond the scope of this article and will be discussed elsewhere.
Note that a similar acoustic detection device was employed in Ref.
[12]. The active area of the detector is circular with a diameter of
1 mm. As acoustic backing layer a piece of hydrogel was prepared
and placed on top of the detector with a drop of distilled water to
ensure acoustic coupling. The detector can be seen as acoustically
transparent, this is due to identical acoustic impedances of the
backing layer and the phantom in addition to the small extent of
the PVDF film in comparison to the acoustic wavelengths [11].

In contrast to the numerical approach followed in the
subsequent section, the irradiation in our experimental setup
was adjusted to an angle approximately 208 off the plane normal,
with the light entering the phantom in close proximity of the
detector, see Fig. 1. For the excitation of OA signals, an optical
parametric oscillator (NL303G + PG122UV, Ekspla, Lithuania) at a
wavelength of 532 nm is coupled into a 800 mm fiber (Ceramoptec,
Optran WF 800/880N). The pulse duration from the pump is
3–6 ns, well complying with stress confinement. The beam profile
measured after the fiber is in good agreement with a top-hat shape,
which is in accordance with the irradiation source profile
considered for the numerical experiments, and parameters as
detailed for the numerical simulations in Section 4.

To improve the signal-to-noise ratio and match the electrical
impedance, a custom build electrical pre-amplifier is connected to
the detector electrodes. The voltages, corresponding to the detected
pressure, are recorded at 2 GS/s (Giga sample per second) by a high-
speed data acquisition card (Agilent U1065A, up to 8 GS/s). At such
sampling rates, the expected ultrasound pressure profile is highly
over-sampled, thus, the point-to-point noise can be smoothed out
without loss of information. A conservative estimation of the fastest
changing signal features yield a time window of 20 ns over which
smoothing might be carried out, corresponding to 40 consecutive
data points.

2.2. Polyvinyl alcohol based hydrogel tissue phantoms

The tissue phantoms used in our studies are composed of
stacked layers of polyvinyl alcohol hydrogel (PVA-H)[22]. The
incentive to utilize PVA-H is its acoustic similarity to soft tissue, i.e.
human skin [19]. In contrast to liquid phantoms such as water ink
solutions [13], hydrogels have the advantage of being stackable
without the need of containing walls. While liquids would
intermix at interfaces and thus require solid boundaries in
between, hydrogels allow sharp junctions only softened by
diffusion.

Here, PVA-Hs are produced by mixing polyvinyl alcohol (Sigma-
Aldrich 363146, Mw 85–124 99+% hydrolyzed) with distilled water
at a mixing ratio of 1:5. Using a magnetic stirrer with heating, the
dispersion is kept at 94 8C for at least 40 min while the stirring bar
rotates at 350 RPM, until it becomes a homogeneous solution.
Crystallites produced by freezing of water in the hydrogels would
yield turbidity [23]. To obtain clear PVA-H, water soluble anti
freezing agents are added. Here, when the PVA is completely
dissolved, �45 vol% of pure ethanol was incrementally added to
the aqueous solution, each time waiting for the Schlieren to
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dissolve. Especially after adding the ethanol it is very important to
keep the vessel closed whenever possible. Note, in a closed screw
neck bottle the aqueous non-polymerized solution can be stored
for weeks at room temperature. However, after the flask has been
reheated and opened several times, ethanol evaporation inevitably
causes turbidity upon freezing.

The viscous mass can be poured into any mold to obtain the
desired form. Depending on the required thickness, a commercial
metal distance washer or a 3D printed plastic ring of specific height
was placed in between two glass plates, thus creating very flat
PVA-H cylinders. Due to the much larger lateral extent of the
phantoms, compared to the depth of the absorbing layers,
boundary reflections do not interfere with the optoacoustic signal.

To facilitate polymerization the phantom is subjected to one
freezing and thawing cycle. The phantom is placed in the freezer at
�14 8C for 2 days. Thawing is achieved by keeping the samples at
room temperature for a few minutes, afterwards the phantoms are
ready to use.

The optical properties of the samples can be manipulated by
inclusion of scatterers and or absorbers. In our studies, synthetic
melanin (Sigma-Aldrich, M0418-100MG) was chosen as absorber
to mimic human skin or even melanocytic nevi and melanoma. Due
to its robustness to temperature, the finely ground melanin can be
included in the beginning of the phantom creation process, at the
same time with the PVA granule. As a rough estimate, it is assumed
that melanomas contain as much melanin as African skin.
According to [24], the melanin concentration of dark versus very
fair skin differs by a factor of ten. So as to reproduce the contrast of
a melanoma in Caucasian skin the following different types of PVA-
H layers were created:
(i) c
lear PVA-H without melanin, referred to as ‘‘C’’,

(ii) P
VA-H with 0.1 mg/mL of melanin, referred to as ‘‘S’’(Skin), and
(iii) P
VA-H with 1 mg/mL of melanin, referred to as ‘‘M’’(Melano-
ma),
Note that the melanin concentrations specified above relate to the
amount of hydrogel before the addition of ethanol. By stacking these
in different order, three distinct phantoms were created, see
Fig. 1. While stacking the PVA-H layers in preparation for a
measurement, the individual phantom layers should be kept wet
by means of distilled water in order to prevent them from sticking
together with one another and, most of all, themselves. Also, a proper
watery film prohibits the inclusion of air in between layers. In the
presented study, we considered non-scattering material only, thus we
did not add any scattering supplements.

3. Theory and numerical implementation

We briefly recapitulate the general theory, as convenient for our
approach in Section 3.1. Subsequently, in Section 3.2, we custom-
ize the general optoacoustic Poisson integral to properly represent
the layered tissue phantoms and irradiation source profile used in
our experiments. Finally, in Section 3.3, we emphasize some
important implications of the problem-inherent symmetries on
our numerical implementation.

3.1. General optoacoustic signal generation

In thermal confinement, i.e. considering short laser pulses with
pulse duration significantly smaller than the thermal relaxation
time of the underlying material [8,26], the inhomogeneous
optoacoustic wave equation relating the scalar pressure field
pð~r; tÞ to a heat absorption field Hð~r; tÞ reads

½@2
t�c2~r2�pð~r; tÞ ¼ @tGHð~r; tÞ: (1)
Therein, c signifies the speed of sound and G refers to the
Grüneisen parameter, an effective parameter summarizing
various macroscopic material constants, describing the fraction
of absorbed heat that is converted to acoustic pressure. As
evident from Eq. (1), temporal changes of the local heat
absorption field serve as sources for stress waves that form
the optoacoustic signal. Following the common framework of
stress confinement [5], we consider a product ansatz for the
heating function in the form

Hð~r; tÞ ¼Wð~rÞdðtÞ; (2)

where Wð~rÞ represents the volumetric energy density deposited in
the irradiated region due to photothermal heating by a laser pulse
[27], which, on the scale of typical acoustic propagation times, is
assumed short enough to be represented by a delta-function.
Consequently, an analytic solution for the optoacoustic pressure at
the field point ~r can be obtained from the corresponding Greens-
function in free space, yielding the optoacoustic Poisson integral
[28–30]

pð~r; tÞ ¼ G

4pc
@t

Z
V

Wð~r0Þ
j~r�~r0j

dðj~r�~r0j�ctÞd~r0; (3)

where V denotes the ‘‘source volume’’ beyond which Wð~r0Þ ¼ 0
[31], and d(�) limiting the integration to a time-dependent surface
constraint by j~r�~r0j ¼ ct.

3.2. The Poisson integral for layered media in cylindrical coordinates

As pointed out earlier, we consider non-scattering samples,
composed of (possibly) multiple plane-parallel layers, stacked
along the z-direction of an associated coordinate system.
Whereas the acoustic properties are assumed to be constant
within the phantom, the optical properties may change from
layer to layer. Thus, the volumetric energy density naturally
factors according to

Wð~rÞ ¼ f 0f ðx; yÞgðzÞ; (4)

wherein f0 signifies the energy fluence of the incident laser beam
on the z = 0 surface of the absorbing material, and f(x, y) and g(z)
specify the two-dimensional (2D) irradiation source profile and the
1D axial absorption depth profile, respectively. Bearing in mind
that we consider non-scattering media, the latter follows Beer–
Lambert’s law, i.e.

gðzÞ ¼ maðzÞexpf�
Z z

0
maðz0Þdz0g; (5)

wherein ma(z) denotes the depth-dependent absorption coeffi-
cient.

Note that, for a plane-normal irradiation with an axial
symmetry, there are two useful auxiliary reference frames based
on cylindrical polar coordinates: (i) SI where ~r ¼~rðr;f; zÞ with
origin on the beam axis at the surface of the absorbing medium,
and (ii) SD where~r

0 ¼~r0ðr0;f0; z0Þwith origin at the detection point
~rD ¼ ðxD;0; zDÞ in SI, see Fig. 2. Both reference frames are related by
the point transformation ~r

0ðr0;f0; z0Þ ¼~r�~rD [25].
In SI the irradiation source profile takes the convenient

form f(x(r, f), y(r, f)) � fI(r), where beam-profiling measure-
ments for our experimental setup are consistent with a top-hat
shape

f IðrÞ ¼
1; if r�a

expf�ðr�aÞ2=d2g; if r> a

�
(6)

In SD the constituents of the volumetric energy density read
fD(r0, f0) � f(xD + r0 cos(f0), r0 sin(f0)) and gD(z) � g(z0 � zD), so that
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Fig. 2. Illustration of the two reference frames, SI with origin on the beam axis at the

surface of the absorbing medium, and, SD with origin at the detection point. Both

coordinate systems are related by the transformation ~r
0ðr0;f0; z0Þ ¼~r�~rD

[25]. Considering cylindrical polar coordinates in SD allows to factor the

volumetric energy density Wð~rÞ within the source volume V as detailed in the

text and to pre-compute the contribution of the irradiation source profile along

closed polar curves Cðr0Þ with radius r0 . This in turn yields an efficient numerical

scheme to compute the optoacoustic signal pD(t) at the detection point ~rD.
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Fig. 3. Comparison of different solvers for the optoacoustic problem for layered

media in two different layer scenarios. The data curves labeled by pD(t) refer to an

implementation in cylindrical polar coordinates according to Eq. (7). The curves are

computed for a field point in the acoustic near-field (NF; red line) and far-field (FF;

blue line) at zD = �0.04 cm and zD = �4.0 cm on the beam axis, respectively. The

corresponding numerical results obtained using an implementation of Eq. (3) in

Cartesian coordinates are labeled by pð~rD; tÞ (black dashed lines). (a) Setup where

the source-volume contains two absorbing layers consisting of ma = 10 cm�1 in the

range z = 0.0–0.05 cm (light-gray shaded region) followed by ma = 20 cm�1 in

the range z = 0.05–0.1 cm (gray shaded region), and, (b) setup where the order of the

layers is reversed.
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the optoacoustic Poisson integral, i.e. Eq. (3), takes the form

pDðtÞ ¼
f 0G

4pc
@t

Z Z
V

Z
r

f Dðr;fÞgDðzÞ
ðr2 þ z2Þ1=2

�dððr2 þ z2Þ1=2�ctÞdr dfdz:

(7)

Albeit the non-canonical formulation of the Poisson integral in
cylindrical polar coordinates might seem a bit counterintuitive at
first, it paves the way for an efficient numerical algorithm for the
calculation of optoacoustic signals for layered media.

3.3. Numerical experiments

3.3.1. Implementation details

Considering a partitioning of the radial coordinate into Nr equal
sized values Dr = Lr/Nr so that ri = iDr with i = 0 . . . Nr � 1, the
preceding factorization of the volumetric energy density Wð~rÞ in
SD allows to pre-compute the contribution of the irradiation
source profile in Eq. (7) along closed polar curves CðriÞwith radius
ri according to

FDðriÞ ¼ lim
Nf!1

ri

XNf�1

j¼0

f Dðri;fjÞDf; (8)

where Df = 2p/Nf and fj = jDf with j = 0 . . . Nf � 1, thus com-
pleting the integration over the azimuthal angle and providing the
results in a tabulated manner with time complexity O(NrNf). This
in turn yields an efficient numerical scheme to compute the
optoacoustic signal pD(t) at the detection point ~rD since the
pending integrations can be carried out with time complexity
O(NrNz), in a discretized setting with Dz = Lz/Nz so that zk = kDz for
k = 0 . . . Nz � 1. Consequently, interpreting the d-distribution in
Eq. (7) as an indicator function that bins the values of the integrand
according to the propagation time of the associated stress waves,
the overall algorithm completes in time O(NrNf + NrNz). Note that
for the special case xD = yD = 0, i.e. for detection points on the beam
axis, Eq. (8) further simplifies to FD(ri) = 2prifI(ri), reducing the
time complexity to only O(NrNz) [32]. During our numerical
simulations,1 for practical purposes and since we are only
interested in the general shape of the optoacoustic signal in order
to compare them to the transducer response, we set the value of
the constants in Eq. (7) to f0G/c � 4p. Thus, the resulting signal is
1 A Python implementation of our code for the solution of the photoacoustic

Poisson equation in cylindrical polar coordinates, i.e. Eq. (7), can be found at [33].
obtained in arbitrary units, subsequently abbreviated as [a.u.],
making it necessary to adjust the amplitude of the signal if we
intend to compare the results to actual measurements. Further, to
mimic the finite thickness Dw of the transducer foil, see Section 2,
we averaged the optoacoustic signal at the detection point over a
time interval Dt ¼ Dw=c.

3.3.2. Exemplary optoacoustic signals

So as to facilitate intuition and to display the equivalence of the
numerical schemes implemented according to Eqs. (3) and (7) in
both, the acoustic near field (NF) and far field (FF), we illustrate
typical optoacoustic signals in Fig. 3. Therein, the ‘‘Cartesian’’
solver (not detailed further) was based on a voxelized cubic
representation of the source volume with side-lengths (Lx, Ly,
Lz) = (0.6, 0.6, 0.15) [cm] using (Nx, Ny, Nz) = (1500, 1500, 150)
meshpoints, whereas the solver based on cylindrical coordinates
used a decomposition of the computational domain into (Lr,
Lz) = (0.3, 0.15) cm and (Nr, Nf, Nz) = (6000, 360, 150). The
parameters defining the irradiation source profile were set to
a = 0.15 cm and d = a/4. As finite thickness of the transducer foil we
considered a slightly oversized Dw ¼ 50 mm for our numerical
experiments (note that the ‘‘real’’ transducer foil used in our
experiments has Dw ¼ 10 mm).

The dimensionless diffraction parameter D ¼ 2jzDj=ðma2
0Þ

[13,15] can be used to distinguish the acoustic near field (NF) at
D < 1 and far field (FF) at D > 1. Here, we consider the effective
parameters m = hma(z)i and a0 = 1.25 � a in case of multi-layered
tissue phantoms. The simulations were performed at detection
points on the beam axis, realizing NF conditions with D 	 0.15 at
zD = �0.04 cm and FF conditions with D 	 15.0 at zD = �4.0 cm. As
evident from Fig. 3, the optoacoustic NF signals are characterized
by an extended compression phase in the range ct = 0.0 � 0.1 cm,
resulting from the plane-wave part of the propagating stress wave,
which accurately trace the profile of the volumetric energy density
along the beam axis, followed by a pronounced diffraction valley
for ct > 0.11 cm. The particular shape of the latter is characteristic
for the top-hat irradiation source profile used for the numeric
experiments. In contrast to this, as can be seen from Fig. 3, the FF
signal features a succession of compression and rarefaction phases.
Therein a sudden increase (decrease) of the absorption coefficient
is signaled by a compression peak (rarefaction dip), cf. the
sequence of peaks and dips at the points ct = 0, 0.05, 0.10 cm in
Fig. 3(a) and (b), corresponding to the boundaries of the differently
absorbing layers. Further, the diffraction valley has caught up,
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[2_TD$DIFF]Fig. 4. Sensitivity of the optoacoustic signal pD(t) on a radial deviation of the

detection point~rD from the beam axis, realized by setting xD 6¼ 0 cm, as explained in

the text. The subfigures refer to different distances zD, where (a) zD = �0.2 cm is

located in the acoustic NF with D = 0.76, (b) zD = �1.0 cm (D = 11.4) in the ‘‘early’’ FF,

and, (c) zD = �5.0 cm (D = 19.0) in the ‘‘deep’’ FF.
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forming rather shallow rarefaction phases in between the peaks
and dips [34]. Finally, note the excellent agreement of the signals
obtained by the two independent OA forward solvers.

In a second series of simulations we clarified the influence of the
radial deviation of the detection point ~rD from the beam axis.
Therefore we computed the excess pressure pD(t) at different
positions xD 6¼ 0 perceived in SI. The results for xD = 0.1 cm, i.e. 2/3
along the flat-top part of the top-hat profile, and xD = 0.2 cm, i.e.
slightly above the 1/e-width of the beam intensity profile, are
illustrated in Fig. 4. As evident from Fig. 4(a), for zD = �0.2 cm,
realizing a location with D = 0.76 in the acoustic NF, the
optoacoustic signal appears to be quite sensitive to the precise
choice of xD. I.e., as soon as the border of the plane-wave part of the
signal is approached, the transformation of the signal due to
diffraction is strongly visible. Comparing the points zD = �1.0 cm
(D = 11.4) in the ‘‘early’’ FF and zD = �5.0 cm (D = 19.0) in the
‘‘deep’’ FF, it is apparent that the optoacoustic signal in the FF is less
influenced by the off-axis deviation of the detection point, see
Fig. 4(b) and (c). Also, note that with increasing distance |zD|,
the interjacent rarefaction phases level off and move closer to the
leading compression peaks [34]. From the above we conclude that,
if we compare experimental measurements recorded in the FF with
numerical simulations, we should find a good agreement between
detected and calculated signals even though both exhibit different
degrees of deviation from the beam axis.

3.3.3. Validity and limits of the presented approach

The presented numerical approach is valid in case of homoge-
neous acoustic material properties. While this is an assumption
that applies for the PVA-H based tissue phantoms described in
Section 2, this might not sufficiently describe biological samples
that are put under scrutiny in applied optoacoustic tomography.
Regarding the computation of OA signals in the direct direction
considering spatially heterogeneous acoustic properties, one
might choose from a variety of suitable approaches, as, e.g. the
Lattice–Boltzmann method [35], finite-difference method [36] or a
generalized form of the Poisson integral equation [37], presented
earlier as Eq. (3). A more intricate endeavor is the inversion of OA
signals to initial acoustic stress fields Wð~rÞ while accounting for
heterogeneous acoustic properties [7]. In principle, the spatially
varying acoustic velocity field cð~rÞ needs to be known before an
inversion to Wð~rÞ. A common technique to recover Wð~rÞ for a
known velocity field cð~rÞ is time-reversal, i.e. solution of the 3D
wave equation backwards in time [38,39]. However, in the
unfavorable case where the acoustic velocity field is not known,
one might rely on a fitting parameterization by use of prior
information on the acoustic properties within the computational
region of interest in order to allow for a simultaneous reconstruc-
tion of cð~rÞ and Wð~rÞ as demonstrated by Ref. [37]. Finally, note
that, due to the already good agreement of simulated data and
measurement, attenuation of ultrasound has been neglected.
However, in case of homogeneous acoustic properties and known
material properties, computed OA signals might be corrected for
effects of acoustic dispersion in Fourier space [40,41]. As reported
in Ref. [40], this might be used vice versa to correct measured data
prior to inversion via methods that do not account for acoustic
attenuation. To the best of the author’s knowledge, it seems that
the influence of attenuation in presence of inhomogeneous
acoustic material properties has not been sufficiently studied
and reported in the literature, yet.

This completes the discussion of optoacoustic signals and their
generation from the point of view of computational theoretical
physics. Details regarding the measurements on layered tissue
phantoms and custom simulations geared towards those experi-
ments are given in the subsequent section.

4. Results

Below we compare measured OA signals, obtained from
measurements on the three tissue phantoms PI–PIII, discussed in
Section 2 and illustrated in Fig. 1(b), with custom simulations
created in terms of the numerical framework detailed in
Section 3. As evident from the comparison of the experimental
setup with the simulation framework, there are three differences
between experiment and theory which have to be kept in mind
while interpreting the results. The first two points refer to the
location and orientation of the irradiated absorber volume
relative to the OA detector and its principal axis: (i) while the
irradiation is assumed to be plain normal incident for our
simulations, the direction of incidence in the experimental setup
is off the plane normal by a nonzero angle. Additionally, due to
unavoidable refraction at the phantom surface, the beam profile
is likely to be slightly non-symmetric and divergent. Hence, the
top-hat beam shape assumed in our simulation approach can
only been seen as an approximation of the experimental
conditions. (ii) Although it is probable that all the acoustic
measurements are performed, at least to some extent, off-axis,
we opt for modeling and numerical simulations in an on-axis
approach. As demonstrated in Section 3.3 and illustrated in
Fig. 4(c), we expect the principal signal shape in the acoustic far-
field to change only at a small rate upon deviation from the beam
axis. (iii) As pointed out in Section 2, the active area of the
transducer has a radius of 0.5 mm, while in our simulations we
compute optoacoustic signals for a point-like detector. However,
upon approaching the far-field limit one expects the former
intrinsic length scale not to be of significance. The apparent
qualitative agreement of simulation and experiment detailed in
the remainder is impressive and should suffice to validate our
approach.

4.1. Comparison of optoacoustic signals obtained from theory and

experiment

The measured optoacoustic signals for the tissue phantoms PI–
PIII along with the simulated curves are illustrated in Fig. 5(a)–(c).
In principle all three measured curves exhibit the characteristic
features expected for signals observed in the acoustic far-field.
Thus these measurements are well suited for the purpose of
optoacoustic depth profiling [13]. In particular, for the simulation
of PI, we considered a single layer with an assumed absorption
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coefficient ma = 11 cm�1 in the range z = 0.3–0.395 cm (z is
measured with respect to the origin of SD), indicated by a gray
shaded region representing a highly absorbing layer (introduced as
‘‘M’’ in Section 2). The deviation from a layer thickness of 1 mm in
the simulations accounts for small variations in the actual layer
thickness of the tissue phantom as well as a putative inter-layer
variation of the sound velocity. Experimentally, the detector
response is measured vs. time. Therefore, any comparison between
simulation and experiment is affected by the speed of sound,
which, in the theoretical framework is assumed to be homoge-
neous throughout the source volume. The top-hat beam shape
parameters within the simulation where set to a = 0.054 cm and
R � d/a = 1.5. Note that due to the aforementioned challenges
concerning the preparation of the shape and position of the beam
profile at the absorbing layer, it is merely possible to set realistic
parameter-boundaries from which to choose precise values for a

and R. As a remedy, we here fixed the parameter values so that they
reproduce the principal features of the signal, i.e. the initial
compression peak, the trailing rarefaction dip as well as the
intermediate rarefaction phase, well in theory and experiment. The
subsequent long and shallow rarefaction phase for z > 0.5 cm in
Fig. 5(a) is located outside the targeted measurement range
corresponding to the prepared source volume and is likely caused
by acoustic reflections from the lateral boundaries of the backing
layer.

Phantom PII was modeled by considering a first layer with a
comparatively low absorption coefficient ma = 1.4 cm�1, i.e. type-S,
in the range z = 0.3–0.408 cm (light-gray shaded region), followed
by a type-M layer with ma = 11 cm�1 in the range z = 0.408–
0.504 cm (gray shaded region). Therein, the beam shape param-
eters where set to a = 0.056 cm and R = 1.2. Here, all three expected
characteristic signal features, i.e. the initial small compression
peak, the interjacent high compression peak as well as the trailing
rarefaction dip match well for theory and experiment.

Finally, phantom PIII was modeled by considering a type-S layer
with ma = 1.4 cm�1 in the range z = 0.3–0.5 cm (light-gray shaded
region) followed by a type-M layer with ma = 11 cm�1 in the range
z = 0.5–0.595 cm (gray shaded region). Therein, the beam
shape parameters where set to a = 0.08 cm and R = 1.2. Again, all
three characteristic signal features are reproduced well by theory
and experiment.

As pointed out in Section 3.3, it is necessary to adjust the scale
of the amplitude of the computed OA signal if we intend to
compare it to the transducer response. The respective scaling
factor was obtained from the simulated and measured curves for
tissue phantom PI and the same scaling factor was subsequently
used in the other two cases to achieve the excellent agreement
displayed in Fig. 5(a)–(c).

4.2. Reconstruction of the initial volumetric energy distribution

Owing to its immediate relevance for medical applications [2,3],
recent progress in the field of OA has been driven by photoacoustic
tomography (PAT) and imaging applications [5]. Therein, aim is to
reconstruct the initial acoustic stress profile to facilitate a
reconstruction of the OA properties of the underlying sample
via inversion. Usually, the PAT inversion input consists of a large
number of OA signals, recorded on a surface enclosing the OA
source volume. In contrast, considering ‘‘single-shot’’ FF measure-
ments as above, the observed signals can not only be used for OA
depth profiling, they can also be related to the initial volumetric
energy distribution by means of a temporal derivative [13–15]. As
discussed in Ref. [13], this offers the possibility to reconstruct the
initial acoustic stress distribution p0(z) = GW(z) in the limit
D
 1. Note that Refs. [13,14] used the integral of the measured
acoustic signals as a visual aid for imaging purposes, cf. Fig. 9(c) of
Ref. [13], and Fig. 8(b) of Ref. [14], they did not elaborate on this
issue any further. Here, we attempt to explore the use of the idea
above in order to obtain a predictor p0,FF 	 p0 in terms of a FF
approximation for tissue phantom PIII. This is illustrated in
Fig. 6(a), where we show the exact initial distribution of acoustic
stress p0 (solid black line) by means of which the numerical
simulations were carried out, together with the FF reconstructed
predictors p0,FF simulated at three different measurement points
zD = �0.3,�0.9,�4.0 cm in the acoustic FF and the FF reconstructed
predictor derived from the experimental measurement. While the
measurement based and simulation based predictors at
zD = �0.3 cm agree well it can be seen that, even though the
simulations are carried out in acoustic FF, they still differ
noticeably from the exact curve. As one might intuitively expect,
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an increasing distance |zD| yields a more consistent estimate. In the
limit |zD|!1 this is limited only by the temporal averaging of the
signal, implemented to mimic a finite thickness of the transducer
foil.

This can be assessed on a quantitative basis by monitoring the

mean squared error MSE ¼
PNz�1

i¼0 ½p0ðziÞ�p0;FFðziÞ�2=Nz in a dis-

cretized setting, with zi as in Section 3.3, see Fig. 6(b). Note that in
advance, the above signals are normalized in order to ensureP

iX(zi) = 1 for both, X = p0 and p0,FF. As evident from the figure,
the MSE might be reduced by a solid order of magnitude upon
moving the signal detection from zD = �0.3 cm to �2.0 cm and
thus further into the far-field (indicated by the dashed lines in
the figure).

5. Summary and conclusions

In the presented article we discussed an efficient numerical
procedure for the calculation of optoacoustic signals in layered
media, based on a numerical integration of the optoacoustic
Poisson integral in cylindrical polar coordinates, in combination
with experimental measurements on PVA based hydrogel tissue
phantoms. In summary, we observed that far-field measure-
ments on tissue phantoms composed of layers with different
concentrations of melanin are in striking agreement with custom
numerical simulations and exhibit all the characteristic features
that allow for optoacoustic depth profiling. Further, in our
experiments, the signal to noise ratio of single measurements
was sufficiently high to omit any signal post-processing. In
contrast to the experimental measurements, the simulations are
performed with on axis illumination and assuming an ideal
point-like detector. Nonetheless, simulation and experiment
agree very well over all, which highlights the robustness of the
signal analysis and simulation against small deviations. Finally,
we showcased the possibility to reconstruct the initial pressure
profile in a far-field approximation by numerical integration.
Even though exact reconstruction would require an ideal
detector in addition to an infinite distance between source
and detector, the pressure profile reconstructed here (with finite
distance |zD| = 1 cm and finite detector radius 0.5 mm) repro-
duces the initial pressure profile exceedingly knorke. In this
regard, from the point of view of computational theoretical
physics, it is also tempting to explore further, conceptually
different signal inversion approaches, that might facilitate a
reconstruction of ‘‘internal’’ optoacoustic material properties
based on the measurement of ‘‘external’’ OA signals. Such
investigations are currently in progress.
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